2019-2020学年北京市西城区高三上学期期末考试数学试卷及答案

合集下载

2020-2021学年北京市西城区初三数学第一学期期末试卷及解析

2020-2021学年北京市西城区初三数学第一学期期末试卷及解析

2020-2021学年北京市西城区初三数学第一学期期末试卷一、选择题(本题共24分,每小题3分)第1~8题均有四个选项,符合题意的选项只有一个. 1.(3分)在抛物线245y x x =--上的一个点的坐标为( ) A .(0,4)-B .(2,0)C .(1,0)D .(1,0)-2.(3分)在半径为6cm 的圆中,60︒的圆心角所对弧的弧长是( ) A .cm πB .2cm πC .3cm πD .6cm π3.(3分)将抛物线2y x =先向右平移3个单位长度,再向上平移5个单位长度,所得抛物线的解析式为( )A .2(3)5y x =++B .2(3)5y x =-+C .2(5)3y x =++D .2(5)3y x =-+4.(3分)2020年是紫禁城建成600年暨故宫博物院成立95周年,在此之前有多个国家曾发行过紫禁城元素的邮品.图1所示的摩纳哥发行的小型张中的图案,以敞开的紫禁城大门和大门内的石狮和太和殿作为邮票和小型张的边饰,如果标记出图1中大门的门框并画出相关的几何图形(图2),我们发现设计师巧妙地使用了数学元素(忽略误差),图2中的四边形ABCD 与四边形A B C D ''''是位似图形,点O 是位似中心,点A '是线段OA 的中点,那么以下结论正确的是( )A .四边形ABCD 与四边形ABCD ''''的相似比为1:1 B .四边形ABCD 与四边形A B C D ''''的相似比为1:2 C .四边形ABCD 与四边形A B C D ''''的周长比为3:1 D .四边形ABCD 与四边形A B C D ''''的面积比为4:15.(3分)如图,AB 是O 的直径,CD 是弦,若32CDB ∠=︒,则ABC ∠等于( )A .68︒B .64︒C .58︒D .32︒6.(3分)若抛物线2(0)y ax bx c a =++≠经过(1,0)A ,(3,0)B 两点,则抛物线的对称轴为( ) A .1x =B .2x =C .3x =D .4x =7.(3分)近年来我国无人机产业迅猛发展,无人机驾驶员已正式成为国家认可的新职业,中国民用航空局的现有统计数据显示,从2017年底至2019年底,全国拥有民航局颁发的民用无人机驾驶执照的人数已由约2.44万人增加到约6.72万人.若设2017年底至2019年底,全国拥有民用无人机驾驶执照人数的年平均增长率为x ,则可列出关于x 的方程为( ) A .2.44(1) 6.72x += B .2.44(12) 6.72x +=C .22.44(1) 6.72x +=D .22.44(1) 6.72x -=8.(3分)现有函数24()2()x x a y x x x a +<⎧=⎨-⎩如果对于任意的实数n ,都存在实数m ,使得当x m =时,y n =,那么实数a 的取值范围是( ) A .54a -B .14a -C .41a -D .45a -二、填空题(本题共24分,每小题3分)9.(3分)若正六边形的边长为2,则它的外接圆半径是 .10.(3分)若抛物线2(0)y ax a =≠经过(1,3)A ,则该抛物线的解析式为 . 11.(3分)如图,在Rt ABC ∆中,90C ∠=︒,6AC =,9AB =,则sin B = .12.(3分)若抛物线2(0)y ax bx c a =++≠的示意图如图所示,则a 0,b 0,c 0(填“>”,“ =”或“<” ).13.(3分)如图,AB 为O 的直径,10AB =,CD 是弦,AB CD ⊥于点E ,若6CD =,则EB = .14.(3分)如图,PA,PB是O的两条切线,A,B为切点,若2OA=,60APB∠=︒,则PB=.15.(3分)放缩尺是一种绘图工具,它能把图形放大或缩小.制作:把钻有若干等距小孔的四根直尺用螺栓分别在点A,B,C,D处连接起来,使得直尺可以绕着这些点转动,O为固定点,OD DA CB==,DC AB BE==,在点A,E处分别装上画笔.画图:现有一图形M,画图时固定点O,控制点A处的笔尖沿图形M的轮廓线移动,此时点E处的画笔便画出了将图形M放大后的图形N.原理:若连接OA,OE,可证得以下结论:①ODA∆和OCE∆为等腰三角形,则1(180)2DOA ODA∠=︒-∠,1(1802COE∠=︒-∠);②四边形ABCD为平行四边形(理由是);③DOA COE∠=∠,于是可得O,A,E三点在一条直线上;④当35DCCB=时,图形N是以点O为位似中心,把图形M放大为原来的倍得到的.16.(3分)如图,在平面直角坐标系xOy中,(4,3)P,O经过点P.点A,点B在y轴上,PA PB=,延长PA,PB分别交O于点C,点D,设直线CD与x轴正方向所夹的锐角为α.(1)O的半径为;(2)tan α= .三、解答题(本题共52分,第17、18、20~22题每小题5分,第19题6分,第23~25题每小题5分) 17.(5分)计算:22sin60tan 45cos 30︒-︒+︒. 18.(5分)已知关于x 的方程2240x x k ++-=. (1)如果方程有两个不相等的实数根,求k 的取值范围; (2)若1k =,求该方程的根. 19.(6分)借助网格画图并说理:如图所示的网格是正方形网格,ABC ∆的三个顶点是网格线的交点,点A 在BC 边的上方,AD BC ⊥于点D ,4BD =,2CD =,3AD =.以BC 为直径作O ,射线DA 交O 于点E ,连接BE ,CE . (1)补全图形;(2)填空:BEC ∠= ︒,理由是 ; (3)判断点A 与O 的位置关系并说明理由;(4)BAC ∠ BEC ∠(填“>”,“ =”或“<” ).20.(5分)二次函数2(0)y ax bx c a =++≠的图象经过(3,0)点,当1x =时,函数的最小值为4-. (1)求该二次函数的解析式并画出它的图象;(2)直线x m =与抛物线2(0)y ax bx c a =++≠和直线3y x =-的交点分别为点C ,点D ,点C 位于点D 的上方,结合函数的图象直接写出m 的取值范围.21.(5分)如图,AB 为O 的直径,AC 为弦,点D 在O 外,BCD A ∠=∠,OD 交O 于点E . (1)求证:CD 是O 的切线; (2)若4CD =, 2.7AC =,9cos 20BCD ∠=,求DE 的长.22.(5分)如图,正方形ABCD 的边长为4,点E 在AB 边上,1BE =,F 为BC 边的中点.将正方形截去一个角后得到一个五边形AEFCD ,点P 在线段EF 上运动(点P 可与点E ,点F 重合),作矩形PMDN ,其中M ,N 两点分别在CD ,AD 边上.设CM x =,矩形PMDN 的面积为S .(1)DM = (用含x 的式子表示),x 的取值范围是 ; (2)求S 与x 的函数关系式;(3)要使矩形PMDN 的面积最大,点P 应在何处?并求最大面积.23.(7分)已知抛物线212y x x =-+.(1)直接写出该抛物线的对称轴,以及抛物线与y 轴的交点坐标; (2)已知该抛物线经过1(34,)A n y +,2(21,)B n y -两点. ①若5n <-,判断1y 与2y 的大小关系并说明理由;②若A ,B 两点在抛物线的对称轴两侧,且12y y >,直接写出n 的取值范围.24.(7分)在Rt ABC ∆中,90ACB ∠=︒,30ABC ∠=︒,3BC =ABC ∆绕点B 顺时针旋转(0120)αα︒<︒得到△A BC '',点A ,点C 旋转后的对应点分别为点A ',点C '.(1)如图1,当点C '恰好为线段AA '的中点时,α= ︒,AA '= ; (2)当线段AA '与线段CC '有交点时,记交点为点D .①在图2中补全图形,猜想线段AD 与A D '的数量关系并加以证明; ②连接BD ,请直接写出BD 的长的取值范围.25.(7分)对于平面内的图形1G 和图形2G ,记平面内一点P 到图形1G 上各点的最短距离为1d ,点P 到图形2G 上各点的最短距离为2d ,若12d d =,就称点P 是图形1G 和图形2G 的一个“等距点”. 在平面直角坐标系xOy 中,已知点(6,0)A ,(0B ,23).(1)在(3,0)R ,(2,0)S ,3)T 三点中,点A 和点B 的等距点是 ; (2)已知直线2y =-.①若点A 和直线2y =-的等距点在x 轴上,则该等距点的坐标为 ; ②若直线y a =上存在点A 和直线2y =-的等距点,求实数a 的取值范围; (3)记直线AB 为直线1l ,直线23:l y =,以原点O 为圆心作半径为r 的O .若O 上有m 个直线1l 和直线2l 的等距点,以及n 个直线1l 和y 轴的等距点(0,0)m n ≠≠,当m n ≠时,求r 的取值范围.参考答案与试题解析一、选择题(本题共24分,每小题3分)第1~8题均有四个选项,符合题意的选项只有一个. 1.【解答】解:当0x =时,5y =-,因此(0,4)-不在抛物线245y x x =--, 当2x =时,4859y =--=-,因此(2,0)不在抛物线245y x x =--上, 当1x =时,1458y =--=-,因此(1,0)不在抛物线245y x x =--上, 当1x =-时,1450y =+-=,因此(1,0)-在抛物线245y x x =--上, 故选:D .2.【解答】解:弧长为:6062()180cm ππ⨯=. 故选:B .3.【解答】解:将抛物线2y x =先向右平移3个单位长度,得:2(3)y x =-; 再向上平移5个单位长度,得:2(3)5y x =-+, 故选:B .4.【解答】解:四边形ABCD 与四边形A B C D ''''是位似图形,点O 是位似中心,点A '是线段OA 的中点,:1:2OA OA ∴'=, :1:2A B AB ∴''=,∴四边形ABCD 与四边形A B C D ''''的相似比为2:1,周长的比为2:1,面积比为4:1.故选:D . 5.【解答】解:AB 是O 的直径,90ADB ∴∠=︒, 90ADC CDB ∴∠+∠=︒,90903258ADC CDB ∴∠=︒-∠=︒-︒=︒, ABC ADC ∠=∠, 58ABC ∴∠=︒,故选:C .6.【解答】解:抛物线2y x bx c =++经过(1,0)A 、(3,0)B 两点,∴抛物线对称轴为直线1322x +==, 故选:B .7.【解答】解:设2017年底至2019年底,全国拥有民用无人机驾驶执照人数的年平均增长率为x , 则可列出关于x 的方程为22.44(1) 6.72x +=, 故选:C . 8.【解答】解:222(1)1y x x x =-=--,∴函数22y x x =-的最小值为1-,把1y =-代入4y x =+得,14x -=+,解得5x =-,由图象可知,当54a -时,对于任意的实数n ,都存在实数m ,使得当x m =时,函数y n =, 故选:A .二、填空题(本题共24分,每小题3分) 9.【解答】解:如图所示,连接OB 、OC ; 此六边形是正六边形, 360606BOC ︒∴∠==︒, OB OC =,BOC ∴∆是等边三角形, 2OB OC BC ∴===.故答案为:2.10.【解答】解:把(1,3)A 代入2(0)y ax a =≠中, 得231a =⨯, 解得3a =,所以该抛物线的解析式为23y x =. 故答案为:23y x =.11.【解答】解:在Rt ABC ∆中,90C ∠=︒,6AC =,9AB =, 则62sin 93AC B AB ===, 故答案为:23. 12.【解答】解:抛物线开口方向向上, 0a ∴>,对称轴在y 轴的右侧, 0b ∴<,抛物线与y 轴交于负半轴, 0c ∴<.故答案为>,<,<.13.【解答】解:连接OC ,如图所示: 弦CD AB ⊥于点E ,6CD =, 132CE ED CD ∴===,在Rt OEC ∆中,90OEC ∠=︒,3CE =,152OC AB ==, 22534OE ∴=-=, 15412BE OB OE AB OE ∴=-=-=-=, 故答案为:1.14.【解答】解:PA 、PB 是O 的两条切线,60APB ∠=︒,2OA OB ==, 1302BPO APB ∴∠=∠=︒,BO PB ⊥.24PO AO ∴==,22224223PB PO OB ∴=-=-=. 故答案是:23.15.【解答】解:①ODA ∆和OCE ∆为等腰三角形, 1(180)2DOA ODA ∴∠=︒-∠,1(180)2COE OCE ∠=︒-∠;②AD BC =,DC AB =,∴四边形ABCD 为平行四边形(两组对边分别相等的四边形是平行四边形);③连接OA ,AE ,DOA COE ∠=∠,O ∴,A ,E 三点在一条直线上;④35DC BC =,∴设3CD AB BE x ===,5OD AD BC x ===,四边形ABCD 是平行四边形, //AD BC ∴, AOD EOC ∴∆∆∽,∴35855OC x x OD x +==, ∴图形N 是以点O 为位似中心,把图形M 放大为原来的85,故答案为:OCE ;两组对边分别相等的四边形是平行四边形;85.16.【解答】解:(1)连接OP . (4,3)P ,5OP ∴==, 故答案为:5.(2)设CD 交x 轴于J ,过点P 作PT AB ⊥交O 于T ,交AB 于E ,连接CT ,DT ,OT . (4,3)P ,4PE ∴=,3OE =,在Rt OPE ∆中,4tan 3PE POE OE ∠==, OE PT ⊥,OP OT =, POE TOE ∴∠=∠,12PDT POT POE ∴∠=∠=∠,PA PB =.PE AB ⊥, APT DPT ∴∠=∠,∴TC DT =,TDC TCD ∴∠=∠, //PT x 轴, CJO CKP ∴∠=∠,CKP TCK CTK ∠=∠+∠,CTP CDP ∠=∠,PDT TDC CDP ∠=∠+∠, TDP CJO ∴∠=∠, CJO POE ∴∠=∠,4tan tan 3CJO POE ∴∠=∠=. 补充方法:证明CJO EOP ∠=∠时,可以这样证明:90CJO TOJ ∠+∠=︒,90TOJ EOT ∠+∠=︒, CJO EOT ∴∠=∠, EOT EOB ∠=∠,CJO EOP ∴∠=∠,可得结论.故答案为:43.三、解答题(本题共52分,第17、18、20~22题每小题5分,第19题6分,第23~25题每小题5分) 17.【解答】解:原式23321(=-+ 3314+ 134=. 18.【解答】解:(1)△2241(4)204k k =-⨯⨯-=-. 方程有两个不相等的实数根,∴△0>.2040k ∴->,解得5k <;k ∴的取值范围为5k <.(2)当1k =时,原方程化为2230x x +-=, (1)(3)0x x -+=, 10x -=或30x +=,解得11x =,23x =-.19.【解答】解:(1)补全图形见图1.(2)BC 是直径,90BEC ∴∠=︒(直径所对的圆周角是直角). 故答案为:90,直径所对的圆周角是直角. (3)点A 在O 外. 理由如下:连接OA .4BD =,2CD =,6BC BD CD ∴=+=,32BCr ==. AD BC ⊥, 90ODA ∴∠=︒,在Rt AOD ∆中,3AD =,1OD BD OB =-=,∴22221310OA OD AD =++103>,OA r ∴>,∴点A 在O 外.(4)观察图象可知:BAC BEC ∠<∠. 故答案为:<.20.【解答】解:(1)当1x =时,二次函数2(0)y ax bx c a =++≠的最小值为4-,∴二次函数的图象的顶点为(1,4)-,∴二次函数的解析式可设为2(1)4(0)y a x a =--≠,二次函数的图象经过(3,0)点,2(31)40a ∴--=. 解得1a =.∴该二次函数的解析式为2(1)4y x =--;如图,(2)由图象可得0m <或3m >. 21.【解答】(1)证明:如图,连接OC .AB 为O 的直径,AC 为弦,90ACB ∴∠=︒,90OCB ACO ∠+∠=︒. OA OC =, ACO A ∴∠=∠. BCD A ∠=∠, ACO BCD ∴∠=∠. 90OCB BCD ∴∠+∠=︒. 90OCD ∴∠=︒. CD OC ∴⊥. OC 为O 的半径, CD ∴是O 的切线;(2)解:BCD A ∠=∠,9cos 20BCD ∠=, 9cos cos 20A BCD ∴=∠=.在Rt ABC ∆中,90ACB ∠=︒, 2.7AC =,9cos 20A =. 2.769cos 20AC AB A∴===. 32ABOC OE ∴===. 在Rt OCD ∆中,90OCD ∠=︒,3OC =,4CD =,∴5OD =.532DE OD OE ∴=-=-=.22.【解答】解:(1)正方形ABCD 的边长为4,CM x =,1BE =, 4DM DC CM x ∴=-=-,其中01x .故答案是:4x -,01x ; (2)如图,延长MP 交AB 于G ,正方形ABCD 的边长为4,F 为BC 边的中点,四边形PMDN 是矩形,CM x =,1BE =, //PM BC ∴,122BF FC BC ===,BG MC x ==,4GM BC ==, EGP EBF ∴∆∆∽,1EG x =-,∴EG PG EB BF =,即112x PG-=. 22PG x ∴=-,4(22)22DN PM GM PG x x ∴==-=--=+,2(4)(22)268S DM DN x x x x ∴=⋅=-+=-++,其中01x . (3)由(2)知,2268S x x =-++, 20a =-<,∴此抛物线开口向下,对称轴为322b x a =-=,即32x =,∴当32x <时,y 随x 的增大而增大. x 的取值范围为01x ,∴当1x =时,矩形PMDN 的面积最大,此时点P 与点E 重合,此时最大面积为12.23.【解答】解:(1)212y x x =-+,∴对称轴为直线1112()2x =-=⨯-,令0x =,则0y =,∴抛物线与y 轴的交点坐标为(0,0),(2)(34)(21)5A B x x n n n -=+--=+,1(34)1333(1)A x n n n -=+-=+=+,1(21)1222(1)B x n n n -=--=-=-.①当5n <-时,10A x -<,10B x -<,0A B x x -<.A ∴,B 两点都在抛物线的对称轴1x =的左侧,且A B x x <,抛物线212y x x =-+开口向下,∴在抛物线的对称轴1x =的左侧,y 随x 的增大而增大.12y y ∴<;②若点A 在对称轴直线1x =的左侧,点B 在对称轴直线1x =的右侧时, 由题意可得3412111(34)(21)1n n n n +<⎧⎪->⎨⎪-+<--⎩,∴不等式组无解,若点B 在对称轴直线1x =的左侧,点A 在对称轴直线1x =的右侧时, 由题意可得:3412111(21)341n n n n +>⎧⎪-<⎨⎪-->+-⎩,115n ∴-<<-,综上所述:115n -<<-.24.【解答】解:(1)90C ∠=︒,3BC =,30ABC ∠=︒, tan301AC BC ∴=⋅︒=, 22AB AC ∴==, BA BA =',AC AC '='', 30ABC A BC ∴∠'=∠''=︒,ABA ∴∆'是等边三角形,60α∴=︒,2AA AB '==.故答案为:60,2.(2)①补全图形如图所示:结论:AD A D '=.理由:如图2,过点A 作A C ''的平行线,交CC '于点E ,记1β∠=. 将Rt ABC ∆绕点B 顺时针旋转α得到Rt △A BC '', 90A C B ACB ''∴∠=∠=︒,A C AC ''=,BC BC '=.21β∴∠=∠=.3190ACB β∴∠=∠-∠=︒-,290A C D A C B β''''∠=∠+∠=︒+. //AE A C ''90AED A C D β''∴∠=∠=︒+.4180180(90)90AED ββ∴∠=︒-∠=︒-︒+=︒-. 34∴∠=∠. AE AC ∴=. AE A C ''∴=.在ADE ∆和△A DC ''中, ADE A DC AED A C D AE A C ∠=∠''⎧⎪∠=∠''⎨⎪=''⎩, ADE ∴∆≅△()A DC AAS '',AD A D '∴=.②如图1中,当60α=︒时,BD 的值最大,最大值为3. 当120α=︒时,BD 的值最小,最小值1sin30212BD AB =⋅︒=⨯=, 13BD ∴.25.【解答】解:(1)点(6,0)A ,(0B ,23),(3,0)R ,(2,0)S ,(1,3)T , 3AR ∴=,21BR =,4AS =,4BS =,27AT =,2BT =, AS BS ∴=,∴点A 和点B 的等距点是(2,0)S ,故答案为:(2,0)S ;(2)①设等距点的坐标为(,0)x , 2|6|x ∴=-, 4x ∴=或8,∴等距点的坐标为(4,0)或(8,0),故答案为:(4,0)或(8,0);②如图1,设直线y a =上的点Q 为点A 相直线2y =-的等距点,连接QA ,过点Q 作直线2y =-的垂线,垂足为点C ,点Q 为点A 和直线2y =-的等距点, QA QC ∴=,22QA QC ∴=点Q 在直线y a =上,∴可设点Q 的坐标为(,)Q x a222(6)[(2)]x a a ∴-+=--. 整理得2123240x x a -+-=,由题意得关于x 的方程2123240x x a -+-=有实数根.∴△2(12)41(324)16(1)0a a =--⨯⨯-=+.解得1a -; (3)如图2,直线1l 和直线2l 的等距点在直线33:3l y = 直线1l 和y 轴的等距点在直线4:323l y x =-+或53:23l y =+ 由题意得3r 或3r .。

