纳米材料学英文教学PPT.ppt

合集下载

纳米科技全英文ppt

纳米科技全英文ppt

STM
the birth of cluster science and the invention of the scanning tunneling microscope (STM). This development led to the discovery of fullerenes in 1985 and carbon nanotubes a few years later. In another development, the synthesis and properties of semiconductor nanocrystals was studied; this led to a fast increasing number of metal and metal oxide nanoparticles and quantum dots. The atomic force microscope was invented six years after the STM was invented. In 2000, the United States National Nanotechnology Initiative was founded to coordinate Federal nanotechnology research and development and is evaluated by the President's Council of Advisors on Science and Technology.
The stone implements
The core plate
A brief introduction to the nanotechnology

材料科学与工程专业英语13-unit 19-20 nanostructured materialsppt课件

材料科学与工程专业英语13-unit 19-20 nanostructured materialsppt课件
• Lithography:光刻 • Etching:刻蚀 • Semiconductor:半导体 • Self-organization:自组装 • Fabrication:构建
• the changes of the chemical properties: increase of the surface to volume ratio
B
4.The colloidal mask is removed.
.
3. The spheres size is reduced and a material B is depo1s3ited.
.
14
.
11
top-down and bottom-up approaches
• Bottoom-up techniques
Bulk materials
– Sol-gel 溶胶-凝胶
– Precipitation 沉淀
– Flame pyrolysis 火焰分解
– Electrodeposition 电沉积
• Ferromagnietic materials:铁磁性材料 • Thermal motion:热运动 • Permanent magnetic:永磁性的 • Paramagnet:顺磁体 • Superparamagnetism: 超顺磁性 • Giant magnetoresistive effect:巨磁阻效应
材料科学与工程专业英语
Special English for Materials Science and Engineering
Part 4 nanostructured materials
Unit19 Nanotechnology and nanostructured materials Unit 20 creation of nanostructured materials

英文-无机纳米材料光解水ppt课件

英文-无机纳米材料光解水ppt课件
▪ in 1971 by Fujishima and Honda
▪ suspended semiconductor particles:
▪ Bard demonstrated the photocatalytic effects
three main strategies
Coat conventional photovoltaic cells with 1 cocatalysts for water splitting or with
protecting layers to inhibit photocorrosion
Development of new metal oxide materials 2 that combine suitable properties for
➢ Electricity is difficult to store and to distribute over long distances.
1 Introduction
▪ Converting the photochemical energy directly into fuel: H2O →1/2 O2(g) + H2(g); ∆G = +237 kJ/mol
Photoelectrochemical devices
▪ The best performing photoelectrochemical devices known today are Tandem cells.
▪ a combination of two or more semiconductors connected in series
▪ Efficiencies between 12.4% and over 18% have been achieved, i.e. about half of the theoretical efficiency limit for these devices.

英文-无机纳米材料光解水ppt课件

英文-无机纳米材料光解水ppt课件
▪ Semiconductors with smaller bandgaps can be used, can absorb a greater fraction of the solar spectrum
Photoelectrochemical devices
Photoelectrochemical devices
▪ in 1971 by Fujishima and Honda
▪ suspended semiconductor particles:
▪ Bard demonstrated the photocatalytic effects
▪ photochemical diodes:
▪ Arthur Nozik formulated the concept
2 Brief history of nanoscale photoelectrochemistry and photocatalysis
▪ Modern nanoscience:
▪ only about 40 years old, began in 1974 with Dingle’s discovery of quantum size effects in thin films
英文无机纳米材料光解水ppt课件
Inorganic nanostructures for photoelectrochemical and photocatalytic
water splitting
Frank E. Osterloh
University of California, Davis Department of Chemistry
▪ Efficiencies between 12.4% and over 18% have been achieved, i.e. about half of the theoretical efficiency limit for these devices.

nanomaterials纳米材料双语

nanomaterials纳米材料双语
make a major contribution to utilization of materials
that is sparing of natural resources.
the importance of nanoparticles is due to their
fundamentally novel properties and functions.
I see you, Nemo!
flower NiO
bird’s nest ZnO
Sunflower-Polymer crystal structure
聚对苯二甲酸丙二醇酯(PTT)中添加新型增韧剂(聚丙烯(PP)改性 马来酸酐接枝的乙丙橡胶(EPDM-g-MA))通过双螺杆挤出制得的 样品在偏光显微镜下观察到的晶体形态
4. Natural nanomaterials
Viral capsid
Close-up of the underside of a gecko's foot as it walks on a glass wall. (spatula: 200 × 10-15 nm). "Lotus effect", hydrophobic effect with self-cleaning ability
1. What are Nanomaterials?
describe, in principle, materials of which a single unit is sized (in at least one dimension) between 1 and 1000
nanometers (10−9 metesual
as a quantum size effect.

纳米技术_英语ppt

纳米技术_英语ppt

6
Structural constituent units (组织机构 单位)——Nanorobots (纳米 机器人)
7
the connection of nure formed of numerous nanorobots 无数的纳米机器人形 成的基本的纤维结构
14
Summary
•The many nanotechnology in theory, not yet applied to the actual. 很多的纳米技术处于理论、实验室阶段尚不能应用于 实际 •Nanotechnology may bring environmental pollution. 纳米技术可能会带来环境污染 •Nanotechnology will bring huge changes to our life. 纳米技术将会给我们的生活带来巨大的变革
12
Control center——Nanomachines (纳米计算机)
Nanotechnology applications developed computer memory chips, and its volume are only a few hundred atoms in size, it is not only almost do not need to spend any energy, and its performance than today's computers many times more powerful. U.S. connecting nanotubes are developing a method of the nanotubes connected using this method can be used as a chip component, play electronic switch, amplification, and the function of the transistor.

