定积分的应用体积旋转体的侧面积.ppt

合集下载

定积分的应用面积体积-2022年学习资料

定积分的应用面积体积-2022年学习资料

例1.求由抛物线y2=2x及直线2x+y-2=0所围图形的面积。-→X-y+d---2,-2
y-=2x-2x+y-2=0-X-12-2,-2-求平面因形面积的基本步骤:-1作曲线图形、确定积分变量积分区间;-2求面积微元;-3计算定积分。
当曲边梯形的曲边由参数方程-北=pt-y=feG1ss2),-给出时,曲边梯形的面积为-A-fudioif g&aw-其中t1,t2分别是曲边的起点与终点对应的参数值。
2.设fx、gx是[a,b]上的连续函数,且fx2gx,-求由直线x=a,r=b,和曲线y=fx、y=gx 围-成的平面图形的面积A。-dA=[f x-gxx-1y=8x-A=∫[fcx-gexr-xx+dx
3.py、yy是[c,d]上的连续函数,且py2wy,-求由直线y=C,y=d和曲线x=py、x=yy所围 成的平面图形的面积A。-dA=[py-Ψ y]Wy-x=0y-x=Wy-A-ftoy-Wyldy-X
3.4.5一些物理量的计算-一、质量-例1.设半圆形线材的方程为y=VR2-x2-R<x<R,线-材上点的 x,y处的线密度为P=k-yk为常数,且k>R,-求该线材的质量。-ds-Ox x+dx R-X
二、功-例2.设一锥形贮水池,深15米,口径20米,盛满水,-试问将水全部吸出需作多少功?-10-X-Ax-B
例:求密度均匀(设为p,厚度为H,内外径为-r和R的飞轮绕中心轴转动的转动惯量J以及角速度-为o时的转动动 E.
3.4.6函数的平均值-一、函数的平均值-如何定义连续函数fx在[α ,b]上的平均值呢?-将[a,b]n等 。当n很大时,小区间[;-1,x]的长-度Ax=b-u-i=1,2,Λ ,n很小,由于fxeC[a,b],在小区间[x-1,x]上函数值变化很小,可把fx在-该区间上的取值看作常数∫x,于是∫x在[a,b]上-的

定积分的应用面积,体积

定积分的应用面积,体积
x
dx
f (x)
类似地,由0c yd , 0 x( y) 所围成的图形绕
x

旋转所成的旋转体的体积为:Vx
d
2c
y(
y)dy

3.4.4 旋转体的侧面积
设 f ( x) 在[a,b ]上非负,且有连续的导数。求由直线 xa , xb , y0 和曲线 y f ( x) 围成的平面图形, 绕 x 轴 旋转一周所形成的旋转体的侧面积。
ytan
x
R
y
o
y
R
x
(二)旋转体的体积
1.设 f ( x) 在[a,b] 上连续,求由直线xa ,xb ,
y0 和曲线 y f ( x) 所围成的图形绕 x 轴旋转
而成的旋转体的体积。
y
dV A( x)dx[ f ( x)]2 dx , y f (x)
Vx
b
[
f
(
x)]2dx
a
b y2dx.
a
o
a
x xdx b x
2. 设( y) 在[c,d ] 上连续,求由直线 yc ,yd , x0 和曲线 x( y) 所围成图形绕 y 轴 旋转而成的
旋转体的体积。
y
dV [( y)]2dy 。
Vy
d
[(
y)]2dy
c
d x2dy
c
d
ydy
y
x( y)
c
o
x
例 2.求由 x2 y2 2 和 y x2 所围成的图形分别
设有一立 体 位于平面 xa, xb (ab) 之间,已知它被
过点 ( x, 0, 0) (a xb) 且垂直于 x 轴 的平面所截得的截面面

高数课件第六章定积分的应用:第二节定积分的几何应用

高数课件第六章定积分的应用:第二节定积分的几何应用

y
c
b O
x
bx
x
x x 1 sh dx ch dx c c b x xb s 2 ch dx 2c sh 0 c c 0 x b 1 x 2c sh ( c ch ) c sh c c c c
2
e e ch x 2 x x e e sh x 2 (ch x) sh x
Hale Waihona Puke 2 (t ) 2 (t ) d t
因此所求弧长
s


2 (t ) 2 (t ) d t
(3) 曲线弧由极坐标方程给出:
令 x r ( ) cos , y r ( ) sin , 则得
dx [r ( ) cos r ( ) sin ]d dy [r ( ) sin r ( ) cos ]d
2
选 x 为积分变量 (1) x [2, 0], dA1 ( x 3 6 x x 2 )dx 于是所求面积 A A1 A2
特别注意:
各积分区间 A ( x 3 6 x x 2 )dx 0 (x x 6 x)dx 上被积函数的 2 253 形式不同. . 12

0

3
2
3
x2 1 练习:1.求曲线 y , y 与直线 x 3 2 1 x 2
x 3 所围成的图形的面积。
2.求曲线 xy 1 与直线
x y 0 y 2
x y 2
P1
2
所围成的图形的面积。 2014考研题
提示:1
P2
y
1
32 1 0 2 1 1 3 x 1 x 1 1 s 2[ ( )d x ( ( 3 3 2) ) d x ] 2 0 1 x 1 3 2 2 1 x2

定积分的几何应用(体积))

定积分的几何应用(体积))

π πa2 (t sin t)2 a sin t d t
注意上下限 !
2 π
π
π
a
2
(t
sin
t)
2
a
sin
t
d
t
0
π a3

(t
sin
t)2
sin
t
dt
0
注: 2 π (t sin t)2 sin t d t 0
2 π (t 2 sin t 2t sin 2 t sin3 t)d t (令 u t π) 0
V 2 1u[4 (u 3)2 ]du 5
令u x3
2 2 (x 3)(4 x2)dx 2
2 2 (3 x)(4 x2 )dx 2
(※)
补充 2. 如果旋转体是由连续曲线 y f ( x)、直 线 x a、 x b(0 a b)及 x轴所围成的曲边梯
形绕 x = m (>b) 旋转一周而成的立体,体积为
2
令u t 2
16 π a3 π (2u sin 2u) sin 4 u d u 0
令v u π
2
π
16 π
a3
2
π 2
(2v
π
sin
2v)
cos4 v
偶函数
d
v
奇函数
例 3 求由曲线 y 4 x2及 y 0所围成的图形 绕直线 x 3旋转构成旋转体的体积.
解(一) 取积分变量为y , y [0,4]
c
o
x
例2. 计算摆线
的一拱与 y=0
所围成的图形分别绕 x 轴 , y 轴旋转而成的立体体积 .
解: 绕 x 轴旋转而成的体积为
y

§6.1定积分的元素法§6.2几何应用(面积、体积)(2015)

§6.1定积分的元素法§6.2几何应用(面积、体积)(2015)

则对应该小区间上曲边扇形面积的近似值为
dA 1 ( )2 d
2
所求曲边扇形的面积为
r ( ) d
A 1 2 ( ) d 2
x
《高等数学》
返回
下页
结束
例4. 计算阿基米德螺线 到 2 所围图形面积 .
解:
A
2
0
1 (a )2 d
2
02
y

ox
R x

《高等数学》
返回
下页
结束
微分的几何意义与切线段的长度
dy f (x)dx
y y f (x)
y
ds dy dx

o
x
x
切线段的长度
x dx
此直角三角形称为: 微分三角形
ds (d x)2 (d y)2 1 f 2 (x)dx (弧微分公式)
曲线 y f (x) C[a,b], s b 1 f 2 (x)dx.
4 3 a2
3
对应 从 0 变
2 a
o
x
d
例5. 计算心形线
所围图形的面积 .
解:
1 (1 cos )2 d
2
2
2
1 (3cos
)2
d
2
3
5.
4
《高等数学》
返回
与圆
(
3
,
(利用对称性)
)
23
d

o
2x
下页
结束
二、体积
1.平行截面面积为已知函数的立体体积
§6 定积分的应用
§6.1 定积分的元素法(微元法) §6.2 几何应用 §6.3 物理应用

第六章 定积分的应用

第六章 定积分的应用

第六章定积分的应用教学目的1、理解元素法的基本思想;2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积)。

