2008年广东湛江市中考数学
中考数学试题2008年广东湛江市
![中考数学试题2008年广东湛江市](https://img.taocdn.com/s3/m/a60ce9ab6c85ec3a87c2c5e1.png)
湛江市2008年初中毕业生水平考试数 学 试 题说明:1.本试卷满分150分,考试时间90分钟.2.本试卷共4页,共5大题.3.答题前,请认真阅读答题卡上的“注意事项”,然后按要求将答案写在答题卡相应的位置上.4.请考生保持答题卡的整洁,考试结束,将试卷和答题卡一并交回. 注意:在答题卡上作图必须用黑色字迹的钢笔或签字笔.一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只 有一项是符合题目要求的.1. 在2-、0、1、3这四个数中比0小的数是( )A.2-B.0C.1 D .32. 人的大脑每天能记录大约8600万条信息,数据8600用科学计数法表示为( )A . 40.8610⨯B . 28.610⨯C . 38.610⨯D . 28610⨯3. 不等式组13x x >-⎧⎨<⎩的解集为( )A.1x >-B.3x <C.13x -<< D .无解4. ⊙O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( )A . 相交B . 相切C . 相离D . 无法确定 5. 下面的图形中,是中心对称图形的是( )A .B .C .D .6. 下列计算中,正确的是( )A . 22-=-B .=C . 325a a a ⋅=D . 22x x x -=7. 从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是12,则n 的值是( ) A . 6 B . 3 C . 2 D . 1 8. 函数12y x =-的自变量x 的取值范围是( ) A . 2x = B . 2x ≠ C . 2x ≠- D . 2x >9.数据2,7,3,7,5,3,7的众数是()A.2B.3C.5D.710.将如图1所示的Rt△ABC绕直角边BC旋转一周,所得几何体的左视图是()11.已知三角形的面积一定,则它底边a上的高h与底边a之间的函数关系的图象大致是()B.C. D .12.如图2所示,已知等边三角形ABC的边长为1,按图中所示的规律,用2008个这样的三角形镶嵌而成的四边形的周长是()A.2008B.2009C.2010D.2011二、填空题:本大题共6小题,每小题4分,共24分.13.湛江市某天的最高气温是27℃,最低气温是17℃,那么当天的温差是℃.14.分解因式:222a ab-=.15.圆柱的底面周长为2π,高为3,则圆柱侧面展开图的面积是.16.如图3所示,请写出能判定CE∥AB的一个条件.17.图4若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是.18.将正整数按如图5所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是.A BE图2CAB┅┅三、解答题:本大题共5小题,每小题7分,共35分. 19. 计算:(1-)2008-(π-3)0+4.20. 某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场球负5场共得19分,问这个队胜了几场?21. 有五张除字不同其余都相同的卡片分别放在甲、乙两盒子中,已知甲盒子有三张,分别写有“北”、“京”、“奥”字样,乙盒子有两张,分别写有“运”、“会”字样,若依次从甲乙两盒子中各取一张卡片,求能拼成“奥运”两字的概率.22. 如图6所示,课外活动中,小明在离旗杆AB 10米的C 处,用测角仪测得旗杆顶部A的仰角为40︒,已知测角仪器的高CD =1.5米,求旗杆AB 的高. (精确到0.1米) (供选用的数据:sin 400.64≈,cos 400.77≈,tan 40≈23. 如图7所示,已知等腰梯形ABCD 中,AD ∥BC ,AB =DC ,AC 与BD 相交于点O .请在图中找出一对全等的三角形,并加以证明.四、解答题:本大题共3小题,每小题10分,共30分.24. 为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图8),请结合图形解答下列问题.(1) 指出这个问题中的总体.(2) 求竞赛成绩在79.5~89.5这一小组的频率.(3) 如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.25. 如图9所示,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连接AC 、OC 、BC . (1)求证:∠ACO =∠BCD .(2)若E B =8cm ,CD =24cm ,求⊙O 的直径.26. 某农户种植一种经济作物,总用水量y (米3)与种植时间x (天)之间的函数关系式如图10所示.(1)第20天的总用水量为多少米3?(2)当x ≥20时,求y 与x 之间的函数关系式.(3)种植时间为多少天时,总用水量达到7000米3?图8图10天)五、解答题:本大题共2小题,其中第27题12分,28题13分,共25分. 27. 先观察下列等式,然后用你发现的规律解答下列问题.111122=-⨯ 1112323=-⨯ 1113434=-⨯ ┅┅ (1) 计算111111223344556++++=⨯⨯⨯⨯⨯ . (2)探究1111......122334(1)n n ++++=⨯⨯⨯+ .(用含有n 的式子表示) (3)若 1111......133557(21)(21)n n ++++⨯⨯⨯-+的值为1735,求n 的值.28. 如图11所示,已知抛物线21y x =-与x 轴交于A 、B 两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标.(2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP(3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与∆PCA 相似. 若存在,请求出M 点的坐标;否则,请说明理由.湛江市2008年初中毕业水平考试数学试题参考答案及评分标准一、选择题:本大题共12小题,每小题3分,共36分.1. A 2. C 3. C 4. A 5. D 6. C 7. B 8. B 9. D 10. A 11 D 12. C二、填空题:本大题共6小题,每小题4分,共24分.13. 10 14.2()a a b - 15. 6π 16.∠DCE =∠A 或∠ECB =∠B 或∠A +∠ACE =180︒ 17. 0.71 18.(6,5)三、解答题:本大题共5小题,每小题7分,共35分. 19. 解:原式=112-+ ·········································································· (4分)= 2 ················································································ (7分)20. 解:设这个队胜了x 场,依题意得:3(145)19x x +--= ································································· (4分) 解得:5x = ············································································· (6分)答:这个队胜了5场. ·································································· (7分)21.························ (4分)从表中可以看出,依次从甲乙两盒子中各取一张卡片,可能出现的结果.有6个,它们出现的可能性相等,其中能拼成“奥运”两字的结果有1个. ···· (5分)所以能拼成“奥运”两字的概率为16. ··············································· (7分) 22. 解:在Rt △ADE 中,tan ∠ADE =DE AE············· (2分) ∵DE =10,∠ADE =40︒∴AE =DE tan ∠ADE =10tan 40︒≈100.84⨯=8.4 (4分) ∴AB =AE +EB =AE +DC =8.4 1.59.9+= ················· (6分) 答:旗杆AB 的高为9.9米. ····························· (7分)23. 解:∆ABC ≌∆DCB ··································· (2分) 证明:∵在等腰梯形ABCD 中,AD ∥BC ,AB =DC ∴∠ABC=∠DCB ························· (4分) 在∆ABC 与∆DCB 中AB DC ABC DCB BC CB =⎧⎪∠=∠⎨⎪=⎩∴∆ABC ≌∆DCB ··················································· (7分)(注:答案不唯一) 四、解答题:本大题共3小题,每小题10分,共30分.24. 解: (1) 总体是某校2000名学生参加环保知识竞赛的成绩. ··················· (2分)(2)15150.256912151860==++++ ················································ (5分) 答:竞赛成绩在79.5~89.5这一小组的频率为0.25. ························ (6分)(3)9200030069121518⨯=++++ ··············································· (9分) 答:估计全校约有300人获得奖励. ············································· (10分)25. 证明:(1)∵AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于E ,∴CE =ED , CB DB = ·························· (2分) ∴∠BCD =∠BAC ································· (3分) ∵O A =O C ∴∠O AC =∠O CA∴∠AC O=∠BCD ·································· (5分) (2)设⊙O 的半径为Rcm ,则O E =O B -EB =R -8CE =21CD =21⨯24=12 ······························ (6分) 在Rt ∆CE O 中,由勾股定理可得O C 2=O E 2+CE 2即R 2= (R -8)2+122···································· (8分) 解得 R=13 ∴2R=2⨯13=26 答:⊙O 的直径为26cm . ························································· (10分)59.549.579.5 89.5 69.5 人数99.5成绩∴y 与x 之间的函数关系式为:y=300x -5000 ···································· (7分)(3)当y =7000时有7000=300x -5000 解得x =40答 :种植时间为40天时,总用水量达到7000米3 ································ (10分) 五、解答题:本大题共2小题,其中第27题12分,28题13分,共25分. 27. 解:(1)56 ··················································································· (3分) (2)1+n n··················································································· (6分)(3)1111......133557(21)(21)n n ++++⨯⨯⨯-+ =)7151(21)5131(21)311(21-+-+-+ ┄ +)121121(21+--n n =)1211(21+-n =12+n n ···························································· (9分) 由12+n n =3517 解得17=n ············································· (11分) 经检验17=n 是方程的根,∴17=n ············································ (12分)28.解:(1)令0y =,得210x -= 解得1x =±令0x =,得1y =-∴ A (1,0)- B (1,0) C (0,1)- ···(2分)(2)∵O A =O B =O C =1 ∴∠BAC =∠AC O=∠BC O=45∵A P ∥CB , ∴∠P AB =45过点P 作P E ⊥x 轴于E ,则∆A P E 为等腰直角三角形令O E =a ,则P E =1a + ∴P (,1)a a +∵点P 在抛物线21y x =-上 ∴211a a +=- 解得12a =,21a =-(不合题意,舍去)∴P E =3 ···························································································· 4分)∴四边形ACB P 的面积S =12AB •O C +12AB •P E =112123422⨯⨯+⨯⨯= ······································ 6分) (3). 假设存在∵∠P AB =∠BAC =45 ∴P A ⊥AC∵MG ⊥x 轴于点G , ∴∠MG A =∠P AC =90 在Rt △A O C 中,O A =O C =1 ∴AC在Rt △P AE 中,AE =P E =3 ∴AP= ················································ 7分) 设M 点的横坐标为m ,则M 2(,1)m m - ①点M 在y 轴左侧时,则1m <- (ⅰ) 当∆A MG ∽∆P CA 时,有AG PA =MGCA∵A G=1m --,MG=21m -2= 解得11m =-(舍去) 223m =(舍去) (ⅱ) 当∆M A G ∽∆P CA 时有AG CA =MGPA即2= 解得:1m =-(舍去) 22m =-∴M (2,3)- ·········································································· (10分)② 点M 在y 轴右侧时,则1m > (ⅰ) 当∆A MG ∽∆P CA 时有AG PA =MGCA∵A G=1m +,MG=21m -∴2= 解得11m =-(舍去) 243m =∴M 47(,)39(ⅱ) 当∆M A G ∽∆P CA 时有AG CA =MGPA即2= 解得:11m =-(舍去) 24m = ∴M (4,15)∴存在点M ,使以A 、M 、G 三点为顶点的三角形与∆P CA 相似M 点的坐标为(2,3)-,47(,)39,(4,15) ·································· (13分)说明:以上各题如有其他解(证)法,请酌情给分。
2008年广东省中考数学试卷及答案(word版)
![2008年广东省中考数学试卷及答案(word版)](https://img.taocdn.com/s3/m/b66de9d480eb6294dd886c82.png)
