点集拓扑讲义期末复习题

合集下载

拓扑学复习题与参考答案

拓扑学复习题与参考答案

拓扑学复习题与参考答案点集拓扑学练习题一、单项选择题(每题 2 分)1、已知X {a,b,c,d,e},下列集族中,()是X上的拓扑?①T {X, ,{a},{ a,b},{a,c,e}}②T {X, ,{a,b,c},{a,b,d},{a,b,c,e}}③T { X, ,{a},{ a,b}}④T {X, ,{a},{b},{c},{d},{e}}2、设X {a,b,c},下列集族中,()是X上的拓扑?①T {X, ,{a},{a,b},{c}} ②T {X, ,{a},{a,b},{a,c}}③T {X, ,{a},{b},{a,c}} ④T {X, ,{a},{b},{c}}3、已知X {a,b,c,d},下列集族中,()是X上的拓扑?①T {X, ,{a},{a,b},{a,c,d}} ②T {X, ,{a,b,c},{a,b,d}}③T {X, ,{a},{ b},{a,c,d}} ④T {X, ,{a},{b}}4、设X {a, b, c},下列集族中,()是X上的拓扑?①T {X, ,{b},{c},{a,b}} ②T {X, ,{a},{b},{a,b},{a,c}}③T {X, ,{a},{b},{a,c}} ④T {X, ,{a},{b},{c}}5、已知X {a,b,c,d},下列集族中,()是X上的拓扑?① T {X, ,{a,b},{a,c,d}} ② T {X, ,{a,b},{a,c,d}}③ T {X, ,{a},{b},{a,c,d}} ④ T {X, ,{a},{c},{a,c}}6、设X {a,b,c},下列集族中,()是X上的拓扑?① T {X, ,{a},{b},{b,c}} ② T {X, ,{a,b},{b,c}}③ T {X, ,{a},{a,c}} ④ T {X, ,{a},{b},{c}}7、已知X {a,b,c,d},拓扑T {X, ,{a}},贝U{b}=()②X {a,b,c,d}②X③{b},拓扑T {③{b}④{b,c,d}:()8已知X①?X, ,{a}},则{b,c,④{b,c,d}d}=9、已知X{a,b},拓扑T{X,,{a}},则面=( )①?②X③{a}④{b}10、已知X{a,b},拓扑T{X,,{a}},则{b}=( )①?②X③{a}④{b}11、已知X{a,b,c,d},拓扑T {X, ,{a}},则面=:( )②X③{a,b}④{b,c,d}12、已知X {a,b,c,d},拓扑T{X,,{a}},则=( )②X③{a,c}④{b,c, d}13、设X {a,b,c,d},拓扑T{X,,{a},{ b,c,d}}-,则X的既开又闭的非空真子集的个数为()①1②2③3④414、设X{a,b,c},拓扑T{X,,{a},{ b,c}},则X的既开又闭的非空真子集的个数为( )①1②2③3④415、设X{a,b,c},拓扑T{X,,{b},{ b,c}},则X的既开又闭的非空真子集的个数为( )①0②1③2④316、设X{a,b},拓扑T {X, ,{b}},则X的既开又闭的子集的个数为()①0②1③2④317、设X {a,b},拓扑T {X, ,{a},{ b}},则X的既开又闭的子集的个数为()①1②2③3④418、设X {a,b,c},拓扑T{X, ,{a},{ b},{ a,b},{ b,c}},则X的既开又闭的非空真子集的个数为()①1②2③3④419、在实数空间有理数集Q的内部Q o是()中,①②Q ③R -Q ④R20、在实数空间中,有理数集Q的边界(Q)是()①②Q ③R -Q ④R21、在实数空间中,整数集Z的内部Z o是()①②Z ③R-Z ④R22、在实数空间中,整数集Z的边界(Z)是()①②Z③R-Z ④R23、在实数空间中,区间[0,1)的边界是()① ②[0,1]③{0,1}④(0,1)24、在实数空间中,区间[2,3)的边界是()①②[2,3]③{2,3}④(2,3)25、在实数空间中,区间[0,1)的内部是()① ②[0,1]③{0,1}④(0,1)26、设X是一个拓扑空间,A,B是X的子集,则下列关系中错误的是()①d(AB)d(A) d(B)②A__B A B③d(AB)d(A) d(B)④ A A27、设X是一个拓扑空间,A,B是X的子集,则下列关系中正确的是()①d(AB)d(A) d(B)② A B A B③d(AB)d(A) d(B)④ A A28、设X是一个拓扑空间,AB是X的子集,则下列关系中正确的是()① d(A B) A B② A B A B③ d(A B)d(A) d(B)④ d(d(A)) A d(A)A是X的子集,则下列结论中正确的是()29、已知X是一'个离散拓扑空间,① d(A)② d(A) X A③ d(A) A④ d(A) XA是X的子集,则下列结论中不正确的是()30、已知X是一'个平庸拓扑空间,①若A ,则d(A)②若 A {X0},则d(A) X A③若A={X I,X2},则d(A) X④若A X ,则d(A) X31、已知X是一'个平庸拓扑空A是X的子集,则下列结论中正确的是()间,①若A ,则d(A) ②若A {X。

(完整word版)点集拓扑学试题(含答案)

(完整word版)点集拓扑学试题(含答案)

点集拓扑学练习题一、单项选择题(每题1分)1、已知{,,,,}X a b c d e =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{,,}}X a a b a c e φ=T ② {,,{,,},{,,},{,,,}}X a b c a b d a b c e φ=T③ {,,{},{,}}X a a b φ=T ④ {,,{},{},{},{},{}}X a b c d e φ=T 答案:③2、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{}}X a a b c φ=T ② {,,{},{,},{,}}X a a b a c φ=T③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T答案:② 3、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{,,}}X a a b a c d φ=T ② {,,{,,},{,,}}X a b c a b d φ=T③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{}}X a b φ=T答案:① 4、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{},{,}}X b c a b φ=T ② {,,{},{},{,},{,}}X a b a b a c φ=T③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T答案:② 5、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.① {,,{,},{,,}}X a b a c d φ=T ② {,,{,},{,,}}X a b a c d φ=T③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{},{,}}X a c a c φ=T答案:④ 6、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{},{,}}X a b b c φ=T ② {,,{,},{,}}X a b b c φ=T③ {,,{},{,}}X a a c φ=T ④ {,,{},{},{}}X a b c φ=T答案:③ 7、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( )①φ ② X ③ {}b ④ {,,}b c d答案:④8、 已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{,,}b c d =( )①φ ② X ③ {}b ④ {,,}b c d 答案:④9、 已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {}a ④ {}b 答案:②10、已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}b =( )①φ ② X ③ {}a ④ {}b 答案:④11、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {,}a b ④ {,,}b c d 答案:②12、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}c =( )①φ ② X ③ {,}a c ④ {,,}b c d 答案:④13、设{,,,}X a b c d =,拓扑{,,{},{,,}}X a b c d φ=T ,则X 的既开又闭的非空真子集个数( ) ① 1 ② 2 ③ 3 ④ 4 答案:②14、设{,,}X a b c =,拓扑{,,{},{,}}X a b c φ=T ,则X 的既开又闭的非空真子集的个数为( ) ① 1 ② 2 ③ 3 ④ 4 答案:②15、设{,,}X a b c =,拓扑{,,{},{,}}X b b c φ=T ,则X 的既开又闭的非空真子集的个数为( ) ① 0 ② 1 ③ 2 ④ 3 答案:①16、设{,}X a b =,拓扑{,,{}}X b φ=T ,则X 的既开又闭的子集的个数为( )① 0 ② 1 ③ 2 ④ 3 答案:③17、设{,}X a b =,拓扑{,,{},{}}X a b φ=T ,则X 的既开又闭的子集的个数为( ) ① 1 ② 2 ③ 3 ④ 4 答案:④18、设{,,}X abc =,拓扑{,,{},{},{,},{,}}X a b a b b c φ=T ,X 的既开又闭的非空真子集个数( )① 1 ② 2 ③ 3 ④ 4 答案:②19、在实数空间中,有理数集Q 的内部Q 是( )① φ ② Q ③ R -Q ④ R 答案:①20、在实数空间中,有理数集Q 的边界()Q ∂是( )① φ ② Q ③ R -Q ④ R 答案:④21、在实数空间中,整数集Z 的内部Z 是( )① φ ② Z ③ R -Z ④ R 答案:①22、在实数空间中,整数集Z 的边界()Z ∂是( )① φ ② Z ③ R -Z ④ R 答案:②23、在实数空间中,区间[0,1)的边界是( )① φ ② [0,1] ③ {0,1} ④ (0,1) 答案:③24、在实数空间中,区间[2,3)的边界是( )① φ ② [2,3] ③ {2,3} ④ (2,3) 答案:③25、在实数空间中,区间[0,1)的内部是( )① φ ② [0,1] ③ {0,1} ④ (0,1) 答案:④26、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中错误的是( )① ()()()d A B d A d B ⋃=⋃ ② A B A B ⋃=⋃③ ()()()d A B d A d B ⋂=⋂ ④ A A = 答案: ③27、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( )① ()()()d A B d A d B ⋃=⋃ ② A B A B -=-③ ()()()d A B d A d B ⋂=⋂ ④ A A = 答案: ①28、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( )① ()d A B A B ⋃=⋃ ② A B A B -=-③ ()()()d A B d A d B ⋂=⋂ ④ (())()d d A A d A ⊂⋃ 答案: ④29、已知X 是一个离散拓扑空间,A 是X 的子集,则下列结论中正确的是() ① ()d A φ= ② ()d A X A =-③ ()d A A = ④ ()d A X = 答案:①30、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中不正确的是()① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X A =-③ 若A={12,x x },则()d A X = ④ 若A X ≠, 则()d A X ≠ 答案:④31、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中正确的是( )① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X =③ 若A={12,x x },则()d A X A =- ④ 若12{,}A x x =,则()d A A = 答案:①32、设{,,,}X a b c d =,令{{,,},{},{}}a b c c d =B ,则由B 产生的X 上的拓扑是( ) ① { X ,φ,{c },{d },{c ,d },{a ,b ,c }} ② {X ,φ,{c },{d },{c ,d }}③ { X ,φ,{c },{a ,b ,c }} ④ { X ,φ,{d },{b ,c },{b ,d },{b ,c ,d }} 答案:①33、设X 是至少含有两个元素的集合,p X ∈,{|}{}G X p G φ=⊂∈⋃T 是X 的拓扑,则( )是T 的基.① {{,}|{}}B p x x X p =∈- ② {{}|}B x x X =∈③ {{,}|}B p x x X =∈ ④ {{}|{}}B x x X p =∈- 答案:③34、 设{,,}X a b c =,则下列X 的拓扑中( )以{,,{}}S X a φ=为子基.① { X , φ,{a },{a ,c }} ② {X , φ,{a }}③ { X , φ,{a },{b },{a ,b }} ④ {X ,φ }答案:②35、离散空间的任一子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭 答案:③36、平庸空间的任一非空真子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭 答案:④37、实数空间R 中的任一单点集是 ( )① 开集 ② 闭集 ③ 既开又闭 ④ 非开非闭 答案:②38、实数空间R 的子集A ={1,21,31 ,41,……},则A =( )①φ ② R ③ A ∪{0} ④ A 答案:③39、在实数空间R 中,下列集合是闭集的是( )① 整数集 ② [)b a , ③ 有理数集 ④ 无理数集 答案:①40、在实数空间R 中,下列集合是开集的是( )① 整数集Z ② 有理数集③ 无理数集 ④ 整数集Z 的补集Z '答案:④41、已知{1,2,3}X =上的拓扑{,,{1}}T X φ=,则点1的邻域个数是( )① 1 ② 2 ③ 3 ④ 4 答案:④42、已知{,}X a b =,则X 上的所有可能的拓扑有( )① 1个 ② 2个 ③ 3个 ④ 4个 答案:④43、已知X ={a ,b ,c },则X 上的含有4个元素的拓扑有( )个① 3 ② 5 ③ 7 ④ 9 答案:④44、设(,)T X 为拓扑空间,则下列叙述正确的为 ( )①T , T X φ∈∉ ② T ,T X φ∉∈③当T T '⊂时,T T U U '∈∈ ④ 当T T '⊂时,T T U U '∈∈ 答案:③45、在实数下限拓扑空间R 中,区间[,)a b 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭 答案:③46、设X 是一个拓扑空间,,A B X ⊂,且满足()d A B A ⊂⊂,则B 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭 答案:②47、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,2}A =,则X 的子空间A 的拓扑为( ) ① {,{2},{1,2}}φ=T ② {,,{1},{2},{1,2}}T X φ=③ {,,{1},{2}}T A φ= ④ {,,{1},{2}}T X φ= 答案:③48、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,3}A =,则X 的子空间A 的拓扑为( ) ① {,{1},{3},{1,3}}T φ= ② {,,{1}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ= 答案:②49、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2,3}A =,则X 的子空间A 的拓扑为( ) ① {,{3},{2,3}}φ=T ② {,,{2},{3}}T A φ=③ {,,{2},{3},{2,3}}T X φ= ④ {,,{3}}T X φ= 答案:②50、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1}A =,则X 的子空间A 的拓扑为( ) ① {,{1}}T φ= ② {,,{1,2}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ= 答案:①51、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}T φ= ② {,}T A φ=③ {,,{2}}T X φ= ④ {,,{1,2}}T X φ= 答案:②52、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{3}A =,则X 的子空间A 的拓扑为( ) ① {,{2},{1,2}}T φ= ② {,{},{1,3}}T X φ=③ {,,{3}}T X φ= ④ {,{3}}T φ= 答案:④53、设R 是实数空间,Z 是整数集,则R 的子空间Z 的拓扑为( )① {,}T Z φ= ② ()T P Z = ③ T Z = ④ {}T Z = 答案:②54、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.1P 是X 到1X 的投射,则1P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④55、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.2P 是X 到2X 的投射,则2P 是( ) ① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④56、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.3P 是X 到3X 的投射,则3P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④57、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.4P 是X 到4X 的投射,则4P 是( ) ① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④58、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.5P 是X 到5X 的投射,则5P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④59、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.6P 是X 到6X 的投射,则6P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④60、设1X 和2X 是两个拓扑空间,12X X ⨯是它们的积空间,1A X ⊂,2B X ⊂,则有( ) ① A B A B ⨯≠⨯ ② A B A B ⨯=⨯ ③()A B A B ⨯≠⨯ ④ ()()()A B A B ∂⨯=∂⨯∂答案:②61、有理数集Q 是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对 答案:①62、整数集Z 是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对答案:①63、无理数集是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对答案:①64、设Y 为拓扑空间X 的连通子集,Z 为X 的子集,若Y Z Y ⊂⊂, 则Z 为( )①不连通子集 ② 连通子集 ③ 闭集 ④ 开集答案:②65、设12,X X 是平庸空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是平庸空间③ 平庸空间 ④ 不连通空间答案:③66、设12,X X 是离散空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是离散空间③ 平庸空间 ④ 连通空间答案:①67、设12,X X 是连通空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是连通空间③ 平庸空间 ④ 连通空间答案:④68、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③区间 ④ 以上都不对答案:④69、实数空间R 中的不少于两点的连通子集E 为( )① 开区间 ② 闭区间 ③ 区间 ④ 以上都不对答案:③70、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③ 区间 ④ 区间或一点答案:④71、下列叙述中正确的个数为( )(Ⅰ)单位圆周1S 是连通的; (Ⅱ){0}R -是连通的(Ⅲ)2{(0,0)}R -是连通的 (Ⅳ)2R 和R 同胚① 1 ② 2 ③ 3 ④ 4答案:②二、填空题(每题1分)1、设{,}X a b =,则X 的平庸拓扑为 ;答案:{,}T X φ=2、设{,}X a b =,则X 的离散拓扑为 ;答案:{,,{},{}}T X a b φ= 3、同胚的拓扑空间所共有的性质叫 ; 答案:拓扑不变性质4、在实数空间R 中,有理数集Q 的导集是___________. 答案: R5、)(A d x ∈当且仅当对于x 的每一邻域U 有 答案: ({})U A x φ⋂-≠6、设A 是有限补空间X 中的一个无限子集,则()d A = ;答案:X7、设A 是有限补空间X 中的一个无限子集,则A = ;答案:X8、设A 是可数补空间X 中的一个不可数子集,则()d A = ;答案:X9、设A 是可数补空间X 中的一个不可数子集,则A = ;答案:X10、设{1,2,3X =,X 的拓扑{,,{2},{2,T X φ=,则X 的子集{1,2}A = 的内部为 ;答案:{2}11、设{1,2,3X =,X 的拓扑{,,{1},{2T X φ=,则X 的子集{1,3}A = 的内部为 ;答案:{1}12、设{1,2,3}X =,X 的拓扑{,,{1},{2,T X φ=,则X 的子集{1,2}A = 的内部为 答案:{1}13、设{1,2,3X =,X 的拓扑{,,{2},{2,T X φ=,则X 的子集{1,3}A = 的内部为 ;答案:φ14、设{,,}X a b c =,则X 的平庸拓扑为 ;答案:{,}T X φ=15、设{,,}X a b c =,则X 的离散拓扑为 答案:{,,{},{},{},{,},{,},{,}}T X a b c a b a c b c φ=16、设{1,2,3}X =,X 的拓扑{,,{2},{3},{2T X φ=,则X 的子集{1,3}A = 的内部为 ;答案:{3}17、设{1,2,3}X =,X 的拓扑{,,{1},{3},{1T X φ=,则X 的子集{1,2}A =的内部为 ;答案:{1}18、:f X Y →是拓扑空间X 到Y 的一个映射,若它是一个单射,并且是从X 到它的象集()f X 的一个同胚,则称映射f 是一个 .答案:嵌入19、:f X Y →是拓扑空间X 到Y 的一个映射,如果它是一个满射,并且Y 的拓扑是对于映射f 而言的商拓扑,则称f 是一个 ;答案:商映射20、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个开集U 的象集()f U 是Y 中的一个开集,则称映射f 是一个 答案:开映射21、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个闭集U 的象集()f U 是Y 中的一个闭集,则称映射f 是一个 答案:闭映射22、若拓扑空间X 存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;答案:不连通空间23、若拓扑空间X 存在两个非空的开子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;答案:不连通空间24、若拓扑空间X 存在着一个既开又闭的非空真子集,则X 是一个 答案:不连通空间25、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个 ; 答案:连通子集26、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它在任何一个连续映射下的象所具有,则称这个性质是一个 ;答案:在连续映射下保持不变的性质27、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它的任何一个商空间所具有,则称这个性质是一个 ;答案:可商性质28、若任意1n ≥个拓扑空间12,,,n X X X ,都具有性质P ,则积空间12n X X X ⨯⨯⨯也具有性质P ,则性质P 称为 ;答案:有限可积性质29、设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个 ;答案:不连通空间.三.判断(每题4分,判断1分,理由3分)1、.从离散空间到拓扑空间的任何映射都是连续映射( ) 答案:√理由:设X 是离散空间,Y 是拓扑空间,:f X Y →是连续映射,因为对任意A Y ⊂,都有1)f A X -⊂(,由于X 中的任何一个子集都是开集,从而1()f A -是X 中的开集,所以:f X Y →是连续的.2、设12, T T 是集合X 的两个拓扑,则12 T T ⋂不一定是集合X 的拓扑( )答案:× 理由:因为(1)12, T T 是X 的拓扑,故∈φ,X T 1,∈φ,X T 2,从而∈φ,X 12 T T ⋂; (2)对任意的∈B A ,T 1⋂T 2,则有∈B A ,T 1且∈B A ,T 2,由于T 1, T 2是X 的拓扑,故∈⋂B A T 1且∈⋂B A T 2,从而∈⋂B A T 1⋂T 2;(3)对任意的21T T T ⋂⊂',则21,T T T T ⊂'⊂',由于T 1, T 2是X 的拓扑,从而 U ∈T ’U ∈T 1, U ∈T ’U ∈T 2,故 U ∈T ’U ∈ T 1⋂T 2;综上有T 1⋂T 2也是X 的拓扑.3、从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( )答案:√ 理由:设:f X Y →是任一满足条件的映射,由于Y 是平庸空间,它中的开集只有,Y φ,易知它们在f 下的原象分别是,X φ,均为X 中的开集,从而:f X Y →连续.4、设A 为离散拓扑空间X 的任意子集,则()d A φ= ( )答案:√ 理由:设p 为X 中的任何一点,因为离散空间中每个子集都是开集, 所以{}p 是X 的开子集,且有{}{}()p A p φ-=,即()p d A ∉,从而 ()d A φ=.5、设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( )答案:× 理由:设{}A y =,则对于任意,x X x y ∈≠,x 有唯一的一个邻域X ,且有()y X A x ∈⋂-,从而()X A x φ⋂-≠,因此x 是A 的一个凝聚点,但对于y 的唯一的邻域X ,有()X A y φ⋂-=,所以有()d A X A φ=-≠.6、设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( )答案:√ 理由:对于任意,x X ∈因为A 包含多于一点,从而对于x 的唯一的邻域X ,且有()X A x φ⋂-≠,因此x 是A 的一个凝聚点,即()x d A ∈,所以有()d A X =.7、设X 是一个不连通空间,则X 中存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=( )答案:√理由:设X 是一个不连通空间,设,A B 是X 的两个非空的隔离子集使得A B X ⋃=,显然A B φ=,并且这时有:()()B B X B A B B B =⋂=⋂⋃⋂=从而B 是X 的一个闭子集,同理可证A 是X 的一个闭子集,这就证明了,A B 满足,A B A B Xφ⋂=⋃=. 8、若拓扑空间X 中存在一个既开又闭的非空真子集,则X 是一个不连通空间( )√ 理由:这是因为若设A 是X 中的一个既开又闭的非空真子集,令B A '=,则,A B 都是X 中的非空闭子集,它们满足A B X ⋃=,易见,A B 是隔离子集,所以拓扑空间X 是一个不连通空.五.简答题(每题4分)1、设X 是一个拓扑空间,,A B 是X 的子集,且A B ⊂.试说明()()d A d B ⊂. 答案:对于任意()x d A ∈,设U 是x 的任何一个邻域,则有({})U A x φ⋂-≠,由于A B ⊂,从而({})({})U B x U A x φ⋂-⊃⋂-≠,因此()x d B ∈,故()()d A d B ⊂.2、设,,X Y Z 都是拓扑空间.:f X Y →, :g Y Z →都是连续映射,试说明:g f X Z →也是连续映射.答案:设W 是Z 的任意一个开集,由于:g Y Z →是一个连续映射,从而1()g W -是Y 的一个开集,由:f X Y →是连续映射,故11(())f g W --是X 的一开集,因此 111()()(())g f W f g W ---=是X 的开集,所以:g f X Z →是连续映射.3、设X 是一个拓扑空间,A X ⊂.试说明:若A 是一个闭集,则A 的补集A '是一个开集. 答案:对于x A '∀∈,则x A ∉,由于A 是一个闭集,从而x 有一个邻域U 使得({})U A x φ⋂-=,因此U A φ⋂=,即U A '⊂,所以对任何x A '∈,A '是x 的一个邻域,这说明A '是一个开集.4、设X 是一个拓扑空间,A X ⊂.试说明:若A 的补集A '是一个开集,则A 是一个闭集. 答案:设x A ∉,则x A '∈,由于A '是一个开集,所以A '是x 的一个邻域,且满足A A φ'⋂=,因此x A ∉,从而A A ⊃,即有A A =,这说明A 是一个闭集.5、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集]}2[],1[],0{[=Y ,试写出Y 的商拓扑T .答案:]}}1[],0{[]},0{[,,{Y φ= T6、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集]}3[],2[],1{[=Y ,试写出Y 的商拓扑T . 答案:{,,{[3]},{[2],[3]}}T Y φ=7、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[1],[1],[2]}Y =-,试写出Y 的商拓扑T . 答案:{,,{[1]},{[1],[1]}}T Y φ=--8、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[2],[1],[2]}Y =-,试写出Y 的商拓扑T . 答案:{,,{[2]},{[2],[1]}}T Y φ=--9、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[3]}Y =,试写出Y 的商拓扑T . 答案:{,,{[3]},{[2],[3]}}T Y φ=10、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[4]}Y =,试写出Y 的商拓扑T . 答案:{,,{[4]},{[2],[4]}}T Y φ=11、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[1],[2],[4]}Y =-,试写出Y 的商拓扑T . 答案:{,,{[4]},{[2],[4]}}T Y φ=六、证明题(每题8分)1、设:f X Y →是从连通空间X 到拓扑空间Y 的一个连续映射.则()f X 是Y 的一个连通子集. 证明:如果()f X 是Y 的一个不连通子集,则存在Y 的非空隔离子集,A B 使得()f X A B =⋃ …………………………………………… 3分于是11(),()f A f B --是X 的非空子集,并且:111111111(()())(()())(()())(()())(()())f A f B f B f A f A f B f B f A f A B A B φ---------⋂⋃⋂⊂⋂⋃⋂=⋂⋃⋂=所以11(),()f A f B --是X 的非空隔离子集 此外,1111()()()(())f A f B f A B f f X X ----⋃=⋃==,这说明X 不连通,矛盾.从而()f X 是Y 的一个连通子集. ………………………… 8分2、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的开集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.证明:因为B A ,是X 的开集,从而Y B Y A ⋂⋂,是子空间Y 的开集.又因B A Y ⋃⊂中,故)()(Y B Y A Y ⋂⋃⋂= ………………… 4分由于Y 是X 的连通子集,则Y B Y A ⋂⋂,中必有一个是空集. 若Φ=⋂Y B ,则A Y ⊂;若Φ=⋂Y A ,则B Y ⊂………………… 8分3、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的闭集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.证明:因为B A ,是X 的闭集,从而Y B Y A ⋂⋂,是子空间Y 的闭集.又因B A Y ⋃⊂中,故)()(Y B Y A Y ⋂⋃⋂= ………………… 4分由于Y 是X 的连通子集,则Y B Y A ⋂⋂,中必有一个是空集. 若Φ=⋂Y B ,则A Y ⊂;若Φ=⋂Y A ,则B Y ⊂………………… 8分4、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个连通子集. 证明:若Z 是X 的一个不连通子集,则在X 中有非空的隔离子集,A B 使得Z A B =⋃.因此Y A B ⊂⋃ ………………………………… 3分由于Y 是连通的,所以Y A ⊂或者Y B ⊂,如果Y A ⊂,由于Z Y A ⊂⊂,所以Z B A B φ⋂⊂⋂=,因此 B Z B φ=⋂=,同理可证如果Y B ⊂,则A φ=,均与假设矛盾.故Z 也 是X 的一个连通子集. …………………………………………………………………… 8分5、设{}Y γγ∈Γ是拓扑空间X 的连通子集构成的一个子集族.如果Y γγφ∈Γ≠,则Y γγ∈Γ是X 的一个连通子集.证明:若Y γγ∈Γ是X 的一个不连通子集.则X 有非空的隔离子集,A B 使得Y A B γγ∈Γ=⋃………………………………………… 4分任意选取x Y γγ∈Γ∈,不失一般性,设x A ∈,对于每一个γ∈Γ,由于Y γ连通,从而Y Aγγ∈Γ⊂及B φ=,矛盾,所以Y γγ∈Γ是连通的. ………………………………………… 8分6、设A 是拓扑空间X 的一个连通子集,B 是X 的一个既开又闭的集合.证明:如果A B φ⋂≠,则A B ⊂.证明:若B X =,则结论显然成立.下设B X ≠,由于B 是X 的一个既开又闭的集合,从而A B ⋂是X 的子空间A 的一个既开又闭的子集………………………………… 4分由于A B φ⋂≠及A 连通,所以A B A ⋂=,故A B ⊂.………… 8分7、设A 是连通空间X 的非空真子集. 证明:A 的边界()A φ∂≠.证明:若()A φ∂=,由于()A A A --'∂=⋂,从而()()()()A A A A A A A A A A φ------'''''=⋂=⋂⋂⋃=⋂⋃⋂,故, A A '是X 的隔离子集 ………………………………………… 4分 因为A 是X 的非空真子集,所以A 和A '均非空,于是X 不连通,与题设矛盾.所以()A φ∂≠. ……………………………………………… 8分。

