微波通信系统概述ppt课件
合集下载
《微波通信原理》课件
高频段:微波通信向更高频段发展,如毫米波、太赫兹等
大容量:微波通信向大容量、高速率方向发展,如5G、6G等
技术挑战:高频段与大容量发展面临的技术挑战,如信号衰减、干扰等问题
应用前景:高频段与大容量发展在物联网、自动驾驶等领域的应用前景
卫星通信与地面微波通信的融合是未来发展趋势
地面微波通信具有建设成本低、传输距离短等优点
5G技术的普及将推动微波通信的发展
Байду номын сангаас
汇报人:PPT
单击此处添加标题
天线是微波通信系统的重要组成部分
天线的性能指标包括增益、方向性、极化方式等
天线的种类包括定向天线、全向天线、阵列天线等
天线的作用是将微波信号转换为电磁波,或将电磁波转换为微波信号
电缆:微波在电缆中传播,速度较慢,但稳定性高
空气:微波在空气中传播,不受地形和建筑物的影响
真空:微波在真空中传播,速度最快,但需要特殊设备
天线选择:根据通信距离、环境等因素选择合适的天线
天线安装:正确安装天线,保证通信质量
添加标题
添加标题
添加标题
添加标题
电磁屏蔽:如何通过电磁屏蔽技术降低电磁辐射对环境的影响
电磁辐射:微波通信产生的电磁辐射对环境和生物的影响
电磁兼容:微波通信设备与其他电子设备之间的电磁兼容问题
电磁污染:微波通信产生的电磁污染及其对环境的影响
光纤:微波在光纤中传播,速度最快,但需要特殊设备
调制:将信息信号转换为适合传输的电信号
解调:将接收到的电信号还原为信息信号
调制方式:幅度调制、频率调制、相位调制等
解调方式:幅度解调、频率解调、相位解调等
应用:无线通信、卫星通信、广播电视等
微波通信.ppt
的场强增强,偶数区产生的场强是使接收点的场强减弱。
几个基本概念
费涅耳半径
费涅耳半径 The Fresnel Radius:
我们把费涅区上的任意一点到R-T连线的距离称为费涅耳区半径, 用F 表示。 当这一点为第一费涅耳区上的点时,此半径称为第一费涅耳区半 径。 第二...第N 个费涅耳区半径表达式:Fn= (n)1/2 x F1 上式中:F1为第一费涅耳半径。
Line of sight
1st zone +
2nd -zone 3rd zone
+
The signal power is distributed in the space surrounding the direct line of sight
几个基本概念
费涅耳区定义(The Fresnel Zone Definition) 非涅耳区的能量分布:
费涅耳区定义(The Fresnel Zone Definition)
费涅耳区 The Fresnel Zone:
➢ 如果前述定义的一系列费涅耳椭球面,与我们从T或R点出发认定的某一波前面相交 割,在交割的界面上我们就可以得到一系列的圆和环,中心是一个圆,称为第一费 涅耳区。
➢ 其外的圆环(外圆减内圆得到的圆环)称为第二个费涅耳区,再往外的圆环称为第 三费涅耳区、第四费涅耳区...... 第N费涅耳区。
A0 = 自由空间损耗(Free Space Loss) M = 衰落储备(Fading Margin)
PRX G
M
Distance
微波通信的基本原理
• 几个基本概念 • 自由空间的电波传播 • 各种衰落及抗衰落技术 • 微波通信对设计的要求 • 干扰信号
各种衰落及抗衰落技术
几个基本概念
费涅耳半径
费涅耳半径 The Fresnel Radius:
我们把费涅区上的任意一点到R-T连线的距离称为费涅耳区半径, 用F 表示。 当这一点为第一费涅耳区上的点时,此半径称为第一费涅耳区半 径。 第二...第N 个费涅耳区半径表达式:Fn= (n)1/2 x F1 上式中:F1为第一费涅耳半径。
Line of sight
1st zone +
2nd -zone 3rd zone
+
The signal power is distributed in the space surrounding the direct line of sight
几个基本概念
费涅耳区定义(The Fresnel Zone Definition) 非涅耳区的能量分布:
费涅耳区定义(The Fresnel Zone Definition)
费涅耳区 The Fresnel Zone:
➢ 如果前述定义的一系列费涅耳椭球面,与我们从T或R点出发认定的某一波前面相交 割,在交割的界面上我们就可以得到一系列的圆和环,中心是一个圆,称为第一费 涅耳区。
➢ 其外的圆环(外圆减内圆得到的圆环)称为第二个费涅耳区,再往外的圆环称为第 三费涅耳区、第四费涅耳区...... 第N费涅耳区。
A0 = 自由空间损耗(Free Space Loss) M = 衰落储备(Fading Margin)
PRX G
M
Distance
微波通信的基本原理
• 几个基本概念 • 自由空间的电波传播 • 各种衰落及抗衰落技术 • 微波通信对设计的要求 • 干扰信号
各种衰落及抗衰落技术
