初二几何动点问题专题
初二数学动点练习题
初二数学动点练习题1. 直线上的动点问题- 题目:在直线AB上,点C是动点,当点C沿着直线AB移动时,求证∠ACB是一个恒定的角度。
2. 圆上的动点问题- 题目:圆O的半径为5,点P是圆上的动点。
求证:无论点P在圆上如何移动,OP的长度始终为5。
3. 动点与线段的关系- 题目:线段AB的长度为10,点C是线段AB上的动点。
当点C从A向B移动时,求线段AC的长度与线段BC的长度之和是否恒定。
4. 动点与三角形的面积- 题目:三角形ABC的面积为30平方单位,点D是边AB上的动点。
求证:无论点D在AB上如何移动,三角形ACD的面积始终是三角形ABC面积的一半。
5. 动点与平行四边形的对角线- 题目:平行四边形ABCD中,点E是边AB上的动点,点F是边CD 上的动点,且EF始终是平行四边形的对角线。
求证:无论点E和点F如何移动,EF的长度始终等于AB和CD的长度之和。
6. 动点与圆的切线- 题目:圆O的半径为6,点P是圆O外的一点,点Q是圆O上的动点。
当点Q沿着圆O移动时,求证:点P到圆O的切线长度始终等于点P到点Q的距离。
7. 动点与相似三角形- 题目:三角形ABC与三角形DEF相似,点G是三角形ABC的动点,点H是三角形DEF的动点,且GH始终是三角形ABC和三角形DEF的对应边的平行线。
求证:无论点G和点H如何移动,三角形AGH与三角形DEF始终相似。
8. 动点与坐标系- 题目:在平面直角坐标系中,点A的坐标为(2,3),点B的坐标为(5,6)。
点C是线段AB上的动点,其坐标为(x,y)。
求证:无论点C如何移动,x和y的和始终等于点A和点B坐标的和。
练习题答案提示:- 对于直线上的动点问题,可以利用角度的恒定性,结合直线的性质来证明。
- 对于圆上的动点问题,可以利用圆的半径性质来证明。
- 对于动点与线段的关系问题,可以利用线段长度的加法性质来证明。
- 对于动点与三角形的面积问题,可以利用三角形面积的计算公式来证明。
八年级数学动点问题专题
汇报人: 202X-01-05
目 录
• 动点问题的基本概念 • 直线上的动点问题 • 平面直角坐标系中的动点问题 • 立体几何中的动点问题 • 动点问题的实际应用
动点问题的基本概
01
念
动点的定义
动点
在运动过程中位置不断变化的点 。
定义
动点问题是指在一个图形中,有 一个或多个点在运动过程中与其 他图形元素产生关系或变化的问 题。
圆柱、圆锥中的动点问题
总结词
涉及圆柱、圆锥上动点运动规律的问题
详细描述
圆柱和圆锥中的动点问题涉及到的是这两种 几何体上动点的运动规律。解决这类问题需 要掌握圆柱和圆锥的基本性质,如表面积、 体积等,以及与它们相关的几何定理。
动点问题的实际应
05
用
行程问题
总结词
涉及速度、时间和距离的关系
详细描述
详细描述
在解决直线上的动点问题时,我们经常需要计算点在某个距离上移动所需的时 间。这时,我们可以利用速度恒定原则,通过已知的距离和速度来计算所需的 时间。
追及问题
总结词
理解追及问题的本质是找出两个动点之间的时间差。
详细描述
在直线上的动点问题中,经常会遇到追及问题,即一个点在另一个点之前移动, 我们需要找出它们之间的时间差。解决这类问题需要我们仔细分析两个点的移动 速度和距离,以及它们之间的相对位置。
总结词
涉及最优决策和最优解
详细描述
策略优化问题中,动点问题常用来解决如资源分配、路 径规划等问题。通过建立数学模型,可以找到最优的决 策方案。
THANKS.
直线上的动点问题
02
速度与时间的计算
总结词
掌握速度、时间、距离之间的关系是 解决这类问题的关键。
八年级数学动点题型归纳
八年级数学动点题型归纳一、动点与三角形相关题型1. 动点在三角形边上运动求线段长度或周长题目:在等腰三角形公式中,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。
当公式时,求公式的长度。
解析:过点公式作公式于点公式。
因为公式,等腰三角形三线合一,所以公式。
在公式中,根据勾股定理公式。
当公式时,公式,则公式。
在公式中,根据勾股定理公式。
2. 动点运动过程中三角形面积的变化题目:在公式中,公式,公式,公式,点公式从点公式出发,沿公式向点公式以每秒公式个单位长度的速度运动,同时点公式从点公式出发,沿公式向点公式以每秒公式个单位长度的速度运动,设运动时间为公式秒公式,求公式的面积公式与公式的函数关系式。
解析:已知公式,则公式,公式。
根据三角形面积公式公式,对于公式,底为公式,高为公式。
所以公式。
二、动点与四边形相关题型1. 动点在四边形边上运动判断四边形形状题目:在矩形公式中,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。
当公式时,四边形公式是什么四边形?解析:当公式时,公式,公式。
因为四边形公式是矩形,所以公式,公式。
则公式,公式。
在四边形公式中,公式(因为公式),公式,公式(此时公式运动到公式点),公式。
因为公式且公式,所以四边形公式是梯形。
2. 动点运动过程中四边形面积的变化题目:在平行四边形公式中,公式,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。
求四边形公式的面积公式与公式的函数关系式。
解析:四边形公式的面积公式。
过点公式作公式于点公式,在公式中,公式,公式,则公式,公式。
所以公式。
因为公式,则公式。
公式。
所以公式。
三、动点与函数图象相关题型1. 根据动点运动情况确定函数图象题目:如图,在边长为公式的正方形公式中,点公式以每秒公式个单位长度的速度从点公式出发,沿公式的路径运动,到点公式停止。
数学动点问题及练习题附答案
初中数学动点问题及练习题附参考答案专题一:建立动点问题的函数解析式函数提醒了运动变化过程中量与量之间的变化规律,是初中数学的重要容.动点问题反映的是一种函数思想,由于*一个点或*图形的有条件地运动变化,引起未知量与量间的一种变化关系,这种变化关系就是动点问题中的函数关系.则,我们怎样建立这种函数解析式呢"下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。
二、应用比例式建立函数解析式。
三、应用求图形面积的方法建立函数关系式。
专题二:动态几何型压轴题动态几何特点----问题背景是特殊图形,考察问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性〔特殊角、特殊图形的性质、图形的特殊位置。
〕动点问题一直是中考热点,近几年考察探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、以动态几何为主线的压轴题。
〔一〕点动问题。
〔二〕线动问题。
〔三〕面动问题。
二、解决动态几何问题的常见方法有:1、特殊探路,一般推证。
2、动手实践,操作确认。
3、建立联系,计算说明。
三、专题二总结,本大类习题的共性:1.代数、几何的高度综合〔数形结合〕;着力于数学本质及核心容的考察;四大数学思想:数学结合、分类讨论、方程、函数.2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值。
专题三:双动点问题点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考察学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力. 其中以灵活多变而著称的双动点问题更成为今年中考试题的热点,现采撷几例加以分类浅析,供读者欣赏.1 以双动点为载体,探求函数图象问题。
数学动点问题及练习题附参考答案
数学动点问题及练习题附参考答案专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。
二、应用比例式建立函数解析式。
三、应用求图形面积的方法建立函数关系式。
专题二:动态几何型压轴题动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、以动态几何为主线的压轴题。
(一)点动问题。
(二)线动问题。
(三)面动问题。
二、解决动态几何问题的常见方法有:2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值。
专题三:双动点问题点动、线动、形动构成的问题称之为动态几何问题.它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题.这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.其中以灵活多变而著称的双动点问题更成为今年中考试题的热点,现采撷几例加以分类浅析,供读者欣赏.1以双动点为载体,探求函数图象问题。
2以双动点为载体,探求结论开放性问题。
3以双动点为载体,探求存在性问题。
4以双动点为载体,探求函数最值问题。
双动点问题的动态问题是近几年来中考数学的热点题型.这类试题信息量大,对同学们获取信息和处理信息的能力要求较高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动。
八年级数学动点问题专题
解决动点问题的主要步骤
认真审题作出图形, 如果涉及特定的时刻,
化动为静
就作出特定时刻的图形
利用题目中的几何条件, 建立几何等量关系
用s=vt表示所需要的线段长
列出方程或函数表达式
对号入座,代入 几何等量关系
17
4、△ABC中,∠B=90°,AB=5cm, BC=7cm,P从A沿AB向B以1cm/s的速度移 动,Q从B沿BC向C以2cm/s的速度移动。 (1)如果P、Q分别从A、B同时出发, 几秒后△PBQ的面积等于4cm2; C
当点P在CD上运动时,设运动时间为t, 求AP、DP和CP的长
B
C
P
A
D
3
如图:梯形ABCD中,AD//BC, AD=9cm,BC=6cm,点P从点A出发,沿 着AD的方向向终点D以每秒一个单位的速 度运动,当点P在AD上运动时,设运动时 间为t,求当t为何值时,四边形APCB为 平行四边形
B
C
A
A.10
B.12
C.14
D.16
D
C
P
A
B
练习2、如图已知 ABCD中,AB=7,BC=4, ∠A=30°
(1)点P从点A沿AB边向点B运动,速度为1cm/s。
若设运动时间为t(s),连接PC,当t为何值时, △PBC为等腰三角形?
D
A 30° 7P
若△PBC为等腰三角形
C
则PB=BC
4 B
∴7-t=4
5
变式1:如图:梯形ABCD中,AD//BC,
AD=9cm,BC=6cm,梯形的高为5cm.点P
从点A出发,沿着AD的方向向终点D以每
秒一个单位的速度运动,当点P在AD上运
(完整)八年级数学动点问题专题
(2)设四边形APQC的面积为y(cm2),求y与t的关系式.
10.如图1,在长方形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB边向点B运动,点Q从点B以2cm/s的速度沿BC边向点C运动,如果P、Q同时出发,设运动时间为ts.
(1)出发2秒后,求△ABP的周长。
(2)问t为何值时,△BCP为等腰三角形?