2008年广东省初中毕业生学业考试数 学说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号,姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.21-的值是 A .21- B .21 C .2- D .22.2008年5月10日北京奥运会火炬接力传递活动在美丽的海滨城市汕头举行,整个火炬传递 路线全长约40820米,用科学计数法表示火炬传递路程是 A .2102.408⨯米 B .31082.40⨯米 C .410082.4⨯米 D .5104082.0⨯米 3.下列式子中是完全平方式的是A .22b ab a ++B .222++a aC .222b b a +-D .122++a a 4.下列图形中是轴对称图形的是5.下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位 数是A .28B .28.5C .29D .29.5二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6.2- 的相反数是__________;7.经过点A (1,2)的反比例函数解析式是_____ _____; 8.已知等边三角形ABC 的边长为33+,则ΔABC 的周长是____________;9.如图1,在ΔABC 中,M 、N 分别是AB 、AC 的中点,且∠A +∠B=120°, 则∠AN M= °;10.如图2,已知AB 是⊙O 的直径,BC 为弦,∠A BC=30°过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC ,则∠DCB= °.三、解答题(一)(本大题5小题,每小题6分,共30分) 11.(本题满分6分)计算 :01)2008(260cos π-++-.12.(本题满分6分)解不等式x x <-64,并将不等式的解集表示在数轴上.13.(本题满分6分)如图3,在ΔABC 中,AB=AC=10,BC=8.用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.14.(本题满分6分)已知直线1l :54+-=x y 和直线2l ::421-=x y ,求两条直线1l 和2l 的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.15.(本题满分6分)如图4,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长。
2008年广东省中考数学试卷及答案
![2008年广东省中考数学试卷及答案](https://img.taocdn.com/s3/m/f16d5bf58bd63186bcebbcdc.png)
页眉内容阅读使人充实,会谈使人敏捷,写作使人精确。
——培根一、选择题(本大题5小题,每小题3分,共15分)1.21-的值是 A .21- B .21 C .2- D .22.2008年5月10日北京奥运会火炬接力传递活动在美丽的海滨城市汕头举行,整个火炬传递路线全长约40820米,用科学计数法表示火炬传递路程是A .2102.408⨯米B .31082.40⨯米C .410082.4⨯米D .5104082.0⨯米3.下列式子中是完全平方式的是A .22b ab a ++B .222++a aC .222b b a +-D .122++a a4.下列图形中是轴对称图形的是5.下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位A .28B .28.5C .29D .29.5二、填空题(本大题5小题,每小题4分,共20分)6.2- 的相反数是__________;7.经过点A (1,2)的反比例函数解析式是__________;8.已知等边三角形ABC 的边长为33+,则ΔABC 的周长是____________;9.如图1,在ΔABC 中,M 、N 分别是AB 、AC 的中点,且∠A +∠B=120°,则∠AN M= °;10.如图2,已知AB 是⊙O 的直径,BC 为弦,∠A BC=30°过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC ,则∠DCB= °.A M NBC OB DC A 图2三、解答题(一)(本大题5小题,每小题6分,共30分)11.(本题满分6分)计算 :01)2008(260cos π-++- .12.(本题满分6分)解不等式x x <-64,并将不等式的解集表示在数轴上.13.(本题满分6分)如图3,在ΔABC 中,AB=AC=10,BC=8.用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.14.(本题满分6分)已知直线1l :54+-=x y 和直线2l ::421-=x y ,求两条直线1l 和2l 的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.15.(本题满分6分)如图4,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长。
小系数 大学问
![小系数 大学问](https://img.taocdn.com/s3/m/6817eb7a960590c69fc37604.png)
小系数大学问摘要:二次函数是初中数学中的重点与难点。
通过字母系数的探索可以促进学生对二次函数解题方法和思路的掌握。
关键词:系数;二次函数;探索作者简介:林松杰,任教于浙江慈溪市胜山初级中学。
“二次函数”是初中数学实际问题的一种常见的模型,也是每年各地中考试题的命题热点,由于其模型与实际生活的事例联系多,式与形的联系过密,因此成为了中考压轴题不错的素材。
对于初中生而言,这一块内容是学习的难点,许多学生看到这类题目就怕,甚至解题的方向都没有。
笔者在“二次函数”复习中引导学生注重解析式与图像的结合,再抓住图像中某些特殊的点或图形来探索二次函数一般式中的字母系数a、b、c的特征。
从而得到一些规律来,作为解题的尝试方向。
一、对于a、b、c的认识探索为了使学习过程对知识的统一,我们约定对a、b、c是特定的,即a是二次项系数、b是一次项系数、c是常数项。
而对于三个字母的作用应该说明一下,a 是对抛物线的形状起着决定性的作用,而a的符号决定了开口方向,也就是说二次函数图像的决定性系数是a,b与c只是对抛物线在某个直角坐标系上的位置有关,即与对称轴X=、顶点M()有关。
如果认识到这一点,那么对于二次函数图像的平移、旋转、对称问题就不难解决了。
二、二次函数图像中的关键点探索作二次函数图像我们一般采用的方法是“五点法”描图,但是对于比较准确、快速、有效地把握二次函数图像,我们一般是抓住几个关键性的点:顶点(与对称轴的交点)、与X轴交点、与Y轴交点,这些点的坐标可以用二次函数y=ax2+bx+c(a≠0)中的a、b、c来表示,其中可以确定的是顶点M(),与Y轴交点C(0,c)。
与X轴交点情况需要进行讨论:① b2-4ac<0,抛物线与X轴无交点。
这是判断函数值恒大于零或恒小于零的重要依据,即当a<0时抛物线在X轴下方,当a>0时抛物线在X轴上方。
② b2-4ac=0,抛物线与X轴只有一个交点,此交点就是顶点M()。
此情况就是抛物线的顶点在X轴上,同时对于一元二次方程ax2+bx+c=0(a≠0)出现两个相等的实数根。
2008年中考数学试题分类汇编(阅读、规律、代数式)
![2008年中考数学试题分类汇编(阅读、规律、代数式)](https://img.taocdn.com/s3/m/9835b99151e79b896802264e.png)
以下是河北省柳超的分类(2008年贵阳市)13.符号“f ”表示一种运算,它对一些数的运算结果如下: (1)(1)0f =,(2)1f =,(3)2f =,(4)3f =,…(2)122f ⎛⎫=⎪⎝⎭,133f ⎛⎫= ⎪⎝⎭,144f ⎛⎫= ⎪⎝⎭,155f ⎛⎫= ⎪⎝⎭,…利用以上规律计算:1(2008)2008f f ⎛⎫-= ⎪⎝⎭.(2008年贵阳市)10.根据如图2所示的(1),(2),(3)三个图所表示的规律,依次下去第n个图中平行四边形的个数是( )A .3nB .3(1)n n +C .6nD .6(1)n n +(2008年遵义市)16.如图是与杨辉三角形有类似性质的三角形数垒,a b ,是某行的前两个数,当7a =时,b = .以下是江西康海芯的分类:1. (2008年郴州市)因式分解:24x -=____________ ()()22x x +-辽宁省 岳伟 分类2008年桂林市(图2)……(1)(2) (3)1 2 2 3 4 3 4 7 7 4 5 11 14 11 5· · · · · · · · · a b · · · · · · · · (16题图)如图,矩形1111ABCD的面积为4,顺次连结各边中点得到四边形2222ABCD,再顺次连结四边形2222ABCD四边中点得到四边形3333ABCD,依此类推,求四边形n n n n ABCD的面积是 。
18.(2008年湖州市)将自然数按以下规律排列,则2008所在的位置是第 行第 列.10. ( 2008年杭州市) 如图, 记抛物线12+-=x y 的图象与x 正半轴的交点为A , 将线段OA 分成n 等份, 设分点分别为121,,,-n P P P , 过每个分点作x 轴的垂线, 分别与抛物线交于点121,,,-n Q Q Q , 再记直角三角形 ,,22111Q P P Q OP 的面积分别为 ,,21S S ,这样就有,24,21322321nn S n n S -=-=… ; 记21S S W += 1-++n S , 当n 越来越大时, 你猜想W 最接近的常数是( C ) (A) 32 (B)21 (C)31(D) 41(第10题)16. ( 2008年杭州市) 如图, 一个4×2的矩形可以用3种不同的方式分割成2或5或8个小正方形, 那么一个5×3的矩形用不同的方式分割后, 小正方形的个数可以是 ________________ .以下是安徽省马鞍山市成功中学的汪宗兴老师的分类1.(2008年·东莞市)(本题满分9分)(1)解方程求出两个解1x 、2x ,并计算两个解的写出你的结论.24.(2008年双柏县)(本小题9分)依法纳税是每个公民应尽的义务.从2008年3月1日起,新修改后的《中华人民共和国个人所得税法》规定,公民每月收入不超过2000元,不需交税;超过2000元的部分为全月应纳税所得额,都应纳税,且根据超过部分的多少按不同的税率纳税,详细的税率如下表:(1)某工厂一名工人2008年3月的收入为2 400元,问他应交税款多少元? (2)设x 表示公民每月收入(单位:元),y 表示应交税款(单位:元),(第16题)当2500≤x ≤4000时,请写出y 关于x 的函数关系式;(3)某公司一名职员2008年4月应交税款120元,问该月他的收入是多少元?(08年宁夏回族自治区)商场为了促销,推出两种促销方式:方式①:所有商品打7.5折销售: 方式②:一次购物满200元送60元现金.(1)杨老师要购买标价为628元和788元的商品各一件,现有四种购买方案:方案一:628元和788元的商品均按促销方式①购买; 方案二:628元的商品按促销方式①购买,788元的商品按促销方式②购买; 方案三:628元的商品按促销方式②购买,788元的商品按促销方式①购买; 方案四:628元和788元的商品均按促销方式②购买. 你给杨老师提出的最合理购买方案是 .(2)通过计算下表中标价在600元到800元之间商品的付款金额,你总结出商品的购买规律是 。
2008年广东省广州市中考数学试卷及答案
![2008年广东省广州市中考数学试卷及答案](https://img.taocdn.com/s3/m/c82eced690c69ec3d4bb7563.png)
2008年广东省广州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2008•广州)计算(﹣2)3所得结果是()A.﹣6 B.6C.﹣8 D.82.(3分)(2008•广州)将图按顺时针方向旋转90°后得到的是()A.B.C.D.3.(3分)(2008•广州)下面四个图形中,是三棱柱的平面展开图的是()A.B.C.D.4.(3分)(2008•广州)若a与b互为相反数,则下列式子成立的是()A.a﹣b=0 B.a+b=1 C.a+b=0 D.a b=05.(3分)(2008•广州)方程x(x+2)=0的根是()A.x=2 B.x=0 C.x1=0,x2=﹣2 D.x1=0,x2=26.(3分)(2008•广州)一次函数y=3x﹣4的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)(2008•广州)下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间降雨B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖的概率是1%”表示买100张彩票一定会中奖D.抛一枚正方体骰子朝正面的数为奇数的概率是0.5“表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝正面的数为奇数8.(3分)(2008•广州)把下列每个字母都看成一个图形,那么中心对称图形有()A.1个B.2个C.3个D.4个9.(3分)(2008•广州)如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是()A .B . 2C .D . 10.(3分)(2008•广州)四个小朋友玩跷跷板,他们的体重分别为P ,Q ,R ,S ,如图所示,则他们的体重大小关系是( )A . P >R >S >QB . Q >S >P >RC . S >P >Q >RD . S >P >R >Q二、填空题(共6小题,每小题3分,满分18分) 11.(3分)(2008•广州)的倒数是 _________ . 12.(3分)(2008•广州)如图,∠1=70°,若m ∥n ,则∠2= _________ 度.13.(3分)(2008•广州)函数y=中的自变量x 的取值范围是 _________ .14.(3分)(2008•广州)将线段AB 平移1cm ,得到线段A′B′,则点A 到点A′的距离是 _________ cm . 15.(3分)(2008•广州)命题“圆的直径所对的圆周角是直角”是 _________ 命题.(填“真”或“假”) 16.(3分)(2008•广州)对于平面内任意一个凸四边形ABCD ,现从以下四个关系式①AB=CD ;②AD=BC ;③AB ∥CD ;④∠A=∠C 中任取两个作为条件,能够得出这个四边形ABCD 是平行四边形的概率是 _________ .三、解答题(共9小题,满分102分)17.(9分)(2008•广州)分解因式:a 3﹣ab 2. 18.(9分)(2008•广州)小青在九年级上学期的数学成绩如下表所示: 测验类别 平时 期中 考试 期末考试 测验1 测验2 测验3 课题学习成绩 88 72 98 86 90 85 (1)计算该学期的平时平均成绩;(2)如果学期的总评成绩是根据图所示的权重计算,请计算出小青该学期的总评成绩.19.(10分)(2008•广州)如图,实数a 、b 在数轴上的位置,化简:.20.(10分)(2008•广州)如图,在菱形ABCD 中,∠DAB=60°,过点C 作CE ⊥AC 且与AB 的延长线交于点E . 求证:四边形AECD 是等腰梯形.21.(12分)(2008•广州)如图,一次函数y kx b =+的图象与反比例函数my x=的图象相交于A 、B 两点 (1)根据图象,分别写出A 、B 的坐标; (2)求出两函数解析式;(3)根据图象回答:当x 为何值时, 一次函数的函数值大于反比例函数的函数值22.(12分)(2008•广州)2008年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30千米远的郊区进行抢修.维修工骑摩托车先走,15分钟后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求两种车的速度.23.(12分)(2008•广州)如图,射线AM 交一圆于点B 、C ,射线AN 交该圆于点D 、E ,且.(1)求证:AC=AE ;(2)利用尺规作图,分别作线段CE 的垂直平分线与∠MCE 的平分线,两线交于点F (保留作图痕迹,不写作法),24.