2019--2020学年第一学期期末考试试卷及答案

2019--2020学年第一学期期末考试试卷及答案

2019-—2020学年第一学期期末考试试卷九年级 数学一.选择题:(本大题共10小题;每小题3分,共30分)下列各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的.请将正确选项的代号填在左边的括号里. 1.下面的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.下列方程中是一元二次方程的是( )A .B .C .D .3.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的场地与首先发球者,其主要原因是( ).A .让比赛更富有情趣B .让比赛更具有神秘色彩C .体现比赛的公平性D .让比赛更有挑战性 4 已知函数772--=x kx y 的图象与x 轴有交点,则k 的取值范围是( )A .47->k B .047≠-≥k k 且 C .47-≥k D .047≠->k k 且 5.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA=5,则△PCD 的周长为( )A .5B .7C .8D .106.如图,点O 为优弧ACB 所在圆的圆心,AOC 108∠=,点D 在AB 的延长线上,BD BC =,则D ∠= . A .540 B . 720 C . 270 D . 3007.如图,是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为直线x=1,若其与x 轴一交点为A (3,0),则由图象可知,下列结论正确的是( )A 不等式ax 2+bx+c <0的解集是X>3或X<-1 B 不等式ax 2+bx+c <0的解集是-1<X<3 012=+x 12=+x y 012=+x 0122=++x xDB A O8.已知实数a ,b 分别满足,,且,则的值是( )A . 11B . -7C . 7D . -119.在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,高为2,则这个圆锥的侧面积是( ) A. 4πB. 3πC. 2πD. 2π10. 已知二次函数()的图象如图所示,有下列4个结论:①②;③;④;其中正确的结论有( )A .1个B .2个C .3个D .4个二.填空题:(本题共8小题;每小题4分,共32分,不需写解答过程,请把结果填在横线上。