(3)另有一点Q,从点C开始,按 的路径运动,且速度为每秒2㎝,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动。当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
(备用图)
12.如图,在△ABC中,∠B=60°,AB=12㎝,BC=4㎝,现有一动点P从点A出发,以2㎝/秒的速度沿射线AB运动,试回答下列问题:
八年级数学动点问题专题
班级姓名
1.如图:已知正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,求DN+MN的最小值是。
2.等边三角形ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC上一点,若AE=2,则EM+CM最小值为。
第1题第2题第3题
3.如图,锐角三角形ABC中,∠C=45°,N为BC上一点,NC=5,BN=2,M为边AC上的一个动点,则BM+MN的最小值是。
4.如图,在直角梯形ABCD中,∠ABC=90°,DC//AB,BC=3,DC=4,AD=5.动点P从B点出发,由B→C→D→A沿边运动,则△ABP的最大面积为()
A.10 B.12 C.14 D.16
5.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是( )
初二数学动点问题练习(含答案)
动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t= 时,四边形是平行四边形;6当t= 时,四边形是等腰梯形. 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为 53、如图,在Rt ABC△中,9060ACB B∠=∠=°,°,2BC=.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转角为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时AD的长为;(2)当90α=°时,判断四边形EDBC是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.∴AB=4,AC∴AO=12AC.在Rt△AOD中,∠A=300,∴AD=2.∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(备用图)CBED图1NMA BCDEMN图2ACBEDNM图3(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明. 解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.解:(1)正确. 证明:在AB 上取一点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠. 90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=. (2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥. DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). AE EF ∴=.6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t. 求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值AD FC G E B 图1 AD FG B 图3A D FC GE B 图2A D F C GB M A D FC G B N7、如图1,在等腰梯形ABCD中,AD BC∥,E是AB的中点,过点E作EF BC∥交CD于点F.46AB BC==,,60B=︒∠.求:(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过P作PM EF⊥交BC于点M,过M作MN AB∥交折线ADC 于点N,连结PN,设EP x=.①当点N在线段AD上时(如图2),P M N△的形状是否发生改变?若不变,求出PMN△的周长;若改变,请说明理由;②当点N在线段DC上时(如图3),是否存在点P,使PMN△为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由解(1)如图1,过点E作EG BC⊥于点G.∵E为AB的中点,∴122BE AB==.在Rt EBG△中,60B=︒∠,∴30BEG=︒∠.∴112BG BE EG====,A DEBFC图4(备用)A DEBFC图5(备用)A DEBFC图1 图2A DEBFCPNM图3A DEBFCPNM(第25题)即点E 到BC(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,, ∴PM EG ∥. ∵EF BC ∥, ∴EP GM =,PM EG == 同理4MN AB ==. 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥,∴6030NMC B PMH ==︒=︒∠∠,∠.∴12PH PM == ∴3cos302MH PM =︒=. 则35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=.②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==. ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=.当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-= 当NP NM =时,如图5,30NPM PMN ==︒∠∠. 则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠. 因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=. 此时,6114x EP GM ===--=. 综上所述,当2x =或4或(5-时,PMN △为等腰三角形.8、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动图3A D E BFCPN M 图4A D EBF CP MN 图5A DEBF (P ) CM NGGRG图1A D EBF CG 图2A D EBFCPNMG H①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ②∵P Qv v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒。
(完整版)初二动点问题(含答案)
动态问题一、所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 数形结合思想 转化思想类型:1。
利用图形想到三角形全等,相似及三角函数2.分析题目,了解有几个动点,动点的路程,速度(动点怎么动)3.结合图形和题目,得出已知或能间接求出的数据4。
分情况讨论,把每种可能情况列出来,不要漏5.动点一般在中考都是压轴题,步骤不重要,重要的是思路6。
动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论二、例题:1、如图1,梯形ABCD中,AD∥ BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t= 时,四边形是平行四边形;当t= 时,四边形是等腰梯形.2、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为.的长为 ;的长为 ;4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E。
(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD—BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.5、数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BCEFCF于点F,求证:AE=EF.AB的中点M,连接ME,则AM=EC在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点"改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.ACBAED图1NMA BCDEMN图2ACBEDNM图36、如图, 射线MB上,MB=9,A是射线MB外一点,AB=5且A到射线MB的距离为3,动点P从M沿射线MB方向以1个单位/秒的速度移动,设P的运动时间为t.求(1)△ PAB为等腰三角形的t值;(2)△ PAB为直角三角形的t值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB为直角三角形的t值(1)如果点P在线段BC上以3cm/s的速度由B点向CCA上由C点向A点运动①若点Q的运动速度与点P的运动速度相等,经过1②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能(2)若点Q以②中的运动速度从点C来的运动速度从点B边运动,求经过多长时间点P与点Q第一次哪条边上相遇?A DFC GEB图1A DFC GEB图3A DFC GEB图2。
八年级几何之动点问题
八年级几何之动点问题中考数学动点几何问题动点求最值:例1:在正方形ABCD中,面积为12,△ABE是等边三角形,点E在正方形内,在对角线AC上有一动点P,使PD+PE的值最小,则其最小值是多少?例2:在直角梯形中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,当PA+PD取得最小值时,△APD中AP边上的高为多少?一定两动型:例3:在锐角△ABC中,AB=4√2,∠BAC=45°,∠BAC 的平分线交BC于点D,M、N分别是AD、AB上的动点,则BM+MN的最小值是多少?例4:在正方形ABCD中,边长为2,E为AB的中点,P 是AC上的一动点,连接BP,EP,则PB+PE的最小值是多少?例5:在⊙O的半径为2的圆上,点A、B、C满足OA⊥OB,∠AOC=60°,P是OB上的一动点,PA+PC的最小值是多少?例6:在∠AOB=45°的情况下,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值是多少?例7:在△ABC中,∠B=60°,BA=24cm,BC=16cm,(1)求△ABC的面积;(2)现有动点P从A点出发,沿射线AB向点B方向运动,动点Q从C点出发,沿射线CB也向点B方向运动,如果点P的速度是4cm/s,点Q的速度是2cm/s,它们同时出发,△PBQ的面积是△ABC的面积的一半;(3)在第(2)问题前提下,P、Q两点之间的距离是多少?例8:在梯形ABCD中,DC∥AB,A=90°,AD=6cm,DC=4cm,BC的坡度i=3∶4,动点P从A出发以2cm/s的速度沿AB方向向点B运动,动点Q从点B出发以3cm/s的速度沿B→C→D方向向点D运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为t秒.(1)求边BC的长;(2)当t为何值时,PC与BQ相互平分;(3)连结PQ,设△PBQ的面积为y,求y与t 的函数关系式,求t为何值时,y有最大值?例9、在直角三角形$ABC$中,$\angle ACB=90^\circ$,$\angle B=60^\circ$,$BC=2$。
初二动点问题(含标准答案)
初二动点问题(含答案)作者:日期: 2动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目•解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题•关键:动中求静•数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD 中,AD // BC,/ B=90 ° , AB=14cm,AD=18cm,BC=21cm,点P 从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P, Q分别从A , C同时出发,设移动时间为t秒。