(14分)(2008•广州)如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE(1)求证:四边形OGCH是平行四边形;(2)当点C在上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:CD2+3CH2是定值.25.(14分)(2008•广州)如图,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S平方厘米.(1)当t=4时,求S的值;(2)当4≤t≤10,求S与t的函数关系式,并求出S的最大值.2008年广东省广州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2008•广州)计算(﹣2)3所得结果是()A.﹣6 B.6C.﹣8 D.8考点:有理数的乘方.分析:本题考查有理数的乘方运算,(﹣2)3表示3个(﹣2)的乘积.解答:解:(﹣2)3=(﹣2)×(﹣2)×(﹣2)=﹣8.故选C.点评:本题考查了乘方运算,负数的偶数次幂是正数,负数的奇数次幂仍为负数.2.(3分)(2008•广州)将图按顺时针方向旋转90°后得到的是()A.B.C.D.考点:生活中的旋转现象.专题:操作型.分析:根据旋转的意义,找出图中眼,眉毛,嘴5个关键处按顺时针方向旋转90°后的形状即可选择答案.解答:解:根据旋转的意义,图片按顺时针方向旋转90度,即正立状态转为顺时针的横向状态,从而可确定为A 图.故选A.点评:本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度,难度不大,但易错.3.(3分)(2008•广州)下面四个图形中,是三棱柱的平面展开图的是()A.B.C.D.考点:几何体的展开图.分析:根据三棱柱的展开图的特点作答.解答:解:A、是三棱柱的平面展开图;B、是三棱锥的展开图,故不是;C、是四棱锥的展开图,故不是;D、两底在同一侧,也不符合题意.点评:熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.4.(3分)(2008•广州)若a与b互为相反数,则下列式子成立的是()A.a﹣b=0 B.a+b=1 C.a+b=0 D.a b=0考点:相反数.分析:此题依据相反数的概念及性质求值.解答:解:∵a与b互为相反数,∴a+b=0.故选C.点评:此题主要考查相反数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.5.(3分)(2008•广州)方程x(x+2)=0的根是()A.x=2 B.x=0 C.x1=0,x2=﹣2 D.x1=0,x2=2考点:解一元二次方程-因式分解法.专题:压轴题;因式分解.分析:本题可根据“两式相乘值为0,这两式中至少有一式值为0”来解题.解答:解:x(x+2)=0,⇒x=0或x+2=0,解得x1=0,x2=﹣2.故选C.点评:本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.6.(3分)(2008•广州)一次函数y=3x﹣4的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数的性质.分析:根据k、b的值确定一次函数y=3x﹣4的图象经过的象限.解答:解:k=3>0,图象过一三象限;b=﹣4<0,图象过第四象限,∴一次函数y=3x﹣4的图象不经过第二象限.故选B.点评:本题考查一次函数的k>0,b<0的图象性质.7.(3分)(2008•广州)下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间降雨B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖的概率是1%”表示买100张彩票一定会中奖D.抛一枚正方体骰子朝正面的数为奇数的概率是0.5“表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝正面的数为奇数考点:概率的意义.分析:根据概率的意义作答.解答:解:A、应该是降雨的可能性有80%,而不是有80%的时间降雨,错误;B、每次试验都有随机性,2次就有1次出现正面朝上,不一定发生,错误;C、当购买彩票的次数不断增多时,中奖的频率逐渐稳定1%附近,错误;故选D.点评:本题考查了概率的意义,概率只是反映事件发生的可能性的大小.8.(3分)(2008•广州)把下列每个字母都看成一个图形,那么中心对称图形有()A.1个B.2个C.3个D.4个考点:中心对称图形.分析:根据中心对称图形的定义和各字母的特点即可求解.解答:解:由中心对称的定义知,绕一个点旋转180°后能与原图重合,则有字母O、I是中心对称图形.故选B.点评:本题考查了中心对称图形的概念:如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.9.(3分)(2008•广州)如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是()A.B.2C.D.考点:正方形的性质;算术平方根.专题:几何综合题;压轴题.分析:本题中阴影部分可分割成一个小正方形和一个等腰梯形,S阴=12+•2=5,即重新拼成的正方形的面积为5,则此正方形的边长为,答案选C.解答:解:∵阴影部分由一个小正方形和一个等腰梯形组成∴S阴影=1×1+(1+3)×2=5∵新正方形的边长2=S阴影∴新正方形的边长=故选C.点评:本题考查了不规则图形的面积的求解方法:割补法.本题中阴影部分可分割成一个小正方形和一个等腰梯形.10.(3分)(2008•广州)四个小朋友玩跷跷板,他们的体重分别为P,Q,R,S,如图所示,则他们的体重大小关系是()A.P>R>S>Q B.Q>S>P>R C.S>P>Q>R D.S>P>R>Q考点:一元一次不等式组的应用.专题:压轴题;图表型.分析:由三个图分别可以得到,而Q+S>Q+P,代入第三个式子得到P+R>Q+P,所以R>Q.所以它们的大小关系为S>P>R>Q.解答:解:观察前两幅图易发现S>P>R,再观察第一幅和第三幅图可以发现R>Q.故选D.点评:本题考查了不等式的相关知识,利用“跷跷板”的不平衡来判断四个数的大小关系,体现了“数形结合”的数学思想.二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2008•广州)的倒数是.考点:实数的性质.专题:计算题.分析:由于互为倒数的两个数的乘积为1,由此即可求解.解答:解:∵乘积为1的数互为倒数,∴得倒数为.故本题的答案是.点评:本题考查了倒数的概念和分母有理化,比较简单.12.(3分)(2008•广州)如图,∠1=70°,若m∥n,则∠2=70度.考点:平行线的性质;对顶角、邻补角.专题:计算题.分析:由两直线平行,同位角相等可知,∠2的对顶角等于∠1,所以∠2的大小也与∠1相等,为70度.解答:解:∵m∥n,∴∠2=∠3=70°,∴∠1=∠3=70°.故填70.点评:本题主要考查了平行线的性质:两直线平行,同位角相等;对顶角相等.13.(3分)(2008•广州)函数y=中的自变量x的取值范围是x≠1.考点:函数自变量的取值范围;分式的定义;分式有意义的条件.分析:该函数是分式,分式有意义的条件是分母不等于0,故分母x﹣1≠0,解得x的范围.解答:解:根据题意得:x﹣1≠0解得:x≠1.点评:本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足分母不等于0.14.(3分)(2008•广州)将线段AB平移1cm,得到线段A′B′,则点A到点A′的距离是1cm.考点:平移的性质.专题:压轴题.分析:根据题意,画出图形,由平移的性质直接求得结果.解答:解:在平移的过程中各点的运动状态是一样的,现在将线段平移1cm,则每一点都平移1cm,即AA′=1cm,∴点A到点A′的距离是1cm.点评:本题考查了平移的性质:由平移知识可得对应点间线段即为平移距离.学生在学习中应该借助图形,理解掌握平移的性质.15.(3分)(2008•广州)命题“圆的直径所对的圆周角是直角”是真命题.(填“真”或“假”)考点:圆周角定理.专题:压轴题.分析:根据半圆对的圆心角是180°,同弧所对的圆周角等于圆心角的一半得到圆周角是90°,所以命题是正确的.解答:解:在同圆或等圆中,同弧所对的圆周角是圆心角的一半,因此,直径所对的圆周角是直角.∴是真命题.点评:本题考查了圆周角的相关知识,在同圆或等圆中,同弧所对的圆周角是圆心角的一半,因此,直径所对的圆周角是直角.16.(3分)(2008•广州)对于平面内任意一个凸四边形ABCD,现从以下四个关系式①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是.考点:概率公式;平行四边形的判定.专题:压轴题.分析:本题是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.解答:解:从四个条件中选两个共有六种可能:①②、①③、①④、②③、②④、③④,其中只有①②、①③和③④可以判断ABCD是平行四边形,所以其概率为=.点评:用到的知识点为:概率=所求情况数与总情况数之比;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;一组对边平行,一组对角相等的四边形是平行四边形.三、解答题(共9小题,满分102分)17.(9分)(2008•广州)分解因式:a3﹣ab2.考点:提公因式法与公式法的综合运用.专题:计算题;压轴题.解答: 解:a 3﹣ab 2,=a (a 2﹣b 2), =a (a+b )(a ﹣b ).点评: 本题考查了提公因式法与公式法的综合运用,提取公因式后还能运用平方差公式继续分解因式. 18.(9分)(2008•广州)小青在九年级上学期的数学成绩如下表所示: 测验类别 平时 期中 考试 期末考试 测验1 测验2 测验3 课题学习成绩 88 72 98 86 90 85 (1)计算该学期的平时平均成绩;(2)如果学期的总评成绩是根据图所示的权重计算,请计算出小青该学期的总评成绩.考点: 加权平均数;统计表;扇形统计图. 专题: 图表型.分析: 根据平均数和加权平均数的概念求解. 解答:解:(1)平时平均成绩==86;(2)小青该学期的总评成绩=86×10%+90×30%+85×60%=86.6.点评: 本小题主要考查平均数、权重、加权平均数等基本的统计概念,考查从统计表和统计图中读取有效信息的能力.19.(10分)(2008•广州)如图,实数a 、b 在数轴上的位置,化简:.考点: 二次根式的性质与化简;实数与数轴. 专题: 压轴题.分析: 本题综合性较强,不仅要结合图形,还需要熟悉算术平方根的定义. 解答: 解:由数轴知,a <0,且b >0,∴a ﹣b <0,∴,=|a|﹣|b|﹣[﹣(a ﹣b )], =(﹣a )﹣b+a ﹣b , =﹣2b .点评: 本小题主要考查利用数轴表示实数取值范围、二次根式的化简、代数式的恒等变形等基础知识,考查基本的代数运算能力.观察数轴确定a 、b 及a ﹣b 的符号是解答本题的关键,本题巧用数轴给出了每个数的符号,渗透了数形结合的思想,这也是中考时常考的知识点.本题考查算术平方根的化简,应先确定a 、b 及a ﹣b 的符号,再分别化简,最后计算.20.(10分)(2008•广州)如图,在菱形ABCD 中,∠DAB=60°,过点C 作CE ⊥AC 且与AB 的延长线交于点E . 求证:四边形AECD 是等腰梯形.考点: 等腰梯形的判定.专题: 证明题.分析: 先证四边形AECO 是梯形,再说明是等腰梯形.由题意知∠CAE=∠DAB=30°,得∠E=90°﹣30°=60°=∠DAB ,又由菱形中DC ∥AB ,AD 不平行CE 得证.解答: 证明:∵四边形ABCD 是菱形,∴DC ∥AB ,即DC ∥AE ,又∵AD 不平行EC ,∴四边形AECD 是梯形,∵四边形ABCD 是菱形,∵∠BAD=60°,∴∠BAC=∠BAD=30°又∵CE ⊥AC∴∠E=∠BAD=60°则梯形AECD 是等腰梯形.点评: 命题意图:①检验学生对等腰梯形判定方法的掌握情况.②将等腰梯形问题与菱形相结合,在考核学生梯形知识的同时又考查了菱形有关性质.③学生在证明四边形为等腰梯形时,常直接找所需条件:同一底上的两底角相等或两条腰相等,而常忽略﹣关键要素:已经证明该四边形为梯形了吗?21.(12分)(2008•广州)如图,一次函数y kx b =+的图象与反比例函数m y x=的图象相交于A 、B 两点 (1)根据图象,分别写出A 、B 的坐标;(2)求出两函数解析式;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值考点:反比例函数与一次函数的交点问题.专题:压轴题;数形结合;待定系数法.分析:(1)直接由图象就可得到A(﹣6,﹣2)、B(4,3);(2)把点A、B的坐标代入两函数的解析式,利用方程组求出k、b、m的值,即可得到两函数解析式;(3)结合图象,分别在第一、二象限求出一次函数的函数值>反比例函数的函数值的x的取值范围.解答:解:(1)由图象得A(﹣6,﹣2),B(4,3).(4分)(2)设一次函数的解析式为y=kx+b,把A、B点的坐标代入得解得,所以一次函数的解析式为y=x+1,设反比例函数的解析式为y=,把A点坐标代入得,解得a=12,所以反比例函数的解析式为.(4分)(3)当﹣6<x<0或x>4时一次函数的值>反比例函数的值.(2分)点评:本类题目主要考查一次函数、反比例函数的图象和性质,考查待定系数法求函数解析式的基本方法,以及从平面直角坐标系中读图获取有效信息的能力,考查数形结合的数学思想,另外,还需灵活运用方程组解决相关问题.22.(12分)(2008•广州)2008年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30千米远的郊区进行抢修.维修工骑摩托车先走,15分钟后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求两种车的速度.考点:分式方程的应用.专题:行程问题.分析:设摩托车速度是x千米/时,则抢修车的速度是1.5x千米/时;路程都是30千米;由时间=,两车同时到达抢修点,所用时间相等,利用这个条件建立等量关系,列方程.解答:解法1:设摩托车的速度为x千米/时,则抢修车的速度为1.5x千米/时.根据题意得:即即∴x=40经检验,x=40是原分式方程的根.∴1.5x=1.5×40=60答:摩托车的速度为40千米/时,抢修车的速度为60千米/时.解法2:设摩托车的速度为x千米/时,则抢修车的速度为1.5x千米/时.根据题意得:两边同乘以6x去分母,得180=120+1.5x即1.5x=60∴x=40经检验,x=40是原分式方程的根,∴1.5x=1.5×40=60,答:摩托车的速度为40千米/时,抢修车的速度为60千米/时.点评:本小题主要考查建立分式方程模型解决简单实际问题的能力,考查基本的代数式计算推理能力.找到合适的等量关系是解决问题的关键.23.(12分)(2008•广州)如图,射线AM交一圆于点B、C,射线AN交该圆于点D、E,且.(1)求证:AC=AE;(2)利用尺规作图,分别作线段CE的垂直平分线与∠MCE的平分线,两线交于点F(保留作图痕迹,不写作法),求证:EF平分∠CEN.考点:圆心角、弧、弦的关系;全等三角形的判定与性质;线段垂直平分线的性质;等腰三角形的性质.专题:作图题;证明题.分析:(1)作OP⊥AM,OQ⊥AN于Q,连接AO,BO,DO.证△APO≌△AQO,由BC=CD,得CP=EQ后得证;(2)同AC=AE得∠ECM=∠CEN,由CE=EF得∠FCE=∠FEC=∠MCE=∠CEN得证.解答:证明:(1)作OP⊥AM于P,OQ⊥AN于Q,连接AO,BO,DO.∵,∴BC=DE,∴BP=DQ,又∵OB=OD,∴△OBP≌△ODQ,∴OP=OQ.∴BP=DQ=CP=EQ.直角三角形APO和AQO中,AO=AO,OP=OQ,∴△APO≌△AQO.∴AP=AQ.∵CP=EQ,∴AC=AE.(2)∵AC=AE,∴∠ACE=∠AEC.∴∠ECM=∠CEN.由于AF是CE的垂直平分线,∴CF=EF.∴∠FCE=∠FEC=∠MCE=∠CEN.因此EF平分∠CEN.点评:本题主要考查圆、等腰三角形、线段的垂直平分线、角平分线、尺规作图等基础知识,考查几何推理能力和空间观念.24.