3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。

教学重点:1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积。

2、计算变力所做的功、引力、压力和函数的平均值等。

教学难点:1、截面面积为已知的立体体积。

2、引力。

§6. 1 定积分的元素法回忆曲边梯形的面积:设y=f (x)≥0 (x∈[a,b]).如果说积分,⎰=b adx xfA)(是以[a,b]为底的曲边梯形的面积,则积分上限函数⎰=x adt tfxA)()(就是以[a,x]为底的曲边梯形的面积.而微分dA(x)=f (x)dx表示点x处以dx为宽的小曲边梯形面积的近似值∆A≈f (x)dx, f (x)dx称为曲边梯形的面积元素.以[a,b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式,以[a,b]为积分区间的定积分:⎰=b adx xfA)(.一般情况下,为求某一量U,先将此量分布在某一区间[a,b]上,分布在[a,x]上的量用函数U(x)表示,再求这一量的元素dU(x),设dU(x)=u(x)dx,然后以u(x)dx为被积表达式,以[a,b]为积分区间求定积分即得⎰=b adx xfU)(.用这一方法求一量的值的方法称为微元法(或元素法).§6. 2 定积分在几何上的应用一、平面图形的面积1.直角坐标情形设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成, 则面积元素为[f 上(x )- f 下(x )]dx , 于是平面图形的面积为dx x f x f S ba ⎰-=)]()([下上.类似地, 由左右两条曲线x =ϕ左(y )与x =ϕ右(y )及上下两条直线y =d 与y =c 所围成设平面图形的面积为⎰-=d c dy y y S )]()([左右ϕϕ.例1 计算抛物线y 2=x 、y =x 2所围成的图形的面积.解 (1)画图.(2)确定在x 轴上的投影区间: [0, 1].(3)确定上下曲线: 2)( ,)(x x f x x f ==下上.(4)计算积分 31]3132[)(10323102=-=-=⎰x x dx x x S . 例2 计算抛物线y 2=2x 与直线y =x -4所围成的图形的面积.解 (1)画图.(2)确定在y 轴上的投影区间: [-2, 4].(3)确定左右曲线: 4)( ,21)(2+==y y y y 右左ϕϕ. (4)计算积分⎰--+=422)214(dy y y S 18]61421[4232=-+=-y y y . 例3 求椭圆12222=+by a x所围成的图形的面积. 解 设整个椭圆的面积是椭圆在第一象限部分的四倍, 椭圆在第一象限部分在x 轴上的投影区间为[0, a ]. 因为面积元素为ydx , 所以 ⎰=aydx S 04. 椭圆的参数方程为:x =a cos t , y =b sin t ,于是 ⎰=a ydx S 04⎰=02)cos (sin 4πt a td b⎰-=022sin 4πtdt ab ⎰-=20)2cos 1(2πdt t ab ππab ab =⋅=22.2.极坐标情形曲边扇形及曲边扇形的面积元素:由曲线ρ=ϕ(θ)及射线θ =α, θ =β围成的图形称为曲边扇形. 曲边扇形的面积元素为 θθϕd dS 2)]([21=. 曲边扇形的面积为⎰=βαθθϕd S 2)]([21. 例4. 计算阿基米德螺线ρ=a θ (a >0)上相应于θ从0变到2π 的一段弧与极轴所围成的图形的面积.解: ⎰=πθθ202)(21d a S 32203234]31[21πθπa a ==. 例5. 计算心形线ρ=a (1+cos θ ) (a >0) 所围成的图形的面积.解: ⎰+=πθθ02]cos 1([212d a S ⎰++=πθθθ02)2cos 21cos 221(d a πθθθπ20223]2s i n 41s i n 223[a a =++=.二、体 积1.旋转体的体积旋转体就是由一个平面图形绕这平面内一条直线旋转一周而成的立体. 这直线叫做旋转轴. 常见的旋转体: 圆柱、圆锥、圆台、球体.旋转体都可以看作是由连续曲线y =f (x )、直线x =a 、a =b 及x 轴所围成的曲边梯形绕x 轴旋转一周而成的立体.设过区间[a , b ]内点x 且垂直于x 轴的平面左侧的旋转体的体积为V (x ), 当平面左右平移dx 后, 体积的增量近似为∆V =π[f (x )]2dx , 于是体积元素为dV = π[f (x )]2dx ,旋转体的体积为dx x f V ba 2)]([π⎰=.例1 连接坐标原点O 及点P (h , r )的直线、直线x =h 及x 轴围成一个直角三角形. 将它绕x 轴旋转构成一个底半径为r 、高为h 的圆锥体. 计算这圆锥体的体积.解: 直角三角形斜边的直线方程为x hr y =. 所求圆锥体的体积为dx x h r V h20)(π⎰=h x h r 0322]31[π=231hr π=. 例2. 计算由椭圆12222=+by a x 所成的图形绕x 轴旋转而成的旋转体(旋转椭球体)的体积. 解: 这个旋转椭球体也可以看作是由半个椭圆 22x a ab y -= 及x 轴围成的图形绕x 轴旋转而成的立体. 体积元素为dV = π y 2dx ,于是所求旋转椭球体的体积为⎰--=a a dx x a a bV )(2222πa a x x a ab --=]31[3222π234ab π=. 例3 计算由摆线x =a (t -sin t ), y =a (1-cos t )的一拱, 直线y =0所围成的图形分别绕x 轴、y 轴旋转而成的旋转体的体积.解 所给图形绕x 轴旋转而成的旋转体的体积为⎰=a x dx y V ππ202⎰-⋅-=ππ2022)cos 1()cos 1(dt t a t a⎰-+-=ππ20323)cos cos 3cos 31(dt t t t a=5π 2a 3.所给图形绕y 轴旋转而成的旋转体的体积是两个旋转体体积的差. 设曲线左半边为x =x 1(y )、右半边为x =x 2(y ). 则⎰⎰-=a a y dy y x dy y x V 20212022)()(ππ ⎰⎰⋅--⋅-=πππππ022222sin )sin (sin )sin (tdt a t t a tdt a t t a⎰--=ππ2023sin )sin (tdt t t a =6π 3a 3 .2.平行截面面积为已知的立体的体积设立体在x 轴的投影区间为[a , b ], 过点x 且垂直于x 轴的平面与立体相截, 截面面积为A (x ), 则体积元素为A (x )dx , 立体的体积为dx x A V b a )(⎰=.例4 一平面经过半径为R 的圆柱体的底圆中心, 并与底面交成角α. 计算这平面截圆柱所得立体的体积.解: 取这平面与圆柱体的底面的交线为x 轴, 底面上过圆中心、且垂直于x 轴的直线为y 轴. 那么底圆的方程为x 2 +y 2=R 2. 立体中过点x 且垂直于x 轴的截面是一个直角三角形. 两个直角边分别为22x R -及αtan 22x R -. 因而截面积为αtan )(21)(22x R x A -=. 于是所求的立体体积为 dx x R V R R αtan )(2122-=⎰-ααtan 32]31[tan 21332R x x R R R =-=-. 例5. 求以半径为R 的圆为底、平行且等于底圆直径的线段为顶、高为h 的正劈锥体的体积.解: 取底圆所在的平面为x O y 平面, 圆心为原点, 并使x 轴与正劈锥的顶平行. 底圆的方程为x 2 +y 2=R 2. 过x 轴上的点x (-R <x <R )作垂直于x 轴的平面, 截正劈锥体得等腰三角形. 这截面的面积为22)(x R h y h x A -=⋅=.于是所求正劈锥体的体积为⎰--=R R dx x R h V 22h R d h R 2202221c o s 2πθθπ==⎰ . 三、平面曲线的弧长设A , B 是曲线弧上的两个端点. 在弧AB 上任取分点A =M 0, M 1, M 2, ⋅ ⋅ ⋅ , M i -1, M i , ⋅ ⋅ ⋅, M n -1, M n =B , 并依次连接相邻的分点得一内接折线. 当分点的数目无限增加且每个小段M i -1M i 都缩向一点时, 如果此折线的长∑=-ni i i M M 11||的极限存在, 则称此极限为曲线弧AB 的弧长, 并称此曲线弧AB 是可求长的.定理 光滑曲线弧是可求长的.1.直角坐标情形设曲线弧由直角坐标方程y =f (x ) (a ≤x ≤b )给出, 其中f (x )在区间[a , b ]上具有一阶连续导数. 现在来计算这曲线弧的长度.取横坐标x 为积分变量, 它的变化区间为[a , b ]. 曲线y =f (x )上相应于[a , b ]上任一小区间[x , x +dx ]的一段弧的长度, 可以用该曲线在点(x , f (x ))处的切线上相应的一小段的长度来近似代替. 而切线上这相应的小段的长度为dx y dy dx 2221)()('+=+,从而得弧长元素(即弧微分)dx y ds 21'+=. 以dx y 21'+为被积表达式, 在闭区间[a , b ]上作定积分, 便得所求的弧长为⎰'+=ba dx y s 21. 在曲率一节中, 我们已经知道弧微分的表达式为dx y ds 21'+=, 这也就是弧长元素. 因此 例1. 计算曲线2332x y =上相应于x 从a 到b 的一段弧的长度. 解: 21x y =', 从而弧长元素 dx x dx y ds +='+=112.因此, 所求弧长为b a b a x dx x s ])1(32[123+=+=⎰])1()1[(322323a b +-+=. 例2. 计算悬链线cx c y ch =上介于x =-b 与x =b 之间一段弧的长度. 解: cx y sh =', 从而弧长元素为 dx cx dx c x ds ch sh 12=+=. 因此, 所求弧长为⎰⎰==-b b b dx cx dx c x s 0ch 2ch c b c dx c x c b sh 2]sh [20==. 2.参数方程情形设曲线弧由参数方程x =ϕ(t )、y =ψ(t ) (α≤t ≤β )给出, 其中ϕ(t )、ψ(t )在[α, β]上具有连续导数.因为)()(t t dx dy ϕψ''=, dx =ϕ'(t )d t , 所以弧长元素为 dt t t dt t t t ds )()()()()(12222ψϕϕϕψ'+'='''+=. 所求弧长为⎰'+'=βαψϕdt t t s )()(22. 例3. 计算摆线x =a (θ-sin θ), y =a (1-cos θ)的一拱(0 ≤θ ≤2π )的长度.解: 弧长元素为θθθd a a ds 2222sin )cos 1(+-=θθd a )cos 1(2-=θθd a 2sin 2=. 所求弧长为⎰=πθθ202sin 2d a s πθ20]2cos 2[2-=a =8a .3.极坐标情形设曲线弧由极坐标方程ρ=ρ(θ) (α ≤ θ ≤ β )给出, 其中r (θ)在[α, β]上具有连续导数. 由直角坐标与极坐标的关系可得x =ρ(θ)cos θ , y =ρ(θ)sin θ(α ≤θ ≤ β ).于是得弧长元素为θθθd y x ds )()(22'+'=θθρθρd )()(22'+=.从而所求弧长为⎰'+=βαθθρθρd s )()(22.例14. 求阿基米德螺线ρ=a θ (a >0)相应于θ 从0到2π 一段的弧长.解: 弧长元素为θθθθd a d a a ds 22221+=+=.于是所求弧长为⎰+=πθθ2021d a s )]412ln(412[222ππππ++++=a . §6. 3 功 水压力和引力一、变力沿直线所作的功例1 把一个带+q 电量的点电荷放在r 轴上坐标原点O 处, 它产生一个电场. 这个电场对周围的电荷有作用力. 由物理学知道, 如果有一个单位正电荷放在这个电场中距离原点O 为r 的地方, 那么电场对它的作用力的大小为2r q k F = (k 是常数). 当这个单位正电荷在电场中从r =a 处沿r 轴移动到r =b (a <b )处时, 计算电场力F 对它所作的功. 例1' 电量为+q 的点电荷位于r 轴的坐标原点O 处它所产生的电场力使r 轴上的一个单位正电荷从r =a 处移动到r =b (a <b )处求电场力对单位正电荷所作的功.提示: 由物理学知道, 在电量为+q 的点电荷所产生的电场中, 距离点电荷r 处的单位正电荷所受到的电场力的大小为2r q k F = (k 是常数). 解: 在r 轴上, 当单位正电荷从r 移动到r +dr 时, 电场力对它所作的功近似为dr r q k2, 即功元素为dr r q kdW 2=. 于是所求的功为dr rkq W b a 2⎰=b a r kq ]1[-=)11(b a kq -=. 例2. 在底面积为S 的圆柱形容器中盛有一定量的气体. 在等温条件下, 由于气体的膨胀, 把容器中的一个活塞(面积为S )从点a 处推移到点b 处. 计算在移动过程中, 气体压力所作的功. 解: 取坐标系如图, 活塞的位置可以用坐标x 来表示. 由物理学知道, 一定量的气体在等温条件下, 压强p 与体积V 的乘积是常数k , 即pV =k 或Vk p =. 解: 在点x 处, 因为V =xS , 所以作在活塞上的力为xk S xS k S p F =⋅=⋅=. 当活塞从x 移动到x +dx 时, 变力所作的功近似为dx xk , 即功元素为dx xk dW =. 于是所求的功为dx x k W b a ⎰=b a x k ][ln =ab k ln =. 例3. 一圆柱形的贮水桶高为5m , 底圆半径为3m , 桶内盛满了水. 试问要把桶内的水全部吸出需作多少功?解: 作x 轴如图. 取深度x 为积分变量. 它的变化区间为[0, 5], 相应于[0, 5]上任小区间[x , x +dx ]的一薄层水的高度为dx . 水的比重为9.8kN/m 3, 因此如x 的单位为m , 这薄层水的重力为9.8π⋅32dx . 这薄层水吸出桶外需作的功近似地为dW =88.2π⋅x ⋅dx ,此即功元素. 于是所求的功为⎰=502.88xdx W π502]2[2.88x π=2252.88⋅=π(kj). 二、水压力从物理学知道, 在水深为h 处的压强为p =γh , 这里 γ 是水的比重. 如果有一面积为A 的平板水平地放置在水深为h 处, 那么, 平板一侧所受的水压力为P =p ⋅A .如果这个平板铅直放置在水中, 那么, 由于水深不同的点处压强p 不相等, 所以平板所受水的压力就不能用上述方法计算.例4. 一个横放着的圆柱形水桶, 桶内盛有半桶水. 设桶的底半径为R , 水的比重为 γ , 计算桶的一个端面上所受的压力.解: 桶的一个端面是圆片, 与水接触的是下半圆. 取坐标系如图.在水深x 处于圆片上取一窄条, 其宽为dx , 得压力元素为dx x R x dP 222-=γ.所求压力为⎰-=R dx x R x P 022 2γ)()(2221220x R d x R R ---=⎰γ R x R 02322])(32[--=γ332R r =. 三、引力从物理学知道, 质量分别为m 1、m 2, 相距为r 的两质点间的引力的大小为221r m m G F =, 其中G 为引力系数, 引力的方向沿着两质点连线方向.如果要计算一根细棒对一个质点的引力, 那么, 由于细棒上各点与该质点的距离是变化的, 且各点对该质点的引力的方向也是变化的, 就不能用上述公式来计算.例5. 设有一长度为l 、线密度为ρ的均匀细直棒, 在其中垂线上距棒a 单位处有一质量为m 的质点M . 试计算该棒对质点M 的引力.例5'. 求长度为l 、线密度为ρ的均匀细直棒对其中垂线上距棒a 单位处质量为m 的质点M 的引力.解: 取坐标系如图, 使棒位于y 轴上, 质点M 位于x 轴上, 棒的中点为原点O . 由对称性知, 引力在垂直方向上的分量为零, 所以只需求引力在水平方向的分量. 取y 为积分变量, 它的变化区间为]2 ,2[l l -. 在]2,2[l l -上y 点取长为dy 的一小段, 其质量为ρdy , 与M 相距22y a r +=. 于是在水平方向上, 引力元素为2222y a a y a dy m G dF x +-⋅+=ρ2/322)(y a dy am G +-=ρ. 引力在水平方向的分量为⎰-+-=222/322)(llx y a dy am G F ρ22412l a a l Gm +⋅-=ρ.。