当t= _____ 时,四边形是平行四边形;6当t= _____ 时,四边形是等腰梯形• 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1 , N为对角线AC上任意一点,则DN+MN的最小值为_________ 53、如图,在只也ABC中,ACB 90°, B 60°, BC 2•点°是AC的中点,过点°的直线l从与AC重合的位置开始,绕点°作逆时针旋转,交AB边于点D •过点C作2CE // AB 交直线I 于点E ,设直线I 的旋转角为(1)①当度时,四边形EDBC 是等腰梯形,此时AD 的长为②当度时,四边形EDBC 是直角梯形,此时 AD 的长为(2)当 90°时,判断四边形 EDBC 是否为菱形,并说明理由.解:(1 [① 30, 1 :② 60, 1.5;(2)当/% =900时,四边形 EDBC 是菱形•v/a =/ACB=90°,「. BC//ED. T CE//AB,二四边形 EDBC 是平行四边形 在 Rt △ABC 中,/ ACB=900,/ B=60°,BC=2, /./ A=30°.137AC3••• AB=4,AC=2 '3. ••• A°= 2 = 3 •在 Rt △ AOD 中,/ A=30,二 AD=2.B• BD=2. • BD=BC. 又•••四边形 EDBC 是平行四边形, •四边形EDBC 是菱形 4、C ,A(1) 当直线 MN 绕点C 旋转到图1的位置时,求证:①△ ADC ◎△ CEB •,②DE=AD + BE ;⑵当直线 MN 绕点C 旋转到图2的位置时,求证: DE=AD-BE ;⑶当直线MN 绕点C 旋转到图3的位置时,试问 DE 、AD 、BE 具有怎样的等量关系?请写出这个等量 关系,并加以证明•解:(1 [① •••/ ACD= / ACB=90 •••/ CAD+ / ACD=90 /-Z BCE+ / ACD=90•••/ CAD= Z BCE •/ AC=BCADC ◎△ CEB② •/△ ADC ◎△ CEB • CE=AD , CD=BE • DE=CE+CD=AD+BE(2) T Z ADC= Z CEB= Z ACB=90°ACD= Z CBE又 ■: AC=BCACD ◎△ CBE • CE=AD , CD=BE • DE=CE-CD=AD-BE(3) 当 MN 旋转至U 图 3 的位置时,DE=BE-AD(或 AD=BE-DE , BE=AD+DE 等)•/Z ADC= Z CEB= Z ACB=90° /Z ACD= Z CBE , 又 ■: AC=BC ,ACD ◎△ CBE ,• AD=CE , CD=BE ,• DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题: 如图1,四边形ABCD 是正方形,点E 是边BC 的中点. AEF 90°,且EF 交正方形外角 DCG 的平行线CF 于点F ,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB 的中点 M 连接 ME 则 AM =EC,易证△ AME ECF ,所以 AE EF .在此基础上,同学们作了进一步的研究:(1 )小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点 E 是边BC 上(除B, C 外)的任意 一点”,其它条件不变,那么结论“ AE=EF'仍然成立,你认为小颖的观点正确吗?如果正确,写出证明 过程;如果不正确,请说明理由;(3) 若AB=5且Z ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF' 仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程; 解:(1)正确. 证明:在 AB 上取一点M ,使AM45°DCFBM BE . BME QCF 是外角平分线,AMEQ AEBBAE(2)正确.证明:在BA 的延长线上取一点 NBN BE . N PCEQ 四边形ABCD 是正方形, ADAE BEA . NAE △ ANEECF (ASA ). AE EF .ECF . BAE 90°, CEF . AEB△6、如图,射线MB 上,MB=9,A 是射线 MB 方向以1个单位/秒的速度移动,设 求(PAB 为等腰三角形的t 值;MB 外一点,AB=5且A 到射线 P 的运动时间为t.(2)△ PAB 为直角三角形的t 值; 如果不正确,请说明理由. MB 的距离为3,动点P 从图沿射线2 >过P 作PG 丄IVIN 于G VMN/7AB^NM=NP过N 作NR 丄MP^R 则有:RM=0.5FM= V宀 忑 J :Rt ANMRM^RM- y MN=」CMV3 再A — {5・X j ■亍:、x=43。
初中数学几何的动点问题专题练习-附答案版
动点问题专题练习 【1 】1.如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)假如点P 在线段BC 上以3厘米/秒的速度由B 点向C 点活动,同时,点Q 在线段CA 上由C 点向A 点活动.①若点Q 的活动速度与点P 的活动速度相等,经由1秒后,BPD △与CQP △是否全等,请解释来由;②若点Q 的活动速度与点P 的活动速度不相等,当点Q 的活动速度为若干时,可以或许使BPD △与CQP △全等?(2)若点Q 以②中的活动速度从点C 动身,点P 以本来的活动速度从点B 同时动身,都逆时针沿ABC △三边活动,求经由多长时光点P 与点Q 第一次在ABC △的哪条边上相遇? 1.解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠,∴BPD CQP △≌△. ············································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 活动的时光433BP t ==秒, ∴515443Q CQ v t===厘米/秒. ·································································· (7分)(2)设经由x 秒后点P 与点Q 第一次相遇,由题意,得1532104x x =+⨯, 解得803x =秒.∴点P 共活动了803803⨯=厘米.∵8022824=⨯+,∴点P .点Q 在AB 边上相遇,∴经由803秒点P 与点Q 第一次在边AB 上相遇. ········································· (12分) 2.直线364y x =-+与坐标轴分离交于A B 、两点,动点P Q 、同时从O 点动身,同时到达A点,活动停滞.点Q 沿线段OA 活动,速度为每秒1个单位长度,点P 沿路线O →B →A 活动.(1)直接写出A B 、两点的坐标;(2)设点Q 的活动时光为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为极点的平行四边形的第四个极点M 的坐标. 2.解(1)A (8,0)B (0,6) ················· 1分 (2)86OA OB ==,10AB ∴=点Q 由O 到A 的时光是881=(秒) ∴点P 的速度是61028+=(单位/秒) ·1分 当P 在线段OB 上活动(或03t ≤≤)时,2OQ t OP t ==,2S t = ·········································································································· 1分当P 在线段BA 上活动(或38t <≤)时,6102162OQ t AP t t ==+-=-,, 如图,作PD OA ⊥于点D ,由PD AP BO AB =,得4865tPD -=, ······································· 1分21324255S OQ PD t t ∴=⨯=-+ ······································································· 1分 (自变量取值规模写对给1分,不然不给分.)(3)82455P ⎛⎫ ⎪⎝⎭, ···························································································· 1分12382412241224555555I M M 2⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,, ···················································· 3分5.在Rt △ABC 中,∠C=90°,AC = 3,AB = 5.点P 从点C 动身沿CA 以每秒1个单位长的速度向点A 匀速活动,到达点A 后连忙以本来的速度沿AC 返回;点Q 从点A 动身沿AB 以每秒1个单位长的速度向点B 匀速活动.陪同着P.Q 的活动,DE 保持垂直等分PQ,且交PQ 于点D,交折线QB-BC-CP 于点E .点P.Q 同时动身,当点Q 到达点B 时停滞活动,点P 也随之停滞.设点P.Q 活动的时光是t 秒(t >0).(1)当t = 2时,AP =,点Q 到AC 的距离是;(2)在点P 从C 向A 活动的进程中,求△APQ 的面积S与t 的函数关系式;(不必写出t 的取值规模)(3)在点E 从B 向C 活动的进程中,四边形QBED 可否成为直角梯形?若能,求t 的值.若不克不及,请解释来由; (4)当DE 经由点C 时,请直接写出t 的值. 5.解:(1)1,85;(2)作QF ⊥AC 于点F,如图3, AQ = CP= t,∴3AP t =-. 由△AQF ∽△ABC,4BC =, 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅, 即22655S t t =-+.(3)能.①当DE ∥QB 时,如图4.∵DE ⊥PQ,∴PQ ⊥QB,四边形QBED 是直角梯形. 此时∠AQP=90°.P图16P图4由△APQ ∽△ABC,得AQ APAC AB=, 即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC,四边形QBED 是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC,得AQ APAB AC=, 即353t t -=. 解得158t =.(4)52t =或4514t =. ①点P 由C 向A 活动,DE 经由点C . 衔接QC,作QG ⊥BC 于点G,如图6.PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.②点P 由A 向C 活动,DE 经由点C,如图7. 22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】6如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的地位开端,绕点O 作逆时针扭转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的扭转角为α.(1)①当α=度时,四边形EDBC 是等腰梯形,此时AD 的长为;②当α=度时,四边形EDBC 是直角梯形,此时AD 的长为; (2)当90α=°时,断定四边形EDBC 是否为菱形,并解释来由.6.解(1)①30,1;②60,1.5; ……………………4分 (2)当∠α=900时,四边形EDBC 是菱形. ∵∠α=∠ACB=900,∴BC//ED.∵CE//AB, ∴四边形EDBC 是平行四边形. ……………………6分 在Rt △ABC 中,∠ACB=900,∠B=600,BC=2,∴∠A=300.OE CDAα lOCA (备用图)ACBPQ E D 图5AC (E ) BPQD图6GA C (E )B PQD图7G∴∴AO=12AC. ……………………8分 在Rt △AOD 中,∠A=300,∴AD=2. ∴BD=2. ∴BD=BC.又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形 ……………………10分7如图,在梯形ABCD 中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点动身沿线段BC 以每秒2个单位长度的速度向终点C 活动;动点N 同时从C 点动身沿线段CD 以每秒1个单位长度的速度向终点D 活动.设活动的时光为t 秒. (1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探讨:t 为何值时,MNC △为等腰三角形.7.解:(1)如图①,过A .D 分离作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形∴3KH AD ==. ················································································ 1分 在Rt ABK △中,sin 4542AK AB =︒==.2cos 454242BK AB =︒== ··························································2分 在Rt CDH △中,由勾股定理得,3HC ==∴43310BC BK KH HC =++=++= ················································· 3分(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形 ∵MN AB ∥ ∴MN DG ∥ CM ADCB KHAD CBG MN∴3BG AD ==∴1037GC =-= ············································································· 4分 由题意知,当M .N 活动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥ ∴NMC DGC =∠∠ 又C C =∠∠ ∴MNC GDC △∽△∴CN CMCD CG =··················································································· 5分 即10257t t -= 解得,5017t = ······················································································ 6分(3)分三种情形评论辩论:①当NC MC =时,如图③,即102t t =- ∴103t =·························································································· 7分②当MN NC =时,如图④,过N 作NE MC ⊥于E解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=- 在Rt CEN △中,5cosEC t c NC t-== 又在Rt DHC △中,3cos 5CH c CD ==∴535t t -=解得258t = ······················································································· 8分解法二:∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△ ∴NC ECDC HC= ADCB MN(图③) (图④)AD CB M NH E即553t t-=∴258t = ·························································································· 8分③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(办法同②中解法一)132cos 1025tFC C MC t ===-解得6017t =解法二:∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△∴FC MCHC DC =即1102235tt -= ∴6017t =综上所述,当103t =.258t =或6017t =时,MNC △为等腰三角形 ······················ 9分10数学课上,张先生出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F,求证:AE=EF .