无线通信系统与技术第5章微波与卫星通信系统PPT课件
Page 20
•基带转接方式:将接收到的微波信号首先 通过混频器下变频至中频,经过解凋、采 样判决后,得到基带数字信号,然后将恢 复的基带码流重新调制,经混频器上变频 至微波发射频率,将信号放大后再通过天 线发射出去。
Page 21
图5-4 再生转接式中继站框图
Page 22
5.1.2 微波传播特性
Page 48
2.卫星通信的特点
① 通信距离远,建站成本与通信距离无关。 ② 以广播方式工作,便于实现多址联接。 ③ 通信容量大,能传送的业务类型多。 ④ 可以自发自收进行监测。
Page 49
• 卫星通信具有以上的特点,在具体实施中 也给技术上带来了一些难点。 ① 需要先进的空间技术和电子技术。 ② 要解决信号传播时延带来的影响。
Page 42
③ 沿线附近卫星地面站的位置、同步卫星 轨道指向和工作频率,有关飞机场、雷达站 等设施的位置、工作频率和通讯设施,它们 涉及与线路相互干扰的问题; ④ 沿线的地形、地物、气候等情况,它们 对电波传播和接收信号的衰落特性均有影响。
Page 43
5.2 卫星通信系统
• 卫星通信是地球站之间利用通信卫星转发 信号的无线电通信,是现代通信的重要手段。
Page 46
• 用11/14GHz与4/6GHz相比,其具有以下 优点。 ① 由于不同于地面中继线路所用频段,因 此不存在与地面网干扰问题。
Page 47
② 若地球站及卫星的天线尺寸一定, 11/14GHz波束宽度比4/6GHz的一半还窄。 ③ 相同尺寸的卫星天线的增益,接收时是 4/6GHz的5.33倍,发射时是9.15倍,总的 改善为16.9dB。
1.地形地物对微波传播的影响
• 微波中继通信系统中的微波主要在靠近地 表的大气空间传播,因而地形地物对微波会 产生反射、折射、散射、绕射和吸收现象。
•基带转接方式:将接收到的微波信号首先 通过混频器下变频至中频,经过解凋、采 样判决后,得到基带数字信号,然后将恢 复的基带码流重新调制,经混频器上变频 至微波发射频率,将信号放大后再通过天 线发射出去。
Page 21
图5-4 再生转接式中继站框图
Page 22
5.1.2 微波传播特性
Page 48
2.卫星通信的特点
① 通信距离远,建站成本与通信距离无关。 ② 以广播方式工作,便于实现多址联接。 ③ 通信容量大,能传送的业务类型多。 ④ 可以自发自收进行监测。
Page 49
• 卫星通信具有以上的特点,在具体实施中 也给技术上带来了一些难点。 ① 需要先进的空间技术和电子技术。 ② 要解决信号传播时延带来的影响。
Page 42
③ 沿线附近卫星地面站的位置、同步卫星 轨道指向和工作频率,有关飞机场、雷达站 等设施的位置、工作频率和通讯设施,它们 涉及与线路相互干扰的问题; ④ 沿线的地形、地物、气候等情况,它们 对电波传播和接收信号的衰落特性均有影响。
Page 43
5.2 卫星通信系统
• 卫星通信是地球站之间利用通信卫星转发 信号的无线电通信,是现代通信的重要手段。
Page 46
• 用11/14GHz与4/6GHz相比,其具有以下 优点。 ① 由于不同于地面中继线路所用频段,因 此不存在与地面网干扰问题。
Page 47
② 若地球站及卫星的天线尺寸一定, 11/14GHz波束宽度比4/6GHz的一半还窄。 ③ 相同尺寸的卫星天线的增益,接收时是 4/6GHz的5.33倍,发射时是9.15倍,总的 改善为16.9dB。
1.地形地物对微波传播的影响
• 微波中继通信系统中的微波主要在靠近地 表的大气空间传播,因而地形地物对微波会 产生反射、折射、散射、绕射和吸收现象。
微波通信系统概述 ppt课件
系统外部干扰
系统外部干扰包括其它无线电设备(如雷 达、卫星通信设备等)辐射的频段相近的 电磁波和工业设备的杂散辐射电磁波。
解决方法:在进行微波线路路由和站址选择时,应尽 量避开各种外部干扰源。此外,设计新线路时,有时 会遇到与现有通信线路相互连接和配合使用的问题, 若处理不当,也会造成同频或邻频干扰。
微波转接方式
微波转接实现起来比中频转接困难,但微波转接方案 简单,设备体积小、功耗低,对于不需要上、下话路 的中继站可采用这种转接方式。
微波射频波道的频率配置
目的:为了增加微波中继通信系统的传输容 量,在一条微波通信线路上允许多套微波收 发信机同时工作,避免相互干扰
基本原则:尽可能在给定的微波频段内多安 排一些波道,以增加传输容量;尽可能减小 波道之间的相互干扰,以保证系统总体指标 和通信质量;尽可能有利于通信设备的标准 化、系列化生产,以便于维修和降低成本。
微波中继通信:是利用微波作为载波并 采用中继(接力)方式在地面上进行的无 线电通信。
短波微天波波传传播播示示意意图图
F2层 F1层 E层 D层
发
225~450km 170~220km 100~120km 60~90km
收
微波中继通信示意图
(1)微波传播具有视距传播特性 (2)微波传播具有损耗
微波中继通信的特点
微波线路设计中的路由和站址选择
明确已知条件
