222对数函数及其性质(第2课时)
《对数函数及其性质》第二课时参考课件
当a , b 0, a 1时, 有 (1) log a b 0 (a 1)( b 1) 0; ( 2) log a b 0 (a 1)( b 1) 0;
能力测试(比一比)
4.设f ( x) 2
x 2 2 x
( x 1),求反函数f ( x).
1
5.求函数y log1 ( x 2 3 x 2)的单调增区间 .
6.已知函数y loga ( x 2) 3, (a 0, a 1)不论a为 何值都经过一个定点 , 则这个定点坐标为______.
2 2 例2.已知(loga ) 1, 求a的取值范围 3
2 3 (0, ) ( ,) __________ _. 3 __________ 2
2
例3.解不等式logx (2 x x ) 0
1 5 解集为: { x | 1 x }. 2
能力测试(比一比)
1.已知f ( x 6 ) l og2 x , 那么f (8)等于( 4 1 A. B .8 C .18 D. 3 2 2
解: (2) 当 [ H ] 10 时,pH lg10 7. 即纯净水的 pH是7. 国家规定,饮用纯净水 的pH应该在 5.0 ~ 7.0之间 .
7
7
例题分析:
例1. l og( a 1) ( 2 x 1) l og( a 1) ( x 1)则( C ) A. x 0, a 0 B . x 1, a 1 C . x 1, a 2 D. x 1,1 a 2
1 解 : (1)根据对数的运算性质得pH lg[H ] lg[H ] lg , [H ]
1
课件7:2.2.2 对数函数及其性质 第二课时
=log211++xx2221,
6分
由于0<x1<x2,则0<x21<x22,
7分
则0<1+x21<1+x22,
所以0<11++xx1222<1.
9分
又函数y=log2x在(0,+∞)上是增函数,所以log211++xx2122<0.
所以f(x1)<f(x2).
11分
所以函数f(x)在区间(0,+∞)上是增函数.
∴log21.7<log23.5.
(3)借助y=log1 x及y=log1 x的图象,如图所示.
2
5
在(1,+∞)上,前者在后者的下方,
∴log1 3<log1 3.
2
5
(4)由对数函数性质知,
log1 0.3>0,log20.8<0,
3
∴log1 0.3>log20.8.
3
1.(1)下列大小关系正确的是( )
②函数y=log0.5x在(0,+∞)上是减函数, 因为log0.5(a+1)>log0.5(3-a),
a+1>0, 所以3-a>0,
a+1<3-a,
解得-1<a<1.
即实数a的取值范围是-1<a<1. 答案: (1)0<a<25或a>1 (2){x|0<x<3}
对数函数性质的综合应用
已知函数f(x)=log2(1+x2). 求证:(1)函数f(x)是偶函数; (2)函数f(x)在区间(0,+∞)上是增函数.
x-1>0, 当a>1时,有3-x>0,
x-1≥3-x,
解得2≤x<3.
高中数学2.2.2 对数函数及其性质(第2课时)优秀课件
函数y loga x在(0, )上是单调递减,且5.1 5.9
loga 5.1 loga 5.9
➢同底对数值比较大小:假设底数未确定,需分类讨
四、例题分析
例2 比较以下各组数中两个值的大小。
(1) log2 3.4, log2 8.5 (3) loga 5.1, loga 5.9(a 0, a(2) l1o)g0.3(14.)8l,ologg2 03.3, l2o.g70.5 4
4
解:(3)令t log2 x,由2 x 4得1 t 2,
y t2 2t 3 (t 1)2 2,1 t 2
换元
函数y (t 1)2 2对称轴为t 1,在[1, 2]上单调递增,
(1 1)2 2 (t 1)2 2 (2 1)2 2,
即6 (t 1)2 2 11, 原函数的值域为[6,11].
(0,) 当0< x<1 时, y>0
值域
R
性 定点
过定点(1,0),即x=1时,y=loga1=0
质 单调性 在 (0,) 上是增函数 在 (0,) 上是减函数
观察以下四个函数的图象,能否总结出其图象特征?
y log2 x
y log3 x
y log1 x
2
y log1 x
3
y loga x与y log1a x 的图象关于x轴对称
(4) y log2 x在(0, )单调递增,
且3 1, log2 3 log2 1 0;
loga 1 0
又 y log0.5 x在(0, )上单调递减,
且4 1 log0.5 4 log0.51 0;
log2 3 log0.5 4
➢底数不同,真数不同对数值比较大小:借助中间量“0〞
2014年高中数学(答疑+思维启迪+状元随笔)2.2.2 对数函数及其性质第2课时同步课堂讲义课件 新人教A版必修1
函数y=logaf(x)(a>0且a≠1)可看做是y=logat(a>0 且a≠1)与t=f(x)两个简单函数复合而成的,则由 复合函数的判断法则同增异减知:当a>1时,若t =f(x)为增函数,则y=logaf(x)为增函数,若f(x) 为减函数,则y=logaf(x)为减函数;当0<a<1时, 若t=f(x)为增函数,则y=logaf(x)为减函数,若t =f(x)为减函数,则y=logaf(x)为增函数.
1.(1)设 a=log54,b=(log53)2,c=log45,则( A.a<c<b B.b<c<a C.a<b<c D.b<a<c (2)比较下列各组值的大小: ①log20.5,log20.6;
3 3
)
②log1.51.6,log1.51.4; ③log0.57,log0.67; ④log3π,log20.8.
解析: (1)由对数函数 y= log5x 的图象,可得 2 0<log53<log54<1,∴b= (log53) <log54=a,又 c = log45>1, ∴b<a<c.
(2)①∵函数 log2x 是减函数,且 0.5<0.6,
3
∴ log20.5>log 20.6.
3 3
②∵函数 log1.5x 是增函数,且 1.6>1.4, ∴ log1.51.6>log1.51.4. ③∵0>log70.6>log70.5, 1 1 ∴ < ,即 log0.67<log0.57. log70.6 log70.5 ④∵log3π>log31= 0, log20.8<log21= 0, ∴ log3π>log20.8. 答案: (1)D
第二章 2.2.2 第2课时 对数函数及其性质(二)
第2课时 对数函数及其性质(二)学习目标 1.掌握对数型复合函数单调区间的求法及单调性的判定方法.2.会解简单的对数不等式.3.了解反函数的概念及它们的图象特点.知识点一 不同底的对数函数图象的相对位置一般地,对于底数a >1的对数函数,在(1,+∞)区间内,底数越大越靠近x 轴;对于底数0<a <1的对数函数,在(1,+∞)区间内,底数越小越靠近x 轴. 知识点二 反函数的概念一般地,像y =a x 与y =log a x (a >0,且a ≠1)这样的两个函数互为反函数.(1)y =a x 的定义域R 就是y =log a x 的值域;而y =a x 的值域(0,+∞)就是y =log a x 的定义域. (2)互为反函数的两个函数y =a x (a >0,且a ≠1)与y =log a x (a >0,且a ≠1)的图象关于直线y =x 对称.(3)互为反函数的两个函数的单调性相同.但单调区间不一定相同.1.y =log 2x 2在(0,+∞)上为增函数.( √ )2.212log y x 在(0,+∞)上为增函数.( × )3.ln x <1的解集为(-∞,e).( × )4.y =a x 与x =log a y 的图象相同.( √ )题型一 比较大小例1 (1)若a =log 0.23,b =log 0.22.5,c =log 0.20.3,则( ) A.a >b >c B.c >b >a C.a >c >b D.c >a >b答案 B解析 因为0.3<2.5<3,且y =log 0.2x 在(0,+∞)上是减函数,所以c >b >a . (2)比较下列各组数的大小:①log 534与log 543;②1135log 2log 2与;③log 23与log 54.解 ①方法一 对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,所以log 534<log 543.方法二 因为log 534<0,log 543>0,所以log 534<log 543.②由于1321log 21log 3=,1521log 21log 5=,又对数函数y =log 2x 在(0,+∞)上是增函数,且0<15<13<1,所以0>log 213>log 215,所以1log 213<1log 215,所以3151l 2log 2og <.③取中间值1,因为log 23>log 22=1=log 55>log 54,所以log 23>log 54. 反思感悟 比较对数值大小时常用的四种方法 (1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化. (3)底数和真数都不同,找中间量.(4)若底数为同一参数,则根据底数对对数函数单调性的影响,对底数进行分类讨论.跟踪训练1 (1)设a =log 2π,12log πb =,c =π-2,则( )A.a >b >cB.b >a >cC.a >c >bD.c >b >a 答案 C解析 a =log 2π>1,12log π0b <=,c =π-2∈(0,1),所以a >c >b .