专题复习空间几何体
高中数学必修空间几何体知识点精选全文完整版
可编辑修改精选全文完整版第1讲空间几何体一、空间几何体1、空间几何体在我们周围存在着各种各样的物体,它们都占据着空间的一部分。
如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体。
2、多面体和旋转体多面体:由若干个平面多边形围成的几何体叫做多面体。
围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱及棱的公共点叫做多面体的顶点。
旋转体:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转几何体。
这条定直线叫做旋转体的轴。
多面体旋转体圆台圆柱-圆锥圆柱+圆锥圆台+大圆锥-小圆锥二、柱、锥、台、球的结构特征1.棱柱定义图形表示分类性质有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的侧面。
用平行的两底面多边形的字母表示棱柱,如:棱柱ABCDEF-A1B1C1D1E1F1。
棱柱的分类一(底面):棱柱的底面可以是三角形、四边形、五边形、……我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱、……棱柱的分类二(根据侧棱及底面的关系):斜棱柱: 侧棱不垂直于底面的棱柱.直棱柱: 侧棱垂直于底面的棱柱叫做直棱柱(1)上下底面平行,且是全等的多边形。
(2)侧棱相等且相互平行。
(3) 侧面是平行四边形。
正棱柱: 底面是正多边形的直棱柱叫做正棱柱三棱柱四棱柱五棱柱斜棱柱直棱柱正棱柱2.棱锥定义图形表示性质分类有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
用顶点及底面各顶点字母表示棱锥,如:棱锥S-ABC侧面是三角形,底面是多边形。
按底面多边形的边数分类可分为三棱锥、四棱锥、五棱锥等等,其中三棱锥又叫四面体。
特殊的棱锥-正棱锥定义:如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心三棱锥四棱锥五棱锥直棱锥2.棱台定义图形表示分类性质用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台。
专题37 空间几何体(知识梳理)(新高考地区专用)(解析版)
专题37 空间几何体(知识梳理)一、空间几何体1、空间几何体的基本定义如果只考虑一个物体占有空间部分的形状和大小,而不考虑其它因素,则这个空间部分就是一个几何体。
围成体的各个平面图形叫做体的面;相邻两个面的公共边叫做体的棱;棱和棱的公共点叫做体的顶点。
几何体不是实实在在的物体。
平面的特性:无限延展、处处平直、没有其他性质(如厚度、大小、面积、体积、重量等)。
例1-1.下列是几何体的是( )。
A 、方砖B 、足球C 、圆锥D 、魔方【答案】C【解析】几何体不是实实在在的物体,故选C 。
例1-2.判断下列说法是否正确:(1)平静的湖面是一个平面。
(×)(2)一个平面长3cm ,宽4cm 。
(×)(3)三个平面重叠在一起,比一个平面厚。
(×)(4)书桌面是平面。
(×)(5)通过改变直线的位置,可以把直线放在某个平面内。
(√)【解析】平面可以看成是直线平行移动形成的,所以直线通过改变其位置,可以放在某个平面内。
(6)平行四边形是一个平面。
(×)(7)长方体是由六个平面围成的几何体。
(×)(8)任何一个平面图形都是一个平面。
(×)(9)长方体一个面上任一点到对面的距离相等。
(√)(10)空间图形中先画的线是实线,后画的线是虚线。
(×)(11)平面是绝对平的,无厚度,可以无限延展的抽象的数学概念。
(√) 例1-3.下列说法正确的是 。
①长方体是由六个平面围成的几何体;②长方体可以看作一个矩形ABCD 上各点沿铅垂线向上移动相同距离到矩形D C B A ''''所围成的几何体;③长方体一个面上的任一点到对面的距离相等。
【答案】②③【解析】①错,因长方体由6个矩形(包括它的内部)围成,注意“平面”与“矩形”的本质区别;②正确;③正确。
[多选]例1-4.下列说法正确的是( )。
A 、任何一个几何体都必须有顶点、棱和面B 、一个几何体可以没有顶点C 、一个几何体可以没有棱D 、一个几何体可以没有面【答案】BC【解析】球只有一个曲面围成,故A 错、B 对、C 对,由于几何体是空间图形,故一定有面,D 错,故选BC 。
立体几何复习知识点
立体几何复习知识点在数学的学习中,立体几何是一个重要且富有挑战性的部分。
它要求我们具备空间想象能力、逻辑推理能力以及对各种几何概念和定理的熟练掌握。
接下来,让我们一起系统地复习一下立体几何的相关知识点。
一、空间几何体(一)棱柱棱柱是由两个互相平行且全等的多边形底面,以及侧面都是平行四边形的多面体。
棱柱根据侧棱与底面的关系可分为直棱柱和斜棱柱。
直棱柱的侧棱垂直于底面,斜棱柱的侧棱不垂直于底面。
(二)棱锥棱锥是由一个多边形底面和若干个有公共顶点的三角形侧面所组成的多面体。
如果棱锥的底面是正多边形,且顶点在底面的射影是底面的中心,那么这样的棱锥叫做正棱锥。
(三)棱台棱台是用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。
(四)圆柱以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。
旋转轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面叫做圆柱的底面,平行于轴的边旋转而成的曲面叫做圆柱的侧面,无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。
(五)圆锥以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体叫做圆锥。
旋转轴为圆锥的轴,垂直于轴的边旋转而成的圆面叫做圆锥的底面,斜边旋转而成的曲面叫做圆锥的侧面,无论旋转到什么位置,斜边都叫做圆锥侧面的母线。
(六)圆台用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台。
(七)球以半圆的直径所在直线为轴,半圆面旋转一周形成的旋转体叫做球体,简称球。
半圆的圆心叫做球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径。
二、空间几何体的表面积和体积(一)棱柱、棱锥、棱台的表面积棱柱、棱锥、棱台的表面积就是各个面的面积之和。
(二)圆柱、圆锥、圆台的侧面积和表面积圆柱的侧面积公式为\(S_{侧}=2\pi rh\),表面积公式为\(S = 2\pi r(r + h)\);圆锥的侧面积公式为\(S_{侧}=\pi rl\),表面积公式为\(S =\pi r(r + l)\);圆台的侧面积公式为\(S_{侧}=\pi (r + R)l\),表面积公式为\(S =\pi (r^2 +R^2 + rl + Rl)\)。
新教材适用2024版高考数学二轮总复习第1篇专题4立体几何第1讲空间几何体核心考点2空间几何体的表面
核心考点2 空间几何体的表面积与体积核心知识·精归纳1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr (r +l )(r 为底面半径,l 为母线长). (2)S 圆锥侧=πrl ,S 圆锥表=πr (r +l )(r 为底面半径,l 为母线长). (3)S 球表=4πR 2(R 为球的半径). 2.空间几何体的体积公式V 柱=Sh (S 为底面面积,h 为高); V 锥=13Sh (S 为底面面积,h 为高); V 球=43πR 3(R 为球的半径).多维题组·明技法角度1:空间几何体的表面积和侧面积1. (2023·大观区校级三模)陀螺起源于我国,最早出土的石制陀螺是在山西夏县发现的新石器时代遗址.如图所示的是一个陀螺立体结构图.已知,底面圆的直径AB =12 cm ,圆柱体部分的高BC =6 cm ,圆锥体部分的高CD =4 cm ,则这个陀螺的表面积(单位:cm 2)是( C )A .(144+1213)πB .(144+2413)πC .(108+1213)πD .(108+2413)π【解析】 由题意可得圆锥体的母线长为l =62+42=213,所以圆锥体的侧面积为12·12π·213=1213π,圆柱体的侧面积为12π×6=72π,圆柱的底面面积为π×62=36π,所以此陀螺的表面积为1213π+72π+36π=(108+1213)π(cm 2).故选C.2. (2023·黄浦区校级三模)已知正方形ABCD 的边长是1,将△ABC 沿对角线AC 折到△AB ′C 的位置,使(折叠后)A 、B ′、C 、D 四点为顶点的三棱锥的体积最大,则此三棱锥的表面积为 1+32. 【解析】 根据题意,正方形ABCD 中,设AC 与BD 交于点O ,在翻转过程中,当B ′O ⊥面ACD 时,四棱锥B ′-ACD 的高最大,此时四棱锥B ′-ACD 的体积最大,若B ′O ⊥面ACD ,由于OA =OB ′=OC ,则B ′D =B ′A =B ′C =1,则△DB ′C △DB ′A 都是边长为1的等边三角形,S △DB ′A =S △DB ′C =12×1×1×32=34,△ADC 中,AD =DC =1且AD ⊥DC ,则S △ADC =12×1×1=12,同理:S △AB ′C =S △ABC =S △ADC =12,此时,三棱锥的表面积S =S △DB ′A +S △DB ′C +S △ADC +S △AB ′C =1+32. 角度2:空间几何体的体积3. (2023·福州模拟)已知菱形ABCD 的边长为2,∠BAD =60°,则将菱形ABCD 以其中一条边所在的直线为轴,旋转一周所形成的几何体的体积为( B )A .2πB .6πC .43πD .8π【解析】 根据题意,旋转一周所形成的几何体如图,该几何体上部分为圆锥,下部分为在圆柱内挖去一个与上部分相同的圆锥,其体积等于中间圆柱的体积,且中间圆柱的高h =DC =2,底面圆的半径r =BC sin 60°=2×32=3,故要求几何体的体积V =πr 2h =6π.故选B.4.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别为AB ,BC 的中点,则多面体A 1C 1-AEFC 的体积为 53.