(1)线路或被连接的终端的位置,沿线城市或单位
(2)沿线附近原有通信线路站址及频段、天线方向 图等。它们涉及到线路之间或站间相互干扰问题。
(3)沿线附近卫星地面站的位置、同步卫星轨道指 向和工作频率,有关飞机场、雷达站等设施的位置、 工作频率和通讯设施。它们涉及到与线路相互干扰 的问题。
无线通信工程(三)微波通信(课堂PPT)
有些接力站无人值守,由主控站对它们进行遥测、 遥控。
11
微波接力通信系统的构成
收
收收
收收
收
发
发发
发发
发
信
信信
信信
信
机
机机
机机
机
多 路
用复 户用
设 备
终端站
用 户
接力站 (中继站)
多多 路路 复复 用用 设设 备备
分路站
分转站
多 路
用复 用 户用 户
设 备
终端站
12
第二节 数字微波接力通信系统
数字微波接力通信系统是指以微波接力方式 进行数字信号远距离传输的多路通信系统,又称 数字微波中继系统。对于电话、传真等模拟信号 ,须经抽样、量化、编码等过程把模拟信号变换 成比特率为64kbit/s的脉冲编码调制(PCM)数 字信号,并用时分多路复用(TDM)方式把多路 信号组成基带信号,然后以此基带信号对中频载 波进行二次调制(如移相键控PSK),再经上变 频搬移到微波波段。这种体制可记作TDM PSK。 数字微波系统可用来传输电话、数据、图像、电 视及其他新型通信业务。
天线
媒 质
双工器 馈线
高功率 放大器
低噪大器
上变频器 下变频器
上变频器 下变频器
调制器 解调器
调制器 解调器
多路复用设备
多路复用设备
用户末端设备
用户末端设备
6
天馈线系统由馈线、双工器及天线组成。
用户终端设备把各种信息变换成电信号。
多路复用设备把多个用户的电信号构成共用一个传输 信道的基带信号。 在发信机中调制器把基带信号调制到中频再经上变频变至 射频,也可直接调制到射频。
8
11
微波接力通信系统的构成
收
收收
收收
收
发
发发
发发
发
信
信信
信信
信
机
机机
机机
机
多 路
用复 户用
设 备
终端站
用 户
接力站 (中继站)
多多 路路 复复 用用 设设 备备
分路站
分转站
多 路
用复 用 户用 户
设 备
终端站
12
第二节 数字微波接力通信系统
数字微波接力通信系统是指以微波接力方式 进行数字信号远距离传输的多路通信系统,又称 数字微波中继系统。对于电话、传真等模拟信号 ,须经抽样、量化、编码等过程把模拟信号变换 成比特率为64kbit/s的脉冲编码调制(PCM)数 字信号,并用时分多路复用(TDM)方式把多路 信号组成基带信号,然后以此基带信号对中频载 波进行二次调制(如移相键控PSK),再经上变 频搬移到微波波段。这种体制可记作TDM PSK。 数字微波系统可用来传输电话、数据、图像、电 视及其他新型通信业务。
天线
媒 质
双工器 馈线
高功率 放大器
低噪大器
上变频器 下变频器
上变频器 下变频器
调制器 解调器
调制器 解调器
多路复用设备
多路复用设备
用户末端设备
用户末端设备
6
天馈线系统由馈线、双工器及天线组成。
用户终端设备把各种信息变换成电信号。
多路复用设备把多个用户的电信号构成共用一个传输 信道的基带信号。 在发信机中调制器把基带信号调制到中频再经上变频变至 射频,也可直接调制到射频。
8
微波通信基础课件
散 Nhomakorabea传输技术
散射传输技术是指将微波信号通过散射体进行传输的技术。这种技术主要应用于山区、丘陵等复杂地 形地区的通信,其优点是可以实现非视距通信,同时可以利用现有的散射网络进行传输。
散射传输技术通常采用散射天线进行信号散射,从而实现远距离的传输。这种技术的缺点是传输过程 中可能会出现信号衰减和干扰等问题,需要采取相应的措施进行解决。此外,散射传输技术还需要建 设大量的散射站点,因此成本较高。
交互和智能化发展。
微波通信发展趋势与新技术应用
5G技术的发展
随着5G技术的不断推进,微波 通信将发挥重要作用,实现更
高速、更可靠的数据传输。
智能反射面技术
通过智能反射面的设计,实现 对微波信号的智能调控和优化, 提高通信性能。
量子通信技术
利用量子纠缠等量子特性,实 现更加安全、高效的通信方式, 微波通信将在其中发挥关键作用。
比ASK有更好的抗噪声性能。
数字调制技术
相移键控(PSK) 用载波的相位偏移来代表数字信号的0、1比特。
比ASK和FSK有更好的抗噪声性能。
多路复用技 术
时分复用(TDM)
将时间划分为多个时隙,每 个时隙传输一路信号。
可以同时传输多路信号。
频分复用(FDM)
将频率划分为多个频带,每 个频带传输一路信号。 可以同时传输多路信号。
微波通信的历史与发展
01
02
03
起源
20世纪40年代,随着雷达 和电子管技术的快速发展, 人们开始利用微波频段进 行通信。
发展历程
经历了从模拟信号到数字 信号,从固定站到移动站, 从模拟调制到数字调制等 阶段。
现代应用
广泛应用于移动通信、卫 星通信、广播电视等领域。
散射传输技术是指将微波信号通过散射体进行传输的技术。这种技术主要应用于山区、丘陵等复杂地 形地区的通信,其优点是可以实现非视距通信,同时可以利用现有的散射网络进行传输。