(2)比较下列各组值的大小: ①2233log 0.5,log 0.6;②log 1.51.6,log 1.51.4;③log 0.57,log 0.67;④log 3π,log 20.8.解 ①因为函数23log y x =是减函数,且0.5<0.6,所以2233log 0.5log 0.6>.②因为函数y =log 1.5x 是增函数,且1.6>1.4, 所以log 1.51.6>log 1.51.4.③因为0>log 70.6>log 70.5,所以1log 70.6<1log 70.5,即log 0.67<log 0.57. ④因为log 3π>log 31=0,log 20.8<log 21=0,所以log 3π>log 20.8. 题型二 对数不等式的解法 例2 (1)7171lo lo g (g 4)x x >- ;(2)log a (2x -5)>log a (x -1). 解 (1)由题意可得⎩⎪⎨⎪⎧x >0,4-x >0,x <4-x ,解得0<x <2.所以原不等式的解集为{x |0<x <2}.(2)当a >1时,原不等式等价于⎩⎪⎨⎪⎧ 2x -5>0,x -1>0,2x -5>x -1.解得x >4.当0<a <1时,原不等式等价于⎩⎪⎨⎪⎧2x -5>0,x -1>0,2x -5<x -1,解得52<x <4.综上所述,当a >1时,原不等式的解集为{x |x >4};当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪52<x <4. 反思感悟 对数不等式的三种考查类型及解法(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况进行讨论.(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式(b =log a a b ),再借助y =log a x 的单调性求解.(3)形如log f (x )a >log g (x )a (f (x ),g (x )>0且不等于1,a >0)的不等式,可利用换底公式化为同底的对数进行求解,或利用函数图象求解.跟踪训练2 (1)求满足不等式log 3x <1的x 的取值集合; (2)若log a 25<1(a >0,且a ≠1),求实数a 的取值范围.解 (1)因为log 3x <1=log 33,所以x 满足的条件为⎩⎪⎨⎪⎧x >0,log 3x <log 33,即0<x <3.所以x 的取值集合为{x |0<x <3}. (2)log a 25<1,即log a 25<log a a .当a >1时,函数y =log a x 在定义域内是增函数, 所以log a 25<log a a 总成立;当0<a <1时,函数y =log a x 在定义域内是减函数, 由log a 25<log a a ,得a <25,即0<a <25.所以实数a 的取值范围为⎝⎛⎭⎫0,25∪(1,+∞).题型三 对数型复合函数的单调性命题角度1 求单调区间例3 求函数212log (1)y x =-的单调区间.解 要使212log (1)y x =-有意义,则1-x 2>0,所以x 2<1,所以-1<x <1, 因此函数的定义域为(-1,1). 令t =1-x 2,x ∈(-1,1).当x ∈(-1,0]时,x 增大,t 增大,y =12log t 减小.所以当x ∈(-1,0]时,212log (1)y x =-是减函数;同理可知,当x ∈[0,1)时,212log (1)y x =-是增函数.即函数212log (1)y x =-的单调递减区间是(-1,0],单调递增区间为[0,1).反思感悟 求形如y =log a f (x )的函数的单调区间的步骤 (1)求出函数的定义域.(2)研究函数t =f (x )和函数y =log a t 在定义域上的单调性. (3)判断出函数的增减性求出单调区间.跟踪训练3 求函数f (x )=log 2(1-2x )的单调区间.解 因为1-2x >0,所以x <12.又设u =1-2x ,则y =log 2u 是(0,+∞)上的增函数. 又u =1-2x ,则当x ∈⎝⎛⎭⎫-∞,12时,u (x )是减函数, 所以函数f (x )=log 2(1-2x )的单调递减区间是⎝⎛⎭⎫-∞,12. 命题角度2 已知复合函数单调性求参数范围例4 已知函数212log ()y x ax a =-+在区间(-∞,2)上是增函数,求实数a 的取值范围.考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围解 令g (x )=x 2-ax +a ,g (x )在⎝⎛⎦⎤-∞,a 2上是减函数,∵0<12<1,∴12log ()y g x =是减函数,而已知复合函数212log ()y x ax a =-+在区间(-∞,2)上是增函数,∴只要g (x )在(-∞,2)上单调递减,且g (x )>0在x ∈(-∞,2)上恒成立, 即⎩⎪⎨⎪⎧2≤a 2,g (2)=(2)2-2a +a ≥0,∴22≤a ≤2(2+1),故所求a 的取值范围是[22,22+2].反思感悟 若a >1,则y =log a f (x )的单调性与y =f (x )的单调性相同,若0<a <1,则y =log a f (x )的单调性与y =f (x )的单调性相反.另外应注意单调区间必须包含于原函数的定义域. 跟踪训练4 若函数f (x )=log a (6-ax )在[0,2]上为减函数,则a 的取值范围是( ) A.(0,1) B.(1,3) C.(1,3] D.[3,+∞) 考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围 答案 B解析 函数由y =log a u ,u =6-ax 复合而成,因为a >0,所以u =6-ax 是减函数,那么函数y =log a u 就是增函数,所以a >1,因为[0,2]为定义域的子集,所以当x =2时,u =6-ax 取得最小值,所以6-2a >0,解得a <3,所以1<a <3.故选B.1.不等式log 2(x -1)>-1的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x >23 B.{x |x >2}C.{x |x >1}D.⎩⎨⎧⎭⎬⎫x ⎪⎪x >32 答案 D解析 ∵log 2(x -1)>-1=log 212,∴x -1>12,即x >32.2.函数f (x )=-2x +5+lg(2-x -1)的定义域为( )A.(-5,+∞)B.[-5,+∞)C.(-5,0)D.(-2,0) 答案 C解析 由⎩⎪⎨⎪⎧x +5>0,2-x -1>0,∴⎩⎪⎨⎪⎧ x >-5,2-x >20,∴⎩⎪⎨⎪⎧x >-5,x <0,∴-5<x <0,故选C.3.如果2121l log og 0x y <<,那么( )A.y <x <1B.x <y <1C.1<x <yD.1<y <x 考点 对数不等式 题点 解对数不等式 答案 D4.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=________. 考点 函数的反函数 题点 求函数的反函数 答案 log 2x5.函数f (x )=ln x 2的单调减区间为____________. 考点 对数函数的单调性 题点 对数型复合函数的单调区间 答案 (-∞,0)1.与对数函数有关的复合函数的单调区间、奇偶性、不等式问题都要注意定义域的影响.2.y =a x 与x =log a y 的图象是相同的,只是为了适应习惯用x 表示自变量,y 表示因变量,把x =log a y 换成y =log a x ,y =log a x 才与y =a x 关于直线y =x 对称,因为点(a ,b )与点(b ,a )关于直线y =x 对称.一、选择题1.函数y =log 3(2x -1)的定义域为( ) A.[1,+∞) B.(1,+∞) C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,1考点 对数不等式 题点 解对数不等式 答案 A解析 要使函数有意义,需满足⎩⎪⎨⎪⎧log 3(2x -1)≥0,2x -1>0,∴⎩⎪⎨⎪⎧2x -1≥1,2x -1>0,∴x ≥1, ∴函数y =log 3(2x -1)的定义域为[1,+∞). 2.若log a 2<log b 2<0,则下列结论正确的是( ) A.0<a <b <1 B.0<b <a <1 C.a >b >1 D.b >a >1答案 B解析 因为log a 2<0,log b 2<0, 所以0<a <1,0<b <1, 又log a 2<log b 2, 所以a >b , 故0<b <a <1.3.函数f (x )=12log x 的单调递增区间是( )A.⎝⎛⎦⎤0,12 B.(0,1] C.(0,+∞) D.[1,+∞)答案 D解析 f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).4.函数y =15log (1-3x )的值域为( )A.RB.(-∞,0)C.(0,+∞)D.(1,+∞) 答案 C解析 因为3x >0,所以-3x <0, 所以1-3x <1.又y =15log t (t =1-3x )是关于t 的减函数,所以y =15log t >15log 1=0.5.