-体积、旋转体的侧面积、一些物理量的计算

-体积、旋转体的侧面积、一些物理量的计算
∴该误差是比dx 高阶的无穷小,故
dV A(x)dx,
b
V a A(x)dx.
例 1.设有半径为R 的正圆柱体,被通过其底的直径
而与底面交成 的平面所截,求截得的圆柱楔的体积。
解:如图建立坐标系,
y tan
R
则底圆的方程为x2 y2 R2 。
x y
x[R, R] ,用过点x 且垂直于x 轴 o
x2
)dx
a
V
a a
b2 a2
(a
2
x2
)dx
ox
b
Байду номын сангаасax
x dx
2
b2 a2
a 0
(a2 x2)dx
2b2 a2
(a
2
x
1 3
x3
)
a 4 ab2. 03
例 3.已知圆台的上底半径为 r1 ,下底半径为r2 ,高为h ,
求它的体积。
解:如图选择坐标系,母线 AB 的方程为
y
0
r1
h r2
y
o a x xdx b x
设[x,x dx] 是[a,b] 上的代表小区间,相应的一小块立体
的体积记为V ,设 A(x) 在[x,x dx] 上的最小值和最大值分
别为m 和 M ,则 mdxV Mdx,
取近似
V A(x)dx,
其误差为 V A(x)dx (M m)dx ,
∵当dx0 时,(M m) 0 ,
则 dA 2f (x)dL ,
oa

A 2
b
f (x)
1 y2 dx.
a
y f (x) x x dx b x
[ 圆台的侧面积= 母线长 (上底半径 下底半径 ) 。在极限 状态,母线长是弧微元dL ;上底半径 下底半径 2f(x) 。]

高等数学(第三版)课件:定积分的应用

高等数学(第三版)课件:定积分的应用

线 y f ( x,) 直线 x a, x b (a b) 与
• x 轴围成的面积是在x 轴上方和下方曲边梯形
面积的差.
• • 同样可由微元法分析
•⒉ 一般地,根据微元法由曲线 y f ( x), y g( x),
• ( f ( x) g( x)) 及直线x a, x b 所围的图形
• 面积.(右图所示)
• 解: 取 为积分变量,

面积微元为
d
A
1 2
(a )2
d
• 于是
A 2 1 (a )2d a 2 2
02
23
2 4 a 2 3
03
• 例5 计算双纽线 r 2 a2 cos2 (a 0)

所围成的平面图形的面积(下图所示)
• 解 因 r 2 0,故 的变化范围是 [ 3 , 5 ,]
• ⑴分割区间[a,b],将所求量(曲边梯形面积 A )
分为部分量(小曲边梯形面积 Ai)之和;
• ⑵确定各部分量的近似值(小矩形面积);
Ai f (i )xi
• ⑶求和得所求量的近似值(各小矩形面积之和);
n
A f (i )xi
i 1
• ⑷对和式取极限得所求量的精确值(曲边梯形面积).
n
A lim 0
• 它表示高为f ( x) 、底为 dx 的一个矩形面积.
• ⑵由定积分几何意义可知,当 f (x) 0 时,由曲
线 y f (x),直线 x a, x b (a b) 与 x 轴所围成
的曲边梯形的面积A为
A
b
f (x)dx
.
a
• ⑶当 f ( x)在区间 [a, b]上的值有正有负时,则曲

定积分的应用(体积、旋转体的侧面积)

定积分的应用(体积、旋转体的侧面积)
所围图形的面积 .

2 1 2 cos cos
1 解: 利用对称性 , 所求面积 ( 1 cos 2 ) 2 12 1 2 2 2 a ( 1 cos ) d A a 2 2 2 1 1 2 2 3 2 cos cos 2 ) d a a ( 2 2 2 2 y 1 2 23 a a( 2 ) 2 4 a 2a x o 5 2 a 2 a2 4
0
y d x
2
y
o
a
2 a x




t ) 2

5 a
14
t) x a(t sin (a0 ) 1cos t) y a(
绕 y 轴旋转而成的体积为
2 V x (y )d y y 2 0 2 a
2a
y
x x ( y ) 2
o
2 a
32 2 a ( t sin t ) sin t d t 0
高为 h , 求 它 的 体 积 。
解 : 如 图 选 择 坐 标 系 , 母 线 A B 的 方 程 为
h y0 (xr 2) r r 1 2 r r2 1 x yr2 h
y
h
A (r ) 1,h
B (r ) 2,0
h2 h r r 2 1 V x dy ( 2 y r ) dy 2 0 0 h
( x ,0 ,0 ) ( a x b )且 于 x 轴 过 点 垂 直 的 平 面 所 截 得 的 截 面 面
积A 为 ( x ) A ( x ) 是 x 立体 的体 V , 假 定 的 连 续 函 数 , 求 。
A(x)
ax xdxbxA(x)a

定积分第五节定积分的应用

定积分第五节定积分的应用

=p
b2 a2
[a
2
x
-
1 3
x3 ]a-
a
=
4 p ab
3
2
.
例8由y x3 x 2 y 0所围成的图形 分别绕x轴及y轴旋转 计算所得两个旋转体的 体积
解:
绕x轴旋转所得旋转体 的体积为
绕y轴旋转所得旋转体 的体积为
Vx02y2dx02x6dx
2
Vy22808x2dy3208y3dy
3233y5864 1x7 2 128 5 05 7 0 7
给出, 其中f(x)在区间[a, b]上具有一阶连续导数. 现
在来计算这曲线弧的长度. 弧长元素(弧微分) :
y
yf(x)
ds
ds(x d)2(d y)2 1y2dx
因此所求弧长 s b 1y2 dx o a xxdxb x a
曲线
y f(x)(a x b)的
弧长:
解:
例12
sab1y2d x
计算曲线y ln x上相应于
曲线弧的长为 s 2 ( ) 2 ( ) d
da22sa2da12d
s02a12d2a[2142l2n142)( ]
sab1y2d x
s02a12d2a[2142l2n142)( ]
曲线
( )(
)的弧长:
例15 求阿基米德螺线 a (a>0)相应于 从0到2 一段的弧长.

立体的体积为
平行截面面积为已知 的立体的体积
A(x)dx.
A(x)
VabA(x)d x
截面面积为A(x)的立体体积V : a b A ( x ) d
例10 一平面经过半径为R的圆柱体的底圆中心, 并与底面交成角. 计算这平面截圆柱所得立体的体积.