散射传输技术通常采用散射天线进行信号散射,从而实现远距离的传输。这种技术的缺点是传输过程 中可能会出现信号衰减和干扰等问题,需要采取相应的措施进行解决。此外,散射传输技术还需要建 设大量的散射站点,因此成本较高。
交互和智能化发展。
微波通信发展趋势与新技术应用
5G技术的发展
随着5G技术的不断推进,微波 通信将发挥重要作用,实现更
高速、更可靠的数据传输。
智能反射面技术
通过智能反射面的设计,实现 对微波信号的智能调控和优化, 提高通信性能。
量子通信技术
利用量子纠缠等量子特性,实 现更加安全、高效的通信方式, 微波通信将在其中发挥关键作用。
比ASK有更好的抗噪声性能。
数字调制技术
相移键控(PSK) 用载波的相位偏移来代表数字信号的0、1比特。
比ASK和FSK有更好的抗噪声性能。
多路复用技 术
时分复用(TDM)
将时间划分为多个时隙,每 个时隙传输一路信号。
可以同时传输多路信号。
频分复用(FDM)
将频率划分为多个频带,每 个频带传输一路信号。 可以同时传输多路信号。
微波通信的历史与发展
01
02
03
起源
20世纪40年代,随着雷达 和电子管技术的快速发展, 人们开始利用微波频段进 行通信。
发展历程
经历了从模拟信号到数字 信号,从固定站到移动站, 从模拟调制到数字调制等 阶段。
现代应用
广泛应用于移动通信、卫 星通信、广播电视等领域。
《微波通信原理》课件
个人移动通信的发展
总结词
随着个人移动设备的普及,微波通信在 个人移动通信领域的应用越来越广泛, 为人们提供了更加便捷的通信方式。
VS
详细描述
个人移动通信是微波通信的重要应用领域 之一。通过微波通信技术,人们可以使用 智能手机、平板电脑等移动设备随时随地 进行语音、视频通话和数据传输,极大地 丰富了人们的通信方式和生活方式。
ERA
微波通信定义
微波通信是一种利用微波频段的电磁 波进行信息传输的通信方式。
它利用频率在0.3GHz至300GHz之间 的电磁波,通过定向天线将信号传输 到远方,实现信息的传递。
微波通信特点
传输容量大
微波频段具有丰富的频谱资源 ,可以实现高速、大容量的信
息传输。
传输质量稳定
微波信号在自由空间中传播时 受气象和地形影响较小,传输 质量较为稳定。
BIG DATA EMPOWERS TO CREATE A NEW ERA
《微波通信原理》PPT课件
• 微波通信概述 • 微波通信系统组成 • 微波传播特性 • 数字微波通信原理 • 模拟微波通信原理 • 微波通信的发展趋势与展望
目录
CONTENTS
01
微波通信概述
BIG DATA EMPOWERS TO CREATE A NEW
大气中的水蒸气、氧气和气溶胶等成分对微波信号产生吸收和 散射,导致信号衰减。
02
不同的大气条件(如湿度、温度和气压)对微波衰减有显著影
响。
大气衰减随频率增加而增大,因此高频率微波在传播过程中损
03
耗较大。
反射、折射与散射
1
微波遇到障碍物时,会部分地被反射、折射和散 射。
2
障碍物的电导率和介电常数对反射、折射和散射 有重要影响。
微波通信原理 ppt课件
ppt课件
22
天线的极化
线极化:水平极化和垂直极化 (以电场方向为参考)
ppt课件
23
衰落
微波传播必须采用直射波,接收点的场强是直射空间波与地面反 射波的叠加。传播媒介质是地面上的低空大气层和路由上的地面 、地物。当时间(季节、昼夜等)和气象(雨、雾、雪等)条件发生 变化时,大气的温度、湿度、压力和地面反射点的位置、反射系 数等也将发生变化。这必然引起接收点场强的高低起伏变化。这 种现象,叫做电波传播的衰落现象。显然衰落现象具有很大的随 机性。
(4)采用同步复用特性,只需利用软件即可使高速信号一次 直接分插出低速支路信号。
(5)SDH的结构可使网络管理功能大大加强。
ppt课件
39
SDH 标准系列
PDH
日本 (T)
北美 (T)
欧洲 (E)
97.728 32. 064 6.312M
44.763 6. 312
139. 264 34. 368 8.448
微波通信系统介绍
ppt课件
0
目录
1 微波通信系统简介 2 微波通信系统方框图 3 微波通信系统数字传输系列
4 爱立信微波的实际应用
ppt课件
1
1 微波通信系统简介
ppt课件
2
微波站
ppt课件
3
微波的定义
微波是一种电磁波,从广义上讲,频率 从300MHZ~300GHZ,微波通信使用频 率范围3GHZ~30GHZ
3. 微波的频率很高,因此可利用的频带较宽、信息容量大,从而使 微波通信得到了广泛的应用和发展。
ppt课件
9
不同的传输方法
MUX
同轴电缆
微波
卫星 光缆
第3章__数字微波通信系统30页PPT
L S 9 .4 2 2 ld g 0 ( k) m 2 lf g 0 ( G )H
10
【例1】 A、B两微波站相距50公里,工作频率是
2GHz,试计算电波从发射站A到达接收站B的 自由空间传播损耗。
若A站发射功率为10W,求B站接收功率 为多少?