点集拓扑学期末复习材料

点集拓扑学期末复习材料

第五章相关可数性的公义① 几种可数性的关系定理每一个知足第二可数性公义的空间都知足第一可数性公义。

证明:设 X 是一个知足第二可数性公义的空间,Β是它的一个可数基。

对于每一个x∈ X,依据定理,B x={B∈B | x∈B}是点x处的一个邻域基,它是 B 的一个子族所以是可数族.于是X 在点 x 处有可数邻域基B x.定理每一个知足第二可数性公义的空间都是可分空间.证明:设 X 是一个知足第二可数性公义的空间, B 是它的一个可数基.在 B 中的每一个非空元素 B 中随意取定一个点x B B .令 D= x B| B B | B这是一个可数集.因为 X 中的每一个非空开集都可以表示为 B 中若干个元素(其中自然起码会有一个不是空集)之并,所以这个非空开集必定与 D 有非空的交,所以可数集 D 是 X 的一个浓密子集.定理( Lindel?ff 定理)任何一个知足第二可数性公义的空间都是Lindel?ff 空间.② 可数性的定义定义一个拓扑空间假如有一个可数基,则称这个拓扑空间是一个知足第二可数性公义的空间,或简称为 A2空间。

定义一个拓扑空间假如在它的每一点处有一个可数邻域基,则称这个拓扑空间是一个知足第一可数性公义的空间或简称为A1空间。

定义设 X 是一个拓扑空间,D X .假如D X ,则称D是X的一个浓密子集.定义设 X 是一个拓扑空间,假如X 中有一个可数的浓密子集,则称 X 是一个可分空间.定义设 A 是一个集族, B 是一个会合.假如A A B 则称集族A是会合B的一个覆而且当 A 是可数族或有限族时,分别称集族 A 是会合 B 的一个可数覆盖或有限覆盖.设集族 A 是会合 B 的一个覆盖.假如集族 A 的一个子族A1 也是会合 B 的覆盖,则称集族A1 是覆盖 A(对于会合B)的一个子覆盖.设 X 是一个拓扑空间.假如由X 中开(闭)子集组成的集族 A 是 X 的子集 B 的一个覆盖,则称集族 A 是会合 B 的一个开(闭)覆盖.定义设X是一个拓扑空间.假如X 的每一个开覆盖都有一个可数子覆盖,则称拓扑空间X 是一个 Lindel ?ff 空间.③ 可数性与序列定理设 X 是一个拓扑空间.假如在 x∈ X 处有一个可数邻域基,则在点 x 处有一个可数邻域基Ui i Z使得对于任何 i Z有 U i U i 1,即U 1 U 2 ......U i...定理设 X 是一个知足第一可数性公义的空间, A X .则点x∈X是会合A的一个凝集点的充足必需条件是在会合A-{x}中有一个序列收敛于x.④ 性质Ⅰ. 拓扑不变性定理设X和Y是两个拓扑空间,f: X→ Y 是一个满的连续开映照.假如X 知足第二可数性公理(知足第一可数性公义),则y也知足第二可数性公义(知足第一可数性公义).Ⅱ. 遗传性定理知足第二可数性公义(知足第一可数性公义)的空间的任何一个子空间是知足第二可数性公义(知足第一可数性公义)的空间.定理Lindeloff 空间的每一个闭子空间都是Lindeloff 空间。