定积分应用经典例题课件

定积分应用经典例题课件

例5. 求过点( 2 , 1 , 3 ) 且与直线
垂直相交的直线方程.
提示: 先求二直线交点 P. 过已知点且垂直于已知直线
的平面的法向量为
故其方程为

化已知直线方程为参数方程, 代入 ①式, 可得交 点
最后利用两点式得所求直线方程
x 2 y 1 z 3 2 1 4
(2,1,3)
P (3,2,1) (1,1,0)
n P 14
7
机动 目录 上页 下页 返回 结束
例5. 设函数
(1) 求函数在点 M ( 1, 1, 1 ) 处沿曲线 在该点切线方向的方向导数;
(2) 求函数在 M( 1, 1, 1 ) 处的梯度与(1)中切线方向
的夹角 .
2. 求函数 u x2 y2 z2 在椭球面 x2 y2 z2 1 a2 b2 c2
且垂直于直线L1
:
x 1 3
y 2
z
1, 1
相交,求此直线方程 .
解: 方法1 利用叉积.
设直线 Li 的方向向量为 si (i 1, 2),过 A 点及 L2 的平
面的法向量为 n, 则所求直线的方向向量 s s1 n , n
因原点 O 在 L2 上, 所以
A
i jk
n s2 OA 2 1 1 3 i 3 j 3k O 121
(2) grad f M (2 , 1 , 0)
cos
l
l
arccos 6
130
f l M
grad f M
2.
u
2x0
2x0 a2
2 y0
2 y0 b2
2z0
2z0 c2
n M0
2
x02 a4

8.5 旋转体的侧面积

8.5 旋转体的侧面积


b
a
dA 2 a
b
2π f ( x ) 1 f 2 ( x )dx . f ( x )ds a
b
旋转体的侧面积
§8.5 定积分的应用
设平面光滑曲线 C 的方程为
x ( y ) , y [c, d ] ( ( y ) 0),
将曲线绕 y 轴旋转一周得到旋转体. 则侧面积:
y x r 2 x2
r
x
x
r x r
r2 1 y 2 1 ( )2 2 2 2 r x2 r x
r
A 2 y 1 y2 dx 2 - r r 2 x 2
r
r2 dx 4 r 2 . r 2 x2
高州师范学院
旋转体的侧面积


2 d f f
2
因为这时可看作参数方程:
x f ( )cos
y f ( )sin
高州师范学院
旋转体的侧面积
§8.5 定积分的应用
一、( x ), a x b
2、参数方程
x (t ), y (t ), t
§8.5 定积分的应用
x2 y2 例2、求椭圆 2 2 1(0 b a )绕y轴旋转所成旋转体的表面积. a b y 解:右半椭圆的方程为:
y2 a 2 x a 1 2 b y2 . b b
b y b
x
x
ay b b2 y 2
ay
b 2 (b 2 y 2 ) a 2 y 2 1 x 2 1 ( )2 2 2 b 2 (b 2 y 2 ) b b y
A | f ( x ) | dx

定积分的概念课件

定积分的概念课件

区间可加性
总结词
定积分的区间可加性是指定积分在区间上的 值等于该区间内各小区间的定积分之和。
详细描述
定积分的区间可加性表明,对于任意两个不 相交的区间$[a, b]$和$[c, d]$,有
$int_{a}^{b}f(x)dx+int_{c}^{d}f(x)dx=int_ {a}^{d}f(x)dx$。这意味着可以将一个大区 间分割成若干个小区间,然后求各小区间的 定积分,再将它们相加,得到整个大区间的
体积计算
规则体积
对于规则的立体图形,如长方体、圆柱体、圆锥体等 ,可以直接利用定积分的值来计算其体积。例如,对 于圆柱体,其体积可以通过定积分$int_{a}^{b} 2pi r(h) dr$来计算。
曲顶体积
对于曲顶的立体图形,如球、球缺等,也可以利用定 积分来计算其体积。通过将曲顶立体分割成若干小锥 体,然后求和这些小锥体的体积,最后利用极限思想 得到整个曲顶立体的体积。
定积分的性质
02
线性性质
总结词
定积分的线性性质是指定积分具有与加法和数乘运算类似的性质。
详细描述
定积分的线性性质允许我们将一个被积函数与常数相加或相乘,其结果等于将相应的常数加到或乘到 该函数的定积分上。即,对于两个函数的定积分,有$int (k_1f+k_2g) dx = k_1int f dx + k_2int g dx$,其中$k_1$和$k_2$是常数。
应用
无穷区间上的积分在解决一些实际问题时非常有用,例如 求某些物理量(如质量、面积等)的无穷累加和。
一致收敛性
定义
01
一致收敛性是函数序列的一种收敛性质,它描述了函数序列在
某个区间上的一致收敛性。

数学分析之定积分的应用

数学分析之定积分的应用

第十章定积分的应用教学要求:1.理解微元法的思想,并能够应用微元法或定积分定义将某些几何、物理等实际问题化成定积分;2.熟练地应用本章给出的公式,计算平面区域的面积、平面曲线的弧长,用截面面积计算体积、旋转体的体积和它的侧面积、变力作功等。

教学重点:熟练地应用本章给出的公式,计算平面区域的面积、平面曲线的弧长,用截面面积计算体积、旋转体的体积和它的侧面积、变力作功等教学时数:10学时§ 1 平面图形的面积( 2 时)教学要求:1.理解微元法的思想,并能够应用微元法或定积分定义将某些几何、物理等实际问题化成定积分;2.熟练地应用本章给出的公式,计算平面区域的面积。

教学重点:熟练地应用本章给出的公式,计算平面区域的面积一、组织教学:二、讲授新课:(一)直角坐标系下平面图形的面积:型平面图形 .1.简单图形:型和2.简单图形的面积 : 给出型和型平面图形的面积公式.对由曲线和围成的所谓“两线型”图形, 介绍面积计算步骤. 注意利用图形的几何特征简化计算.求由曲线围成的平面图形的面积.例1例2求由抛物线与直线所围平面图形的面上的曲边(二)参数方程下曲边梯形的面积公式:设区间梯形的曲边由方程给出 .又设, 就有↗↗, 于是存在反函数. 由此得曲边的显式方程.,亦即.具体计算时常利用图形的几何特征 .求由摆线的一拱与轴例3所围平面图形的面积.例4 极坐标下平面图形的面积:推导由曲线和射线所围“曲边扇形”的面积公式. (简介微元法,并用微元法推导公式 . 半径为,的扇形面积为 . )顶角为例5求由双纽线所围平面图形的面积 .解或. ( 可见图形夹在过极点,的两条直线之间 ) . 以代方程不变,倾角为图形关于因此.三、小结:§ 2 由平行截面面积求体积( 2 时)教学要求:熟练地应用本章给出的公式,用截面面积计算体积。

教学重点:熟练地应用本章给出的公式,用截面面积计算体积.(一)已知截面面积的立体的体积:设立体之截面面积为推导出该立体之体积.祖暅原理: 夫幂势即同 , 则积不容异 . ( 祖暅系祖冲之之子齐梁时人 , 大约在五世纪下半叶到六世纪初 )例1求由两个圆柱面和所围立体体积 .P244 例1 ( )例2 计算由椭球面所围立体 (椭球 )的体积 .[1] P244例2 ( )(二)旋转体的体积: 定义旋转体并推导出体积公式..例3 推导高为, 底面半径为的正圆锥体体积公式.例4 求由曲线和所围平面图形绕轴旋转所得立体体积.绕轴一周所得旋转体体积.( 1000)例5 求由圆§ 3 曲线的弧长( 1 时 )教学要求:熟练地应用本章给出的公式,计算平面曲线的弧长。