经由思虑,小明展现了一种准确的解题思绪:取AB 的中点M,衔接ME,则AM=EC,易证AME ECF △≌△,所以AE EF =.在此基本上,同窗们作了进一步的研讨:(1)小颖提出:如图2,假如把“点E 是边BC 的中点”改为“点E 是边BC 上(除B,C 外)的随意率性一点”,其它前提不变,那么结论“AE=EF”仍然成立,你以为小颖的不雅点准确吗?假如准确,写出证实进程;假如不准确,请解释来由;(2)小华提出:如图3,点E 是BC 的延伸线上(除C 点外)的随意率性一点,其他前提不变,结论“AE=EF”仍然成立.你以为小华的不雅点准确吗?假如准确,写出证实进程;假如不(图⑤)A DCBH N MF10.解:(1)准确. ················································· (1分) 证实:在AB 上取一点M ,使AM EC =,衔接ME . ···· (2分)BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外角等分线, 45DCF ∴∠=°, 135ECF ∴∠=°. AME ECF ∴∠=∠.90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°,∴BAE CEF ∠=∠.AME BCF ∴△≌△(ASA ). ··································································· (5分) AE EF ∴=. ························································································· (6分) (2)准确. ····················································· (7分) 证实:在BA 的延伸线上取一点N .使AN CE =,衔接NE . ····································· (8分)BN BE ∴=.45N PCE ∴∠=∠=°.四边形ABCD 是正方形,AD BE ∴∥.DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). ································································· (10分) AE EF ∴=.(11分)11已知一个直角三角形纸片OAB ,个中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D . A DF C GEBM ADFC GE BN则ACD BCD △≌△.设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+, 即()22242m m -=+,解得32m =. ∴点C 的坐标为302⎛⎫⎪⎝⎭,. ··················································································· 4分(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并肯定y 的取值规模;(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ', 则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ ···························································································· 6分 由点B '在边OA 上,有02x ≤≤,∴解析式2128y x =-+()02x ≤≤为所求.∴当02x ≤≤时,y 随x 的增大而减小,y ∴的取值规模为322y ≤≤. ····································································· 7分 (Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.(Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠.又CBD CB D OCB CBD ''''∠=∠∴∠=∠,,有CB BA ''∥.Rt Rt COB BOA ''∴△∽△.有OB OCOA OB''=,得2OC OB ''=. ····································································· 9分 在Rt B OC ''△中,设()00OB x x ''=>,则02OC x =. 由(Ⅱ)的结论,得2001228x x =-+, 解得000808x x x =-±>∴=-+,∴点C 的坐标为()016. ··································································· 10分 12如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当CE/CD=1/2时,求AM/BN 的值.类比归纳在图(1)中,若13CE CD =,则AM BN 的值等于;若14CE CD =,则AM BN 的值等于;若1CE CD n =(n 为整数),则AMBN的值等于.(用含n 的式子暗示) 接洽拓广如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AMBN的值等于.(用含m n ,的式子暗示)12解:办法一:如图(1-1),衔接BM EM BE ,,.由题设,得四边形ABNM 和四边形FENM 关于直线MN 对称.∴MN 垂直等分BE .∴BM EM BN EN ==,. ··············································· 1分 ∵四边形ABCD 是正方形,∴902A D C AB BC CD DA ∠=∠=∠=====°,. ∵112CE CE DE CD =∴==,.设BN x =,则NE x =,2NC x =-. 在Rt CNE △中,222NE CN CE =+.∴()22221x x =-+.解得54x =,即54BN =. ······················································ 3分 在Rt ABM △和在Rt DEM △中, 办法指点: 为了求得AM BN 的值,可先求BN .AM 的长,无妨设:AB =2 图(2) NAB C D EFM图(1)A B CDEFMNN 图(1-1)A B C EFM222AM AB BM +=,222DM DE EM +=,∴2222AM AB DM DE +=+. ····························································· 5分 设AM y =,则2DM y =-,∴()2222221y y +=-+. 解得14y =,即14AM =. ····································································· 6分 ∴15AM BN =. ································································································ 7分 办法二:同办法一,54BN =. ·································································· 3分 如图(1-2),过点N 做NG CD ∥,交AD 于点G ,衔接BE .∵AD BC ∥,∴四边形GDCN是平行四边形. ∴NG CD BC ==. 同理,四边形ABNG 也是平行四边形.∴54AG BN ==. ∵90MN BE EBC BNM ⊥∴∠+∠=,°. 90NG BC MNG BNM EBC MNG ⊥∴∠+∠=∴∠=∠,°,.在BCE △与NGM △中90EBC MNG BC NG C NGM ∠=∠⎧⎪=⎨⎪∠=∠=⎩,,°.∴BCE NGM EC MG =△≌△,. ·································· 5分 ∵114AM AG MG AM =--=5,=.4 ····················································· 6分 ∴15AM BN =. ··················································································· 7分 12..如图所示,在直角梯形ABCD 中,AD//BC,∠A =90°,AB =12,BC =21,AD=16.动点P 从点B 动身,沿射线BC 的偏向以每秒2个单位长的速度活动,动点Q 同时从点A 动身,在线段AD 上以每秒1个单位长的速度向点D 活动,当个中一个动点到达端点时另一个动点也随之停滞活动.设活动的时光为t (秒).(1)设△DPQ 的面积为S,求S 与t 之间的函数关系式;(2)当t 为何值时,四边形PCDQ 是平行四边形?(3)分离求出出当t 为何值时,① PD =PQ,② DQ =PQ ?类比归纳N 图(1-2) A B C D EF M G25(或410);917;()2211n n -+ ······································································ 10分 接洽拓广 2222211n m n n m -++ ······················································································· 12分 解1:依题意,得AQ=t,BP=2t,QD=16-t.过点Q 作QF ⊥BP,又∵AQ‖BF,∴∠ABP=90°∴四边形AQFB 是矩形∴AQ=BF=t ∵BP=2t ∴FP=t,∴在Rt △QFP 中,QP=√(12²+t²)又∵QD=QP=PD ∴√(12²+t²)=16-t ∴12²+t²=16²-2*16*t+t²∴解得:t=7/2解2:如图所示,:这P 作PE 垂直AD 于E,垂足为E 点,则ABPE 为矩形.PE=AB=12;AE=BP(1).s=1/2×AB×DQ=1/2×12×(AD-AQ)=6×(16-t)=96-6t;(2).当 BC-2t=21-2t=PC=DQ=AD-t=16-t,即t=5时,四边形PCDQO 为平形四边形.(3).①QE=AE-AQ=BP-AQ=2t-t=t,而ED=AD-AE=16-BP=16-2t;当QE=ED 时,PE 为QD 的垂直等分线时,PQ=PD,而此时t=16-2t; t=16/3;所以当t=16/3时,PD=PQ;.②在Rt △PEQ 中,PE=AB=12; EQ=AE-AQ=PB-AQ=2t-t=t; PQ²=QE²+PE²=t²+12²; QD²=(AD-AQ)²=(16-t)²; 所以当t²+12²=(16-t)²,即:t=3.5时,DQ=PQ;解:因为∠C=90°,∠CBA=30°,BC=20√3所以可求出AB =40如图,圆心从A 向B 的偏向活动时,共有三个地位能使此圆与直线AC 或直线BC 相切当圆心在O1点时,设切点为P显然PO1=6,∠APO1=90°,∠AO1P=30°所以AO1=4√3因为圆O以2个单位长度/秒的速度向右活动所以当t1=4√3/2=2√3(秒)时,圆O与直线AC相切当圆心在O2点时,设切点为Q显然QO2=6,∠BQO2=90°,∠QBO2=30°所以BO2=12,AO2=40-12=28因为圆O以2个单位长度/秒的速度向右活动所以当t2=28/2=14(秒)时,圆O与直线BC相切当圆心在O3点时,设切点为R显然RO3=6,∠BRO3=90°,∠RBO3=30°所以BO3=12,AO3=40+12=52因为圆O以2个单位长度/秒的速度向右活动所以当t3=52/2=26(秒)时,圆O与直线BC相切综上所述,当圆O活动2√3秒.14秒.26秒时与△ABC的一边地点的直线相切.。
专题 全等三角形的应用---动点运动问题(30题)(解析版)