拓扑学复习题与参考答案精讲

拓扑学复习题与参考答案精讲

拓扑学复习题与参考答案精讲点集拓扑学练习题一、单项选择题(每题2分)1、已知{,,,,}X a b c d e =,下列集族中,()是X 上的拓扑.① {,,{},{,},{,,}}X a a b a c e φ=T② {,,{,,},{,,},{,,,}}X a b c a b d a b c e φ=T③ {,,{},{,}}X a a b φ=T④ {,,{},{},{},{},{}}X a b c d e φ=T2、设{,,}X a b c =,下列集族中,()是X 上的拓扑.① {,,{},{,},{}}X a a b c φ=T ② {,,{},{,},{,}}X a a b a c φ=T③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T3、已知{,,,}X a b c d =,下列集族中,()是X 上的拓扑.① {,,{},{,},{,,}}X a a b a c dφ=T ② {,,{,,},{,,}}X a b c a b d φ=T③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{}}X a b φ=T4、设{,,}X a b c =,下列集族中,()是X 上的拓扑.① {,,{},{},{,}}X b c a b φ=T ② {,,{},{},{,},{,}}X a b a b a c φ=T③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T5、已知{,,,}X a b c d =,下列集族中,()是X 上的拓扑.① {,,{,},{,,}}X a b a c d φ=T ② {,,{,},{,,}}X a b a c d φ=T③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{},{,}}X a c a c φ=T6、设{,,}X a b c =,下列集族中,()是X 上的拓扑.① {,,{},{},{,}}X a b b c φ=T ② {,,{,},{,}}X a b b c φ=T③ {,,{},{,}}X a a c φ=T ④ {,,{},{},{}}X a b c φ=T7、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =()①φ ② X ③ {}b ④ {,,}b c d8、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{,,}b c d =()①φ ② X ③ {}b ④ {,,}b c d9、已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}a =()①φ ② X ③ {}a ④ {}b10、已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}b =()①φ ② X ③ {}a ④ {}b11、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}a =()①φ ② X ③ {,}a b ④ {,,}b c d12、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}c =()①φ ② X ③ {,}a c ④ {,,}b c d13、设{,,,}X a b c d =,拓扑{,,{},{,,}X a b c d φ=T ,则X 的既开又闭的非空真子集的个数为()① 1 ② 2 ③ 3 ④ 414、设{,,}X a b c =,拓扑{,,{},{,}}X a b c φ=T ,则X 的既开又闭的非空真子集的个数为()① 1 ② 2 ③ 3 ④ 415、设{,,}X a b c =,拓扑{,,{},{,}}X b b c φ=T ,则X 的既开又闭的非空真子集的个数为()① 0 ② 1 ③ 2 ④ 316、设{,}X a b =,拓扑{,,{}}X b φ=T ,则X 的既开又闭的子集的个数为()① 0 ② 1 ③ 2 ④ 317、设{,}X a b =,拓扑{,,{},{}}X a b φ=T ,则X 的既开又闭的子集的个数为()① 1 ② 2 ③ 3 ④ 418、设{,,}X a b c =,拓扑{,,{},{},{,},{,}}X a b a b b c φ=T ,则X 的既开又闭的非空真子集的个数为()① 1 ② 2 ③ 3 ④ 419、在实数空间中,有理数集Q 的内部Q 是()① φ ② Q ③ R -Q ④ R20、在实数空间中,有理数集Q 的边界()Q ?是()① φ ② Q ③ R -Q ④ R21、在实数空间中,整数集Z 的内部Z 是()① φ ② Z ③ R -Z ④ R22、在实数空间中,整数集Z 的边界()Z ?是()① φ ② Z ③ R -Z ④ R23、在实数空间中,区间[0,1)的边界是()① φ ② [0,1] ③ {0,1} ④ (0,1)24、在实数空间中,区间[2,3)的边界是()① φ ② [2,3] ③ {2,3} ④ (2,3)25、在实数空间中,区间[0,1)的内部是()① φ ② [0,1] ③ {0,1} ④ (0,1)26、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中错误的是()① ()()()d A B d A d B ?=? ② A B A B ?=?③ ()()()d A B d A d B ?=? ④ A A =27、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是()① ()()()d A B d A d B ?=? ② A B A B -=-③ ()()()d A B d A d B ?=? ④ A A =28、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是()① ()d A B A B ?=? ② A B A B -=-③ ()()()d A B d A d B ?=? ④ (())()d d A A d A ??29、已知X 是一个离散拓扑空间,A 是X 的子集,则下列结论中正确的是()① ()d A φ= ② ()d A X A =-③ ()d A A = ④ ()d A X =30、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中不正确的是()① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X A =-③ 若A={12,x x },则()d A X = ④ 若A X ≠, 则()d A X ≠31、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中正确的是()① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X =③ 若A={12,x x },则()d A X A =- ④ 若12{,}A x x =,则()d A A =32、设{,,,}X a b c d =,令{{,,},{},{}}a b c c d =B ,则由B 产生的X 上的拓扑是()① { X ,φ,{c },{d },{c ,d },{a ,b ,c }}② {X ,φ,{c },{d },{c ,d }}③ { X ,φ,{c },{a ,b ,c }}④ { X ,φ,{d },{b ,c },{b ,d },{b ,c ,d }}33、设X 是至少含有两个元素的集合,p X ∈,{|}{}G X p G φ=?∈?T 是X 的拓扑,则()是T 的基.① {{,}|{}}B p x x X p =∈- ② {{}|}B x x X =∈③ {{,}|}B p x x X =∈ ④ {{}|{}}B x x X p =∈-34、设{,,}X a b c =,则下列X 的拓扑中()以{,,{}}S X a φ=为子基.① { X , φ,{a },{a ,c }} ② {X , φ,{a }}③ { X , φ,{a },{b },{a ,b }} ④ {X ,φ }35、离散空间的任一子集为( )① 开集② 闭集③ 即开又闭④ 非开非闭36、平庸空间的任一非空真子集为( )① 开集② 闭集③ 即开又闭④ 非开非闭37、实数空间R 中的任一单点集是 ( )① 开集② 闭集③ 既开又闭④ 非开非闭38、实数空间R 的子集A ={1,21,31 ,41,……},则A =()①φ ② R ③ A ∪{0} ④ A39、在实数空间R 中,下列集合是闭集的是()① 整数集② [)b a , ③ 有理数集④ 无理数集40、在实数空间R 中,下列集合是开集的是()① 整数集Z ② 有理数集③ 无理数集④ 整数集Z 的补集Z '41、已知{1,2,3}X =上的拓扑{,,{1}}T X φ=,则点1的邻域个数是()① 1 ② 2 ③ 3 ④ 442、已知{,}X a b =,则X 上的所有可能的拓扑有()① 1个② 2个③ 3个④ 4个43、已知X ={a ,b ,c },则X 上的含有4个元素的拓扑有()个① 3 ② 5 ③ 7 ④ 944、设(,)T X 为拓扑空间,则下列叙述正确的为 ( )①T , T X φ∈? ② T ,T X φ?∈③当T T '?时,T T U U '∈∈ ④ 当T T '?时,T T U U '∈∈45、在实数下限拓扑空间R 中,区间[,)a b 是()① 开集② 闭集③ 既是开集又是闭集④ 非开非闭46、设X 是一个拓扑空间,,A B X ?,且满足()d A B A ??,则B 是()① 开集② 闭集③ 既是开集又是闭集④ 非开非闭47、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,2}A =,则X 的子空间A的拓扑为( )① {,{2},{1,2}}φ=T ② {,,{1},{2},{1,2}}T X φ=③{,,{1},{2}}T A φ= ④ {,,{1},{2}}T X φ=48、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,3}A =,则X 的子空间A的拓扑为( )① {,{1},{3},{1,3}}T φ= ② {,,{1}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ=49、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2,3}A =,则X 的子空间A的拓扑为( )① {,{3},{2,3}}φ=T ② {,,{2},{3}}T A φ=③ {,,{2},{3},{2,3}}T X φ= ④ {,,{3}}T X φ=50、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1}A =,则X 的子空间A 的拓扑为( )① {,{1}}T φ= ② {,,{1,2}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ=51、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}T φ= ② {,}T A φ=③ {,,{2}}T X φ= ④ {,,{1,2}}T X φ=52、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{3}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}T φ= ② {,{},{1,3}}T X φ=③ {,,{3}}T X φ= ④ {,{3}}T φ=53、设R 是实数空间,Z 是整数集,则R 的子空间Z 的拓扑为()① {,}T Z φ= ② ()T P Z =③ T Z = ④ {}T Z =54、设126X X X X =是拓扑空间126,,,X X X 的积空间.1P 是X 到1X 的投射,则1P 是()① 单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射55、设126X X X X =是拓扑空间126,,,X X X 的积空间.2P 是X 到2X 的投射,则2P 是()① 单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射56、设126X X X X =是拓扑空间126,,,X X X 的积空间.3P 是X 到3X 的投射,则3P 是()① 单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射57、设126X X X X =是拓扑空间126,,,X X X 的积空间.4P 是X 到4X 的投射,则4P 是()① 单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射58、设126X X X X =是拓扑空间126,,,X X X 的积空间.5P 是X 到5X 的投射,则5P 是()① 单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射59、设126X X X X =是拓扑空间126,,,X X X 的积空间.6P 是X 到6X 的投射,则6P 是()① 单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射60、设1X 和2X 是两个拓扑空间,12X X ?是它们的积空间,1A X ?,2B X ?,则有()① A B A B ?≠? ② A B A B ?=?③()A B A B ?≠? ④ ()()()A B A B ??=61、有理数集Q 是实数空间R 的一个()① 不连通子集② 连通子集③ 开集④ 以上都不对62、整数集Z 是实数空间R 的一个()① 不连通子集② 连通子集③ 开集④ 以上都不对63、无理数集是实数空间R 的一个()① 不连通子集② 连通子集③ 开集④ 以上都不对64、设Y 为拓扑空间X 的连通子集,Z 为X 的子集,若Y Z Y ??, 则Z 为( )①不连通子集② 连通子集③ 闭集④ 开集65、设12,X X 是平庸空间,则积空间12X X ?是()① 离散空间② 不一定是平庸空间③ 平庸空间④ 不连通空间66、设12,X X 是离散空间,则积空间12X X ?是()① 离散空间② 不一定是离散空间③ 平庸空间④ 连通空间67、设12,X X 是连通空间,则积空间12X X ?是()① 离散空间② 不一定是连通空间③ 平庸空间④ 连通空间68、实数空间R 中的连通子集E 为( )① 开区间② 闭区间③区间④ 以上都不对69、实数空间R 中的不少于两点的连通子集E 为( )① 开区间② 闭区间③ 区间④ 以上都不对70、实数空间R 中的连通子集E 为( )① 开区间② 闭区间③ 区间④ 区间或一点71、下列叙述中正确的个数为()(Ⅰ)单位圆周1S 是连通的;(Ⅱ){0}R -是连通的(Ⅲ)2{(0,0)}R -是连通的(Ⅳ)2R 和R 同胚① 1 ② 2 ③ 3 ④ 472、实数空间R ( )① 仅满足第一可数性公理② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理④ 以上都不对73、整数集Z 作为实数空间R 的子空间()① 仅满足第一可数性公理② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理④ 以上都不对74、有理数集Q 作为实数空间R 的子空间()① 仅满足第一可数性公理② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理④ 以上都不对75、无理数集作为实数空间R 的子空间()① 仅满足第一可数性公理② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理④ 以上都不对76、正整数集Z +作为实数空间R 的子空间()① 仅满足第一可数性公理② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理④ 以上都不对77、负整数集Z -作为实数空间R 的子空间()① 仅满足第一可数性公理② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理④ 以上都不对78、2维欧氏间空间2R ()① 仅满足第一可数性公理② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理④ 以上都不对79、3维欧氏间空间3R ()① 仅满足第一可数性公理② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理④ 以上都不对80、下列拓扑学的性质中,不具有可遗传性的是()① 平庸性② 连通性③ 离散性④ 第一可数性公理81、下列拓扑学的性质中,不具有可遗传性的是()① 第一可数性公理② 连通性③ 第二可数性公理④ 平庸性82、下列拓扑学的性质中,不具有可遗传性的是()① 第一可数性公理② 可分性③ 第二可数性公理④ 离散性83、下列拓扑学的性质中,不具有可遗传性的是()① 平庸性② 可分性③ 离散性④ 第二可数性公理84、设X 是一个拓扑空间,若对于,,x y X x y ?∈≠,均有{}{}x y ≠,则X 是( )① 0T 空间② 1T 空间③ 2T 空间④ 以上都不对85、设{1,2}X =,{,,{1}}X φ=T ,则(,)X T 是( )① 0T 空间② 1T 空间③ 2T 空间④ 以上都不对86、设{1,2}X =,{,,{2}}X φ=T ,则(,)X T 是( )① 0T 空间② 1T 空间③ 2T 空间④ 道路连通空间87、设{1,2,3}X =,{,,{1}}X φ=T ,则(,)X T 是( )① 0T 空间② 1T 空间③ 2T 空间④ 以上都不对88、设{1,2,3}X =,{,,{23}}X φ=,T ,则(,)X T 是( )① 0T 空间② 1T 空间③ 2T 空间④ 以上都不对89、设{1,2,3}X =,{,,{13}}X φ=,T ,则(,)X T 是( )① 0T 空间② 1T 空间③ 2T 空间④ 以上都不对90、设{1,2,3}X =,{,,{12}}X φ=,T ,则(,)X T 是( )① 0T 空间② 1T 空间③ 2T 空间④ 以上都不对91、设{1,2,3}X =,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( )①0T 空间② 1T 空间③ 2T 空间④ 以上都不对92、设X 是一个拓扑空间,若X 的每一个单点集都是闭集,则X 是()①正则空间②正规空间③ 1T 空间④ 4T 空间93、设X 是一个拓扑空间,若X 的每一个有限子集都是闭集,则X 是()①正则空间②正规空间③ 1T 空间④ 4T 空间94、设X 是一个拓扑空间,若对x X ?∈及x 的每一个开邻域U ,都存在x 的一个开邻域V ,使得V U ?,则X 是()①正则空间②正规空间③ 1T 空间④ 4T 空间95、设X 是一个拓扑空间,若对X 的任何一个闭集A 及A 的每一个开邻域U ,都存在A的一个开邻域V ,使得V U ?,则X 是()①正则空间②正规空间③ 1T 空间④ 4T 空间96、设{1,23}X =,,{,,{1},{23}}X φ=,T ,则(,)X T 是( ) ①0T 空间② 1T 空间③ 2T空间④ 正规空间97、设{1,23}X =,,{,,{2},{13}}X φ=,T ,则(,)X T 是( ) ①0T 空间② 1T 空间③ 2T 空间④ 正规空间98、设{1,23}X =,,{,,{3},{12}}X φ=,T ,则(,)X T 是( )①0T 空间② 1T 空间③ 2T 空间④ 正则空间99、设{1,23}X =,,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( )①2T 空间② 正则空间③ 4T 空间④ 正规空间100、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是( )①2T 空间② 正则空间③ 4T 空间④ 正规空间101、设{1,23}X =,,{,,{2},{3},{2,3}}X φ=T ,则(,)X T 是( )①2T 空间② 正则空间③ 4T 空间④ 正规空间102、若拓扑空间X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个()① 连通空间② 道路连通空间③ 紧致空间④ 可分空间103、紧致空间中的每一个闭子集都是()① 连通子集② 道路连通子集③ 紧致子集④ 以上都不对104、Hausdorff 空间中的每一个紧致子集都是()① 连通子集② 开集③ 闭集④ 以上都不对105、紧致的Hausdorff 空间中的紧致子集是()① 连通子集② 开集③ 闭集④ 以上都不对106、拓扑空间X 的任何一个有限子集都是()① 连通子集② 紧致子集③ 非紧致子集④ 开集107、实数空间R 的子集{1,2,3}A =是()① 连通子集② 紧致子集③开集④ 非紧致子集108、实数空间R 的子集{1,2,3,4}A =是()① 连通子集② 紧致子集③开集④ 非紧致子集109、如果拓扑空间X 的每个紧致子集都是闭集,则X 是()① 1T 空间② 紧致空间③ 可数补空间④ 非紧致空间二、填空题(每题2分)1、设{,}X a b =,则X 的平庸拓扑为 ;2、设{,}X a b =,则X 的离散拓扑为 ;3、同胚的拓扑空间所共有的性质叫 ;4、在实数空间R 中,有理数集Q 的导集是___________.5、)(A d x ∈当且仅当对于x 的每一邻域U 有 ;6、设A是有限补空间X中的一个无限子集,则()d A= ;7、设A是有限补空间X中的一个无限子集,则A= ;8、设A是可数补空间X中的一个不可数子集,则()d A= ;9、设A是可数补空间X中的一个不可数子集,则A= ;10、设{1,2,3}X=,X的拓扑{,,{2},{2,3}}=,则X的子集{1,2}A=的内部T Xφ为 ;11、设{1,2,3}A=的内部=,则X的子集{1,3} X=,X的拓扑{,,{1},{2,3T Xφ为 ;12、设{1,2,3}A=的内部=,则X的子集{1,2}T XφX=,X的拓扑{,,{1},{2,3为 ;13、设{1,2,3}A=的内部=,则X的子集{1,3} X=,X的拓扑{,,{2},{2,3}}T Xφ为 ;14、设{,,}=,则X的平庸拓扑为 ;X a b c15、设{,,}=,则X的离散拓扑为 ;X a b c16、设{1,2,3}A=的内部=,则X的子集{1,3}T XφX=,X的拓扑{,,{2},{3},{2,3}}为 ;17、设{1,2,3}A=的内部=,则X的子集{1,2}T XφX=,X的拓扑{,,{1},{3},{1,3}为 ;18、:f X Y→是拓扑空间X到Y的一个映射,若它是一个单射,并且是从X 到它的象集()f X的一个同胚,则称映射f是一个 .19、:f X Y→是拓扑空间X到Y的一个映射,如果它是一个满射,并且Y的拓扑是对于映射f而言的商拓扑,则称f是一个 .20、设,→是一个映射,若X中任何一个开集U的象集X Y是两个拓扑空间,:f X Yf U是Y中的一个开集,则称映射f是一个;()21、设,→是一个映射,若X中任何一个闭集U的象集X Y是两个拓扑空间,:f X Y()f U 是Y 中的一个闭集,则称映射f 是一个 ;22、若拓扑空间X 存在两个非空的闭子集,A B ,使得,A B A B X φ?=?=,则X 是一个;23、若拓扑空间X 存在两个非空的开子集,A B ,使得,A B A B X φ?=?=,则X 是一个;24、若拓扑空间X 存在着一个既开又闭的非空真子集,则X 是一个;25、设Y 是拓扑空间X 的一个连通子集,Z X ?满足Y Z Y ??,则Z 也是X 的一个 ;26、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它在任何一个连续映射下的象所具有,则称这个性质是一个;27、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它的任何一个商空间所具有,则称这个性质是一个;28、若任意1n ≥个拓扑空间12,,,n X X X ,都具有性质P ,则积空间12n X X X 也具有性质P ,则性质P 称为 ;29、设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ?=,则称X 是一个;30、若12,X X 满足第一可数性公理,则积空间12X X ?满足 ;31、若12,X X 满足第二可数性公理,则积空间12X X ?也满足 ;32、如果一个拓扑空间具有性质P ,那么它的任何一个子空间也具有性质P ,则称性质P 为 ;33、设D 是拓扑空间X 的一个子集,且D X =,则称D 是X 的一个;34、若拓扑空间X 有一个可数稠密子集,则称X 是一个;35、设X 是一个拓扑空间,如果它的每一个开覆盖都有一个可数子覆盖,则称X 是一个;36、如果一个拓扑空间具有性质P ,那么它的任何一个开子空间也具有性质P ,则称性质P 为 ;37、如果一个拓扑空间具有性质P ,那么它的任何一个闭子空间也具有性质P ,则称性质P 为 ;38、设X 是一个拓扑空间,如果则称X 是一个0T 空间;39、设X 是一个拓扑空间,如果则称X 是一个1T 空间;40、设X 是一个拓扑空间,如果则称X 是一个2T 空间;41、正则的1T 空间称为;42、正规的1T 空间称为;43、完全正则的1T 空间称为;44、设X 是一个拓扑空间.如果X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个 .45、设X 是一个拓扑空间,Y 是X 的一个子集.如果Y 作为X 的子空间是一个紧致空间,则称Y 是拓扑空间X 的一个 .46、设X 是一个拓扑空间. 如果X 的每一个可数开覆盖都有有限子覆盖,则称拓扑空间X 是一个 .47、设X 是一个拓扑空间. 如果X 的每一个无限子集都有凝聚点,则称拓扑空间X 是一个 .48、设X 是一个拓扑空间. 如果X 中的每一个序列都有一个收敛的子序列,则称拓扑空间X 是一个 .三.判断(每题3分,判断1分,理由2分)1、从离散空间到拓扑空间的任何映射都是连续映射( )2、设12, T T 是集合X 的两个拓扑,则12 T T ?不一定是集合X 的拓扑( )3、从拓扑空间X 到平庸空间Y 的任何映射都是连续映射()4、设A 为离散拓扑空间X 的任意子集,则()d A φ= ()5、设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ()6、设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ()7、设X 是一个不连通空间,则X 中存在两个非空的闭子集,A B ,使得,A B A B X φ?=?=()8、若拓扑空间X 中存在一个既开又闭的非空真子集,则X 是一个不连通空间( )9、设拓扑空间X 满足第二可数性公理,则X 满足第一可数性公理()10、若拓扑空间X 满足第二可数性公理,则X 的子空间Y 也满足第二可数性公理()11、若拓扑空间X 满足第一可数性公理,则X 的子空间Y 也满足第一可数性公理()12、设{1,2,3}X =,{,,{2},{3},{2,3}}X φ=T ,则(,)X T 是3T 空间.( )13、设{1,2,3}X =,{,,{1},{2},{1,2}}T X φ=,则(,)X T 是3T 空间.( )14、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是1T 空间.( )15、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是4T 空间.( )16、3T 空间一定是2T 空间.()17、4T 空间一定是3T 空间.()18、设,A B 是拓扑空间X 的两个紧致子集,则A B ?是一个紧致子集.( )19、Hausdorff 空间中的每一个紧致子集都是闭集.( )四.名词解释(每题2分)1.同胚映射2、集合A 的内点3、集合A 的内部4.拓扑空间(,)T X 的基5.闭包6、序列7、导集8、不连通空间9、连通子集10、不连通子集11、1 A 空间12、2 A 空间13、可分空间14、0T 空间:15、1T 空间:16、2T 空间:17、正则空间:18、正规空间:19、完全正则空间:20、紧致空间21、紧致子集22、可数紧致空间23、列紧空间24、序列紧致空间五.简答题(每题4分)1、设X 是一个拓扑空间,,A B 是X 的子集,且A B ?.试说明()()dA dB ?.2、设,,X Y Z 都是拓扑空间.:f X Y →, :g Y Z →都是连续映射,试说明:g f X Z →也是连续映射.3、设X 是一个拓扑空间,A X ?.试说明:若A 是一个闭集,则A 的补集A '是一个开集.4、设X 是一个拓扑空间,A X ?.试说明:若A 的补集A '是一个开集,则A 是一个闭集.5、在实数空间R 中给定如下等价关系:~x y ?)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集]}2[],1[],0{[=Y ,试写出Y 的商拓扑T .6、在实数空间R 中给定如下等价关系:~x y ?]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集]}3[],2[],1{[=Y ,试写出Y 的商拓扑T . 7、在实数空间R 中给定如下等价关系:~x y ?)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[1],[1],[2]}Y =-,试写出Y 的商拓扑T .8、在实数空间R 中给定如下等价关系:~x y ?)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[2],[1],[2]}Y =-,试写出Y 的商拓扑T .9、在实数空间R 中给定如下等价关系:~x y ?]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[3]}Y =,试写出Y 的商拓扑T . 10、在实数空间R 中给定如下等价关系:~x y ?]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[4]}Y =,试写出Y 的商拓扑T . 11、在实数空间R 中给定如下等价关系:~x y ?]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[1],[2],[4]}Y =-,试写出Y 的商拓扑T .12、离散空间是否为2A 空间?说出你的理由.13、试说明实数空间R 是可分空间.14、试说明每一个度量空间都满足第一可数性公理.15、设X 是一个1T 空间,试说明X 的每一个单点集是闭集.16、设X 是一个拓扑空间,若X 的每一个单点集都是闭集,试说明X 是一个1T 空间.17、设(,)X T 是一个1T 空间,∞是任何一个不属于X 的元素.令*{}X X =?∞和*X =?*T T {},试说明拓扑空间*(,)X *T 是一个0T 空间.18、若X 是一个正则空间,试说明:对x X ?∈及x 的每一个开邻域U ,都存在x 的一个开邻域V ,使得V U ?.19、若X 是一个正规空间,试说明:对X 的任何一个闭集A 及A 的每一个开邻域U ,都存在A 的一个开邻域V ,使得V U ?.20、试说明1T 空间X 的任何一个子集的导集都是闭集.21、试说明紧致空间X 的无穷子集必有凝聚点.22、如果X Y ?是紧致空间,则X 是紧致空间.23、如果X Y ?是紧致空间,则Y 是紧致空间.24、试说明紧致空间X 的每一个闭子集Y 都是紧致子集.六、证明题(每题8分)1、设:f X Y →是从连通空间X 到拓扑空间Y 的一个连续映射.则()f X 是Y 的一个连通子集.2、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的开集使得B A Y ??,则或者A Y ?,或者B Y ?.3、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的闭集使得B A Y ??,则或者A Y ?,或者B Y ?.4、设Y 是拓扑空间X 的一个连通子集,Z X ?满足Y Z Y ??,则Z 也是X 的一个连通子集.5、设{}Y γγ∈Γ是拓扑空间X 的连通子集构成的一个子集族.如果Y γγφ∈Γ≠,则Y γγ∈Γ是X 的一个连通子集.6、设A 是拓扑空间X 的一个连通子集,B 是X 的一个既开又闭的集合.证明:如果A B φ?≠,则A B ?.7、设A 是连通空间X 的非空真子集. 证明:A 的边界()A φ?≠.8、设X 是一个含有不可数多个点的可数补空间.证明X 不满足第一可数性公理.9、设X 是一个含有不可数多个点的有限补空间.证明:X 不满足第一可数性公理.10、设,X Y 是两个拓扑空间,:f X Y →是一个满的连续开映射.X 满足第二可数性公理,证明:Y 也满足第二可数性公理.11、设,X Y 是两个拓扑空间,:f X Y →是一个满的连续开映射.X 满足第一可数性公理,证明:Y 也满足第一可数性公理.12、A 是满足第二可数性公理空间X 的一个不可数集。

点集拓扑学期末考试练习题

点集拓扑学期末考试练习题

点集拓扑学期末考试一、单项选择题(每题1分)1、已知X {a,b,c,d,e},下列集族中,()是X上的拓扑•①T {X, ,{a},{ a,b},{ a,c,e}} ② T {X, ,{a,b, c},{ a,b,d},{ a,b, c,e}}③ T {X, ,{a},{a,b}} ④ T {X, ,{a},{ b},{ c},{ d},{ e}} 答案:③2、设X {a,b,c},下列集族中,()是X上的拓扑•①T{X,,{a},{ a,b},{ c}} ②T{X,,{a},{ a, b},{ a,c}}③T{X,,{a},{ b},{ a,c}} ④T{X,,{a},{ b},{ c}}答案:②3、已知X{a,b,c,d},下列集族中,' ()是X上的拓扑•①T{X,,{a},{ a, b},{ a,c,d}}②T{X, ,{a,b,c},{ a, b, d}}③T{X,,{a},{ b},{ a,c,d}}④T{X, ,{a},{b}}答案:①4、设X {a, b, c},下列集族中,()是X上的拓扑.①T{X,,{b},{ c},{ a,b}}②T{X,,{a},{ b},{ a,b},{ a,c}}③T{X,,{a},{ b},{ a,c}}④T{X,,{a},{ b},{ c}}答案:②5、已知汨X{a,b,c,d},下列集:族中,(()是X上的拓扑•①T{X,,{a,b},{ a,c,d}}②T{X, ,{a,b},{ a,c, d}}③T{X,,{a},{ b},{ a,c,d}}④T{X, ,{a},{ c},{ a,c}}答案:④6、设X{a, b, c},下列集族中,( )是:X上的拓扑•①T{X,,{a},{ b},{ b,c}}②T{X,,{a,b},{ b, c}}③T{X,,{a},{ a, c}}④T{X,,{a},{ b},{ c}}答案:③7、已知X{a,b,c,d},拓扌卜T{X,,{a}},则{b}=()①©②X ③{b}④{b, c, d}答案:8、已知X {a,b,c,d},拓扑T {X, ,{a}},则{b,c,d}=()①© ②X ③{b} 9、 已知X {a,b},拓扑T ①©②X③{a}10、 已知X {a,b},拓扑T ①©②X③{a}④{b, c, d}{X, ,{a}},则面=()④{b}{X, ,{a}},则{b}=()④{b}{X, ,{a}},则面=()④{b, c,d} 答案:②{X, ,{a}},则® =()④{b,c, d} 答案:④13、设X {a,b,c,d},拓扑T {X, ,{a},{ b,c,d}},则X 的既开又闭的非空真子集个数( )①1 ②2 ③3 ④4 答案:② 14、设 X {a,b,c} ,拓扑T {X, ,{a},{ b,c}},则X 的既开又闭的非空真子集的个数为( )①1 ②2 ③3 ④4 答案:②15、设 X {a,b,c} ,拓扑T {X, ,{b},{ b, c}},则X 的既开又闭的非空真子集的个数为 ( )①0 ②1③2④3答案:①16、设 X {a,b}, 拓扑T {X, ,{b}},则X 的既开又闭的子集的个数为( )①0 ②1③2④3答案:③17、设 X {a,b}, 拓扑T {X,,{a},{ b}},则X 的既开又闭的子集的个数为()①1 ②2 ③3 ④4 答案:④18、 设X {a,b,c},拓扑T {X, ,{a},{ b},{ a,b},{ b,c}} , X 的既开又闭的非空真子集个数() ①1②2③3④4答案:②19、 在实数空间中,有理数集Q 的内部Q 。