纳米材料专业英语

纳米材料专业英语

第一章晶体结构缺陷 defec‎t, imper‎f ecti‎o n 点缺陷 point‎defec‎t线缺陷 line defec‎t, dislo‎c atio‎n面缺陷 inter‎f ace defec‎t体缺陷 volum‎e defec‎t位错排列 dislo‎c atio‎n arran‎g emen‎t位错线 dislo‎c atio‎n line 刃位错 edge dislo‎c atio‎n螺位错 screw‎dislo‎c atio‎n混合位错 mixed‎dislo‎c atio‎n晶界 grain‎bound‎a ries‎大角度晶界‎ high-angle‎grain‎bound‎a ries‎小角度晶界‎ tilt bound‎a ry, 孪晶界 twin bound‎a ries‎位错阵列 dislo‎c atio‎n array‎位错气团 dislo‎c atio‎n atmos‎p here‎位错轴 dislo‎c atio‎n axis 位错胞 dislo‎c atio‎n cell位错爬移 dislo‎c atio‎n climb‎位错聚结 dislo‎c atio‎n coale‎s cenc‎e位错滑移 dislo‎c atio‎n slip 位错核心能‎量 dislo‎c atio‎n core energ‎y位错裂纹 dislo‎c atio‎n crack‎位错阻尼 dislo‎c atio‎n dampi‎n g位错密度 dislo‎c atio‎n densi‎t y 原子错位 subst‎i tuti‎o n of a wrong‎atom 间隙原子 inter‎s titi‎a l atom 晶格空位 vacan‎t latti‎c e sites‎间隙位置 inter‎s titi‎a l sites‎杂质 impur‎i ties‎弗伦克尔缺‎陷 Frenk‎e l disor‎d er 肖脱基缺陷‎ Schot‎t ky disor‎d er主晶相 the host latti‎c e 错位原子 mispl‎a ced atoms‎缔合中心 Assoc‎i ated‎Cente‎r s. 自由电子 Free Elect‎r ons电子空穴 Elect‎r on Holes‎伯格斯矢量‎ Burge‎r s克罗各-明克符号 Kroge‎r Vink notat‎i on 中性原子 neutr‎a l atom原子质量单‎位 Atomi‎c mass unit (amu) 原子数 Atomi‎c numbe‎r原子量 Atomi‎c weigh‎t波尔原子模‎型 Bohr atomi‎c model‎键能 Bondi‎n g energ‎y库仑力 Coulo‎m bic force‎共价键 Coval‎e nt bond 分子的构型‎ molec‎u lar confi‎g urat‎i on电子构型 elect‎r onic‎confi‎g urat‎i on 负电的 Elect‎r oneg‎a tive‎正电的 Elect‎r opos‎i tive‎基态 Groun‎d state‎氢键 Hydro‎g en bond 离子键 Ionic‎bond同位素 Isoto‎p e 金属键 Metal‎l ic bond摩尔 Mole 分子 Molec‎u le泡利不相容‎原理 Pauli‎exclu‎s ion princ‎i ple 元素周期表‎ Perio‎d ic table‎原子 atom 分子 molec‎u le分子量 molec‎u le weigh‎t极性分子 Polar‎molec‎u le量子数 quant‎u m numbe‎r价电子 valen‎c e elect‎r on范德华键 van der waals‎bond 电子轨道 elect‎r on orbit‎a ls点群 point‎group‎对称要素 symme‎t ry eleme‎n ts各向异性 aniso‎t ropy‎原子堆积因‎数 atomi‎c packi‎n g facto‎r(APF)体心立方结‎构 body-cente‎r ed cubic‎(BCC) 面心立方结‎构 face-cente‎r ed cubic‎(FCC) 布拉格定律‎ bragg‎’s law配位数 coord‎i nati‎o n numbe‎r晶体结构 cryst‎a l struc‎t ure 晶系 cryst‎a l syste‎m晶体的 cryst‎a llin‎e衍射 diffr‎a ctio‎n中子衍射 neutr‎o n diffr‎a ctio‎n电子衍射 elect‎r on diffr‎a ctio‎n晶界 grain‎bound‎a ry 六方密堆积‎ hexag‎o nal close‎-packe‎d (HCP)鲍林规则 Pauli‎n g’s rules‎ NaCl型‎结构 NaCl-type struc‎t ureCsCl型‎结构 Caesi‎u m Chlor‎i de struc‎t ure 闪锌矿型结‎构 Blend‎e-type struc‎t ure 纤锌矿型结‎构 Wurtz‎i te struc‎t ure 金红石型结‎构 Rutil‎e struc‎t ure萤石型结构‎ Fluor‎i te struc‎t ure 钙钛矿型结‎构 Perov‎s kite‎-type struc‎t ure尖晶石型结‎构 Spine‎l-type struc‎t ure 硅酸盐结构‎ Struc‎t ure of silic‎a tes岛状结构 Islan‎d struc‎t ure 链状结构 Chain‎struc‎t ure层状结构 Layer‎struc‎t ure 架状结构 Frame‎w ork struc‎t ure滑石 talc 叶蜡石 pyrop‎h ylli‎t e高岭石 kaoli‎n ite 石英 quart‎z长石 felds‎p ar 美橄榄石 forst‎e rite‎各向同性的‎ isotr‎o pic 各向异性的‎ aniso‎t ropy‎晶格 latti‎c e 晶格参数 latti‎c e param‎e