2019-2020学年人教A版北京市通州区高三(上)期末数学试卷 含解析

2019-2020学年人教A版北京市通州区高三(上)期末数学试卷 含解析

2019-2020学年高三上学期期末数学试卷一、选择题1.已知集合A={x|﹣2<x<1},B={x|﹣1<x<3},则A∪B=()A.{x|﹣2<x<3} B.{x|﹣1<x<1} C.{x|1<x<3} D.{x|﹣2<x<﹣1} 2.在复平面内,复数(其中i是虚数单位)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.已知点A(2,a)为抛物线y2=4x图象上一点,点F为抛物线的焦点,则|AF|等于()A.4 B.3 C.D.24.若x>y>0,则下列各式中一定正确的是()A.B.tan x>tan yC.D.lnx>lny5.某三棱锥的三视图如图所示,则该三棱锥最长棱的长度为()A.B.C.D.6.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.若老师站在正中间,甲同学不与老师相邻,乙同学与老师相邻,则不同站法种数为()A.24 B.12 C.8 D.67.对于向量,,“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.关于函数f(x)=(x2+ax﹣1)e x﹣1有以下三个判断①函数恒有两个零点且两个零点之积为﹣1;②函数恒有两个极值点且两个极值点之积为﹣1;③若x=﹣2是函数的一个极值点,则函数极小值为﹣1.其中正确判断的个数有()A.0个B.1个C.2个D.3个二、填空题:本大题共6小题,每小题5分,共30分.9.已知向量=(3,﹣2),=(1,m),若⊥(),则m=.10.在公差不为零的等差数列{a n}中,a1=2,且a1,a3,a7依次成等比数列,那么数列{a n}的前n项和S n等于.11.已知中心在原点的双曲线的右焦点坐标为,且两条渐近线互相垂直,则此双曲线的标准方程为.12.在△ABC中,a=3,,∠B=2∠A,则cos B=.13.已知a,b,a+m均为大于0的实数,给出下列五个论断:①a>b,②a<b,③m>0,④m<0,⑤.以其中的两个论断为条件,余下的论断中选择一个为结论,请你写出一个正确的命题.14.如图,某城市中心花园的边界是圆心为O,直径为1千米的圆,花园一侧有一条直线型公路l,花园中间有一条公路AB(AB是圆O的直径),规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA.规划要求:道路PB,QA不穿过花园.已知OC⊥l,BD ⊥l(C、D为垂足),测得OC=0.9,BD=1.2(单位:千米).已知修建道路费用为m 元/千米.在规划要求下,修建道路总费用的最小值为元.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.已知函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间上的最大值和最小值.16.为了解某地区初中学生的体质健康情况,统计了该地区8所学校学生的体质健康数据,按总分评定等级为优秀,良好,及格,不及格.良好及其以上的比例之和超过40%的学校为先进校.各等级学生人数占该校学生总人数的比例如表:学校A学校B学校C学校D学校E学校F学校G学校H 学校比例等级优秀8% 3% 2% 9% 1% 22% 2% 3%良好37% 50% 23% 30% 45% 46% 37% 35%及格22% 30% 33% 26% 22% 17% 23% 38%不及格33% 17% 42% 35% 32% 15% 38% 24% (Ⅰ)从8所学校中随机选出一所学校,求该校为先进校的概率;(Ⅱ)从8所学校中随机选出两所学校,记这两所学校中不及格比例低于30%的学校个数为X,求X的分布列;(Ⅲ)设8所学校优秀比例的方差为S12,良好及其以下比例之和的方差为S22,比较S12与S22的大小.(只写出结果)17.如图,在四棱锥S﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠SAD=∠DAB=90°,SA=3,SB=5,AB=4,BC=2,AD=1.(Ⅰ)求证:AB⊥平面SAD;(Ⅱ)求平面SCD与平面SAB所成的锐二面角的余弦值;(Ⅲ)点E,F分别为线段BC,SB上的一点,若平面AEF∥平面SCD,求三棱锥B﹣AEF 的体积.18.已知椭圆C :(a>b>0)的长轴长为4,离心率为,点P在椭圆C上.(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知点M(4,0),点N(0,n),若以PM为直径的圆恰好经过线段PN的中点,求n的取值范围.19.已知函数f(x)=x sin x+cos x.(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求函数g(x)=f(x)﹣零点的个数.20.已知项数为m(m∈N*,m≥2)的数列{a n}满足如下条件:①a n∈N*(n=1,2,…,m);②a1<a2<…<a m.若数列{b n}满足b n=,其中n=1,2,…,m,则称{b n}为{a n}的“伴随数列”.(Ⅰ)数列1,3,5,7,9是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;(Ⅱ)若{b n}为{a n}的“伴随数列”,证明:b1>b2>…>b m;(Ⅲ)已知数列{a n}存在“伴随数列”{b n},且a1=1,a m=2049,求m的最大值.参考答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|﹣2<x<1},B={x|﹣1<x<3},则A∪B=()A.{x|﹣2<x<3} B.{x|﹣1<x<1} C.{x|1<x<3} D.{x|﹣2<x<﹣1} 【分析】根据题意,由并集的定义分析可得答案.解:根据题意,集合A={x|﹣2<x<1},B={x|﹣1<x<3},则A∪B={x|﹣2<x<3};故选:A.2.在复平面内,复数(其中i是虚数单位)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分母变成一个实数,分子进行复数的乘法运算,整理成复数的标准形式,写出对应点的坐标,看出所在的象限.解:∵复数===,∴复数对应的点的坐标是(,)∴复数在复平面内对应的点位于第一象限,故选:A.3.已知点A(2,a)为抛物线y2=4x图象上一点,点F为抛物线的焦点,则|AF|等于()A.4 B.3 C.D.2【分析】由题意可得抛物线的焦点和准线,而|AF|等于点A到准线的距离d=|2﹣(﹣1)|,计算可得.解:由题意可得抛物线y2=4x的焦点为F(1,0),准线的方程为x=﹣1,由抛物线的定义可知|AF|等于点A到准线的距离d,而d=|2﹣(﹣1)|=3,故|AF|=3,故选:B.4.若x>y>0,则下列各式中一定正确的是()A.B.tan x>tan yC.D.lnx>lny【分析】A.利用不等式的基本性质即可判断出正误.B.利用三角函数的单调性周期性即可判断出正误.C.利用指数函数的单调性即可判断出正误.D.利用对数函数的单调性即可判断出正误.解:A.∵x>y>0,∴>,因此不正确;B.取x=π+,y=,满足x>y>0,但是tan x<tan y,因此不正确;C.由x>y>0,∴<,因此不正确;D.由x>y>0,∴lnx>lny,因此正确.故选:D.5.某三棱锥的三视图如图所示,则该三棱锥最长棱的长度为()A.B.C.D.【分析】首先把三视图转换为几何体,进一步利用公式的应用求出结果解:根据几何体的三视图转换为几何体为:所以:AB=.故选:C.6.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.若老师站在正中间,甲同学不与老师相邻,乙同学与老师相邻,则不同站法种数为()A.24 B.12 C.8 D.6【分析】根据题意,分3步依次分析甲、乙和其他2人的站法数目,由分步计数原理计算可得答案.解:根据题意,分3步进行分析:①,老师站在正中间,甲同学不与老师相邻,则甲的站法有2种,乙的站法有2种,②,乙同学与老师相邻,则乙的站法有2种,③,将剩下的2人全排列,安排在剩下的2个位置,有A22=2种情况,则不同站法有2×2×2=8种;故选:C.7.对于向量,,“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】举例说明由不能得到;反之成立.再由充分必要条件的判定得答案.解:当,且与的夹角为120°时,有,故由,不能得到;反之,由,能够得到.∴“”是“”的必要不充分条件.故选:B.8.关于函数f(x)=(x2+ax﹣1)e x﹣1有以下三个判断①函数恒有两个零点且两个零点之积为﹣1;②函数恒有两个极值点且两个极值点之积为﹣1;③若x=﹣2是函数的一个极值点,则函数极小值为﹣1.其中正确判断的个数有()A.0个B.1个C.2个D.3个【分析】函数f(x)=(x2+ax﹣1)e x﹣1,e x﹣1>0.①令f(x)=0,可得x2+ax﹣1=0,△>0,函数恒有两个零点,可得两个零点之积,即可判断出正误;②f′(x)=[x2+(2+a)x+a﹣1]e x﹣1.令g(x)=x2+(2+a)x+a﹣1,△>0.可得方程x2+(2+a)x+a﹣1=0,有两个不相等的实数根.可得其单调性极值,函数恒有两个极值点且两个极值点之积为a﹣1,即可判断出正误;③若x=﹣2是函数的一个极值点,可得4﹣2(2+a)+a﹣1=0,解得a,即可判断出正误.解:函数f(x)=(x2+ax﹣1)e x﹣1,e x﹣1>0.①令f(x)=0,则x2+ax﹣1=0,△=a2+4>0,则函数恒有两个零点且两个零点之积为﹣1,正确;②f′(x)=[x2+(2+a)x+a﹣1]e x﹣1.令g(x)=x2+(2+a)x+a﹣1,△=(2+a)2﹣4(a﹣1)=a2+8>0.∴方程x2+(2+a)x+a﹣1=0,有两个不相等的实数根.又e x﹣1>0,∴函数f(x)有两个极值点x1,x2,不妨设x1<x2,则函数f(x)在(﹣∞,x1),(x2,+∞)上单调递增,在(x1,x2)上单调递减.∴函数恒有两个极值点且两个极值点之积为a﹣1,因此②不正确;③若x=﹣2是函数的一个极值点,则4﹣2(2+a)+a﹣1=0,解得a=﹣1.∴f′(x)=(x2+x﹣2)e x﹣1=(x+2)(x﹣1)e x﹣1.可得x=1时函数f(x)取得极小值,f(1)=(1﹣1﹣1)e0=﹣1.则函数极小值为﹣1.其中正确判断的个数有2个.故选:C.二、填空题:本大题共6小题,每小题5分,共30分.9.已知向量=(3,﹣2),=(1,m),若⊥(),则m=﹣5 .【分析】根据平面向量的坐标运算与数量积的定义,列方程求出m的值.解:向量=(3,﹣2),=(1,m),则﹣=(2,﹣m﹣2),又⊥(),所以•(﹣)=0,即3×2﹣2×(﹣m﹣2)=0,解得m=﹣5.故答案为:﹣5.10.在公差不为零的等差数列{a n}中,a1=2,且a1,a3,a7依次成等比数列,那么数列{a n}的前n项和S n等于.【分析】设公差d不为零的等差数列{a n},运用等比数列的中项性质和等差数列的通项公式,可得公差d,由等差数列的求和公式,计算可得所求和.解:在公差d不为零的等差数列{a n}中,a1=2,且a1,a3,a7依次成等比数列,可得a32=a1a7,即(2+2d)2=2(2+6d),解得d=1,(0舍去),则数列{a n}的前n项和S n=2n+n(n﹣1)=n2+n.故答案为:n2+n.11.已知中心在原点的双曲线的右焦点坐标为,且两条渐近线互相垂直,则此双曲线的标准方程为x2﹣y2=1 .【分析】设双曲线的标准方程为﹣=1(a>0,b>0),由题意可得c,结合渐近线方程和两直线垂直的条件:斜率之积为﹣1,解方程可得a,b,进而得到所求双曲线的标准方程.解:设双曲线的标准方程为﹣=1(a>0,b>0),由题意可得c==,双曲线的渐近线方程为y=±x,两条渐近线互相垂直,可得﹣=﹣1,解得a=b=1,则双曲线的标准方程为x2﹣y2=1,故答案为:x2﹣y2=1.12.在△ABC中,a=3,,∠B=2∠A,则cos B=.【分析】由已知利用正弦定理,二倍角的正弦函数公式可求cos A的值,进而利用二倍角的余弦函数公式即可求解cos B的值.解:∵a=3,,∠B=2∠A,∴由正弦定理,可得==,∴解得cos A=,∴cos B=cos2A=2cos2A﹣1=.故答案为:.13.已知a,b,a+m均为大于0的实数,给出下列五个论断:①a>b,②a<b,③m>0,④m<0,⑤.以其中的两个论断为条件,余下的论断中选择一个为结论,请你写出一个正确的命题①③推出⑤(答案不唯一还可以①⑤推出③等).【分析】利用不等式的基本性质可得由①③⇒⑤.(答案不唯一).解:因为:若a,b满足a>b,b>0,则a>b,m>0,⇒﹣==>0;即由①③⇒⑤.(答案不唯一).故答案为:①③推出⑤(答案不唯一还可以①⑤推出③等)14.如图,某城市中心花园的边界是圆心为O,直径为1千米的圆,花园一侧有一条直线型公路l,花园中间有一条公路AB(AB是圆O的直径),规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA.规划要求:道路PB,QA不穿过花园.已知OC⊥l,BD ⊥l(C、D为垂足),测得OC=0.9,BD=1.2(单位:千米).已知修建道路费用为m 元/千米.在规划要求下,修建道路总费用的最小值为 2.1m元.【分析】根据题意找到对应的点P,Q,利用三角形相似计算即可解:根据题意,因为道路PB,QA不穿过花园,所以作AQ⊥l,垂足为Q,此时AQ最短,过B作圆O的切线BP交l于P,此时PB最短,如图:根据平行线段成比例可得AQ=0.6,即有AQ为△BMD的中位线,所以BM=2AB=2,则在Rt△BMD中,DM=1.6,又因为△PBD∽△BMD,所以PB===1.5,故修建道路总费用的最小值为1.5m+0.6m=2.1m,故答案为:2.1m.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.已知函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间上的最大值和最小值.【分析】(I)先化简f(x),根据周期计算公式即可得出T.(II)利用三角函数的单调性即可得出.解:=,(Ⅰ)f(x)的最小正周期T=,(Ⅱ)因为,所以,所以当,即x=0时,f(x)取得最小值0;当,即时,f(x)取得最大值.16.为了解某地区初中学生的体质健康情况,统计了该地区8所学校学生的体质健康数据,按总分评定等级为优秀,良好,及格,不及格.良好及其以上的比例之和超过40%的学校为先进校.各等级学生人数占该校学生总人数的比例如表:学校A学校B学校C学校D学校E学校F学校G学校H 学校比例等级优秀8% 3% 2% 9% 1% 22% 2% 3%良好37% 50% 23% 30% 45% 46% 37% 35%及格22% 30% 33% 26% 22% 17% 23% 38%不及格33% 17% 42% 35% 32% 15% 38% 24% (Ⅰ)从8所学校中随机选出一所学校,求该校为先进校的概率;(Ⅱ)从8所学校中随机选出两所学校,记这两所学校中不及格比例低于30%的学校个数为X,求X的分布列;(Ⅲ)设8所学校优秀比例的方差为S12,良好及其以下比例之和的方差为S22,比较S12与S22的大小.(只写出结果)【分析】(Ⅰ)8所学校中有四所学校学生的体质健康测试成绩达到良好及其以上的比例超过40%,即可得出从8所学校中随机取出一所学校,该校为先进校的概率.(Ⅱ)8所学校中,学生不及格率低于30%的学校有学校B、F、H三所,所以X的取值为0,1,2.利用超几何分布列即可得出随机变量X的分布列.(Ⅲ)经过计算即可得出S12与S22的关系.解:(Ⅰ)8所学校中有四所学校学生的体质健康测试成绩达到良好及其以上的比例超过40%,所以从8所学校中随机取出一所学校,该校为先进校的概率为.(Ⅱ)8所学校中,学生不及格率低于30%的学校有学校B、F、H三所,所以X的取值为0,1,2.,所以随机变量X的分布列为:X0 1 2P(Ⅲ)S12=S22.17.如图,在四棱锥S﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠SAD=∠DAB=90°,SA=3,SB=5,AB=4,BC=2,AD=1.(Ⅰ)求证:AB⊥平面SAD;(Ⅱ)求平面SCD与平面SAB所成的锐二面角的余弦值;(Ⅲ)点E,F分别为线段BC,SB上的一点,若平面AEF∥平面SCD,求三棱锥B﹣AEF 的体积.【分析】(Ⅰ)证明AB⊥SA,AB⊥AD,然后证明AB⊥平面SAD.(Ⅱ)建立如图直角坐标系,求出平面SAB的法向量,平面SDC的法向量,通过向量的数量积求解即可.(Ⅲ)利用V B﹣AEF=V F﹣ABE,转化求解即可.【解答】(Ⅰ)证明:在△SAB中,因为SA=3,AB=4,SB=5,所以AB⊥SA.又因为∠DAB=90°所以AB⊥AD,因为SA∩AD=A所以AB⊥平面SAD.(Ⅱ)解:因为SA⊥AD,AB⊥SA,AB⊥AD.建立如图直角坐标系则A(0,0,0)B(0,4,0),C(2,4,0),D(1,0,0),S(0,0,3).平面SAB的法向量为.设平面SDC的法向量为所以有即,令x=1所以平面SDC的法向量为,所以.(Ⅲ)解:因为平面AEF∥平面SCD,平面AEF∩平面ABCD=AE,平面SCD∩平面ABCD=CD,所以AE∥CD,平面AEF∩平面SBC=EF,平面SCD∩平面SBC=SC,所以FE∥SC,由AE∥CD,AD∥BC得四边形AEDC为平行四边形.所以E为BC中点.又FE∥SC,所以F为SB中点,所以F到平面ABE的距离为,又△ABE的面积为2,所以V B﹣AEF=V F﹣ABE=1.18.已知椭圆C:(a>b>0)的长轴长为4,离心率为,点P在椭圆C上.(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知点M(4,0),点N(0,n),若以PM为直径的圆恰好经过线段PN的中点,求n的取值范围.【分析】(Ⅰ)由椭圆的长轴长,结合离心率求出a,b,然后求解椭圆C的方程.(Ⅱ)法一:设点P(x0,y0),则,PN的中点,通过,结合函数的值域为[﹣12,20],求解n的范围即可.法二:设点P(x0,y0),则.设PN的中点为Q,利用|MP|=|MN|,通过函数的值域为[﹣12,20],求解即可.解:(Ⅰ)由椭圆的长轴长2a=4,得a=2又离心率,所以所以b2=a2﹣c2=2.所以椭圆C的方程为;.(Ⅱ)法一:设点P(x0,y0),则所以PN的中点,,.因为以PM为直径的圆恰好经过线段PN的中点所以MQ⊥NP,则,即.又因为,所以所以.函数的值域为[﹣12,20]所以0≤n2≤20所以.法二:设点P(x0,y0),则.设PN的中点为Q因为以PM为直径的圆恰好经过线段PN的中点所以MQ是线段PN的垂直平分线,所以|MP|=|MN|,即,所以.函数的值域为[﹣12,20],所以0≤n2≤20.所以.19.已知函数f(x)=x sin x+cos x.(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求函数g(x)=f(x)﹣零点的个数.【分析】(Ⅰ)求出原函数的导函数,得到函数在x=0处的导数,再求出f(0),利用直线方程的点斜式得答案;(Ⅱ)由为偶函数,g(0)=1,把求g(x)在x∈R上零点个数,转化为求g(x)在x∈(0,+∞)上零点个数即可.利用导数研究函数单调性,再由函数零点存在性定理判定.解:(Ⅰ)f'(x)=x cos x,∴f'(0)=0.又f(0)=1,∴曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(Ⅱ)∵为偶函数,g(0)=1,∴要求g(x)在x∈R上零点个数,只需求g(x)在x∈(0,+∞)上零点个数即可.,令g'(x)=0,得,k ∈N,∴g(x )在单调递增,在单调递减,在单调递增,在单调递减,在单调递增k∈N*,列表得:x 0 …g'(x)0 + 0 ﹣0 + 0 ﹣0 …g (x )1 ↗极大值↘极小值↗极大值↘极小值…由上表可以看出g(x )在(k∈N )处取得极大值,在(k∈N)处取得极小值,又;.当k∈N*且k≥1时,,(或,).∴g(x)在x∈(0,+∞)上只有一个零点.故函数零点的个数为2.20.已知项数为m(m∈N*,m≥2)的数列{a n}满足如下条件:①a n∈N*(n=1,2,…,m);②a1<a2<…<a m.若数列{b n}满足b n=,其中n=1,2,…,m,则称{b n}为{a n}的“伴随数列”.(Ⅰ)数列1,3,5,7,9是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;(Ⅱ)若{b n}为{a n}的“伴随数列”,证明:b1>b2>…>b m;(Ⅲ)已知数列{a n}存在“伴随数列”{b n},且a1=1,a m=2049,求m的最大值.【分析】(Ⅰ)根据题目中“伴随数列”的定义得,所以数列1,3,5,7,9不存在“伴随数列”.(Ⅱ)只要用作差法证明{b n}的单调性即可,(Ⅲ)∀1≤i<j≤m,都有,因为,b1>b2>…>b m.因为,所以a n﹣a n﹣1≥m﹣1,又a m﹣a1=(a m﹣a m﹣1)+(a m﹣1﹣a m﹣2)+…+(a2﹣a1)≥(m﹣1)+(m﹣1)+…+(m﹣1)=(m﹣1)2.所以2049﹣1≥(m﹣1)2,即可解得m的最大值.解:(Ⅰ)数列1,3,5,7,9不存在“伴随数列”.因为,所以数列1,3,5,7,9不存在“伴随数列”.(Ⅱ)证明:因为,1≤n≤m﹣1,n∈N*,又因为a1<a2<…<a m,所以有a n﹣a n+1<0,所以,所以b1>b2>…>b m成立.(Ⅲ)∀1≤i<j≤m,都有,因为,b1>b2>…>b m.所以,所以,所以,因为,所以a n﹣a n﹣1≥m﹣1,又a m﹣a1=(a m﹣a m﹣1)+(a m﹣1﹣a m﹣2)+…+(a2﹣a1)≥(m﹣1)+(m﹣1)+…+(m﹣1)=(m﹣1)2.所以2049﹣1≥(m﹣1)2所以(m﹣1)2≤2048,所以m≤46,又,所以m≤33,例如:a n=64n﹣63(1≤n≤33),满足题意,所以,m的最大值是33.。