高数第五章 定积分的应用

高数第五章    定积分的应用

第五章 定积分的应用在本章中,我们将利用学过的定积分理论来解决一些实际问题.首先介绍建立定积分数学模型的方法——微分元素法;再利用这一方法求一些几何量(如面积、体积、弧长等)和一些物理量(如功、液体静压力、引力等);并介绍定积分在经济学中的简单应用.第一节 微分元素法实际问题中,哪些量可用定积分计算?如何建立这些量的定积分表达式?本节中我们将回答这两个问题.由定积分定义知,若()f x 在区间,a b ⎡⎤⎣⎦上可积,则对于,a b ⎡⎤⎣⎦的任一划分:1<<<0n a x x x b == ,及1,i i x x -⎡⎤⎣⎦中任意点i ξ,有d Δ01()lim()nb i i aλi f x x f ξx →==∑⎰,(5-1-1)这里()-=-= 11,2,,i i i Δx x x i n ,}{≤≤=1m ax i i nλΔx . (5-1-1)式表明定积分的本质是一类特定和式的极限,此极限值与,a b ⎡⎤⎣⎦的分法及点i ξ的取法无关,只与区间,a b ⎡⎤⎣⎦及函数()f x 有关.基于此,我们可以将一些实际问题中有关量的计算归结为定积分来计算.例如,曲边梯形的面积、变速直线运动的位移等均可用定积分来表达.由上一章中分析曲边梯形面积用定积分来表示的过程,我们可概括地将此过程描述为“划分找近似,求和取极限”.也就是说,将所求量整体转化为部分之和,利用整体上变化的量在局部近似于不变这一辩证关系,局部上以“不变”代替“变”,这是利用定积分解决实际问题的基本思想.根据定积分的定义,如果某一实际问题中所求量U 符合下列条件:(1)建立适当的坐标系和选择与U 有关的变量x 后,U 是一个与定义在某一区间,a b ⎡⎤⎣⎦上的可积函数()u x 有关的量; (2)U 对区间,a b ⎡⎤⎣⎦具有可加性,即如果把,a b ⎡⎤⎣⎦任意划分成n 个小区间()-=-= 11,2,,i i i Δx x x i n ,则U 相应地分成n 个部分量i ΔU ,且1nii U U Δ==∑;(3) 部分量i ΔU 可近似地表示成()()1,i i i i i u ξΔx ξx x -∈⎡⎤⎣⎦,且i ΔU 与()i i u ξΔx 之差是iΔx 的高阶无穷小,即()()i i i i ΔU u ξΔx o Δx -=,那么,我们可得到所求量U 的定积分数学模型d ()b au x U x =⎰. (5-1-2)在实际建模过程中,为简便起见,通常将具有代表性的第i 个小区间1,i i x x -⎡⎤⎣⎦的下标略去,记为[,d ]x x x +,称其为典型小区间,相应于此小区间的所求量的部分量记作ΔU .因此,建立实际问题的定积分模型可按以下步骤进行:(1) 建立坐标系,根据所求量U 确定一个积分变量x 及其变化范围,a b ⎡⎤⎣⎦;(2) 考虑典型小区间[,d ]x x x +,求出U 相应于这一小区间的部分量ΔU ,将ΔU 近似地表示成,a b ⎡⎤⎣⎦上的某个可积函数()ux 在x 处的取值与小区间长度d Δx x =的积,即 d (d )()ΔU u x x o x =+, (5-1-3)我们称d ()u x x 为所求量U 的微分元素(简称微元或元素),记作d d ()U u x x=;(3) 计算所求量U ,即d =d ()b b aau x U x =⎰⎰U .上述建立定积分数学模型的方法称为微分元素法,这一方法的关键是步骤(2)中微分元素d U 的取得.第二节 平面图形的面积在上一章开头讨论过由连续曲线()()()0y =f x f x ≥,以及直线()x=a ,x =b a <b 和x 轴所围成的曲边梯形的面积()d baA f x x =⎰.如果()f x 在,a b ⎡⎤⎣⎦上不都是非负的,由定积分对区间的可加性,则所围图形的面积为()d b aA f x x =⎰.本节将讨论一般平面图形的问题,如果其边界曲线是由两条连续曲线()1y f x =, ()2y f x =()()21f x f x ⎡⎤≥⎣⎦及直线x =a ,x =b 所围成的平面图形,其面积便可用定积分来计算.下面我们运用定积分的微分元素法,建立不同坐标系下平面图形的面积计算公式.一、 直角坐标情形设一平面图形由曲线()()12,y f x y f x ==及直线x =a 和()x =b a b <围成(见图5-1).图5-1为求其面积A ,我们在,a b ⎡⎤⎣⎦上取典型小区间[,d ]x x x +,相应于该小区间的平面图形面积ΔA 近似地等于高为()()12f x f x -、宽为d x 的窄矩形的面积,从而得到面积微元()()d d 12A f x f xx =-.所以,此平面图形的面积为()()d 12b aA f x f xx =-⎰. (5-2-1)类似地,若平面图形由12(),()x φy x φy ==及直线y c =和()y d d c =>围成(见图5-2),则其面积为()()d 12d cA φy φy y =-⎰. (5-2-2)图5-2例1 计算由抛物线21y x =-+与2y x =所围图形的面积A . 解 解方程组221y x y x⎧=-+⎪⎨=⎪⎩得两抛物线的交点为122⎛⎫ ⎪⎝⎭和122⎫⎪⎝⎭,于是图形位于2x =-与2x =之间,如图5-3所示,取x 为积分变量,由(5-2-1)式得d 22222)A xxx x=--=-32022()3x x =-=图5-3例2 计算由直线4y x =-和抛物线22y x =所围平面图形的面积A . 解 解方程组224y xy x ⎧=⎪⎨=-⎪⎩得两线的交点为(2,-2)和(8,4),平面图形,如图5-4所示,位于直线2y =-和4y =之间,于是取y 为积分变量,由(5-2-2)式得d 24242yA y y -=+-⎰3242(4)26yyy -=+-18=.图5-4注意:若在例1中取y 为积分变量,在例2中取x 为积分变量,则所求面积的计算会较为复杂.例如在例2中,若选x 为积分变量,则积分区间是[0,8].当(,2)0x ∈时,典型小区间(,d )x x x +所对应的面积微元是(d d A x=⎤⎦;而当(2,8)x ∈时,典型小区间所对应的面积微元是()d d 4A x x ⎤-⎦=. 故所求面积为(()d d 28024A x x x⎤⎤+-⎦=⎦⎰⎰.显然,上述做法较例2中的解法要复杂.因此,在求平面图形的面积时,恰当地选择积分变量可使计算简便.当曲边梯形的曲边为连续曲线,其方程由参数方程(),(),x φt y ψt =⎧⎨=⎩12t t t ≤≤ 给出时,若其底边位于x 轴上,()φt 在12[,]t t 上可导,则其面积微元为 ()()d d d A y x ψt φt t ==' d (0)t >. 从而面积为()()d 21t t A ψt φt t ='⎰. (5-2-3)同理,若其底边位于y 轴上,且()ψt 在12[,]t t 上可导,则其面积微元为 ()()d d d A x y φt ψt t ==' d (0)t > 从而面积为()()d 21t t A φt ψt t ='⎰. (5-2-4)例3 设椭圆方程为12222y x ab+= (,a b 为正的常数),求其面积A .解 椭圆的参数方程为cos ,sin ,x a t y b t =⎧⎨=⎩20t π≤≤. 由对称性知d 204sin (cos )A b t a t tπ'=⋅⎰d d 22201cos 24sin 42ta b t t a b t ππ-==⎰⎰a b=π.二、 极坐标情形设一平面图形,在极坐标系下由连续曲线()r r θ=及射线,θαθβ==所围成(称为曲边扇形,如图5-5所示.)为求其面积,我们在θ的变化区间[,]αβ上取一典型小区间[,d ]θθθ+,相应于此区间上的面积近似地等于中心角为d θ、半径为()r θ的扇形面积,从而得到面积微元()d d 212A r θθ=, 所以d 21()2βαA r θθ=⎰. (5-2-5)图5-5例4 计算阿基米德(Archimedes)螺线(>)0r a θa =上相应于θ从0到2π的一段弧与极轴所围成图形如图5-6所示的面积.解 由式(5-2-5)得d 22232302114()2630A a θθa θa ππ⎛⎫===π ⎪⎝⎭⎰.图5-6 图5-7例5 求由双纽线()()2222222x y a x y +=-所围成,且在半径为a 的圆内部的图形如图5-7所示的面积.解 由对称性,所求面积应等于第一象限部分面积的4倍,极坐标下双纽线在第一象限部分的方程为222co 2r a s θ=, 04θ≤≤π.圆的方程为r a =. 由 222cos 2r a θr a ⎧=⎪⎨=⎪⎩解得两曲线在第一象限交点为6,a ⎛⎫⎪⎝⎭π,由式(5-2-5)得所求面积d cos d 2264061142222A a θa θθπππ⎡⎤=+⎢⎥⎣⎦⎰⎰42262sin 23a a θπππ=+2(23aπ=+-.第三节 几何体的体积一、 平行截面面积为已知的立体体积考虑介于垂直于x 轴的两平行平面x a =与x b =之间的立体如图5-8所示,若对任意的[,]x a b ∈,立体在此处垂直于x 轴的截面面积可以用x 的连续函数()A x 来表示,则此立体的体积可用定积分表示.图5-8在[,]a b 内取典型小区间[,d ]x x x +,对应于此小区间的体积近似地等于以底面积为()Ax ,高为d x 的柱体的体积,故体积元素为()d d V A x x =, 从而d ()b aA x V x =⎰. (5-3-1)例1 一平面经过半径为R 的圆柱体的底圆中心,并与底面交成角α,如图5-9所示,计算此平面截圆柱体所得楔形体的体积V .解法1 建立坐标系如图5-9,则底面圆方程为222x y R +=.对任意的[,]x R R ∈-,过点x 且垂直于x 轴的截面是一个直角三角形,两直角边的长度分别为y =和tan y αα=,故截面面积为()()tan 2212x R x A α-=.于是立体体积为tan d 221()2R RV R x αx -=-⎰tan d tan 22302()3RαR x x R α=-=⎰.图5-9 图5-10解法2 在楔形体中过点y 且垂直于y 轴的截面是一个矩形如图5-10所示,其长为2x =tan y α,故其面积为()2A yy α=.从而,楔形体的体积为()d tan 322222an 3R R V αy αR y==--⎰tan 323R α=. 二、旋转体的体积由一平面图形绕这平面内一条定直线旋转一周而成的立体称为旋转体. 设一旋转体是由连续曲线()y f x =,直线x a =和x b =及x 轴所围成的曲边梯形绕x 轴旋转一周而形成的(图5-11),则对任意的[,]x a b ∈,相应于x 处垂直于x 轴的截面是一个圆盘,其面积为2()πf x ,于是旋转体的体积为 ()d 2ba V f x x =π⎰. (5-3-2)图5-11例2 计算由椭圆22221y x ab+=(,a b 为正的常数)所围图形绕x 轴旋转而成的旋转体(称之为旋转椭球体,见图5-12)的体积.图5-12解 这个旋转体实际上就是半个椭圆y =及x 轴所围曲边梯形绕x 轴旋转一周而成的立体,于是由式(5-3-2)得()2222a ab V axa-=π-⎰()d 22222a b axxa=π-⎰2322230ab x a x a ⎛⎫=π⋅- ⎪⎝⎭243a b =π.特别地,当a b =时便得到球的体积343πa .例3 求圆域222()()x b a y b a +-≤>绕x 轴旋转而成的圆环体的体积如图5-13所示.图5-13解 如图5-13,上半圆周的方程为2y b +=1y b -=对应于典型区间[,d ]x x x +上的体积微元为d d 2221()V y y x =π-πd 22((b b x ⎡⎤=π+--⎢⎥⎣⎦4x =π.所以4a aV x -=π⎰8b x =π⎰284ab π=π⋅22a b =2π.第四节 曲线的弧长和旋转体的侧面积一、 平面曲线的弧长首先,我们建立平面曲线弧长的概念.设有平面曲线 A B ,在其上任取分点:11,,,,0n n A M M M M B -== ,连接相邻的两个分点得到n 条线段1i i MM-,1,2,,i n = .以()1,i i iρρM M-=表示线段1i i M M -的长度(见图5-14),记1m ax{}i i nρλ≤≤=,若极限01lim niλi ρ→=∑存在,则定义此极限值为曲线 A B 的长度(即弧长),并称曲线 AB 是可求长的.图5-14下面用微分元素法来推导弧长的计算公式.设 A B 的方程为()y f x =,[,]x a b ∈,且()f x 在[,]a b 上有一阶连续导数.考虑[,]a b 内的典型小区间[,]x x Δx +,相应于此区间的弧长记为Δs ,Δs 近似地等于弦长,即22222()()()()[()()]Δs Δx Δy Δx f x Δx f x ≈+=++-.由微分中值定理,得,222()()[()]),(Δs ξx x Δx Δx f ξΔx ∈'+≈++,此处>0Δx ,故得弧长的微分元素(简称弧微分)为d s ==x =. (5-4-1)从而, AB 的长为as x =⎰. (5-4-2)若曲线弧 AB 的方程由参数方程 (),(),x φt y ψt =⎧⎨=⎩ αt β≤≤,给出,设()(),φt ψt 在[,]αβ上具有连续导数,由于()()d d d d ,x φt t y ψt t ='=',因此对于任意的[,]t αβ∈,典型小区间d []t t t +,上相应弧长元素为d s t =. (5-4-3)所以,曲线弧 AB 的弧长为αs t =⎰. (5-4-4)式(5-4-1)和(5-4-3)即为弧微分公式,这和第二章第五节所推导的弧微分公式是一致的.例1 两端固定于空中的线缆,由于其自身的重量而下垂成曲线形,称之为悬链线.设一悬链线的方程为e +e ()2sh xxa a y a x a a -== (a为正的常数),求其在[,]0a 上一段的长.解 d ds x x == =e +e d 1()2xxa a x -,故 e +e d e+e ee 101()()()2x xxx a a a aaas x a a ---===⎰-. 例2 如图5-15所示,计算摆线(sin ),(1cos ),x a t t y a t =-⎧⎨=-⎩()0a > 的一拱(20t π≤≤)的长度.图5-15解 由于d s t =t=d 2sin2ta t =, 所以d d 2202sin2sin22tts a t a t ππ==⎰⎰22(2cos )820t a a π=-=.如果曲线方程由极坐标方程()()r r θαθβ=≤≤给出,且()r θ存在一阶连续导数,则由 ()cos ,()sin ,x r θθy r θθ=⎧⎨=⎩()αθβ≤≤ 可得()[()cos ]()cos ()sin ,φθr θθr θθr θθ'''==- ()[()sin ]()sin ()cos ,ψθr θθr θθr θθ'''==+从而 ()()()()2222φθψθrθr θ'+'=+'. 所以αs θ=⎰. (5-4-5)例3 求心形线1 (cos )(0)r a θa =+>的全长(见图5-16).图5-16解 由(5-4-5)式有d s θ=θ=θ=.由对称性知02s θπ=⎰d 022cos2θa θπ=⎰ 8sin820θa a π==. *二、 旋转体的侧面积设一旋转体的侧面由一段曲线()()y f x a x b =≤≤绕x 轴旋转一周而得(图5-17).为求其面积A ,我们在[,]a b 上取典型小区间[,d ]x x x +,相应于此区间上的窄带形侧面(图5-17中的阴影部分)可近似地看成弧微分d s 绕x 轴旋转一周而成.于是这一窄带形侧面可以用一个半径为()f x ,高为d s 的圆柱面来近似代替,从而得侧面积的微分元素()(d πd π22A f xs f x x ==.所以2(b aA f x x =π⎰.此处假设()f x 在[,]a b 上可导.图5-17例4 求半径为R 的球的表面积.解 以球心为原点建立一平面直角坐标系,则该球是平面上半圆盘0y ≤≤绕x 轴旋转一周而成的旋转体,其表面积为π2R RA x-=⎰πd π244R Rx -==⎰R R .第五节 定积分在物理学中的应用一、 变力沿直线所做的功由物理学知,若一个大小和方向都不变的恒力F 作用于一物体,使其沿力的方向作直线运动,移动了一段距离s ,则F 所做的功为·W F s =.下面用微分元素法来讨论变力做功问题.设有大小随物体位置改变而连续变化的力()F F x =作用于一物体上,使其沿x 轴作直线运动,力F 的方向与物体运动的方向一致,从x a =移至至>x b a = (见图5-18).