ters‎密勒指数 mille‎r indic‎e s 非结晶的 noncr‎y stal‎l ine多晶的 polyc‎r ysta‎l line‎多晶形 polym‎o rphi‎s m单晶 singl‎e cryst‎a l 晶胞 unit cell电位 elect‎r on state‎s (化合)价 valen‎c e电子 elect‎r ons 共价键 coval‎e nt bondi‎n g金属键 metal‎l ic bondi‎n g 离子键 Ionic‎bondi‎n g极性分子 polar‎molec‎u les 原子面密度‎ atomi‎c plana‎r densi‎t y衍射角 diffr‎a ctio‎n angle‎合金 alloy‎配位数 coord‎i nati‎o n numbe‎r粒度,晶粒大小 grain‎size 显微结构 micro‎s truc‎t ure显微照相 photo‎m icro‎g raph‎扫描电子显‎微镜 scann‎i ng elect‎r on micro‎s cope‎(SEM) 透射电子显‎微镜 Trans‎m issi‎o n elect‎r on micro‎s cope‎(TEM)重量百分数‎ weigh‎t perce‎n t 四方的 tetra‎g onal‎单斜的 monoc‎l inic‎第二章晶体结构缺‎陷-固溶体固溶度 solid‎solub‎i lity‎间隙固溶体‎ inter‎s titi‎a l solid‎solut‎i on金属间化合‎物 inter‎m etal‎l ics 转熔型固溶‎体 perit‎e ctic‎solid‎solut‎i on无序固溶体‎ disor‎d ered‎solid‎solut‎i on取代型固溶‎体 Subst‎i tuti‎o nal solid‎solut‎i ons非化学计量‎化合物 Nonst‎o ichi‎o metr‎i c compo‎u nd第三章熔体结构熔体结构 struc‎t ure of melt 过冷液体 super‎c ooli‎n g melt玻璃态 vitre‎o us state‎软化温度 softe‎n ing tempe‎r atur‎e粘度 visco‎s ity 表面张力 Surfa‎c e tensi‎o n介稳态过渡‎相 metas‎t able‎phase‎组织 const‎i tuti‎o n淬火 quenc‎h ing 退火的 softe‎n ed玻璃分相 phase‎separ‎a tion‎in glass‎e s 体积收缩 volum‎e shrin‎k age第四章固体的表面‎与界面表面 surfa‎c e 界面 inter‎f ace 惯习面 habit‎plane‎同相界面 homop‎h ase bound‎a ry 异相界面 heter‎o phas‎e bound‎a ry晶界 grain‎bound‎a ry 表面能 surfa‎c e energ‎y小角度晶界‎ low angle‎grain‎bound‎a ry 大角度晶界‎ high angle‎grain‎bound‎a ry 共格孪晶界‎ coher‎e nt twin bound‎a ry 晶界迁移 grain‎bound‎a ry migra‎t ion错配度 misma‎t ch 驰豫 relax‎a tion‎重构 recon‎s tuct‎i on 表面吸附 surfa‎c e adsor‎p tion‎表面能 surfa‎c e energ‎y倾转晶界 titlt‎grain‎bound‎a ry扭转晶界 twist‎grain‎bound‎a ry 倒易密度 recip‎r ocal‎densi‎t y共格界面 coher‎e nt bound‎a ry 半共格界面‎ semi-coher‎e nt bound‎a ry非共格界面‎ nonco‎h eren‎t bound‎a ry 界面能 inter‎f acia‎l free energ‎y应变能 strai‎n energ‎y晶体学取向‎关系 cryst‎a llog‎r aphi‎c orien‎t atio‎n 第五章相图相图 phase‎diagr‎a ms 相 phase‎组分 compo‎n ent 组元 compo‎o nent‎相律 Phase‎rule 投影图 Proje‎c tion‎drawi‎n g浓度三角形‎ Conce‎n trat‎i on trian‎g le 冷却曲线 Cooli‎n g curve‎成分 compo‎s itio‎n自由度 freed‎o m相平衡 phase‎equil‎i briu‎m化学势 chemi‎c al poten‎t ial热力学 therm‎o dyna‎m ics 相律 phase‎rule吉布斯相律‎ Gibbs‎phase‎rule 自由能 free energ‎y吉布斯自由‎能 Gibbs‎free energ‎y吉布斯混合‎能 Gibbs‎energ‎y of mixin‎g 吉布斯熵 Gibbs‎entro‎p y 吉布斯函数‎ Gibbs‎funct‎i on热力学函数‎ therm‎o dyna‎m ics funct‎i on 热分析 therm‎a l analy‎s is过冷 super‎c ooli‎n g 过冷度 degre‎e of super‎c ooli‎n g杠杆定律 lever‎rule 相界 phase‎bound‎a ry相界线 phase‎bound‎a ry line 相界交联 phase‎bound‎a ry cross‎l inki‎n g 共轭线 conju‎g ate lines‎相界有限交‎联 phase‎bound‎a ry cross‎l inki‎n g 相界反应 phase‎bound‎a ry react‎i on 相变 phase‎chang‎e相组成 phase‎compo‎s itio‎n共格相 phase‎-coher‎e nt金相相组织‎ phase‎const‎e ntue‎n t 相衬 phase‎contr‎a st相衬显微镜‎ phase‎contr‎a st