2019-2020学年北京市人大附中高三(上)统练数学试卷(八)

2019-2020学年北京市人大附中高三(上)统练数学试卷(八)

2019-2020学年北京市人大附中高三(上)统练数学试卷(八)试题数:17,总分:1001.(单选题,5分)设全集为R,集合A={x|x2-1>0},集合B={y|y=3x,x∈R},则A∩B=()A.(-∞,-1)B.(-∞,-1]C.(1,+∞)D.[1,+∞)2.(单选题,5分)直线l与圆x2+y2+2x-4y+1=0相交于A,B两点,若弦AB的中点(-2,3),则直线l的方程为()A.x+y-3=0B.x+y-1=0C.x-y+5=0D.x-y-5=03.(单选题,5分)将函数y=sin(x+ π4)的图象上各点的纵坐标不变,横坐标缩短到原来的1 2,再向右平移π4个单位,所得到的图象解析式是()A.y=sin2xB.y=sin 12xC.y=sin(2x+ π4)D.y=sin(2x- π4)4.(单选题,5分)已知方程x217−k + y2k−8=1表示焦点在x轴上的双曲线,下列结论正确的是()A.k的取值范围为8<k<17B.k的取值范围为k<8C.双曲线的焦距为10D.双曲线的实轴长为105.(单选题,5分)在△ABC中,a=8,b=10,△ABC的面积为20√3,则△ABC中最大角的正切值是()A. 5√33B. −√3C. −√33D. 5√33或−√36.(单选题,5分)若双曲线x2a2−y2b2=1的渐近线方程为2y±x=0,则椭圆x2a2+y2b2=1的离心率为()A. √32B. 12C. √22D. 137.(单选题,5分)在平面直角坐标系中,有不共线的三点A,B,C,已知AB,AC所在直线的斜率分别为k1,k2,则“k1k2>-1”是“∠BAC为锐角”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件8.(单选题,5分)对于曲线C:y=f(x)上任意一点A(x1,y1),在曲线C上都存在唯一的B(x2,y2),满足线段AB的中点在直线l:y-2=0上,则称直线l为曲线C的“腰线”,则下列曲线中:① y=e x;② y=x3-x;③ y=2sinx;④ y=lnx.则l为“腰线”的曲线的条数为()A.1B.2C.3D.49.(填空题,4分)直线2x+(m+1)y+4=0与直线mx+3y-6=0平行,那么m的值是___ .10.(填空题,4分)在等比数列{a n}中,a2=2,且1a1+1a3=54,则a1+a3的值为___ .11.(填空题,4分)直线l:y=kx-1被圆C:(x-2)2+y2=4截得的弦长为4,则k的值为___ .12.(填空题,4分)已知m,4,n是等差数列,那么(√2)m•(√2)n =___ ;mn的最大值为___ .13.(填空题,4分)如图(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y与乘客量x之间关系的图象.由于目前该条公交线路亏损,公司有关人员提出了两种调整的建议,如图(2)(3)所示.给出下列说法:① 图(2)的建议是:降低成本,并保持票价不变;② 图(2)的建议是:提高成本,并提高票价;③ 图(3)的建议是:提高票价,并保持成本不变;④ 图(3)的建议是:提高票价,并降低成本.其中所有说法正确的序号是___ .14.(填空题,4分)曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹.给出下列四个结论:① 曲线C过点(-1,1);② 曲线C关于点(-1,1)对称;③ 若点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|+|PB|不小于2k;④ 设p0为曲线C上任意一点,则点P1关于直线x=-1、点(-1,1)及直线y=1对称的点分别为P1、P2、P3,则四边形P0P1P2P3的面积为定值4k2.其中,所有正确结论的序号是___ .15.(问答题,12分)已知函数f(x)= √2 sin(2x- π)+2 √2 cos2x.6(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求函数f(x)的最值.16.(问答题,12分)设函数f(x)=x2+ax-lnx(a∈R).(Ⅰ)若a=1,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在区间(0,1]上是减函数,求实数a的取值范围;(Ⅲ)过坐标原点O作曲线y=f(x)的切线,证明:切线有且仅有一条,且切点的横坐标恒为1.17.(问答题,12分)如图,在平面直角坐标系xOy中,椭圆C:x2a2 + y2b2=1(a>b>0)的离心率为√32,且过点(1,√32).过椭圆C的左顶点A作直线交椭圆C于另一点P,交直线l:x=m(m>a)于点M.已知点B(1,0),直线PB交l于点N.(Ⅰ)求椭圆C的方程;(Ⅱ)若MB是线段PN的垂直平分线,求实数m的值.2019-2020学年北京市人大附中高三(上)统练数学试卷(八)参考答案与试题解析试题数:17,总分:1001.(单选题,5分)设全集为R,集合A={x|x2-1>0},集合B={y|y=3x,x∈R},则A∩B=()A.(-∞,-1)B.(-∞,-1]C.(1,+∞)D.[1,+∞)【正确答案】:C【解析】:运用二次不等式的解法和指数函数的值域,化简集合A,B,再由交集的定义,即可得到所求集合.【解答】:解:全集为R,集合A={x|x2-1>0}={x|x>1或x<-1},集合B={y|y=3x,x∈R}={y|y>0},A∩B=[(-∞,-1)∪(1,+∞)]∩(0,+∞)=(1,+∞),故选:C.【点评】:本题考查集合的化简和运算,考查二次不等式和指数函数的值域,考查运算能力,属于中档题.2.(单选题,5分)直线l与圆x2+y2+2x-4y+1=0相交于A,B两点,若弦AB的中点(-2,3),则直线l的方程为()A.x+y-3=0B.x+y-1=0C.x-y+5=0D.x-y-5=0【正确答案】:C【解析】:圆x2+y2+2x-4y+1=0化为标准方程,可得圆心坐标,先求出垂直于直线l的直线的斜率,再求出直线l的斜率,利用点斜式可得直线方程.【解答】:解:圆x2+y2+2x-4y+1=0化为标准方程为(x+1)2+(y-2)2=4,圆心坐标为C (-1,2).∵弦AB的中点D(-2,3),∴k CD= 3−2−2+1=-1,∴直线l的斜率为1,∴直线l的方程为y-3=x+2,即x-y+5=0.故选:C.【点评】:本题考查直线方程,考查直线与圆的位置关系,正确求出直线的斜率是关键.3.(单选题,5分)将函数y=sin(x+ π4)的图象上各点的纵坐标不变,横坐标缩短到原来的1 2,再向右平移π4个单位,所得到的图象解析式是()A.y=sin2xB.y=sin 12xC.y=sin(2x+ π4)D.y=sin(2x- π4)【正确答案】:D【解析】:利用三角函数的伸缩变换将y=sin(x+ π4)图象上各点的横坐标缩短到原来的12(纵坐标不变),得到函数y=sin(2x+ π4)图象,再利用平移变换可得答案.【解答】:解:函数y=sin(x+ π4)图象上各点的横坐标缩短到原来的12(纵坐标不变),得到函数y=sin(2x+ π4)图象,再将函数y=sin(2x+ π4)图象向右平移π4个单位,所得图象的函数解析式为y=sin[2(x- π4)+ π4)]=sin(2x- π4),故选:D.【点评】:本题考查函数y=Asin(ωx+φ)的图象变换,掌握其平移变换与伸缩变换的规律是关键,属于中档题.4.(单选题,5分)已知方程x217−k + y2k−8=1表示焦点在x轴上的双曲线,下列结论正确的是()A.k的取值范围为8<k<17B.k的取值范围为k<8C.双曲线的焦距为10D.双曲线的实轴长为10【正确答案】:B【解析】:由题意可得17-k>0,k-8<0,解得k的范围,将双曲线的方程化为标准方程,可得a,b,c,即可判断正确结论.【解答】:解:方程x 217−k + y2k−8=1表示焦点在x轴上的双曲线,可得17-k>0,k-8<0,解得k<8,则双曲线的方程为x 217−k - y28−k=1,可得a= √17−k,b= √8−k,c= √25−2k,则A,C,D均错,B正确.故选:B.【点评】:本题考查双曲线的方程和性质,主要是实轴长和焦距,考查运算能力,属于基础题.5.(单选题,5分)在△ABC中,a=8,b=10,△ABC的面积为20√3,则△ABC中最大角的正切值是()A. 5√33B. −√3C. −√33D. 5√33或−√3【正确答案】:D【解析】:根据三角形的面积公式求出C的值,再讨论确定是否为最大角,从而求出最大角的正切值.【解答】:解:由△ABC的面积为S△ABC= 12×8×10×sinC=20 √3,解得sinC= √32;又0<C<π,所以C= π3或2π3.① 当C= 2π3时,C是最大角,其tan 2π3=- √3;② 当C= π3时,由余弦定理得c= √82+102−2×8×10×cosπ3=2 √21<10.所以边b是最大边.由余弦定理得cosB= 2√21)222×8×2√21= √2114,所以B为锐角,sinB= √1−cos2B = √1−(√2114)2= 5√714,所以tanB= sinBcosB =5√714√2114= 5√33.综上知,△ABC中最大角的正切值是- √3或5√33.故选:D.【点评】:本题考查了三角形的面积计算问题,也考查了余弦定理和正切函数的应用问题,是中档题.6.(单选题,5分)若双曲线x2a2−y2b2=1的渐近线方程为2y±x=0,则椭圆x2a2+y2b2=1的离心率为()A. √32B. 12C. √22D. 13【正确答案】:A【解析】:利用双曲线x 2a2−y2b2=1的渐近线方程为2y±x=0,得到ba= 12,由此可求出椭圆x2 a2+y2b2=1的离心率.【解答】:解:∵双曲线x 2a2−y2b2=1的渐近线方程为2y±x=0,∴ b a = 12,即b= 12a.∴在椭圆x2a2+y2b2=1中,c= √a2−(12a)2= √32a,∴e= ca = √32.故选:A.【点评】:本题考查椭圆的离心率,考查双曲线的性质,考查学生的计算能力,属于基础题.7.(单选题,5分)在平面直角坐标系中,有不共线的三点A,B,C,已知AB,AC所在直线的斜率分别为k1,k2,则“k1k2>-1”是“∠BAC为锐角”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【正确答案】:D【解析】:根据充分条件和必要条件的定义分别进行判断即可.>0,【解答】:解:由题意“∠BAC为锐角”,可得:tan∠BAC= k1−k21+k1k2即(k1-k2)(1+k1k2)>0,∵k1k2>-1,不一定大于0,∴tan∠BAC= k1−k21+k1k2>0,同理tan∠BAC= k1−k21+k1k2k1k2不一定大于-1∴是既不充分也不必要条件.故选:D.【点评】:本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义是解决本题的关键.8.(单选题,5分)对于曲线C:y=f(x)上任意一点A(x1,y1),在曲线C上都存在唯一的B(x2,y2),满足线段AB的中点在直线l:y-2=0上,则称直线l为曲线C的“腰线”,则下列曲线中:① y=e x;② y=x3-x;③ y=2sinx;④ y=lnx.则l为“腰线”的曲线的条数为()A.1B.2C.3D.4【正确答案】:A【解析】:由题意可得直线l为曲线C的“腰线”的前提是y1+y2=4成立,且满足任意的点A,存在唯一的点B,分别对① ② ③ ④ ,结合函数的值域和单调性,即可得到所求结论.