【解析】 多面体A 1C 1-AEFC 的体积等于三棱柱ABC -A 1B 1C 1的体积与三棱台EBF -A 1B 1C 1的体积之差,其中三棱柱ABC -A 1B 1C 1的体积为12×2×2×2=4,三棱台EBF -A 1B 1C 1的体积为⎝ ⎛⎭⎪⎫12×1×1+12×2×2+12×1×1×12×2×2×2×13=73,所以多面体A 1C 1-AEFC 的体积为4-73=53. 方法技巧·精提炼1.求几何体的表面积的方法(1)求表面积问题的思路是将立体几何问题转化为平面图形问题,即空间图形平面化,这是解决立体几何的主要出发点;(2)求不规则几何体的表面积时,通常将所给几何体分割成柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差求得所给几何体的表面积.2.求空间几何体体积的常用方法(1)公式法:直接根据常见柱、锥、台体等规则几何体的体积公式计算;(2)等积法:根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积必等;(3)割补法:把不能直接计算体积的空间几何体进行适当分割或补形,转化为可计算体积的几何体.加固训练·促提高1. (2023·平罗县校级模拟)已知圆锥的底面半径为1,侧面展开图的圆心角为23π,则该圆锥的侧面积为( C )A .πB .2πC .3πD .4π【解析】 底面圆周长为2π,母线长为2π2π3=3,所以侧面积为12×2π×3=3π.故选C.2. (2023·普陀区校级模拟)如图,在正四棱锥P -ABCD 中,AP =AB =4,则正四棱锥的体积为 3223.【解析】 连接AC 与BD 交于O ,则O 是正方形ABCD 的中心,∴PO ⊥平面ABCD ,∵AB=4,∴AO =22,∵PA =4,∴PO =16-8=22,∴正四棱锥的体积为V =13S 正方形ABCD ·PO=13×16×22=3223.故答案为3223.3. (2023·琼山区四模)三棱锥A -BCD 中,AC ⊥平面BCD ,BD ⊥CD ,若AB =3,BD =1,则该三棱锥体积的最大值为 23.【解析】 如图所示,因为AC ⊥平面BCD ,即AC 为三棱锥A -BCD 的高,设为x ,又因为BC ⊂平面BCD ,所以AC ⊥BC ,在直角△ABC 中,由AB =3,AC =x ,可得BC =9-x 2,因为BD ⊥CD ,且BD =1,可得CD =BC 2-BD 2=8-x 2,所以三棱锥A -BCD 的体积为V =13S △BCD ·AC =13×128-x 2×1×x =168-x2·x 2≤16×8-x 2+x 22=23,当且仅当8-x 2=x 2时,即x =2时,三棱锥A -BCD 的体积取得最大值,最大值为23.。
空间几何体专题复习
空间几何体专题第1讲 空间几何体(文/理)热点一 三视图与直观图例1 (1)(·课标全国甲)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π(2)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )答案 (1)C (2)D解析 (1)由三视图可知,组合体的底面圆的面积和周长均为4π,圆锥的母线长l =(23)2+22=4,所以圆锥的侧面积为S锥侧=12×4π×4=8π,圆柱的侧面积S 柱侧=4π×4=16π,所以组合体的表面积S =8π+16π+4π=28π,故选C.(2)所得几何体的轮廓线中,除长方体原有的棱外,有两条是原长方体的面对角线,它们在侧视图中落在矩形的两条边上,另一条是原长方体的体对角线,在侧视图中体现为矩形的自左下至右上的一条对角线,因不可见,故用虚线表示,由以上分析可知,应选D.思维升华 空间几何体的三视图是从空间几何体的正面、左面、上面用平行投影的方法得到的三个平面投影图,因此在分析空间几何体的三视图问题时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果.跟踪演练1(1)一个几何体的三视图如图所示,则该几何体的直观图可以是()(2)一几何体的直观图如图,下列给出的四个俯视图中正确的是()答案(1)D(2)B解析(1)由俯视图,易知答案为D.(2)由直观图可知,该几何体由一个长方体和一个截角三棱柱组合.从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接的两个三角形.热点二几何体的表面积与体积空间几何体的表面积和体积计算是高考中常见的一个考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割成几个规则几何体的技巧,把一个空间几何体纳入一个更大的几何体中的补形技巧. 例2 (1)(·北京)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D .1 (2)如图,在棱长为6的正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在C 1D 1与C 1B 1上,且C 1E =4,C 1F =3,连接EF ,FB ,DE ,BD ,则几何体EFC 1-DBC 的体积为( )A .66B .68C .70D .72答案 (1)A (2)A解析 (1)由三视图知,三棱锥如图所示:由侧视图得高h =1, 又底面积S =12×1×1=12.所以体积V =13Sh =16.(2)如图,连接DF ,DC 1,那么几何体EFC 1-DBC 被分割成三棱锥D -EFC 1及四棱锥D -CBFC 1,那么几何体EFC 1-DBC 的体积为V =13×12×3×4×6+13×12×(3+6)×6×6=12+54=66.故所求几何体EFC1-DBC的体积为66.思维升华(1)求多面体的表面积的基本方法就是逐个计算各个面的面积,然后求和.(2)求体积时可以把空间几何体进行分解,把复杂的空间几何体的体积分解为一些简单几何体体积的和或差.求解时注意不要多算也不要少算.跟踪演练2某几何体的三视图如图所示,则这个几何体的体积为________.答案45 2解析由三视图可知,该几何体为如图所示的多面体ABCDEF(置于长方体ABCD—MNFG中去观察),且点E为DG的中点,可得AB=BC=GE=DE=3,连接AG,所以多面体ABCDEF的体积为V多面体ABCDEF=V三棱柱ADG—BCF-V三棱锥A—GEF=12×(3+3)×3×3-13×(12×3×3)×3=452.热点三多面体与球与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图.如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径.球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心(或“切点”“接点”)作出截面图.例3(1)已知三棱锥S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=23,AB =1,AC=2,∠BAC=60°,则球O的表面积为()A.4π B.12πC.16π D.64π(2)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A.500π3 cm 3B.866π3 cm 3C.1 372π3 cm 3D.2 048π3cm 3答案 (1)C (2)A 解析 (1)在△ABC 中,BC 2=AB 2+AC 2-2AB ·AC cos 60°=3, ∴AC 2=AB 2+BC 2, 即AB ⊥BC , 又SA ⊥平面ABC ,∴三棱锥S -ABC 可补成分别以AB =1,BC =3,SA =23为长、宽、高的长方体, ∴球O 的直径=12+(3)2+(23)2=4, 故球O 的表面积为4π×22=16π. (2)过球心与正方体中点的截面如图,设球心为点O ,球半径为R cm ,正方体上底面中心为点A ,上底面一边的中点为点B , 在Rt △OAB 中,OA =(R -2)cm ,AB =4 cm , OB =R cm ,由R 2=(R -2)2+42,得R =5, ∴V 球=43πR 3=5003π(cm 3).故选A.思维升华 三棱锥P -ABC 可通过补形为长方体求解外接球问题的两种情形: (1)点P 可作为长方体上底面的一个顶点,点A 、B 、C 可作为下底面的三个顶点; (2)P -ABC 为正四面体,则正四面体的棱都可作为一个正方体的面对角线.跟踪演练3 在三棱锥A -BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ABD 的面积分别为22,32,62,则三棱锥A -BCD 的外接球体积为________. 答案6π解析 如图,以AB ,AC ,AD 为棱把该三棱锥扩充成长方体,则该长方体的外接球恰为三棱锥的外接球,∴三棱锥的外接球的直径是长方体的体对角线长. 据题意⎩⎨⎧AB ·AC =2,AC ·AD =3,AB ·AD =6,解得⎩⎨⎧AB =2,AC =1,AD =3,∴长方体的体对角线长为AB 2+AC 2+AD 2=6, ∴三棱锥外接球的半径为62. ∴三棱锥外接球的体积为V =43π·(62)3=6π.1.(山东)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26π D .1+26π 答案 C解析 由三视图知,半球的半径R =22,四棱锥是底面边长为1,高为1的正四棱锥,∴V =13×1×1×1+12×43π×⎝⎛⎭⎫223=13+26π,故选C. 2.(课标全国丙)在封闭的直三棱柱ABC —A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A .4π B.9π2 C .6π D.32π3答案 B解析 由题意知,底面三角形的内切圆直径为4.三棱柱的高为3,所以球的最大直径为3,V 的最大值为9π2.3.(·山东)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3 D .2π 答案 C解析 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C.4.(·浙江)如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD =5,∠ADC =90°,沿直线AC 将△ACD 翻折成△ACD ′,直线AC 与BD ′所成角的余弦的最大值是________.