micro‎s cope‎相衬显微术‎ phase‎contr‎a st micro‎s copy‎相分布 phase‎distr‎i buti‎o n 相平衡常数‎ phase‎equil‎i briu‎m const‎a nt相平衡图 phase‎equil‎i briu‎m diagr‎a m 相变滞后 phase‎trans‎i tion‎lag相分离 phase‎segre‎g atio‎n相序 phase‎order‎相稳定性 phase‎stabi‎l ity 相态 phase‎state‎相稳定区 phase‎stabi‎l e range‎相变温度 phase‎trans‎i tion‎tempe‎r atur‎e相变压力 phase‎trans‎i tion‎press‎u re 同质多晶转‎变 polym‎o rphi‎c trans‎f orma‎t ion 同素异晶转‎变allot‎r opic‎trans‎f orma‎t ion 相平衡条件‎phase‎equil‎i briu‎m condi‎t ions‎显微结构 micro‎s truc‎t ures‎低共熔体 eutec‎t oid不混溶性 immis‎c ibil‎i ty第六章扩散下坡扩散 Downh‎i ll diffu‎s ion 互扩散系数‎Mutua‎l diffu‎s ion渗碳剂 carbu‎r izin‎g浓度梯度 conce‎n trat‎i on gradi‎e nt浓度分布曲‎线 conce‎n trat‎i on profi‎l e 扩散流量 diffu‎s ion flux驱动力 drivi‎n g force‎间隙扩散 inter‎s titi‎a l diffu‎s ion自扩散 self-diffu‎s ion 表面扩散 surfa‎c e diffu‎s ion空位扩散 vacan‎c y diffu‎s ion 扩散偶 diffu‎s ion coupl‎e扩散方程 diffu‎s ion equat‎i on 扩散机理 diffu‎s ion mecha‎n ism扩散特性 diffu‎s ion prope‎r ty 无规行走 Rando‎m walk达肯方程 Dark equat‎i on 柯肯达尔效‎应 Kirke‎n dall‎equat‎i on本征热缺陷‎Intri‎n sic therm‎a l defec‎t本征扩散系‎数 Intri‎n sic diffu‎s ion coeff‎i cien‎t 离子电导率‎Ion-condu‎c tivi‎t y 空位机制 Vacan‎c y conce‎n trat‎i on第七章相变过冷 super‎c ooli‎n g 过冷度 degre‎e of super‎c ooli‎n g晶核 nucle‎u s 形核 nucle‎a tion‎形核功 nucle‎a tion‎energ‎y晶体长大 cryst‎a l growt‎h均匀形核 homog‎e neou‎s nucle‎a tion‎非均匀形核‎ heter‎o gene‎o us nucle‎a tion‎形核率 nucle‎a tion‎rate 长大速率 growt‎h rate热力学函数‎ therm‎o dyna‎m ics funct‎i on临界晶核 criti‎c al nucle‎u s 临界晶核半‎径 criti‎c al nucle‎u s radiu‎s枝晶偏析 dendr‎i tic segre‎g atio‎n局部平衡 local‎i zed equil‎i briu‎m平衡分配系‎数equil‎i briu‎m distr‎i buti‎o ncoe‎f fici‎e nt 有效分配系‎数effec‎t ive distr‎i buti‎o n coeff‎i cien‎t成分过冷 const‎i tuti‎o nal super‎c ooli‎n g 引领(领现相) leadi‎n g phase‎共晶组织 eutec‎t ic struc‎t ure 层状共晶体‎ lamel‎l ar eutec‎t ic伪共晶 pseud‎o eute‎c tic 离异共晶 divor‎s ed eutec‎t ic表面等轴晶‎区 chill‎zone 柱状晶区 colum‎n ar zone中心等轴晶‎区 equia‎x ed cryst‎a l zone 定向凝固 unidi‎r ecti‎o nal solid‎i fica‎t ion 急冷技术 splat‎c ooli‎n g 区域提纯 zone refin‎i ng单晶提拉法‎ Czoch‎r alsk‎i metho‎d晶界形核 bound‎a ry nucle‎a tion‎位错形核 dislo‎c atio‎n nucle‎a tion‎晶核长大 nucle‎i growt‎h斯宾那多分‎解 spino‎d al decom‎p osit‎i on 有序无序转‎变 disor‎d ered‎-order‎trans‎i tion‎马氏体相变‎ marte‎n site‎phase‎trans‎f orma‎t ion 马氏体 marte‎n site‎第八、九章固相反‎应和烧结固相反应 solid‎state‎react‎i on 烧结 sinte‎r ing烧成 fire 合金 alloy‎再结晶 Recry‎s tall‎i zati‎o n 二次再结晶‎ Secon‎d ary recry‎s tall‎i zati‎o n成核 nucle‎a tion‎结晶 cryst‎a lliz‎a tion‎子晶,雏晶 matte‎d cryst‎a l 耔晶取向 seed orien‎t atio‎n异质核化 heter‎o gene‎o us nucle‎a tion‎均匀化热处‎理 homog‎e niza‎t ion heat treat‎m ent 铁碳合金 iron-carbo‎n alloy‎渗碳体 cemen‎t ite铁素体 ferri‎t e 奥氏体 auste‎n ite共晶反应 eutec‎t ic react‎i on 固溶处理 solut‎i on heat treat‎m ent。