(14分)(2008•广州)如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE(1)求证:四边形OGCH是平行四边形;(2)当点C在上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:CD2+3CH2是定值.考点:矩形的性质;勾股定理;平行四边形的判定;圆的认识.专题:几何综合题;压轴题.分析:(1)连接OC,容易根据已知条件证明四边形ODCE是矩形,然后利用其对角线互相平分和DG=GH=HE 可以知道四边形CHOG的对角线互相平分,从而判定其是平行四边形;(2)由于四边形ODCE是矩形,而矩形的对角线相等,所以DE=OC,而CO是圆的半径,这样DE的长度不变,也就DG的长度不变;(3)过C作CN⊥DE于N,设CD=x,然后利用三角形的面积公式和勾股定理用x表示CN,DN,HN,再利用勾股定理就可以求出CD2+3CH2的值了.解答:(1)证明:连接OC交DE于M.由矩形得OM=CM,EM=DM.∵DG=HE.∴EM﹣EH=DM﹣DG.∴HM=GM.∴四边形OGCH是平行四边形.(2)解:DG不变.在矩形ODCE中,∵DE=OC=3.∴DG=1.(3)证明:设CD=x,则CE=.过C作CN⊥DE于N.由DE•CN=CD•EC得CN=.∴.∴HN=3﹣1﹣.∴3CH2=3[()2+()2]=12﹣x2.∴CD2+3CH2=x2+12﹣x2=12.点评:本小题主要考查圆、矩形、平行四边形、直角三角形等基础图形的性质与判定,考查计算能力、推理能力和空间观念.25.(14分)(2008•广州)如图,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S平方厘米.(1)当t=4时,求S的值;(2)当4≤t≤10,求S与t的函数关系式,并求出S的最大值.考点:等腰梯形的性质;二次函数综合题;等腰三角形的性质;相似三角形的判定与性质;解直角三角形.专题:代数几何综合题;压轴题.分析:(1)首先判定当t=4时,点B与点Q重合,点P与点D重合,则求△BDC的面积即可.(2)分别从4≤t<6与6≤t≤10去分析,求得各自的函数解析式,再分析各种情况下的最大值即可求得答案.解答:解:(1)当t=4时,CQ=4cm,过点A作AE⊥BC于E,过点D作DF⊥BC于F,∵AE=DF=cm,∠AEB=∠DFC=90°,AB=CD,∴△ABE≌△DFC,∴BE=CF,∵EF=AD=2cm,BC=4cm,∴BE=CF=1cm,∴点D与点P重合,∴S△BDC=BC•DF=×4×=2(cm2);(2)当4≤t<6时,P在线段AD上,作KH⊥QH,过点M作MN⊥BC于N,∵∠Q=30°,∠1=60°,∴∠2=∠1﹣∠Q=30°,∠3=∠2=30°,∴QB=BM=QC﹣BC=t﹣4,∵∠R=∠Q=30°,∠DCB=∠ABC=60°,∴∠CKR=∠DCB﹣∠R=30°=∠R,∴KC=CR=6﹣t,∴HK=KC•sin60°=(6﹣t)∴同理:MN=(t﹣4),∴S=S△PQR﹣S△BQM﹣S△CRK=QR•PG﹣BQ•MN﹣CR•KH=×6×﹣×(t﹣4)2﹣×(6﹣t)2=﹣t2+5t﹣10,∵a=﹣<0,开口向下,∴S有最大值,当t=﹣=5时,S最大值为;当6≤t≤10时,P在线段DA的延长线上,∵∠1=60°,∠2=30°,∴∠3=90°∴RC=t﹣6,BR=4﹣RC=4﹣(t﹣6)=10﹣t,∴TB=BR=,TR=BR=(10﹣t),∴S=TB•TR=××(10﹣t)=t2﹣t+,当a>0时,开口向上,﹣=10,∴t=6时,S最大值为2;综上,t=5时,S最大值为.点评:本小题主要考查等腰三角形、等腰梯形、解直角三角形、二次函数等基础知识,考查运算能力、推理能力和空间观念.。
广东省湛江市初中生水平考试数学试题答案
![广东省湛江市初中生水平考试数学试题答案](https://img.taocdn.com/s3/m/adbfcb64eff9aef8941e06ef.png)
2008年广东省湛江市初中毕业水平考试数学试题参考答案及评分标准一、选择题:本大题共12小题,每小题3分,共36分.1.A2.C 3.C 4.A5.D6.C7.B 8.B 9.D 10.A11.D12.C二、填空题:本大题共6小题,每小题4分,共24分.13.1014.2()a a b - 15.6π16.∠DCE =∠A 或∠ECB =∠B 或∠A +∠ACE =180︒17.0.71 18.(6,5)三、解答题:本大题共5小题,每小题7分,共35分.19.解:原式=112-+(4分)= 2(7分)20.解:设这个队胜了x 场,依题意得:3(145)19x x +--=(4分)解得:5x =(6分)答:这个队胜了5场.(7分)21.解:由题意可得:(4分)从表中可以看出,依次从甲乙两盒子中各取一张卡片,可能出现的结果有6个,它们出现的可能性相等,其中能拼成“奥运”两字的结果有1个.(5分)所以能拼成“奥运”两字的概率为16.(7分)22.解:在Rt △ADE 中,ADE =DEAE(2分)∵DE =10,∠ADE =40︒∴AE =DEADE =10tan 40︒≈100.84⨯=8.4(4分)∴AB =AE +EB =AE +DC =8.4 1.59.9+=(6分) 答:旗杆AB 的高为9.9米. (7分) 23.解:∆ABC ≌∆DCB(2分)证明:∵在等腰梯形ABCD 中,AD ∥BC ,AB =DC∴∠ABC =∠DCB(4分)在∆ABC 与∆DCB 中AB DCABC DCB BC CB =⎧⎪∠=∠⎨⎪=⎩∴∆ABC ≌∆DCB(7分)(注:答案不唯一)四、解答题:本大题共3小题,每小题10分,共30分.24.解:(1)总体是某校2000名学生参加环保知识竞赛的成绩.(2分)(2)15150.256912151860==++++(5分)答:竞赛成绩在79.5~89.5这一小组的频率为0.25.(6分)(3)9200030069121518⨯=++++(9分)答:估计全校约有300人获得奖励.(10分)25.证明:(1)∵AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于E ,∴CE =ED , CB DB = (2分)∴∠BCD =∠BAC(3分)∵OA =OC ∴∠OAC =∠OCA∴∠ACO =∠BCD(5分)(2)设⊙O 的半径为R cm ,则OE =OB -EB =R -859.5 49.5 79.5 89.5 69.5 人数99.5成绩CE =21CD =21⨯24=12 (6分)在Rt ∆CEO 中,由勾股定理可得OC 2=OE 2+CE 2 即R 2= (R -8)2 +122 (8分)解得 R =13 ∴2R =2⨯13=26答:⊙O 的直径为26cm .(10分)26. 解:(1)第20天的总用水量为1000米3(3分)(2)当x ≥20时,设y kx b=+ ∵函数图象经过点(20,1000),(30,4000)∴⎩⎨⎧+=+=bk bk 304000201000(5分)解得⎩⎨⎧-==5000300b k∴y 与x 之间的函数关系式为:y =300x -5000(7分)(3)当y =7000时有7000=300x -5000解得x =40答:种植时间为40天时,总用水量达到7000米3.(10分)五、解答题:本大题共2小题,其中第27题12分,28题13分,共25分.27.解:(1)56(3分)(2)1+n n (6分)(3)1111......133557(21)(21)n n ++++⨯⨯⨯-+=)7151(21)5131(21)311(21-+-+-+ ┄ +)121121(21+--n n=)1211(21+-n =12+n n (9分)由12+n n =3517解得17=n(11分)经检验17=n 是方程的根, ∴17=n(12分)28.解:(1)令0y =,得210x -=解得1x =±令0x =,得1y =-∴ A (1,0)- B (1,0) C (0,1)-(2分)(2)∵OA =OB =OC =1∴∠BAC =∠ACO =∠BCO =45∵A P ∥CB ,∴∠P AB =45过点P 作PE ⊥x 轴于E ,则∆APE 为等腰直角三角形令OE =a ,则PE =1a + ∴P (,1)a a +∵点P 在抛物线21y x =-上 ∴211a a +=-解得12a =,21a =-(不合题意,舍去)∴PE =3(4分)∴四边形ACBP 的面积S =12AB •OC +12AB •PE=112123422⨯⨯+⨯⨯=(6分)(3)假设存在.∵∠P AB =∠BAC =45 ∴P A ⊥AC∵MG ⊥x 轴于点G , ∴∠MGA =∠P AC =90在Rt △AOC 中,OA =OC =1 ∴AC在Rt △P AE 中,AE =PE =3 ∴AP=(7分)设M 点的横坐标为m ,则M 2(,1)m m -①点M 在y 轴左侧时,则1m <-.ⅰ)当AMG ∽∆PCA 时,有AG PA =MGCA∵AG =1m --,MG =21m -2=解得11m =-(舍去) 223m =(舍去)ⅱ)当MAG ∽∆PCA 时,有AG CA =MGPA即2=解得:1m =-(舍去) 22m =- ∴M (2,3)-(10分)②点M 在y 轴右侧时,则1m >ⅰ)当AMG ∽∆PCA 时,有AG PA =MGCA∵AG =1m +,MG =21m -∴ 2=解得11m =-(舍去) 243m =∴M 47(,)39ⅱ)当MAG ∽∆PCA 时,有AG CA =MGPA即2=解得:11m =-(舍去) 24m = ∴M (4,15)∴存在点M ,使以A 、M 、G 三点为顶点的三角形与∆PCA 相似.M 点的坐标为(2,3)-,47(,)39,(4,15)(13分)说明:以上各题如有其他解(证)法,请酌情给分.。
[学子蓝卷]2008年广东省东莞市中考数学试题及答案
![[学子蓝卷]2008年广东省东莞市中考数学试题及答案](https://img.taocdn.com/s3/m/a6d6211252d380eb62946db9.png)
2008年广东省东莞市中考数学试卷全卷共4页,考试用时100分钟,满分为120分.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.21-的值是 A .21-B .21C .2-D .22.2008年5月10日北京奥运会火炬接力传递活动在美丽的海滨城市汕头举行,整个火炬传递 路线全长约40820米,用科学计数法表示火炬传递路程是 A .2102.408⨯米 B .31082.40⨯米 C .410082.4⨯米 D .5104082.0⨯米 3.下列式子中是完全平方式的是A .22b ab a ++ B .222++a a C .222b b a +- D .122++a a 4.下列图形中是轴对称图形的是5.下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位 数是A .28B .28.5C .29D .29.5二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.2- 的相反数是__________;7.经过点A (1,2)的反比例函数解析式是_____ _____; 8.已知等边三角形ABC 的边长为33+,则ΔABC 的周长是____________; 9.如图1,在ΔABC 中,M 、N 分别是AB 、AC 的中点,且∠A +∠B=120°,则∠AN M= °;10.如图2,已知AB 是⊙O 的直径,BC 为弦,∠A BC=30°过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC ,则∠DCB= °.三、解答题(一)(本大题5小题,每小题6分,共30分) 11.(本题满分6分)计算 :01)2008(260cos π-++- .12.(本题满分6分)解不等式x x <-64,并将不等式的解集表示在数轴上.13.(本题满分6分)如图3,在ΔABC 中,AB=AC=10,BC=8.用尺规作图作BC边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.14.(本题满分6分)已知直线1l :54+-=x y 和直线2l ::421-=x y ,求两条直线1l 和2l 的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.15.(本题满分6分)如图4,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长。
2008年东莞市中考数学试卷及答案
![2008年东莞市中考数学试卷及答案](https://img.taocdn.com/s3/m/990ccf7227284b73f2425030.png)
★ 机密·启用前2008年广东省初中毕业生学业考试数 学说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号,姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.21-的值是 A .21-B .21C .2-D .22.2008年5月10日北京奥运会火炬接力传递活动在美丽的海滨城市汕头举行,整个火炬传递 路线全长约40820米,用科学计数法表示火炬传递路程是 A .2102.408⨯米 B .31082.40⨯米 C .410082.4⨯米 D .5104082.0⨯米 3.下列式子中是完全平方式的是A .22b ab a ++ B .222++a a C .222b b a +- D .122++a a 4.下列图形中是轴对称图形的是5.下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位A .28B .28.5C .29D .29.5二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6.2- 的相反数是__________;7.经过点A (1,2)的反比例函数解析式是_____ _____; 8.已知等边三角形ABC 的边长为33+,则ΔABC 的周长是____________; 9.如图1,在ΔABC 中,M 、N 分别是AB 、AC 的中点,且∠A +∠B=120°, 则∠AN M= °;10.如图2,已知AB 是⊙O 的直径,BC 为弦,∠A BC=30°过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC ,则∠DCB= °.三、解答题(一)(本大题5小题,每小题6分,共30分) 11.(本题满分6分)计算 :01)2008(260cos π-++- .12.(本题满分6分)解不等式x x <-64,并将不等式的解集表示在数轴上.13.(本题满分6分)如图3,在ΔABC 中,AB=AC=10,BC=8.用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.14.(本题满分6分)已知直线1l :54+-=x y 和直线2l ::421-=x y ,求两条直线1l 和2l 的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.15.(本题满分6分)如图4,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长。
初三数学考试复习资料
![初三数学考试复习资料](https://img.taocdn.com/s3/m/81885d632f3f5727a5e9856a561252d380eb20bc.png)
初三数学考试复习资料复习是对前面已学过的知识进行系统再加工,并根据学习情形对学习进行适当调剂,为下一阶段的学习做好准备。