【解答】:解:由题意可得直线l为曲线C的“腰线”,等价为y1+y2=4,对于① ,y=e x,由e x1+e x2=4,且e x>0,不满足任意的x1,存在唯一的x2,故① 错误;对于② ,y=x3-x,由y1+y2=4,即(x13-x1)+(x23-x2)=4,当x13-x1=4,x23-x2=0,可得x2=0或x2=±1,不满足任意的点A,存在唯一的点B,故② 错误;对于③ ,y=2sinx的值域为[-2,2],由2sinx1+2sinx2=4,可得sinx1=sinx2=1,不满足任意的x1,存在唯一的x2,故③ 错误;对于④ ,y=lnx的值域为R,且y=lnx在(0,+∞)递增,由lnx1+lnx2=4,满足任意的x1,存在唯一的x2,故④ 正确.故选:A.【点评】:本题考查新定义的理解和运用,以及函数的单调性和值域,考查方程思想和运算能力,属于中档题.9.(填空题,4分)直线2x+(m+1)y+4=0与直线mx+3y-6=0平行,那么m的值是___ .【正确答案】:[1]2【解析】:利用两直线平行的位置关系即可求出m的值.【解答】:解:∵直线2x+(m+1)y+4=0与直线mx+3y-6=0平行,∴ 2 m =m+13≠4−6,∴m=2,故答案为:2.【点评】:本题主要考查了两直线平行的位置关系,是基础题.10.(填空题,4分)在等比数列{a n}中,a2=2,且1a1+1a3=54,则a1+a3的值为___ .【正确答案】:[1]5【解析】:利用等比数列的通项公式即可得出.【解答】:解:设等比数列{a n}的公比为q,∵a2=2,且1a1+1a3=54,∴ q 2 + 12q= 54,解得q=2或12.当q=2时,则a 1+a 3= 22+2×2 =5; 当q= 12时,则a 1+a 3= 212+2× 12=5.故答案为:5.【点评】:本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于中档题. 11.(填空题,4分)直线l :y=kx-1被圆C :(x-2)2+y 2=4截得的弦长为4,则k 的值为___ .【正确答案】:[1] 12【解析】:直接利用直线与圆的位置关系的应用求出结果.【解答】:解:直线l :y=kx-1被圆C :(x-2)2+y 2=4截得的弦长为4, 所以:直线y=kx-1经过圆心(2,0), 则0=2k-1,解得k= 12 . 故答案为: 12 .【点评】:本题考查的知识要点:直线与圆的位置关系,主要考查学生的运算能力和转换能力及思维能力,属于基础题.12.(填空题,4分)已知m ,4,n 是等差数列,那么 (√2)m•(√2)n=___ ;mn 的最大值为___ .【正确答案】:[1]16; [2]16【解析】:由m ,4,n 是等差数列,可得m+n=8.再利用指数幂的运算性质、基本不等式的性质即可得出.【解答】:解:∵m ,4,n 是等差数列, ∴m+n=8.则 (√2)m•(√2)n= (√2)m+n= (√2)8=24=16; mn ≤(m+n 2)2=16,当且仅当m=n 时取等号.因此mn 的最大值为16. 故答案分别为:16;16.【点评】:本题考查了等差数列的性质、指数幂的运算性质、基本不等式的性质,考查了计算能力,属于基础题.13.(填空题,4分)如图(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y与乘客量x之间关系的图象.由于目前该条公交线路亏损,公司有关人员提出了两种调整的建议,如图(2)(3)所示.给出下列说法:① 图(2)的建议是:降低成本,并保持票价不变;② 图(2)的建议是:提高成本,并提高票价;③ 图(3)的建议是:提高票价,并保持成本不变;④ 图(3)的建议是:提高票价,并降低成本.其中所有说法正确的序号是___ .【正确答案】:[1] ① ③【解析】:图(1)中,点A的几何意义代表付出的成本,射线AB的倾斜程度表示票价,再对比观察图(2)和图(3)中的改变量与未变量即可得解.【解答】:解:图(1)中,点A的几何意义代表付出的成本,射线AB的倾斜程度表示票价,图(2)中射线AB的倾斜程度未变,只将点A上移,所以说法① 正确,图(3)中点A的位置未变,将射线AB的倾斜程度变大,所以说法③ 正确,故答案为:① ③ .【点评】:本题考查函数图象的变换,理解函数图象中截距和倾斜度的几何意义是解题的关键,考查学生将理论与实际生活相联系的能力和逻辑推理能力,属于基础题.14.(填空题,4分)曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹.给出下列四个结论:① 曲线C过点(-1,1);② 曲线C关于点(-1,1)对称;③ 若点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|+|PB|不小于2k;④ 设p0为曲线C上任意一点,则点P1关于直线x=-1、点(-1,1)及直线y=1对称的点分别为P1、P2、P3,则四边形P0P1P2P3的面积为定值4k2.其中,所有正确结论的序号是___ .【正确答案】:[1] ② ③ ④【解析】:由题意曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹.利用直接法,设动点坐标为(x,y),及可得到动点的轨迹方程,然后由方程特点即可加以判断.【解答】:解:由题意设动点坐标为(x,y),则利用题意及点到直线间的距离公式的得:|x+1||y-1|=k2,对于① ,将(-1,1)代入验证,此方程不过此点,所以① 错;对于② ,把方程中的x被-2-x代换,y被2-y 代换,方程不变,故此曲线关于(-1,1)对称.② 正确;对于③ ,由题意知点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|≥|x+1|,|PB|≥|y-1|∴|PA|+|PB|≥2 √|PA||PB| =2k,③ 正确;对于④ ,由题意知点P在曲线C上,根据对称性,则四边形P0P1P2P3的面积=2|x+1|×2|y-1|=4|x+1||y-1|=4k2.所以④ 正确.故答案为:② ③ ④ .【点评】:此题重点考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性,属于基础题.)+2 √2 cos2x.15.(问答题,12分)已知函数f(x)= √2 sin(2x- π6(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求函数f(x)的最值.【正确答案】:【解析】:(Ⅰ)利用三角函数的倍角公式以及两角和差的正弦公式,进行化简,结合三角函数的单调性进行求解.(Ⅱ)根据三角函数的有界性进行求解即可.【解答】:解:(Ⅰ)f (x )= √2 sin (2x- π6 )+2 √2 cos 2x= √2 (sin2x• √32 - 12 cos2x+cos2x+1)= √2 (sin2x• √32 + 12 cos2x+1)= √2 sin (2x+ π6 )+ √2 , 由2kπ- π2 ≤2x+ π6 ≤2kπ+ π2 ,k∈Z 得kπ- π3 ≤x≤kπ+ π6 ,k∈Z ,即函数的单调递增区间为[kπ- π3 ,kπ+ π6 ],k∈Z , 由2kπ+ π2≤2x+ π6≤2kπ+ 3π2,k∈Z 得kπ+ π6 ≤x≤kπ+ 2π3 ,k∈Z ,即函数的单调递减区间为[kπ+ π6,kπ+ 2π3],k∈Z ; (Ⅱ)当sin (2x+ π6)=1时,函数f (x )取得最大值, 此时最大值为f (x )= √2+√2 =2 √2 .当sin (2x+ π6 )=-1时,函数f (x )取得最小值, 此时最大值为f (x )=- √2+√2 =0.【点评】:本题主要考查三角函数的图象和性质,利用倍角公式以及辅助角公式将三角函数进行化简是解决本题的关键.16.(问答题,12分)设函数f (x )=x 2+ax-lnx (a∈R ). (Ⅰ)若a=1,求函数f (x )的单调区间;(Ⅱ)若函数f (x )在区间(0,1]上是减函数,求实数a 的取值范围;(Ⅲ)过坐标原点O 作曲线y=f (x )的切线,证明:切线有且仅有一条,且切点的横坐标恒为1.【正确答案】:【解析】:(Ⅰ)a=1时,f (x )=x 2+ax-lnx (x >0), f′(x )=2x +1−1x =(2x−1)(x+1)x,根据函数的定义域,确定f′(x )>0和f′(x )>0的范围,进而得到函数f (x )的单调区间;(Ⅱ)若函数f(x)在区间(0,1]上是减函数,则f'(x)≤0对任意x∈(0,1]恒成立,进而a≤1x−2x对任意x∈(0,1]恒成立,进而将问题转化为函数的最值问题后,可得实数a的取值范围;(Ⅲ)设出切点坐标,利用导数法求出切线斜率(切点处的导函数值),进而利用点斜式方程结合切线过原点求出切线方程,通过证明t=1是方程t2+lnt-1=0的唯一的解,可得结论.【解答】:解:(Ⅰ)a=1时,f(x)=x2+ax-lnx(x>0),∴ f′(x)=2x+1−1x =(2x−1)(x+1)x,又∵ x∈(0 , 12) , f′(x)<0 , x∈(12 , +∞) , f′(x)>0,f(x)的单调递减区间为(0 , 12),单调递增区间为(12 , +∞).(Ⅱ)∵ f′(x)=2x+a−1x又∵f(x)在区间(0,1]上是减函数,∴f′(x)≤0对任意x∈(0,1]恒成立,即2x+a−1x≤0对任意x∈(0,1]恒成立,∴ a≤1x−2x对任意x∈(0,1]恒成立,令g(x)=1x−2x,∴a≤g(x)min,易知g(x)在(0,1]单调递减,∴g(x)min=g(1)=-1.∴a≤-1.(Ⅲ)设切点为M(t,f(t)),f′(x)=2x+a−1x,∴过M点的切线方程为:y-f(t)=f′(t)(x-t),即y−(t2+at−lnt)=(2t+a−1t)(x−t)又切线过原点,所以,0−(t2+at−lnt)=(2t+a−1t)(0−t),即t2+lnt-1=0,显然t=1是方程t2+lnt-1=0的解,设φ(t)=t2+lnt-1,则φ′(t)=2t+ 1t>0恒成立,φ(t)在(0,+∞)单调递增,且φ(1)=0,∴方程t2+lnt-1=0有唯一解1.∴过坐标原点O作曲线y=f(x)的切线,切线有且仅有一条,且切点的横坐标恒为1.【点评】:本题考查的知识点是利用导数研究函数的单调性,利用导数研究曲线上某点的切线方程,是导数的综合应用,难度中档.17.(问答题,12分)如图,在平面直角坐标系xOy中,椭圆C:x2a2 + y2b2=1(a>b>0)的离心率为√32,且过点(1,√32).过椭圆C的左顶点A作直线交椭圆C于另一点P,交直线l:x=m(m>a)于点M.已知点B(1,0),直线PB交l于点N.(Ⅰ)求椭圆C的方程;(Ⅱ)若MB是线段PN的垂直平分线,求实数m的值.【正确答案】:【解析】:(Ⅰ)因为椭圆C的离心率为√32,所以a2=4b2.又因为椭圆C过点(1,√32),所以1a2+34b2=1,解得椭圆C的方程;(Ⅱ)若MB是线段PN的垂直平分线,k PB•k MB=-1,设P(x0,y0),则P关于B的对称点N(2-x0,-y0),进而得到实数m的值.【解答】:(本小题满分16分)解:(Ⅰ)因为椭圆C的离心率为√32,所以a2=4b2.又因为椭圆C 过点(1, √32),所以 1a 2+34b 2=1 ,解得a 2=4,b 2=1.所以椭圆C 的方程为 x 24+y 2=1 . (Ⅱ)设P (x 0,y 0),-2<x 0<2,x 0≠1,则 x 024+y 02=1 .因为MB 是PN 的垂直平分线,所以P 关于B 的对称点N (2-x 0,-y 0),所以2-x 0=m . 由A (-2,0),P (x 0,y 0),可得直线AP 的方程为y= y 0x 0+2(x+2), 令x=m ,得y= y 0x0+2(m+2),即M (m , y 0x0+2(m+2)). 因为PB⊥MB ,所以k PB •k MB =-1,所以k PB •k MB = y 0x 0−1 • y0x 0+2(m+2)m−1=-1,即 y 02•(m+2)(x 0−1)(x 0+2)(m−1) =-1.因为 x 024+y 02=1 .所以 (x 0−2)(m+2)4(x 0−1)(m−1)=1. 因为x 0=2-m ,化简得3m 2-10m+4=0,解得m= 5±√133. 因为m >2,所以m= 5+√133【点评】:本题考查的知识点是椭圆的标准方程,直线与椭圆的位置关系,直线垂直的充要条件,难度较大.。