答案66解析 设直线AC 与BD ′所成角为θ,平面ACD 翻折的角度为α,设点O 是AC 的中点,由已知得AC =6,如图,以OB 为x 轴,OA 为y 轴,过点O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系, 由A ⎝⎛⎭⎫0,62,0,B ⎝⎛⎭⎫302,0,0,C ⎝⎛⎭⎫0,-62,0,作DH ⊥AC 于点H ,翻折过程中,D ′H 始终与AC 垂直,CH =CD 2CA =16=66,则OH =63,DH =1×56=306,因此可设D ′⎝⎛⎭⎫-306cos α,-63,306sin α, 则BD ′——→=⎝⎛⎭⎫-306cos α-302,-63,306sin α,与CA →平行的单位向量为n =(0,1,0),所以cos θ=|cos 〈BD ′——→,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪BD ′——→·n |BD ′——→|·|n |=639+5cos α,所以cos α=-1时,cos θ取最大值6 6.1.以三视图为载体,考查空间几何体面积、体积的计算.2.考查空间几何体的侧面展开图及简单的组合体问题.1.一个几何体的三视图及其尺寸如图所示,则该几何体的表面积为()A.16 B.82+8C.22+26+8 D.42+46+8押题依据求空间几何体的表面积或体积是立体几何的重要内容之一,也是高考命题的热点.此类题常以三视图为载体,给出几何体的特征,求几何体的表面积或体积.答案 D解析由三视图知,该几何体是底面边长为22+22=22的正方形,高PD=2的四棱锥P-ABCD,因为PD⊥平面ABCD,且四边形ABCD是正方形,易得BC⊥PC,BA⊥P A,又PC=PD2+CD2=22+(22)2=23,所以S△PCD=S△P AD=12×2×22=22,S△P AB=S△PBC=12×22×23=2 6.所以几何体的表面积为46+42+8.2.在正三棱锥S-ABC中,点M是SC的中点,且AM⊥SB,底面边长AB=22,则正三棱锥S -ABC 的外接球的表面积为( ) A .6π B .12π C .32πD .36π押题依据 多面体的外接球一般借助补形为长方体的外接球解决,解法灵活,是高考的热点. 答案 B解析 因为三棱锥S -ABC 为正三棱锥,所以SB ⊥AC ,又AM ⊥SB ,AC ∩AM =A ,所以SB ⊥平面SAC ,所以SB ⊥SA ,SB ⊥SC ,同理,SA ⊥SC ,即SA ,SB ,SC 三线两两垂直,且AB =22,所以SA =SB =SC =2,所以(2R )2=3×22=12,所以球的表面积S =4πR 2=12π,故选B.3.已知半径为1的球O 中内接一个圆柱,当圆柱的侧面积最大时,球的体积与圆柱的体积的比值为________.押题依据 求空间几何体的体积是立体几何的重要内容之一,也是高考的热点问题之一,主要是求柱体、锥体、球体或简单组合体的体积.本题通过球的内接圆柱,来考查球与圆柱的体积计算,设问角度新颖,值得关注. 答案423解析 如图所示,设圆柱的底面半径为r ,则圆柱的侧面积为S =2πr ×21-r 2=4πr1-r 2≤4π×r 2+(1-r 2)2=2π(当且仅当r 2=1-r 2,即r =22时取等号). 所以当r =22时, V 球V 圆柱=4π3×13π(22)2×2=423.A 组 专题通关1.如图所示,将图(1)中的正方体截去两个三棱锥,得到图(2)中的几何体,则该几何体的侧视图为( )答案 B解析 由所截几何体可知,FC 1被平面AD 1E 遮挡,可得B 图.2.下图是棱长为2的正方体的表面展开图,则多面体ABCDE 的体积为( )A .2 B.23 C.43 D.83答案 D解析 多面体ABCDE 为四棱锥(如图),利用割补法可得其体积V =4-43=83,选D.3.某几何体的三视图如图所示,该几何体的体积为( )A .8-2πB .8-πC .8-π2D .8-π4答案 B解析 由三视图可知,该几何体是由一个棱长为2的正方体切去两个四分之一圆柱而成,所以该几何体的体积为V =(22-2×14×π×12)×2=8-π.4.(·课标全国Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r 等于( )A .1B .2C .4D .8 答案 B 解析 如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B.5.如图所示,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体A ′BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′BCD 的顶点在同一个球面上,则该球的体积为( )A.32π B .3π C.23π D .2π答案 A解析 如图所示,取BD 的中点E ,BC 的中点O ,连接A ′E ,EO ,A ′O ,OD .因为平面A ′BD ⊥平面BCD ,A ′E ⊥BD ,平面A ′BD ∩平面BCD =BD , A ′E ⊂平面A ′BD , 所以A ′E ⊥平面BCD .因为A ′B =A ′D =CD =1,BD =2, 所以A ′E =22,EO =12,所以OA ′=32. 在Rt △BCD 中,OB =OC =OD =12BC =32,所以四面体A ′BCD 的外接球的球心为O ,球的半径为32,所以V 球=43π(32)3=32π.故选A.6.有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC =45°,AB =AD =1,DC ⊥BC ,则这块菜地的面积为________.答案 2+22解析 如图,在直观图中,过点A 作AE ⊥BC ,垂足为点E ,则在Rt △ABE 中,AB =1,∠ABE =45°,∴BE =22. 而四边形AECD 为矩形,AD =1, ∴EC =AD =1,∴BC =BE +EC =22+1. 由此可还原原图形如图.在原图形中,A ′D ′=1,A ′B ′=2,B ′C ′=22+1, 且A ′D ′∥B ′C ′,A ′B ′⊥B ′C ′, ∴这块菜地的面积为S =12(A ′D ′+B ′C ′)·A ′B ′ =12×(1+1+22)×2=2+22. 7.(·浙江)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是______cm 2,体积是________cm 3.答案 72 32解析 由三视图可知,该几何体为两个相同长方体的组合,长方体的长、宽、高分别为4 cm 、2 cm 、2 cm ,其直观图如下:其体积V =2×2×2×4=32(cm 3),由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为S =2(2×2×2+2×4×4)-2×2×2=2×(8+32)-8=72(cm 2).8.如图所示,从棱长为6 cm 的正方体铁皮箱ABCD —A 1B 1C 1D 1中分离出来由三个正方形面板组成的几何图形.如果用图示中这样一个装置来盛水,那么最多能盛的水的体积为________ cm 3.答案 36解析 最多能盛多少水,实际上是求三棱锥C 1—CD 1B 1的体积. 又111111——C CD B C B C D V V 三棱锥三棱锥==13×(12×6×6)×6=36(cm 3), 所以用图示中这样一个装置来盛水,最多能盛36 cm 3体积的水.9.一块石材表示的几何体的三视图如图所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径等于____________.答案 2解析 由三视图可知该几何体是一个直三棱柱,如图所示.由题意知,当打磨成的球的大圆恰好与三棱柱底面直角三角形的内切圆相同时,该球的半径最大,故其半径r =12×(6+8-10)=2.10.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ; (2)求该几何体的侧面积S .解 由已知可得,该几何体是一个底面为矩形,高为4,顶点在底面的投影是矩形中心的四棱锥E -ABCD .(1)V =13×(8×6)×4=64.(2)四棱锥E -ABCD 的两个侧面EAD ,EBC 是全等的等腰三角形,且BC 边上的高h 1= 42+(82)2=42;另两个侧面EAB ,ECD 也是全等的等腰三角形,AB 边上的高h 2= 42+(62)2=5.因此S =2×(12×6×42+12×8×5)=40+24 2.B 组 能力提高11.(·湖南)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A.89πB.169πC.4(2-1)3πD.12(2-1)3π答案 A解析 设三视图对应的几何体为底面半径为1,高为2的圆锥.如图,设长方体的长、宽、高分别为a 、b 、c ,上、下底面中心分别为O 1,O 2,上方截得的小圆锥的高为h ,底面半径为r ,则a 2+b 2=4r 2.由三角形相似,得SO 1SO 2=O 1AO 2B,即h 2=r1,则h =2r .长方体的体积为V =abc =ab (2-2r )≤a 2+b 22×(2-2r )=2r 2(2-2r )=4r 2-4r 3(当且仅当a =b 时取等号,且0<r <1).设y =4r 2-4r 3(0<r <1),则y ′=8r -12r 2.由y ′=0,得r =0或r =23.由y ′>0,得0<r <23;由y ′<0,得23<r <1.故当r =23时,y max =4×⎝⎛⎭⎫232-4×⎝⎛⎭⎫233=1627,即V max =1627. ∴原工件材料的利用率为162713π×12×2=89π,故选A.12.已知在三棱锥P —ABC 中,P A ⊥平面ABC ,AB =AC =P A =2,且在△ABC 中,∠BAC =120°,则三棱锥P —ABC 的外接球的体积为________. 答案205π3解析 由余弦定理得:BC 2=AB 2+AC 2-2AB ·AC ·cos ∠BAC , ∴BC 2=22+22-2×2×2×(-12)=12,∴BC =2 3.设平面ABC 截球所得截面圆半径为r ,则2r =23sin 120°=4,所以r =2.由P A =2且P A ⊥平面ABC 知球心到平面ABC 的距离为1,所以球的半径为R =12+22=5,所以V球=43πR 3=205π3. 13.