已知log a 12<2,那么a 的取值范围是( )A.0<a <22B.a >22C.22<a <1 D.0<a <22或a >1 考点 对数不等式 题点 解对数不等式 答案 D解析 当a >1时,由log a 12<log a a 2得a 2>12,故a >1;当0<a <1时,由log a 12<log a a 2得0<a 2<12,故0<a <22. 综上可知,a 的取值范围是0<a <22或a >1. 6.函数y =13log (-3+4x -x 2)的单调递增区间是( )A.(-∞,2)B.(2,+∞)C.(1,2)D.(2,3) 答案 D解析 由-3+4x -x 2>0,得x 2-4x +3<0,得1<x <3. 设t =-3+4x -x 2,其图象的对称轴为x =2. ∵函数y =13log t 为减函数,∴要求函数y =13log (-3+4x -x 2)的单调递增区间,即求函数t =-3+4x -x 2,1<x <3的单调递减区间, ∵函数t =-3+4x -x 2,1<x <3的单调递减区间是(2,3),∴函数y =13log (-3+4x -x 2)的单调递增区间为(2,3),故选D.7.已知函数f (x )=log 0.5(x 2-ax +3a )在[2,+∞)上单调递减,则a 的取值范围为( ) A.(-∞,4] B.[4,+∞ ) C.[-4,4] D.(-4,4] 答案 D解析 令g (x )=x 2-ax +3a ,∵f (x )=log 0.5(x 2-ax +3a )在[2,+∞)上单调递减, ∴函数g (x )在区间[2,+∞)上单调递增,且恒大于0, ∴12a ≤2且g (2)>0, ∴a ≤4且4+a >0,∴-4<a ≤4, 故选D.8.已知指数函数y =⎝⎛⎭⎫1a x,当x ∈(0,+∞)时,有y >1,则关于x 的不等式log a (x -1)≤log a (6-x )的解集为( ) A.⎣⎡⎭⎫72,+∞ B.⎝⎛⎦⎤-∞,72 C.⎝⎛⎦⎤1,72 D.⎣⎡⎭⎫72,6答案 D解析 ∵y =⎝⎛⎭⎫1a x 在x ∈(0,+∞)时,有y >1, ∴1a>1,∴0<a <1. 于是由log a (x -1)≤log a (6-x ), 得⎩⎪⎨⎪⎧x -1≥6-x ,x -1>0,6-x >0,解得72≤x <6,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪72≤x <6.故选D. 二、填空题9.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图象经过点⎝⎛⎭⎫32,23,则a =________. 考点 函数的反函数 题点 反函数的图象与性质 答案2解析 因为点⎝⎛⎭⎫32,23在y =f (x )的图象上,所以点⎝⎛⎭⎫23,32在y =a x 的图象上,则有32=23a , 即a 2=2,又因为a >0,所以a = 2. 10.函数y =log 2(x 2-1)的增区间为________. 考点 对数函数的单调性 题点 对数型复合函数的单调区间 答案 (1,+∞)解析 由x 2-1>0得函数的定义域为{x |x <-1或x >1},又y =log 2x 在定义域上单调递增,y =x 2-1在(1,+∞)上单调递增,∴函数的增区间为(1,+∞).11.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x -1)<f (2-x )的解集是________. 答案 {x |1<x <2} 解析 ∵f (2)>f (3), ∴f (x )=log a x 是减函数,由f (2x -1)<f (2-x ),得⎩⎪⎨⎪⎧2x -1>0,2-x >0,2x -1>2-x ,∴⎩⎪⎨⎪⎧x >12,x <2,x >1,∴1<x <2. 三、解答题12.已知函数f (x )=log 2(x +1)-2. (1)若f (x )>0,求x 的取值范围; (2)若x ∈(-1,3],求f (x )的值域. 解 (1)函数f (x )=log 2(x +1)-2, ∵f (x )>0,即log 2(x +1)-2>0, ∴log 2(x +1)>2,∴x +1>4,∴x >3. 故x 的取值范围是x >3. (2)∵x ∈(-1,3], ∴x +1∈(0,4],∴log 2(x +1)∈(-∞,2], ∴log 2(x +1)-2∈(-∞,0], 故f (x )的值域为(-∞,0]. 13.已知f (x )=12log (x 2-ax -a ).(1)当a =-1时,求f (x )的单调区间及值域;(2)若f (x )在⎝⎛⎭⎫-∞,-12上为增函数,求实数a 的取值范围. 考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围解 (1)当a =-1时,f (x )=12log (x 2+x +1),∵x 2+x +1=⎝⎛⎭⎫x +122+34≥34, ∴12log (x 2+x +1)≤123log 4=2-log 23, ∴f (x )的值域为(-∞,2-log 23].∵y =x 2+x +1在⎝⎛⎦⎤-∞,-12上单调递减,在⎝⎛⎭⎫-12,+∞上单调递增,y =12log x 在(0,+∞)上单调递减,∴f (x )的单调增区间为⎝⎛⎦⎤-∞,-12, 单调减区间为⎝⎛⎭⎫-12,+∞. (2)令u (x )=x 2-ax -a =⎝⎛⎭⎫x -a 22-a 24-a , ∵f (x )在⎝⎛⎭⎫-∞,-12上为单调增函数, 又∵y =12log u (x )为单调减函数,∴u (x )在⎝⎛⎭⎫-∞,-12上为单调减函数,且u (x )>0在⎝⎛⎭⎫-∞,-12上恒成立. ⎝⎛⎭⎫提示:⎝⎛⎭⎫-∞,-12⊆⎝⎛⎭⎫-∞,a 2 因此⎩⎨⎧ a 2≥-12,u ⎝⎛⎭⎫-12≥0,即⎩⎪⎨⎪⎧a ≥-1,14+a 2-a ≥0, 解得-1≤a ≤12. 故实数a 的取值范围是⎣⎡⎦⎤-1,12.14.若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为________.考点 对数函数的综合问题题点 与单调性有关的对数函数综合问题答案 12解析 当a >1时,y =a x 与y =log a (x +1)在[0,1]上是增函数, ∴f (x )max =a +log a 2,f (x )min =a 0+log a 1=1,∴a +log a 2+1=a ,∴log a 2=-1,a =12(舍去); 当0<a <1时,y =a x 与y =log a (x +1)在[0,1]上是减函数,∴f (x )max =a 0+log a (0+1)=1,f (x )min =a +log a 2,∴a +log a 2+1=a ,∴a =12. 综上所述,a =12. 15.已知函数f (x )=lg(1+x )-lg(1-x ).(1)求函数f (x )的定义域,并证明f (x )是定义域上的奇函数;(2)用定义证明f (x )在定义域上是增函数;(3)求不等式f (2x -5)+f (2-x )<0的解集.(1)解 由对数函数的定义得⎩⎪⎨⎪⎧ 1-x >0,1+x >0,得⎩⎪⎨⎪⎧x <1,x >-1, 即-1<x <1,∴函数f (x )的定义域为(-1,1).∵f (-x )=lg(1-x )-lg(1+x )=-f (x ),∴f (x )是定义域上的奇函数.(2)证明 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=lg(1+x 1)-lg(1-x 1)-lg(1+x 2)+lg(1-x 2)=lg (1+x 1)(1-x 2)(1+x 2)(1-x 1). ∵-1<x 1<x 2<1,∴0<1+x 1<1+x 2,0<1-x 2<1-x 1,于是0<1+x 11+x 2<1,0<1-x 21-x 1<1, 则0<(1+x 1)(1-x 2)(1+x 2)(1-x 1)<1,∴lg (1+x 1)(1-x 2)(1+x 2)(1-x 1)<0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),即函数f (x )是(-1,1)上的增函数.(3)解 ∵f (x )在(-1,1)上是增函数且为奇函数,∴不等式f (2x -5)+f (2-x )<0可转化为f (2x -5)<-f (2-x )=f (x -2),∴⎩⎪⎨⎪⎧ -1<2x -5<1,-1<x -2<1,2x -5<x -2,解得2<x <3.∴不等式的解集为{x |2<x <3}.。
高中数学必修一课件:2.2.2 对数函数及其性质(二)
loga M loga N loga MN
判断对数函数奇偶性: f ( x) f ( x) 0或f ( x) f ( x) 0
(2) g ( x) lg
解:
x 1 x
2
x2 1 x
2 2
定义域为 R
2 lg ( x ) 1 x lg g ( x) g ( x)
3 2
3
u g ( x) x ax a 在 (, 1 3)上是减函数,
2 且当 x (, 1 3) 时, g ( x) x ax a 0
2 f ( x ) log x 0 a 1 时, a 4x 3
在 (3, ) 上递减, 在 (, 1) 上递增
2 f ( x ) log ( x ax a) 在区间 (, 1 3) 6 、若 2
上是增函数, 求 a 的取值范围?