2019-2020年高三上学期期末教学质量检测数学(文)试题 含答案

2019-2020年高三上学期期末教学质量检测数学(文)试题 含答案

2019-2020年高三上学期期末教学质量检测数学(文)试题 含答案一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 计算: . 2. 已知集合,,则 .3. 已知等差数列的首项为3,公差为4,则该数列的前项和 .4. 一个不透明袋中有10个不同颜色的同样大小的球,从中任意摸出2个,共有 种不同结果(用数值作答).5. 不等式的解集是 .6. 设8780178(1)x a a x a x a x -=++++,则0178||||||||a a a a ++++= .7. 已知圆锥底面的半径为1,侧面展开图是一个圆心角为的扇形,则该圆锥的侧面积是 .8. 已知角的顶点与直角坐标系的原点重合,始边在轴的正半轴上,终边在射线()上,则 .9. 已知两个向量,的夹角为,,为单位向量,,若,则 . 10. 已知两条直线的方程分别为:和:,则这两条直线的夹角大小为 (结果用反三角函数值表示).11. 若,是一二次方程的两根,则 .12. 直线经过点且点到直线的距离等于1,则直线的方程是 . 13. 已知实数、满足,则的取值范围是 .14. 一个无穷等比数列的首项为2,公比为负数,各项和为,则的取值范围是 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 在下列幂函数中,是偶函数且在上是增函数的是( )A. B. C. D.16. 已知直线:与直线:,记3D k =A. 充分非必要条件C. 充要条件17. 则表示复数的点是( )18. A. 1个 B. 4个三、解答题(本大题满分74定区域内写出必要的步骤.19.(本题满分14分)本题共有2在锐角中,、、分别为内角、(1)求的大小;(2)若,的面积,求的值.B120.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.上海出租车的价格规定:起步费14元,可行3公里,3公里以后按每公里2.4元计算,可再行7公里;超过10公里按每公里3.6元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(本小题只需要回答最后结果)(2)求车费(元)与行车里程(公里)之间的函数关系式.21.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.如图,正方体的棱长为2,点为面的对角线的中点.平面交与,于.(1)求异面直线与所成角的大小;(结果可用反三角函数值表示)(2)求三棱锥的体积.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.已知函数(其中).(1)判断函数的奇偶性,并说明理由;(2)求函数的反函数;(3)若两个函数与在闭区间上恒满足,则称函数与在闭区间上是分离的.试判断函数与在闭区间上是否分离?若分离,求出实数的取值范围;若不分离,请说明理由.23.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在数列中,已知,前项和为,且.(其中)(1)求;(2)求数列的通项公式;(3)设,问是否存在正整数、(其中),使得、、成等比数列?若存在,求出所有满足条件的数组;否则,说明理由.静安区xx第一学期期末教学质量检测高三年级数学(文科)试卷答案(试卷满分150分 考试时间120分钟) xx.12一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 计算: . 解:.2. 已知集合,,则 . 解:.3. 已知等差数列的首项为3,公差为4,则该数列的前项和 . 解:.4. 一个不透明袋中有10个不同颜色的同样大小的球,从中任意摸出2个,共有 种不同结果(用数值作答). 解:45.5. 不等式的解集是 . 解:.6. 设8780178(1)x a a x a x a x -=++++,则0178||||||||a a a a ++++= .解:256.7. 已知圆锥底面的半径为1,侧面展开图是一个圆心角为的扇形,则该圆锥的侧面积是 . 解:.8. 已知角的顶点与直角坐标系的原点重合,始边在轴的正半轴上,终边在射线()上,则 . 解:.9. 已知两个向量,的夹角为,,为单位向量,,若,则 . 解:-2.10. 已知两条直线的方程分别为:和:,则这两条直线的夹角大小为 (结果用反三角函数值表示). 解:(或或).11. 若,是一二次方程的两根,则 . 解:-3.12. 直线经过点且点到直线的距离等于1,则直线的方程是 . 解:或.13. 已知实数、满足,则的取值范围是 . 解:.14. 一个无穷等比数列的首项为2,公比为负数,各项和为,则的取值范围是 . 解:.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 在下列幂函数中,是偶函数且在上是增函数的是( )A. B. C. D. 解:D.B 116. 已知直线:与直线:,记3D k =A. 充分非必要条件C. 充要条件解:B.17. 则表示复数的点是( )解:D.18. A. 1个 B. 4个解:C.三、解答题(本大题满分74定区域内写出必要的步骤.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.在锐角中,、、分别为内角、、所对的边长,且满足. (1)求的大小;(2)若,的面积,求的值. 解:(1)由正弦定理:,得,∴ ,(4分) 又由为锐角,得.(6分)(2),又∵ ,∴ ,(8分)根据余弦定理:2222cos 7310b a c ac B =+-=+=,(12分) ∴ 222()216a c a c ac +=++=,从而.(14分)20.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.上海出租车的价格规定:起步费14元,可行3公里,3公里以后按每公里2.4元计算,可再行7公里;超过10公里按每公里3.6元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(本小题只需要回答最后结果)(2)求车费(元)与行车里程(公里)之间的函数关系式. 解:(1)他应付出出租车费26元.(4分)(2)14,03() 2.4 6.8,3103.6 5.2,10x f x x x x x <≤⎧⎪=+<≤⎨⎪->⎩ . 21.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.如图,正方体的棱长为2,点为面的对角线的中点.平面交与,于.(1)求异面直线与所成角的大小;(结果可用反三角函数值表示)(2)求三棱锥的体积.解:(1)∵ 点为面的对角线的中点,且平面,∴ 为的中位线,得,又∵ ,∴ 22MN ND MD ===(2分) ∵ 在底面中,,,∴ ,又∵ ,为异面直线与所成角,(6分) 在中,为直角,,∴ .即异面直线与所成角的大小为.(8分) (2),(9分)1132P BMN V PM MN BN -=⋅⋅⋅⋅,(12分)22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.已知函数(其中).(1)判断函数的奇偶性,并说明理由; (2)求函数的反函数;(3)若两个函数与在闭区间上恒满足,则称函数与在闭区间上是分离的.试判断函数与在闭区间上是否分离?若分离,求出实数的取值范围;若不分离,请说明理由. 解:(1)∵ ,∴ 函数的定义域为,(1分)又∵ ()()log )log )0a a f x f x x x +-=+=,∴ 函数是奇函数.(4分) (2)由,且当时,, 当时,,得的值域为实数集. 解得,.(8分)(3)在区间上恒成立,即, 即在区间上恒成立,(11分) 令,∵ ,∴ , 在上单调递增,∴ , 解得,∴ .(16分)23.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在数列中,已知,前项和为,且.(其中) (1)求;(2)求数列的通项公式; (3)设,问是否存在正整数、(其中),使得、、成等比数列?若存在,求出所有满足条件的数组;否则,说明理由. 解:(1)∵ ,令,得,∴ ,(3分)或者令,得,∴ .(2)当时,1111(1)()(1)22n n n n a a n a S ++++-+==,∴ 111(1)22n nn n n n a na a S S ++++=-=-,∴ , 推得,又∵ ,∴ ,∴ ,当时也成立,∴ ().(9分) (3)假设存在正整数、,使得、、成等比数列,则、、成等差数列,故(**)(11分) 由于右边大于,则,即, 考查数列的单调性,∵ ,∴ 数列为单调递减数列.(14分) 当时,,代入(**)式得,解得; 当时,(舍).综上得:满足条件的正整数组为.(16分)(说明:从不定方程以具体值代入求解也可参照上面步骤给分)温馨提示:最好仔细阅读后才下载使用,万分感谢!。

北京市西城区2019~2020学年度第一学期期末考试高三数学试题(含答案解析)

北京市西城区2019~2020学年度第一学期期末考试高三数学试题(含答案解析)

北京市西城区2019 — 2020学年度第一学期期末试卷高三数学本试卷共5页.共150分。

考试时长120分钟。

考生务必将答案答在答题卡上•在试 卷上作答无效。

第I 卷(选择题共40分)-S 选择题:本大题共8小题■每小题5分.共40分•在每小题列出的四个选项中,选出 符合题目要求的一项.1. 设集合Λ = {x ∖r<a}. B = {—3,0∙l ∙5}・若集合A∩B 有且仅有2个元索.则实数α 的取值范围为(A) (-3,+∞)(B) (0> 1](C) [l ∙+α□)2. 若复数Z = 注.则在复平面内N 对应的点位于I-TI(A)第一象限 (B)第二象限(C)第三象限3. 在厶ABC 中.若 α=6, A=60o, 3 = 75°,则 C =(A) 4(B) 2√2(C) 2√3(D) 2^4. 设且兀y≠0,则下列不等式中一定成立的是(A)丄>丄(B)InlJrl >ln∣y 丨(C) 2-工<2-,CD) j ∙2>^25. 已知直线T Jry Jr2=0与圆τ ÷j∕2+2jc~2y jra = 0有公共点,则实数"的取值范围为(A) ( — 8. θ](B) [θ∙+oo)(C) [0, 2)(D) (—8, 2)2020. I(D) Eb 5)(D)第四象限6・设三个向b. c互不共线•则∙+b+c=(Γ是^以Iah ∖b∖, ICl为边长的三角形存在"的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件7.紫砂壶是中国特冇的手工制造陶土工艺品,其制作始于明朝正徳年间.紫砂壶的壶型众多•经典的有西施壶.掇球壶、石瓢壶.潘壶等•其中.石瓢壶的壶体可以近似看成一个圆台(即圆锥用平行于底面的平面截去一个锥体得到的)・下图给出了一个石瓢壶的相关数据(单位cm),那么该壶的容量约为(A)IOO cm5(B)200 cm3(C)300 cm3(D)400 cn√&已知函数∕Q)=√TTΓ+4 若存在区间O M].使得函数/Q)在区间DZ 上的值域为[α + l,6 + l],则实数〃的取值范围为(A) (-l,+oo) (B) (一 1. 0] (C) (一 +,+8) (D)( —斗,0]4 4第JI 卷(非选择题共110分)二、填空题:本大题共6小题■每小题5分,共3。

北京市朝阳区2019-2020学年度第一学期期末质量检测高一年级数学试卷(解析版)

北京市朝阳区2019-2020学年度第一学期期末质量检测高一年级数学试卷(解析版)