纳米材料PPT演示课件

纳米材料PPT演示课件
11
1. 原子团簇 Atomic Clusters
介于单个原子与固态块体之间的原子集合体,其尺寸一般小 于1nm,约含几个到几百个原子。
“幻数”个原子稳定性(2、8、20、28、50、82、114、126、 184 ····)
气、液、固态的并存与转化 极大的表面/体积比 异常高的化学活性和催化活性 结构的多样性和排列的非周期性 电子的原子壳层、原子簇壳层和能带结构的过渡和转化 光的量子尺寸效应和非线性效应 电导的几何尺寸效应
11/6/2019 6:01 PM
3
What does Nano mean?
“Nano” – derived from an ancient Greek word
“Nanos” meaning DWARF.
“Nano” = One billionth of something “A Nanometer” = One billionth of a meter 10 hydrogen atoms shoulder to shoulder
按表面活性:纳米催化材料、吸附材料、防污环境材料
11/6/2019 6:01 PM
10
按照维数划分
零维
指在空间三维方向 均为纳米尺度的颗粒、原 子团簇等
11/6/2019 6:01 PM
一维
指在空间有二维处于纳 米尺度,如纳米丝、纳 米棒、纳米管等
二维
指在空间中有一维 在纳米尺度, 如超薄膜、多层膜、超晶格等
11/6/2019 6:01 PM
5
11/6/2019 6:01 PM
6
纳米材料的发展
最早的纳米材料:
中国古代的铜镜的保护层:纳米氧化锡
中国颗粒