八年级上册数学《第十二章 全等三角形》专题 全等三角形的应用---动点运动问题(30题)1.(2023春•虹口区校级期末)如图,AB =8,BC =10,CD 为射线,∠B =∠C ,点P 从点B 出发沿BC 向点C 运动,速度为1个单位/秒,点Q 从点C 出发沿射线CD 运动,速度为x 个单位/秒;若在某时刻,△ABP 能与△CPQ 全等,则x = .【分析】设点P 、Q 的速度为ts ,分两种情形构建方程即可解决问题.【解答】解:设点P 、Q 的速度为ts ,分两种情形讨论:①当AB =PC ,BP =CQ 时,△ABP ≌△PCQ ,即8=10﹣t ,解得:t =2,∴2x =2×1,∴x =1;②当BP =PC ,AB =CQ 时,△ABP ≌△QCP ,即t =12×10=5,∴5x =8,x =85,综上所述,x =1或85,故答案为:1或85.【点评】本题考查全等三角形的判定、路程、速度、时间之间的关系等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.(2022秋•攸县期末)如图,在四边形ABCD 中,∠DAB =∠ABC ,AB =5cm ,AD =BC =3cm ,点E 在线段AB上以1cm/s的速度由点A向点B运动,同时,点F在线段BC上由点B向点C运动.设运动时间为t(s),当△ADE与以B,E,F为顶点的三角形全等时,则点F的运动速度为 cm/s.【分析】设点F的运动速度为xcm/s,则AE=tcm,BE=(5﹣t)cm,BF=xtcm,由于∠DAB=∠ABC,则当AD=BE,AE=BF时,根据“SAS”判断△ADE≌△BEF,即5﹣t=3,t=xt;当AD=BF,AE=BE 时,根据“SAS”判断△ADE≌△BFE,即xt=3,t=5﹣t,然后分别解方程求出x即可.【解答】解:设点F的运动速度为xcm/s,则AE=tcm,BE=(5﹣t)cm,BF=xtcm,∵∠DAB=∠ABC,∴当AD=BE,AE=BF时,根据“SAS”判断△ADE≌△BEF,即5﹣t=3,t=xt,解得t=2,x=1;当AD=BF,AE=BE时,根据“SAS”判断△ADE≌△BFE,即xt=3,t=5﹣t,解得t=2.5,x=1.2,综上所述,点F的运动速度为1或1.2cm/s.故答案为:1或1.2.【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.选用哪一种方法,取决于题目中的已知条件.3.(2022春•普宁市期末)如图,∠A=∠B=90°,AB=60,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为 .【分析】设BE=3t,则BF=7t,使△AEG与△BEF全等,由∠A=∠B=90°可知,分两种情况:情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;情况二:当BE=AE,BF=AG时,列方程解得t,可得AG.【解答】解:设BE=3t,则BF=7t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=60,∴7t=60﹣3t,解得:t=6,∴AG=BE=3t=3×6=18;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=60,∴3t=60﹣3t,解得:t=10,∴AG=BF=7t=7×10=70,综上所述,AG=18或AG=70.故答案为:18或70.【点评】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键.4.如图,△ABC中,AB=AC=24cm,BC=16cm,AD=BD.如果点P在线段BC上以2cm/s的速度由B 点向C点运动,同时,点Q在线段CA上以vcm/s的速度由C点向A点运动,那么当△BPD与△CQP 全等时,v=( )A.3B.4C.2或4D.2或3【分析】表示出BD、BP、PC、CQ,再根据全等三角形对应边相等,分①BD、PC是对应边,②BD 与CQ是对应边两种情况讨论即可.【解答】解:∵AB=AC=20cm,BC=16cm,点D为AB的中点,∴BD=12×24=12cm,设点P、Q的运动时间为t,则BP=2t,PC=(16﹣2t)c①当BD=PC时,16﹣2t=12,解得:t=2,则BP=CQ=2t=4,故点Q的运动速度为:4÷2=2(厘米/秒);②当BP=PC时,∵BC=16cm,∴BP=PC=8cm,∴t=8÷2=4(秒),故点Q的运动速度为12÷4=3(厘米/秒);故选:D.【点评】本题考查了全等三角形的对应边相等的性质,等边对等角的性质,根据对应角分情况讨论是本题的难点.5.如图,已知长方形ABCD中,AD=8cm,AB=6cm,点E为AD的中点.若点P在线段AB上以2cm/s 的速度由点A向点B运动.同时,点Q在线段BC上由点C向点B运动,若△AEP与△BPQ全等,则点Q的运动速度是( )A.2或83B.6或83C.2或6D.1或23【分析】设Q运动的速度为xcm/s,则根据△AEP与△BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,从而可列出方程组,解出即可得出答案.【解答】解:∵长方形ABCD,∴∠A=∠B=90°,∵点E为AD的中点,AD=8cm,∴AE=4cm,设点Q的运动速度为xcm/s,①经过y秒后,△AEP≌△BQP,则AP=BP,AE=BQ,2y=6−2y4=8−xy,解得,x=83 y=32,即点Q的运动速度83cm/s时能使两三角形全等.②经过y秒后,△AEP≌△BPQ,则AP=BQ,AE=BP,2y=8−xy4=6−2y,解得:x=6 y=1,即点Q的运动速度6cm/s时能使两三角形全等.综上所述,点Q的运动速度83或6cm/s时能使两三角形全等.故选:B.【点评】本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了.6.(2022秋•高邑县期中)如图,在Rt△ABC中,AC=6,BC=8,AB=10.点P从点A出发,以每秒2个单位长度的速度沿折线A﹣C﹣B向终点B运动,同时点Q从点B出发,以每秒3个单位长度的速度沿折线B﹣C﹣A向终点A运动,点P,Q都运动到各自的终点时停止.设运动时间为t(秒),直线l经过点C,且l∥AB,过点P,Q分别作直线l的垂线段,垂足为E,F.当△CPE与△CQF全等时,t的值不可能是( )A.2B.2.8C.3D.6【分析】分三种情况讨论得出关于t的方程,解方程求得t的值.【解答】解:当P在AC上,Q在BC上时,如图,过点P,Q,C分别作PE⊥直线l于点E,QF⊥直线l于点F,CD⊥AB于点D,∵∠ACB=90,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠EPC+∠PCE=90°,∠PEC=∠CFQ=90°,∴∠EPC=∠QCF,∵△PCE≌△CQF,∴PC=CQ,∴6﹣2t=8﹣3t,解得t=2;当P在AC上,Q在AC上时,即P、Q重合时,则CQ=PC,由题意得,6﹣2t=3t﹣8,解得t=2.8;当P在BC上,Q在AC上时,即A、Q重合时,则CQ=AC=6,由题意得,2t﹣6=6,解得t=6.综上,当△CPE与△CQF全等时,t的值为2或2.8或6.∴t的值不可能是3.故选:C.【点评】本题考查了三角形全等的判定和性质、作图﹣基本作图、平行线之间的距离、勾股定理,根据题意得出关于t的方程是解题的关键.7.(2022秋•浠水县校级期中)如图,在△ABC中,AB=AC,∠BAC=90°,BC=6cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒2cm的速度运动,动点E也同时从点C开始在直线CM上以每秒1cm的速度运动,连接AD、AE,设运动时间为t秒.当△ABD≌△ACE时,t的值为( )A.2B.4C.6D.2或6【分析】当点E在射线CM上时,D在CB上,BD=CE,当点E在CM的反向延长线上时DB=CE,由全等三角形的性质求出其解即可.【解答】解:∵△ABD≌△ACE,∴AD=AE,AB=AC,BD=CE.如图,当点E在射线CM上时,D在CB上,BD=CE,∵CE=t,BD=6﹣2t,∴6﹣2t=t,∴t=2.如图,当点E在CM的反向延长线上时DB=CE,∵CE=t,BD=2t﹣6,∴t=2t﹣6,∴t=6.综上所述,当t=2或6时,△ABD≌△ACE,故选:D.【点评】本题考查了全等三角形的性质的运用,等腰三角形的性质的运用,三角形的面积公式的运用,解答时分类讨论是重点也是难点.8.(2023春•和平区校级期中)如图,已知Rt△ABC中,∠ACB=90°,满足AC=7,BC=12,点P从A 点出发沿A→C→B路径向终点B运动:点Q从B出发沿B→C→A路径向终点A运动;点P,Q的速度分别以每秒1个单位长度和每秒3个单位长度的速度同时开始运动,两个点都要到达相应的终点时才能停止运动,分别过P,Q作PE⊥l于E,QF⊥l于F.设运动时间为t秒,当以P,E,C为顶点的三角形与以Q,F,C为顶点的三角形全等时,t的值为 (不考虑两三角形重合的情况).【分析】三角形PEC和三角形QFC要全等,P的对应顶点是C,有两种情况:一种是点P在AC上,点P在BC上时;另一种是点Q到达终点,而P在BC上时,先把各线段的长度表示出来,再让对应边相等,即可构造方程解出t.【解答】解:①当点P在线段AC上,点P在线段BC上时;如图:当△PCE≌CQF时,∠QCF=∠EPC,∴PC=CQ.由题意知:AP=t,PC=7﹣t,BQ=3t,CQ=12﹣3t;∴7﹣t=12﹣3t,解得t=2.5.②当P在线段BC上,点Q到达终点时,如图:当△PCE≌CQF时,∠QCF=∠EPC,∴PC=CQ.由题意知:AP=t,PC=t﹣7,CQ=7,∴t﹣7=7,解得t=14.综上所述,t的值为2.5或14.【点评】本题考查全等三角形的性质,找到全等三角形的对应边是解题的关键.9.如图,在△ABC中,BC=8cm,AG∥BC,AG=8cm,点F从点B出发,沿线段BC以4cm/s的速度连续做往返运动,点E从点A出发沿线段AG以2cm/s的速度运动至点G,E、F两点同时出发,当点E到达点G时,E、F两点同时停止运动,EF与直线AC交于点D,设点E的运动时间为t(秒)(1)分别写出当0<t<2和2<t<4时段BF的长度(用含t的代数式表示)(2)当BF=AE时,求t的值;(3)当△ADE≌△CDF时,直接写出所有满足条件的t值.【分析】(1)根据点F从点B出发、点E从点A出发的速度、结合图形解答;(2)根据题意列出方程,解方程即可;(3)分点E从点A运动至点G、从点G返回两种情况,根据全等三角形的性质列式计算即可.【解答】解:(1)当0<t≤2时,BF=4t,当2<t≤4时,BF=16﹣4t;(2)由题意得,16﹣4t=2t,解得t=8 3;(3)当0<t≤2时,△ADE≌△CDF,则AE=CF,即8﹣4t=2t,解得t=4 3,当2<t≤4时,△ADE≌△CDF,则AE=CF,即4t﹣8=2t,解得t=4,则t=43或4时,△ADE≌△CDF.【点评】本题考查的是全等三角形的性质的应用,根据题意求出函数关系式、掌握全等三角形的对应边相等是解题的关键.10.在Rt△ABC中,∠C=90°,AC=10cm,BC=5cm,P,Q两点分别在AC上和过点A且垂直于AC的射线AM上运动,且PQ=AB,问P点运动到AC上什么位置时△ABC才能和△QPA全等.【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置.②Rt△QAP≌Rt△BCA,此时AP=AC,P、C重合.【解答】解:根据三角形全等的判定方法HL可知:①当P运动到AP=BC时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,AP=BCPQ=AB∴Rt△ABC≌Rt△QPA(HL),即AP=BC=5cm;②当P运动到与C点重合时,AP=AC,在Rt△ABC与Rt△QPA中,AP=ACPQ=AB,∴Rt△QAP≌Rt△BCA(HL),即AP=AC=10cm,∴当点P与点C重合时,△ABC才能和△APQ全等.综上所述,当P运动到AP=BC、点P与点C重合时,△ABC才能和△APQ全等.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.11.(2023春•吉安县期末)如图,△ABC中,D为AB的中点,AD=5厘米,∠B=∠C,BC=8厘米.(1)若点P在线段BC上以3厘米/秒的速度从点B向终点C运动,同时点Q在线段CA上从点C向终点A运动,若点Q的速度与点P的速度相等,经1秒钟后,请说明△BPD≌△CQP;(2)若点P以3厘米/秒的速度从点B向点C运动,同时点Q以5厘米/秒的速度从点C向点A运动,它们都依次沿△ABC三边运动,则经过多长时间,点Q第一次在△ABC的哪条边上追上点P?【分析】(1)根据等腰三角形的性质得到∠B=∠C,再加上BP=CQ=3,PC=BD=5,则可判断△BPD 与△CQP全等;(2)设经过x秒后,点Q第一次追上点P,由题意得5x﹣3x=2×10,解方程得到点P运动的路程为3×10=30,得到此时点P在BC边上,于是得到结果.【解答】解:(1)∵BP=3×1=3,CQ=3×1=3,∴BP=CQ,∵D为AB的中点,∴BD=AD=5,∵CP=BC﹣BP=5,∴BD=CP,在△BPD与△CQP中,BD=CP∠B=∠C,BP=CQ∴△BPD≌△CQP(SAS);(2)设经过x秒后,点Q第一次追上点P,由题意得5x﹣3x=2×10,解得:x=10,∴点P运动的路程为3×10=30,∵30=28+2,∴此时点P在BC边上,∴经过10秒,点Q第一次在BC边上追上点P.【点评】本题考查了全等三角形的判定和性质,找准对应边是解题的关键.12.如图,∠BAC=90°,AB=22,AC=28.点P从B点出发沿B→A→C路径向终点C运动;点Q从C 点出发沿C→A→B路径向终点B运动.点P和Q分别以每秒2和3个单位的速度同时开始运动,只要有一点到达相应的终点时两点同时停止运动;在运动过程中,分别过P和Q作PF⊥l于F,QG⊥l于G.问:点P运动多少秒时,△PFA与△QAG全等?【分析】分类讨论:当点P在BA上,点Q在AC上,如图1,则PB=2t,CQ=3t,AP=22﹣2t,AQ=28﹣3t,利用三角形全等得PA=AQ,即22﹣2t=28﹣3t;当点P、Q都在AB上,即P点和Q点重合时,△PFA与△QAG全等,此时2t+3t﹣28=22,当点P在AC上,点Q在AB上,如图2,则PA=2t﹣22,AQ=3t﹣28,由PA=AQ,即2t﹣22=3t﹣28;当点Q停在点B处,点P在AC上,由PA=QA得2t﹣22=22,然后分别解方程求出t,再根据题意确定t的值.【解答】解:设P、Q点运动的时间为t,(1)当点P在BA上,点Q在AC上,如图1,则PB=2t,CQ=3t,AP=22﹣2t,AQ=28﹣3t,∵△PFA与△QAG全等,∴PA=AQ,即22﹣2t=28﹣3t,解得t=6,即P运动6秒时,△PFA与△QAG全等;(2)当点P、Q都在AB上,即P点和Q点重合时,△PFA与△QAG全等,此时2t+3t﹣28=22,解得t=10,(3)当点P在AC上,点Q在AB上,如图2,则PA=2t﹣22,AQ=3t﹣28,∵△PFA与△QAG全等,∴PA=AQ,即2t﹣22=3t﹣28,解得t=6(舍去);当点Q停在点B处,点P在AC上,由PA=QA得2t﹣22=22,解得t=22,舍去.综上所述:当t等于6秒或10秒时,△PFA与△QAG全等.【点评】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.对于动点问题常利用代数的方法解决.13.