北京市朝阳区2019-2020学年高一(上)期末数学试卷选择题:本大题共10小题,每小题5分,共50分.1.已知集合A={﹣1,0,1},集合B={x∈Z|x2﹣2x≤0},那么A∪B等于()A.{﹣1}B.{0,1}C.{0,1,2}D.{﹣1,0,1,2} 2.已知命题p:∀x<﹣1,x2>1,则¬p是()A.∃x<﹣1,x2≤1B.∀x≥﹣1,x2>1C.∀x<﹣1,x2>1D.∃x≤﹣1,x2≤1 3.下列命题是真命题的是()A.若a>b>0,则ac2>bc2B.若a>b,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则4.函数f(x)=cos2x﹣sin2x的最小正周期是()A.B.πC.2πD.4π5.已知函数f(x)在区间(0,+∞)上的函数值不恒为正,则在下列函数中,f(x)只可能是()A.f(x)=xB.f(x)=sin x+2C.f(x)=ln(x2﹣x+1)D.f(x)=6.已知a,b,c∈R,则“a=b=c”是“a2+b2+c2>ab+ac+bc”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.通过科学研究发现:地震时释放的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M.已知2011年甲地发生里氏9级地震,2019年乙地发生里氏7级地震,若甲、乙两地地震释放能量分别为E1,E2,则E1和E2的关系为()A.E1=32E2B.E1=64E2C.E1=1000E2D.E1=1024E2 8.已知函数f(x)=x+﹣a(a∈R),g(x)=﹣x2+4x+3,在同一平面直角坐标系里,函数f(x)与g(x)的图象在y轴右侧有两个交点,则实数a的取值范围是()A.{a|a<﹣3}B.{a|a>﹣3}C.{a|a=﹣3}D.{a|﹣3<a<4} 9.已知大于1的三个实数a,b,c满足(lga)2﹣2lgalgb+lgblgc=0,则a,b,c的大小关系不可能是()A.a=b=c B.a>b>c C.b>c>a D.b>a>c10.已知正整数x1,x2,…,x10满足当i<j(i,j∈N*)时,x i<x j,且x12+x22+…+x102≤2020,则x9﹣(x1+x2+x3+x4)的最大值为()A.19B.20C.21D.22二.填空题:本大题共6小题,每空5分,共30分.11.(5分)计算sin330°=.12.(5分)若集合A={x|x2﹣ax+2<0}=∅,则实数a的取值范围是.13.(5分)已知函数f(x)=log2x,在x轴上取两点A(x1,0),B(x2,0)(0<x1<x2),设线段AB的中点为C,过A,B,C作x轴的垂线,与函数f(x)的图象分别交于A1,B1,C1,则点C1在线段A1B1中点M的.(横线上填“上方”或者“下方”)14.(5分)给出下列命题:①函数是偶函数;②函数f(x)=tan2x在上单调递增;③直线x=是函数图象的一条对称轴;④将函数的图象向左平移单位,得到函数y=cos2x的图象.其中所有正确的命题的序号是.15.(5分)已知在平面直角坐标系xOy中,点A(1,1)关于y轴的对称点A'的坐标是.若A和A'中至多有一个点的横纵坐标满足不等式组,则实数a的取值范围是.16.(5分)在物理学中,把物体受到的力(总是指向平衡位置)正比于它离开平衡位置的距离的运动称为“简谐运动”.可以证明,在适当的直角坐标系下,简谐运动可以用函数y=A sin(ωx+φ),x∈[0,+∞)表示,其中A>0,ω>0.如图,平面直角坐标系xOy中,以原点O为圆心,r为半径作圆,A为圆周上的一点,以Ox为始边,OA为终边的角为α,则点A的坐标是,从A点出发,以恒定的角速度ω转动,经过t秒转动到点B (x,y),动点B在y轴上的投影C作简谐运动,则点C的纵坐标y与时间t的函数关系式为.三.解答题:本大题共4小题,共70分.解答应写出文字说明,演算步骤或证明过程. 17.(14分)已知集合A={x|x2﹣5x﹣6≤0},B={x|m+1≤x≤2m﹣1,m∈R}.(Ⅰ)求集合∁R A;(Ⅱ)若A∪B=A,求实数m的取值范围;18.(18分)已知函数f(x)=sin2x﹣2.(Ⅰ)若点在角α的终边上,求tan2α和f(α)的值;(Ⅱ)求函数f(x)的最小正周期;(Ⅲ)若,求函数f(x)的最小值.19.(18分)已知函数f(x)=(x≠a).(Ⅰ)若2f(1)=﹣f(﹣1),求a的值;(Ⅱ)若a=2,用函数单调性定义证明f(x)在(2,+∞)上单调递减;(Ⅲ)设g(x)=xf(x)﹣3,若函数g(x)在(0,1)上有唯一零点,求实数a的取值范围.20.(20分)已知函数f(x)=log2(x+a)(a>0).当点M(x,y)在函数y=g(x)图象上运动时,对应的点M'(3x,2y)在函数y=f(x)图象上运动,则称函数y=g(x)是函数y=f(x)的相关函数.(Ⅰ)解关于x的不等式f(x)<1;(Ⅱ)对任意的x∈(0,1),f(x)的图象总在其相关函数图象的下方,求a的取值范围;(Ⅲ)设函数F(x)=f(x)﹣g(x),x∈(0,1).当a=1时,求|F(x)|的最大值2019-2020学年北京市朝阳区高一(上)期末数学试卷参考答案与试题解析选择题:本大题共10小题,每小题5分,共50分.1.(5分)已知集合A={﹣1,0,1},集合B={x∈Z|x2﹣2x≤0},那么A∪B等于()A.{﹣1}B.{0,1}C.{0,1,2}D.{﹣1,0,1,2}【分析】先分别求出集合A,B,再由并集定义能求出A∪B.【解答】解:∵集合A={﹣1,0,1},集合B={x∈Z|x2﹣2x≤0}={x∈Z|0≤x≤2}={0,1,2},∴A∪B={﹣1,0,1,2}.故选:D.【点评】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.2.(5分)已知命题p:∀x<﹣1,x2>1,则¬p是()A.∃x<﹣1,x2≤1B.∀x≥﹣1,x2>1C.∀x<﹣1,x2>1D.∃x≤﹣1,x2≤1【分析】根据全称命题的否定是特称命题进行判断.【解答】解:命题是全称命题,则命题的否定为:∃x<﹣1,x2≤1,故选:A.【点评】本题主要考查含有量词的命题的否定,根据全称命题的否定是特称命题,特称命题的否定是全称命题是解决本题的关键.3.(5分)下列命题是真命题的是()A.若a>b>0,则ac2>bc2B.若a>b,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则【分析】利用不等式的基本性质,判断选项的正误即可.【解答】解:对于A,若a>b>0,则ac2>bc2,c=0时,A不成立;对于B,若a>b,则a2>b2,反例a=0,b=﹣2,所以B不成立;对于C,若a<b<0,则a2<ab<b2,反例a=﹣4,b=﹣1,所以C不成立;对于D,若a<b<0,则,成立;故选:D.【点评】本题考查命题的真假的判断与应用,不等式的基本性质的应用,是基本知识的考查.4.(5分)函数f(x)=cos2x﹣sin2x的最小正周期是()A.B.πC.2πD.4π【分析】利用二倍角的余弦公式求得y=cos2x,再根据y=A cos(ωx+φ)的周期等于T =,可得结论.【解答】解:∵函数y=cos2x﹣sin2x=cos2x,∴函数的周期为T==π,故选:B.【点评】本题主要考查三角函数的周期性及其求法,二倍角的余弦公式,利用了y=A sin (ωx+φ)的周期等于T=,属于基础题.5.(5分)已知函数f(x)在区间(0,+∞)上的函数值不恒为正,则在下列函数中,f(x)只可能是()A.f(x)=xB.f(x)=sin x+2C.f(x)=ln(x2﹣x+1)D.f(x)=【分析】结合基本初等函数的性质分别求解选项中函数的值域即可判断.【解答】解:∵x>0,根据幂函数的性质可知,y=>0,不符合题意,∵﹣1≤sin x≤1,∴2+sin x>0恒成立,故选项B不符合题意,C:∵x2﹣x+1=,而f(x)=ln(x2﹣x+1),故值域中不恒为正数,符合题意,D:当x>0时,f(x)=2x﹣1>0恒成立,不符合题意,故选:C.【点评】本题主要考查了基本初等函数的值域的求解,属于基础试题.6.(5分)已知a,b,c∈R,则“a=b=c”是“a2+b2+c2>ab+ac+bc”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】先化简命题,再讨论充要性.【解答】解:由a,b,c∈R,知:∵a2+b2+c2﹣ab﹣ac﹣bc=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(b﹣c)2+(a﹣c)2],∴“a=b=c”⇒“a2+b2+c2=ab+ac+bc”,“a2+b2+c2>ab+ac+bc”⇒“a,b,c不全相等”.“a=b=c”是“a2+b2+c2>ab+ac+bc”的既不充分也不必要条件.故选:D.【点评】本题考查充分条件、必要条件、充要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,是基础题.7.(5分)通过科学研究发现:地震时释放的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M.已知2011年甲地发生里氏9级地震,2019年乙地发生里氏7级地震,若甲、乙两地地震释放能量分别为E1,E2,则E1和E2的关系为()A.E1=32E2B.E1=64E2C.E1=1000E2D.E1=1024E2【分析】先把数据代入已知解析式,再利用对数的运算性质即可得出.【解答】解:根据题意得:lgE1=4.8+1.5×9 ①,lgE2=4.8+1.5×7 ②,①﹣②得lgE1﹣lgE2=3,lg()=3,所以,即E1=1000E2,故选:C.【点评】本题考查了对数的运用以及运算,熟练掌握对数的运算性质是解题的关键.8.(5分)已知函数f(x)=x+﹣a(a∈R),g(x)=﹣x2+4x+3,在同一平面直角坐标系里,函数f(x)与g(x)的图象在y轴右侧有两个交点,则实数a的取值范围是()A.{a|a<﹣3}B.{a|a>﹣3}C.{a|a=﹣3}D.{a|﹣3<a<4}【分析】作出函数f(x)与函数g(x)的图象,数形结合即可判断出a的取值范围【解答】解:在同一坐标系中作出函数f(x)与g(x)的示意图如图:因为f(x)=x+﹣a≥2﹣a=4﹣a(x>0),当且仅当x=2时取等号,而g(x)的对称轴为x=2,最大值为7,根据条件可知0<4﹣a<7,解得﹣3<a<4,故选:D.【点评】本题考查函数图象交点问题,涉及对勾函数图象在第一象限的画法,二次函数最值等知识点,属于中档题.9.(5分)已知大于1的三个实数a,b,c满足(lga)2﹣2lgalgb+lgblgc=0,则a,b,c 的大小关系不可能是()A.a=b=c B.a>b>c C.b>c>a D.b>a>c【分析】因为三个实数a,b,c都大于1,所以lga>0,lgb>0,lgc>0,原等式可化为lgalg+lgblg=0,分别分析选项的a,b,c的大小关系即可判断出结果.【解答】解:∵三个实数a,b,c都大于1,∴lga>0,lgb>0,lgc>0,∵(lga)2﹣2lgalgb+lgblgc=0,∴(lga)2﹣lgalgb+lgblgc﹣lgalgb=0,∴lga(lga﹣lgb)+lgb(lgc﹣lga)=0,∴lgalg+lgblg=0,对于A选项:若a=b=c,则lg=0,lg=0,满足题意;对于B选项:若a>b>c,则,0<<1,∴lg>0,lg<0,满足题意;对于C选项:若b>c>a,则0<<1,>1,∴lg<0,lg>0,满足题意;对于D选项:若b>a>c,则0<<1,0<<1,∴lg<0,lg<0,∴lgalg+lgblg <0,不满足题意;故选:D.【点评】本题主要考查了对数的运算性质,是中档题.10.(5分)已知正整数x1,x2,…,x10满足当i<j(i,j∈N*)时,x i<x j,且x12+x22+…+x102≤2020,则x9﹣(x1+x2+x3+x4)的最大值为()A.19B.20C.21D.22【分析】要使x9﹣(x1+x2+x3+x4)取得最大值,结合题意,则需前8项最小,第9项最大,则第10项为第9项加1,由此建立不等式,求出第9项的最大值,进而得解.【解答】解:依题意,要使x9﹣(x1+x2+x3+x4)取得最大值,则x i=i(i=1,2,3,4,5,6,7,8),且x10=x9+1,故,即,又2×292+2×29﹣1815=﹣75<0,2×302+2×30﹣1815=45>0,故x9的最大值为29,∴x9﹣(x1+x2+x3+x4)的最大值为29﹣(1+2+3+4)=19.故选:A.【点评】本题考查代数式最大值的求法,考查逻辑推理能力及创新意识,属于中档题.二.填空题:本大题共6小题,每空5分,共30分.11.(5分)计算sin330°=﹣.【分析】所求式子中的角变形后,利用诱导公式化简即可得到结果.【解答】解:sin330°=sin(360°﹣30°)=﹣sin30°=﹣.故答案为:﹣【点评】此题考查了诱导公式的作用,熟练掌握诱导公式是解本题的关键.12.(5分)若集合A={x|x2﹣ax+2<0}=∅,则实数a的取值范围是[﹣2,2].【分析】根据集合A的意义,利用△≤0求出实数a的取值范围.【解答】解:集合A={x|x2﹣ax+2<0}=∅,则不等式x2﹣ax+2<0无解,所以△=(﹣a)2﹣4×1×2≤0,解得﹣2≤a≤2,所以实数a的取值范围是[﹣2,2].故答案为:[﹣2,2].【点评】本题考查了一元二次不等式的解法与应用问题,是基础题.13.(5分)已知函数f(x)=log2x,在x轴上取两点A(x1,0),B(x2,0)(0<x1<x2),设线段AB的中点为C,过A,B,C作x轴的垂线,与函数f(x)的图象分别交于A1,B1,C1,则点C1在线段A1B1中点M的上方.(横线上填“上方”或者“下方”)【分析】求出点C1,M的纵坐标,作差后利用基本不等式即可比较大小,进而得出结论.【解答】解:依题意,A1(x1,log2x1),B1(x2,log2x2),则,则=,故点C1在线段A1B1中点M的上方.故答案为:上方.【点评】本题考查对数运算及基本不等式的运用,考查逻辑推理能力,属于基础题.14.(5分)给出下列命题:①函数是偶函数;②函数f(x)=tan2x在上单调递增;③直线x=是函数图象的一条对称轴;④将函数的图象向左平移单位,得到函数y=cos2x的图象.其中所有正确的命题的序号是①②③.【分析】利用三函数的奇偶性、单调性、对称轴、图象的平移等性质直接求解.【解答】解:在①中,函数=cos2x是偶函数,故①正确;在②中,∵y=tan x在(﹣,)上单调递增,∴函数f(x)=tan2x在上单调递增,故②正确;在③中,函数图象的对称轴方程为:2x+=kπ+,k∈Z,即x=,k=0时,x=,∴直线x=是函数图象的一条对称轴,故③正确;在④中,将函数的图象向左平移单位,得到函数y=cos(2x+)的图象,故④错误.故答案为:①②③.【点评】本题考查命题真假的判断,考查三函数的奇偶性、单调性、对称轴、图象的平移等基础知识,考查运算求解能力,是中档题.15.(5分)已知在平面直角坐标系xOy中,点A(1,1)关于y轴的对称点A'的坐标是(﹣1,1).若A和A'中至多有一个点的横纵坐标满足不等式组,则实数a 的取值范围是{a|a≥0或a≤﹣1}.【分析】先求出对称点的坐标,再求出第二问的对立面,即可求解.【解答】解:因为点A(1,1)关于y轴的对称点A'的坐标是(﹣1,1);A和A'中至多有一个点的横纵坐标满足不等式组,其对立面是A和A'中两个点的横纵坐标都满足不等式组,可得:且⇒a<0且﹣1<a<2⇒﹣1<a<0故满足条件的a的取值范围是{a|a≥0或a≤﹣1}.故答案为:(﹣1,1),{a|a≥0或a≤﹣1}.【点评】本题主要考查对称点的求法以及二元一次不等式组和平面区域之间的关系,属于基础题.16.(5分)在物理学中,把物体受到的力(总是指向平衡位置)正比于它离开平衡位置的距离的运动称为“简谐运动”.可以证明,在适当的直角坐标系下,简谐运动可以用函数y=A sin(ωx+φ),x∈[0,+∞)表示,其中A>0,ω>0.如图,平面直角坐标系xOy中,以原点O为圆心,r为半径作圆,A为圆周上的一点,以Ox为始边,OA为终边的角为α,则点A的坐标是A(r cosα,r sinα),从A点出发,以恒定的角速度ω转动,经过t 秒转动到点B(x,y),动点B在y轴上的投影C作简谐运动,则点C的纵坐标y与时间t的函数关系式为y=r sin(ωt+α).【分析】由任意角三角函数的定义,A(r cosα,r sinα),根据题意∠BOx=ωt+α,进而可得点C的纵坐标y与时间t的函数关系式.【解答】解:由任意角三角函数的定义,A(r cosα,r sinα),若从A点出发,以恒定的角速度ω转动,经过t秒转动到点B(x,y),则∠BOx=ωt+α,点C的纵坐标y与时间t的函数关系式为y=r sin(ωt+α).故答案为:A(r cosα,r sinα),y=r sin(ωt+α).【点评】本题考查任意角三角函数的定义,三角函数解析式,属于中档题.三.解答题:本大题共4小题,共70分.解答应写出文字说明,演算步骤或证明过程. 17.(14分)已知集合A={x|x2﹣5x﹣6≤0},B={x|m+1≤x≤2m﹣1,m∈R}.(Ⅰ)求集合∁R A;(Ⅱ)若A∪B=A,求实数m的取值范围;【分析】(Ⅰ)容易求出A={x|﹣1≤x≤6},然后进行补集的运算即可;(Ⅱ)根据A∪B=A可得出B⊆A,从而可讨论B是否为空集:B=∅时,m+1>2m﹣1;B≠∅时,,解出m的范围即可.【解答】解:(Ⅰ)A={x|﹣1≤x≤6},∴∁R A={x|x<﹣1或x>6},(Ⅱ)∵A∪B=A,∴B⊆A,∴①B=∅时,m+1>2m﹣1,解得m<2;②B≠∅时,,解得,∴实数m的取值范围为.【点评】本题考查了描述法的定义,一元二次不等式的解法,并集、补集的定义及运算,子集的定义,考查了计算能力,属于基础题.18.(18分)已知函数f(x)=sin2x﹣2.(Ⅰ)若点在角α的终边上,求tan2α和f(α)的值;(Ⅱ)求函数f(x)的最小正周期;(Ⅲ)若,求函数f(x)的最小值.【分析】(Ⅰ)直接利用三角函数的定义的应用和函数的关系式的应用求出结果.(Ⅱ)利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的最小正周期.(Ⅲ)利用函数的定义域的应用求出函数的值域和最小值.【解答】解:(Ⅰ)若点在角α的终边上,所以,,故,所以tan2α===.f(α)==2.(Ⅱ)由于函数f(x)=sin2x﹣2=.所以函数的最小正周期为.(Ⅲ)由于,所以,所以当x=时,函数的最小值为.【点评】本题考查的知识要点:三角函数的定义的应用,三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.19.(18分)已知函数f(x)=(x≠a).(Ⅰ)若2f(1)=﹣f(﹣1),求a的值;(Ⅱ)若a=2,用函数单调性定义证明f(x)在(2,+∞)上单调递减;(Ⅲ)设g(x)=xf(x)﹣3,若函数g(x)在(0,1)上有唯一零点,求实数a的取值范围.【分析】(Ⅰ)由已知,建立关于a的方程,解出即可;(Ⅱ)将a=2代入,利用取值,作差,变形,判号,作结论的步骤证明即可;(Ⅲ)问题转化为h(x)=2x2﹣3x+3a在(0,1)上有唯一零点,由二次函数的零点分布问题解决.【解答】解:(Ⅰ)由2f(1)=﹣f(﹣1)得,,解得a=﹣3;(Ⅱ)当a=2时,,设x1,x2∈(2,+∞),且x1<x2,则,∵x1,x2∈(2,+∞),且x1<x2,∴x2﹣x1>0,(x1﹣2)(x2﹣2)>0,∴f(x1)>f(x2),∴f(x)在(2,+∞)上单调递减;(Ⅲ),若函数g(x)在(0,1)上有唯一零点,即h(x)=2x2﹣3x+3a在(0,1)上有唯一零点(x=a不是函数h(x)的零点),且二次函数h(x)=2x2﹣3x+3a的对称轴为,若函数h(x)在(0,1)上有唯一零点,依题意,①当h(0)h(1)<0时,3a(3a﹣1)<0,解得;②当△=0时,9﹣24a=0,解得,则方程h(x)=0的根为,符合题意;③当h(1)=0时,解得,则此时h(x)=2x2﹣3x+1的两个零点为,符合题意.综上所述,实数a的取值范围为.【点评】本题考查函数单调性的证明及二次函数的零点分布问题,考查推理论证及运算求解能力,属于中档题.20.(20分)已知函数f(x)=log2(x+a)(a>0).当点M(x,y)在函数y=g(x)图象上运动时,对应的点M'(3x,2y)在函数y=f(x)图象上运动,则称函数y=g(x)是函数y=f(x)的相关函数.(Ⅰ)解关于x的不等式f(x)<1;(Ⅱ)对任意的x∈(0,1),f(x)的图象总在其相关函数图象的下方,求a的取值范围;(Ⅲ)设函数F(x)=f(x)﹣g(x),x∈(0,1).当a=1时,求|F(x)|的最大值【分析】(Ⅰ)利用对数函数的性质可得,解出即可;(Ⅱ)根据题意,求得,依题意,在(0,1)上恒成立,由此得解;(Ⅲ)结合(Ⅱ)可知,,则只需求出的最大值即可.【解答】解:(Ⅰ)依题意,,则,解得﹣a<x<2﹣a,∴所求不等式的解集为(﹣a,2﹣a);(Ⅱ)由题意,2y=log2(3x+a),即f(x)的相关函数为,∵对任意的x∈(0,1),f(x)的图象总在其相关函数图象的下方,∴当x∈(0,1)时,恒成立,由x+a>0,3x+a>0,a>0得,∴在此条件下,即x∈(0,1)时,恒成立,即(x+a)2<3x+a,即x2+(2a﹣3)x+a2﹣a<0在(0,1)上恒成立,∴,解得0<a≤1,故实数a的取值范围为(0,1].(Ⅲ)当a=1时,由(Ⅱ)知在区间(0,1)上,f(x)<g(x),∴,令,则,令μ=3x+1(1<μ<4),则,∴,当且仅当“”时取等号,∴|F(x)|的最大值为.【点评】本题考查对数函数的图象及性质,考查换元思想的运用,考查逻辑推理能力及运算求解能力,属于中档题.。