解: 由于 y log 2 u 在 (0, )上是减函数, 则
解之,得函数定义域为
1 3 {x | x 2且x 1且x } 2 2
2 y log ( x 4 x 7) 的值域? 2:求 3, 定义域: R 值域:
{x | x R且x 2} 值域: R 定义域:
2″
y log 2 ( x 2 4 x 4)
求 a的取值范围?
二次项系数 是否为0?
解得 0 a 1
故函数定义域为R时, 0 a 1.
改变条件为:
3′已知函数 若 值域 为 值域 y lg(ax2 2ax 1), 求 a 的取值范围?
R
解: (1) a 0 时, y lg 1 ,此时不 × 满足题设条件 ; (2) a 0 时,设 u ax2 2ax 1, 因为函数 y的值域是R, 则 a 0 解得 a 1 4a2 4a 0
对数函数的性质课件PPT
思考5:设
,若
m与n的大小关系如何?若
则m与n的大小关系如何?
,则 ,
理论迁移
例1 比较下列各组数中的两个值的大小: (1)log23.4,log28.5 ; (2)log0.31.8,log0.32.7; (3)loga5.1,loga5.9(a>0,a≠1); (4)log75,log67.
2.2.2 对数函数及其性质 第二课时 对数函数的性质
问题提出
1.什么是对数函数?其大致图象如何?
2.由对数函数的图象可得到哪些基本性 质?
知识探究(一):函数
思考1:函数图象分布 在哪些象限?与y轴的 相对位置关系如何?
的性质
y
1
0
1
x
思考2:由此可知函数的定义域、值域分别 是什么?
思考3:函数图象的升降情况如何?由此说 明什么性质?
2.2.2 对数函数及其性质 第二课时 对数函数的性质
问题提出
1.什么是对数函数?其大致图象如何?
2.由对数函数的图象可得到哪些基本性 质?
知识探究(一):函数
思考1:函数图象分布 在哪些象限?与y轴的 相对位置关系如何?
的性质
y
1
0
1
x
思考2:由此可知函数的定义域、值域分别 是什么?
思考3:函数图象的升降情况如何?由此说 明什么性质?
思考4:图象在x轴上、下 y
两侧的分布情况如何?
由此说明函数值有那些
1
0
1
x
变化?
思考5:若
y
,则
函数
与
0
1
x
的图象的相
对位置关系如何?
高考数学第一轮复习:2.2.2 第2课时 对数函数及其性质的应用
学习目标 1.进一步理解对数函数的性质(重点).2.能运用对数 函数的性质解决相关问题(重、难点).
课堂互动
课堂反馈
题型二 与对数函数有关的值域和最值问题
【例 2】 (1)函数 f(x)=log1 (x2+2x+3)的值域是________.
2
(2)若函数 f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值
课堂互动
课堂反馈
方向3 与对数函数有关的复合函数的单调性
【例 3-3】 (1)求函数 y=log0.3(3-2x)的单调区间; (2)函数 f(x)=log1 (3x2-ax+7)在[-1,+∞)上是减函数,
3
求实数 a 的取值范围. 解 (1)由 3-2x>0,解得 x<32,设 t=3-2x,x∈-∞,32, ∵函数 y=log0.3t 是减函数,且函数 t=3-2x 是减函数, ∴函数 y=log0.3(3-2x)在-∞,32上是增函数,即函数 y= log0.3(3-2x)的单调递增区间是-∞,32,没有单调递减区间.
课堂反馈
规律方法 1.两类对数不等式的解法 (1)形如logaf(x)<logag(x)的不等式. ①当0<a<1时,可转化为f(x)>g(x)>0; ②当a>1时,可转化为0<f(x)<g(x). (2)形如logaf(x)<b的不等式可变形为logaf(x)<b=logaab. ①当0<a<1时,可转化为f(x)>ab; ②当a>1时,可转化为0<f(x)<ab.
A.(-∞,-2)
B.(-∞,1)
C.(1,+∞)
D.(4,+∞)
对数函数及其性质(附答案)(第2课时)
第二课时1.函数f(x)=log 4x 与f(x)=4x的图象…( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y =x 对称 2.若定义在区间(-1,0)内的函数f(x)=log 2a (x +1)满足f(x)>0,则a 的取值范围为( )A .(0,12) B .(0,1)C .(12,+∞) D .(0,+∞)3.已知函数t =-144lg(1-N100)的图象可表示打字任务的“学习曲线”,其中N 表示每分钟打出的字数,t 表示达到打字水平N(字/分)所需的学习时间(分),则按此曲线要达到90字/分的水平,所需要的学习时间为( )A .72B .100C .144D .2884.(2008上海高考,文4)函数f(x)的反函数为f -1(x)=log 2x ,则f(x)=__________.课堂巩固1.若f(x)=log a x(a>0且a ≠1),且反函数值f -1(2)<1,则f(x)的图象是( )2.设P =log 23,Q =log 32,R =log 2(log 32),则( ) A .R<Q<P B .P<R<Q C .Q<R<P D .R<P<Q 3.(2009百校联考仿真卷三,1)已知集合M ={y|y =ln(x 2+1),x ∈R },N ={x|2x <2,x ∈R },则M ∩N 等于( )A .[0,+∞)B .[0,1)C .(1,+∞)D .(0,1]4.函数y =lg(21+x-1)的图象关于( )A .x 轴对称B .y 轴对称C .原点对称D .直线y =x 对称5.函数f(x)=a x +log a (x +1)在[0,1]上的最大值与最小值之和为a ,则a 的值为( ) A.14 B.12C .2D .4 6.若A ={x ∈Z |2≤22-x <8},B ={x ∈R ||log 2x|>1},则A ∩(∁R B)的元素个数是( ) A .0 B .1 C .2 D .37.函数y =log 2(1-x 2)的值域是__________. 8.解下列方程: (1)log 7(log 3x)=-1; (2)2log x 25-3log 25x =1.9.分贝是计量声音强度相对大小的单位.物理学家引入了声压级(spl)来描述声音的大小:把一很小的声压p 0=2×10-5帕作为参考声压,把所要测量的声压p 与参考声压p 0的比值取常用对数后乘以20得到的数值称为声压级.声压级是听力学中最重要的参数之一,单位是分贝(dB).分贝值在60以下为无害区,60~110为过渡区,110以上为有害区.(1)根据上述材料,列出分贝y 与声压p 的函数关系式;(2)某地声压p =0.002帕,试问该地的声音分贝值在以上所说的什么区?声音环境是否为无害区?1.设a >1,且m =log a (a 2+1),n =log a (a -1),p =log a (2a),则m ,n ,p 的大小关系为…( ) A .n >m >p B .m >p >n C .m >n >p D .p >m >n2.函数f(x)=1+log 2x 与g(x)=2-x +1在同一直角坐标系下的图象大致是( )3.已知函数f(x)=log 2(x 2-ax +3a)在[2,+∞)上是增函数,则实数a 的取值范围是( ) A .(-∞,4) B .(-4,4]C .(-∞,-4)∪[2,+∞)D .[-4,4)4.(2008陕西高考,理7)已知函数f(x)=2x +3,f -1(x)是f(x)的反函数,若mn =16,m ,n ∈(0,+∞),则f -1(m)+f -1(n)的值为( )A .-2B .1C .4D .105.(2008山东高考,文12)已知函数f(x)=log a (2x+b -1)(a>0,a ≠1)的图象如图所示,则a ,b 满足的关系是…( )A .0<a -1<b<1B .0<b<a -1<1C .0<b -1<a<1D .0<a -1<b -1<16.