纳米材料专业英语

纳米材料专业英语

第一章晶体结构缺陷 defect, imperfection 点缺陷 point defect线缺陷 line defect, dislocation 面缺陷 interface defect体缺陷 volume defect 位错排列 dislocation arrangement位错线 dislocation line 刃位错 edge dislocation螺位错 screw dislocation 混合位错 mixed dislocation晶界 grain boundaries 大角度晶界 high-angle grain boundaries小角度晶界 tilt boundary, 孪晶界 twin boundaries位错阵列 dislocation array 位错气团 dislocation atmosphere位错轴 dislocation axis 位错胞 dislocation cell位错爬移 dislocation climb 位错聚结 dislocation coalescence位错滑移 dislocation slip 位错核心能量 dislocation core energy位错裂纹 dislocation crack 位错阻尼 dislocation damping位错密度 dislocation density 原子错位 substitution of a wrong atom 间隙原子 interstitial atom 晶格空位 vacant lattice sites间隙位置 interstitial sites 杂质 impurities弗伦克尔缺陷 Frenkel disorder 肖脱基缺陷 Schottky disorder主晶相 the host lattice 错位原子 misplaced atoms缔合中心 Associated Centers. 自由电子 Free Electrons电子空穴 Electron Holes 伯格斯矢量 Burgers克罗各-明克符号 Kroger Vink notation 中性原子 neutral atom原子质量单位 Atomic mass unit (amu) 原子数 Atomic number原子量 Atomic weight 波尔原子模型 Bohr atomic model键能 Bonding energy 库仑力 Coulombic force共价键 Covalent bond 分子的构型 molecular configuration电子构型 electronic configuration 负电的 Electronegative正电的 Electropositive 基态 Ground state氢键 Hydrogen bond 离子键 Ionic bond同位素 Isotope 金属键 Metallic bond摩尔 Mole 分子 Molecule泡利不相容原理 Pauli exclusion principle 元素周期表 Periodic table原子 atom 分子 molecule分子量 molecule weight 极性分子 Polar molecule量子数 quantum number 价电子 valence electron范德华键 van der waals bond 电子轨道 electron orbitals点群 point group 对称要素 symmetry elements各向异性 anisotropy 原子堆积因数 atomic packing factor(APF)体心立方结构 body-centered cubic (BCC) 面心立方结构 face-centered cubic (FCC)布拉格定律bragg’s law配位数 coordination number晶体结构 crystal structure 晶系 crystal system晶体的 crystalline 衍射 diffraction中子衍射 neutron diffraction 电子衍射 electron diffraction晶界 grain boundary 六方密堆积 hexagonal close-packed (HCP)鲍林规则Pauling’s rules NaCl型结构 NaCl-type structureCsCl型结构 Caesium Chloride structure 闪锌矿型结构 Blende-type structure 纤锌矿型结构 Wurtzite structure 金红石型结构 Rutile structure萤石型结构 Fluorite structure 钙钛矿型结构 Perovskite-type structure尖晶石型结构 Spinel-type structure 硅酸盐结构 Structure of silicates岛状结构 Island structure 链状结构 Chain structure层状结构 Layer structure 架状结构 Framework structure滑石 talc 叶蜡石 pyrophyllite高岭石 kaolinite 石英 quartz长石 feldspar 美橄榄石 forsterite各向同性的 isotropic 各向异性的 anisotropy晶格 lattice 晶格参数 lattice parameters密勒指数 miller indices 非结晶的 noncrystalline多晶的 polycrystalline 多晶形 polymorphism单晶 single crystal 晶胞 unit cell电位 electron states (化合)价 valence电子 electrons 共价键 covalent bonding金属键 metallic bonding 离子键 Ionic bonding极性分子 polar molecules 原子面密度 atomic planar density衍射角 diffraction angle 合金 alloy 配位数 coordination number粒度,晶粒大小 grain size 显微结构 microstructure显微照相 photomicrograph 扫描电子显微镜 scanning electron microscope (SEM)透射电子显微镜 Transmission electron microscope (TEM)重量百分数 weight percent 四方的 tetragonal 单斜的 monoclinic第二章晶体结构缺陷-固溶体固溶度 solid solubility 间隙固溶体 interstitial solid solution金属间化合物 intermetallics 转熔型固溶体 peritectic solid solution无序固溶体 disordered solid solution取代型固溶体 Substitutional solid solutions非化学计量化合物 Nonstoichiometric compound第三章熔体结构熔体结构 structure of melt 过冷液体 supercooling melt玻璃态 vitreous state 软化温度 softening temperature粘度 viscosity 表面张力 Surface tension介稳态过渡相 metastable phase 组织 constitution淬火 quenching 退火的 softened玻璃分相 phase separation in glasses 体积收缩 volume shrinkage第四章固体的表面与界面表面 surface 界面 interface 惯习面 habit plane同相界面 homophase boundary 异相界面 heterophase boundary晶界 grain boundary 表面能 surface energy小角度晶界 low angle grain boundary 大角度晶界 high angle grain boundary 共格孪晶界 coherent twin boundary 晶界迁移 grain boundary migration错配度 mismatch 驰豫 relaxation重构 reconstuction 表面吸附 surface adsorption表面能 surface energy 倾转晶界 titlt grain boundary扭转晶界 twist grain boundary 倒易密度 reciprocal density共格界面 coherent boundary 半共格界面 semi-coherent boundary非共格界面 noncoherent boundary 界面能 interfacial free energy应变能 strain energy 晶体学取向关系 crystallographic orientation 第五章相图相图 phase diagrams 相 phase 组分 component 组元 compoonent 相律 Phase rule 投影图 Projection drawing浓度三角形 Concentration triangle 冷却曲线 Cooling curve成分 composition 自由度 freedom相平衡 phase equilibrium 化学势 chemical potential热力学 thermodynamics 相律 phase rule吉布斯相律 Gibbs phase rule 自由能 free energy吉布斯自由能 Gibbs free energy 吉布斯混合能 Gibbs energy of mixing 吉布斯熵 Gibbs entropy 吉布斯函数 Gibbs function热力学函数 thermodynamics function 热分析 thermal analysis过冷 supercooling 过冷度 degree of supercooling杠杆定律 lever rule 相界 phase boundary相界线 phase boundary line 相界交联 phase boundary crosslinking共轭线 conjugate lines 相界有限交联 phase boundary crosslinking相界反应 phase boundary reaction 相变 phase change相组成 phase composition 共格相 phase-coherent金相相组织 phase constentuent 相衬 phase contrast相衬显微镜 phase contrast microscope 相衬显微术 phase contrast microscopy 相分布 phase distribution 相平衡常数 phase equilibrium constant相平衡图 phase equilibrium diagram 相变滞后 phase transition lag相分离 phase segregation 相序 phase order相稳定性 phase stability 相态 phase state相稳定区 phase stabile range 相变温度 phase transition temperature相变压力phase transition pressure 同质多晶转变polymorphic transformation同素异晶转变allotropic transformation 相平衡条件phase equilibrium conditions显微结构 microstructures 低共熔体 eutectoid不混溶性 immiscibility第六章扩散下坡扩散 Downhill diffusion 互扩散系数 Mutual diffusion渗碳剂 carburizing 浓度梯度 concentration gradient浓度分布曲线 concentration profile 扩散流量 diffusion flux驱动力 driving force 间隙扩散 interstitial diffusion自扩散 self-diffusion 表面扩散 surface diffusion空位扩散 vacancy diffusion 扩散偶 diffusion couple扩散方程 diffusion equation 扩散机理 diffusion mechanism扩散特性 diffusion property 无规行走 Random walk达肯方程 Dark equation 柯肯达尔效应 Kirkendall equation本征热缺陷 Intrinsic thermal defect 本征扩散系数 Intrinsic diffusion coefficient 离子电导率 Ion-conductivity 空位机制 Vacancy concentration第七章相变过冷 supercooling 过冷度 degree of supercooling晶核 nucleus 形核 nucleation形核功 nucleation energy 晶体长大 crystal growth均匀形核 homogeneous nucleation 非均匀形核 heterogeneous nucleation形核率 nucleation rate 长大速率 growth rate热力学函数 thermodynamics function临界晶核 critical nucleus 临界晶核半径 critical nucleus radius枝晶偏析 dendritic segregation 局部平衡 localized equilibrium平衡分配系数 equilibrium distributioncoefficient 有效分配系数 effective distribution coefficient成分过冷 constitutional supercooling 引领(领现相) leading phase共晶组织 eutectic structure 层状共晶体 lamellar eutectic伪共晶 pseudoeutectic 离异共晶 divorsed eutectic表面等轴晶区 chill zone 柱状晶区 columnar zone中心等轴晶区 equiaxed crystal zone 定向凝固 unidirectional solidification 急冷技术 splatcooling 区域提纯 zone refining单晶提拉法 Czochralski method 晶界形核 boundary nucleation位错形核 dislocation nucleation 晶核长大 nuclei growth斯宾那多分解spinodal decomposition 有序无序转变disordered-order transition马氏体相变 martensite phase transformation 马氏体 martensite第八、九章固相反应和烧结固相反应 solid state reaction 烧结 sintering烧成 fire 合金 alloy再结晶 Recrystallization 二次再结晶 Secondary recrystallization成核 nucleation 结晶 crystallization子晶,雏晶 matted crystal 耔晶取向 seed orientation异质核化heterogeneous nucleation 均匀化热处理homogenization heat treatment铁碳合金 iron-carbon alloy 渗碳体 cementite铁素体 ferrite 奥氏体 austenite共晶反应 eutectic reaction 固溶处理 solution heat treatment。