在[,]a b 上任一点x 处取一微小位移d x ,当物体从x 移到d x x +时,()F x 所做的功近似等于d ()F x x ,即功元素d d ()W F x x =,于是d ()b aW F x x =⎰. (5-5-1)图5-18例1 一汽缸如图5-19所示,直径为0.20m ,长为1.00m ,其中充满了气体,压强为5981.0⨯Pa.若温度保持不变,求推动活塞前进0.5m 使气体压缩所作的功.图5-19解 根据波义耳(Boyle )定律,在恒温条件下,气体压强p 与体积V 的乘积是常数,即p V k =.由于压缩前气体压强为5981.0⨯Pa ,所以ππ52981198.00000k =⨯⋅⋅=.建立坐标系如图5-19所示,活塞位置用x 表示,当活塞处于x 处时汽缸中气体体积π211()(0.)V x =-,于是压强为2()(1)(0.1)k p x x =-π,从而活塞上的压力为()1k F x p S x==-.故推动活塞所作功为d 05ln 10.50.9800980010W x x π==-π(-)-⎰x 980000ln2 2.13104(J )=π≈⨯.例2 从地面垂直向上发射一质量为m 的火箭,求将火箭发射至离地面高H 处所作的功.解 发射火箭需要克服地球引力做功,设地球半径为R ,质量为M ,则由万有引力定律知地球对火箭的引力为2GM m F =r,其中r 为地心到火箭的距离,G 为引力常数.当火箭在地面时,r R =,引力为2G M m R.另一方面,火箭在地面时,所受引力应为m g ,其中g 为重力加速度,因此2m g =GM m R, 故有 2=gR G M,于是22=m gR F r.从而,将火箭从r R =发射至r R H =+处所做功为d 111222R H RW r RR H +⎛⎫==- ⎪+⎝⎭⎰m gRm gR r .例3 地面上有一截面面积为20A =m 2,深为4 m 的长方体水池盛满水,用抽水泵把这池水全部抽到离池顶3m 高的地方去,问需做多少功?图5-20解 建立坐标系如图5-20所示.设想把池中的水分成很多薄层,则把池中全部水抽出所做的功W 等于把每一薄层水抽出所做的功的总和.在[0,4]上取小区间[x ,x +d x ],相应于此小区间的那一薄层水的体积为2d 0x m 3,设水的密度1310ρ=⨯kg ·m -3,故这层水重为d 4210g x ⨯ kg ,将它抽到距池顶3m 高处克服重力所做功为d d 4210(3)x g x W ⨯⋅⋅=+.从而,将全部水抽到离池顶3m 高处所做的功为4023 1.9632424510()d 10x W x g x x ⎛⎫=⨯⋅+⋅=⨯⋅⨯+ ⎪⎝⎭⎰639210J .()=⨯ (其中-29.8m s g =⋅)二、液体静压力由帕斯卡(Pascal )定律,在液面下深度为h 的地方,液体重量产生的压强为p ρg h =,其中ρ为液体密度,g 为重力加速度.即液面下的物体受液体的压强与深度成正比,同一深度处各方向上的压强相等.面积为A 的平板水平置于水深为h 处,平板一侧的压力为p ρg h A =. 下面考虑一块与液面垂直没入液体内的平面薄板,我们来求它的一面所受的压力.设薄板为一曲边梯形,其曲边的方程为,()()y f x a x b =≤≤,建立坐标系如图5-21所示,x 轴铅直向下,y轴与液面相齐.当薄板被设想分成许多水平的窄条时,相应于典型小区间d [,]x x x +的小窄条上深度变化不大,从而压强变化也不大,可近似地取为ρg x ,同时小窄条的面积用矩形面积来近似,即为d ()f x x ,故小窄条一面所受压力近似地为d d ()p ρg x f x x=⋅.图5-21从而d ()b ap ρgx f x x =⎰. (5-5-2)例4 一横放的圆柱形水桶,桶内盛有半桶水,桶端面半径为0.6m ,计算桶的一个端面上所受的压力.图5-22解 建立坐标系如图5-22所示,桶的端面圆的方程为22360.x y +=.相应于[,d ]x x x +的小窄条上的压力微元d 2p ρg xx =,所以桶的一个端面上所受的压力为060.p x xx =⎰20633(.)ρg =314110N .≈⨯()其中3110ρ=⨯kg·m -3,98-2m s .g ⋅=. 三、引力由物理学知,质量分别为12,m m ,相距为r 的两质点间的引力的大小为122m m F Gr=,其中G 为引力系数,引力的方向沿着两质点的连线方向.对于不能视为质点的两物体之间的引力,我们不能直接利用质点间的引力公式,而是采用微元法,下面举例说明.例5 一根长为l 的均匀直棒,其线密度为ρ,在它的一端垂线上距直棒a 处有质量为m 的质点,求棒对质点的引力.图5-23解 建立坐标系如图5-23所示,对任意的[,0)x l ∈,考虑直棒上相应于d [,]x x x +的一段对质点的引力,由于d x 很小,故此一小段对质点的引力可视为两质点的引力,其大小为d d G 22m ρx F a x=+,其方向是沿着两点,(0)a 与(),0x 的连线的,当x 在(),0l 之间变化时,d F 的方向是不断变化的.故将引力微元d F 在水平方向和铅直方向进行分解,分别记为d ,d x y F F ,则d 32G d 22()x m ρxF F x x a ==+,d 32G d 22()y m ρa F F x xa =-=-+.于是,直棒对质点的水平方向引力为32d 022()l x x F G m ρx xa =+⎰32d 2222()()2l G m ρa x a x -=++⎰1222()0l G m ρa x -=-+1(G m ρa=-.铅直方向引力为d 30222()l y x F G m ρa a x =-+⎰12l G m ρa -=-G m ρl =.注意 此例如果将直棒的线密度改为()ρρx =,即直棒是非均匀的,当()ρx 为已知时,直棒对质点的引力仍可按上述方法求得. 四、平均值我们知道,n 个数值12,,,n y y y 的算术平均值为121()n y y y y n=+++ . 在许多实际问题中,需考连续函数在一个区间上所取值的平均值,如一昼夜间的平均温度等.下面将讨论如何规定和计算连续函数()f x 在[,]a b 上的平均值. 先将区间[,]a b n 等分,分点为1<<<0n a x x x b == ,每个小区间的长度为Δx b an=-,()f x 在各分点处的函数值记为1,2,,()()i i y f x i n == .当Δx 很小(即n 充分大)时,在每个小区间上函数值视为相等,故可以用12,,,n y y y 的平均值121()n y y y n+++ 来近似表达()f x 在[,]a b 上的所有取值的平均值.因此,称极限值121lim()n n y y y y n→∞=+++为函数()f x 在[,]a b 上的平均值.由于12lim n n y y y b ay b a n →∞+++-=-120limnx y y y x b a∆→+++=∆-011lim ()ni x i f x x b a ∆→==∆-∑,故1()d bay f x x b a =-⎰.(5-5-3)式(5-5-3)就是连续函数()f x 在[,]a b 上的平均值的计算公式.例6 计算纯电阻电路中正弦交流电sin m i I ωt =在一个周期π2T =ω上的功率的平均值(简称平均功率).解 设电阻为R ,则电路中的电压为m U iR I R tω==sin ,功率为2sin 2m N Ui t I R ω==.一个周期上的平均功率为d d 2221sin sin 2T ωI R ωN R ωt t ωt I t Tπ==π⎰⎰22m md()0220sin 2(1cos 2)442ωωR R ωt ωt ωt ωt I I ππ⎡⎤=-=-⎢⎥ππ⎣⎦⎰22m m22mU I R I ==2m m ,其中m m U I R =表示最大电压,也称为电压峰值,即纯电阻电路中正弦交流电的平均功率等于电流与电压的峰值的乘积的一半.通常交流电器上标明的功率就是平均功率,而交流电器上标明的电流值都是另一种特定的平均值,常称为有效值.一般地,周期性非恒定电流i 的有效值是这样规定的:当电流()i t 在一个周期T 内在负载电阻R 上消耗的平均功率等于取固定值I 的恒定电流在R 上消耗的功率时,称这个固定值为()i t 的有效值.电流()i t 在电阻R 上消耗的功率为()()()()N t U t i t i t R =⋅=2.它在[0,T )上的平均值为d d 221()()T T R N i t R t i t tTT==⎰⎰.而固定值为I 的电流在R 上消耗的功率为2N I R =,因此d 22()T R I R i t t T =⎰, 即I =.例7 求正弦电流s (n )i m i I t t ω=的有效值.解12221s i n 2ωI ωt ωπ⎛⎫ ⎪=⎪π ⎪⎝⎭⎰2m I122sin 242ωωt ωt π⎡⎤⎡⎤⎢⎥=-⎢⎥π⎣⎦⎢⎥⎣⎦2mI=.叫做函数()f x 在[,]a b 上的均方根.第六节 定积分在经济学中的应用一、 最大利润问题设利润函数()()()πx =R x C x -,其中x 为产量,()R x 是收益函数,()C x 是成本函数,若()π,(),()x R x C x 均可导,则使()πx取得最大值的产量x 应满足()()()π0x R x C x '='-'=,即()().R x C x '='因此总利润的最大值在边际收入等于边际成本时取得.例1 设某公司产品生产的边际成本2181()00C x x x '=-+,边际收益为23()00R x x '=-,试求公司的最大利润.解 由于d ππd ()()()()x x R x C x x'''==-223181(00)(00)x x x =---+215100x x=-+,故利润微分元素为d πd 2151()(00)x x xx =-+.产量为0x 时,利润为πd 0200()(15100)x x x xx =-+⎰.另一方面,令π()0x '=,得21525x ±==(负值舍去). 又当20x =时,()π152<0x x "=-,故20x =时,利润取得最大值,最大利润为πd 202(20)(15100)x xx =-+⎰322015(100)230x xx =-+ 23333.≈.二、资金流的现值与终值1. 连续复利概念设有一笔数量为0A 元的资金存入银行,若年利率为r ,按复利方式每年计息一次,则该笔资金t 年后的本利和为0(1)(1,2,)tt A A r t =+= .如果每年分n 次计息,每期利率为r n,则t 年后的本利和为*01(1,2,)n tt r A A t n ⎛⎫=+= ⎪⎝⎭ .当n 无限增大时,由于e lim (1)n r n r n→∞+=,故e *00lim lim (1)n t r t t n n r A A A n→∞→∞=+=.称公式e 0r tt A A = (5-6-1)为0A 元的现值(即现在价值)在连续复利方式下折算为t 年后的终值(将来价值)的计算公式.公式(5-6-1)可变形为e0r tt A A -= (5-6-2)称(5-6-2)式为t 年末的t A 元的资金在连续复利方式下折算为现值的计算公式.建立资金的现值和终值概念,是为了对不同时点的资金进行比较,以便进行投资决策. 2. 资金流的现值与终值.将流出企业的资金(如成本、投资等)视为随时间连续变化,称之为支出流.类似地,将流入企业的资金(如收益等)视为随时间连续变化,称之为收入流.资金的净流量为收入流与支出流之差.企业单位时间内,资金的净流量称为收益率.设某企业在时段[]0T ,内的t 时刻的收益率为连续函数()f t ,下面我们按连续复利(年利率为r )方式来求该时段内的收益总现值和总终值. 在[]0T ,上取典型小区间[,d ]t t t +,该时段内收益近似为d ()f t t ,其t 时刻现值为 ed ()r tf t t -.这就是收益总现值的微分元素,故收益总现值为ed 0()T r tP f t t -=⎰. (5-6-3)又由于[,d ]t t t +时段内收益d ()f t t 折算为t T =时刻的终值为 ed ()()T t rf t t -,故收益总终值为ed ()0()T T t rF f t t -=⎰. (5-6-4)当收益率()f t k =(k 为常数)时,该资金流称为稳定资金流或均匀流.例2 某公司投资100万元建成1条生产线,并于1年后取得经济效益,年收入为30万元,设银行年利率为10%,问公司多少年后收回投资.解 设T 年后可收回投资,投资回收期应是总收入的现值等于总投资的现值的时间长度,因此有ed 0.1030100T tt -=⎰,即 0.1300(1e )100t --=. 解得455.0T =,即在投资后的4.055年内可收回投资.习 题 五1.求下列各曲线所围图形的面积:(1)212y x =与228x y += (两部分都要计算); (2)1y x=与直线y x =及2x =;(3)e e ,x x y y -==与直线1x =;(4)ln y x =,y 轴与直线()ln ,ln 0y a y b b a ==>>; (5)抛物线2y x =和22y x =-+;(6)sin ,cos y x y x ==及直线,44x x ππ=9=;(7)抛物线243y x x =-+-及其在3(0,)-和3,(0)处的切线;(8)摆线sin 1cos (),()x a t t y a t =-=-的一拱2(0)t π≤≤与x 轴; (9)极坐标曲线3ρa si n φ=; (10)极坐标曲线2cos ρa φ=.2.求下列各曲线所围成图形的公共部分的面积: (1)()1cos r a θ=+及2cos r a θ=;(2)r θ=及22in r θ=.3.已知曲线2()f x x x =-与()g x ax =围成的图形面积等于29,求常数a .4.设有一截锥体,其高为h ,上、下底均为椭圆,椭圆的轴长分别为2a ,2b 和2A ,2B 求这截锥体的体积.5.计算底面是半径为R 的圆,而垂直于底面一固定直径的所有截面都是等边三角形的立体体积.6.求下列旋转体的体积:(1)由2y x =与23y x =围成的平面图形绕x 轴旋转;(2)由3,2,0y x x y ===所围图形分别绕x 轴及y 轴旋转; (3)星形线222333x y a +=绕x 轴旋转. 7.求下列曲线段的弧长: (1)22,20y x x =≤≤;(2)ln ,y x x =≤≤(3)2,22x y t x π-π-≤=≤π⎰, . 8.设星形线的参数方程为33,,cos sin 0x a t y a t a ==>,求(1)星形线所围面积;(2)绕x 轴旋转所得旋转体的体积; (3)星形线的全长.9.求对数螺线e a θr =相应于0θ=到θφ=的一段弧长.10.求半径为R ,高为h 的球冠的表面积.11.求曲线段31(0)y x x =≤≤绕x 轴旋转一周所得旋转曲面的面积:12.把长为10m ,宽为6m ,高为5m 的储水池内盛满的水全部抽出,需做多少功? 13.有一等腰梯形闸门,它的两条底边各长10m 和6m ,高为20m ,较长的底边与水面相齐,计算闸门的一侧所受的水压力.14.半径为R 的球沉入水中,球的顶部与水面相切,球的密度与水相同,现将球从水中取离水面,问做功多少.15.设有一半径为R ,中心角为φ的圆弧形细棒,其线密度为常数ρ,在圆心处有一质量为m 的质点,试求细棒对该质点的引力.16.求下列函数在[,]a a -上的平均值.(1)()f x =(2)()2f x x =. 17.求正弦交流电sin 0i I ωt =经过半波整流后得到电流00sin 0.I ωt t ωi t ωωπ⎧≤≤⎪=⎨π2π⎪≤≤⎩,,, 的平均值和有效值.18.已知电压3sin2()u t t =,求(1)()u t 在02π⎡⎤⎢⎥⎣⎦,上的平均值; (2)电压的均方根值.19.设某企业固定成本为50,边际成本和边际收入分别为2()14111,()1002C x x x R x x ''=-+=-.试求最大利润.20.设某工厂生产某种产品的固定成本为零,生产x (百台)的边际成本为2()C x '=(万元/百台),边际收入为72()R x x '=-(万元/百台)):(1)求生产量为多少时总利润最大?(2)在总利润最大的基础上再生产100台,总利润减少多少?21.某企业投资800万元,年利率为5%,按连续复利计算,求投资后20年中企业均匀收入率为200万元/年的收入总现值及该投资的投资回收期.22.某父母打算连续存钱为孩子攒学费,设银行连续复利为5%(每年),若打算10年后攒够5万元,问每年应以均匀流方式存入多少钱.。