已知f(x)是定义在R 上的奇函数,f(x)在(0,+∞)上是增函数,且f(13)=0,则不等式f(log 18x)<0的解集为( )A .(0,12)B .(12,+∞)C .(12,1)∪(2,+∞)D .(0,12)∪(2,+∞)7.若规定⎪⎪⎪⎪⎪⎪a b c d =|ad -bc|,则不等式log 2⎪⎪⎪⎪⎪⎪1 11 x <0的解集是__________.8.设函数f(x)=⎩⎪⎨⎪⎧2x -4,x ≤4,-log 2(x +1),x>4,若f(a)=18,则f(a +6)=__________.9.抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1 %,则至少要抽几次?(lg2≈0.301 0)10.已知集合A ={x|(12)x 2-x -6<1},B ={x|log 4(x +a)<1},若A ∩B =∅,求实数a 的取值范围.11.设函数f(x)=x 2-x +b ,且f(log 2a)=b ,log 2[f(a)]=2(a ≠1),求f(log 2x)的最小值及对应的x 的值.答案与解析课前预习1.D 互为反函数的函数图象关于直线y =x 对称. 2.A 因为x ∈(-1,0),所以x +1∈(0,1).此时f(x)>0,根据图象得0<2a <1,解得0<a <12.3.C 将N =90代入,得t =-144lg(1-90100)=144.4.2x课堂巩固1.B 因为f -1(x)=a x ,f -1(2)<1,可知0<a<1.2.A 由对数函数的单调性知,0<log 32<1,即0<Q<1,又y =log 2x 是增函数, 所以R =log 2(log 32)<0.又log 23>log 22=1,所以R<Q<P.3.B M ={y|y ≥0},N ={x|x<1},M ∩N =[0,+∞)∩(-∞,1)=[0,1).4.C f(x)=lg(21+x -1)=lg 1-x 1+x,易知它是奇函数,图象关于原点对称.5.B 该函数在给定的区间上是单调函数,最值在区间的两个端点处取得,故a 0+log a (0+1)+a +log a (1+1)=a ,解得a =12.6.C A ={0,1},B ={x|x>2,或0<x<12},∴A ∩(∁R B)={0,1},其中的元素个数为2. 7.(-∞,0] 令u =1-x 2,则y =log 2u ,因为0<u ≤1,且由对数函数的单调性知y =log 2u 是增函数,所以y ≤0,即该函数的值域为(-∞,0].8.解:(1)由题意,得log 3x =17,x =317.(2)设log 25x =t ,则log x 25=1t.于是,原方程可化为2t-3t =1,化简,得3t 2+t -2=0.解得t =-1或t =23.当t =-1时,由log 25x =-1,得x =125;当t =23时,由log 25x =23,得x =543.综上可知,该方程的解是125或543.9.解:(1)由已知,得y =(lg p p 0)×20=20lg p p 0(其中p 0=2×10-5).(2)将p =0.002代入函数关系y =20lg pp 0,则y =20lg 0.0022×10-5=20lg102=40(分贝).因为40分贝小于60分贝,所以该地在噪音无害区,环境优良.1.B ∵a >1,∴a 2+1>2a,2a>a -1,且函数f(x)=log a x 是增函数. ∴m >p >n.2.C 函数g(x)=2-(x -1)的图象是由y =2-x 的图象向右平移1个单位而得到的;而f(x)=1+log 2x 的图象是由y =log 2x 的图象向上平移1个单位而得到的.3.B 令u(x)=x 2-ax +3a ,其对称轴为x =a2.由题意有⎩⎪⎨⎪⎧u(2)=4-2a +3a>0,a 2≤2.解得-4<a ≤4. 4.A f(x)=2x +3,得f -1(x)=log 2x -3,于是 f -1(m)+f -1(n)=log 2m -3+log 2n -3=log 2mn -6=log 216-6=4-6=-2.5.A 由图易得a>1,∴0<a -1<1. 取特殊点x =0,得-1<log a b<0,即log a 1a<log a b<log a 1,∴0<a -1<b<1.6.C ∵f(x)在(0,+∞)上是增函数,且f(13)=0,在(0,+∞)上f(log 18x)<0⇒f(log 18x)<f(13)⇒0<log 18x<13⇒log 181<log 18x<log 18(18)13⇒12<x<1;同理可求f(x)在(-∞,0)上是增函数,且f(-13)=0,得x>2.综上所述,x ∈(12,1)∪(2,+∞).7.(0,1)∪(1,2) ⎪⎪⎪⎪⎪⎪1 11 x =|x -1|, 由log 2|x -1|<0,得0<|x -1|<1, 即0<x<2,且x ≠1.8.-3 (1)当a ≤4时,2a -4=18,解得a =1,此时f(a +6)=f(7)=-3;(2)当a>4时,-log 2(a +1)=18,无解.9.解:设至少抽n 次才符合条件,则 a·(1-60%)n <0.1%·a(设原来容器中的空气体积为a).即0.4n<0.001,两边取常用对数,得 n·lg0.4<lg0.001,所以n>lg0.001lg0.4(因为lg0.4<0).所以n>-32lg2-1≈7.5.故至少需要抽8次,才能使容器内的空气少于原来的0.1%.10.解:由(12)x 2-x -6<1,得x 2-x -6>0,解得x<-2,或x>3,即A ={x|x<-2,或x>3}. 由log 4(x +a)<1,得0<x +a<4, 解得-a<x<4-a ,即B ={x|-a<x<4-a}.∵A ∩B =∅,∴⎩⎪⎨⎪⎧-a ≥-2,4-a ≤3,解得1≤a ≤2,即实数a 的取值范围是[1,2].点评:比较同底数的指数或对数不等式的大小关系时,一要明确底数的范围,因为它决定函数的单调性;二要确定相应的指数或真数的大小关系.它们一起确定函数值的大小关系.特别地,对于对数式还可考虑到真数大于零这一限制条件.11.解:由已知,得⎩⎪⎨⎪⎧log 22a -log 2a +b =b ,log 2(a 2-a +b)=2, 即⎩⎪⎨⎪⎧ log 2a(log 2a -1)=0,a 2-a +b =4.①②由①,得log 2a =1(a ≠1), ∴a =2.代入②,得b =2. ∴f(x)=x 2-x +2.∴f(log 2x)=log 22x -log 2x +2=(log 2x -12)2+74. ∴当log 2x =12时,f(log 2x)取得最小值74,此时x = 2.。
高一数学对数函数及其性质2
比较下列各组数的大小:
(1)log2π与log20.9;
(2)log20.3与log0.20.3; (3)3log45与2log23;
(4)log1/30.3,log20.8
【思路点拨】 由题目可获取以下主要信息: (1)中底数相同,真数不同;
(2)中底数不同,真数相同;
(3)(4)中底数与真数各不相同.解答本题可考虑利用对数函数的单 调性或图象求解.
①函数y=loga(2-ax)在[0,1]有意义,
②函数在[0,1]上是减函数. 解决本类问题应注意复合函数单调性的判定方法.
【解析】 设y=f(x)=loga(2-ax),因为f(x)在[0,1]上是减函数,
则f(0)>f(1),即loga2>loga(2-a).
因为 a 为对数的底数,则 a>0,且 a≠1,
(2)若底数为同一字母,则可按对数函数的单调性对底数进行分类讨
论; (3)若底数不同,真数相同,则可利用对数函数的图象或利用换底公
式化为同底,再作比较.
(4)若底数、真数均不相同,则可借助中间值-1,0,1等作比较.