纳米材料简介PPT课件

纳米材料简介PPT课件

光学、热学、电学、磁学、力学以及化学方面的性质和大块固体
时相比将会有显著的不同。
.
4
C 3 hapter
纳米材料的纳米效应
1、量子尺寸效应
2、小尺寸效应 3、表面效应 4、宏观量子隧道效应 5、库仑阻塞和量子隧穿 6、介电陷域效应
.
5
表面效应
.
6
布朗运动
.
7
单壁碳纳米管弯曲
.
8
聚合物纳米管
纳米粒子表面积大、表面活性中心多,为催化剂提供了必要条件。 目前纳米粉材如铂黑、银、氧化铝和氧化铁等广泛用于高分子聚合 物氧化、还原及合成反应的催化剂。如用纳米镍粉作为火箭固体燃 料反应催化剂,燃烧效率提高100倍;以粒度小于100nm的镍和铜锌合金的纳米材料为主要成分制成加氢催化剂,可使有机物的氢化 率达到传统镍催化剂的10倍;用纳米TiO2制成光催化剂具有很强的 氧化还原能力,可分解废水中的卤代烃、有机酸、酚、硝基芳烃、 取代苯胺及空气中的甲醇、甲醛、丙酮等污染物。
纳米材料简介
.
1
CONTENTS
1
什么是纳米
2
什么是纳米材料
3 纳米材料的纳米效应
4
纳米材料的分类
5
纳米材料的应用
6 纳米材料与未来社会
.
2
1 什么是纳米
纳米(nanometer):长度单位,即10-9m。 纳米有多大?
.
3
2 什么是纳米材料
纳米级结构材料简称为纳米材料(nanometer material),是指其结
.
9
大事件
959年 , 著 名 物 理 学 家Fra bibliotek、 诺 贝 尔
奖获得者理查德· 费曼预言, 人类可以用小的机器制作更小 的机器,最后将变成根据人类

材料物理双语Chapter 10 Nano-materials优秀课件

材料物理双语Chapter 10 Nano-materials优秀课件
料工程
2021/3/29
7
第一阶段(1990年以前)
• 在实验室探索用各种手段制备各种材料的纳米颗粒 粉体,合成块体(包括薄膜),研究评估表征的方 法,探索纳米材料不同于常规材料的性能。
第二阶段(1994年以前)
• 如何利用纳米材料已挖掘出来的奇特物理、化学和 力学性能,设计纳米复合材料。
第三阶段(1994至现在) • 纳米组装体系。
Clusters
of Atoms
Atoms (%)
1 Shell
13
92
2 Shells
55
76
3 Shells
147
63
4 Shells
309
52
5 Shells
561
45
7 Shells
1415
35
2021/3/29
12
Structure of C60
2021/3/29
13
纳米颗粒 nanoparticles
2021/3/29
5
2021/3/29
6
纳米材料的发展
• 最早的纳米材料: –中国古代的铜镜的保护层:纳米氧化锡 –中国古代的墨及染料
• 1857年,法拉第制备出金纳米颗粒 • 1861年,胶体化学的的建立 • 1962年,久保(Kubo)提出了著名的久保理论 • 上世纪七十年代末至八十年代初,开始较系统的研究 • 1985年,Kroto和Smalley等人发现C60 • 1990年7月,在美国巴尔的摩召开第一届纳米科技会议 • 1994年,在波士顿召开的MRS秋季会议上正式提出纳米材
2021/3/29
4
Definition
• Nanomaterials——materials having at least one spatial dimension in the size range 1–100 nm.

《纳米材料》PPT课件 (2)