下面是作者为大家整理的关于初三数学考试复习资料,期望对您有所帮助!初三数学知识点分类复习题【复习要点】代数几何综合题是初中数学中覆盖面最广、综合性的题型,近几年中考试题中的综合题大多以代数几何综合题的情势显现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数几何知识解题.【实弹射击】1、(08广东省)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.(1)填空:如图a,AC= ,BD= ;四边形ABCD是梯形.(2)请写出图a中所有的类似三角形(不含全等三角形).图10(3)如图b,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图10的平面直角坐标系,保持ΔABD不动,将ΔABC向轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范畴.图a2、(09广东省) 正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM ∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积,并求出面积;(3)当M点运动到什么位置时Rt△ABM ∽Rt△AMN,求此时x的值.3、(10广东省)如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2。
动点M、N分别从点D、B同时动身,沿射线DA、线段BA向点A 的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动。
竞赛中二次根式的计算技巧_于志洪
![竞赛中二次根式的计算技巧_于志洪](https://img.taocdn.com/s3/m/9864453fb90d6c85ec3ac686.png)
2 yz = 4 5 2 zx = 4 15 所以 º @ » @ ¼ , 得 xy z = 240 , 所以 xyz = 4 15. 用 ½ 分别除以 º 、 »、 ¼ ,得 x = 12 ,y = 4 ,z = 5 .
xy = 2 2 2 2 因为 (x + y ) = (x + y ) + 2xy = 9 , 又 x+ y > 0 , 所以 x + y = 3 , 即 3+ 2 2+ 6- 4 2 = 3 . 练习题 6 ( 2007 年扬州市初中数学竞赛 题 ) 化简 8- 2 8+ 2 10 + 2 5 +
2
63 +
. 提示 : 分子提取 2 , 分母提取 3 . 答案 : 6 . 3
因为 x > 0 , 所以 x = 3 2 . 故选 ( A ). ( 2006 年安徽省初中数学竞赛 3+ 24
3 的值是 (
)
八、 巧用待定系数法 例 8 ( 2008 年广东省湛江市初中数学竞 赛题 ) 化简 : 21 - 4 5 + 8 3 - 4 15.
2006-2011年广东省湛江市中考数学试题及答案(5套)
![2006-2011年广东省湛江市中考数学试题及答案(5套)](https://img.taocdn.com/s3/m/17a36a3cdd36a32d7375813f.png)
数 学 试 题 卷考生须知:1.本试卷分为试题卷和答题卷两部分.2.试题卷共4页,满分150分.考试时间120分钟.3.答题卷共4页,所有答案必须写在答题卷上............,写在试题卷上的无效..........4.答题前,考生应先在答题卷密封区内认真填写准考证号、姓名、考场号、 座位号、地(州、市、师)、县(市、区、团场)和学校.5.答题时可以使用科学计算器.......... 一、精心选择(本大题共8小题,每小题5分,共40分.每小题所给四个选项中,只有一个是正确的.) 1.8-的相反数是A.8B.8-C.18D.18- 2.计算23()a -的结果是A.5a -B.6aC.6a -D.5a3.如右图,小明课间把老师的三角板的直角顶点放在黑板的两 条平行线a b 、上,已知155∠=°,则2∠的度数为 A.45° B.35° C.55° D.125°4.今年我区约有202 000名应届初中毕业生参加学业水平考试, 202 000用科学记数法表示为 A.60.20210⨯ B.320210⨯ C.420.210⨯ D.52.0210⨯5.如果从小军等10名大学生中任选1名作为“世博会”志愿者,那么小军被选中的概率是A.1B.111 C. 110 D. 196.如图(1)是一张Rt ABC △纸片,如果用两张相同的这种纸片恰好能拼成一个正三角形,如图(2),那 么在Rt ABC △中,sin B ∠的值是A.12C.1D.32 7.若点1122()()A x y B x y ,、,在反比例函数3y x=-的图象上,且120x x <<,则12y y 、和0的大小关系是新疆维吾尔自治区 新疆生产建设兵团2010年初中学业水平考试第3题图AB C图(1)图(2)A.120y y >>B.120y y <<C.120y y >>D.120y y << 8.如右图,王大爷家屋后有一块长12m ,宽8m 的矩形空地, 他在以BC 为直径的半圆内种菜,他家养的一只羊平时拴在 A 处,为了不让羊吃到菜,拴羊的绳长可以选用 A.3m B.5m C.7m D.9m二、合理填空(本大题共6个小题,每小题5分,共30分)9.=___________.10.写出右图中所表示的不等式组的解集:____________. 11.甲、乙两位棉农种植的棉花,连续五年的单位面积产量 (千克/亩)统计如下图,则产量较稳定的是棉农_________.(填甲或乙)12.利用1个a a ⨯的正方形,1个b b ⨯的正方形和2个a b ⨯的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式__________. 13.长方体的主视图和左视图如下图所示(单位:cm ),则其俯视图的面积是_________cm 2.14.抛物线2y x bx c =-++的部分图象如图所示,若0y >,则x 的取值范围是__________.三、准确解答(本大题共有10题,共80分) 15.(6分)解方程:22760x x -+=ABC8m12mDPO(第11题图)(第12题图)(第13题图)(第14题图) O x y 1-1 316.(6分)先化简,再求值22111x x xx x x ⎛⎫-÷ ⎪---⎝⎭,其中1x = 17.(6分)用四块如下图(1)所示的正方形卡片拼成一个新的正方形,使拼成的图案是一个轴对称图形,请你在图(2)、图(3)、图(4)中各画出一种拼法(要求三种画法各不相同,且其中至少有一个既是轴对称图形,又是中心对称图形)18.(6分)小王将一黑一白两双相同号码的袜子一只一只地扔进抽屉里,当他随意从抽屉里拿出两只袜子时,恰好成双与不成双的机会是多少?请你用树形图求解.19.(8分)2010年4月14日我国青海玉树地区发生强烈地震,急需大量赈灾帐篷.某帐篷生产企业接到任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,现在生产3 000顶帐篷所用的时间与原计划生产2 000顶的时间相同.现在该企业每天能生产多少顶帐篷?3月 4月 5月 6月 7月 8月 库尔勒香梨(吨) 4 8 5 8 1013 哈密瓜(吨)8797107(1)请你根据以上数据填写下表:(2)补全右面折线统计图;(3)请你根据下面两个要求对这两种瓜果在去年3月份至8月份的销售情况进行分析: ①根据平均数和方差分析;②根据折线图上两种瓜果销售量的趋势分析.21.(8分)圆心角都是90°的扇形AOB 与扇形COD 如图所示那样叠放在一起,连结AC BD 、.(1)求证:AOC BOD △≌△;(2)若3AO =cm ,OC =1cm ,求阴影部分的面积.(第20题图)AB D O(2) (3) (4)(1)22.(10分)如图(1),某灌溉设备的喷头B 高出地面1.25m ,喷出的抛物线形水流在与喷头底部A 的距离为1m 处达到距地面最大高度2.25m ,试在恰当的直角坐标系中求出与该抛物线水流对应的二次函数关系式.学生小龙在解答图(1)所示的问题时,具体解答如下:①以水流的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴,建立如图(2)所示的平面直角坐标系;②设抛物线水流对应的二次函数关系式为2y ax =;③根据题意可得B 点与x 轴的距离为1m ,故B 点的坐标为(1-,1);④代入2y ax =得11a-=·,所以1a =-; ⑤所以抛物线水流对应的二次函数关系式为2y x =-.数学老师看了小龙的解题过程说:“小龙的解答是错误的”.(1)请指出小龙的解答从第_________步开始出现错误,错误的原因是什么? (2)请你写出完整的正确解答过程. 23.(10分)如图是一个量角器和一个含30°角的直角三角形放置在一起的示意图,其中点B 在半圆O 的直径DE 的延长线上,AB 切半圆O 于点F ,且.BC OE = (1)求证:DE CF ∥;(2)当2OE =时,若以O B F 、、为顶点的三角形与ABC △相似,求OB 的长.(3)若2OE =,移动三角板ABC 且使AB 边始终与半圆O 相切,直角顶点B 在直径DE 的延长线上移动,求出点B 移动的最大距离.C图(1)图(2) A B C O (第23题图) DF E24.(12分)张师傅在铺地板时发现,用8块大小一样的长方形瓷砖恰好可以拼成一个大的长方形,如图(1).然后,他用这8块瓷砖又拼出一个正方形,如图(2),中间恰好空出一个边长为1的小正方形(阴影部分),假设长方形的长为y ,宽为x ,且.y x(1)请你求出图(1)中y 与x 的函数关系式; (2)求出图(2)中y 与x 的函数关系式;(3)在图(3)中作出两个函数的图象,写出交点坐标,并解释交点坐标的实际意义;(4)根据以上讨论完成下表,观察x 与y 的关系,回答:如果给你任意8个相同的长方形,你能否拼出类似图(1)和图(2)的图形?说出你的理由.图(1) 图(2) 图(3)数学试卷参考答案及评分标准(满分150分)说明:本参考答案供阅卷教师评卷时使用.阅卷中,考生如有其它解法,只要正确、合理,均可得相应分值.一、精心选择(本大题共8小题,每小题5分,共40分)题号 1 2 3 4 5 6 7 8 选项ACBDCBCA二、合理填空(本大题共6小题,每小题5分,共30分)2 10.32x -<≤ 11.乙 12.2222()a ab b a b ++=+ 13.12 14.31x -<<三、准确解答(本大题共10小题,共80分) 15.(6分)解法不唯一. 例解:27302x x -+= 274949321616x x -+=-+ ····································································2′271()416x -= ··················································································4′7144x -=± ····················································································5′12x = 232x = ·········································································6′ 16.(6分)解:2222111111x x x x x x x x x x x x ⎛⎫⎛⎫--÷=+ ⎪ ⎪-----⎝⎭⎝⎭· =2211x x x x x +--· ················································2′ =(2)11x x x x x+--· ················································3′ =2x + ····························································4′新疆维吾尔自治区 新疆生产建设兵团2010年初中学业水平考试当1x =时,原式123+= ·················································6′ 17.(6分)解法不唯一,例解如下:每个图形2′,共6′ 18.(6分)··············································································································3′()13P =成双 ································································································5′ ()23P =不成双 ·····························································································6′ 19.(8)分例解:设现在该企业每天生产x 顶帐篷,则原计划每天生产(200)x -顶帐篷 ·········1′由题意得:3 000 2 000200x x =- ·······································································4′ 解得600x = ····························································································6′ 经检验600x =是原方程的解 ·······································································7′即该企业现在每天生产600顶帐篷 ································································8′ 20.(8分)·······························3′ (2)如图(1) (2) (3)··············································································································6′24.(12分)解法不唯一解:(1)由图(1)得:35y x = 53y x =··················································2′ (2)由图(2)得281(2)xy x y +=+ ····························································3′ 整理得:2(2)1x y -=21x y -=±53y x = 5213x x ∴-=- 30x =-<21x y ∴-=-不成立 ·················································································4′即21y x =- ·····························································································5′ (3)··············································································································7′ 交点坐标(3,5)······················································································8′ 实际意义解答不唯一例①:瓷砖的长为5,宽为3时,能围成图(1),图(2)的图形 ························9′ 例②:当瓷砖长为5,宽为3时,围成图(2)的正方形中的小正方形边长为1. (4)情况①:不能,长方形的长与宽若不能满足53y x =,则不能 情况②:能,长方形的长与宽只要满足53y x =即可情况③:综合上述两种说法只要符合其中一种情况均给分 ···································································· 12′。
2008年广东省各市中考数学压轴题精编含答案
![2008年广东省各市中考数学压轴题精编含答案](https://img.taocdn.com/s3/m/50909ad5647d27284a735112.png)