拓扑学复习题与参考答案

拓扑学复习题与参考答案

点集拓扑学练习题一、单项选择题(每题2分)1、已知{,,,,}X a b c d e =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{,,}}X a a b a c e φ=T② {,,{,,},{,,},{,,,}}X a b c a b d a b c e φ=T③ {,,{},{,}}X a a b φ=T④ {,,{},{},{},{},{}}X a b c d e φ=T2、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{}}X a a b c φ=T ② {,,{},{,},{,}}X a a b a c φ=T③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T3、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{,,}}X a a b a c d φ=T ② {,,{,,},{,,}}X a b c a b d φ=T ③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{}}X a b φ=T4、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{},{,}}X b c a b φ=T ② {,,{},{},{,},{,}}X a b a b a c φ=T ③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T5、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.① {,,{,},{,,}}X a b a c d φ=T ② {,,{,},{,,}}X a b a c d φ=T③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{},{,}}X a c a c φ=T6、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{},{,}}X a b b c φ=T ② {,,{,},{,}}X a b b c φ=T③ {,,{},{,}}X a a c φ=T ④ {,,{},{},{}}X a b c φ=T7、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( )①φ ② X ③ {}b ④ {,,}b c d8、 已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{,,}b c d =( )①φ ② X ③ {}b ④ {,,}b c d9、 已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {}a ④ {}b10、已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}b =( )①φ ② X ③ {}a ④ {}b11、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {,}a b ④ {,,}b c d12、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}c =( )①φ ② X ③ {,}a c ④ {,,}b c d13、设{,,,}X a b c d =,拓扑{,,{},{,,}}X a b c d φ=T ,则X 的既开又闭的非空真子集的个数为( ) ① 1 ② 2 ③ 3 ④ 414、设{,,}X a b c =,拓扑{,,{},{,}}X a b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1 ② 2 ③ 3 ④ 415、设{,,}X a b c =,拓扑{,,{},{,}}X b b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 0 ② 1 ③ 2 ④ 316、设{,}X a b =,拓扑{,,{}}X b φ=T ,则X 的既开又闭的子集的个数为( )① 0 ② 1 ③ 2 ④ 317、设{,}X a b =,拓扑{,,{},{}}X a b φ=T ,则X 的既开又闭的子集的个数为( )① 1 ② 2 ③ 3 ④ 418、设{,,}X a b c =,拓扑{,,{},{},{,},{,}}X a b a b b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1 ② 2 ③ 3 ④ 419、在实数空间中,有理数集Q 的内部Q 是( )① φ ② Q ③ R -Q ④ R20、在实数空间中,有理数集Q 的边界()Q ∂是( )① φ ② Q ③ R -Q ④ R21、在实数空间中,整数集Z 的内部Z 是( )① φ ② Z ③ R -Z ④ R22、在实数空间中,整数集Z 的边界()Z ∂是( )① φ ② Z ③ R -Z ④ R23、在实数空间中,区间[0,1)的边界是( )① φ ② [0,1] ③ {0,1} ④ (0,1)24、在实数空间中,区间[2,3)的边界是( )① φ ② [2,3] ③ {2,3} ④ (2,3)25、在实数空间中,区间[0,1)的内部是( )① φ ② [0,1] ③ {0,1} ④ (0,1)26、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中错误的是( ) ① ()()()d A B d A d B ⋃=⋃ ② A B A B ⋃=⋃③ ()()()d A B d A d B ⋂=⋂ ④ A A =27、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( ) ① ()()()d A B d A d B ⋃=⋃ ② A B A B -=-③ ()()()d A B d A d B ⋂=⋂ ④ A A =28、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( )① ()d A B A B ⋃=⋃ ② A B A B -=-③ ()()()d A B d A d B ⋂=⋂ ④ (())()d d A A d A ⊂⋃29、已知X 是一个离散拓扑空间,A 是X 的子集,则下列结论中正确的是( ) ① ()d A φ= ② ()d A X A =-③ ()d A A = ④ ()d A X =30、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中不正确的是( )① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X A =-③ 若A={12,x x },则()d A X = ④ 若A X ≠, 则()d A X ≠31、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中正确的是( )① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X =③ 若A={12,x x },则()d A X A =- ④ 若12{,}A x x =,则()d A A =32、设{,,,}X a b c d =,令{{,,},{},{}}a b c c d =B ,则由B 产生的X 上的拓扑是( )① { X ,φ,{c },{d },{c ,d },{a ,b ,c }}② {X ,φ,{c },{d },{c ,d }}③ { X ,φ,{c },{a ,b ,c }}④ { X ,φ,{d },{b ,c },{b ,d },{b ,c ,d }}33、设X 是至少含有两个元素的集合,p X ∈,{|}{}G X p G φ=⊂∈⋃T 是X 的拓扑,则( )是T 的基.① {{,}|{}}B p x x X p =∈- ② {{}|}B x x X =∈③ {{,}|}B p x x X =∈ ④ {{}|{}}B x x X p =∈-34、 设{,,}X a b c =,则下列X 的拓扑中( )以{,,{}}S X a φ=为子基.① { X , φ,{a },{a ,c }} ② {X , φ,{a }}③ { X , φ,{a },{b },{a ,b }} ④ {X ,φ }35、离散空间的任一子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭36、平庸空间的任一非空真子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭37、实数空间R 中的任一单点集是 ( )① 开集 ② 闭集 ③ 既开又闭 ④ 非开非闭38、实数空间R 的子集A ={1,21,31 ,41,……},则A =( ) ①φ ② R ③ A ∪{0} ④ A39、在实数空间R 中,下列集合是闭集的是( )① 整数集 ② [)b a , ③ 有理数集 ④ 无理数集40、在实数空间R 中,下列集合是开集的是( )① 整数集Z ② 有理数集③ 无理数集 ④ 整数集Z 的补集Z '41、已知{1,2,3}X =上的拓扑{,,{1}}T X φ=,则点1的邻域个数是( )① 1 ② 2 ③ 3 ④ 442、已知{,}X a b =,则X 上的所有可能的拓扑有( )① 1个 ② 2个 ③ 3个 ④ 4个43、已知X ={a ,b ,c },则X 上的含有4个元素的拓扑有( )个① 3 ② 5 ③ 7 ④ 944、设(,)T X 为拓扑空间,则下列叙述正确的为 ( )①T , T X φ∈∉ ② T ,T X φ∉∈③当T T '⊂时,T T U U '∈∈ ④ 当T T '⊂时,T T U U '∈∈45、在实数下限拓扑空间R 中,区间[,)a b 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭46、设X 是一个拓扑空间,,A B X ⊂,且满足()d A B A ⊂⊂,则B 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭47、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,2}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}φ=T ② {,,{1},{2},{1,2}}T X φ=③ {,,{1},{2}}T A φ= ④ {,,{1},{2}}T X φ=48、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,3}A =,则X 的子空间A 的拓扑为( )① {,{1},{3},{1,3}}T φ= ② {,,{1}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ=49、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2,3}A =,则X 的子空间A的拓扑为( )① {,{3},{2,3}}φ=T ② {,,{2},{3}}T A φ=③ {,,{2},{3},{2,3}}T X φ= ④ {,,{3}}T X φ=50、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1}A =,则X 的子空间A 的拓扑为( )① {,{1}}T φ= ② {,,{1,2}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ=51、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}T φ= ② {,}T A φ=③ {,,{2}}T X φ= ④ {,,{1,2}}T X φ=52、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{3}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}T φ= ② {,{},{1,3}}T X φ=③ {,,{3}}T X φ= ④ {,{3}}T φ=53、设R 是实数空间,Z 是整数集,则R 的子空间Z 的拓扑为( )① {,}T Z φ= ② ()T P Z =③ T Z = ④ {}T Z =54、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.1P 是X 到1X 的投射,则1P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射55、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.2P 是X 到2X 的投射,则2P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射56、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.3P 是X 到3X 的投射,则3P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射57、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.4P 是X 到4X 的投射,则4P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射58、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.5P 是X 到5X 的投射,则5P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射59、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.6P 是X 到6X 的投射,则6P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射60、设1X 和2X 是两个拓扑空间,12X X ⨯是它们的积空间,1A X ⊂,2B X ⊂,则有( ) ① A B A B ⨯≠⨯ ② A B A B ⨯=⨯③()A B A B ⨯≠⨯ ④ ()()()A B A B ∂⨯=∂⨯∂61、有理数集Q 是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对62、整数集Z 是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对63、无理数集是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对64、设Y 为拓扑空间X 的连通子集,Z 为X 的子集,若Y Z Y ⊂⊂, 则Z 为( )①不连通子集 ② 连通子集 ③ 闭集 ④ 开集65、设12,X X 是平庸空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是平庸空间③ 平庸空间 ④ 不连通空间66、设12,X X 是离散空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是离散空间③ 平庸空间 ④ 连通空间67、设12,X X 是连通空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是连通空间③ 平庸空间 ④ 连通空间68、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③区间 ④ 以上都不对69、实数空间R 中的不少于两点的连通子集E 为( )① 开区间 ② 闭区间 ③ 区间 ④ 以上都不对70、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③ 区间 ④ 区间或一点71、下列叙述中正确的个数为( )(Ⅰ)单位圆周1S 是连通的; (Ⅱ){0}R -是连通的(Ⅲ)2{(0,0)}R -是连通的 (Ⅳ)2R 和R 同胚① 1 ② 2 ③ 3 ④ 472、实数空间R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对73、整数集Z 作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对74、有理数集Q 作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对75、无理数集作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对76、正整数集Z +作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对77、负整数集Z -作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对78、2维欧氏间空间2R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对79、3维欧氏间空间3R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对80、下列拓扑学的性质中,不具有可遗传性的是( )① 平庸性 ② 连通性③ 离散性 ④ 第一可数性公理81、下列拓扑学的性质中,不具有可遗传性的是( )① 第一可数性公理 ② 连通性③ 第二可数性公理 ④ 平庸性82、下列拓扑学的性质中,不具有可遗传性的是( )① 第一可数性公理 ② 可分性③ 第二可数性公理 ④ 离散性83、下列拓扑学的性质中,不具有可遗传性的是( )① 平庸性 ② 可分性③ 离散性 ④ 第二可数性公理84、设X 是一个拓扑空间,若对于,,x y X x y ∀∈≠,均有{}{}x y ≠,则X 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对85、设{1,2}X =,{,,{1}}X φ=T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对86、设{1,2}X =,{,,{2}}X φ=T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 道路连通空间87、设{1,2,3}X =,{,,{1}}X φ=T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对88、设{1,2,3}X =,{,,{23}}X φ=,T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对89、设{1,2,3}X =,{,,{13}}X φ=,T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对90、设{1,2,3}X =,{,,{12}}X φ=,T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对91、设{1,2,3}X =,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( )①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对92、设X 是一个拓扑空间,若X 的每一个单点集都是闭集,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间93、设X 是一个拓扑空间,若X 的每一个有限子集都是闭集,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间94、设X 是一个拓扑空间,若对x X ∀∈及x 的每一个开邻域U ,都存在x 的一个开邻域V ,使得V U ⊂,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间95、设X 是一个拓扑空间,若对X 的任何一个闭集A 及A 的每一个开邻域U ,都存在A的一个开邻域V ,使得V U ⊂,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间96、设{1,23}X =,,{,,{1},{23}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 正规空间97、设{1,23}X =,,{,,{2},{13}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 正规空间98、设{1,23}X =,,{,,{3},{12}}X φ=,T ,则(,)X T 是( )①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 正则空间99、设{1,23}X =,,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( )①2T 空间 ② 正则空间 ③ 4T 空间 ④ 正规空间100、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是( )①2T 空间 ② 正则空间 ③ 4T 空间 ④ 正规空间101、设{1,23}X =,,{,,{2},{3},{2,3}}X φ=T ,则(,)X T 是( )①2T 空间 ② 正则空间 ③ 4T 空间 ④ 正规空间102、若拓扑空间X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个()① 连通空间 ② 道路连通空间 ③ 紧致空间 ④ 可分空间103、紧致空间中的每一个闭子集都是( )① 连通子集 ② 道路连通子集 ③ 紧致子集 ④ 以上都不对104、Hausdorff 空间中的每一个紧致子集都是( )① 连通子集 ② 开集 ③ 闭集 ④ 以上都不对105、紧致的Hausdorff 空间中的紧致子集是( )① 连通子集 ② 开集 ③ 闭集 ④ 以上都不对106、拓扑空间X 的任何一个有限子集都是( )① 连通子集 ② 紧致子集 ③ 非紧致子集 ④ 开集107、实数空间R 的子集{1,2,3}A =是( )① 连通子集 ② 紧致子集 ③开集 ④ 非紧致子集108、实数空间R 的子集{1,2,3,4}A =是( )① 连通子集 ② 紧致子集 ③开集 ④ 非紧致子集109、如果拓扑空间X 的每个紧致子集都是闭集,则X 是( )① 1T 空间 ② 紧致空间 ③ 可数补空间 ④ 非紧致空间二、填空题(每题2分)1、设{,}X a b =,则X 的平庸拓扑为 ;2、设{,}X a b =,则X 的离散拓扑为 ;3、同胚的拓扑空间所共有的性质叫 ;4、在实数空间R 中,有理数集Q 的导集是___________.5、)(A d x ∈当且仅当对于x 的每一邻域U 有 ;6、设A是有限补空间X中的一个无限子集,则()d A= ;7、设A是有限补空间X中的一个无限子集,则A= ;8、设A是可数补空间X中的一个不可数子集,则()d A= ;9、设A是可数补空间X中的一个不可数子集,则A= ;10、设{1,2,3}X=,X的拓扑{,,{2},{2,3}}=,则X的子集{1,2}A=的内部T Xφ为 ;11、设{1,2,3}A=的内部=,则X的子集{1,3} X=,X的拓扑{,,{1},{2,3}}T Xφ为 ;12、设{1,2,3}A=的内部=,则X的子集{1,2}T XφX=,X的拓扑{,,{1},{2,3}}为 ;13、设{1,2,3}A=的内部=,则X的子集{1,3} X=,X的拓扑{,,{2},{2,3}}T Xφ为 ;14、设{,,}=,则X的平庸拓扑为 ;X a b c15、设{,,}=,则X的离散拓扑为 ;X a b c16、设{1,2,3}A=的内部=,则X的子集{1,3}T XφX=,X的拓扑{,,{2},{3},{2,3}}为 ;17、设{1,2,3}A=的内部=,则X的子集{1,2}T XφX=,X的拓扑{,,{1},{3},{1,3}}为 ;18、:f X Y→是拓扑空间X到Y的一个映射,若它是一个单射,并且是从X到它的象集()f X的一个同胚,则称映射f是一个 .19、:f X Y→是拓扑空间X到Y的一个映射,如果它是一个满射,并且Y的拓扑是对于映射f而言的商拓扑,则称f是一个 .20、设,→是一个映射,若X中任何一个开集U的象集X Y是两个拓扑空间,:f X Yf U是Y中的一个开集,则称映射f是一个;()21、设,→是一个映射,若X中任何一个闭集U的象集X Y是两个拓扑空间,:f X Y()f U 是Y 中的一个闭集,则称映射f 是一个 ;22、若拓扑空间X 存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;23、若拓扑空间X 存在两个非空的开子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;24、若拓扑空间X 存在着一个既开又闭的非空真子集,则X 是一个 ;25、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个 ;26、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它在任何一个连续映射下的象所具有,则称这个性质是一个 ;27、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它的任何一个商空间所具有,则称这个性质是一个 ;28、若任意1n ≥个拓扑空间12,,,n X X X ,都具有性质P ,则积空间12n X X X ⨯⨯⨯也具有性质P ,则性质P 称为 ;29、设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个 ;30、若12,X X 满足第一可数性公理,则积空间12X X ⨯满足 ;31、若12,X X 满足第二可数性公理,则积空间12X X ⨯也满足 ;32、如果一个拓扑空间具有性质P ,那么它的任何一个子空间也具有性质P ,则称性质P为 ;33、设D 是拓扑空间X 的一个子集,且D X =,则称D 是X 的一个 ;34、若拓扑空间X 有一个可数稠密子集,则称X 是一个 ;35、设X 是一个拓扑空间,如果它的每一个开覆盖都有一个可数子覆盖,则称X 是一个 ;36、如果一个拓扑空间具有性质P ,那么它的任何一个开子空间也具有性质P ,则称性质P 为 ;37、如果一个拓扑空间具有性质P ,那么它的任何一个闭子空间也具有性质P ,则称性质P 为 ;38、设X 是一个拓扑空间,如果则称X 是一个0T 空间;39、设X 是一个拓扑空间,如果则称X 是一个1T 空间;40、设X 是一个拓扑空间,如果则称X 是一个2T 空间;41、正则的1T 空间称为 ;42、正规的1T 空间称为 ;43、完全正则的1T 空间称为 ;44、设X 是一个拓扑空间.如果X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个 .45、设X 是一个拓扑空间,Y 是X 的一个子集.如果Y 作为X 的子空间是一个紧致空间,则称Y 是拓扑空间X 的一个 .46、设X 是一个拓扑空间. 如果X 的每一个可数开覆盖都有有限子覆盖,则称拓扑空间X 是一个 .47、设X 是一个拓扑空间. 如果X 的每一个无限子集都有凝聚点,则称拓扑空间X 是一个 .48、设X 是一个拓扑空间. 如果X 中的每一个序列都有一个收敛的子序列,则称拓扑空间X 是一个 .三.判断(每题3分,判断1分,理由2分)1、从离散空间到拓扑空间的任何映射都是连续映射( )2、设12, T T 是集合X 的两个拓扑,则12 T T ⋂不一定是集合X 的拓扑( )3、从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( )4、设A 为离散拓扑空间X 的任意子集,则()d A φ= ( )5、设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( )6、设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( )7、设X 是一个不连通空间,则X 中存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=( )8、若拓扑空间X 中存在一个既开又闭的非空真子集,则X 是一个不连通空间( )9、设拓扑空间X 满足第二可数性公理,则X 满足第一可数性公理( )10、若拓扑空间X 满足第二可数性公理,则X 的子空间Y 也满足第二可数性公理( )11、若拓扑空间X 满足第一可数性公理,则X 的子空间Y 也满足第一可数性公理( )12、设{1,2,3}X =,{,,{2},{3},{2,3}}X φ=T ,则(,)X T 是3T 空间.( )13、设{1,2,3}X =,{,,{1},{2},{1,2}}T X φ=,则(,)X T 是3T 空间.( )14、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是1T 空间.( )15、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是4T 空间.( )16、3T 空间一定是2T 空间.( )17、4T 空间一定是3T 空间.( )18、设,A B 是拓扑空间X 的两个紧致子集,则A B ⋃是一个紧致子集.( )19、Hausdorff 空间中的每一个紧致子集都是闭集.( )四.名词解释(每题2分)1.同胚映射2、集合A 的内点3、集合A 的内部4.拓扑空间(,)T X 的基5.闭包6、序列7、导集8、不连通空间9、连通子集10、不连通子集11、1 A 空间12、2 A 空间13、可分空间14、0T 空间:15、1T 空间:16、2T 空间:17、正则空间:18、正规空间:19、完全正则空间:20、紧致空间21、紧致子集22、可数紧致空间23、列紧空间24、序列紧致空间五.简答题(每题4分)1、设X 是一个拓扑空间,,A B 是X 的子集,且A B ⊂.试说明()()d A d B ⊂.2、设,,X Y Z 都是拓扑空间.:f X Y →, :g Y Z →都是连续映射,试说明:g f X Z →也是连续映射.3、设X 是一个拓扑空间,A X ⊂.试说明:若A 是一个闭集,则A 的补集A '是一个开集.4、设X 是一个拓扑空间,A X ⊂.试说明:若A 的补集A '是一个开集,则A 是一个闭集.5、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集]}2[],1[],0{[=Y ,试写出Y 的商拓扑T .6、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集]}3[],2[],1{[=Y ,试写出Y 的商拓扑T .7、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[1],[1],[2]}Y =-,试写出Y 的商拓扑T .8、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[2],[1],[2]}Y =-,试写出Y 的商拓扑T .9、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[3]}Y =,试写出Y 的商拓扑T .10、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[4]}Y =,试写出Y 的商拓扑T .11、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[1],[2],[4]}Y =-,试写出Y 的商拓扑T .12、离散空间是否为2A 空间?说出你的理由.13、试说明实数空间R 是可分空间.14、试说明每一个度量空间都满足第一可数性公理.15、设X 是一个1T 空间,试说明X 的每一个单点集是闭集.16、设X 是一个拓扑空间,若X 的每一个单点集都是闭集,试说明X 是一个1T 空间.17、设(,)X T 是一个1T 空间,∞是任何一个不属于X 的元素.令*{}X X =⋃∞和*X =⋃*T T {},试说明拓扑空间*(,)X *T 是一个0T 空间.18、若X 是一个正则空间,试说明:对x X ∀∈及x 的每一个开邻域U ,都存在x 的一个开邻域V ,使得V U ⊂.19、若X 是一个正规空间,试说明:对X 的任何一个闭集A 及A 的每一个开邻域U ,都存在A 的一个开邻域V ,使得V U ⊂.20、试说明1T 空间X 的任何一个子集的导集都是闭集.21、试说明紧致空间X 的无穷子集必有凝聚点.22、如果X Y ⨯是紧致空间,则X 是紧致空间.23、如果X Y ⨯是紧致空间,则Y 是紧致空间.24、试说明紧致空间X 的每一个闭子集Y 都是紧致子集.六、证明题(每题8分)1、设:f X Y →是从连通空间X 到拓扑空间Y 的一个连续映射.则()f X 是Y 的一个连通子集.2、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的开集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.3、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的闭集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.4、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个连通子集.5、设{}Y γγ∈Γ是拓扑空间X 的连通子集构成的一个子集族.如果Y γγφ∈Γ≠,则Y γγ∈Γ是X 的一个连通子集.6、设A 是拓扑空间X 的一个连通子集,B 是X 的一个既开又闭的集合.证明:如果A B φ⋂≠,则A B ⊂.7、设A 是连通空间X 的非空真子集. 证明:A 的边界()A φ∂≠.8、设X 是一个含有不可数多个点的可数补空间.证明X 不满足第一可数性公理.9、设X 是一个含有不可数多个点的有限补空间.证明:X 不满足第一可数性公理.10、设,X Y 是两个拓扑空间,:f X Y →是一个满的连续开映射.X 满足第二可数性公理,证明:Y 也满足第二可数性公理.11、设,X Y 是两个拓扑空间,:f X Y →是一个满的连续开映射.X 满足第一可数性公理,证明:Y 也满足第一可数性公理.12、A 是满足第二可数性公理空间X 的一个不可数集。

点集拓扑学试题(含答案)

点集拓扑学试题(含答案)