(2022秋•苍溪县期末)如图,AE与BD相交于点C,AC=EC,BC=DC,AB=8cm,点P从点出发,沿A→B→A方向以2cm/s的速度运动,点Q从点D出发,沿D→E方向以lcm/s的速度运动,P、Q两点同时出发,当点P到达点A时,P、Q两点同时停止运动,设点P的运动时间为t(s).(1)求证:AB∥DE.(2)写出线段AP的长(用含t的式子表示).(3)连接PQ,当线段PQ经过点C时,求t的值.【分析】(1)证明△ABC≌△EDC(SAS),可得∠A=∠E,然后根据内错角相等两直线平行即可得出结论;(2)分两种情况讨论:当0≤t≤4时,AP=2tcm,当4<t≤8时,BP=(2t﹣8)cm,可得AP=8﹣(2t﹣8)=(16﹣2t)cm,进而可以解决问题;(3)先证△ACP≌△ECQ(ASA),得AP=EQ,再分两种情况列方程求解即可.【解答】(1)证明:在△ABC和△EDC中,AC=EC∠ACB=∠ECD,BC=DC∴△ABC≌△EDC(SAS),∴∠A=∠E,∴AB∥DE;(2)解:当0≤t≤4时,AP=2tcm,当4<t≤8时,BP=(2t﹣8)cm,∴AP=8﹣(2t﹣8)=(16﹣2t)cm,∴线段AP的长为2tcm或(16﹣2t)cm;(3)解:根据题意得DQ =tcm ,则EQ =(8﹣t )cm ,由(1)得:∠A =∠E ,ED =AB =8cm ,在△ACP 和△ECQ 中,∠A =∠E AC =EC ∠ACP =∠ECQ,∴△ACP ≌△ECQ (ASA ),∴AP =EQ ,当0≤t ≤4时,2t =8﹣t ,解得:t =83;当4<t ≤8时,16﹣2t =8﹣t ,解得:t =8;综上所述,当线段PQ 经过点C 时,t 的值为83或8.【点评】本题考查了全等三角形的判定与性质,列代数式,一元一次方程的应用,解决本题的关键是得到△ACP ≌△ECQ .14.如图,在等腰△ABC 中,AB =AC =6cm ,BC =10cm ,点P 从点B 出发,以2cm /s 的速度沿BC 向点C 运动,设点P 的运动时间为ts .(1)PC = cm .(用t 的代数式表示)(2)当点P 从点B 开始运动,同时,点Q 从点C 出发,以vcm /s 的速度沿CA 向点A 运动,是否存在这样v 的值,使得△ABP 与△PQC 全等?若存在,请求出v 的值;若不存在,请说明理由.【分析】(1)根据P 点的运动速度可得BP 的长,再利用BC ﹣BP 即可得到CP 的长;(2)此题主要分两种情况①当BP =CQ ,AB =PC 时,△ABP ≌△PCQ ;当BA =CQ ,PB =PC 时,△ABP ≌△QCP ,然后分别计算出t 的值,进而得到v 的值.【解答】解:(1)依题意,得PC=(10﹣2t)(cm).故答案为:10﹣2t;(2)①当BP=CQ,AB=PC时,△ABP≌△PCQ,∵AB=6cm,∴PC=6(cm),∴BP=10﹣6=4(cm),2t=4,解得:t=2,CQ=BP=4(cm),v×2=4,解得:v=2;②当BA=CQ,PB=PC时,△ABP≌△QCP,∵PB=PC,∴BP=PC=12BC=5(cm),2t=5,解得:t=2.5,CQ=BP=6(cm),v×2.5=6,解得:v=2.4.综上所述:当v=2.4或2时△ABP与△PQC全等.【点评】此题主要考查了全等三角形的判定,关键是掌握全等三角形全等的条件,找准对应边.15.如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向C运动,同时,点Q在线段CA上由点C向A运动,①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等?请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以1cm/s的运动速度从B同时出发,都逆时针沿△ABC三边运动,则经过 秒后,点P与点Q第一次在△ABC上相遇.(在横线上直接写出答案,不必书写解题过程)【分析】(1)①根据时间和速度分别求得两个三角形中BP、CQ和BD、PC边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个边长.【解答】解:(1)①△BPD≌△CQP,理由如下:∵t=1秒,∴BP=CQ=1×1=1cm,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC﹣BP,BC=4cm,∴PC=4﹣1=3cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CQP;②假设△BPD≌△CQP,∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CQP,∠B=∠C,则BP=CP=2,BD=CQ=3,∴点P,点Q运动的时间t=BP1=2秒,∴v Q=CQt=32=1.5cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得 1.5x=x+2×6,解得x=24,∴点P共运动了24s×1cm/s=24cm.∵24×1.5=36,∴点P、点Q在AC边上相遇,∴经过24秒点P与点Q第一次在边AC上相遇.【点评】此题主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.16.(2022秋•聊城月考)如图,已知四边形ABCD中,AB=10厘米,BC=8厘米,CD=12厘米,∠B=∠C,点E为AB的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等?请说明理由.(2)当点Q的运动速度为多少时,能够使△BPE与△CQP全等.【分析】(1)经过1秒后,可得BP=CQ=3厘米,则PC=8﹣3=5厘米,可证明△BPE≌△CQP;(2)由△BPE与△CQP全等可知有△BEP≌△CQP或△BEP≌△CPQ,全等可得BP=CP或BP=CQ,或可求得BP的长,可求得P点运动的时间,由CQ=BE或CQ=BP可求得Q点运动的路程,可求得其速度.【解答】解:(1)△BPE与△CQP全等,理由如下:当运动1秒后,则BP=CQ=3厘米,∴PC=BC﹣BP=8﹣3=5厘米,∵E为AB中点,且AB=10厘米∴BE=5厘米,∴BE=PC,在△BPE和△CQP中BE=PC∠B=∠CBP=CQ∴△BPE≌△CQP(SAS);(2)∵△BPE与△CQP全等,∴△BEP≌△CQP或△BEP≌△CPQ,当△BEP≌△CQP时,则BP=CP,CQ=BE=5厘米,设P点运动的时间为t秒,则3t=8﹣3t,解得t=4 3,∴Q点的运动的速度=5÷43=154(厘米/秒),当△BEP≌△CPQ时,由(1)可知t=1(秒),∴BP=CQ=3厘米,∴Q点的运动的速度=3÷1=3(厘米/秒),即当Q点每秒运动154厘米或3厘米时△BEP≌△CQP.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定是解题的关键,即SSS、SAS、ASA、AAS和HL17.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P,Q是边AC,BC上的两个动点,PD⊥AB于点D,QE⊥AB于点E,设点P,Q运动的时间是t秒(t>0).(1)若点P,Q分别从A,B两点同时出发,沿AC,BC向点C匀速运动,运动速度都为每秒1个单位,其中一点到达终点C后,另一点也随之停止运动,在运动过程中△APD和△QBE是否保持全等?判断并说明理由;(2)若点P从点C出发沿CA以每秒3个单位的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回到点C停止运动;点Q仍从点B出发沿BC以每秒1个单位的速度向点C匀速运动,到达点C后停止运动,当t为何值时,△APD和△QBE全等?【分析】(1)根据∠C=90°,PD⊥AB,QE⊥AB,于是得到∠A+∠APD=∠A+∠B=90°,证得∠APD =∠B,∠ADP=∠QEB=90°,即可得到结论;(2)分两种情况:①0≤t<83时,点P从C到A运动,则AP=AC=CP=8﹣3t,BQ=t,求得t=2,②t≥83时,点P从A到C运动,则AP=3t﹣8,BQ=t,求得t=4.【解答】解:(1)△ADP≌△QBE,理由:∵∠C=90°,PD⊥AB,QE⊥AB,∴∠A+∠APD=∠A+∠B=90°,∴∠APD=∠B,∠ADP=∠QEB=90°,∵AP=BQ=t,在△ADP与△QBE中,∠APD=∠B∠ADP=∠QEB AP=BQ,∴△ADP≌△QBE;(2)①0≤t<83时,点P从C到A运动,则AP=AC=CP=8﹣3t,BQ=t,当△ADP≌△QBE时,则AP=BQ,即8﹣3t=t,解得:t=2,②t≥83时,点P从A到C运动,则AP=3t﹣8,BQ=t,当△ADP≌△QBE时,则AP=BQ,即3t﹣8=t,解得:t=4,综上所述:当t=2s或4s时,△ADP≌△QBE.【点评】本题考查了全等三角形的判定,解方程,垂直的定义,熟练掌握全等三角形的判定定理是解题的关键.18.如图,在长方形ABCD中,AD=6cm,AB=4cm,点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BC上由点B向点C运动.(注:长方形中,∠A=∠B=∠C=∠D=90°,AB=CD,AD=BC)(1)若点Q的运动速度与点P的运动速度相等:①经过1秒后,△AEP与△BPQ是否全等,请说明理由,并判断此时线段PE和线段PQ的位置关系;②设运动时间为t秒时,△PEQ的面积为Scm2,请用t的代数式表示S.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为 cm/s时,能够使△AEP与△BPQ全等.【分析】(1)①当t=1时,AP=BQ,∠A=∠B,AE=PB,从而可证明△EAP≌Rt△PBQ;②当t≤4时,AP=BQ=t,S=S梯形AEQB﹣S AEP﹣S PBQ;当4<t≤6时,点P与点B重合,S=2t;(2)如图3所示:因为△AEP≌△BQP,所以AP=PB=2,AE=BQ=3,从而可求得t=2,点Q运动的速度为=3÷2=1.5cm/秒.【解答】解:(1)①当t=1时,AP=1,BQ=1,∴AP=BQ.∵E是AD的中点,∴AE=12AD=3.∵PB=AB=AP=4﹣1=3,∴AE=PB.在Rt△EAP和Rt△PBQ中,AE=PB ∠A=∠B AP=BQ,∴Rt△EAP≌Rt△PBQ.∴∠APE=∠BQP,∵∠BQP+∠BPQ=90°,∴∠APE+∠BPQ=90°,∴∠EPQ=90°,∴PE⊥PQ;②如图1所示连接QE.图1Ⅰ、当t≤4时,AP=BQ=t,S梯形AEQB =12(AE+BQ)•AB=12×4×(3+t)=2t+6.S△AEP =12AE•PA=12×3t=32t,S△PBQ=12PB•BQ=12×(4﹣t)t=2t−12t2.∴S=2t+6−32t﹣(2t−12t2).整理得:S=12t2−32t+6,如图2所示:Ⅱ、当4<t≤6时,点P与点B重合,S=12QB•AB=12×4×t=2t.∴S与t的函数关系式为S=2−32t+6(0<t≤4)<t≤6);(2)如图3所示:∵△AEP≌△BQP,PA≠BQ,∴AP=PB=2,AE=BQ=3.∴t=AP=12AB=12×4=2.∴点Q运动的速度为=3÷2=1.5cm/秒时,△AEP≌△BQP.故答案为:1.5.【点评】此题是四边形综合题,主要考查的是全等三角形的性质和判定、相似三角形的性质和判定、矩形的性质、函数的解析式、一元一次方程的综合应用,根据题意画出符合题意的图形是解题的关键.19.(2023春•碑林区校级期末)如图,△ABC的两条高AD与BE交于点O,AD=BD,AC=6.(1)求BO的长;(2)F是射线BC上一点,且CF=AO,动点P从点O出发,沿线段OB以每秒1个单位长度的速度向终点B运动,同时动点Q从点A出发,沿射线AC以每秒4个单位长度的速度运动,当点P到达点B时,P,Q两点同时停止运动,设运动时间为t秒,当△AOP与△FCQ全等时,求t的值.【分析】(1)由AAS证明Rt△BDO≌Rt△ADC,根据对应边相等求得BO的长;(2)分情况讨论点F分别在BC延长线上或在BC之间时△AOP≌△FCQ,根据对应边相等求得t值.【解答】解:(1)∵∠BOD=∠AOE,∠CAD+∠ACD=∠CAD+∠AOE=90°,∴∠ACD=∠AOE,∴∠BOD=∠ACD.又∵∠BDO=∠ADC=90,AD=BD,∴Rt△BDO≌Rt△ADC(AAS),∴BO=AC=6.(2)①当点F在BC延长线上时:设t时刻,P、Q分别运动到如图位置,△AOP≌△FCQ.∵CF=AO,∠AOP=∠EOD=180°﹣∠DCE=∠FCQ,∴当△AOP≌△FCQ时,OP=CQ.∵OP=t,CQ=6﹣4t,∴t=6﹣4t,解得t=1.2.②当点F在BC之间时:设t时刻,P、Q分别运动到如图位置,△AOP≌△FCQ.∵CF=AO,∠AOP=∠EOD=180°﹣∠DCE=∠FCQ,∴当△AOP≌△FCQ时,OP=CQ.∵OP=t,CQ=4t﹣6,∴t=4t﹣6,解得t=2.综上,t=1.2或2.【点评】本题考查全等三角形的判定.这部分内容是初中几何中非常重要的内容,一定要深刻理解,做到活学活用.20.如图1,长方形ABCD中,AB=CD=7cm,AD=BC=5cm,∠A=∠B=∠C=∠D=90°,点E在线段AB上以1cm/s的速度由点A向点B运动,与此同时点F在线段BC上由点B向点C运动,设运动的时间均为ts.(1)若点F的运动速度与点E的运动速度相等,当t=2时:①判断△BEF与△ADE是否全等?并说明理由;②求∠EDF的度数.(2)如图2,将图1中的“长方形ABCD”改为“梯形ABCD”,且∠A=∠B=70°,AB=7cm,AD=BC=5cm,其他条件不变.设点F的运动速度为xcm/s.是否存在x的值,使得△BEF与△ADE全等?若存在,直接写出相应的x及t的值;若不存在,请说明理由.【分析】(1)①根据SAS证明:△BEF≌△ADE;②由①:△BEF≌△ADE得DE=EF,∠BEF=∠ADE,证明△DEF是等腰直角三角形可得结论;(2)分两种情况:①如图2,当△DAE≌△EBF时,②如图3,当△ADE≌△BFE时,分别根据AD=BE,AE=BF,列方程组可得结论.【解答】解:(1)①△BEF≌△ADE,理由如:当t=2时,AE=BF=2,∴BE=AB﹣AD=7﹣2=5,∵AD=5,∴BE=AD,∵∠A=∠B=90°,∴△BEF≌△ADE;②由①得DE=EF,∠BEF=∠ADE,∵∠A=90°,∴∠ADE+∠AED=90°,∴∠BEF+∠AED=90°,∴∠DEF=180°﹣(∠BEF+∠AED)=90°,∵DE=EF∴∠EDF=∠EFD,∵∠EDF+∠EFD=90°,∴∠EDF=45°;(说明:用其他方法的,请参照此评分标准给分)(2)存在,①如图2,当△DAE≌△EBF时,∴AD=BE,AE=BF,则5=7−t t=xt∴x=1,t=2;②如图3,当△ADE≌△BFE时,AE=BE,AD=BF,则t=7−t 5=xt,∴x=107,t=72.