如图,侧棱长为23的正三棱锥V -ABC 中,∠AVB =∠BVC =∠CVA =40°,过点A 作截面△AEF ,则截面△AEF 的周长的最小值为____________.答案 6解析 沿着侧棱VA 把正三棱锥V -ABC 展开在一个平面内,如图,则AA ′即为截面△AEF 周长的最小值,且∠AVA ′=3×40°=120°. 在△VAA ′中,由余弦定理可得AA ′=6,故答案为6.14.如图,在Rt △ABC 中,AB =BC =4,点E 在线段AB 上.过点E 作EF ∥BC 交AC 于点F ,将△AEF 沿EF 折起到△PEF 的位置(点A 与点P 重合),使得∠PEB =30°.(1)求证:EF ⊥PB ;(2)试问:当点E 在何处时,四棱锥P —EFCB 的侧面PEB 的面积最大?并求此时四棱锥P —EFCB 的体积.(1)证明 ∵EF ∥BC 且BC ⊥AB , ∴EF ⊥AB ,即EF ⊥BE ,EF ⊥PE . 又BE ∩PE =E ,∴EF ⊥平面PBE , 又PB ⊂平面PBE ,∴EF ⊥PB .(2)解 设BE =x ,PE =y ,则x +y =4. ∴S △PEB =12BE ·PE ·sin ∠PEB=14xy ≤14⎝⎛⎭⎫x +y 22=1. 当且仅当x =y =2时,S △PEB 的面积最大. 此时,BE =PE =2.由(1)知EF ⊥平面PBE ,∴平面PBE ⊥平面EFCB , 在平面PBE 中,作PO ⊥BE 于点O , 又平面PBE ∩平面EFCB =BE , ∴PO ⊥平面EFCB .即PO 为四棱锥P —EFCB 的高. 又PO =PE ·sin 30°=2×12=1,S EFCB =12×(2+4)×2=6,∴V P —BCFE =13×6×1=2.。
高考数学(文)《立体几何》专题复习
(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解
2023年高考数学一轮复习精讲精练(新高考专用)专题33:空间几何体(练习版)
专题33:空间几何体精讲温故知新一.空间几何体的结构1.多面体一般地,由若干个平面多边形围成的几何体叫做多面体。
围成多面体的各个多边形叫做多面体的面;两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。
2.旋转体一条平面曲线,包括直线,绕它所在平面内的一条定直线旋转所成的曲面叫做旋转面。
封闭的旋转面围成的几何体叫做旋转体。
这条定直线叫做旋转体的轴。
3.棱柱一般地,有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
在棱柱中,两个互相平行的面叫做棱柱的底面,它们是全等的多边形,其余各面叫做棱柱的侧面,它们都是平行四边形,相邻两边的公共边叫做棱柱的侧棱,侧面和底面的公共顶点叫做棱柱的顶点。
棱柱的底面可以是三角形、四边形、五边形,我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱。
一般地,我们把侧面垂直于底面的棱柱叫做直棱柱,侧面不垂直于底面的棱柱叫做斜棱柱,底面是正多边形的,直棱柱叫做正棱柱,底面是平行四边形的四棱柱,也叫做平行六面体。
4.棱锥一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
这个多边形面叫做棱锥的底面,有公共顶点的各个三角形面叫做棱锥的侧面,相邻两边的公共边叫做棱锥的侧棱,这侧面的公共顶点叫做棱锥的顶点。
棱锥,用表示顶点和各面各顶点的字母来表示,其中三棱锥又叫四面体,底面是正多边形并且顶点与底面中心的连线垂直于底面的棱锥叫做正棱锥。
5.棱台用一个平行于圆锥底面的平面去截棱锥,我们把底面和截面之间那部分多面体叫做棱台。
在棱台中,原棱锥的底面和截面分别叫做棱台的下底面和上底面面,类似于棱柱、棱锥,棱台也有侧面、侧棱和顶点。
6.圆柱与矩形的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体叫做圆柱。
旋转轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面,叫做圆柱的底面,平行的边旋转而成的曲面叫做圆柱的侧面,无论旋转到什么位置,平行于轴的边叫做圆柱侧面的母线。
必修2第一章空间几何体单元复习课件人教新课标
4. 画空间几何体的三视图时注意 长对正,高平齐,宽相等.
5. 画空间几何体的直观图时注意 x,y轴相交成45°,平行x轴的线段的长 度保持不变.平行y轴的线段的长度变为 本来的一半.
要点总结
1.1空间几何体的结构
1、画轴 2、画底面
3、画侧棱 4、成图
确定平行线段 确定线段长度
1.3空间几何体的表面积与体积
1.3.1柱体、椎体、台体、球体的 表面积与体积
r O
r ' O
l r’=r
l r’=0
l
O
r 上底扩大
O
r 上底缩小
O
S柱 2r(r l) S台 (r2 r 2 rl rl ) S锥 r(r l)
侧棱 D' A'
D
A
C' 上底面
B' 侧面 C
下底面
B
棱锥特点: 1.可看作用一个平行于棱锥 底面的平面去截棱锥.
O'
轴
母线
侧面
O
底面
母线 S 轴
侧面
底面
O
圆柱特点: 1.以矩形的一边所在直线为 旋转轴,其余三边旋转形成 的面所围成的旋转体.
圆锥特点: 1.以直角三角形的一条直角 边所在直线为旋转轴,其余 两边旋转形成的面所围成的 旋转体.
轴
母线 O'
侧面
O
底面
圆台特点: 1.用平行于圆锥底面的平面 去截圆锥,底面与截面之间 的部分.
球体特点:
半径 1.以半圆的直径所在直线为
O
球心 旋转轴,半圆面旋转一周形
空间立体几何高考复习知识点及经典题目
知识空间立体几何知识点归纳:1. 空间几何体的类型( 1)多面体: 由若干个平面多边形围成的几何体,如棱柱、棱锥、棱台。
( 2) 旋转体: 把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
如圆柱、圆锥、圆台。
2. 一些特殊的空间几何体 直棱柱:侧棱垂直底面的棱柱。
正棱柱:底面多边形是正多边形的直棱柱。
正棱锥:底面是正多边形且所有侧棱相等的棱锥。
正四面体:所有棱都相等的四棱锥。
3. 空间几何体的表面积公式棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 : S 2 rl 2 r2圆锥的表面积: S rlr2圆台的表面积:Srlr2RlR2球的表面积:S4 R 24.空间几何体的体积公式: VS底 h: V1h柱体的体积锥体的体积S 底3台体的体积:1球体的体积: V43V( S 上下下hR3S 上 SS )35. 空间几何体的三视图正视图:光线从几何体的前面向后面正投影,得到的投影图。
侧视图:光线从几何体的左边向右边正投影,得到的投影图。
俯视图:光线从几何体的上面向右边正投影,得到的投影图。
画三视图的原则:长对正、宽相等、高平齐。
即正视图和俯视图一样长,侧视图和俯视图一样宽,侧视图和正视图一样高。
6 . 空间中点、直线、平面之间的位置关系( 1) 直线与直线的位置关系:相交;平行;异面。
(2)直线与平面的位置关系:直线与平面平行;直线与平面相交;直线在平面内。
(3)平面与平面的位置关系:平行;相交。
7.空间中点、直线、平面的位置关系的判断(1)线线平行的判断:①平行公理:平行于同一直线的两直线平行。
②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
③面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
④线面垂直的性质定理:垂直于同一平面的两直线平行。
(2)线线垂直的判断:①线面垂直的定义:若一直线垂直于一平面,这条直线垂直于平面内所有直线。
(完整版)空间立体几何知识点归纳,推荐文档
与平面无任何公共点)⎭平行;a ba a a ⊂ A性质Ⅰ:如果一个平面与两平行平面都相交,那么它αα性质Ⅱ:平行于同一平面的两平面平行;11、线面垂直:⑵判定:一条直线与一个平面内的两条相交直⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个l l αα空间角及空间距离的计算1.异面直线所成角:使异面直线平移后相交形成的夹角,通常在两异面直线中的一条上取一点,过该点作另一条直线平行线,2. 斜线与平面成成的角:斜线与它在平面上的射影成的角。
如图:PA 是平面的一α条斜线,A 为斜足,O 为垂足,OA 叫斜线PA 在平面上射影,为线αPAO ∠面角。
3.二面角:从一条直线出发的两个半平面形成的图形,如图为二面角,二l αβ--面角的大小指的是二面角的平面角的大小。
二面角的平面角分别在两个半平面内且角的两边与二面角的棱垂直用二面角的平面角的定义求二面角的大小的关键点是:①确构成二面角两个半平面和棱;②明确二面角的平面角是哪个?而要想明确二面角的平面角,关键是看该角的两边是否都和棱垂直。
(求空间角的三个步骤是“一找”、“二证”、“三计算”)5.点到平面的距离:指该点与它在平面上的射影的连线段的长度。
如图:O 为P 在平面上的射影,α线段OP 的长度为点P 到平面的距离求法通常有:定义法和等体积法α等体积法:就是将点到平面的距离看成是三棱锥的一个高。
如图在三棱锥V ABC-中有:S ABCA SBCB SAC C SABV V V V ----===----,,l OA OB l OA l OB l AOBαβαβαβ⊂⊂⊥⊥∠如图:在二面角中,O 棱上一点,,,的平面角。
且则为二面角 a b ''︒︒如图:直线a 与b 异面,b//b ,直线a 与直线b 的夹角为两异面直线与所成的角,异面直线所成角取值范围是(0,90]。
2023年新高考数学大一轮复习专题四立体几何第1讲空间几何体(含答案)