点集拓扑学试题(含答案)work Information Technology Company.2020YEAR三.判断(每题4分,判断1分,理由3分)1、.从离散空间到拓扑空间的任何映射都是连续映射( ) 答案:√理由:设X 是离散空间,Y 是拓扑空间,:f X Y →是连续映射,因为对任意A Y ⊂,都有1)f A X -⊂(,由于X 中的任何一个子集都是开集,从而1()f A -是X 中的开集,所以:f X Y →是连续的.2、设12, T T 是集合X 的两个拓扑,则12 T T ⋂不一定是集合X 的拓扑( )答案:× 理由:因为(1)12, T T 是X 的拓扑,故∈φ,X T 1,∈φ,X T 2,从而∈φ,X 12 T T ⋂; (2)对任意的∈B A ,T 1⋂T 2,则有∈B A ,T 1且∈B A ,T 2,由于T 1, T 2是X 的拓扑,故∈⋂B A T 1且∈⋂B A T 2,从而∈⋂B A T 1⋂T 2;(3)对任意的21T T T ⋂⊂',则21,T T T T ⊂'⊂',由于T 1, T 2是X 的拓扑,从而 U ∈T ’U ∈T 1, U ∈T ’U ∈T 2,故 U ∈T ’U ∈ T 1⋂T 2;综上有T 1⋂T 2也是X 的拓扑.3、从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( )答案:√ 理由:设:f X Y →是任一满足条件的映射,由于Y 是平庸空间,它中的开集只有,Y φ,易知它们在f 下的原象分别是,X φ,均为X 中的开集,从而:f X Y →连续.4、设A 为离散拓扑空间X 的任意子集,则()d A φ= ( )答案:√理由:设p 为X 中的任何一点,因为离散空间中每个子集都是开集,所以{}p 是X 的开子集,且有{}{}()p A p φ-=,即()p d A ∉,从而 ()d A φ=.5、设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( )答案:× 理由:设{}A y =,则对于任意,x X x y ∈≠,x 有唯一的一个邻域X ,且有()y X A x ∈⋂-,从而()X A x φ⋂-≠,因此x 是A 的一个凝聚点,但对于y 的唯一的邻域X ,有()X A y φ⋂-=,所以有()d A X A φ=-≠.6、设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( )答案:√ 理由:对于任意,x X ∈因为A 包含多于一点,从而对于x 的唯一的邻域X ,且有()X A x φ⋂-≠,因此x 是A 的一个凝聚点,即()x d A ∈,所以有()d A X =.7、设X 是一个不连通空间,则X 中存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=( )答案:√理由:设X 是一个不连通空间,设,A B 是X 的两个非空的隔离子集使得A B X ⋃=,显然A B φ=,并且这时有:()()B B X B A B B B =⋂=⋂⋃⋂=从而B 是X 的一个闭子集,同理可证A 是X 的一个闭子集,这就证明了,A B 满足,A B A B X φ⋂=⋃=.8、若拓扑空间X 中存在一个既开又闭的非空真子集,则X 是一个不连通空间( )√ 理由:这是因为若设A 是X 中的一个既开又闭的非空真子集,令B A '=,则,A B 都是X 中的非空闭子集,它们满足A B X ⋃=,易见,A B 是隔离子集,所以拓扑空间X 是一个不连通空.五.简答题(每题4分)1、设X 是一个拓扑空间,,A B 是X 的子集,且A B ⊂.试说明()()d A d B ⊂. 答案:对于任意()x d A ∈,设U 是x 的任何一个邻域,则有({})U A x φ⋂-≠,由于A B ⊂,从而({})({})U B x U A x φ⋂-⊃⋂-≠,因此()x d B ∈,故()()d A d B ⊂.2、设,,X Y Z 都是拓扑空间.:f X Y →, :g Y Z →都是连续映射,试说明:g f X Z →也是连续映射.答案:设W 是Z 的任意一个开集,由于:g Y Z →是一个连续映射,从而1()g W -是Y 的一个开集,由:f X Y →是连续映射,故11(())f g W --是X 的一开集,因此111()()(())g f W f g W ---=是X 的开集,所以:g f X Z →是连续映射.3、设X 是一个拓扑空间,A X ⊂.试说明:若A 是一个闭集,则A 的补集A '是一个开集. 答案:对于x A '∀∈,则x A ∉,由于A 是一个闭集,从而x 有一个邻域U 使得({})U A x φ⋂-=,因此U A φ⋂=,即U A '⊂,所以对任何x A '∈,A '是x 的一个邻域,这说明A '是一个开集.4、设X 是一个拓扑空间,A X ⊂.试说明:若A 的补集A '是一个开集,则A 是一个闭集.答案:设x A ∉,则x A '∈,由于A '是一个开集,所以A '是x 的一个邻域,且满足A A φ'⋂=,因此x A ∉,从而A A ⊃,即有A A =,这说明A 是一个闭集.Authorware一、判断题1、Authorware 中设计窗口描述2、移动图标制作动画3、擦出图标的内容4、几何画板中的动画5、关于交互结构的描述6、显示图标的工具面板的描述7、8、显示图标层的描述9、10、显示图标的描述11、关于标志旗的描述12、系统变量的描述(计算图标)13、声音图标的描述14、显示图标中的对象排列二、单项选择1、定义的简称(缩写)2、移动图标的使用3、图标功能的描述4、5.、10、图标的操作(创建,编辑)6、交互结构,交互分支7、文本输入交互8、几何画板常见菜单9、计算图标的使用11、群组图标的操作12、显示模式(模式工具)13、图标操作14、显示图标操作15、交互16、交互17、显示图标中工具箱的操作18、图标的操作三、多项原则移动图标、交互四、填空题1、图标的名称(7-8)2、几何画板(几何变换)(移动,旋转)3、显示图标工具箱中的名称4、移动图标5中类型5、计算图标中运算符的使用五、简答题1、关于移动2、交互结构3、集合画板4、编程一、判断题1、如果为视频文件额外配置声音,那么须用声音图标和电影图标。

点集拓扑复习题

点集拓扑复习题

点集拓扑复习题点集拓扑是数学中的一个分支,它研究的是集合中的点的性质和它们之间的关系。

在学习点集拓扑的过程中,我们经常会遇到一些复习题,通过解答这些题目可以巩固我们对该领域的理解。

下面我将给大家介绍一些常见的点集拓扑复习题。

一、开集与闭集1. 什么是开集和闭集?它们有什么基本性质?开集是指集合中的每个点都有一个邻域完全包含于该集合中。

闭集是指集合的补集是一个开集。

开集和闭集有以下基本性质:- 空集和全集都是既开又闭的。

- 开集的有限并、可数并以及任意并仍然是开集。

- 闭集的有限交、可数交以及任意交仍然是闭集。

2. 证明以下集合是开集或闭集:- (0, 1):开集- [0, 1]:闭集- [0, 1):既不是开集也不是闭集- (0, 1]:既不是开集也不是闭集二、连通性与紧致性1. 什么是连通集与不连通集?它们有什么基本性质?连通集是指集合中的任意两点之间都存在一条连续曲线将它们连接起来。

不连通集则是指存在两个不相交的开集,分别包含集合中的一部分点。

连通集和不连通集有以下基本性质:- 连通集的闭包仍然是连通集。

- 不连通集的闭包是两个不相交的连通集的并集。

- 连通集的子集仍然是连通集。

- 连通集的任意开覆盖都存在一个有限子覆盖。

2. 证明以下集合是连通集或不连通集:- (0, 1):连通集- [0, 1]:连通集- [0, 1):不连通集- (0, 1]:不连通集三、紧致性与序列紧致性1. 什么是紧致集与序列紧致集?它们有什么基本性质?紧致集是指集合的任意开覆盖都存在一个有限子覆盖。

序列紧致集是指集合中的任意序列都存在一个收敛子序列。

紧致集和序列紧致集有以下基本性质:- 紧致集的闭子集仍然是紧致集。

- 有限个紧致集的并集仍然是紧致集。

- 序列紧致集是紧致集。

2. 证明以下集合是紧致集或序列紧致集:- [0, 1]:紧致集,同时也是序列紧致集。

- (0, 1):既不是紧致集也不是序列紧致集。

- [0, 1):既不是紧致集也不是序列紧致集。

点集拓扑讲义期末复习题

点集拓扑讲义期末复习题

一、证明下列是否为拓扑1、Tf={U包含于X|X-U有限}∪{空集}满足①全集、空集包含于Tf②任意A、B∈Tf 若A、B中有一个为空集,A∩B=空集∈T。

若不是,(A∩B)′=A′∪B′,A∪B∈T③设T1∈T,令T2=T1-{空集}。

显然有∪A∈T1(A)=∪A∈T2(A).如果T2=空集,则∪A∈T1(A)=∪A∈T2(A)=空集∈T。

设T2≠空集。

任取A0∈T2.这时(∪A∈T1(A))′=(∪A∈T2(A))′=∪A∈T2(A′)∈A0′是X的一个有限子集,所以∪A∈T1(A) ∈T。

所以为拓扑。

2、Tc={U包含于X|X-U可数}∪{空集}3、T∞={U包含于X|X-U无限}∪{空集}∪{X}二、计算实值标准拓扑R子空间Y=(0,1],子集(0.1/2)=A。

求A在Y、R中的闭包、内部。

Y中:闭包(0,1/2].内部(0,1/2)R中:闭包[0,1/2].内部(0,1/2)三、A包含于Y,Y包含于X,为闭子空间。

若A包含于Y则A为X中闭集。

Y包含于X闭,所以存在X中闭集B使得A=Y∩B(子空间闭集定义),所以Y包含于X 闭,所以A为X中闭集。

四、设A、B、Aa包含于X,证明:1、A包含于B=A的闭包包含于B的闭包。

2、A∪B= A∪B。

3、∪Aa包含∪Aa。

1、五、X、Y有子集A包含于X,B包含于Y,则A*B=A*B六、R:K={1/n|n∈R+}求在T1、T2、T3、T4、T5中的闭包。

七、1、f:X Y连续。

2、任意B∈Y闭,f-1(B)闭。

3、任意A包含于X,f(A)包含于f(A)。

4、任意B包含于Y,f-1(B)包含f-1(B)。

5、任意B包含于Y,f-1(B°)包含于(f-1(B))°证明1~5等价。

八、连续的满的闭映射为商映射。

九、商映射可以既不为开映射又不为闭映射。

十、连通子集在连续映射下的像是联通的。

十一、连通子集的闭包为连通子集。

道路连通则连通,而且R^n中连通就是道路连通.A的闭包是对的,因为任意开覆盖有有限子覆盖,闭包的点可以用无穷点列逼近,自然可以每个点取个领域,组成开覆盖.十二、设A、B为(X,T)的紧致子集,则A∪B为紧致子集。

拓扑期末考试题及答案

拓扑期末考试题及答案

拓扑期末考试题及答案一、选择题(每题2分,共20分)1. 拓扑空间中的开集具有以下哪些性质?A. 空集和整个空间是开集B. 有限个开集的并集是开集C. 任意个开集的并集是开集D. 所有选项都正确答案:D2. 在度量空间中,若集合A是闭集,则其补集是:A. 闭集B. 开集C. 有限集D. 无限集答案:B3. 以下哪个是连续映射的定义?A. 映射的逆像包含所有开集B. 映射的逆像是闭集C. 映射的逆像包含所有闭集D. 映射的逆像包含所有有限集答案:A4. 拓扑空间中的紧性意味着:A. 空间中任意开覆盖都有有限子覆盖B. 空间中任意闭覆盖都有有限子覆盖C. 空间是有限维的D. 空间是局部紧的答案:A5. 什么是紧空间?A. 空间中任意开覆盖都有有限子覆盖B. 空间中任意闭覆盖都有有限子覆盖C. 空间是有限维的D. 空间是局部紧的答案:A6. 在拓扑空间中,连续函数的原像是:A. 开集B. 闭集C. 紧集D. 可数集答案:B7. 什么是连通空间?A. 空间不能被两个非空开集分开B. 空间中任意两点都可以通过一条连续曲线连接C. 空间中任意两点都可以通过一条直线段连接D. 空间中任意两点都可以通过一条曲线连接答案:A8. 什么是局部连通空间?A. 空间中任意点都有一个邻域,该邻域是连通的B. 空间中任意点都有一个邻域,该邻域是紧的C. 空间中任意点都有一个邻域,该邻域是开的D. 空间中任意点都有一个邻域,该邻域是闭的答案:A9. 什么是分离空间?A. 空间中任意两点都可以通过不同的开集分开B. 空间中任意两点都可以通过相同的开集分开C. 空间中任意两点都可以通过不同的闭集分开D. 空间中任意两点都可以通过相同的闭集分开答案:A10. 什么是完备空间?A. 空间中任意序列都有收敛子序列B. 空间中任意序列都是柯西序列C. 空间中任意开覆盖都有有限子覆盖D. 空间中任意闭覆盖都有有限子覆盖答案:A二、简答题(每题10分,共30分)1. 简述什么是邻域系统,并给出邻域系统的基本性质。

点集拓扑期末测试题

点集拓扑期末测试题

一、判断题(每题2分,共10分)1.设T I,T2是集合X的两个拓扑,贝U T i T2不一定是集合X的拓扑。

()2.从拓扑空间X到平庸空间丫的任何映射都是连续映射。

()3.度量空间一定满足第二可数性公理。

()4.完全正则的紧致空间一定是正则空间。

()5.每一个仿紧致的Hausdorff空间都是正则空间,因而也是正规空间。

()二、单选题(每题3分,共30分)1.设X二ab,c?,下列集族中,()是X上的拓扑。

A.T -「X, ,「a)blbc» C. T(.X, Ja,b讥b,c»B.T ={X冲,{a[{a,c}} D. T ={x冲,{a},{b},(c D2.离散空间的任一子集为()。

A.开集B.闭集C.既开又闭D.非开非闭3.设X -X1 X2…X6是拓扑空间X1,X2/ ,X6的积空间。

巳是X到X3的投射,则P3是()。

A.单射B.连续的单射C.满的连续闭映射D.满的连续开映射4.有理数集Q是实数空间R的一个()。

A.不连通子集B.连通子集C.开集D.以上都不对5.设X是一个拓扑空间,A,B是X的子集,则下列关系中错误的是()。

A.d(A B)=d(A)d(B) C. A B =A BB.d(A B)=d(A)d(B) D. A-A6.设X 烏加,T「X,,加,则(X,T)是()。

A. %空间B. T1空间C. T2空间D. T3空间7.设X1,X2是连通空间,则积空间X1 X2是()。

A.离散空间B. 商空间C. 平庸空间D. 连通空间8.若度量空间X的一个子集A中的每一个点都有一个球形邻域包含于A,则称A是度量空间X中的一个()。

A.不连通子集B.开集C.连通子集D.以上都不对9.每一个度量空间都满足()。

A.选择公理B. Tukey引理C.第一可数性公理D. 第二可数性公理10.若拓扑空间X中存在一个既开又闭的非空真子集,则X是一个()。

A.不连通空间B. 连通空间C. 平庸空间D.以上都不对三、填空题(每题3分,共15分)1.设X =「a,b1,贝卩X 的离散拓扑为 ______________________________ 。

《点集拓扑学》期末复习

《点集拓扑学》期末复习

期末复习学了一个学期的点集拓扑,大家对它应当有了更多的了解,更深刻的认识.大家掩卷回忆一下,点集拓扑学的主要内容有哪些?沿着什么思路研究?研究手法是什么?下面把这几个方面的内容理一下,仅供参考.一、点集拓扑学的主要内容:1.一般拓扑空间:(1)任何点集只要定义了拓扑,就成了拓扑空间.任何拓扑空间中均有开集、基、闭集、闭包.任何点集均可能有凝聚点,任何点均有邻域.指定了顺序的元素就成了序列.(这些名词的定义是什么?相互关系是什么?如何判定?)(2)常见的拓扑空间有:度量空间、平庸空间、离散空间、有限补空间、可数补空间等.任何集合均可通过指定开集而构成上述空间.因此一个集合与不同的拓扑(开集族)配对,可以构成不同的拓扑空间.(实数集合可能成为上述空间吗?)(注意:实数集合与实数空间不同.)(3)一般拓扑空间均可以有子空间,任意有限个拓扑空间均可以构成乘积空间.任一拓扑空间中的一个等价关系均可以造出商空间.(这些空间的拓扑是怎样的?或基是怎样的?)2.有个性的拓扑空间:与连通性有关的空间、各可数性公理空间、各分离性公理空间、与紧致性有关的空间、完备度量空间.(1)并不是任何空间都可以成为上述空间的.只有符合上述空间定义的空间才可以成为上述空间.(各类空间之间没有必然的联系)(2)R及是上述空间吗?(3)若有两个空间,之间通过连续映射联系起来,则原象空间的哪些性质可以传递到象空间?(4)上述空间的哪些性质可以遗传给子空间?(或闭遗传?)(5)上述空间的哪些性质可以是有限可积的?3.连通性:(1)§4.1的所有定义,定理均要掌握.以应对判断一个空间的连通性.(2)两种分支的性质.(3)三种连通性之间的关系.(4)R及的连通性.4.可数性:(1)P.149 图表5.1(2)各空间的性质.(特别,空间中序列的性质及如何构造序列?)(3)哪些常见空间是的?是可分的?Lindeloff的?5.分离性:(1)P.171 图表6.1(2)各分离性空间的定义及等价命题.(3)常见空间及的分离性.(4)中序列的极限点,中点集的凝聚点,正规、完全正则空间与连续映射的关系.(5)遗传性、有限可积性、连续映射的保持性等.6.紧致性:(1)P.191、201、204、208、210、212的图表.(2)各空间的定义及等价命题.(3)紧致性与分离性的关系.(4)紧致、可数紧致的等价命题.(5)中的紧致子集.(6)局部紧致、仿紧致只要求定义与联系图.二、思路:不断剖析,将中的性质作为公理搬到一般拓扑空间中来.考察具备怎样的性质的拓扑空间才能具有与相应的性质.及研究各拓扑空间的性质及这些性质的遗传性、有限可积性、连续映射的保持性、拓扑不变性.三、研究手法:集合的运算与逻辑推理.四、收获收获:复习了这些内容后,对点集拓扑学有何了解?研究目的:研究各拓扑空间的性质及这些性质的遗传性、有限可积性、连续映射的保持性、拓扑不变性.感受:原来具有……性质.提高:对逻辑推理性的证明能力有提高?证明的书写能力有提高?五、几个注意点:1.首先,要熟悉所有的定义、定理的内容.2.涉及度量空间,常利用球形邻域.3.有限个开集的交是开集,任意个开集的并是开集.有限个闭集的并是闭集,任意个闭集的交是闭集.4.一个集合的任意个拓扑的交是拓扑,即使有限个拓扑的并也可能不是拓扑.5.拓扑空间中任意个紧致闭子集的交还是紧致子集.有限个紧致子集的并还是紧致子集.6.拓扑空间与它的子集的连通性各自独立.7.不是连续映射所保持的性质,而是拓扑不变的.但是可遗传的,有限可积的.可分空间不可遗传,但是连续映射所保持的,有限可积的.8.Lindeloff空间闭遗传,不可积,但是连续映射所能保持的.紧致空间闭遗传,但是连续映射所能保持的,有限可积的.9.分离性公理空间不是连续映射所保持的,但是拓扑不变的.除正规空间, 是闭遗传外,其余均可遗传. 除正规空间,不可积外,其余均有限可积.均不可商.10.在中构造序列,可利用在x处的邻域基套,在每个中取一点,.就构成序列11.若涉及到连续映射f:X→Y,总是将X中的子集映到Y,或将Y中的子集反射到X.12.常对一个等式或包含关系式两边同取f或或闭包,并注意利用P.23的习题1,2或P.28的定理1.6.3或P.20的定理1.5.213.要对集族构造一个单调上升或单调下降序列,可令:则分别为单调上升或单调下降序列.14.注意拓扑空间{X*,T*},其中X*=X∪{∞},但T*有两种构造法:P.55的习题9与P.142的例5.2.115.注意定义中的措辞:是任给还是存在(有一个).它的反面是什么?(互为反面)16.注意反证法.。

拓扑学期末考试题及答案

拓扑学期末考试题及答案

拓扑学期末考试题及答案拓扑学是一门研究空间性质的数学分支,它关注的是空间中的对象在连续变换下保持不变的性质。

以下是一份模拟的拓扑学期末考试题及答案:# 拓扑学期末考试题一、选择题(每题2分,共20分)1. 以下哪个不是拓扑空间的公理?A. 空集和全空间是开集B. 有限个开集的并集是开集C. 任意个开集的交集是开集D. 任意两个集合的并集是开集答案:D2. 拓扑空间中的连续映射是指:A. 映射的逆像总是开集B. 映射的逆像是闭集C. 映射的逆像总是交集D. 映射的逆像总是并集答案:A3. 以下哪个概念不是拓扑学中的基本概念?A. 邻域B. 极限点C. 稠密性D. 线性无关答案:D二、简答题(每题10分,共30分)1. 简述什么是紧致性,并给出一个紧致空间的例子。