2008年某某省各市中考数学压轴题精编1、(2008年某某省)22.(本题满分9分)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB 重合,直角边不重合,已知AB=8,BC=AD=4,AC 与BD 相交于点E ,连结CD .(1)填空:如图9,AC=,BD=;四边形ABCD 是梯形. (2)请写出图9中所有的相似三角形(不含全等三角形).(3)如图10,若以AB 所在直线为x 轴,过点A 垂直于AB 的直线为y 轴建立如图10的平面直角坐标系,保持ΔABD 不动,将ΔABC 向x 轴的正方向平移到ΔFGH 的位置,FH 与BD 相交于点P ,设AF=t ,ΔFBP 面积为S ,求S 与t 之间的函数关系式,并写出t 的取值值X 围.解:(1)1分等腰;…………………………2分(2)共有9对相似三角形.(写对3-5对得1分,写对6-8对得2分,写对9对得3分)①△DCE 、△ABE 与△ACD 或△BDC 两两相似,分别是:△DCE ∽△ABE ,△DCE ∽△ACD ,△DCE ∽△BDC ,△ABE ∽△ACD ,△ABE ∽△BDC ;(有5对) ②△ABD ∽△EAD ,△ABD ∽△EBC ;(有2对③△BAC ∽△EAD ,△BAC ∽△EBC ;(有2对所以,一共有9对相似三角形.…5分(3)由题意知,FP ∥AE , ∴∠1=∠PFB , 又∵∠1=∠2=30°,DCBAE图9 图10∴∠PFB =∠2=30°,∴ FP =BP.…………………………6分 过点P 作PK ⊥FB 于点K ,则12FK BK FB ==. ∵ AF =t ,AB =8, ∴ FB =8-t ,1(8)2BK t =-.在Rt △BPK 中,1tan 2(8)tan 30)2PK BK t t =⋅∠=-︒=-. ………………7分∴△FBP 的面积11(8))22S FB PK t t =⋅⋅=⋅--, ∴ S 与t 之间的函数关系式为:2(8)12S t =-,或24123S t =-…………………………………8分 t 的取值X 围为:08t ≤<. …………………………………………………………9分 注:其中某某市、某某市、某某市与本题,(即2008年某某省的压轴题)是一样的。
中考数学动点问题专题练习(含答案)
![中考数学动点问题专题练习(含答案)](https://img.taocdn.com/s3/m/9277094dec630b1c59eef8c75fbfc77da26997ad.png)
动点专题一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥O A,垂足为H,△OPH 的重心为G .(1)当点P在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设P Hx =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PG H是等腰三角形,试求出线段PH 的长.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC =1,点D,E在直线B C上运动.设BD=,x CE=y . (1)如果∠B AC=30°,∠DA E=105°,试确定y 与x 之间的函数解析式;(2)如果∠B AC的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.AEDCB 图2H M NG PO A B 图1 x yC三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△A BC中,∠BAC =90°,AB=AC =22,⊙A 的半径为1.若点O在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A相切时, △AO C的面积.一、以动态几何为主线的压轴题 (一)点动问题.1.(09年徐汇区)如图,ABC ∆中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长;(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时,求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE的长.AB C O 图8HAB CDEOlA ′(二)线动问题2,在矩形A BCD 中,AB =3,点O 在对角线A C上,直线l过点O ,且与AC 垂直交AD于点E .(1)若直线l 过点B,把△ABE 沿直线l 翻折,点A 与矩形A BCD的对称中心A '重合,求BC 的长; (2)若直线l 与AB 相交于点F,且AO=41AC,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值范围;②探索:是否存在这样的x ,以A 为圆心,以-x 43长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由.(三)面动问题3.如图,在ABC ∆中,6,5===BC AC AB ,D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、B 重合),且保持BC DE ∥,以DE 为边,在点A 的异侧作正方形DEFG .(1)试求ABC ∆的面积;(2)当边FG 与BC 重合时,求正方形DEFG 的边长; (3)设x AD =,ABC ∆与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出定义域;(4)当BDG ∆是等腰三角形时,请直接写出AD 的长.解决动态几何问题的常见方法有:C一、 特殊探路,一般推证例2:(2004年广州市中考题第11题)如图,⊙O 1和⊙O2内切于A,⊙O1的半径为3,⊙O2的半径为2,点P为⊙O1上的任一点(与点A 不重合),直线PA 交⊙O2于点C,PB 切⊙O2于点B ,则PCBP的值为(A)2 (B)3 (C)23(D)26二、 动手实践,操作确认例4(2003年广州市中考试题)在⊙O中,C 为弧AB 的中点,D 为弧A C上任一点(与A 、C 不重合),则(A)A C+CB=AD+DB (B) A C+C B<AD+DB(C) AC+CB >A D+D B (D) AC+C B与AD+DB 的大小关系不确定例5:如图,过两同心圆的小圆上任一点C 分别作小圆的直径CA 和非直径的弦CD ,延长CA 和C D与大圆分别交于点B 、E,则下列结论中正确的是( * ) (A)AB DE = (B )AB DE >(C)AB DE <(D )AB DE ,的大小不确定三、 建立联系,计算说明例6:如图,正方形ABCD 的边长为4,点M在边DC 上,且DM=1,N为对角线A C上任意一点,则DN +MN 的最小值为 .BMND CBA以圆为载体的动点问题中,AC=5,BC=12,∠ACB=90°,P是AB边上的动点(与点A、B不重例1.在Rt ABC合),Q是BC边上的动点(与点B、C不重合),当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,请求出线段CQ的长的取值范围;若不可能,请说明理由。
2008年广东省湛江市数学中考试题及参考答案
![2008年广东省湛江市数学中考试题及参考答案](https://img.taocdn.com/s3/m/1d18212f4431b90d6c85c744.png)
湛江市2008年初中毕业生水平考试数 学 试 题说明:1.本试卷满分150分,考试时间90分钟.2.本试卷共4页,共5大题.3.答题前,请认真阅读答题卡上的“注意事项”,然后按要求将答案写在答题卡相应的位置上.4.请考生保持答题卡的整洁,考试结束,将试卷和答题卡一并交回. 注意:在答题卡上作图必须用黑色字迹的钢笔或签字笔.一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只 有一项是符合题目要求的.1. 在2-、0、1、3这四个数中比0小的数是( )A.2-B.0C.1 D .32. 人的大脑每天能记录大约8600万条信息,数据8600用科学计数法表示为( )A . 40.8610⨯ B . 28.610⨯ C . 38.610⨯ D . 28610⨯3. 不等式组13x x >-⎧⎨<⎩的解集为( )A.1x >-B.3x <C.13x -<< D .无解4. ⊙O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( )A . 相交B . 相切C . 相离D . 无法确定 5. 下面的图形中,是中心对称图形的是( )A .B .C .D .6. 下列计算中,正确的是( )A . 22-=-B .=C . 325a a a ⋅=D . 22x x x -=7. 从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是12,则n 的值是( ) A . 6 B . 3 C . 2 D . 1 8. 函数12y x =-的自变量x 的取值范围是( ) A . 2x = B . 2x ≠ C . 2x ≠- D . 2x > 9. 数据2,7,3,7,5,3,7的众数是( )A.2B.3C.5D.710.将如图1所示的Rt△ABC绕直角边BC旋转一周,所得几何体的左视图是()11.已知三角形的面积一定,则它底边a上的高h与底边a之间的函数关系的图象大致是()B.C. D .12.如图2所示,已知等边三角形ABC的边长为1,按图中所示的规律,用2008个这样的三角形镶嵌而成的四边形的周长是()A.2008B.2009C.2010D.2011二、填空题:本大题共6小题,每小题4分,共24分.13.湛江市某天的最高气温是27℃,最低气温是17℃,那么当天的温差是℃.14.分解因式:222a ab-=.15.圆柱的底面周长为2π,高为3,则圆柱侧面展开图的面积是.16.如图3所示,请写出能判定CE∥AB的一个条件.17.图4一块陨石落在地球上,则它落在海洋中的概率是.18.将正整数按如图5所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是.A BE图2CAB┅┅三、解答题:本大题共5小题,每小题7分,共35分. 19. 计算:(1-)2008-(π-3)0+4.20. 某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场球负5场共得19分,问这个队胜了几场?21. 有五张除字不同其余都相同的卡片分别放在甲、乙两盒子中,已知甲盒子有三张,分别写有“北”、“京”、“奥”字样,乙盒子有两张,分别写有“运”、“会”字样,若依次从甲乙两盒子中各取一张卡片,求能拼成“奥运”两字的概率.22. 如图6所示,课外活动中,小明在离旗杆AB 10米的C 处,用测角仪测得旗杆顶部A 的仰角为40︒,已知测角仪器的高CD =1.5米,求旗杆AB 的高. (精确到0.1米) (供选用的数据:sin 400.64≈,cos 400.77≈,tan 40≈23. 如图7所示,已知等腰梯形ABCD 中,AD ∥BC ,AB =DC ,AC 与BD 相交于点O .请在图中找出一对全等的三角形,并加以证明.四、解答题:本大题共3小题,每小题10分,共30分.24. 为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图8),请结合图形解答下列问题.(1) 指出这个问题中的总体.(2) 求竞赛成绩在79.5~89.5这一小组的频率.(3) 如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.25. 如图9所示,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连接AC 、OC 、BC .(1)求证:∠ACO =∠BCD .(2)若E B =8cm ,CD =24cm ,求⊙O 的直径.26. 某农户种植一种经济作物,总用水量y (米3)与种植时间x10所示.(1)第20天的总用水量为多少米3?(2)当x ≥20时,求y 与x 之间的函数关系式.(3)种植时间为多少天时,总用水量达到7000米3?五、解答题:本大题共2小题,其中第27题12分,28题13分,共25分. 27. 先观察下列等式,然后用你发现的规律解答下列问题.111122=-⨯ 6图8图10天)1112323=-⨯ 1113434=-⨯ ┅┅ (1) 计算111111223344556++++=⨯⨯⨯⨯⨯ . (2)探究1111......122334(1)n n ++++=⨯⨯⨯+ .(用含有n 的式子表示) (3)若 1111......133557(21)(21)n n ++++⨯⨯⨯-+的值为1735,求n 的值.28. 如图11所示,已知抛物线21y x =-与x 轴交于A 、B 两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标.(2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP(3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与∆PCA 相似. 若存在,请求出M 点的坐标;否则,请说明理由.湛江市2008年初中毕业水平考试数学试题参考答案及评分标准一、选择题:本大题共12小题,每小题3分,共36分.1. A 2. C 3. C 4. A 5. D 6. C 7. B 8. B 9. D 10. A 11 D 12. C 二、填空题:本大题共6小题,每小题4分,共24分.13. 10 14.2()a a b - 15. 6π 16.∠DCE =∠A 或∠ECB =∠B 或∠A +∠ACE =180︒ 17. 0.71 18.(6,5)三、解答题:本大题共5小题,每小题7分,共35分. 19. 解:原式=112-+ ·········································································· (4分)= 2 ··············································································· (7分)20. 解:设这个队胜了x 场,依题意得:3(145)19x x +--= ································································· (4分) 解得:5x = ············································································· (6分)答:这个队胜了5场. ·································································· (7分)21.························ (4分)从表中可以看出,依次从甲乙两盒子中各取一张卡片,可能出现的结果.有6个,它们出现的可能性相等,其中能拼成“奥运”两字的结果有1个. ···· (5分)所以能拼成“奥运”两字的概率为16. ··············································· (7分) 22. 解:在Rt △ADE 中,ADE =DEAE······················ (2分) ∵DE =10,∠ADE =40︒∴AE =DEADE =10tan 40︒≈100.84⨯=8.4 ········· (4分) ∴AB =AE +EB =AE +DC =8.4 1.59.9+= ················· (6分) 答:旗杆AB 的高为9.9米.····························· (7分)23. 解:∆ABC ≌∆DCB ··································· (2分) 证明:∵在等腰梯形ABCD 中,AD ∥BC ,AB =DC ∴∠ABC =∠DCB ························· (4分) 在∆ABC 与∆DCB 中A B D CA B C D C BB C C B =⎧⎪∠=∠⎨⎪=⎩∴∆ABC ≌∆DCB ··················································· (7分)(注:答案不唯一) 四、解答题:本大题共3小题,每小题10分,共30分.24. 