2.复合函数单调区间的求法 关于形如y=logaf(x)(a>0,且a≠1)一类函数的单调性:
而log2u1<log2u2 ∴函数y=log2(3+2x-x2)在(-1,1]上单调递增,
同理在[1,3)上单调递减.
已知y=loga(2-ax)在[0,1]上是关于x的减函数,则a的取值范围是( )
A.(0,1)
B.(1,2)
C.(0,2) D.(2,+∞) 【思路点拨】 由题目可以获取以下主要信息:
2a>a-1 即 ,解得 a>1.即实数 a 的取值范围是 a-1>0
2.2.2对数函数及其性质(二)
例5:已知函数 f ( x) log 2 (3x 1), 若 f ( x) 0, 求 x 的取值范围.
总结点评:注意对数函数定义中定义域限制 (3x-1>0)
变式1:已知函数 y log 2 (2x 1), 求满足 f ( x) 1 的 x 的取值范围.
变式2:已知 log a (3a 1) 恒为正数, 求 a 的取值范围.
x
探 究:
么 x 是 y 的函数吗?如果是,那么对应关系是
什么?如果不是,请说明理由。 y=2x x log2 y y 0,
xR
指数函数y=2x(x ∈R)与对数函数y=log2x (x∈(0,+∞)) 互为反函数. 一般地,指数函数y=ax(x ∈R)与对数函数 y=logax (x∈(0,+∞)) 互为反函数.
得到:log 0.35>log 0.37
(3)log a5 与log a7 ( a>0 且 a≠1 )
对数函数的增减性决定于对数的底数是大于1还 是小于1.而已知条件中并未指出底数a与1哪个大? 因此需要对底数a进行讨论:
y 0 1 x y 0 x
1
当a>1时,函数y=log ax在(0,+∞)上是增函数,故 log a5<log a7 当0<a<1时,函数y=log ax在(0,+∞)上是减函数,故 log a5>log a7
(6) loga x2与 loga (x2+1) (x≠0)
练习
1995年我国人口总数是12亿,如果人口的自然增长率 控制在1.25%,问哪一年我国人口总数将大约等于14亿? 解: 设 X年后人口总数超过14亿,依题意得 12.(1+0.0125)X=14 即 1.0125X=14/12,两边取常用对数, 得:X.lg1.0125=lg14-lg12 即:X= (lg14-lg12)/ lg1.0125≈12.4
§2.2.2对数函数及其性质(2)
例.阅读课本P72例9及P73.
【例题探究】 例2.求下列函数的定义域与值域: (1)y=log2(x2+2x+5); (2)y=log1/2(4x-x2); (3) y (log x )2 2log x 3
§2.2.2对数函数 及其性质(2)
1.对数函数的图象与性质 a>1 0<a<1y 1 o y Nhomakorabeax
o
1
x
定义域:(0,+∞) ,值域:R 过定点(1,0),即x=1时,y=0 在(0,+∞)上递增 在(0,+∞)上递减
2.重要结论 同 正 异 负
a 1 0 a 1 loga x 0 或 x 1 0 x 1 a 1 0 a 1 loga x 0 或 0 x 1 x 1
【练习一】 2.求满足下列不等关系的x的范围. (1) log2(x+1)>log2(1-x); (0,1) (2) log1/3x2>log1/34 (-2, 0)∪(0, 2) (2) log3(2x-1)<1; (0, 2) (3) log1/2(3-2x)>0. (1, 3/2)
探究 观察下图所示函数 y=log2x,y=log0.5x,y=log10x,y =log0.1x 图象,你能得出什么结论?
2 2
【作业】1.P75 B组 3、4 2.求函数
f ( x) log1 ( x 2x 3) 1
2 2
对数函数的图象与性质(二)课时2
答案 定义域为正数,值域为全体实数.
问题 3:判断该函数的单调性.
答案
该函数在定义域内单调递增.
课堂导学
课前预学
任务: 对数函数的图象与性质
问题 1:试作出 y=log2x 和 y=log 1 x 的图象.
2
答案
课堂导学
课前预学
问题 2:两图象与 x 轴的交点坐标是什么?
答案
交点坐标为(1,0).
∵t=log3x 在区间[1,3]上是增函数,∴0≤t≤1.
要求 y=[f(x)]2+f(x2)在区间[1,3]上的最大值,只需求 y=t2+6t+6 在区间[0,1]上
的最大值.
∵y=t2+6t+6 在[-3,+∞)上是增函数,
∴当 t=1,即 x=3 时,ymax=1+6+6=13.
综上可知,当 x=3 时,y=[f(x)]2+f(x2)取得最大值,最大值为 13.
课堂导学
课前预学
二、解对数不等式
1
解不等式:(1)logx >1;
2
(2)loga(2x-5)>loga(x-1)(a>0,且 a≠1).
方法指导
(1)化成同底的对数式,结合对数函数的定义、单调性求解.(2)讨论 a 的
范围,结合对数函数的单调性求解.
解析
1
1
2
(1)当 x>1 时,logx >1=logxx,解得 x< ,此时不等式无解.
方法指导
先确定 y=[f(x)]2+f(x2)的定义域,然后转化成一个关于 log3x 的一
元二次函数,再利用一元二次函数求最值.
2018-2019学年高中数学人教A版必修一:2.2.2 对数函数及其性质 第二课时 对数函数的图象及性质的应用
眼皮蹦跳跳专业文档眼皮蹦跳跳专业文
2019/8/14
档
14
即时训练2-1:(1)(2017·北京高一月考)已知f(x)=log3x,f(a)>f(2),那么a的取值范 围是( )
(A){a|a>2} (B){a|1<a<2}
(C){a|a> 1 } (D){a| 1 <a<1}
2
2
(2)函数 y= log1 3x 4 1 的定义域是
2
3
2
32
答案:(1)A (2)( 4 , 3 ]
32
眼皮蹦跳跳专业文档眼皮蹦跳跳专业文
2019/8/14
档
15
题型三 对数型复合函数的单调性
【例 3】 (2018·唐山高一期末)函数 f(x)= log1 (x2-2x-3)的单调递增区间是( )
(A)(-∞,-1)
(B)(-∞,1)
2
(C)(1,+∞)
眼皮蹦跳跳专业文档眼皮蹦跳跳专业文
2019/8/14
档
22
即时训练4-1:已知f(x)=loga(1-x)+loga(x+3)(a>0且a≠1). (1)求函数f(x)的定义域、值域; (2)若函数f(x)有最小值为-2,求a的值.
解:(1)因为
1 x 0, x 3 0,
所以
定义域为{x|-3<x<1}.
眼皮蹦跳跳专业文档眼皮蹦跳跳专业文
2019/8/14
档
2
新知探求 课堂探究
眼皮蹦跳跳专业文档眼皮蹦跳跳专业文
2019/8/14
档
3
新知探求·素养养成
自我检测
第二章 2.2.2对数函数及其性质(2)
答案:A
返回
3.不等式 log 1 (2x+1)>log 1 (3-x)的解集为_____________.
2 2
2x+1>0, 解析:由题意3-x>0, 2x+1<3-x 1 2 ⇒-2<x<3.
1 2 答案:{x|-2<x<3}
1 x>-2, ⇒x<3, 2 x< 3
-
1 3
.
返回
取得最小值时 x= 2
1 - 3 - 2 3
= 2<2,
这时 x [2,8],舍去. 32 1 1 若2loga8+2 -8=1, 1 则 a=2,此时取得最小值时
1- 3 x=2 2 =2
2∈[2,8]符合题意,
1 ∴a=2.
=(log2x-1)(log2x-2)
返回
=(log2x)2-3log2x+2,(6 分) 令 t=log2x. ∵x∈[ 2,8],
1 ∴t∈2,3,(8
分)
利用换元法解决问题时, 一定要求出换元后的变 量的取值范围,即新 函数的定义域.
求此类函数的最值,应 借助函数的图象求解, 此处极易将两端点处的 函数值作为最值,从 而导致解题错误.
返回
[随堂即时演练]
1.设 a=log54,b=log53,c=log45,则 A.a<c<b C.a<b<c B.b<c<a D.b<a<c ( )
解析:由于 b=log53<a=log54<1<log45=c,故 b< a<c.