11
2 接收点的收信功率电平
Ci
CO1 G1
22
中间站: 对收到的信号再生、放大处理后,再转
发给下一个中间站。
23
接收端: (1)微波射频信号接收 微波射频信号到达接收端后,经天线馈线系统
送到接收端机。 (2)微波射频信号———中频信号的变换 在接收机进行混频,将数字微波射频信号变为
70MHz的中频已调信号。
24
(3)中频信号———多路复用信号的变换 送至调制解调器,解调出一路基带信号。 (4)多路数字信号———一路基带信号的变换 经时分复用设备变为多路模拟信号送入乙地市
话局和用户终端。
25
3.6 微波通信系统频率配置
微波站收信、发信必须使用不同频率,而 且有足够大的保护间隔。国家无委对频段分配 及频道配置均有规定,必须照此申请及执行。
微波接力通信频率配置:二频制
f1 f2 f2 f1
f2 f1 f1 f2
f1 f2 f2 f1
26
微波接力通信频率配置:二频制
27
5
3.2 数字微波通信系统的组成
➢ 发端站 ➢ 收端站 ➢ 中间站
6
微波中继信道由终端站、中间站、再生中 继站及电波空间组成。
7
微波通信线路
终端站 处于线路两端的微波站 中继站 线路的中间转接站 分路站 能上/下部分话路的中继站 枢纽站 两条以上微波线路交叉的站
10
【例1】 A、B两微波站相距50公里,工作频率是
2GHz,试计算电波从发射站A到达接收站B的 自由空间传播损耗。
若A站发射功率为10W,求B站接收功率 为多少?
11
2 接收点的收信功率电平
Ci
CO1 G1
22
中间站: 对收到的信号再生、放大处理后,再转
发给下一个中间站。
23
接收端: (1)微波射频信号接收 微波射频信号到达接收端后,经天线馈线系统
送到接收端机。 (2)微波射频信号———中频信号的变换 在接收机进行混频,将数字微波射频信号变为
70MHz的中频已调信号。
24
(3)中频信号———多路复用信号的变换 送至调制解调器,解调出一路基带信号。 (4)多路数字信号———一路基带信号的变换 经时分复用设备变为多路模拟信号送入乙地市
话局和用户终端。
25
3.6 微波通信系统频率配置
微波站收信、发信必须使用不同频率,而 且有足够大的保护间隔。国家无委对频段分配 及频道配置均有规定,必须照此申请及执行。
微波接力通信频率配置:二频制
f1 f2 f2 f1
f2 f1 f1 f2
f1 f2 f2 f1
26
微波接力通信频率配置:二频制
27
5
3.2 数字微波通信系统的组成
➢ 发端站 ➢ 收端站 ➢ 中间站
6
微波中继信道由终端站、中间站、再生中 继站及电波空间组成。
7
微波通信线路
终端站 处于线路两端的微波站 中继站 线路的中间转接站 分路站 能上/下部分话路的中继站 枢纽站 两条以上微波线路交叉的站
《微波通信技术》课件
抗干扰能力强
微波信号在空中传播,不易受到地面障碍物的影响,具有较强的抗干 扰能力。
灵活性高
微波通信设备轻便,易于安装和移动,适用于各种复杂环境下的通信 需求。
长距离通信
微波信号在自由空间中传播,能够实现较远距离的通信,适用于城市 间、区域间的通信。
挑战
传输损耗 大气干扰 多径效应 频谱资源有限
随着传输距离的增加,微波信号的能量会逐渐损耗,导致信号 强度下降。
微波信号在空间传播时,会随着距离的增 加而逐渐衰减。
视距传播
地面反射
微波信号在视距范围内传播时,可以不受 建筑物、地形等因素的阻挡。
微波信号在地面传播时,可能会受到地面 的反射作用,影响信号的传输调技术
01
调频(FM)调制
通过改变微波信号的频率以传递信 息。
调幅(AM)调制
展望
未来微波通信技术的发展方向
01
随着技术的不断进步和应用需求的增加,未来微波通信技术将
朝着更高频段、更高速度、更可靠的方向发展。
5G和6G通信技术中的微波通信
02
5G和6G通信技术将大量使用毫米波和亚毫米波频段,这些频段
的信号传输将依赖于微波通信技术。
微波通信与其他技术的融合
03
未来微波通信将与光通信、量子通信等技术融合,形成更加高
据容量的传输。
软件定义无线电技术
软件定义无线电技术将使微波通信设 备更加灵活和可配置,适应不同的通
信需求和频谱环境。
智能化天线技术
利用智能天线技术,实现定向波束传 输和接收,提高信号质量和抗干扰能 力。
5G融合发展
微波通信将与5G等新一代移动通信技 术融合发展,共同推动无线通信技术 的进步和应用。
微波信号在空中传播,不易受到地面障碍物的影响,具有较强的抗干 扰能力。
灵活性高
微波通信设备轻便,易于安装和移动,适用于各种复杂环境下的通信 需求。
长距离通信
微波信号在自由空间中传播,能够实现较远距离的通信,适用于城市 间、区域间的通信。
挑战
传输损耗 大气干扰 多径效应 频谱资源有限
随着传输距离的增加,微波信号的能量会逐渐损耗,导致信号 强度下降。
微波信号在空间传播时,会随着距离的增 加而逐渐衰减。
视距传播
地面反射
微波信号在视距范围内传播时,可以不受 建筑物、地形等因素的阻挡。
微波信号在地面传播时,可能会受到地面 的反射作用,影响信号的传输调技术
01
调频(FM)调制
通过改变微波信号的频率以传递信 息。
调幅(AM)调制
展望
未来微波通信技术的发展方向
01
随着技术的不断进步和应用需求的增加,未来微波通信技术将