新高考数学大一轮复习专题:第1讲 空间几何体[考情分析] 几何体的结构特征是立体几何的基础,空间几何体的表面积与体积是高考题的重点与热点,多以小题的形式进行考查,属于中等难度. 考点一 表面积与体积 核心提炼1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr (r +l )(r 为底面半径,l 为母线长). (2)S 圆锥侧=πrl ,S 圆锥表=πr (r +l )(r 为底面半径,l 为母线长). (3)S 球表=4πR 2(R 为球的半径). 2.空间几何体的体积公式V 柱=Sh (S 为底面面积,h 为高); V 锥=13Sh (S 为底面面积,h 为高); V 球=43πR 3(R 为球的半径).例1 (1)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________. 答案 402π解析 因为母线SA 与圆锥底面所成的角为45°, 所以圆锥的轴截面为等腰直角三角形. 设底面圆的半径为r ,则母线长l =2r . 在△SAB 中,cos∠ASB =78,所以sin∠ASB =158.因为△SAB 的面积为515,即12SA ·SB sin∠ASB=12×2r ×2r ×158=515, 所以r 2=40,故圆锥的侧面积为πrl =2πr 2=402π.(2)如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.答案 233解析 如图,取BC 的中点O ,连接AO .∵正三棱柱ABC -A 1B 1C 1的各棱长均为2, ∴AC =2,OC =1,则AO = 3. ∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为 3. 又11BB C S=12×2×2=2, ∴11D BB C V =13×2×3=233.易错提醒 (1)计算表面积时,有些面的面积没有计算到(或重复计算). (2)一些不规则几何体的体积不会采用分割法或补形思想转化求解. (3)求几何体体积的最值时,不注意使用基本不等式或求导等确定最值.跟踪演练1 (1)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π答案 B解析 设圆柱的底面半径为r ,高为h ,由题意可知2r =h =22,∴圆柱的表面积S =2πr 2+2πr ·h =4π+8π=12π.故选B.(2)如图,在Rt△ABC 中,AB =BC =1,D 和E 分别是边BC 和AC 上异于端点的点,DE ⊥BC ,将△CDE 沿DE 折起,使点C 到点P 的位置,得到四棱锥P -ABDE ,则四棱锥P -ABDE 的体积的最大值为________.答案327解析 设CD =DE =x (0<x <1),则四边形ABDE 的面积S =12(1+x )(1-x )=12(1-x 2),当平面PDE ⊥平面ABDE 时,四棱锥P -ABDE 的体积最大,此时PD ⊥平面ABDE ,且PD =CD =x ,故四棱锥P -ABDE 的体积V =13S ·PD =16(x -x 3),则V ′=16(1-3x 2).当x ∈⎝ ⎛⎭⎪⎫0,33时,V ′>0;当x ∈⎝⎛⎭⎪⎫33,1时,V ′<0. ∴当x =33时,V max =327. 考点二 多面体与球 核心提炼解决多面体与球问题的两种思路(1)利用构造长方体、正四面体等确定直径.(2)利用球心O 与截面圆的圆心O 1的连线垂直于截面圆的性质确定球心.例2 (1)已知三棱锥P -ABC 满足平面PAB ⊥平面ABC ,AC ⊥BC ,AB =4,∠APB =30°,则该三棱锥的外接球的表面积为__________. 答案 64π解析 因为AC ⊥BC ,所以△ABC 的外心为斜边AB 的中点,因为平面PAB ⊥平面ABC ,所以三棱锥P -ABC 的外接球球心在平面PAB 上, 即球心就是△PAB 的外心,根据正弦定理ABsin∠APB =2R ,解得R =4,所以外接球的表面积为4πR 2=64π.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面PAB ,如图所示,则△PAB 的内切圆为圆锥的内切球的大圆.在△PAB 中,PA =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB , 故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝ ⎛⎭⎪⎫223=23π.规律方法 (1)长方体的外接球直径等于长方体的体对角线长.(2)三棱锥S -ABC 的外接球球心O 的确定方法:先找到△ABC 的外心O 1,然后找到过O 1的平面ABC 的垂线l ,在l 上找点O ,使OS =OA ,点O 即为三棱锥S -ABC 的外接球的球心. (3)多面体的内切球可利用等积法求半径.跟踪演练2 (1)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36πB.64πC.144πD.256π 答案 C解析 如图所示,设球O 的半径为R ,因为∠AOB =90°, 所以S △AOB =12R 2,因为V O -ABC =V C -AOB , 而△AOB 的面积为定值,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大, 此时V O -ABC =V C -AOB =13×12R 2×R =16R 3=36,故R =6,则球O 的表面积为S =4πR 2=144π.(2)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =5,ED =3,若鳖臑P -ADE 的外接球的体积为92π,则阳马P -ABCD 的外接球的表面积为________.答案 20π解析 ∵四边形ABCD 是正方形,∴AD ⊥CD ,即AD ⊥CE ,且AD =5,ED =3, ∴△ADE 的外接圆半径为r 1=AE 2=AD 2+ED 22=2,设鳖臑P -ADE 的外接球的半径为R 1, 则43πR 31=92π,解得R 1=322. ∵PA ⊥平面ADE ,∴R 1=⎝ ⎛⎭⎪⎫PA 22+r 21,可得PA 2=R 21-r 21=102,∴PA =10.正方形ABCD 的外接圆直径为2r 2=AC =2AD =10, ∴r 2=102, ∵PA ⊥平面ABCD ,∴阳马P -ABCD 的外接球半径R 2=⎝ ⎛⎭⎪⎫PA 22+r 22=5, ∴阳马P -ABCD 的外接球的表面积为4πR 22=20π.专题强化练一、单项选择题1.水平放置的△ABC 的直观图如图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( )A .等边三角形B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形 答案 A解析 AO =2A ′O ′=2×32=3,BC =B ′O ′+C ′O ′=1+1=2.在Rt△AOB 中,AB =12+32=2,同理AC =2,所以原△ABC 是等边三角形.2.(2020·全国Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt△SOE 中,h ′2=h 2+⎝ ⎛⎭⎪⎫a 22,∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎪⎫h ′a 2-12·h ′a -14=0, 解得h ′a =5+14(负值舍去). 3.已知一个圆锥的侧面积是底面积的2倍,记该圆锥的内切球的表面积为S 1,外接球的表面积为S 2,则S 1S 2等于( )A.12B.13C.14D.18答案 C解析如图,由已知圆锥侧面积是底面积的2倍,不妨设底面圆半径为r,l为底面圆周长,R为母线长,则12lR=2πr2,即12·2π·r·R=2πr2,解得R=2r,故∠ADC=30°,则△DEF为等边三角形,设B为△DEF的重心,过B作BC⊥DF,则DB为圆锥的外接球半径,BC为圆锥的内切球半径,则BCBD=12,∴r内r外=12,故S1S2=14.4.(2020·大连模拟)一件刚出土的珍贵文物要在博物馆大厅中央展出,如图,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1000元,则气体的费用最少为( )A.4500元B.4000元C.2880元D.2380元答案 B解析因为文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米,所以由正方形与圆的位置关系可知,底面正方形的边长为0.9+2×0.3=1.5米,又文物高 1.8米,文物顶部与玻璃罩上底面至少间隔0.2(米),所以正四棱柱的高为1.8+0.2=2(米),则正四棱柱的体积V=1.52×2=4.5(立方米).因为文物的体积为0.5立方米,所以罩内空气的体积为4.5-0.5=4(立方米),因为气体每立方米1000元,所以气体的费用最少为4×1000=4000(元),故选B.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,动点E 在BB 1上,动点F 在A 1C 1上,O 为底面ABCD 的中心,若BE =x ,A 1F =y ,则三棱锥O -AEF 的体积( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关 答案 B解析 由已知得V 三棱锥O -AEF =V 三棱锥E -OAF =13S △AOF ·h (h 为点E 到平面AOF 的距离).连接OC ,因为BB 1∥平面ACC 1A 1,所以点E 到平面AOF 的距离为定值.又AO ∥A 1C 1,OA 为定值,点F 到直线AO 的距离也为定值,所以△AOF 的面积是定值,所以三棱锥O -AEF 的体积与x ,y 都无关.6.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3B.4π3 C.5π3D .2π 答案 C解析 如图,过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE=π×12×2-13π×12×1=5π3.7.(2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64πB.48πC.36πD.32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a . 由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt△OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.8.(2020·武汉调研)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( ) A.32π3B .3πC.4π3D .8π 答案 A解析 设△ABC 外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23,∠BAC =2π3,∴2r =AB sin∠ACB =112=2,即O 1A =1,O 1O =12AA 1=3,∴OA =O 1O 2+O 1A 2=3+1=2,∴球O 的体积V =43π·OA 3=32π3.