答案:D
返回
2.函数
f(x)=lg
1 的奇偶性是 2 x +1+x
高中数学 2.2.2 对数函数及其性质 第2课时 对数函数性质的应用课件 新人教A版必修1
x∈(0,1)⇒y∈_(_-__∞_,__0_) ; x∈(0,1)⇒y∈_(_0_,__+__∞_);
x∈[1,+∞)
x∈[1,+∞)
⇒y∈__[_0,__+__∞_)__
⇒y∈__(_-__∞_,__0_]_
第九页,共48页。
新知导学 1.对数复合函数的单调性 复合函数y=f[g(x)]是由y=f(x)与y=g(x)复合而成,若f(x) 与g(x)的单调性相同,则其复合函数f[g(x)]为_增__函__数___;若f(x) 与g(x)的单调性相反,则其复合函数f[g(x减)]为函数__(_h_á_n_sh_ù_). 对于对数型复合函数y=logaf(x)来说,函数y=logaf(x)可看 成是y=logau与u=f(x)两个简单函数复合而成的,由复合函数单 调性“同增异减”的规律即可判断(pànduàn).另外,在求复合 函数的单调性时,首先要考虑函数的定义域.
第二十八页,共48页。
(2)设 u=3+2x-x2,
则 u=-(x-1)2+4≤4.
∵u>0,∴0<u≤4.
又 y=log1 u 在(0,+∞)上是减函数,
2
∴log1 u≥log1 4=-2,
2
2
∴y=log1 (3+2x-x2)的值域为{y|y≥-2}.
2
第二十九页,共48页。
规律总结(zǒngjié):求复合函数y =f[g(x)]值域的方法设y=f(t),t=g(x),先求t=g(x)的值域再求 y=f(x)的值域.
第二十页,共48页。
③因为 0>log0.23>log0.24,所以log10.23<log10.24,即 log30.2 <log40.2.
④因为函数 y=log3x 是增函数,且 π>3,所以 log3π>log33 =1.
高中数学第二章基本初等函数(Ⅰ)2.2.2对数函数及其性质(第2课时)对数函数及其性质的应用(习题课)应用
高中数学第二章基本初等函数(Ⅰ)2.2.2对数函数及其性质(第2课时)对数函数及其性质的应用(习题课)应用案巩固提升新人教A 版必修1[A 基础达标]1.已知a =log 0.60.5,b =ln 0.5,c =0.60.5,则( ) A .a >b >c B .a >c >b C .c >a >bD .c >b >a解析:选B.a =log 0.60.5>log 0.60.6=1,b =ln 0.5<0,0<c =0.60.5<0.60=1, 故a >c >b .2.(2019·衡阳高一检测)函数y =log 15(1-3x)的值域为( )A .(-∞,+∞)B .(-∞,0)C .(0,+∞)D .(1,+∞)解析:选C.因为3x>0,所以-3x<0, 所以1-3x<1.又y =log 15t (t =1-3x)是关于t 的减函数,所以y =log 15t >log 151=0.选C.3.(2019·聊城高一检测)关于函数f (x )=log 12(1-2x )的单调性的叙述正确的是( )A .f (x )在⎝ ⎛⎭⎪⎫12,+∞上是增函数B .f (x )在⎝ ⎛⎭⎪⎫12,+∞上是减函数 C .f (x )在⎝ ⎛⎭⎪⎫-∞,12上是增函数D .f (x )在⎝⎛⎭⎪⎫-∞,12上是减函数 解析:选C.由1-2x >0,得x <12,所以f (x )=log 12(1-2x )的定义域为⎝⎛⎭⎪⎫-∞,12.由于底数12∈(0,1),所以函数f (x )=log 12(1-2x )的单调性与y =1-2x 的单调性相反.因为y =1-2x 在(-∞,+∞)上是减函数,所以f (x )在⎝⎛⎭⎪⎫-∞,12上是增函数,故选C. 4.(2019·六安高一检测)若a >1,且log 1ax 1=log a x 2=log a +1x 3<0,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 3<x 2<x 1D .x 3<x 1<x 2解析:选C.因为log 1ax 1=log a x 2=log a +1x 3<0,所以lg x 1lg 1a=lg x 2lg a =lg x 3lg (a +1)<0,因为a >1,则lg 1a<0,lg(a +1)>lg a >0,所以lg x 1>0,lg x 2<0,lg x 3<0,且lg x 2>lgx 3,所以x 1>1,0<x 3<x 2<1,所以x 3<x 2<x 1.5.下列函数为奇函数的是( )A .f (x )=lg ⎝⎛⎭⎪⎫2x +12xB .f (x )=|lg x |C .f (x )=lg |x |D .f (x )=lg 1-x1+x解析:选D.对于选项A 中的函数f (x )=lg ⎝ ⎛⎭⎪⎫2x +12x ,函数定义域为R ,f (-x )=lg ⎝ ⎛⎭⎪⎫2-x +12-x =lg ⎝ ⎛⎭⎪⎫12x +2x =f (x ),故选项A 中的函数为偶函数;对于选项B 中的函数f (x )=|lg x |,由于函数定义域为(0,+∞),不关于原点对称,故选项B 中的函数既不是奇函数,也不是偶函数;对于选项C 中的函数f (x )=lg|x |,定义域为(-∞,0)∪(0,+∞),关于原点对称,f (-x )=lg|-x |=lg|x |=f (x ),故选项C 中的函数为偶函数;对于选项D 中的函数f (x )=lg 1-x 1+x ,由于函数的定义域为(-1,1),关于原点对称,f (-x )=lg 1+x 1-x =-lg 1-x1+x=-f (x ),故选项D 中的函数为奇函数.故选D.6.若lg(2x -4)≤1,则x 的取值范围是________. 解析:由lg(2x -4)≤1得lg(2x -4)≤lg 10, 所以0<2x -4≤10, 解得2<x ≤7. 答案:(2,7]7.(2019·凉州高一检测)已知函数y =log 2(1-x )的值域为(-∞,0),则其定义域是________.解析:因为函数y =log 2(1-x )的值域为(-∞,0),所以0<1-x <1,即-1<x -1<0,解得0<x <1,所以该函数的定义域为(0,1).答案:(0,1)8.设a >1,函数f (x )=log a x 在区间[a ,2a ]上的最大值与最小值之差为12,则a =________.解析:因为a >1,所以f (x )=log a x 在[a ,2a ]上递增, 所以log a (2a )-log a a =12,即log a 2=12,所以a 12=2,a =4.答案:49.已知函数f (x )是定义在R 上的奇函数.当x >0时,f (x )=log 2x . (1)求f (x )的解析式; (2)解关于x 的不等式f (x )≤12.解:(1)设x <0,则-x >0, 因为当x >0时,f (x )=log 2x , 所以f (-x )=log 2(-x ), 又因为函数f (x )是奇函数,所以f (x )=-f (-x )=-log 2(-x ). 当x =0时,f (0)=0,综上所述,f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,0,x =0,-log 2(-x ),x <0.(2)由(1)得不等式f (x )≤12可化为x >0时,log 2x ≤12,解得0<x ≤ 2.x =0时,0≤12满足条件.x <0时,-log 2(-x )≤12,解得x ≤-22. 综上可知,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≤-22或0≤x ≤2.10.已知函数f (x )=log 2(1+x 2).求证:(1)函数f (x )是偶函数;(2)函数f (x )在区间(0,+∞)上是增函数.证明:(1)函数f (x )的定义域是R ,f (-x )=log 2[1+(-x )2]=log 2(1+x 2)=f (x ),所以函数f (x )是偶函数.(2)设x 1,x 2为(0,+∞)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=log 2(1+x 21)-log 2(1+x 22)=log 21+x 211+x 22.因为0<x 1<x 2,所以0<x 21<x 22,0<1+x 21<1+x 22,所以0<1+x 211+x 22<1.又函数y =log 2x 在(0,+∞)上是增函数,所以log 21+x 211+x 22<0.所以f (x 1)<f (x 2).所以函数f (x )在区间(0,+∞)上是增函数.