朝着更高频段、更高速度、更可靠的方向发展。
5G和6G通信技术中的微波通信
02
5G和6G通信技术将大量使用毫米波和亚毫米波频段,这些频段
的信号传输将依赖于微波通信技术。
微波通信与其他技术的融合
03
未来微波通信将与光通信、量子通信等技术融合,形成更加高
据容量的传输。
软件定义无线电技术
软件定义无线电技术将使微波通信设 备更加灵活和可配置,适应不同的通
信需求和频谱环境。
智能化天线技术
利用智能天线技术,实现定向波束传 输和接收,提高信号质量和抗干扰能 力。
5G融合发展
微波通信将与5G等新一代移动通信技 术融合发展,共同推动无线通信技术 的进步和应用。
微波通信课件
20世纪80年代
注:微波传输中,传输容量在10M以下的称为小容量,在10~100M之间的称为中容量,大于100M的称为
构
制式
数字微波 模拟微波
复用 方 式
PDH SDH
全室内型微波(Trunk MW)
结构 分体式微波(Split MW)
按站 点类
型
终端站 中继站 枢纽站
Page 13
HSB (hot stand-by, 热备份),FD (frequency diversity, 频率分集) 和SD (space diversity, 空间分集) 三种模式: 热备份:两套完全相同的单元同时工作,其中一套作为另一套的备份,当工作单元故障时,可以及时切换到备份单元上; 频率分集:发送端使用2个不同频点发送相同信号,由于传输过程中不同频率衰落程度不同,接收端进行选收、合成以改善传 输质量; 空间分集:发送端通过1个相同频点发送相同信号,由于传输过程中不同空间位置衰落程度不同,接收端在不同高低位置接收 后进行选收以改善传输质量。SD时,备用通道静默,不发送信号,只接收信号。
微波主要应用(续)
回传链型组网
回传树型组网
回传终端站
微波保护方式
“1+0”和”1+1:“1+0”为无保护,即同一链路上的高站 (或低站) 只有1个ODU,当这个ODU出现故障时,该跳链路 无法正常通信;“1+1”为有保护,实现备份,提高了系统的可用度。在“1+1”情形下同一链路上的高站 (或低站) 就 有2个 ODU。一般来说,HSB是最普通、最常见的,SD次之但少很多,FD最少。
RTN 产品是接入和汇聚层微波设备,可以直接接入RNC和BSC,也可以通过本地回传网接入RNC和BSC。 RTN 产品提供多种类型的接口和业务承载技术以适应本地回传网络的类型。本地回传网络可以是TDM网络或者PSN网络。 RTN 产品支持EoSDH/EoPDH功能和ML-PPP功能,分组业务可以穿越TDM网络进行回传。 RTN 产品支持PWE3仿真,TDM业务、ATM业务和以太网业务可以穿越分组交换网络进行回传。 RTN 产品支持VLAN子接口功能,MPLS分组业务可以穿越二层网络进行回传。
微波通信系统概述PPT课件
微波中继通信:是利用微波作为载波并 采用中继(接力)方式在地面上进行的无 线电通信。
精选
短波微天波波传传播播示示意意图图
F2层 F1层 E层 D层
发
225~450km 170~220km 100~1中继通信示意图
(1)微波传播具有视距传播特性 (2)微波传播具有损耗
背比;为防止越站干扰,在微波线路设计和站址选择
时应妥善安排。
精选
四频制单波道频率配置
采用四频制方案时,没有反向干扰问题,但仍 然存在越站同频干扰问题,且其占用频带比二 频制方案宽一倍。
精选
微波线路的干扰
系统内部干扰
越站干扰 旁瓣干扰
系统外部干扰
精选
越站干扰示意图
干扰信号应比有用信号低60dB以上 解决方法:使线路走向错开一定角度(不小于 15˚) ,即用“之”字形路由,使天线主瓣射线 与AD连线夹角大于天线主瓣宽度,避免电磁波 传播方向(主瓣)与相邻各精选站的线路走向一致。
旁瓣干扰示意图
解决方法:在进行微波线路路由和站址选择时,应尽 量避开各种外部干扰源。此外,设计新线路时,有时 会遇到与现有通信线路相互连接和配合使用的问题, 若处理不当,也会造成同频或邻频干扰。
精选
微波线路设计中的路由和站址选择
明确已知条件
(1)线路或被连接的终端的位置,沿线城市或单位
(2)沿线附近原有通信线路站址及频段、天线方向 图等。它们涉及到线路之间或站间相互干扰问题。
微波转接方式
微波转接实现起来比中频转接困难,但微波转接方案 简单,设备体积小、功耗低,对于不需要上、下话路 的中继站可采用这种转接方式。
精选
微波射频波道的频率配置
目的:为了增加微波中继通信系统的传输容 量,在一条微波通信线路上允许多套微波收 发信机同时工作,避免相互干扰
精选
短波微天波波传传播播示示意意图图
F2层 F1层 E层 D层
发
225~450km 170~220km 100~1中继通信示意图
(1)微波传播具有视距传播特性 (2)微波传播具有损耗
背比;为防止越站干扰,在微波线路设计和站址选择
时应妥善安排。
精选
四频制单波道频率配置
采用四频制方案时,没有反向干扰问题,但仍 然存在越站同频干扰问题,且其占用频带比二 频制方案宽一倍。
精选
微波线路的干扰
系统内部干扰
越站干扰 旁瓣干扰
系统外部干扰
精选
越站干扰示意图