《高等数学》(同济六版)教学课件★第6章.定积分的应用

《高等数学》(同济六版)教学课件★第6章.定积分的应用
2) U 对区间 [a , b] 具有可加性 , 即可通过 “大化小, 常代变, 近似和, 取极限”
表示为
定积分定义
目录 上页 下页 返回 结束
二 、如何应用定积分解决问题 ?
第一步 利用“化整为零 , 以常代变” 求出局部量
近的似值
微分表达式
dU f (x) dx
第二步 利用“ 积零为整 , 无限累加 ” 求出整体量的
精确值
积分表达式
b
U a f (x) dx
这种分析方法称为元素法 (或微元分析法 )
元素的几何形状常取为: 条, 带, 段, 环, 扇, 片, 壳 等
第二节 目录 上页 下页 返回 结束
第二节
第六章
定积分在几何学上的应用
一、 平面图形的面积
二、 平面曲线的弧长 三、已知平行截面面积函数的
立体体积
目录 上页 下页 返回 结束
例8. 求双纽线
所围图形面积 .
解: 利用对称性 , 则所求面积为
y
1 a2 cos2 d
2
π 4
π
a2 4 cos 2 d (2 ) 0
O
ax
a2sin 2 a2
π 4
思考: 用定积分表示该双纽线与圆 r a 2 sin
所围公共部分的面积 .
答案:
π
A 2 6 a2 sin2 d 0
y Mi1
A M0 O
定理: 任意光滑曲线弧都是可求长的.
(证明略)
Mi
B Mn x
目录 上页 下页 返回 结束
(1) 曲线弧由直角坐标方程给出:
弧长元素(弧微分) :
ds (dx)2 (dy)2
1 y2 dx
因此所求弧长