(说明:每正确写出一对x、t的值,给1分.)【点评】本题考查四边形综合题、矩形的判定和性质、等腰直角三角形的判定、三角形全等的性质和判定及动点运动等知识,解题的关键是学会用分类讨论的思想思考问题,学会用方程的思想思考问题,属于中考压轴题.21.在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点D在AC上,且AD=6cm,过点A作射线AE⊥AC(AE与BC在AC同侧),若动点P从点A出发,沿射线AE匀速运动,运动速度为1cm/s,设点P运动时间为t秒.连接PD、BD.(1)如图①,当PD⊥BD时,求证:△PDA≌△DBC;(2)如图②,当PD⊥AB于点F时,求此时t的值.【分析】(1)由PD⊥BD、∠C=90°可推出∠PDA=∠CBD,即可根据ASA判定△PDA≌△DBC;(2)由PD⊥AB,AE⊥AC可推出∠APF=∠CAB,即可根据AAS判定△APD≌△CAB,再由全等三角形的性质即可得解.【解答】(1)证明:如图①,∵PD⊥BD,∴∠PDB=90°,∴∠BDC+∠PDA=90°,又∵∠C=90°,∴∠BDC+∠CBD=90°,∴∠PDA=∠CBD,又∵AE⊥AC,∴∠PAD=90°,∴∠PAD=∠C=90°,又∵BC=6cm,AD=6cm,∴AD=BC,在△PAD和△DCB中,∠PAD=∠CAD=CB,∠PDA=∠CBD∴△PDA≌△DBC(ASA);(2)解:如图②,∵PD⊥AB,∴∠AFD=∠AFP=90°,∴∠PAF+∠APF=90°,又∵AE⊥AC,∴∠PAF+∠CAB=90°,∴∠APF=∠CAB,在△APD和△CAB中,∠APD=∠CAB∠PAD=∠C,AD=CB∴△APD≌△CAB(AAS),∴AP=AC,∵AC=8cm,∴AP=8cm,∴t=8.【点评】此题考查了全等三角形的判定与性质,根据ASA判定△PDA≌△DBC、根据AAS判定△APD≌△CAB是解题的关键.22.在平面直角坐标系中,点A(0,6),B(8,0),AB=10,如图作∠DBO=∠ABO,∠CAy=∠BAO,BD交y轴于点E,直线DO交AC于点C.(1)①求证:△ACO≌△EDO;②求出线段AC、BD的位置关系和数量关系;(2)动点P从A出发,沿A﹣O﹣B路线运动,速度为1,到B点处停止运动;动点Q从B出发,沿B﹣O﹣A运动,速度为2,到A点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PG⊥CD于点G,QF⊥CD于点F.问两动点运动多长时间时△OPG与△OQF全等?【分析】(1)①根据全等三角形的判定定理ASA证得结论;②利用①中全等三角形的性质得到:AC∥BD,AC=BD﹣10;(2)设运动的时间为t秒,(i)当点P、Q分别在y轴、x轴上时(ii)当点P、Q都在y轴上时,(iii)当点P在x轴上,Q在y轴时若二者都没有提前停止,当点Q提前停止时,列方程即可得到结论.【解答】解:(1)①如图,∵∠DBO=∠ABO,OB⊥AE,∴∠BAO=∠BEO,∴AB=BE,∴AO=OE,∵∠CAy=∠BAO,∴∠CAy=∠BEO,∴∠DEO=∠CAO在△ACO与△EDO中,∠CAO=∠DEO OA=OE∠AOC=∠DOE,∴△ACO≌△EDO(ASA);②由①知,△ACO≌△EDO,∴∠C=∠D,AC=DE,∴AC∥BD,AC=BD﹣10;(2)设运动的时间为t秒,(i)当点P、Q分别在y轴、x轴上时PO=QO得:6﹣t=8﹣2t,解得t=2(秒),(ii)当点P、Q都在y轴上时PO=QO得:6﹣t=2t﹣8,解得t=143(秒),(iii)当点P在x轴上,Q在y轴时若二者都没有提前停止,则PO=QO得:t﹣6=2t﹣8,解得t=2(秒)不合题意;当点Q提前停止时,有t﹣6=6,解得t=12(秒),综上所述:当两动点运动时间为2、143、12秒时,△OPE与△OQF全等【点评】本题考查了全等三角形的判定,坐标与图形的性质,正确的理解题意是解题的关键.23.(2023春•渭滨区期末)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t= 时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.【分析】(1)分两种情况进行解答,①当点P在BC上时,②当点P在BA上时,分别画出图形,利用三角形的面积之间的关系,求出点P移动的距离,从而求出时间即可;(2)由△APQ≌△DEF,可得对应顶点为A与D,P与E,Q与F;于是分两种情况进行解答,①当点P 在AC上,AP=4,AQ=5,②当点P在AB上,AP=4,AQ=5,分别求出P移动的距离和时间,进而求出Q的移动速度.【解答】解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=12BC=92cm,此时,点P移动的距离为AC+CP=12+92=332,移动的时间为:332÷3=112秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=12AB,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+152=572cm,移动的时间为:572÷3=192秒,故答案为:112或192;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=154cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=9332cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速度为154cm/s或9332cm/s.。
初二数学动点问题专项试卷
一、选择题(每题3分,共30分)1. 在平面直角坐标系中,点P(a,b)在直线y=2x+1上运动,那么a与b的关系是:A. a+b=1B. a=2bC. a=2b+1D. a=2b-12. 已知点A(2,3),点B在x轴上,且AB=5,那么点B的坐标可能是:A. (7,0)B. (-3,0)C. (-7,0)D. (3,0)3. 在△ABC中,AB=AC,点D在BC上,且BD=CD,那么∠ADB与∠ADC的关系是:A. ∠ADB=∠ADCB. ∠ADB=∠BACC. ∠ADB=∠BAC/2D. ∠ADB=∠BAC/34. 在平面直角坐标系中,点M在直线y=x+1上运动,那么点M的坐标满足:A. x=y-1B. x=y+1C. y=x-1D. y=x+15. 已知直线l的方程为2x-3y+6=0,那么直线l与x轴的交点坐标是:A. (3,0)B. (-3,0)C. (0,2)D. (0,-2)6. 在△ABC中,AB=AC,点D在BC上,且BD=CD,那么∠ADB与∠ADC的关系是:A. ∠ADB=∠ADCB. ∠ADB=∠BACC. ∠ADB=∠BAC/2D. ∠ADB=∠BAC/37. 已知点P(a,b)在直线y=-2x+3上运动,那么a与b的关系是:A. a+b=3B. a=2bC. a=2b+3D. a=2b-38. 在平面直角坐标系中,点Q(m,n)在直线y=3/2x-2上运动,那么m与n的关系是:A. m=n+4B. m=2n-4C. m=n-4D. m=2n+49. 已知直线l的方程为x+4y-12=0,那么直线l与y轴的交点坐标是:A. (0,3)B. (0,-3)C. (4,0)D. (-4,0)10. 在△ABC中,AB=AC,点D在BC上,且BD=CD,那么∠ADB与∠ADC的关系是:A. ∠ADB=∠ADCB. ∠ADB=∠BACC. ∠ADB=∠BAC/2D. ∠ADB=∠BAC/3二、填空题(每题5分,共20分)11. 在平面直角坐标系中,点P(2,3)在直线y=mx+1上运动,那么m的取值范围是______。
初二数学动点问题总结
初二数学动点问题总结初二动点问题 1. 如图,在直角梯形ABCD中,AD?BC,?B=90?,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动(P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts((1)当t为何值时,四边形PQCD为平行四边形,(2)当t为何值时,四边形PQCD为等腰梯形,(3)当t为何值时,四边形PQCD为直角梯形,分析:(1)四边形PQCD为平行四边形时PD=CQ((2)四边形PQCD为等腰梯形时QC-PD=2CE((3)四边形PQCD为直角梯形时QC-PD=EC(所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可( 解答: 解:(1)?四边形PQCD平行为四边形?PD=CQ?24-t=3t解得:t=6即当t=6时,四边形PQCD平行为四边形((2)过D作DE?BC于E则四边形ABED为矩形?BE=AD=24cm1?EC=BC-BE=2cm?四边形PQCD为等腰梯形?QC-PD=2CE即3t-(24-t)=4解得:t=7(s)即当t=7(s)时,四边形PQCD为等腰梯形((3)由题意知:QC-PD=EC时,四边形PQCD为直角梯形即3t-(24-t)=2解得:t=6.5(s)即当t=6.5(s)时,四边形PQCD为直角梯形(点评:此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中(2.BC,设如图,?ABC中,点O为AC边上的一个动点,过点O作直线MN?MN交?BCA的外角平分线CF于点F,交?ACB内角平分线CE于E((1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论; (3)若AC边上存在点O,使四边形AECF是正方形,猜想?ABC的形状并证明你的结论(分析:(1)根据CE平分?ACB,MN?BC,找到相等的角,即?OEC=?ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO( (2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形( (3)利用已知条件及正方形的性质解答( 解答:解:(1)?CE平分?ACB,??ACE=?BCE,?MN?BC,??OEC=?ECB,2??OEC=?OCE,?OE=OC,同理,OC=OF,?OE=OF((2)当点O运动到AC中点处时,四边形AECF是矩形(如图AO=CO,EO=FO,?四边形AECF为平行四边形,?CE平分?ACB,??ACE= ?ACB,同理,?ACF= ?ACG,??ECF=?ACE+?ACF= (?ACB+?ACG)= ×180?=90?, ?四边形AECF是矩形((3)?ABC是直角三角形?四边形AECF是正方形,?AC?EN,故?AOM=90?,BC, ?MN???BCA=?AOM,??BCA=90?,??ABC是直角三角形(点评:本题主要考查利用平行线的性质“等角对等边”证明出结论(1),再利用结论(1)和矩形的判定证明结论(2),再对(3)进行判断(解答时不仅要注意用到前一问题的结论,更要注意前一问题为下一问题提供思路,有相似的思考方法(是矩形的判定和正方形的性质等的综合运用(3.如图,直角梯形ABCD中,AD?BC,?ABC=90?,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动(过Q点垂直于AD的射线交AC于点M,交BC于点N(P、Q两点同时出发,速度都为每秒1个单位长度(当Q点运动到A点,P、Q两点同时停止运动(设点Q运动的时间为t秒((1)求NC,MC的长(用t的代数式表示);(2)当t为何值时,四边形PCDQ构成平行四边形;(3)是否存在某一时刻,使射线QN恰好将?ABC的面积和周长同时平分,若存在,求出此时t的值;若不存在,请说明理由;(4)探究:t为何值时,?PMC为等腰三角形(3分析:(1)依据题意易知四边形ABNQ是矩形?NC=BC-BN=BC-AQ=BC-AD+DQ,BC、AD已知,DQ就是t,即解;?AB?QN,??CMN??CAB,?CM:CA=CN:CB,(2)CB、CN已知,根据勾股定理可求CA=5,即可表示CM; 四边形PCDQ构成平行四边形就是PC=DQ,列方程4-t=t即解; (3)可先根据QN平分?ABC的周长,得出MN+NC=AM+BN+AB,据此来求出t的值(然后根据得出的t的值,求出?MNC的面积,即可判断出?MNC的面积是否为?ABC面积的一半,由此可得出是否存在符合条件的t值( (4)由于等腰三角形的两腰不确定,因此分三种情况进行讨论: ?当MP=MC时,那么PC=2NC,据此可求出t的值(?当CM=CP时,可根据CM和CP的表达式以及题设的等量关系来求出t的值( ?当MP=PC时,在直角三角形MNP中,先用t表示出三边的长,然后根据勾股定理即可得出t的值(综上所述可得出符合条件的t的值(解答:解:(1)?AQ=3-t?CN=4-(3-t)=1+t在Rt?ABC中,AC2=AB2+BC2=32+42?AC=5在Rt?MNC中,cos?NCM= = ,CM= ((2)由于四边形PCDQ构成平行四边形?PC=QD,即4-t=t解得t=2((3)如果射线QN将?ABC的周长平分,则有:MN+NC=AM+BN+AB即: (1+t)+1+t= (3+4+5)解得:t= (5分)而MN= NC= (1+t)4?S?MNC= (1+t)2= (1+t)2 当t= 时,S?MNC=(1+t)2= ? ×4×3 ?不存在某一时刻t,使射线QN恰好将?ABC的面积和周长同时平分((4)?当MP=MC时(如图1)则有:NP=NC1+t) 即PC=2NC?4-t=2(解得:t=?当CM=CP时(如图2)则有:(1+t)=4-t解得:t=?当PM=PC时(如图3)则有:在Rt?MNP中,PM2=MN2+PN2 而MN= NC= (1+t)PN=NC-PC=(1+t)-(4-t)=2t-3 ?[ (1+t)]2+(2t-3)2=(4-t)2解得:t1= ,t2=-1(舍去)?当t= ,t= ,t= 时,?PMC为等腰三角形点评:此题繁杂,难度中等,考查平行四边形性质及等腰三角形性质(考查学生分类讨5论和数形结合的数学思想方法(4.