故选A.9.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭的几何体内部放入一个小圆柱体,且小圆柱体的上、下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A.2000π9B.4000π27C .81πD .128π答案 B解析 小圆柱的高分为上、下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h (0<h <5),底面半径为r (0<r <5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱的体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),把V 看成是关于h 的函数,求导得V ′=-π(3h -5)(h +5).当0<h <53时,V ′>0,V 单调递增;当53<h <5时,V ′<0,V 单调递减.所以当h =53时,小圆柱的体积取得最大值.即V max =π⎝⎛⎭⎪⎫25-259×⎝⎛⎭⎪⎫53+5=4000π27,故选B.10.已知在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等.若点P ,A ,B ,C 都在半径为1的球面上,则球心到平面ABC 的距离为( ) A.36B.12C.13D.32答案 C解析 ∵在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等,∴此三棱锥的外接球即以PA ,PB ,PC 为三边的正方体的外接球O , ∵球O 的半径为1,∴正方体的边长为233,即PA =PB =PC =233,球心到截面ABC 的距离即正方体中心到截面ABC 的距离,设P 到截面ABC 的距离为h ,则正三棱锥P -ABC 的体积V =13S △ABC ×h =13S △PAB ×PC =13×12×⎝⎛⎭⎪⎫2333, ∵△ABC 为边长为263的正三角形,S △ABC =233,∴h =23, ∴球心(即正方体中心)O 到截面ABC 的距离为13.二、多项选择题11.(2020·枣庄模拟)如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图③所示时,AE ·AH 为定值 答案 AD解析 由于AB 固定,所以在倾斜的过程中,始终有CD ∥HG ∥EF ∥AB ,且平面AEHD ∥平面BFGC ,故水的部分始终呈棱柱形(三棱柱或四棱柱),且AB 为棱柱的一条侧棱,没有水的部分也始终呈棱柱形,故A 正确;因为水面EFGH 所在四边形,从图②,图③可以看出,EF ,GH 长度不变,而EH ,FG 的长度随倾斜度变化而变化,所以水面EFGH 所在四边形的面积是变化的,故B 错;假设A 1C 1与水面所在的平面始终平行,又A 1B 1与水面所在的平面始终平行,则长方体上底面A 1B 1C 1D 1与水面所在的平面始终平行,这就与倾斜时两个平面不平行矛盾,故C 错;水量不变时,棱柱AEH -BFG 的体积是定值,又该棱柱的高AB 不变,且V AEH -BFG =12·AE ·AH ·AB ,所以AE ·AH =2V AEH -BFGAB,即AE ·AH 是定值,故D 正确.12.(2020·青岛检测)已知四棱台ABCD -A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π 答案 AD解析 将四棱台补为如图所示的四棱锥P -ABCD ,并取E ,E 1分别为BC ,B 1C 1的中点,记四棱台上、下底面中心分别为O 1,O ,连接AC ,BD ,A 1C 1,B 1D 1,A 1O ,OE ,OP ,PE .由条件知A 1,B 1,C 1,D 1分别为四棱锥的侧棱PA ,PB ,PC ,PD 的中点,则PA =2AA 1=4,OA =2,所以OO 1=12PO =12PA 2-OA 2=3,故该四棱台的高为3,故A 正确;由PA =PC =4,AC =4,得△PAC 为正三角形,则AA 1与CC 1所成角为60°,故B 不正确;四棱台的斜高h ′=12PE =12PO 2+OE2=12×232+22=142,所以该四棱台的表面积为(22)2+(2)2+4×2+222×142=10+67,故C 不正确;易知OA 1=OB 1=OC 1=OD 1=O 1A 21+O 1O 2=2=OA =OB =OC =OD ,所以O 为四棱台外接球的球心,所以外接球的半径为2,外接球表面积为4π×22=16π,故D 正确.三、填空题13.(2020·浙江)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π, 即r ·l =2.由于侧面展开图为半圆, 可知12πl 2=2π,可得l =2,因此r =1.14.在如图所示的斜截圆柱中,已知圆柱的底面直径为40cm ,母线长最短50cm ,最长80cm ,则斜截圆柱的侧面面积S =________cm 2.答案 2600π解析 将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =12×(π×40)×(50+80)=2600π(cm 2).15.已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为________. 答案823π 解析 将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径2R =22,则球O 的体积V =43πR 3=823π.16.(2020·新高考全国Ⅰ)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________. 答案2π2解析 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q , 连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r , 则r =R 2球-D 1E 2=5-3= 2. 又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.。
第21讲 空间几何体(解析)-2023年高考一轮复习精讲精练必备
第21讲空间几何体学校____________姓名____________班级____________一、知识梳理1.空间几何体的结构特征(1)多面体的结构特征名称棱柱棱锥棱台图形底面互相平行且全等多边形互相平行且相似侧棱平行且相等相交于一点,但不一定相等延长线交于一点侧面形状平行四边形三角形梯形空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.3.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r 1+r 2)l4.柱、锥、台、球的表面积和体积名称几何体表面积体积柱体(棱柱和圆柱)S 表面积=S 侧+2S 底V =Sh 锥体(棱锥和圆锥)S 表面积=S 侧+S 底V =13Sh台体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 3二、考点和典型例题1、空间几何体的结构特征【典例1-1】(2022·广东深圳·高三阶段练习)通用技术老师指导学生制作统一规格的圆台形容器,用如图所示的圆环沿虚线剪开得到的一个半圆环(其中小圆和大圆的半径分别是1cm 和4cm )制作该容器的侧面,则该圆台形容器的高为()AB .1cmCD 【答案】D 【详解】由已知圆台的侧面展开图为半圆环,不妨设上、下底面圆的半径分别为r ,()R r R ,则21r π=π⨯,24R π=π⨯,解得12r =,2R =.所以圆台轴截面为等腰梯形,其上、下底边的长分别为1cm 和4cm ,腰长为3cm ,即1,4,3AD BC AB ===,过点A 作AH BC ⊥,H 为垂足,所以32BH =,2AH =,故选:D .【典例1-2】(2022·河南·模拟预测(文))在正四棱锥P ABCD -中,AB =棱锥P ABCD -的体积是8,则该四棱锥的侧面积是()A B .C .D .【答案】C 【详解】如图,连接AC ,BD ,记AC BD O = ,连接OP ,所以OP ⊥平面ABC D.取BC 的中点E ,连接OE PE ,.因为正四棱锥P ABCD -的体积是8,所以218833AB OP OP ⋅==,解得3OP =.因为12BE BC ==POE 中,PE ===则PBC 的面积为1122BC PE ⋅=⨯=故该四棱锥的侧面积是故选:C【典例1-3】(2022·湖南·长郡中学模拟预测)圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面的半径分别为4和5,则该圆台的侧面积为()A .B .C .D .【答案】C 【详解】因为圆台下底面半径为5,球的直径为210R =,所以圆台下底面圆心与球心重合,底面圆的半径为5R =,画出轴截面如图,设圆台上底面圆的半径r ,则4r =所以球心O 到上底面的距离3h ===,即圆台的高为3,所以母线长l =,所以()12πS r r l =+=侧,故选:C.【典例1-4】(2022·浙江·镇海中学模拟预测)如图,梯形ABCD 是水平放置的一个平面图形的直观图,其中45ABC ∠=︒,1AB AD ==,DC BC ⊥,则原图形的面积为()A .12+B .22+C .2D .1【答案】B【详解】解:由题得12BC =+,所以()11(22222S A D B C A B =+⋅=+'''='''故选:B .