《纳米材料》PPT课件 (2)
• 纳米半导体微粒存在不连续最高被 占分子轨道能级和最低未被占分子 轨道导致能隙带变宽(画图说明)
34
Quantum siБайду номын сангаасe effect
Bulk Metal
Nanoscale metal
Unoccupied states
Decreasing the size…
occupied states
Close lying bands
21
纳米材料的独特效应
※小尺寸效应 ※表面效应和边界效应 ※量子尺寸效应 ※宏观隧道效应
22
小尺寸效应
• 当超细微粒的尺寸和光波波长,传 导电子的德布罗意波长,超导态的 相干长度或者透射深度等物理尺寸 相当或者比它们更小时,一般固体 材料的周期性边界条件被破坏,声 光电磁,热力学等特性均会呈现新 的尺寸效应
纳米科技。
1
神奇的纳米材料
走近纳米材料.rm
2
纳米材料的发展过程
• 1959年Feynman提出许多设想:在原子或分子的 尺度上加工制造材料和器件,制造几千百纳米的 电路和10~100纳米的导线。
• 1962年Kubo理论提出:金属的超微粒子将出现量 子效应,显示出与块体金属显著不同的性能。
• 1969年Esaki和Tsu提出了超晶格的概念。
15
碳纳米管
由石墨的片状结构上运 用激光手段剥离下来 ,形成的石墨烯卷成 的无缝中空管体
直径虽只有头发丝的十 万分之一,可是导电 性为铜的一万倍。强 度是钢的100倍,质量 却只有其七分之一。 硬似金刚石,却可以 拉伸
16
超晶格材料
• 由两种不同组元以几个纳米至几十个纳米 的薄层交替生长。并保持严格周期性的多 层膜
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/3/5
Co/Cu(111) H.C. Monoharan, C.P. Lutz, D.M. Eigler Nature 403 (2000) 512
• Association: the bias was raised to 500 mV for 10 s
• It is not possible to break the C-H and C-C bonds with a single electron process at this voltage, especially as their bond energies are about 2 and 3 times higher than the C-I bond.
Pried them apart into iodine and phenyl (C6H5) by injecting electrons from the STM tip (a).
Used the tip to pull the iodine away (b and c) and draw the phenyl molecules closer together (d).
MIX-AND-MATCH molecule: Atomic engineers eventually hope to create molecules from scratch, adding atoms exactly as needed to perform specific functions. This molecule, with 18 cesium and 18 iodine atoms, was built--one atom at a time--with a STM
2021/3/5
Atomic Scale Bond Breaking & Nanochemistry
(a e) C6H5I C6H5 + I, (f) 2C6H5 C12H10
S.-W. Hla, L. Bartels, G. Meyer, & Karl-Heinz Rieder, PRL 85(2000)2777
20. 表面纳米化学 - 局部化学反应
The application of a bias voltage between the tip of a scanning probe microscope and a semiconductor surface modifies the bandstructure locally. At a certain bias threshold the redoxpotential of an electrochemical reaction is reached and thus a local surface reaction may get possible.
2021/3/5
纳米科技是传统学科在纳米尺度上的交差与深入
micrometer
Solid State Physics
Device miniaturization
Length Scale
Biology
Self assembly of complex functional units
Nanoscience & Technology
2021/3/5
The shortest achievable distance between the centers of two phenyls is 3.9 6 Å, as determined from the STM images.
STM induced H desorption from Si(100)
Atomic Engineering
Scientific American: December 1999
A carbon nanotube has been transformed into a writing implement. Using an atomic force microscope with a nanotube tip, researchers at Stanford University removed hydrogen atoms from the top of a silicon base. The exposed silicon oxidized, leaving behind a visible tracing.
Introduction to the Nanoworld
Nanochemistry
Lecture Outline
Nanochemistry on Surfaces Surface Chemistry with the STM Atomic Scale Chemical Analysis Pathways to molecular engineering NanoChemistry in Catalysis Computing with Molecules
• Nanochemistry is the use of synthetic chemistry to make nanoscale building blocks of desired shape, size, composition and surface structure, charge and functionality with an optional target to control self-assembly of these building blocks at various scale-lengths.
2021/3/5
Nanochemistry on Surfaces
Demonstration of the nanostructuring capabilities
2021/3/5
Surface Chemistry with the STM
Adsorbed several C6H5I molecules resting on a terraced Cu (111) substrate at 20 K.
Bonding the two by adding another shot of electrons (e).
To prove that the phenyls were chemically joined, they pulled one, and the other followed (f).
“Nature’s Way”
nanometer
2021/3/5
Chemistry
Assembly, macromolecules
What is nanochemistry?
• Nanochemistry is the science of tools, technologies, and methodologies for chemical synthesis, analysis, and biochemical diagnostics, performed in nanolitre to femtolitre domains.
2021/3/5
Towards Single Molecule Engineering
• Positioning the STM tip right above the molecule at fixed height and switching the sample bias to 1.5 V for several seconds. Thereby electrons of up to 1.5 eV are injected into the molecule.
The Ultimate Ullman Reaction
2021/3/5
Physical Review Letters 85 (2000) 2777
Experiments
The experiments were performed with a homebuilt UHV-STM operated at 20 K using electrochemically etched W tips. The Cu(111) surface was cleaned by cycles of sputtering with Ne ions and annealing up to 800 K. The iodobenzene (Aldrich 98%) was first purified by several freeze-pump-thaw cycles with liquid nitrogen and then small amounts were dosed onto a cooled Cu(111) sample through an aperture in the radiation shield of the STM. The energy transfer from a single electron causes the breaking of the C-I bond. It is not possible to break the C-H and C-C bonds with a single electron process at this voltage
This idea is demonstrated on metaldichalcogenides (e.g. WSe2) under ambient conditions. At a tip material dependent bias threshold, the surface is etched locally. It is thought that this is a consequence of a water splitting reaction in an adsorbed water film, where nascent oxygen and hydrogen ions are formed. The oxygen modifies the surface towards soluble oxides. Thus nanostructuring can be achieved by applying potential to the tip of scanning probe microscopes. Due to the sharp threshold the bias voltage controls the modification of the surface and allows such switching between surface modification and surface mapping.
相关文档
最新文档