答案:紧致性是拓扑空间中的一种性质,指的是空间中的任意开覆盖都存在有限子覆盖。

一个典型的紧致空间的例子是闭区间 [0, 1],它在实数线上的欧几里得拓扑中是紧致的。

2. 解释什么是连通性,并给出一个连通空间的例子。

答案:连通性是指拓扑空间不能被分为两个非空的分离的开子集。

实数线上的整个空间 R 就是一个连通空间,因为它不能被分为两个不相交的开子集。

3. 什么是同胚映射?请给出一个例子。

答案:同胚映射是一种特殊的连续双射映射,它和它的逆映射都是连续的。

一个典型的同胚映射的例子是单位圆盘与单位球面的同胚映射,它们在拓扑上是相同的。

三、计算题(每题25分,共50分)1. 给定一个拓扑空间 X,证明如果 X 是紧致的,那么它的任意子空间也是紧致的。

答案:假设 X 是紧致的,我们需要证明 X 的任意子空间 Y 也是紧致的。

考虑 Y 的任意开覆盖{U_i ∩ Y},其中 {U_i} 是 X 的开覆盖。

由于 X 是紧致的,存在有限个 U_i1, U_i2, ..., U_in 使得它们的并集覆盖了 X。

显然,这些 U_i 的交集覆盖了 Y,因此 Y 是紧致的。

点集拓扑学期末考试练习题(含答案)

点集拓扑学期末考试练习题(含答案)

点集拓扑学期末考试一、单项选择题(每题1分)1、已知{,,,,}X a b c d e =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{,,}}X a a b a c e φ=T ② {,,{,,},{,,},{,,,}}X a b c a b d a b c e φ=T③ {,,{},{,}}X a a b φ=T ④ {,,{},{},{},{},{}}X a b c d e φ=T 答案:③2、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{}}X a a b c φ=T ② {,,{},{,},{,}}X a a b a c φ=T③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T答案:② 3、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{,,}}X a a b a c d φ=T ② {,,{,,},{,,}}X a b c a b d φ=T③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{}}X a b φ=T答案:① 4、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{},{,}}X b c a b φ=T ② {,,{},{},{,},{,}}X a b a b a c φ=T③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T答案:② 5、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.① {,,{,},{,,}}X a b a c d φ=T ② {,,{,},{,,}}X a b a c d φ=T③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{},{,}}X a c a c φ=T答案:④ 6、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{},{,}}X a b b c φ=T ② {,,{,},{,}}X a b b c φ=T③ {,,{},{,}}X a a c φ=T ④ {,,{},{},{}}X a b c φ=T答案:③ 7、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( )①φ ② X ③ {}b ④ {,,}b c d答案:④8、 已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{,,}b c d =( )①φ ② X ③ {}b ④ {,,}b c d 答案:④9、 已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {}a ④ {}b 答案:②10、已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}b =( )①φ ② X ③ {}a ④ {}b 答案:④11、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {,}a b ④ {,,}b c d 答案:②12、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}c =( )①φ ② X ③ {,}a c ④ {,,}b c d 答案:④13、设{,,,}X a b c d =,拓扑{,,{},{,,}}X a b c d φ=T ,则X 的既开又闭的非空真子集个数( ) ① 1 ② 2 ③ 3 ④ 4 答案:②14、设{,,}X a b c =,拓扑{,,{},{,}}X a b c φ=T ,则X 的既开又闭的非空真子集的个数为( ) ① 1 ② 2 ③ 3 ④ 4 答案:②15、设{,,}X a b c =,拓扑{,,{},{,}}X b b c φ=T ,则X 的既开又闭的非空真子集的个数为( ) ① 0 ② 1 ③ 2 ④ 3 答案:①16、设{,}X a b =,拓扑{,,{}}X b φ=T ,则X 的既开又闭的子集的个数为( )① 0 ② 1 ③ 2 ④ 3 答案:③17、设{,}X a b =,拓扑{,,{},{}}X a b φ=T ,则X 的既开又闭的子集的个数为( ) ① 1 ② 2 ③ 3 ④ 4 答案:④18、设{,,}X a b c =,拓扑{,,{},{},{,},{,}}X a b a b b c φ=T ,X 的既开又闭的非空真子集个数( ) ① 1 ② 2 ③ 3 ④ 4 答案:②19、在实数空间中,有理数集Q 的内部Q 是( )① φ ② Q ③ R -Q ④ R 答案:①20、在实数空间中,有理数集Q 的边界()Q ∂是( )① φ ② Q ③ R -Q ④ R 答案:④21、在实数空间中,整数集Z 的内部Z 是( )① φ ② Z ③ R -Z ④ R 答案:①22、在实数空间中,整数集Z 的边界()Z ∂是( )① φ ② Z ③ R -Z ④ R 答案:②23、在实数空间中,区间[0,1)的边界是( )① φ ② [0,1] ③ {0,1} ④ (0,1) 答案:③24、在实数空间中,区间[2,3)的边界是( )① φ ② [2,3] ③ {2,3} ④ (2,3) 答案:③25、在实数空间中,区间[0,1)的内部是( )① φ ② [0,1] ③ {0,1} ④ (0,1) 答案:④26、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中错误的是( )① ()()()d A B d A d B ⋃=⋃ ② A B A B ⋃=⋃③ ()()()d A B d A d B ⋂=⋂ ④ A A = 答案: ③27、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( )① ()()()d A B d A d B ⋃=⋃ ② A B A B -=-③ ()()()d A B d A d B ⋂=⋂ ④ A A = 答案: ①28、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( )① ()d A B A B ⋃=⋃ ② A B A B -=-③ ()()()d A B d A d B ⋂=⋂ ④ (())()d d A A d A ⊂⋃ 答案: ④29、已知X 是一个离散拓扑空间,A 是X 的子集,则下列结论中正确的是() ① ()d A φ= ② ()d A X A =-③ ()d A A = ④ ()d A X = 答案:①30、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中不正确的是()① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X A =-③ 若A={12,x x },则()d A X = ④ 若A X ≠, 则()d A X ≠ 答案:④31、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中正确的是( )① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X =③ 若A={12,x x },则()d A X A =- ④ 若12{,}A x x =,则()d A A = 答案:①32、设{,,,}X a b c d =,令{{,,},{},{}}a b c c d =B ,则由B 产生的X 上的拓扑是( ) ① { X ,φ,{c },{d },{c ,d },{a ,b ,c }} ② {X ,φ,{c },{d },{c ,d }}③ { X ,φ,{c },{a ,b ,c }} ④ { X ,φ,{d },{b ,c },{b ,d },{b ,c ,d }} 答案:①33、设X 是至少含有两个元素的集合,p X ∈,{|}{}G X p G φ=⊂∈⋃T 是X 的拓扑,则( )是T 的基.① {{,}|{}}B p x x X p =∈- ② {{}|}B x x X =∈③ {{,}|}B p x x X =∈ ④ {{}|{}}B x x X p =∈- 答案:③34、 设{,,}X a b c =,则下列X 的拓扑中( )以{,,{}}S X a φ=为子基.① { X , φ,{a },{a ,c }} ② {X , φ,{a }}③ { X , φ,{a },{b },{a ,b }} ④ {X ,φ }答案:②35、离散空间的任一子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭 答案:③36、平庸空间的任一非空真子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭 答案:④37、实数空间R 中的任一单点集是 ( )① 开集 ② 闭集 ③ 既开又闭 ④ 非开非闭 答案:②38、实数空间R 的子集A ={1,21,31 ,41,……},则A =( )①φ ② R ③ A ∪{0} ④ A 答案:③39、在实数空间R 中,下列集合是闭集的是( )① 整数集 ② [)b a , ③ 有理数集 ④ 无理数集 答案:①40、在实数空间R 中,下列集合是开集的是( )① 整数集Z ② 有理数集③ 无理数集 ④ 整数集Z 的补集Z '答案:④41、已知{1,2,3}X =上的拓扑{,,{1}}T X φ=,则点1的邻域个数是( )① 1 ② 2 ③ 3 ④ 4 答案:④42、已知{,}X a b =,则X 上的所有可能的拓扑有( )① 1个 ② 2个 ③ 3个 ④ 4个 答案:④43、已知X ={a ,b ,c },则X 上的含有4个元素的拓扑有( )个① 3 ② 5 ③ 7 ④ 9 答案:④44、设(,)T X 为拓扑空间,则下列叙述正确的为 ( )①T , T X φ∈∉ ② T ,T X φ∉∈③当T T '⊂时,T T U U '∈∈ ④ 当T T '⊂时,T T U U '∈∈ 答案:③45、在实数下限拓扑空间R 中,区间[,)a b 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭 答案:③46、设X 是一个拓扑空间,,A B X ⊂,且满足()d A B A ⊂⊂,则B 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭 答案:②47、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,2}A =,则X 的子空间A 的拓扑为( ) ① {,{2},{1,2}}φ=T ② {,,{1},{2},{1,2}}T X φ=③ {,,{1},{2}}T A φ= ④ {,,{1},{2}}T X φ= 答案:③48、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,3}A =,则X 的子空间A 的拓扑为( ) ① {,{1},{3},{1,3}}T φ= ② {,,{1}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ= 答案:②49、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2,3}A =,则X 的子空间A 的拓扑为( ) ① {,{3},{2,3}}φ=T ② {,,{2},{3}}T A φ=③ {,,{2},{3},{2,3}}T X φ= ④ {,,{3}}T X φ= 答案:②50、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1}A =,则X 的子空间A 的拓扑为( ) ① {,{1}}T φ= ② {,,{1,2}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ= 答案:①51、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}T φ= ② {,}T A φ=③ {,,{2}}T X φ= ④ {,,{1,2}}T X φ= 答案:②52、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{3}A =,则X 的子空间A 的拓扑为( ) ① {,{2},{1,2}}T φ= ② {,{},{1,3}}T X φ=③ {,,{3}}T X φ= ④ {,{3}}T φ= 答案:④53、设R 是实数空间,Z 是整数集,则R 的子空间Z 的拓扑为( )① {,}T Z φ= ② ()T P Z = ③ T Z = ④ {}T Z = 答案:②54、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.1P 是X 到1X 的投射,则1P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④55、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.2P 是X 到2X 的投射,则2P 是( ) ① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④56、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.3P 是X 到3X 的投射,则3P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④57、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.4P 是X 到4X 的投射,则4P 是( ) ① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④58、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.5P 是X 到5X 的投射,则5P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④59、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.6P 是X 到6X 的投射,则6P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④60、设1X 和2X 是两个拓扑空间,12X X ⨯是它们的积空间,1A X ⊂,2B X ⊂,则有( ) ① A B A B ⨯≠⨯ ② A B A B ⨯=⨯ ③()A B A B ⨯≠⨯ ④ ()()()A B A B ∂⨯=∂⨯∂答案:②61、有理数集Q 是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对 答案:①62、整数集Z 是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对答案:①63、无理数集是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对答案:①64、设Y 为拓扑空间X 的连通子集,Z 为X 的子集,若Y Z Y ⊂⊂, 则Z 为( )①不连通子集 ② 连通子集 ③ 闭集 ④ 开集答案:②65、设12,X X 是平庸空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是平庸空间③ 平庸空间 ④ 不连通空间答案:③66、设12,X X 是离散空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是离散空间③ 平庸空间 ④ 连通空间答案:①67、设12,X X 是连通空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是连通空间③ 平庸空间 ④ 连通空间答案:④68、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③区间 ④ 以上都不对答案:④69、实数空间R 中的不少于两点的连通子集E 为( )① 开区间 ② 闭区间 ③ 区间 ④ 以上都不对答案:③70、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③ 区间 ④ 区间或一点答案:④71、下列叙述中正确的个数为( )(Ⅰ)单位圆周1S 是连通的; (Ⅱ){0}R -是连通的(Ⅲ)2{(0,0)}R -是连通的 (Ⅳ)2R 和R 同胚① 1 ② 2 ③ 3 ④ 4答案:②二、填空题(每题1分)1、设{,}X a b =,则X 的平庸拓扑为 ;答案:{,}T X φ=2、设{,}X a b =,则X 的离散拓扑为 ;答案:{,,{},{}}T X a b φ= 3、同胚的拓扑空间所共有的性质叫 ; 答案:拓扑不变性质4、在实数空间R 中,有理数集Q 的导集是___________. 答案: R5、)(A d x ∈当且仅当对于x 的每一邻域U 有 答案: ({})U A x φ⋂-≠6、设A 是有限补空间X 中的一个无限子集,则()d A = ;答案:X7、设A 是有限补空间X 中的一个无限子集,则A = ;答案:X8、设A 是可数补空间X 中的一个不可数子集,则()d A = ;答案:X9、设A 是可数补空间X 中的一个不可数子集,则A = ;答案:X10、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,2}A = 的内部为 ;答案:{2}11、设{1,2,3}X =,X 的拓扑{,,{1},{2,3}}T X φ=,则X 的子集{1,3}A = 的内部为 ;答案:{1}12、设{1,2,3}X =,X 的拓扑{,,{1},{2,3}}T X φ=,则X 的子集{1,2}A = 的内部为 答案:{1}13、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,3}A = 的内部为 ;答案:φ14、设{,,}X a b c =,则X 的平庸拓扑为 ;答案:{,}T X φ=15、设{,,}X a b c =,则X 的离散拓扑为 答案:{,,{},{},{},{,},{,},{,}}T X a b c a b a c b c φ=16、设{1,2,3}X =,X 的拓扑{,,{2},{3},{2,3}}T X φ=,则X 的子集{1,3}A = 的内部为 ;答案:{3}17、设{1,2,3}X =,X 的拓扑{,,{1},{3},{1,3}}T X φ=,则X 的子集{1,2}A = 的内部为 ;答案:{1}18、:f X Y →是拓扑空间X 到Y 的一个映射,若它是一个单射,并且是从X 到它的象集()f X 的一个同胚,则称映射f 是一个 .答案:嵌入19、:f X Y →是拓扑空间X 到Y 的一个映射,如果它是一个满射,并且Y 的拓扑是对于映射f 而言的商拓扑,则称f 是一个 ;答案:商映射20、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个开集U 的象集()f U 是Y 中的一个开集,则称映射f 是一个 答案:开映射21、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个闭集U 的象集()f U 是Y 中的一个闭集,则称映射f 是一个 答案:闭映射22、若拓扑空间X 存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;答案:不连通空间23、若拓扑空间X 存在两个非空的开子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;答案:不连通空间24、若拓扑空间X 存在着一个既开又闭的非空真子集,则X 是一个 答案:不连通空间25、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个 ; 答案:连通子集26、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它在任何一个连续映射下的象所具有,则称这个性质是一个 ;答案:在连续映射下保持不变的性质27、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它的任何一个商空间所具有,则称这个性质是一个 ;答案:可商性质28、若任意1n ≥个拓扑空间12,,,n X X X ,都具有性质P ,则积空间12n X X X ⨯⨯⨯也具有性质P ,则性质P 称为 ;答案:有限可积性质29、设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个 ;答案:不连通空间.三.判断(每题4分,判断1分,理由3分)1、.从离散空间到拓扑空间的任何映射都是连续映射( ) 答案:√理由:设X 是离散空间,Y 是拓扑空间,:f X Y →是连续映射,因为对任意A Y ⊂,都有1)f A X -⊂(,由于X 中的任何一个子集都是开集,从而1()f A -是X 中的开集,所以:f X Y →是连续的.2、设12, T T 是集合X 的两个拓扑,则12 T T ⋂不一定是集合X 的拓扑( )答案:× 理由:因为(1)12, T T 是X 的拓扑,故∈φ,X T 1,∈φ,X T 2,从而∈φ,X 12 T T ⋂; (2)对任意的∈B A ,T 1⋂T 2,则有∈B A ,T 1且∈B A ,T 2,由于T 1, T 2是X 的拓扑,故∈⋂B A T 1且∈⋂B A T 2,从而∈⋂B A T 1⋂T 2;(3)对任意的21T T T ⋂⊂',则21,T T T T ⊂'⊂',由于T 1, T 2是X 的拓扑,从而 U ∈T ’U ∈T 1, U ∈T ’U ∈T 2,故 U ∈T ’U ∈ T 1⋂T 2;综上有T 1⋂T 2也是X 的拓扑.3、从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( )答案:√ 理由:设:f X Y →是任一满足条件的映射,由于Y 是平庸空间,它中的开集只有,Y φ,易知它们在f 下的原象分别是,X φ,均为X 中的开集,从而:f X Y →连续.4、设A 为离散拓扑空间X 的任意子集,则()d A φ= ( )答案:√ 理由:设p 为X 中的任何一点,因为离散空间中每个子集都是开集, 所以{}p 是X 的开子集,且有{}{}()p A p φ-=,即()p d A ∉,从而 ()d A φ=.5、设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( )答案:× 理由:设{}A y =,则对于任意,x X x y ∈≠,x 有唯一的一个邻域X ,且有()y X A x ∈⋂-,从而()X A x φ⋂-≠,因此x 是A 的一个凝聚点,但对于y 的唯一的邻域X ,有()X A y φ⋂-=,所以有()d A X A φ=-≠.6、设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( )答案:√ 理由:对于任意,x X ∈因为A 包含多于一点,从而对于x 的唯一的邻域X ,且有()X A x φ⋂-≠,因此x 是A 的一个凝聚点,即()x d A ∈,所以有()d A X =.7、设X 是一个不连通空间,则X 中存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=( )答案:√理由:设X 是一个不连通空间,设,A B 是X 的两个非空的隔离子集使得A B X ⋃=,显然A B φ=,并且这时有:()()B B X B A B B B =⋂=⋂⋃⋂=从而B 是X 的一个闭子集,同理可证A 是X 的一个闭子集,这就证明了,A B 满足,A B A B X φ⋂=⋃=.8、若拓扑空间X 中存在一个既开又闭的非空真子集,则X 是一个不连通空间( )√ 理由:这是因为若设A 是X 中的一个既开又闭的非空真子集,令B A '=,则,A B 都是X 中的非空闭子集,它们满足A B X ⋃=,易见,A B 是隔离子集,所以拓扑空间X 是一个不连通空.五.简答题(每题4分)1、设X 是一个拓扑空间,,A B 是X 的子集,且A B ⊂.试说明()()d A d B ⊂. 答案:对于任意()x d A ∈,设U 是x 的任何一个邻域,则有({})U A x φ⋂-≠,由于A B ⊂,从而({})({})U B x U A x φ⋂-⊃⋂-≠,因此()x d B ∈,故()()d A d B ⊂.2、设,,X Y Z 都是拓扑空间.:f X Y →, :g Y Z →都是连续映射,试说明:g f X Z →也是连续映射.答案:设W 是Z 的任意一个开集,由于:g Y Z →是一个连续映射,从而1()g W -是Y 的一个开集,由:f X Y →是连续映射,故11(())f g W --是X 的一开集,因此 111()()(())g f W f g W ---=是X 的开集,所以:g f X Z →是连续映射.3、设X 是一个拓扑空间,A X ⊂.试说明:若A 是一个闭集,则A 的补集A '是一个开集. 答案:对于x A '∀∈,则x A ∉,由于A 是一个闭集,从而x 有一个邻域U 使得({})U A x φ⋂-=,因此U A φ⋂=,即U A '⊂,所以对任何x A '∈,A '是x 的一个邻域,这说明A '是一个开集.4、设X 是一个拓扑空间,A X ⊂.试说明:若A 的补集A '是一个开集,则A 是一个闭集. 答案:设x A ∉,则x A '∈,由于A '是一个开集,所以A '是x 的一个邻域,且满足A A φ'⋂=,因此x A ∉,从而A A ⊃,即有A A =,这说明A 是一个闭集.5、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集]}2[],1[],0{[=Y ,试写出Y 的商拓扑T .答案:]}}1[],0{[]},0{[,,{Y φ= T6、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集]}3[],2[],1{[=Y ,试写出Y 的商拓扑T . 答案:{,,{[3]},{[2],[3]}}T Y φ=7、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[1],[1],[2]}Y =-,试写出Y 的商拓扑T . 答案:{,,{[1]},{[1],[1]}}T Y φ=--8、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[2],[1],[2]}Y =-,试写出Y 的商拓扑T . 答案:{,,{[2]},{[2],[1]}}T Y φ=--9、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[3]}Y =,试写出Y 的商拓扑T . 答案:{,,{[3]},{[2],[3]}}T Y φ=10、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[4]}Y =,试写出Y 的商拓扑T . 答案:{,,{[4]},{[2],[4]}}T Y φ=11、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[1],[2],[4]}Y =-,试写出Y 的商拓扑T . 答案:{,,{[4]},{[2],[4]}}T Y φ=六、证明题(每题8分)1、设:f X Y →是从连通空间X 到拓扑空间Y 的一个连续映射.则()f X 是Y 的一个连通子集. 证明:如果()f X 是Y 的一个不连通子集,则存在Y 的非空隔离子集,A B 使得()f X A B =⋃ …………………………………………… 3分于是11(),()f A f B --是X 的非空子集,并且:111111111(()())(()())(()())(()())(()())f A f B f B f A f A f B f B f A f A B A B φ---------⋂⋃⋂⊂⋂⋃⋂=⋂⋃⋂=所以11(),()f A f B --是X 的非空隔离子集 此外,1111()()()(())f A f B f A B f f X X ----⋃=⋃==,这说明X 不连通,矛盾.从而()f X 是Y 的一个连通子集. ………………………… 8分2、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的开集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.证明:因为B A ,是X 的开集,从而Y B Y A ⋂⋂,是子空间Y 的开集.又因B A Y ⋃⊂中,故)()(Y B Y A Y ⋂⋃⋂= ………………… 4分由于Y 是X 的连通子集,则Y B Y A ⋂⋂,中必有一个是空集. 若Φ=⋂Y B ,则A Y ⊂;若Φ=⋂Y A ,则B Y ⊂………………… 8分3、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的闭集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.证明:因为B A ,是X 的闭集,从而Y B Y A ⋂⋂,是子空间Y 的闭集.又因B A Y ⋃⊂中,故)()(Y B Y A Y ⋂⋃⋂= ………………… 4分由于Y 是X 的连通子集,则Y B Y A ⋂⋂,中必有一个是空集. 若Φ=⋂Y B ,则A Y ⊂;若Φ=⋂Y A ,则B Y ⊂………………… 8分4、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个连通子集. 证明:若Z 是X 的一个不连通子集,则在X 中有非空的隔离子集,A B 使得Z A B =⋃.因此Y A B ⊂⋃ ………………………………… 3分由于Y 是连通的,所以Y A ⊂或者Y B ⊂,如果Y A ⊂,由于Z Y A ⊂⊂,所以Z B A B φ⋂⊂⋂=,因此 B Z B φ=⋂=,同理可证如果Y B ⊂,则A φ=,均与假设矛盾.故Z 也 是X 的一个连通子集. …………………………………………………………………… 8分5、设{}Y γγ∈Γ是拓扑空间X 的连通子集构成的一个子集族.如果Y γγφ∈Γ≠,则Y γγ∈Γ是X 的一个连通子集.证明:若Y γγ∈Γ是X 的一个不连通子集.则X 有非空的隔离子集,A B 使得Y A B γγ∈Γ=⋃………………………………………… 4分任意选取x Y γγ∈Γ∈,不失一般性,设x A ∈,对于每一个γ∈Γ,由于Y γ连通,从而Y Aγγ∈Γ⊂及B φ=,矛盾,所以Y γγ∈Γ是连通的. ………………………………………… 8分6、设A 是拓扑空间X 的一个连通子集,B 是X 的一个既开又闭的集合.证明:如果A B φ⋂≠,则A B ⊂.证明:若B X =,则结论显然成立.下设B X ≠,由于B 是X 的一个既开又闭的集合,从而A B ⋂是X 的子空间A 的一个既开又闭的子集………………………………… 4分由于A B φ⋂≠及A 连通,所以A B A ⋂=,故A B ⊂.………… 8分7、设A 是连通空间X 的非空真子集. 证明:A 的边界()A φ∂≠.证明:若()A φ∂=,由于()A A A --'∂=⋂,从而()()()()A A A A A A A A A A φ------'''''=⋂=⋂⋂⋃=⋂⋃⋂,故, A A '是X 的隔离子集 ………………………………………… 4分 因为A 是X 的非空真子集,所以A 和A '均非空,于是X 不连通,与题设矛盾.所以()A φ∂≠. ……………………………………………… 8分。