【典例1-5】(2022·福建省福州第一中学三模)已知AB ,CD 分别是圆柱上、下底面圆的直径,且AB CD ⊥,.1O ,O 分别为上、下底面的圆心,若圆柱的底面圆半径与母线长相等,且三棱锥A BCD -的体积为18,则该圆柱的侧面积为()A .9πB .12πC .16πD .18π【答案】D 【详解】分别过,A B 作圆柱的母线,AE BF ,,,CE DE CF DF ,设圆柱的底面半径为r 则三棱锥A BCD -的体积为两个全等四棱锥C ABFE -减去两个全等三棱锥A CDE-即311122222183323r r r r r r r ⨯⨯⨯⨯-⨯⨯⨯⨯⨯==,则3r =圆柱的侧面积为2π18πr r ⨯=故选:D .2、空间几何体的表面积、体积【典例2-1】(2022·山东泰安·模拟预测)在底面是正方形的四棱锥P ABCD -中,PA ⊥底面ABCD ,且34PA AB ==,,则四棱锥P ABCD -内切球的表面积为()A .3πB .4πC .5πD .6π【答案】B 【详解】解:由题意,设四棱锥P ABCD -内切球的半径为r ,因为2143163P ABCD V -=⨯⨯=,四棱锥P ABCD -的表面积21143424524822S =+⨯⨯⨯+⨯⨯⨯=,所以31P ABCD Vr S-==,所以四棱锥P ABCD -内切球的表面积为24π4πr =.故选:B.【典例2-2】(2022·全国·高考真题)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤)A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27]【答案】C 【详解】∵球的体积为36π,所以球的半径3R =,设正四棱锥的底面边长为2a ,高为h ,则2222l a h =+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,所以5233112449696l l V l l ⎛⎫⎛⎫-'=-= ⎪ ⎪⎝⎭⎝⎭,当3l ≤≤0V '>,当l <≤时,0V '<,所以当l =时,正四棱锥的体积V 取最大值,最大值为643,又3l =时,274V =,l =814V =,所以正四棱锥的体积V 的最小值为274,所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C.【典例2-3】(2022·全国·高考真题)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .时,增加的水量约为2.65≈)()A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯【答案】C 【详解】依题意可知棱台的高为157.5148.59MN =-=(m),所以增加的水量即为棱台的体积V .棱台上底面积262140.014010S ==⨯km m ,下底面积262180.018010S '==⨯km m ,∴((66119140101801033V h S S =+=⨯⨯⨯+⨯'(()679933320109618 2.6510 1.43710 1.410(m )=⨯+⨯≈+⨯⨯=⨯≈⨯.故选:C .【典例2-4】(2022·全国·高考真题(理))甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=V V 甲乙()AB.CD【答案】C 【详解】解:设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,则11222S rl rS r l r ππ===甲乙,所以122r r =,又12222r r l l πππ+=,则121r r l+=,所以1221,33r l r l ==,所以甲圆锥的高13h ==,乙圆锥的高23h l ==,所以221122214391393r h l V V r h ππ==甲乙.故选:C.【典例2-5】(2022·山东临沂·三模)战国时期的铜镞是一种兵器,其由两部分组成,前段是高为3cm 、底面边长为2cm 的正三棱锥,后段是高为1cm 的圆柱,圆柱底面圆与正三棱锥底面的正三角形内切,则此铜镞的体积为()A3cm 3πB.3cm 33π+C3cm 4+D.3cm 34+【详解】由题意,铜镞的直观图如图所示,三棱锥的体积3111322322m V =创创�,因为圆柱的底面圆与正三棱锥底面的正三角形内切,所以圆柱的底面圆的半径r =,所以圆柱的体积2321cm 3V p p 骣=创=3cm 3π故选:A.3、与球有关的切、接问题【典例3-1】(2022·北京·101中学三模)一个底面积为1的正四棱柱的顶点都在同一球面上,若此球的表面积为20π,则该四棱柱的高为()AB .2C .D【详解】设球的半径为R ,则24π=20πR ,解得2=5R设四棱柱的高为h ,则22114h R ++=,解得h =故选:C【典例3-2】(2022·广东·深圳市光明区高级中学模拟预测)若正三棱柱111ABC A B C -的所有顶点都在同一个球O 的表面上,且球O 的体积的最小值为43π,则该三棱柱的侧面积为()A .B .C .D .3【答案】B 【详解】如图:设三棱柱上、下底面中心分别为1O 、2O ,则12O O 的中点为O ,设球O 的半径为R ,则OA R =,设AB BC AC ==a =,1AA h =,则212OO h =,223O A AB a =,则在Rt △2OO A 中,222222221143R OA OO O A h a ==+=+122h a ≥⨯=,当且仅当123h a =时,min R =因为34433R V π=≥球,即min 1R =1=,即ah =所以该三棱柱的侧面积为3ah =故选:B.【典例3-3】(2022·湖北·模拟预测)《几何原本》是古希腊数学家欧几里得的一部不朽之作,其第十一卷中称轴截面为等腰直角三角形的圆锥为直角圆锥,若某直角圆锥内接于一球(圆锥的顶点和底面上各点均在该球面上),求此圆锥侧面积和球表面积之比()A4B .2C D .4π【答案】A【详解】设直角圆锥底面半径为r ,r =,所以底面圆的圆心即为外接球的球心,所以外接球半径为r ,所以222444S rl r S r r πππ===圆锥侧球.故选:A.【典例3-4】(2022·山东聊城·三模)《几何原本》是古希腊数学家欧几里得的一部不朽之作,其第十一卷中称轴截面为等腰直角三角形的圆锥为直角圆锥.若一个直角圆锥的侧面积为,圆锥的底面圆周和顶点都在同一球面上,则该球的体积为()A .83πB .323πC .16πD .32π【答案】B【详解】设球半径为R ,圆锥的底面半径为r ,若一个直角圆锥的侧面积为,设母线为l ,则2224l l r l +=⇒=,所以直角圆锥的侧面积为:112222r l r ππ⨯⋅=⨯=,可得:2r =,l ==12BO ===,由()2222r R R +-=,解得:2R =,所以球O 的体积等于344328333R πππ=⨯=,故选:B【典例3-5】(2022·全国·高考真题(文))已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A .13B .12C D .2【答案】C【详解】设该四棱锥底面为四边形ABCD ,四边形ABCD 所在小圆半径为r ,设四边形ABCD 对角线夹角为α,则2111sin 222222ABCD S AC BD AC BD r r r α=⋅⋅⋅≤⋅⋅≤⋅⋅=(当且仅当四边形ABCD 为正方形时等号成立)即当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r 又22r h 1+=则2123O ABCD V r h -=⋅⋅=≤=当且仅当222r h =即h 故选:C。
空间几何体经典复习
空间几何体知识点梳理:一、常见空间几何体定义:1 .棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱,(1) 侧棱垂直于底面的棱柱称为直棱柱,直棱柱的侧棱即为棱柱的高.(2) 底面为正多边形的直棱柱称为正棱柱,两底面中心的连线即为棱柱的高.2 .棱锥:有一个面是多边形 ,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.(1) 如果一个棱锥的底面是正多边形,且顶点与底面中心的连线垂直于底面,这样的棱锥称为正棱锥.正棱锥具有性质:①正棱锥的顶点和底面中心的连线即为高线;②正棱锥的侧面是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做这个正棱锥的斜高.(2) 底边长和侧棱长都相等的三棱锥叫做正四面体.(3) 依次连结不共面的四点构成的四边形叫做空间四边形.3 .棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,叫做棱台.4 .圆柱:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱.5 .圆锥:以直角三角形 的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥.6 .圆台:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.7 .球:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球.二、空间几何体的三视图和直观图空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图.注:1、球的三视图都是圆,长方体的三视图都是矩形.2、圆柱的正视图、侧视图都是全等矩形,俯视图是圆.3、圆锥的正视图、侧视图都是全等的等腰三角形,俯视图是圆及圆心.4、圆台的正视图、侧视图都是全等的等腰体性,俯视图是两个同心圆。