微积分课件(定积分及其应用

微积分课件(定积分及其应用

10 圆的渐伸线
11 笛卡儿叶形线
12 双纽线
13 阿基米德螺线
14 双曲螺线
15 求曲线 r 3cosθ 及 r 1 cos θ 分别所围成的图形的公共部分的 面积
16 求曲线 r 2sinθ 及 r2 cos2 θ 分别所围成的图形的公共部分的面 积
2
17 圆ρ 1被心形线 ρ 1 cosθ 分割为两部分,求这两部分的面积。
P
F (a,0)
0
r
F (a,0)
2a . x
. . . . .
.
.
曲线在极点自己相交,与此对应的角度为 = , 3 , 5 , 7 36
. .
44 4 4
么么么么方面
• Sds绝对是假的
12. 例 求双纽线 r 2 2a 2 cos 2 所围面积
由对称性
S
r
(
)d
a cosd
切线所围成图形的面积

y
由 y x
。 。
得两切线的斜率为
k , k
l1
l2
故两切线为 l : y x , l : y x
其交点的横坐标为
x
o
3
x
3
S = 2 [4x 3 ( x 2 4x 3)]dx 0
[ x
( x
x
)]dx
–3
8
4. 曲边扇形的面积
分析
1. 曲线关于 y= x 对称
2. 曲线有渐进线 x+y+a = 0
3. 令 y = t x, 得参数式
x
3at t3 1
y
3at 2 t3 1
(- t , t -1)

D62几何应用47270

D62几何应用47270

例3.
求椭圆
x2 a2

y2 b2
1
所围图形的面积
.
解: 利用对称性 , 有 dAydx
y b
a
A 40 ydx
利用椭圆的参数方程
oxxdxa x
xy a bc siottns(0t2)
应用定积分换元法得
A
4
0


bsint(asit)ndt4ab 2sin2tdt
小结 目录 上页 下页 返回 结束
三、已知平行截面面积函数的立体体积
设所给立体垂直于x 轴的截面面积为A(x), A(x)在[a,b]
上连续, 则对应于小区间[x,xdx]的体积元素为
dVA (x)dx
因此所求立体体积为
b
Va A(x)dx
A(x)
a xxdx b x
机动 目录 上页 下页 返回 结束
0
2
4ab
1 2

2
ab
当 a = b 时得圆面积公式
机动 目录 上页 下页 返回 结束
一般地 , 当曲边梯形的曲边由参数方程

x y
(t) (t)
给出时, 按顺时针方向规定起点和终点的参数值 t1 , t2
y
y
a
b
o
x
oa
bx
(t1对x应 a)
(t1对x应 b)
则曲边梯形面积 A t2(t)(t)dt t1 机动 目录 上页 下页 返回 结束
2(t)2(t)dt
因此所求弧长

s
2(t)2(t)dt
机动 目录 上页 下页 返回 结束
(3) 曲线弧由极坐标方程给出:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
2
V
R
A( x)dx
R 1(R2 x2 )tandx 2 R3tan.
R
R2
3
(二)旋转体的体积
特别 , 当考虑连续曲线段
轴旋转一周围成的立体体积时, 有
V b [ f (x)]2 dx a
y
y f (x)
当考虑连续曲线段
o ax b x
绕 y 轴旋转一周围成的立体体积时,

V d [( y)]2dy c
h 3
(r12
r1r2
r22
)
当上底半径r1 0 ,下底半径r2 r 时,
则得圆锥的体积为V 1r 2h 。 3
例 4.求由 x2 y2 2 和 y x2 所围成的图形分别
绕 x 轴 、 y 轴 旋转而成的旋转体的体积。
解:解方程组
x2 y x
y
2
2
2
y
y x2
得交点(1, 1) ,(1, 1) 。
1 2
a
2
cos 2
d
3
二、体积
(一)平行截面面积为已知的立体的体积
设有一立 体 位于平面 xa, xb (ab) 之间,已知它被
过点 ( x, 0, 0) (a xb) 且垂直于 x 轴 的平面所截得的截面面
积为 A( x) ,假定 A( x)是 x 的连续函数,求 立 体 的 体积V 。
A(x)
r2
)
y
h
x
r1 r2 h
y r2
o
V
hx2dy
0
h
(
0
r1 r2 h
y r2
)2 dy
h
r1 r2
h
(
r1
r2
0h
y
r2
)2
d
(
r1
r2 h
yr2 )
A(r1,h)
B(r2 ,0)
x
h ( r1 r2 3(r1 r2 ) h
yr2 )3
h 0
h 3(r1 r2
)(r13
r23
)
2
例3. 求双纽线
所围图形面积 .
解: 利用对称性 , 则所求面积为
1 a2 cos2 d
2
y
4
a2 4 cos 2 d (2 ) 0
o
ax
a2sin 2 a2
4
思考: 用定积分表示该双纽线与圆 r a 2 sin
所围公共部分的面积 .
答案:
A 2
6 a2 sin2 d
0
4 6

例 1.设有半径为R 的正圆柱体,被通过其底的直径 而与底面交成的平 面所截,求截得的圆柱楔的体积。
解:如图建立坐标系,
ytan
R
则底圆的方程为 x2 y2 R2 。 x
x[ R,R] ,用过点 x且垂直于x轴
y
o
y
的平面去截楔形,截得的截面是直角三角形,R x
故截面积为 A( x) 1 y ytan 1(R2 x2 )tan ,
则 V 20a y2 dx 2 ab2 sin3t d t
2 ab2 2 1
3
4 ab2
3
特别当b
=
a
时,
就得半径为a
的球体的体积
4
3
a3
.
9
例 3.已知圆台的上底 半径为r1 ,下底半径为r2 , 高为 h ,求它的体积。
解:如图选择坐标系,母线 AB 的方程为
y
0
r1
h r2
(
x
0
a
2
(t
tdt sin t)2
a
sin
注意上下限
tdt
!
a3 2 (t sin t)2 sin td t 0

15
说明:
y
x xdx
柱面面积
柱壳体积
2 a(t sin t) a (1 cost)
17
2
2
0
a(t
sin
t)
a2
(1
cos
t)2
d
t
8 a3 2 (t sin t)sin4 t d t
利用对称性
2
a3 0
(1 cos t)3 d t
16
a3 sin6 0
t 2
dt
(令 u
t) 2
32
a3
2
0
sin 6
u
du
32
a3
5 6
3 4
1 2
2
5 2a3
14
绕 y 轴旋转而成的体积为
y
2a
x x2 ( y)
o
a 2 a x
x t
sin t)2 a sin
1
例1. 求由摆线
的一拱与 x 轴所围平面图形的面积 .
解:
2
AdA0 a (1 cost) a (1 cost) d t
a2 2 (1 cos t)2 d t 0
y
4a2 2 sin4 t d t
0
2
8a2 sin4 u d u 0
16 a2 2 sin4 u d u 0
o (令u t )
2
3
3
( 4 2 7 ). 36
y
2
y x2
1
o
x
x2 y22
例5. 计算摆线
的一拱与 y=0
所围成的图形分别绕 x 轴 , y 轴旋转而成的立体体积 .
解: 绕 x 轴旋转而成的体积为
y
Vx
2 a y2 dx
0
y
o
a 2 a x
2 a2 (1 cos t)2 a(1 cost) d t 0
2
3 a2
2 a x
例2. 计算心形线
与圆
所围图形的面积 .
1 2cos cos 2
解: 利用对称性 , 所求面积
A
1a2 2
2
1 a2 (1 cos )2 d
2
1 2
(1
cos
2
)
1 a2 a2 (3 2cos 1 cos 2 )d
2
2
2y
1 a2 a2 (3 2)
2
4
o
a 2a x
0
2
令u t 2
16
a
3
0
(2u
sin
2u)
sin
4
u
d
u
令v u
2
16
a3
2
2
(2v
sin 2v) cos4 v d v
偶函数
奇函数
18
例 6.证明:由 0a xb, 0 y f ( x) 所围成的图形

y 轴 旋转所成的旋转体的体积为:Vy 2
bx f ( x)dx 。
a
证明:以 x 为 积分变量,把在[a,b] 上的任意子区间
1 o 1 x
Vx 1 (2 x2 )dx 1 x4dx
x2 y22
1
2
1
1
(2
x2
x4
)dx
2(2 x
x3
x5
)
1
0
3 50
2(2 1 1) 44. 3 5 15
1
Vy ydy
2 (2 y2 )dy
0
1
1 y2 1 (2 y 1 y3 ) 2
20
31
[(2 2 2 2 )(2 1 )]
ax
bx
A(x)
ax
bx
取 x 为积分变量,积分区间为[a,b] 。在[a,b] 上任取一
代表小区间[ x, x dx ] ,对应的立体中一薄片的 体积 V
近似等于底面积为 A( x) ,高为dx 的柱体的体积 A( x)dx ,
即体积微元 所求体积为
dV A( x)dx ,
V
b a
A(
x )dx
y
d y x (y) c
ox
例2计算由椭圆
所围图形绕 x 轴旋转而
转而成的椭球体的体积. 解: 方法1 利用直角坐标方程
y b
o x ax
则 V 2 a y2 dx 0
(利用对称性)
2
b2 a2
a
(a
2
x2
)
dx
0
2
b2 a2
a2 x
1 3
x3
a 0
4 ab2
3
8
方法2 利用椭圆参数方程
相关文档
最新文档