干扰信号应比有用信号低60dB以上 解决方法:使线路走向错开一定角度(不小于 15˚) ,即用“之”字形路由,使天线主瓣射线 与AD连线夹角大于天线主瓣宽度,避免电磁波 传播方向(主瓣)与相邻各精选站的线路走向一致。
旁瓣干扰示意图
解决方法:在进行微波线路路由和站址选择时,应尽 量避开各种外部干扰源。此外,设计新线路时,有时 会遇到与现有通信线路相互连接和配合使用的问题, 若处理不当,也会造成同频或邻频干扰。
精选
微波线路设计中的路由和站址选择
明确已知条件
(1)线路或被连接的终端的位置,沿线城市或单位
(2)沿线附近原有通信线路站址及频段、天线方向 图等。它们涉及到线路之间或站间相互干扰问题。
微波转接方式
微波转接实现起来比中频转接困难,但微波转接方案 简单,设备体积小、功耗低,对于不需要上、下话路 的中继站可采用这种转接方式。
精选
微波射频波道的频率配置
目的:为了增加微波中继通信系统的传输容 量,在一条微波通信线路上允许多套微波收 发信机同时工作,避免相互干扰
第五章 微波通信系统共102页
第五章
第五章 微波通信系统
5.1 微波通信概述 5.2 微波通信系统 5.3 微波传输信道 5.4 数字微波通信系统 5.5 5.6 我国微波通信的发展趋势 习题
第五章
5.1 微波通信概述
5.1.1 微波的发展与无线通信的发展是分不开的。
5.1.2 微波是指频率在300 MHz~300 GHz范围内的电磁
第五章
中频输出
中 放
上 变 频
隔 离 滤 波
微 波 前 放
输
波
出
道
功
滤
放
波
去天线
浅 勤务信号 调
频
主 振 荡 器
隔 离 放 大
AGC
图5-21 微波发信机方框图
第五章
5. 调制是将数字基带信号调制到中频信号, 解调是将 中频信号解调为数字基带信号。 在数字微波通信中, 为 了提高频谱利用率, 经常采用高频谱利用率的调制方式。
0
V0
P(V)
2V
2
ev2/2
V0
(5-6)
第五章
对低于某给定电平Vs (一般指不能保证传输质量的门 限电平值), 收信点衰落电平小于Vs的概率分布函数为
P ( V ) V sP ( V ) d V V s2 V e V 2 /2 d V 1 e V 2 /2
第五章
h1
d
R0
h2
图5-12 视距与天线高度
第五章
2.
图5-13中T为发射天线, R为接收天线, T和R相距d。
若发送端的发射功率为Pt, 采用无方向性天线时距离d 处的球面面积为4πd2, 则在接收天线的位置上, 每单位
面积上的功率为 率为
Pt
第五章 微波通信系统
5.1 微波通信概述 5.2 微波通信系统 5.3 微波传输信道 5.4 数字微波通信系统 5.5 5.6 我国微波通信的发展趋势 习题
第五章
5.1 微波通信概述
5.1.1 微波的发展与无线通信的发展是分不开的。
5.1.2 微波是指频率在300 MHz~300 GHz范围内的电磁
第五章
中频输出
中 放
上 变 频
隔 离 滤 波
微 波 前 放
输
波
出
道
功
滤
放
波
去天线
浅 勤务信号 调
频
主 振 荡 器
隔 离 放 大
AGC
图5-21 微波发信机方框图
第五章
5. 调制是将数字基带信号调制到中频信号, 解调是将 中频信号解调为数字基带信号。 在数字微波通信中, 为 了提高频谱利用率, 经常采用高频谱利用率的调制方式。
0
V0
P(V)
2V
2
ev2/2
V0
(5-6)
第五章
对低于某给定电平Vs (一般指不能保证传输质量的门 限电平值), 收信点衰落电平小于Vs的概率分布函数为
P ( V ) V sP ( V ) d V V s2 V e V 2 /2 d V 1 e V 2 /2
第五章
h1
d
R0
h2
图5-12 视距与天线高度
第五章
2.
图5-13中T为发射天线, R为接收天线, T和R相距d。
若发送端的发射功率为Pt, 采用无方向性天线时距离d 处的球面面积为4πd2, 则在接收天线的位置上, 每单位
面积上的功率为 率为
Pt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
背比;为防止越站干扰,在微波线路设计和站址选择
时应妥善安排。
.
四频制单波道频率配置
采用四频制方案时,没有反向干扰问题,但仍 然存在越站同频干扰问题,且其占用频带比二 频制方案宽一倍。
微波中间站的转接方式
(1)基带转接方式 (2)中频转接方式 (3)微波转接方式
.
基带转接方式
基带转接方式可以直接上、下话路,是微波分 路站和枢纽站必须采用的转接方式。采用这种 转接方式的中间站的设备与终端站可以通用。
.
中频转接方式
中频转接不需调制、解调器,简化了设备,且没有调 制和解调引入的失真和噪声;其发本振和收本振采用 移频振荡方案,降低了对本振稳定度的要求。但中频 转接不能上、下话路,不能消除噪声积累。对于不需 要上、下话路的中继站,可以采用中频转接方式,如 模拟微波中继通信系统就常用这种方式。
.
微波线路的干扰
系统内部干扰
越站干扰 旁瓣干扰
系统外部干扰
.
越站干扰示意图
干扰信号应比有用信号低60dB以上 解决方法:使线路走向错开一定角度(不小于 15˚) ,即用“之”字形路由,使天线主瓣射线 与AD连线夹角大于天线主瓣宽度,避免电磁波 传播方向(主瓣)与相邻各.站的线路走向一致。
旁瓣干扰示意图
.