表示空间图形的平面图形 ,叫做空间图形的直观图.可用 斜二测画法画空间图形的直观图二、简单几何体的表面积与体积知识点梳理:1.旋转体的表面积(1) 圆柱的表面积S =2πr2+2πrl( 其中r 为底面半径,l 为母线长) .(2) 圆锥的表面积S =πr2+πrl (其中r 为底面半径,l 为母线长) .(3) 圆台的表面积公式S ='22'r r r l rl +++ 其中r′ 、r 为上、下底面半径,l 为母线长) .(4) 球的表面积公式S =4π2R ( 其中R 为球半径) .2.几何体的体积公式(1)柱体的体积公式V =Sh(其中S 为底面面积,h 为高).(2)锥体的体积公式V =13Sh(其中S 为底面面积,h 为高). (3)台体的体积公式V =13(S +SS′+S′)h(其中S′、S 为上、下底面面积,h 为高). (4)球的体积公式V =43π3R (其中R 为球半径). 题型总结:一、空间几何体题型精选讲解题型一 空间几何体的基本概念的考察1、下列命题中正确的是 ( )A .以直角三角形的一直角边所在的直线为轴旋转所得的旋转体是圆锥B .以直角梯形的一腰所在的直线为轴旋转所得的旋转体是圆台C .圆柱、圆锥、圆台的底面都是圆D .圆锥的侧面展开图为扇形,这个扇形的半径等于圆锥底面圆的半径题型二 三视图的考察1、(2009·海南、宁夏) 一个棱锥的三视图如图,则该棱锥的全面积( 单位:cm2) 为( )A .48+122B .48+24 2C .36+12 2D .36+24 22、(2011·辽宁) 一个正三棱柱的侧棱长和底面边长相等,体积为23 ,它的三视图中的俯视图如下图所示,左视图是一个矩形,则这个矩形的面积是( )A .4B .2 3C .2D. 3题型三 平面图的直观图(斜二测面法)1、如图所示的直观图,其平面图形的面积为 ( )A .3 B.322C .6D .3 2 2、如图所示为一平面图形的直观图,则这个平面图形可能是 ( )题型四 其他类型:展开、投影、截面、旋转体等 1、面积为3的等边三角形绕其一边中线旋转所得圆锥的侧面积是________.2、 如图,长方体ABCD -A1B1C1D1 中,交于顶点A 的三条棱长分别为AD =3 ,AA1 =4 ,AB =5 ,则从A 点沿表面到C1 的最短距离为 ( )A .52 B.74 C .45 D .3103、已知半径为5 的球的两个平行截面的周长分别为6π 和8π ,则两平行截面间的距离为 ( )A .1B .2C .1 或7D .2 或6二、简单几何体的表面积与体积题型精选讲解题型一 与三视图相 结合1、(2010· 天津) 一个几何体的三视图如图所示,则这个几何体的体积为________2、已知一个几何体是由上下两部分构成的组合体,其三视图如下,若图中圆的半径为1,等腰三角形的腰长为5,则该几何体的体积是:A.4π3 B .2πC.8π3D.10π3题型二 内接与外接的知识 1、(2008·福建)若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是________.2、(2011·全国新课标)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为________.补充知识:1.平行于棱锥底面的截面的性质棱锥与平行于底面的截面所构成的小棱锥,有如下比例性质:S 小锥底S 大锥底=S 小锥全面积S 大锥全面积=S 小锥侧S 大锥侧=对应线段(如高、斜高、底面边长等)的平方之比. 注:这个比例关系很重要,在求锥体的侧面积、底面积的比时,会大大简化计算过程;在求台体的侧面积、底面积的比时,将台体补成锥体,也可应用这个关系式.2.有关棱柱直截面的补充知识在棱柱中,与各侧棱均垂直的截面叫做棱柱的直截面,正棱柱的上、下底面就是直截面.棱柱的侧面积与截面周长有如下关系:S 棱柱侧 =c 直截l ( 其中c 直截 、l 分别为棱柱的直截面周长与侧棱长) .3.圆柱、圆锥、圆台、球的表面积和体积的计算(1) 圆柱、圆锥、圆台的侧面积分别是它们侧面展开图的面积,因此弄清侧面展开图的形状及侧面展开图中各线段与原几何体的关系是掌握它们的面积公式及解决相关问题的关键.(2) 计算柱体、锥体、台体的体积关键是根据条件求出相应的底面面积和高,要充分利用多面体的截面及旋转体的轴截面,将空间问题转化为平面问题.。
空间几何体复习知识点归纳.doc
1.1柱、锥、台、球的结构特征(1) 棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱 ABCDE A 'B 'C 'D 'E '或用对角线的端点字母,如五棱柱 AD ' 几何特征:两底面是对应边平行的全等多边形; 侧面、对角面都是平行四边形; 侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2) 棱锥定义:有一个面是多边形, 其余各面都是有一个公共顶点的三角形, 由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥 P A 'B 'C 'D 'E ' 几何特征:侧面、对角面都是三角形; 平行于底面的截面与底面相似,其相似比等于顶点到 截面距离与高的比的平方。
3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台 PA 'B 'C 'D 'E ' 几何特征:①上下底面是相似的平行多边形②侧面是梯形 ③侧棱交于原棱锥的顶点(4) 圆柱:定义:以矩形的一边所在的直线为轴旋转 ,其余三边旋转所成的曲面所围成的几 何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5) 圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6) 圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点; ③侧面展开图是一个弓形。
空间几何体一轮复习知识点课件
棱柱的展开与折叠是空间几何体复习的重要知识点之一,需要掌握不同类型棱柱的展开方法和折叠技 巧。
详细描述
棱柱是由两个平行的多边形底面和若干个矩形侧面组成的几何体。在展开棱柱时,需要沿着棱柱的高 将侧面剪开并展开成平面图形。常见的棱柱有长方体、正方体、三棱柱、四棱柱等。在折叠棱柱时, 需要将平面图形按照折痕折叠成棱柱的形状,并确保各边和面都正确拼接。
能够反映物体的长度和高度。
俯视图
从物体的上方观察,将物体的顶 面形状投影到投影面上。俯视图
能够反映物体的长度和宽度。
根据三视图判断空间几何体的形状
通过正视图、侧视图和俯视图,可以确定空间几何体的形状、 大小和位置关系。通过对比三个视图,可以判断出物体的基 本形状,如长方体、圆柱体、圆锥体等。
在判断过程中,需要注意视图的对应关系,例如正视图的长 度与侧视图的宽度相等,正视图的宽度与俯视图的长度相等。 同时,还需要考虑物体的方位和投影面的角度,以准确判断 物体的形状。
利用展开图解决实际问题
总结词
通过展开图解决实际问题
VS
详细描述
理解展开图的概念,掌握常见几何体的展 开方式,能够根据实际问题选择合适的展 开方式进行计算,如计算铁皮烟囱的用料、 制作纸盒等。
圆锥
当圆锥被垂直于其轴的平 面切割时,截面为圆;当 切割面倾斜时,截面为椭 圆或抛物线。
长方体
当长方体被垂直于其平面 的平面切割时,截面为矩 形;当切割面倾斜时,截 面为梯形或平行四边形。
截面在解题中的应用
求几何体的表面积和体积
理解空间几何体的性质
通过截面可以更直观地理解几何体的 形状和尺寸,从而方便计算其表面积 和体积。
棱柱的体积公式
$V = wh$。
空间几何体一轮复习知识点
α
Rrd
奋力
八、简单几何体的结构特征
1、定义:由简单几何体组合而成的 几何体叫简单组合体
2、简单组合体构成的两种基本形式: A、由简单几何体拼接而成 B、由简单几何体截去或挖去一部分而成
(2)平行于底面的截面与 底面相似,其相似比等于顶 点到截面距离与高的比的 平方。
(3)侧面积等于什么?全面积等于所有面面积和
(4)体积等于什么? V= 1 S底面积×h 3
奋力
6、正棱锥
S
如果一个棱锥的底面是正多
边形,并且顶点在底面内的
射影是底面中心,这样的棱
锥叫做正棱锥。
E
D
H
A
各侧棱相等,各侧面都是全等的等腰H' 三角B 形。
轴
顶点
母线
侧面
底面
母线
奋力
3、圆锥的性质:
(1)经过圆锥任意两条母线的截面是等腰三角形, (2)经过圆锥的轴的截面称为轴截面,圆锥的轴 截面基本特征都是全等形等腰三角形,底边长是圆 锥底面圆直径,高是圆锥高,腰圆锥的母线。 (3)经过圆锥任意两条母线的截面三角形的面积的最 大值是什么? (4)侧面积等于什么? S侧面积=πrl
奋力
1、立体几何体
立体几何研究的对象、内容是什么?
对象是空间图形
(空间图形:由空间的点、线、面组成的 图形,或不在同一平面内的图形也可以看 成空间点的集合)
内容是空间图形的画法、形状、位置 关系、大小计算及应用.是平面几何的推 广与发展.
奋力
2、构成空间几何体的基本元素是什么
点、线、面、体都是基本元素,是立体几 何的原始概念,是不加以定义的。
直棱柱的性质
各个侧面都是矩形;S侧面积=C×L,V=S底面积×L 正棱柱的性质 各个侧面都是全等的矩形。
专题01 空间几何体专题复习
本重点包括柱、锥、台、球的概念、性质、表面积与体积,直观图与三视图,这些是立体几何的基础,也是研究空间问题的基本载体,所以是高考考查的热点。
知识框架1、空间几何体的结构2、空间几何体的三视图和直观图3、空间几何体的表面积和体积一、考查形式与特点1、本章内容多以客观题出现,考查基本知识,对空间几何体的特征与性质的理解,三视图和直观图,几何体表面积与体积的计算等。
三视图考查特点:一是给出空间图形,选择其三视图;二是已知其中两种三视图,画出另外一种视图;三是三视图与面积体积计算结合在一起考查。
2、球体在近几年的高考中出现频率较高,特别是棱柱、棱锥中球的内切、外接问题,在复习时更要注意多练习相关的题目。
对球中的体积、表面积、球面距离等问题也要进行重点掌握。
3、培养与发展考生的空间想象能力、推理证明能力、运用图形语言进行交流的能力。
考查空间想象能力及空间模型的构造能力。
二、方法策略1、“化整为零”是本章的基本思想。
将一个复杂的几何体分割成若干个常见的熟悉的几何体,或者把几个简单的几何体组合成一个新的几何体,目的在于化繁为简,寻求解题的捷径。
立体几何和平面几何有着密切的联系,空间图形的局部性往往可以透过平面图形的性质去研究,利用截面可以把锥体中的元素关系转化为三角形中的元素关系。
2、“以直代曲”的思想方法即通过空间图形的展开将立体几何问题转化为平面几何问题,曲面问题转化为平面问题,如在推导圆柱、圆锥、圆台的侧面积公式时,就是将其侧面展开,转化为长方形、扇形、圆环来解决。
3、三视图之间的投影规律为:正、俯视图――长对正;正、侧视图――高平齐;俯、侧视图――宽相等。
三视图是新增内容,是高考考查重点,它能极大培养学生的空间想象能力与感知能力,熟悉常见简单几何体三视图在数量上的关系,善于将三视图中的数量关系与原几何体的数量关系联系起来,进行相关的计算。
4、球的表面积与体积的计算的关键是求出球的半径,然后再利用表面积公式及体积公式求解.球的表面积与体积问题常置于多面体的组合体中,解答时要充分利用切、接点正确作出过球心截面,从而使空间问题转化为平面问题,再利用球的半径与多面体的元素的关系求解.特别要注意的题型是球与长方体、正方体的组合体.5、解决问题的重要手段:截、展、拆、拼(1)“截”是指截面,平行于柱、锥、台底面的截面,旋转体的轴截面是帮助我们解题的有力“工具”。