点集拓扑复习题(答案)教学内容

点集拓扑复习题(答案)教学内容

点集拓扑复习题(答案)点集拓扑复习题一、名词解释1、同胚映射:设X 和Y 是两个拓扑空间.如果:f X Y →是一个一一映射,并且f 和1:f Y X -→ 都是连续映射,则称f 是一个同胚映射或同胚.2、不连通空间:设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个不连通空间.3、拓扑:设X 是一个非空集合。

X 的一个子集族τ称为X 的一个拓扑,如果它满足:1.X 和空集∅都属于τ2.τ中任意多个成员的并集仍在τ中3.τ中有限多个成员的交集仍在τ中。

4、导集:设X 是一个拓扑空间,集合A 的所有凝聚点构成的集合称为A 的导集.5、度量:设集合X 的一个映射:d X X R ⨯→.若对于任何,,x y z X ∈,有(I )(正定性)d (x,y )≥0,且d (x,y)=0当且仅当 x = y ;(Ⅱ)(对称性)d (x,y)= d (y,x );(Ⅲ)(三角不等式)d (x,z )≤d (x,y)+ d (y,z )则称d 为集合X 的一个度量(或距离)。

二、证明题(4选3)1、证明:度量空间X 中的开集且有以下性质:(1)集合X 本身和空集∅都是开集;(2)任意两个开集的交是一个开集;(3)任意一个开集族的并是一个开集。

证明:(1)根据定理 2.1.1(1)X 中的每一个元素x 都有一个球形邻域,这个球形邻域当然包含在X 中,所以X 满足开集的条件;空集∅中不包含任何点,也自然地可以认为它满足开集的条件.(2)设U 和V 是X 中的两个开集.如果x U V ∈,则存在x 的一个球形邻域1(,)B x ε包含于U ,也存在X 的一个球形邻域2(,)B x ε包含于V .根据定理2.1.1(2),x 有一个球形邻域(,)B x ε同时包含于1(,)B x ε和2(,)B x ε,因此12(,)(,)(,)B x B x B x U V εεε⊂⊂由于U V 中的每一点都有一个球形邻域包含于U V ,因此U V 是一个开集.(3)设A 是一个由X 中的开集构成的子集族.如果A x A ∈∈A ,则存在0A ∈A 使得0x A ∈由于0A 是一个开集,所以x 有一个球形邻域包含于0A ,显然这个球形邻域也包含于A A ∈A .这证明A A ∈A 是X 中的一个开集.2、设:f X Y →是从连通空间X 到拓扑空间Y 的一个连续映射.则()f X 是Y 的一个连通子集.证明:如果()f X 是Y 的一个不连通子集,则存在Y 的非空隔离子集,A B 使得()f X A B =⋃ …………………………………………… 3分于是11(),()f A f B --是X 的非空子集,并且:111111111(()())(()())(()())(()())(()())f A f B f B f A f A f B f B f A f A B A B φ---------⋂⋃⋂⊂⋂⋃⋂=⋂⋃⋂=所以11(),()f A f B --是X 的非空隔离子集,此外1111()()()(())f A f B f A B f f X X ----⋃=⋃==,这说明X 不连通,矛盾.从而()f X 是Y 的一个连通子集. ………………………… 8分3、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的开集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.证明:因为B A ,是X 的开集,从而Y B Y A ⋂⋂,是子空间Y 的开集.又因B A Y ⋃⊂中,故)()(Y B Y A Y ⋂⋃⋂= ………………… 4分由于Y 是X 的连通子集,则Y B Y A ⋂⋂,中必有一个是空集. 若Φ=⋂Y B ,则A Y ⊂;若Φ=⋂Y A ,则B Y ⊂………………… 8分4、设X 是一个含有不可数多个点的可数补空间.证明X 不满足第一可数性公理.证明:若X 满足第一可数公理,则在X x ∈处,有一个可数的邻域基,设为V x ,因为X 是可数补空间,因此对x y X y ≠∈∀,,}{y X -是x 的一个开邻域,从而x y V V ∈∃ ,使得}{y X V y -⊂.于是'⊂y V y }{, …………………………………………………4分由上面的讨论我们知道: }{}{}{}{y X y y x X y V y x X -∈-∈'⊂=-因为}{x X -是一个不可数集,而}{x X y uV -∈' 是一个可数集,矛盾. 从而X 不满足第一可数性公理. ………………………………8分三、填空题1、设{,}X a b =,则X 的平庸拓扑为 ;答案:{,}T X φ=2、每一个球形邻域都是 ;答案:开集3、若拓扑空间X 有一个可数稠密子集,则称X 是一个 ;答案:可分空间4、若任意1n ≥个拓扑空间12,,,n X X X ,都具有性质P ,则积空间12n X X X ⨯⨯⨯也具有性质P ,则性质P 称为 ; 答案:有限可积性质5、:f X Y →是拓扑空间X 到Y 的一个映射,如果它是一个满射,并且Y 的拓扑是对于映射f 而言的商拓扑,则称f 是一个 ;答案:商映射四、选择题1、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{}}X a a b c φ=T ② {,,{},{,},{,}}X a a b a c φ=T③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T 答案:②2、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( )①φ ② X ③ {}b ④ {,,}b c d 答案:④3、在实数空间中,有理数集Q 的边界()Q ∂是( )① φ ② Q ③ R -Q ④ R 答案:④4、在实数空间中,区间[0,1)的内部是( )① φ ② [0,1] ③ {0,1} ④ (0,1) 答案:④5、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中错误的是( )① ()()()d A B d A d B ⋃=⋃ ② A B A B ⋃=⋃③ ()()()d A B d A d B ⋂=⋂ ④ A A = 答案: ③6、离散空间X 的任一子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭 答案:③7、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.1P 是X 到1X 的投射,则1P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④8、在实数空间R 中,下列集合是开集的是( )① 整数集Z ② 有理数集③ 无理数集 ④ 整数集Z 的补集Z ' 答案:④9、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2,3}A =,则X 的子空间A 的拓扑为( )① {,{3},{2,3}}φ=T ② {,,{2},{3}}T A φ=③ {,,{2},{3},{2,3}}T X φ= ④ {,,{3}}T X φ= 答案:②10、设{,,}X a b c =,拓扑{,,{},{,}}X a b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1 ② 2 ③ 3 ④ 4 答案:②。

点集拓扑期末试卷.docx

点集拓扑期末试卷.docx

得分阅卷人 ------ 、单项选择题(每小题3分,共30分)1、设X={aM ,下列集族中,X 上的拓扑是 .................... (②)・① T ={X,0,⑷,{a.b},{c}}② T ={X,0,{a},{d,纠,{a,c}} ③ T ={X,0,{&},{b},{a,c}}④ T ={X,0,{&},{b},{c}}2、 已知 X = {a,b^d},拓扑T={X,0,{°}},则面二 ................. ( ④ ..................................................... )①0 ②X ③{b} ④{b,c,〃}3、 在实数空间中,有理数集Q 的边界d (Q )是 .............. (④ )①0②Q ③R_Q ④R4、 在实数空间中,区间[0,1)的内部是 ................... (④ )① 0 ②[0,1] ③{0,1} ④(0,1)5、 设X 是一个拓扑空间,A,B 是X 的子集,则下列关系中错误的是(③)① d (AuB ) = d (A )ud (B ) ② AuB = AuB ③ d (4cB )二d (A )cd (B ) ④ A =6、 离散空间的任一子集为 ................................ (③)①开集 ②闭集 ③即开又闭④非开非闭7、设X = X]XX2X ・・・xX6是拓扑空间X「X2,…,Xe 的积空间.片是X 到£的投射,则呂是 ..................................................... (④ ....................................................... )①单射②连续的单射 ③满的连续闭映射④满的连续开映射8、在实数空间/?中,下列集合是开集的是 ................. ( ................................................... ④ )①整数集Z ②有理数集③ 无理数集 ④ 整数集Z 的补集Z'9、设X = {1,2,3},T={0,X,{1,2},{1,3},{1},{2}}是X 的拓扑,A = {2,3}, ......................................... ( ②)② T 二{0,A,{2},{3}}点集拓扑试题样卷A—■二三四总分则X 的子空间A 的拓扑为 ① T 二{0,{3},{2,3}} ③ T ={0,X,{2},{3},{2,3}}得分阅卷人③3 ④4二、填空题(每小题4分,共20分)( ② )①1 ②2④ T ={0,X,⑶}10、设X = {a,b,c},拓扑T ={X,0,{a},{b,c}},则X 的既开又闭的非空真子集的个数为1、设X={a,b}f则X的平庸拓扑为_T ={X,0} _________2、每一个球形的邻域都是开集3、若拓扑空间X有一个可数稠密子集,则称X是一个可分空间4、若任意让1个拓扑空间X],X2,…,X”,都具有性质P ,则积空间X] x X? x…x X”也具有性质P,则性质P称为有限可积性5、/:X T Y是拓扑空间X到Y的一个映射,如果它是一个满射,并且Y的拓扑是对于映射/而言的商拓扑,则称f是一个商映射得分阅卷人---------------- 三、名词解释(每小题4分,共20分)1、同胚映射:设X和丫是两个拓扑空间.如果广X T F是一个一一映射,并且/和厂:Y T X都是连续映射,则称/是一个同胚映射或同胚.2、不连通空间3、拓扑4、导集5、度量得分阅卷人-------------- 四、证明题(每小题6分,共30分)2、设/: X t F是从连通空间X到拓扑空间Y的一个连续映射.则/(X)是丫的一个连通子集.证明:如果/(X)是丫的一个不连通子集,则存在丫的非空隔离子集4,B使得f(X) = AuB................................................................................ 3 分于是广是X的非空子集,并且:(/■* (A)c.厂(B)) u (/T(B)C/T(A))u (/-1 (A) c 厂⑻2 (厂(B) c=/T ((Ac 歹2(方c 3)) = 0所以广匕),广SB)是X的非空隔离子集此外,f-\A)uf-\B) = f-\AuB) =/•1(/(X)) = X ,这说明X 不连通,矛盾•从而/(X)是Y的一个连通子集.4、设X是一个含有不可数多个点的可数补空间.证明X不满足第一可数性公理.证明:若X满足第一可数公理,则在xe X处,有一个可数的邻域基,设为V •「因为X是可数补空间,因此对X,y^x,X-{y}是兀的一个开邻域,从而3V v eV v,使得叫uX —{刃.于是{y}uV〕, ......................................... 3分由上面的讨论我们知道:x — {x}= U{y}u u v/yeX—{x} )wX-{"因为x-{x}是一个不可数集,而U匕:是一个可数集,矛盾.WX-{x}从而X不满足第一可数性公理.3、设Y是拓扑空间X的一个连通子集,证明:如果A和〃是X的两个无交的开集使得Yu AuB,则或者Yu A,或者YuB・证明:因为〃是X的开集,从而AnY.BnY是子空间丫的开集.又因Y <zAuB中,故Y = (AnY)u(Br>Y)由于Y是X的连通子集,则AnY^BnY中必有一个是空集.若BcY =①,则y c A ;若AcY = O,则YuB。