微波射频波道的频率配置
单波道频率配置
(1)二频制方案 (2)四频制方案
多波道频率配置
(1)交错制方案 (2)分割制方案
.
二频制单波道频率配置
优点:占用频带窄、频谱利用率高
缺点:存在反向干扰(指一个通信方向的收信机收到 相反通信方向的同频干扰信号)和越站同频干扰。
解决方法:为防止反向干扰,要求天线具备较高的前
.
微波中继通信系统组成
交换机既可实现本地用户终端之间的业务 互通,如实现本地语音用户之间的通话, 又可通过微波中继通信线路实现本地用户 微信终终端号波端终端端站。站用输电复之 站端、按的传户入用间 或与分与基机终/设输的 微远路终本、端备出业 波地端站功计是将设务 分(复和能算逻交对备互 路中用是机辑换端,通站继设传、上机交如。。备站输调最送换自交的。来度靠来机动换连当自电近的所电机接两终话用多辖话配关条端机户路范机置系以复等的信围、在,上用。号)微用微的设或波户波微备群终终站波的路分中群信为继路号适 通当信变线用换路户,在终送某端到一主微微要波波通终站过端交交站汇换或时机分,集路该中站微在的波发站信称机为;枢将纽终端 站站,或具微分有波路通终站信端收枢站信纽或机功微送能波来。分的微路多波站路分。信路号站或和群枢路纽信站号统适称当变 微换波后主送站到,交微换波机中。继模站拟和微分波路通站信统系称统微常波采中用间频站分。多路 载波机,数字系统则采用时分多路数字终端机,包括 增量调制(AM)和脉冲编码调制(PCM)两种制式。增量 调制终端机常用在军事通信中,脉冲编码调制终端机 常用在民用通信中。终端复. 用设备配置在微波终端站 或微波分路站。
解决方法:在进行微波线路路由和站址选择时,应尽 量避开各种外部干扰源。此外,设计新线路时,有时 会遇到与现有通信线路相互连接和配合使用的问题, 若处理不当,也会造成同频或邻频干扰。
.
微波线路设计中的路由和站址选择
明确已知条件
(1)线路或被连接的终端的位置,沿线城市或单位
(2)沿线附近原有通信线路站址及频段、天线方向 图等。它们涉及到线路之间或站间相互干扰问题。
通信装备与应用
通信教研室
.
微波通信系统概述
.
通信系统模型
噪声源
信源
发送 设备
信道
接收 设备
信宿
.
通信系统按传输媒质分类
有线通信
无线通信
信 电 信信光微 信信波短 信 移 信 卫 信 散 缆 缆波 导波 动 星 射 通 通通 通通 通 通 通
.
微波中继通信的定义
微波:指波长范围为1m~1mm,频率范 围为300MHz~300GHz的电磁波,可细 分为特高频(UHF)/分米波频段、超高频 (SHF)/厘米波频段和极高频(EHF)/毫米 波频段。
.
微波转接方式
微波转接实现起来比中频转接困难,但微波转接方案 简单,设备体积小、功耗低,对于不需要上、下话路 的中继站可采用这种转接方式。
.
微波射频波道的频率配置
目的:为了增加微波中继通信系统的传输容 量,在一条微波通信线路上允许多套微波收 发信机同时工作,避免相互干扰
基本原则:尽可能在给定的微波频段内多安 排一些波道,以增加传输容量;尽可能减小 波道之间的相互干扰,以保证系统总体指标 和通信质量;尽可能有利于通信设备的标准 化、系列化生产,以便于维修和降低成本。
微波中继通信:是利用微波作为载波并 采用中继(接力)方式在地面上进行的无 线电通信。
.
短波微天波波传传播播示示意意图图
F2层 F1层 E层 D层
发
225~450km 170~220km 100~120km 60~90km
收
.
微Hale Waihona Puke 中继通信示意图(1)微波传播具有视距传播特性 (2)微波传播具有损耗
.
微波中继通信的特点
(1)通信频段的频带宽,通信容量大 (2)受外界干扰的影响小 (3)通信灵活性较大 (4)天线增益高、方向性强 (5)投资少、建设快
.
微波中继通信的分集接收
分集方式
(1)频率分集 (2)空间分集 (3)混合分集
合成方式
(1)最佳选择式合并 (2)等增益合并 (3)最大比值合并
(3)沿线附近卫星地面站的位置、同步卫星轨道指 向和工作频率,有关飞机场、雷达站等设施的位置、 工作频率和通讯设施。它们涉及到与线路相互干扰 的问题。
(4)沿线的地形、地物、气候等情况。它们对电波 传播和接收信号的衰落特性均有影响。
.
微波线路设计中的路由和站址选择
路由和站址选择的基本原则
从长远规划出发,近期需求与长 远需要相结合;充分利用有利地 理条件,站距不宜过大,各中继 段长度相差也不宜过大。
解决方法:调整相邻各站天线指向的相对角度。为了
使同频邻站干扰低于60dB,要求线路拐弯、分支处的
夹角不小于90˚;或采用正交极化配置的方法来补偿,
但其夹角也不宜小于70˚。此外,在线路分支处,通过
采用不同的频率配置,可以使夹角的限制条件放宽或
不再受限制。
.
系统外部干扰
系统外部干扰包括其它无线电设备(如雷 达、卫星通信设备等)辐射的频段相近的 电磁波和工业设备的杂散辐射电磁波。