[B 能力提升]11.log 12(a 2+a +1)与log 1234的大小关系为( )A .log 12(a 2+a +1)≥log 1234B .log 12(a 2+a +1)>log 1234C .log 12(a 2+a +1)≤log 1234D .log 12(a 2+a +1)<log 1234解析:选C.因为y =log 12x 在(0,+∞)上是减函数,而a 2+a +1=⎝ ⎛⎭⎪⎫a +122+34≥34,所以log 12(a 2+a +1)≤log 1234.12.(2019·大庆高一检测)若⎪⎪⎪⎪⎪⎪log a 14=log a 14,且|log b a |=-log b a .则a ,b 满足的关系式是( )A .a >1且b >1B .a >1且0<b <1C .b >1且0<a <1D .0<a <1且0<b <1解析:选C.因为⎪⎪⎪⎪⎪⎪log a 14=log a 14,且|log b a |=-log b a ,所以log a 14>0,log b a <0,即0<a <1,b >1.13.已知函数f (x )=log a (1-x )+log a (x +3)(0<a <1). (1)求函数f (x )的定义域;(2)若函数f (x )的最小值为-2,求a 的值.解:(1)要使函数有意义,则有⎩⎪⎨⎪⎧1-x >0,x +3>0,解得-3<x <1,所以定义域为(-3,1).(2)函数可化为f (x )=log a (1-x )(x +3)=log a (-x 2-2x +3)=log a [-(x +1)2+4],因为-3<x <1,所以0<-(x +1)2+4≤4,又0<a <1,所以log a [-(x +1)2+4]≥log a 4,即f (x )的最小值为log a 4.由log a 4=-2,得a -2=4,所以a =4-12=12.14.(选做题)已知函数f (x )=log a (3-ax ),(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.解:(1)由题设,3-ax >0对x ∈[0,2]恒成立,且a >0,a ≠1.设g (x )=3-ax , 则g (x )在[0,2]上为减函数,所以g (x )min =g (2)=3-2a >0,所以a <32.所以实数a 的取值范围是(0,1)∪⎝ ⎛⎭⎪⎫1,32. (2)假设存在这样的实数a ,则由题设知f (1)=1, 即log a (3-a )=1,所以a =32.此时f (x )=log 32⎝ ⎛⎭⎪⎫3-32x . 但x =2时,f (x )=log 320无意义.故这样的实数a 不存在.。
4.4.2对数函数的图象和性质(第2课时)课件(共37张PPT)
【答案】 (1)y=12x (2)12
题型二 对数函数图象的变换 例 2 已知 f(x)=lgx,作出函数 y=-f(x),y=f(-x),y= -f(-x),y=f(|x|),y=|f(x)|,y=f(x+1)的图象. 【答案】
证明:设 0<x1<x2<1,则 f(x2)-f(x1)=log21-x2x2-log21-x1x1 =log2x(2(1-1-x2x)1)x1=log2xx21·11--xx12. ∵0<x1<x2<1,∴xx21>1,11--xx12>1. 则 log2xx21·11--xx12>0. ∴f(x2)>f(x1).故函数 f(x)在(0,1)上是增函数.
思考题 4 (1)设 y=loga(2-ax)在[0,1]上是关于 x 的减函
数,则实数 a 的取值范围是( A.(0,1) C.(0,1] 【答案】 B
) B.(1,2) D.[2,+∞)
(2)已知 f(x)=log1(x2-ax+3a)在区间(2,+∞)上是减函数, 2
求 a 的取值范围. 【解析】 ∵f(x)=log1(x2-ax+3a)在(2,+∞)上是减函数, 2
A.(-∞,1)
B.(2,+∞)
C.-∞,32 答案 A
D.32,+∞
解析 由 x2-3x+2>0,得定义域为{x|x<1 或 x>2}.
∵y=log1u 单调递减,u(x)在(-∞,1)上单调递减, 2
∴f(x)=log1(x2-3x+2)在(-∞,1)上单调递增.故选 A. 2
5.已知函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
求y
(log2
x 4
)(log2
x 2
)的值域
2.换元法(注明新元取值) 3.二次函数法(配方,画图,求值)
二.新课讲授 函数y=logaf(x)的单调性: 例4.求函数f(x) log3(2x 1), g( x) log1 (2x 1)的单调区间.
3
并比较与t 2x 1( x 1 )的单调性的关系 2
的图象的关系.
y log 3 x 向左平移2个单位 y log3(x 2) y log 3 x 向上平移2个单位 y log3 x 2
例2画出下列函数的图象:
(1)y log 1 | x | (2) y | log2 x |
2
(1)
(2)
已知1 x 10,试比较(lg x)2, lg x2, lg(lg x)的大小.
二.新课讲授 例1 解下列关于x的不等式:
(1) log0.5 x > log0.5 (1-x) (2) log2 (x+3) - 2 <0
(3)
log x
2 3
<
1
变式:0<a<1,0<b<1,且alogb (x-3) <1,求 x
依据:(1)若a 1, loga m loga n m n 0 (2)若0 a 1, loga m loga n 0 m n
结论:当a>1时,y=logaf(x)与t=f(x)>0单调性相同
当0<a<1时,y=logaf(x)与t=f(x)>0单调性相反
练习:求下列函数的单调区间
(1)y=log2|2-x| (2)y=log(1 x2 -3x+2)(3)y=log(2 x-x2)
2
例1 说明函数 y log3(x 2) 和 y log 3 x
即: 0 y 2
故该函数的值域为 y 0 y 2
思考题
若函数 y loga x在[2, )上恒有y 1 求a的取值范围.
备用习题
1/3<a<1 1.已知loga3a<0,则a的取值范围为
2.设0<x<1,logax<logbx<0,则a,b关系(B ) A.0<a<b<1 B.1<a<b C.0<b<a<1 D1<b<a
注意:要考虑函数的定义域 依据:复合函数的单调性的判定方法.
求x的取值范围. 3 x4
1.解:要使函数有意义,则: x2 0
即得:x 0
故函数的定义域为 x x 0
小结:求形如 y log a f (x)的函数定义域要 考虑 f (x) 0
2.解: 1 x 3 1 x2 9
那么: log 3 1 log 3 x2 log 3 9
名称
指数函数
对数函数
一般形式 图
象
y ax (a 0, a 1)
a 1 0a 1
1
1
0
0
y log a x (a 0, a 1)
a 1 0 a 1
y
01
01
定义域
R
(0,+∞)
值域 过定点 单调性 联系
(0,+∞)
R
(0,1)
(1,0)
a 1增函数;0 a 1减函数
y ax的图象与y log a x的图象关于直线 y x 对称
ห้องสมุดไป่ตู้
二.新课讲授 例2.求函数 y=log3x (1≤x≤3)的值域. 变式:(1)已知函数y=logax(a>0,a≠1), 当x∈[3,9]时, 函数的最大值比最小值大1,则a=__3_或 __ 1 (2)求函数 y=log3(-x2+2x+3)的值域 3
1.单调性法(端点代入) 2.换元法(注明新元取值) 3.二次函数法(配方,画图,求值)
例3:求函数 y=log3x(1≤x≤3)的值域.
变式:
(1)求函数 y=log3(x2-4x+7)的值域.
(2)已知函数y=logax(a>0,a≠1), 当x∈[3,9]时,函数的最大值比最小值大1,
则a=__3_或___13__
例4.函数y=log2(x2- 3x+2) 的单调减区间 是__(-__∞__, _1_)
例题与练习
例二.设函数 y log 3 x2 (1)求该函数的定义域. (2)若该函数的定义域为[1,3],求该函数的值域. (3)若该函数的值域为[1,3],求该函数的定义域.
x 3 x 3 3或 3 3 x 3
小结:函数思想是实现核心内涵到外延应用的途径.
练习2.已知: 0 a 1,0 b 1;若alogb (x3) 1
二.新课讲授- 与对数有关的二次函数
例3.求 ( f x) 2 loga2 x- loga x+1 的值域 变式:(1)当x=2时 ,f(x)取得最小值 ,求a
(2)求
( f x)
( 4
log a
2
x)2 - loga
x +1 的值域
(3 )若2(log1 x )2 7 (log1 x ) 3 0 ,