解: (1) 总体是某校2000名学生参加环保知识竞赛的成绩. ··················· (2分)(2)15150.256912151860==++++ ················································(5分)答:竞赛成绩在79.5~89.5这一小组的频率为0.25.························ (6分)(3)9200030069121518⨯=++++ ··············································· (9分) 答:估计全校约有300人获得奖励. ············································· (10分)25. 证明:(1)∵AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于E ,∴CE =ED , CB DB = ·························· (2分) ∴∠BCD =∠BAC ································· (3分) ∵O A =O C ∴∠O AC =∠O CA∴∠AC O=∠BCD ·································· (5分) (2)设⊙O 的半径为Rcm ,则O E =O B -EB =R -8CE =21CD =21⨯24=12 ······························ (6分) 在Rt ∆CE O 中,由勾股定理可得O C 2=O E 2+CE 2即R 2= (R -8)2+122···································· (8分) 解得 R=13 ∴2R=2⨯13=26 答:⊙O 的直径为26cm . ····························26. 解:(1)第20天的总用水量为1000米3· (3分) (2)当x ≥20时,设y kx b =+∵函数图象经过点(20,1000),(30,4000)∴⎩⎨⎧+=+=b k b k 304000201000 ························ (5分)解得⎩⎨⎧-==5000300b k∴y 与x 之间的函数关系式为:y=300x -5000 ···································· (7分)人数成绩(3)当y =7000时有7000=300x -5000 解得x =40答 :种植时间为40天时,总用水量达到7000米3 ································ (10分) 五、解答题:本大题共2小题,其中第27题12分,28题13分,共25分. 27. 解:(1)56 ··················································································· (3分) (2)1+n n··················································································· (6分)(3)1111......133557(21)(21)n n ++++⨯⨯⨯-+ =)7151(21)5131(21)311(21-+-+-+ ┄ +)121121(21+--n n =)1211(21+-n =12+n n ···························································· (9分) 由12+n n =3517 解得17=n ············································· (11分) 经检验17=n 是方程的根,∴17=n ··········································· (12分)28.解:(1)令0y =,得210x -= 解得1x =±令0x =,得1y =-∴ A (1,0)- B (1,0) C (0,1)- ··· (2分)(2)∵O A =O B =O C =1 ∴∠BAC =∠AC O=∠BC O=45∵A P ∥CB , ∴∠P AB =45过点P 作P E ⊥x 轴于E ,则∆A P E 为等腰直角三角形令O E =a ,则P E =1a + ∴P (,1)a a +∵点P 在抛物线21y x =-上 ∴211a a +=-解得12a =,21a =-(不合题意,舍去)∴P E =3 ···························································································· 4分)∴四边形ACB P 的面积S =12AB •O C +12AB •P E =112123422⨯⨯+⨯⨯= ······································ 6分) (3). 假设存在∵∠P AB =∠BAC =45 ∴P A ⊥AC∵MG ⊥x 轴于点G , ∴∠MG A =∠P AC =90在Rt △A O C 中,O A =O C =1 ∴AC在Rt △P AE 中,AE =P E =3 ∴AP= ················································ 7分) 设M 点的横坐标为m ,则M 2(,1)m m - ①点M 在y 轴左侧时,则1m <- (ⅰ) 当A MG ∽∆P CA 时,有AG PA =MGCA∵A G=1m --,MG=21m -2= 解得11m =-(舍去) 223m =(舍去) (ⅱ) 当M A G ∽∆P CA 时有AG CA =MGPA即2= 解得:1m =-(舍去) 22m =-∴M (2,3)- ·········································································· (10分)② 点M 在y 轴右侧时,则1m > (ⅰ) 当A MG ∽∆P CA 时有AG PA =MGCA∵A G=1m +,MG=21m -∴2= 解得11m =-(舍去) 243m =∴M 47(,)39(ⅱ) 当M A G ∽∆P CA 时有AG CA =MGPA即2= 解得:11m =-(舍去) 24m =∴M (4,15)∴存在点M ,使以A 、M 、G 三点为顶点的三角形与∆P CA 相似M 点的坐标为(2,3)-,47(,)39,(4,15) ·································· (13分)说明:以上各题如有其他解(证)法,请酌情给分。
2013年中考数学专题复习 解直角三角形
![2013年中考数学专题复习 解直角三角形](https://img.taocdn.com/s3/m/5144cb47767f5acfa1c7cd59.png)
2013年数学中考专题复习 解直角三角形一、选择题:1.(2008年湖北省咸宁市)在Rt △ABC 中, ∠C=90︒,AB=4,AC=1,则cos A 的值是( ) A.14CD .42.(2008恩施自治州)在Rt △ABC 中,∠C=90°,若AC=2BC,则tanA 的值是( )A.21 B.2 C.55 D.253.(威海市)在△ABC 中,∠C =90°,tanA =31,则sinB =( D )A .1010 B .32 C .43 D .101034.(2008年湘潭) 已知A B C ∆中,AC=4,BC=3,AB=5,则sin A =( )A. 35B.45C. 53D.345.(2008年内江市) 如图,在R t ABC △中,90C = ∠,三边分别为a b c ,,,则c os A等于( )A .a cB .a bC .b aD .b c6(2008年自贡市)已知α为锐角,且cot (90°-α)=3,则α的度数为( )A .30°B .60°C .45°D .75°7.(2008年湖州市)如图,已知直角三角形ABC 中,斜边A B 的长为m ,40B ∠=,则直角边B C 的长是( B ) A .sin 40mB .cos 40mC .tan 40mD .tan 40m8.(2008年自贡市)如图是一个中心对称图形,A 为对称中心,若∠C=90°, ∠B=30°,BC=1,则BB’的长为( )AC Bac bA .4B .33 C .332 D .3349.(2008年桂林市)1、如图,在Rt△ABC中,∠C=900,∠A=300,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连结FB,则tan ∠CFB 的值等于( )A 333、 B、 C、 D 10.(2008年•南宁市)如图1,正三角形的内切圆半径为1,那么三角形的边长为:(A )2 (B )32 (C )3 (D )3图111.(2008年龙岩市)已知α为锐角,则m=sin α+cos α的值( )A .m >1B .m=1C .m <1D .m≥112.(2008襄樊市)在正方形网格中,△ABC 的位置如图2所示,则cos ∠B 的值为( )A .12B 2C 2D 313.(2008年益阳) 如图2,AC 是电杆AB 的一根拉线,测得BC=6米,∠ACB=52°,则拉线AC 的长为 A.︒526sin 米 B.︒526tan 米C. 6·cos52°米D.︒526cos 米14.(08河南试验区)直角三角形在正方形网格纸中的位置如图所示,则cos α的值是(D )A.43 B.34 C.53 D.54ABC┐图2BCDA第14题图(第9题)15.(2008年武汉市) 如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m 处,那么水塔所在的位置到公路的距离AB 是( ).A.250mB.D.m.16.(2008年泰安市)直角三角形纸片的两直角边长分别为6,8,现将A B C △如图那样折叠,使点A 与点B 重合,折痕为D E ,则tan C B E ∠的值是( ) A .247B .3C .724D .1317.(2008年聊城市)如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.5的山坡上种植树,也要求株距为4m ,那么相邻两树间的坡面距离约为( ) A .4.5m B .4.6mC .6mD .8m18.(2008嘉兴市)如图,正方形A B C D 中,E 是B C 边上一点,以E 为圆心、E C 为半径的半圆与以A 为圆心,A B 为半径的圆弧外切,则sin E A B ∠的值为( ) A .43B .34C .45D .35二、填空题:1.(2008黄冈市)计算:cos 45°=________2.(2008年南昌市)计算:1sin 60cos 302-=.3.(2008年沈阳市)如图所示,某河堤的横断面是梯形A B C D ,BC AD ∥,迎水坡A B第8题图68CEAB(第8题)AOB东北长13米,且12tan 5B A E ∠=,则河堤的高B E 为 米.4.(2008年龙岩市)如图,在Rt△ABC 中,∠CAB=90°,AD 是∠CAB 的平分线,tanB=21,则CD∶DB= .5.(2008年宁波市)课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成35 时,测得旗杆A B 在地面上的投影B C 长为23.5米,则旗杆A B 的高度约是 米(精确到0.1米)6.(2008襄樊市)如图8,张华同学在学校某建筑物的C 点处测得旗杆顶部A 点的仰角为30°,旗杆底部B 点的俯角为45°.若旗杆底部B 点到建筑物的水平距离BE=9米,旗杆台阶高1米,则旗杆顶点A 离地面的高度为 米(结果保留根号). 7.(威海市)如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC = 米(用根号表示)8.(2008年泰安市)若等腰梯形A B C D 的上、下底之和为4,并且两条对角线所夹锐角为60,则该等腰梯形的面积为 (结果保留根号的形式).9.(2008年聊城市)为支援四川灾区,绿野橡胶篷布厂承接了一批活动房式帐篷的生产任务,蓬面使用的是PVC 双面涂塑蓬布,帐蓬的外部结构和规格尺寸如图所示(帐蓬顶(第10题图)(第17题)C(第16题)部两个斜面的坡度相同,顶部最高点到地面的距离为2.65米).制作一顶这样的帐蓬,至少需要 平方米的PVC 双面涂塑蓬布(帐蓬的门、窗都需要蓬布.接缝等忽略不计,计算结果精确到1平方米).三、解答题:1. (2008年郴州市)计算:21()2sin 3032--+︒+-2.(2008嘉兴市)计算:1tan 45-+.3、计算:12008453+--1()()4.(2008年义乌市)(16045-+答案:6045-+=222-+ =2.55.(2008年泰州市)21.计算:01)41.12(45tan 32)31(-++---.6.(08年宁夏回族自治区)如图,在△ABC 中,∠C =90°,sin A =54,AB =15,求△ABC 的周长和tan A 的值.第17题图7.(2008年双柏县)根据“十一五”规划,元双(双柏—元谋)高速工路即将动工.工程需要测量某一条河的宽度.如图,一测量员在河岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得68=∠ACB .求所测之处河AB 的宽度.(o o osin68≈0.93,cos68≈0.37,tan68≈2.48)8.(2008年义乌市) 如图,小明用一块有一个锐角为小明离树的距离为4米,DE 为1.68米,那么这棵树大约有多高?(精确到0.1米)9.(2008年安徽省)小明站在A 处放风筝,风筝飞到C 处时的线长为20米,这时测得∠CBD=60°,若牵引底端B 离地面1.5米,求此时风筝离地面高度。
广东省湛江一中2007-2008学年度第二学期期末考试高二级数学(文科)试卷1
![广东省湛江一中2007-2008学年度第二学期期末考试高二级数学(文科)试卷1](https://img.taocdn.com/s3/m/976ade21ba0d4a7303763a5e.png)