如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止(已知在相同时间内,若BQ=xcm(x?0),则AP=2xcm,CM=3xcm,DN=x2cm((1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形; (3)以P,Q,M,N为顶点的四边形能否为等腰梯形,如果能,求x的值;如果不能,请说明理由(分析:以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形的必须条件是点P、N重合且点Q、M不重合,此时AP+ND=AD即2x+x2=20cm,BQ+MC?BC即x+3x?20cm;或者点Q、M重合且点P、N不重合,此时AP+ND?AD即2x+x2?20cm,BQ+MC=BC即x+3x=20cm(所以可以根据这两种情况来求解x的值( 以P,Q,M,N为顶点的四边形是平行四边形的话,因为由第一问可知点Q只能在点M的左侧(当点P在点N的左侧时,AP=MC,BQ=ND;当点P在点N的右侧时,AN=MC,BQ=PD(所以可以根据这些条件列出方程关系式( 如果以P,Q,M,N为顶点的四边形为等腰梯形,则必须使得AP+ND?AD即2x+x2?20cm,BQ+MC?BC即x+3x?20cm,AP=ND即2x=x2,BQ=MC即x=3x,x?0(这些条件不能同时满足,所以不能成为等腰梯形(解答:解:(1)当点P与点N重合或点Q与点M重合时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边可能构成一个三角形( ?当点P与点N重合时,由x2+2x=20,得x1= -1,x2=- -1(舍去)( 因为BQ+CM=x+3x=4( -1),20,此时点Q与点M不重合( 所以x= -1符合题意(?当点Q与点M重合时,由x+3x=20,得x=5(此时DN=x2=25,20,不符合题意(故点Q与点M不能重合(6所以所求x的值为 -1((2)由(1)知,点Q只能在点M的左侧,?当点P在点N的左侧时,由20-(x+3x)=20-(2x+x2),解得x1=0(舍去),x2=2(当x=2时四边形PQMN是平行四边形(?当点P在点N的右侧时,由20-(x+3x)=(2x+x2)-20,解得x1=-10(舍去),x2=4(当x=4时四边形NQMP是平行四边形(所以当x=2或x=4时,以P,Q,M,N为顶点的四边形是平行四边形( (3)过点Q,M分别作AD的垂线,垂足分别为点E,F( 由于2x,x,所以点E一定在点P的左侧(若以P,Q,M,N为顶点的四边形是等腰梯形,则点F一定在点N的右侧,且PE=NF,即2x-x=x2-3x(舍去),x2=4( 解得x1=0(由于当x=4时,以P,Q,M,N为顶点的四边形是平行四边形,所以以P,Q,M,N为顶点的四边形不能为等腰梯形( 点评:本题考查到三角形、平行四边形、等腰梯形等图形的边的特点( 5.如图,在梯形ABCD中,AD?BC,?B=90?,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B 运动,速度为2cm/s、点M、N分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒((1)当t为何值时,四边形MNCD是平行四边形, (2)当t为何值时,四边形MNCD是等腰梯形,分析:7(1)根据平行四边形的性质,对边相等,求得t值;(2)根据等腰梯形的性质,下底减去上底等于12,求解即可( 解答:解:(1)?MD?NC,当MD=NC,即15-t=2t,t=5时,四边形MNCD是平行四边形;(2)作DE?BC,垂足为E,则CE=21-15=6,当CN-MD=12时,即2t-(15-t)=12,t=9时,四边形MNCD是等腰梯形点评:考查了等腰梯形和平行四边形的性质,动点问题是中考的重点内容( 6.如图,在直角梯形ABCD中,AD?BC,?C=90?,BC=16,DC=12,AD=21,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,P、Q分别从点D、C同时出发,当点Q运动到点B时,点P随之停止运动,设运动时间为t(s)((1)设?BPQ的面积为S,求S与t之间的函数关系;(2)当t为何值时,以B、P、Q三点为顶点的三角形是等腰三角形,分析:(1)若过点P作PM?BC于M,则四边形PDCM为矩形,得出PM=DC=12,由QB=16-t,可知:s= PM×QB=96-6t;(2)本题应分三种情况进行讨论,?若PQ=BQ,在Rt?PQM中,由8PQ2=PM2+MQ2,PQ=QB,将各数据代入,可将时间t求出; ?若BP=BQ,在Rt?PMB中,由PB2=BM2+PM2,BP=BQ,将数据代入,可将时间t求出;?若PB=PQ,PB2=PM2+BM2,PB=PQ,将数据代入,可将时间t求出( 解答: 解:(1)过点P作PM?BC于M,则四边形PDCM为矩形( ?PM=DC=12,?QB=16-t,?s= •QB•PM= (16-t)×12=96-6t(0?t? )((2)由图可知,CM=PD=2t,CQ=t,若以B、P、Q为顶点的三角形是等腰三角形,可以分三种情况:?若PQ=BQ,在Rt?PMQ中,PQ2=t2+122,由PQ2=BQ2得t2+122=(16-t)2,解得 ;?若BP=BQ,在Rt?PMB中,PB2=(16-2t)2+122,由PB2=BQ2得(16-2t)2+122=(16-t)2,此方程无解,?BP?PQ(?若PB=PQ,由PB2=PQ2得t2+122=(16-2t)2+122得,t2=16(不合题意,舍去)(综上所述,当或时,以B、P、Q为顶点的三角形是等腰三角形(点评:9本题主要考查梯形的性质及勾股定理(在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象(7.直线y=- 34x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止(点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O?B?A运动((1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t(秒),?OPQ的面积为S,求出S与t之间的函数关系式;Q为顶点的平(3)当S= 485时,求出点P的坐标,并直接写出以点O、P、行四边形的第四个顶点M的坐标(分析:(1)分别令y=0,x=0,即可求出A、B的坐标;(2))因为OA=8,OB=6,利用勾股定理可得AB=10,进而可求出点Q由O到A的时间是8秒,点P的速度是2,从而可求出,当P在线段OB上运动(或0?t?3)时,OQ=t,OP=2t,S=t2,当P在线段BA上运动(或3,t?8)时,OQ=t,AP=6+10-2t=16-2t,作PD?OA于点D,由相似三角形的性质,得 PD=48-6t5,利用S= 12OQ×PD,即可求出答案; (3)令S= 485,求出t的值,进而求出OD、PD,即可求出P的坐标,利用平行四边形的对边平行且相等,结合简单的计算即可写出M的坐标( 解答:解:(1)y=0,x=0,求得A(8,0)B(0,6),(2)?OA=8,OB=6,?AB=10(?点Q由O到A的时间是 81=8(秒),?点P的速度是 6+108=2(单位长度/秒)(当P在线段OB上运动(或O?t?3)时,OQ=t,OP=2t,S=t2(当P在线段BA上运动(或3,t?8)时,OQ=t,AP=6+10-2t=16-2t,如图,做PD?OA于点D,由 PDBO=APAB,得PD= 48-6t5(10?S= 12OQ•PD=- 35t2+245t((3)当S= 485时,? 485,12×3×6?点P在AB上当S= 485时,- 35t2+245t= 485 ?t=4?PD= 48-6×45= 245,AD=16-2×4=8 AD= 82-(245)2= 325?OD=8- 325= 85?P( 85, 245)M1( 285, 245),M2(- 125, 245),M3( 125,- 245) 点评:本题主要考查梯形的性质及勾股定理(在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象(11欢迎您阅读该资料,希望该资料能给您的学习和生活带来帮助,如果您还了解更多的相关知识,也欢迎您分享出来,让我们大家能共同进步、共同成长。
八年级数学动点问题-八年级数学动点问题分析-八年级数学动点问题总结归纳
初二动点问题解题技巧所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查。
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二几何动点问题专题 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】
1.
梯形ABCD 中,AD∥BC ,∠B=90°,AD=24cm ,AB=8cm ,BC=26cm ,动点P 从点A 开始,沿AD 边,以1厘米/秒的速度向点D 运动;动点Q 从点C 开始,沿CB 边,以3厘米/秒的速度向B 点运动。
已知P 、Q 两点分别从A 、C 同时出发,,当其中一点到达端点时,另一点也随之停止运动。
假设运动时间为t 秒,问: (1)t 为何值时,四边形PQCD 是平行四边形 (2)t 为何值时,四边形PQCD 是直角梯形
(3)在某个时刻,四边形PQCD 可能是菱形吗为什么 (4)t 为何值时,四边形PQCD 是等腰梯形
2. 如右图,在矩形ABCD 中,AB=20cm ,BC=4cm ,点P 从A 开始沿折线A —B —C —D 以4cm/s 的速度运动,点Q 从C 开始沿CD 边1cm/s 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达点D 时,另一点也随之停止运动,设运动时间为t(s),t 为何值时,四边形APQD 也为矩形
3:如图,在等腰直角三角形ABC 中,斜边BC=4,OA ⊥BC 于O,点E 和点F 分别在边AB 、AC 上滑动并保持AE=CF,但点F 不与A 、C 重合,点E 不与B 、A 重合。
(1)判断∆OEF 的形状,并加以证明。
(2)判断四边形AEOF 的面积是否随点E 、F 的变化而变化,若变化,求其变化范围,若不变化,求它的值.
(3)设AE=x ,∆AEF 的面积为y ,求的y 与x 的关系式。
4:在Rt △ABC 中,AB =AC ,∠BAC =90°,O 为BC 的中点,
(1)写出点O 到△ABC 的三个顶点 A 、B 、C 距离的大小关系。
(2)如果点M 、N 分别在线段AB 、AC 上移动,移动中保持AN =BM , 请判断△
A B
C
D P
Q
F
E
O C
B
A
OMN 的形状,并证明你的结论。
5.如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作
CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.
(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;
②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ; (2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.
6. 如图,在等腰梯形ABCD 中,AB ∥DC ,
cm BC AD 5==,AB =12 cm,CD =6cm , 点P 从A 开始沿AB 边向B 以每秒3cm 的速度移动,点Q 从C 开始沿CD 边向D 以每秒1cm 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达终点时运动停止。
设运动时间为t 秒。
(1)求证:当t =2
3
时,四边形APQD 是平行四边形;
(2)PQ 是否可能平分对角线BD 若能,求出当t 为何值时
PQ 平分BD ;若不能,请说明理由;
(3)若△DPQ 是以PQ 为腰的等腰三角形,求t 的值。
7、如图,已知ABC △中,10AB AC ==厘米,
8BC =厘米,点D 为AB 的中点.
(1)如果点P 在线段BC 上以3厘米/秒的速度由B
点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.
①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;
②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使
BPD △与CQP △全等
B C
D
Q
P
O
E C
D
A
l
O
C
A
(备用图)
(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇
8. 如图所示,有四个动点P 、Q 、E 、F 分别从正方形ABCD 的四个顶点出发,沿着AB 、BC 、CD 、DA 以同样的速度向B 、C 、D 、A 各点移动。
(1)试判断四边形PQEF 是正方形并证明。
(2)PE 是否总过某一定点,并说明理由。
(3)四边形PQEF 的顶点位于何处时,其面积最小,最大各是多少
9、如图,在梯形ABCD 中,354245AD BC AD DC AB B ====︒∥,,,,∠.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长.
(2)当MN AB ∥时,求t 的值.
(3)试探究:t 为何值时,MNC △为等腰三角形.
10.如图,△ABC 中,点O 为AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的外角平分线CF 于点F ,交∠ACB 内角平分线CE 于E . (1)试说明EO=FO ;
(2)当点O 运动到何处时,四边形AECF 是矩形并证明你的结论;
(3)若AC 边上存在点O ,使四边形AECF 是正方形,猜想△ABC 的形状并证明你的结论.
11.如图,在矩形ABCD 中,BC=20cm ,P ,Q ,M ,N 分别从A ,B ,C ,D 出发沿AD ,BC ,CB ,DA 方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm (x≠0),则AP=2xcm ,CM=3xcm ,DN=x2cm .
(1)当x 为何值时,以PQ ,MN 为两边,以矩形的边(AD 或BC )的一部分为第三边构成一个三角形;
(2)当x 为何值时,以P ,Q ,M ,N 为顶点的四边形是平行四边形; . . .
A
Q C
D
B
P
A
D
C
B
N。