拓扑学复习题与参考答案

拓扑学复习题与参考答案

点集拓扑学练习题一、单项选择题(每题2分)1、已知{,,,,}X a b c d e =,下列集族中,( )是X 上的拓扑.①{,,{},{,},{,,}}X a a b a c e φ=T②{,,{,,},{,,},{,,,}}X a b c a b d a b c e φ=T③{,,{},{,}}X a a b φ=T④{,,{},{},{},{},{}}X a b c d e φ=T2、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.①{,,{},{,},{}}X a a b c φ=T ②{,,{},{,},{,}}X a a b a c φ=T③{,,{},{},{,}}X a b a c φ=T ④{,,{},{},{}}X a b c φ=T3、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.①{,,{},{,},{,,}}X a a b a c d φ=T ②{,,{,,},{,,}}X a b c a b d φ=T③{,,{},{},{,,}}X a b a c d φ=T ④{,,{},{}}X a b φ=T4、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.①{,,{},{},{,}}X b c a b φ=T ②{,,{},{},{,},{,}}X a b a b a c φ=T③{,,{},{},{,}}X a b a c φ=T ④{,,{},{},{}}X a b c φ=T5、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.①{,,{,},{,,}}X a b a c d φ=T ②{,,{,},{,,}}X a b a c d φ=T③{,,{},{},{,,}}X a b a c d φ=T ④{,,{},{},{,}}X a c a c φ=T6、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.①{,,{},{},{,}}X a b b c φ=T ②{,,{,},{,}}X a b b c φ=T③{,,{},{,}}X a a c φ=T ④{,,{},{},{}}X a b c φ=T7、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( )①φ②X ③{}b ④{,,}b c d8、 已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{,,}b c d =( )①φ②X ③{}b ④{,,}b c d9、 已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ②X ③{}a ④{}b10、已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}b =( )①φ②X ③{}a ④{}b11、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ②X ③{,}a b ④{,,}b c d12、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}c =( )①φ②X ③{,}a c ④{,,}b c d13、设{,,,}X a b c d =,拓扑{,,{},{,,}}X a b c d φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1②2③ 3④ 414、设{,,}X a b c =,拓扑{,,{},{,}}X a b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1②2③ 3④ 415、设{,,}X a b c =,拓扑{,,{},{,}}X b b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 0②1③ 2④ 316、设{,}X a b =,拓扑{,,{}}X b φ=T ,则X 的既开又闭的子集的个数为( )① 0②1③ 2④ 317、设{,}X a b =,拓扑{,,{},{}}X a b φ=T ,则X 的既开又闭的子集的个数为( )① 1②2③ 3④ 418、设{,,}X a b c =,拓扑{,,{},{},{,},{,}}X a b a b b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1②2③ 3④ 419、在实数空间中,有理数集Q 的部Q 是( )①φ②Q ③R -Q ④R20、在实数空间中,有理数集Q 的边界()Q ∂是( )①φ②Q ③R -Q ④R21、在实数空间中,整数集Z 的部Z 是( )①φ②Z ③R -Z ④R22、在实数空间中,整数集Z 的边界()Z ∂是( )①φ②Z ③R -Z ④R23、在实数空间中,区间[0,1)的边界是( )①φ②[0,1]③{0,1}④(0,1)24、在实数空间中,区间[2,3)的边界是( )①φ②[2,3]③{2,3}④(2,3)25、在实数空间中,区间[0,1)的部是( )①φ②[0,1]③{0,1}④(0,1)26、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中错误的是( ) ①()()()d A B d A d B ⋃=⋃②A B A B ⋃=⋃③()()()d A B d A d B ⋂=⋂④A A =27、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( ) ①()()()d A B d A d B ⋃=⋃②A B A B -=-③()()()d A B d A d B ⋂=⋂④A A =28、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( ) ①()d A B A B ⋃=⋃②A B A B -=-③()()()d A B d A d B ⋂=⋂④(())()d d A A d A ⊂⋃29、已知X 是一个离散拓扑空间,A 是X 的子集,则下列结论中正确的是() ①()d A φ=②()d A X A =-③()d A A =④()d A X =30、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中不正确的是()①若A φ=,则()d A φ=② 若0{}A x =,则()d A X A =-③若A={12,x x },则()d A X =④ 若A X ≠, 则()d A X ≠31、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中正确的是()①若A φ=,则()d A φ=② 若0{}A x =,则()d A X =③若A={12,x x },则()d A X A =-④若12{,}A x x =,则()d A A =32、设{,,,}X a b c d =,令{{,,},{},{}}a b c c d =B ,则由B 产生的X 上的拓扑是()① { X ,φ,{c },{d },{c ,d },{a ,b ,c }}② {X ,φ,{c },{d },{c ,d }}③{ X ,φ,{c },{a ,b ,c }}④ { X ,φ,{d },{b ,c },{b ,d },{b ,c ,d }}33、设X 是至少含有两个元素的集合,p X ∈,{|}{}G X p G φ=⊂∈⋃T 是X 的拓扑,则( )是T 的基.①{{,}|{}}B p x x X p =∈-②{{}|}B x x X =∈③{{,}|}B p x x X =∈④{{}|{}}B x x X p =∈-34、 设{,,}X a b c =,则下列X 的拓扑中()以{,,{}}S X a φ=为子基.①{ X ,φ,{a },{a ,c }} ② {X ,φ,{a }}③{ X ,φ,{a },{b },{a ,b }} ④ {X ,φ}35、离散空间的任一子集为( )① 开集 ② 闭集 ③ 即开又闭④非开非闭36、平庸空间的任一非空真子集为( )① 开集 ② 闭集 ③ 即开又闭④非开非闭37、实数空间R 中的任一单点集是 ( )① 开集 ② 闭集 ③ 既开又闭 ④ 非开非闭38、实数空间R 的子集A ={1,21,31 ,41,……},则A =( ) ①φ②R ③A ∪{0}④A39、在实数空间R 中,下列集合是闭集的是()①整数集②[)b a ,③有理数集④无理数集40、在实数空间R 中,下列集合是开集的是()①整数集Z ②有理数集③ 无理数集④ 整数集Z 的补集Z '41、已知{1,2,3}X =上的拓扑{,,{1}}T X φ=,则点1的邻域个数是( )①1 ②2 ③3 ④442、已知{,}X a b =,则X 上的所有可能的拓扑有( )①1个 ②2个③3个④4个43、已知X ={a ,b ,c },则X 上的含有4个元素的拓扑有( )个① 3② 5③ 7④ 944、设(,)T X 为拓扑空间,则下列叙述正确的为 ( )①T , T X φ∈∉②T ,T X φ∉∈③当T T '⊂时,T T U U '∈∈④ 当T T '⊂时,T T U U '∈∈45、在实数下限拓扑空间R 中,区间[,)a b 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭46、设X 是一个拓扑空间,,A B X ⊂,且满足()d A B A ⊂⊂,则B 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭47、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,2}A =,则X 的子空间A的拓扑为( )①{,{2},{1,2}}φ=T ②{,,{1},{2},{1,2}}T X φ=③{,,{1},{2}}T A φ=④{,,{1},{2}}T X φ=48、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,3}A =,则X 的子空间A的拓扑为( )①{,{1},{3},{1,3}}T φ=②{,,{1}}T A φ=③{,,{1},{3},{1,3}}T X φ=④{,,{1}}T X φ=49、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2,3}A =,则X 的子空间A的拓扑为( )①{,{3},{2,3}}φ=T ②{,,{2},{3}}T A φ=③{,,{2},{3},{2,3}}T X φ=④{,,{3}}T X φ=50、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1}A =,则X 的子空间A 的拓扑为( )①{,{1}}T φ=②{,,{1,2}}T A φ=③{,,{1},{3},{1,3}}T X φ=④{,,{1}}T X φ=51、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2}A =,则X 的子空间A 的拓扑为( )①{,{2},{1,2}}T φ=②{,}T A φ=③{,,{2}}T X φ=④{,,{1,2}}T X φ=52、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{3}A =,则X 的子空间A 的拓扑为( )①{,{2},{1,2}}T φ=②{,{},{1,3}}T X φ=③{,,{3}}T X φ=④{,{3}}T φ=53、设R 是实数空间,Z 是整数集,则R 的子空间Z 的拓扑为( )①{,}T Z φ=②()T P Z =③T Z =④{}T Z =54、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.1P 是X 到1X 的投射,则1P 是( )①单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射55、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.2P 是X 到2X 的投射,则2P 是( ) ①单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射56、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.3P 是X 到3X 的投射,则3P 是( ) ①单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射57、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.4P 是X 到4X 的投射,则4P 是( ) ①单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射58、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.5P 是X 到5X 的投射,则5P 是( ) ①单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射59、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.6P 是X 到6X 的投射,则6P 是( ) ①单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射60、设1X 和2X 是两个拓扑空间,12X X ⨯是它们的积空间,1A X ⊂,2B X ⊂,则有( ) ①A B A B ⨯≠⨯②A B A B ⨯=⨯③()A B A B ⨯≠⨯④()()()A B A B ∂⨯=∂⨯∂61、有理数集Q 是实数空间R 的一个( )①不连通子集② 连通子集③开集④以上都不对62、整数集Z 是实数空间R 的一个( )①不连通子集② 连通子集③开集④以上都不对63、无理数集是实数空间R 的一个( )①不连通子集② 连通子集③开集④以上都不对64、设Y 为拓扑空间X 的连通子集,Z 为X 的子集,若Y Z Y ⊂⊂, 则Z 为( )①不连通子集 ② 连通子集 ③ 闭集 ④ 开集65、设12,X X 是平庸空间,则积空间12X X ⨯是( )①离散空间 ② 不一定是平庸空间③ 平庸空间 ④ 不连通空间66、设12,X X 是离散空间,则积空间12X X ⨯是( )①离散空间 ② 不一定是离散空间③ 平庸空间 ④ 连通空间67、设12,X X 是连通空间,则积空间12X X ⨯是( )①离散空间 ② 不一定是连通空间③ 平庸空间 ④ 连通空间68、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③区间 ④ 以上都不对69、实数空间R 中的不少于两点的连通子集E 为( )① 开区间 ② 闭区间 ③区间 ④ 以上都不对70、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③区间 ④ 区间或一点71、下列叙述中正确的个数为( )(Ⅰ)单位圆周1S 是连通的; (Ⅱ){0}R -是连通的(Ⅲ)2{(0,0)}R -是连通的 (Ⅳ)2R 和R 同胚① 1 ② 2 ③3 ④ 472、实数空间R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对73、整数集Z 作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对74、有理数集Q 作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对75、无理数集作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对76、正整数集Z +作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对77、负整数集Z -作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对78、2维欧氏间空间2R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对79、3维欧氏间空间3R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对80、下列拓扑学的性质中,不具有可遗传性的是( )① 平庸性 ②连通性③离散性④第一可数性公理81、下列拓扑学的性质中,不具有可遗传性的是( )① 第一可数性公理 ②连通性③第二可数性公理④平庸性82、下列拓扑学的性质中,不具有可遗传性的是( )① 第一可数性公理 ②可分性③第二可数性公理④ 离散性83、下列拓扑学的性质中,不具有可遗传性的是( )① 平庸性 ②可分性③离散性④第二可数性公理84、设X 是一个拓扑空间,若对于,,x y X x y ∀∈≠,均有{}{}x y ≠,则X 是( )①0T 空间 ②1T 空间 ③2T 空间 ④以上都不对85、设{1,2}X =,{,,{1}}X φ=T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 以上都不对86、设{1,2}X =,{,,{2}}X φ=T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 道路连通空间87、设{1,2,3}X =,{,,{1}}X φ=T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 以上都不对88、设{1,2,3}X =,{,,{23}}X φ=,T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 以上都不对89、设{1,2,3}X =,{,,{13}}X φ=,T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 以上都不对90、设{1,2,3}X =,{,,{12}}X φ=,T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 以上都不对91、设{1,2,3}X =,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 以上都不对92、设X 是一个拓扑空间,若X 的每一个单点集都是闭集,则X 是( )①正则空间 ②正规空间 ③1T 空间④4T 空间93、设X 是一个拓扑空间,若X 的每一个有限子集都是闭集,则X 是( )①正则空间 ②正规空间 ③1T 空间④4T 空间94、设X 是一个拓扑空间,若对x X ∀∈与x 的每一个开邻域U ,都存在x 的一个开邻域V ,使得V U ⊂,则X 是( )①正则空间 ②正规空间 ③1T 空间④4T 空间95、设X 是一个拓扑空间,若对X 的任何一个闭集A 与A 的每一个开邻域U ,都存在A的一个开邻域V ,使得V U ⊂,则X 是( )①正则空间 ②正规空间 ③1T 空间④4T 空间96、设{1,23}X =,,{,,{1},{23}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ②1T 空间 ③2T 空间 ④正规空间97、设{1,23}X =,,{,,{2},{13}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ②1T 空间 ③2T 空间 ④正规空间98、设{1,23}X =,,{,,{3},{12}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ②1T 空间 ③2T 空间 ④正则空间99、设{1,23}X =,,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( )①2T 空间 ②正则空间③4T 空间④正规空间100、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是( )①2T 空间 ②正则空间③4T 空间④正规空间101、设{1,23}X =,,{,,{2},{3},{2,3}}X φ=T ,则(,)X T 是( )①2T 空间 ②正则空间③4T 空间④正规空间102、若拓扑空间X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个() ① 连通空间 ② 道路连通空间 ③ 紧致空间 ④ 可分空间103、紧致空间中的每一个闭子集都是( )① 连通子集 ② 道路连通子集 ③ 紧致子集 ④ 以上都不对104、Hausdorff 空间中的每一个紧致子集都是( )① 连通子集 ② 开集 ③ 闭集 ④ 以上都不对105、紧致的Hausdorff 空间中的紧致子集是( )① 连通子集 ② 开集 ③ 闭集 ④ 以上都不对106、拓扑空间X 的任何一个有限子集都是( )① 连通子集 ② 紧致子集 ③ 非紧致子集 ④ 开集107、实数空间R 的子集{1,2,3}A =是( )① 连通子集 ② 紧致子集 ③开集 ④ 非紧致子集108、实数空间R 的子集{1,2,3,4}A =是( )① 连通子集 ② 紧致子集 ③开集 ④ 非紧致子集109、如果拓扑空间X 的每个紧致子集都是闭集,则X 是( )①1T 空间 ② 紧致空间 ③ 可数补空间 ④ 非紧致空间二、填空题(每题2分)1、设{,}X a b =,则X 的平庸拓扑为 ;2、设{,}X a b =,则X 的离散拓扑为 ;3、同胚的拓扑空间所共有的性质叫 ;4、在实数空间R 中,有理数集Q 的导集是___________.5、)(A d x ∈当且仅当对于x 的每一邻域U 有 ;6、设A 是有限补空间X 中的一个无限子集,则()d A = ;7、设A 是有限补空间X 中的一个无限子集,则A = ;8、设A 是可数补空间X 中的一个不可数子集,则()d A = ;9、设A 是可数补空间X 中的一个不可数子集,则A = ;10、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,2}A = 的部为 ;11、设{1,2,3}X =,X 的拓扑{,,{1},{2,3}}T X φ=,则X 的子集{1,3}A = 的部为 ;12、设{1,2,3}X =,X 的拓扑{,,{1},{2,3}}T X φ=,则X 的子集{1,2}A = 的部为 ;13、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,3}A = 的部为 ;14、设{,,}X a b c =,则X 的平庸拓扑为 ;15、设{,,}X a b c =,则X 的离散拓扑为 ;16、设{1,2,3}X =,X 的拓扑{,,{2},{3},{2,3}}T X φ=,则X 的子集{1,3}A = 的部为 ;17、设{1,2,3}X =,X 的拓扑{,,{1},{3},{1,3}}T X φ=,则X 的子集{1,2}A = 的部为 ; 18、:f X Y →是拓扑空间X 到Y 的一个映射,若它是一个单射,并且是从X 到它的象集()f X 的一个同胚,则称映射f 是一个 .19、:f X Y →是拓扑空间X 到Y 的一个映射,如果它是一个满射,并且Y 的拓扑是对于映射f 而言的商拓扑,则称f 是一个.20、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个开集U 的象集()f U 是Y 中的一个开集,则称映射f 是一个 ;21、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个闭集U 的象集()f U 是Y 中的一个闭集,则称映射f 是一个 ;22、若拓扑空间X 存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;23、若拓扑空间X 存在两个非空的开子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;24、若拓扑空间X 存在着一个既开又闭的非空真子集,则X 是一个 ;25、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个 ;26、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它在任何一个连续映射下的象所具有,则称这个性质是一个 ;27、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它的任何一个商空间所具有,则称这个性质是一个 ;28、若任意1n ≥个拓扑空间12,,,n X X X ,都具有性质P ,则积空间12n X X X ⨯⨯⨯也具有性质P ,则性质P 称为 ;29、设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个 ;30、若12,X X 满足第一可数性公理,则积空间12X X ⨯满足 ;31、若12,X X 满足第二可数性公理,则积空间12X X ⨯也满足 ;32、如果一个拓扑空间具有性质P ,那么它的任何一个子空间也具有性质P ,则称性质P 为 ;33、设D 是拓扑空间X 的一个子集,且D X =,则称D 是X 的一个;34、若拓扑空间X 有一个可数稠密子集,则称X 是一个 ;35、设X 是一个拓扑空间,如果它的每一个开覆盖都有一个可数子覆盖,则称X 是一个 ;36、如果一个拓扑空间具有性质P ,那么它的任何一个开子空间也具有性质P ,则称性质P 为 ;37、如果一个拓扑空间具有性质P ,那么它的任何一个闭子空间也具有性质P ,则称性质P 为 ;38、设X 是一个拓扑空间,如果则称X 是一个0T 空间;39、设X 是一个拓扑空间,如果则称X 是一个1T 空间;40、设X 是一个拓扑空间,如果则称X 是一个2T 空间;41、正则的1T 空间称为 ;42、正规的1T 空间称为 ;43、完全正则的1T 空间称为 ;44、设X 是一个拓扑空间.如果X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个 .45、设X 是一个拓扑空间,Y 是X 的一个子集.如果Y 作为X 的子空间是一个紧致空间,则称Y 是拓扑空间X 的一个 .46、设X 是一个拓扑空间.如果X 的每一个可数开覆盖都有有限子覆盖,则称拓扑空间X 是一个 .47、设X 是一个拓扑空间.如果X 的每一个无限子集都有凝聚点,则称拓扑空间X 是一个 .48、设X 是一个拓扑空间.如果X 中的每一个序列都有一个收敛的子序列,则称拓扑空间X 是一个 .三.判断(每题3分,判断1分,理由2分)1、从离散空间到拓扑空间的任何映射都是连续映射( )2、设12, T T 是集合X 的两个拓扑,则12 T T ⋂不一定是集合X 的拓扑( )3、从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( )4、设A 为离散拓扑空间X 的任意子集,则()d A φ= ( )5、设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( )6、设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( )7、设X 是一个不连通空间,则X 中存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=( )8、若拓扑空间X 中存在一个既开又闭的非空真子集,则X 是一个不连通空间( )9、设拓扑空间X 满足第二可数性公理,则X 满足第一可数性公理( )10、若拓扑空间X 满足第二可数性公理,则X 的子空间Y 也满足第二可数性公理( )11、若拓扑空间X 满足第一可数性公理,则X 的子空间Y 也满足第一可数性公理( )12、设{1,2,3}X =,{,,{2},{3},{2,3}}X φ=T ,则(,)X T 是3T 空间.( )13、设{1,2,3}X =,{,,{1},{2},{1,2}}T X φ=,则(,)X T 是3T 空间.( )14、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是1T 空间.( )15、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是4T 空间.( )16、3T 空间一定是2T 空间.( )17、4T 空间一定是3T 空间.( )18、设,A B 是拓扑空间X 的两个紧致子集,则A B ⋃是一个紧致子集.( )19、Hausdorff 空间中的每一个紧致子集都是闭集.( )四.名词解释(每题2分)1.同胚映射2、集合A 的点3、集合A 的部4.拓扑空间(,)T X 的基5.闭包6、序列7、导集8、不连通空间9、连通子集10、不连通子集11、1 A 空间12、2 A 空间13、可分空间14、0T 空间:15、1T 空间:16、2T 空间:17、正则空间:18、正规空间:19、完全正则空间:20、紧致空间21、紧致子集22、可数紧致空间23、列紧空间24、序列紧致空间五.简答题(每题4分)1、设X 是一个拓扑空间,,A B 是X 的子集,且A B ⊂.试说明()()d A d B ⊂.2、设,,X Y Z 都是拓扑空间.:f X Y →,:g Y Z →都是连续映射,试说明:g f X Z →也是连续映射.3、设X 是一个拓扑空间,A X ⊂.试说明:若A 是一个闭集,则A 的补集A '是一个开集.4、设X 是一个拓扑空间,A X ⊂.试说明:若A 的补集A '是一个开集,则A 是一个闭集.5、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集]}2[],1[],0{[=Y ,试写出Y 的商拓扑T .6、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集]}3[],2[],1{[=Y ,试写出Y 的商拓扑T .7、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[1],[1],[2]}Y =-,试写出Y 的商拓扑T .8、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[2],[1],[2]}Y =-,试写出Y 的商拓扑T .9、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[3]}Y =,试写出Y 的商拓扑T .10、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[4]}Y =,试写出Y 的商拓扑T .11、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[1],[2],[4]}Y =-,试写出Y 的商拓扑T .12、离散空间是否为2A 空间?说出你的理由.13、试说明实数空间R 是可分空间.14、试说明每一个度量空间都满足第一可数性公理.15、设X 是一个1T 空间,试说明X 的每一个单点集是闭集.16、设X 是一个拓扑空间,若X 的每一个单点集都是闭集,试说明X 是一个1T 空间.17、设(,)X T 是一个1T 空间,∞是任何一个不属于X 的元素.令*{}X X =⋃∞和*X =⋃*T T {},试说明拓扑空间*(,)X *T 是一个0T 空间.18、若X 是一个正则空间,试说明:对x X ∀∈与x 的每一个开邻域U ,都存在x 的一个开邻域V ,使得V U ⊂.19、若X 是一个正规空间,试说明:对X 的任何一个闭集A 与A 的每一个开邻域U ,都存在A 的一个开邻域V ,使得V U ⊂.20、试说明1T 空间X 的任何一个子集的导集都是闭集.21、试说明紧致空间X 的无穷子集必有凝聚点.22、如果X Y ⨯是紧致空间,则X 是紧致空间.23、如果X Y ⨯是紧致空间,则Y 是紧致空间.24、试说明紧致空间X 的每一个闭子集Y 都是紧致子集.六、证明题(每题8分)1、设:f X Y →是从连通空间X 到拓扑空间Y 的一个连续映射.则()f X 是Y 的一个连通子集.2、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的开集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.3、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的闭集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.4、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个连通子集.5、设{}Y γγ∈Γ是拓扑空间X 的连通子集构成的一个子集族.如果Y γγφ∈Γ≠,则Y γγ∈Γ是X 的一个连通子集.6、设A 是拓扑空间X 的一个连通子集,B 是X 的一个既开又闭的集合.证明:如果A B φ⋂≠,则A B ⊂.7、设A 是连通空间X 的非空真子集. 证明:A 的边界()A φ∂≠.8、设X 是一个含有不可数多个点的可数补空间.证明X 不满足第一可数性公理.9、设X 是一个含有不可数多个点的有限补空间.证明:X 不满足第一可数性公理.10、设,X Y 是两个拓扑空间,:f X Y →是一个满的连续开映射.X 满足第二可数性公理,证明:Y 也满足第二可数性公理.11、设,X Y 是两个拓扑空间,:f X Y →是一个满的连续开映射.X 满足第一可数性公理,证明:Y 也满足第一可数性公理.12、A 是满足第二可数性公理空间X 的一个不可数集。

《点集拓扑学》复习题

《点集拓扑学》复习题

《点集拓扑》复习题一、概念叙述1、拓扑空间2、邻域、邻域系3、集合A 的凝聚点4、闭包5、基 子基6、子空间7、(有限)积空间8、隔离子集9、连通集 10、连通集 11、连通分支 12、局部连通空间 13、1A 空间 14、2A 空间 15、可分空间 16、Lindeloff 空间 17、i T 空间(1,2,3,4i =) 18、正则空间 19、正规空间 20、紧致空间 21、可数紧空间 22、列紧空间 23、序列紧空间 24、局部紧空间 二、判断题1、有限集不可能有聚点 ( )2、拓扑空间X 的子集A 是闭集的充要条件是A A = ( )3、如果A B ⋂≠∅,则A B A B ⋂=⋂ ( )4、设Y 是拓扑空间X 的子空间,A 是Y 的子集,则A 在Y 中的导集是A 在X 中的导集与Y 的交。

( ) 5、若:f X Y →是同胚映射,则()f X Y = ( ) 6、离散空间中任意子集的导集都是空集 ( )7、拓扑空间中每个连通分支都是既开集又是闭集 ( ) 8、度量空间必是2A 空间 ( ) 9、在l R 中,(],a b 是开集 ( )10、映射:f X Y →是连续映射的⇔若拓扑空间X中序列{}i x 收敛于x X ∈,则扑拓空间Y中相应序列(){}i f x 收敛于()f x ( )11、设X为拓扑空间,C为连通分支,Y是X的一个连通子集,则Y C ⊂ ( ) 12、2A 空间必为可分空间 ( ) 13、正则且正规空间必为0T 空间 ( ) 14、紧致空间的闭子集必为它的紧致子集 ( )15、设X是一个拓扑空间,A X ⊂,则点x 是集合A的一个凝聚点⇔在{}A x -中有一个序列收敛于x ( )16、度量空间也是拓扑空间 ( )17、如果一个空间中有每个单点集都是闭集,那么这个空间必是离散空间 ( )18、拓扑空间X 是一个连通空间当且仅当X 中不存在既开又闭的非空真子集. ( )19、若拓扑空间中的子集A 是连通集,则它的闭包A 也是一个连通集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、证明下列是否为拓扑
1、Tf={U包含于X|X-U有限}∪{空集}
满足①全集、空集包含于Tf
②任意A、B∈Tf 若A、B中有一个为空集,A∩B=空集∈T。

若不是,(A∩B)′=A′∪
B′,A∪B∈T
③设T1∈T,令T2=T1-{空集}。

显然有∪A∈T1(A)=∪A∈T2(A).如果T2=空集,则∪A
∈T1(A)=∪A∈T2(A)=空集∈T。

设T2≠空集。

任取A0∈T2.这时(∪A∈T1(A))′=(∪A∈T2(A))′=∪A∈T2(A′)∈A0′是X的一个有限子集,所以∪A∈T1(A) ∈T。

所以为拓扑。

2、Tc={U包含于X|X-U可数}∪{空集}
3、T∞={U包含于X|X-U无限}∪{空集}∪{X}
二、计算实值标准拓扑R子空间Y=(0,1],子集(0.1/2)=A。

求A在Y、R中的闭包、内
部。

Y中:闭包(0,1/2].内部(0,1/2)
R中:闭包[0,1/2].内部(0,1/2)
三、A包含于Y,Y包含于X,为闭子空间。

若A包含于Y则A为X中闭集。

Y包含于X闭,所以存在X中闭集B使得A=Y∩B(子空间闭集定义),所以Y包含于X 闭,所以A为X中闭集。

四、设A、B、Aa包含于X,证明:1、A包含于B=A的闭包包含于B的闭包。

2、A∪B= A∪B。

3、∪Aa包含∪Aa。

1、
五、X、Y有子集A包含于X,B包含于Y,则A*B=A*B
六、R:K={1/n|n∈R+}求在T1、T2、T3、T4、T5中的闭包。

七、1、f:X Y连续。

2、任意B∈Y闭,f-1(B)闭。

3、任意A包含于X,f(A)包含于
f(A)。

4、任意B包含于Y,f-1(B)包含f-1(B)。

5、任意B包含于Y,f-1(B°)包含于(f-1(B))°证明1~5等价。

八、连续的满的闭映射为商映射。

九、商映射可以既不为开映射又不为闭映射。

十、连通子集在连续映射下的像是联通的。

十一、连通子集的闭包为连通子集。

道路连通则连通,
而且R^n中连通就是道路连通.
A的闭包是对的,因为任意开覆盖有有限子覆盖,闭包的点可以用无穷点列逼近,自然可以每个点取个领域,组成开覆盖.
十二、设A、B为(X,T)的紧致子集,则A∪B为紧致子集。

十三、紧致子集在连续映射下的像集为紧致子集。

十四、紧致空间的闭子集为紧致子集。

十五、拓扑空间的有限子集均为紧致子集。

十六、仿紧空间的闭子集为仿紧的。

十七、X是T1空间等价与单点集为闭子集。

十八、正规空间的闭子集是正规的,正则空间的子空间是正规的。

十九、正则的T0空间是T3空间。

二十、Hausdorff空间的子空间也是Hausdorff空间。

二十一、Husdorff空间中的紧集为闭集。

相关文档
最新文档