广东省湛江一中2007-2008学年度第二学期期末考试高二级数学(文科)试卷考试时间:120分钟 满分:150分 命题:XYB一、选择题:(每题5分,共50分)1、设全集{}{}{}1,2,3,4,5,7,9,1,2,3,4,5U M N ===,则()()U U C M C N ⋂等于( ){}.5,7,9A {}.2,4,7,9B {}.1,2,3,4,5C {}.7,9D2、若()()()()236log 6f x x f x x x +<⎧⎪=⎨≥⎪⎩,则()1f -的值为( ) A .1 B .2 C .3 D .4 3、与函数()lg 110x y -=相同的函数是( )A .1y x =-B .211x y x -=+C .1y x =- D.2y =4、若()()20f x ax bx c a =++≠是偶函数,则32()g x ax bx cx =++是( ) A .奇函数 B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数5、已知35a b A ==,且112a b+=,则A 的值是( )A .15 B..225 6、三个数0.760.76,0.7,log 6的大小顺序为( )A .60.70.70.7log 66<<B .60.70.70.76log 6<<C .0.760.7log 660.7<<D .60.70.7log 60.76<<7、设1a >,函数()log a f x x =在区间[],2a a 上的最大值与最小值之差为12,则a =( )A B .2 C ..48、对于两个非空集合M ,P ,定义运算:M*P={},x x M x P x M P ∈∈∉⋂或且,已知集合{}{}22320,23,A x x x B y y x x x A =-+===-+∈,则A*B 等于( ) A .{}1,2 B .{}2,3 C .{}1,3 D .{}1,2,39、若一系列的函数解析式相同,值域相同,但定义域不同,则称这些函数为“同形异构”函数,那么函数解析式为2y x =-,值域{}1,9--为的“同形异构”函数的个数为( )A .10B .9C .8D .710、若不等式210x ax ++≥对一切10,2x ⎛⎤∈ ⎥⎝⎦成立,则a 的最小值为( )A .0B .-2C .52- D .-3二、填空题:(每题5分,共20分)11、函数()lg 23y x =+的定义域为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湛江市2008年初中毕业生水平考试数 学 试 题说明:1.本试卷满分150分,考试时间90分钟.2.本试卷共4页,共5大题.3.答题前,请认真阅读答题卡上的“注意事项”,然后按要求将答案写在答题卡相应的位置上.4.请考生保持答题卡的整洁,考试结束,将试卷和答题卡一并交回. 注意:在答题卡上作图必须用黑色字迹的钢笔或签字笔.一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只 有一项是符合题目要求的.1. 在2-、0、1、3这四个数中比0小的数是( )A.2-B.0C.1 D .32. 人的大脑每天能记录大约8600万条信息,数据8600用科学计数法表示为( )A . 40.8610⨯ B . 28.610⨯ C . 38.610⨯ D . 28610⨯3. 不等式组13x x >-⎧⎨<⎩的解集为( )A.1x >-B.3x <C.13x -<< D .无解4. ⊙O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( )A . 相交B . 相切C . 相离D . 无法确定 5. 下面的图形中,是中心对称图形的是( )A .B .C .D .6. 下列计算中,正确的是( )A . 22-=-B .=C . 325a a a ⋅=D . 22x x x -=7. 从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是12,则n 的值是( ) A . 6 B . 3 C . 2 D . 1 8. 函数12y x =-的自变量x 的取值范围是( ) A . 2x = B . 2x ≠ C . 2x ≠- D . 2x >9.数据2,7,3,7,5,3,7的众数是()A.2B.3C.5D.710.将如图1所示的Rt△ABC绕直角边BC旋转一周,所得几何体的左视图是()11.已知三角形的面积一定,则它底边a上的高h与底边a之间的函数关系的图象大致是()B.C. D .12.如图2所示,已知等边三角形ABC的边长为1,按图中所示的规律,用2008个这样的三角形镶嵌而成的四边形的周长是()A.2008B.2009C.2010D.2011二、填空题:本大题共6小题,每小题4分,共24分.13.湛江市某天的最高气温是27℃,最低气温是17℃,那么当天的温差是℃.14.分解因式:222a ab-=.15.圆柱的底面周长为2π,高为3,则圆柱侧面展开图的面积是.16.如图3所示,请写出能判定CE∥AB的一个条件.17.图4若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是.18.将正整数按如图5所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是.A BE图2CAB┅┅三、解答题:本大题共5小题,每小题7分,共35分. 19. 计算:(1-)2008-(π-3)0+4.20. 某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场球负5场共得19分,问这个队胜了几场?21. 有五张除字不同其余都相同的卡片分别放在甲、乙两盒子中,已知甲盒子有三张,分别写有“北”、“京”、“奥”字样,乙盒子有两张,分别写有“运”、“会”字样,若依次从甲乙两盒子中各取一张卡片,求能拼成“奥运”两字的概率.22. 如图6所示,课外活动中,小明在离旗杆AB 10米的C 处,用测角仪测得旗杆顶部A的仰角为40︒,已知测角仪器的高CD =1.5米,求旗杆AB 的高. (精确到0.1米) (供选用的数据:sin 400.64≈o,cos 400.77≈o,tan 40≈o23. 如图7所示,已知等腰梯形ABCD 中,AD ∥BC ,AB =DC ,AC 与BD 相交于点O .请在图中找出一对全等的三角形,并加以证明.四、解答题:本大题共3小题,每小题10分,共30分.24. 为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图8),请结合图形解答下列问题.(1) 指出这个问题中的总体.(2) 求竞赛成绩在79.5~89.5这一小组的频率.(3) 如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.25. 如图9所示,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连接AC 、OC 、BC . (1)求证:∠ACO =∠BCD .(2)若E B =8cm ,CD =24cm ,求⊙O 的直径.26. 某农户种植一种经济作物,总用水量y (米3)与种植时间x (天)之间的函数关系式如图10所示.(1)第20天的总用水量为多少米3?(2)当x ≥20时,求y 与x 之间的函数关系式.(3)种植时间为多少天时,总用水量达到7000米3?图8图10天)五、解答题:本大题共2小题,其中第27题12分,28题13分,共25分. 27. 先观察下列等式,然后用你发现的规律解答下列问题.111122=-⨯ 1112323=-⨯ 1113434=-⨯ ┅┅ (1) 计算111111223344556++++=⨯⨯⨯⨯⨯ . (2)探究1111......122334(1)n n ++++=⨯⨯⨯+ .(用含有n 的式子表示) (3)若 1111......133557(21)(21)n n ++++⨯⨯⨯-+的值为1735,求n 的值.28. 如图11所示,已知抛物线21y x =-与x 轴交于A 、B 两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标.(2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP(3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与∆PCA 相似. 若存在,请求出M 点的坐标;否则,请说明理由.湛江市2008年初中毕业水平考试数学试题参考答案及评分标准一、选择题:本大题共12小题,每小题3分,共36分.1. A 2. C 3. C 4. A 5. D 6. C 7. B 8. B 9. D 10. A 11 D 12. C二、填空题:本大题共6小题,每小题4分,共24分.13. 10 14.2()a a b - 15. 6π 16.∠DCE =∠A 或∠ECB =∠B 或∠A +∠ACE =180︒ 17. 0.71 18.(6,5)三、解答题:本大题共5小题,每小题7分,共35分. 19. 解:原式=112-+ ·········································································· (4分)= 2 ··············································································· (7分)20. 解:设这个队胜了x 场,依题意得:3(145)19x x +--= ································································· (4分) 解得:5x = ············································································· (6分)答:这个队胜了5场. ·································································· (7分)21.························ (4分)从表中可以看出,依次从甲乙两盒子中各取一张卡片,可能出现的结果.有6个,它们出现的可能性相等,其中能拼成“奥运”两字的结果有1个. ···· (5分)所以能拼成“奥运”两字的概率为16. ··············································· (7分) 22. 解:在Rt △ADE 中,tan ∠ADE =DE AE············· (2分) ∵DE =10,∠ADE =40︒∴AE =DE tan ∠ADE =10tan 40︒≈100.84⨯=8.4 (4分) ∴AB =AE +EB =AE +DC =8.4 1.59.9+= ················· (6分) 答:旗杆AB 的高为9.9米. ····························· (7分)23. 解:∆ABC ≌∆DCB ··································· (2分) 证明:∵在等腰梯形ABCD 中,AD ∥BC ,AB =DC ∴∠ABC=∠DCB ························· (4分) 在∆ABC 与∆DCB 中AB DC ABC DCB BC CB =⎧⎪∠=∠⎨⎪=⎩∴∆ABC ≌∆DCB ··················································· (7分)(注:答案不唯一) 四、解答题:本大题共3小题,每小题10分,共30分.24. 解: (1) 总体是某校2000名学生参加环保知识竞赛的成绩. ··················· (2分)(2)15150.256912151860==++++ ················································ (5分) 答:竞赛成绩在79.5~89.5这一小组的频率为0.25. ························ (6分)(3)9200030069121518⨯=++++ ··············································· (9分) 答:估计全校约有300人获得奖励. ············································· (10分)25. 证明:(1)∵AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于E ,∴CE =ED , »»CB DB = ·························· (2分)∴∠BCD =∠BAC ································· (3分) ∵O A =O C ∴∠O AC =∠O CA∴∠AC O=∠BCD ·································· (5分) (2)设⊙O 的半径为Rcm ,则O E =O B -EB =R -8CE =21CD =21⨯24=12 ······························ (6分) 在Rt ∆CE O 中,由勾股定理可得O C 2=O E 2+CE 2即R 2= (R -8)2+122···································· (8分) 解得 R=13 ∴2R=2⨯13=26 答:⊙O 的直径为26cm . ························································· (10分)59.549.5 79.5 89.5 69.5 人数99.5成绩26. 解:(1)第20天的总用水量为1000米3 · (3分) (2)当x ≥20时,设y kx b =+∵函数图象经过点(20,1000),(30,4000)∴⎩⎨⎧+=+=b k bk 304000201000 ························ (5分)解得⎩⎨⎧-==5000300b k∴y 与x 之间的函数关系式为:y=300x -5000 ···································· (7分)(3)当y =7000时有7000=300x -5000 解得x =40答 :种植时间为40天时,总用水量达到7000米3 ································ (10分) 五、解答题:本大题共2小题,其中第27题12分,28题13分,共25分. 27. 解:(1)56 ··················································································· (3分) (2)1+n n··················································································· (6分)(3)1111......133557(21)(21)n n ++++⨯⨯⨯-+ =)7151(21)5131(21)311(21-+-+-+ ┄ +)121121(21+--n n =)1211(21+-n =12+n n ···························································· (9分) 由12+n n =3517 解得17=n ············································· (11分) 经检验17=n 是方程的根,∴17=n ··········································· (12分)28.解:(1)令0y =,得210x -= 解得1x =±令0x =,得1y =-∴ A (1,0)- B (1,0) C (0,1)- ···(2分)(2)∵O A =O B =O C =1 ∴∠BAC =∠AC O=∠BC O=45o∵A P ∥CB , ∴∠P AB =45o过点P 作P E ⊥x 轴于E ,则∆A P E 为等腰直角三角形令O E =a ,则P E =1a + ∴P (,1)a a +∵点P 在抛物线21y x =-上 ∴211a a +=-解得12a =,21a =-(不合题意,舍去)∴P E =3 ···························································································· 4分)∴四边形ACB P 的面积S =12AB •O C +12AB •P E =112123422⨯⨯+⨯⨯= ······································ 6分) (3). 假设存在∵∠P AB =∠BAC =45o∴P A ⊥AC∵MG ⊥x 轴于点G , ∴∠MG A =∠P AC =90o在Rt △A O C 中,O A =O C =1 ∴AC在Rt △P AE 中,AE =P E =3 ∴AP= ················································ 7分) 设M 点的横坐标为m ,则M 2(,1)m m - ①点M 在y 轴左侧时,则1m <- (ⅰ) 当∆A MG ∽∆P CA 时,有AG PA =MGCA∵A G=1m --,MG=21m -2= 解得11m =-(舍去) 223m =(舍去) (ⅱ) 当∆M A G ∽∆P CA 时有AG CA =MGPA即2= 解得:1m =-(舍去) 22m =-∴M (2,3)- ·········································································· (10分)② 点M 在y 轴右侧时,则1m > (ⅰ) 当∆A MG ∽∆P CA 时有AG PA =MGCA∵A G=1m +,MG=21m -∴2= 解得11m =-(舍去) 243m =∴M 47(,)39(ⅱ) 当∆M A G ∽∆P CA 时有AG CA =MGPA即2= 解得:11m =-(舍去) 24m = ∴M (4,15)∴存在点M ,使以A 、M 、G 三点为顶点的三角形与∆P CA 相似M 点的坐标为(2,3)-,47(,)39,(4,15) ·································· (13分)说明:以上各题如有其他解(证)法,请酌情给分。