2022-2023学年北京市西城区人教版三年级上册期末考试数学试卷及答案

2022-2023学年北京市西城区人教版三年级上册期末考试数学试卷及答案

2022-2023学年北京市西城区人教版三年级上册期末考试数学试卷及答案一、下面每题都有四个选项,其中只有一个是正确的,请将正确选项的字母填在括号里。

(共16分)1.10张A4纸摞在一起的厚度大约是1()。

A.毫米B.厘米C.分米D.米【答案】A【解析】【分析】根据生活实际,结合题中数据可知,10张A4纸摞在一起的厚度应该用毫米作单位。

【详解】根据分析可知,10张A4纸摞在一起的厚度大约是1毫米。

故答案为:A【点睛】根据情景选择计量单位,本题主要考查学生对生活常识的掌握。

2.在钟面上秒针从“11”走到“2”,经过了()秒。

A.3B.9C.15D.45【答案】C【解析】【分析】钟面上有12大格,时针走1大格是1小时,分针走1大格是5分钟,秒针走1大格是5秒;现在秒针从“11”走到“2”,走了3大格,所以经过了5×3=15(秒),据此即可解答。

【详解】5×3=15(秒)秒针从“11”走到“2”,经过了15秒。

故答案为:C【点睛】本题主要考查学生对钟面知识的掌握和灵活运用。

3.下面图中,图()的涂色部分表示是整体的1 4。

A. B. C. D.【答案】C 【解析】【分析】14表示把一个整体平均分成4份,取其中的1份,据此选择。

【详解】A.把一个五边形看作整体“1”,平均分成5份,每份是15,不符合题意;B.把一个正方形分成3份,不是平均分,不符合题意;C.把4个小正方形看作整体“1”,每个小正方形是1份,可以表示14,符合题意;D.把6个○看作整体“1”,平均分成3份,每份2个,每份是13,不符合题意。

故答案为:C【点睛】本题主要考查了分数的意义,需明确平均分的份数和需要表示的份数。

4.要使289×□的积是三位数,□里最大能填()。

A.2B.3C.4D.5【答案】B【解析】【分析】根据题意,把289看作与它接近的整十数290,因为290×4=1160,积是四位数,290×3=870,积是三位数,要使289×□的积是三位数,那么这个一位数要比4小,所以□里最大填3;据此解答即可。

2019-2020学年北京市西城区五年级(上)期末数学试卷

2019-2020学年北京市西城区五年级(上)期末数学试卷

2019-2020学年北京市西城区五年级(上)期末数学试卷试题数:18,满分:501.(单选题,2分)根据方程3x-6=18的解,得到5x-6=()A.4B.8C.14D.342.(单选题,2分)从盒子里摸出一个球,一定摸出黑球的是()A.B.C.D.3.(单选题,2分)正确计算下面三角形面积的算式是()A.5×1.7B.5×1.7÷2C.6×1.7D.6×1.7÷24.(单选题,2分)比较大小,在〇里填“>”的是()•A.0.03÷0.1〇0. 3B.7.2×0.5〇7.2÷0.5C.5÷3〇1.6D.100×0.1〇1÷0.15.(单选题,2分)如图中的阴影部分是一片湿地,估一估,这片湿地的面积最接近()公顷.(每个小方格代表一公顷)A.25B.65C.120D.1506.(单选题,2分)下面说法正确的是()A.等底等高的两个平行四边形的面积可能相等B.等底等高的两个三角形一定可以拼成一个平行四边形C.等底、不等高的两个三角形的面积不可能相等D.不等底、不等高的平行四边形的面积一定不相等7.(单选题,2分)“湖边春色分外娇,一棵柳树二棵桃.平湖周围三千米,五米一棵都栽到.漫步湖畔赏美景,可知桃树有多少?”根据这首诗,可以求出桃树有()棵.A.399B.400C.401D.6008.(单选题,2分)把平行四边形木框拉成长方形后(如图),面积增加了30cm2,原来平行四边形的高是()cm.A.5B.7C.8D.109.(单选题,2分)21.78÷0.4=54.45219.78÷0.4=549.452199.78÷0.4=5499.45……按照上面的规律,下面正确的等式是()A.219999.78÷0.4=54999.45B.2199.78÷0.4=54999.45C.21999.78÷0.4=5499.945D.219999.78÷0.4=549999.4510.(单选题,2分)张浩将梯形ABCD通过割补的方法,转化成三角形ABF(过程如图).已知三角形ABF的面积是24cm2,则CF的长是()cm.A.2B.4C.6D.1211.(填空题,2分)用10元钱买1.8元一块的橡皮,最多可以买___ 块.12.(填空题,2分)京张高速铁路是2022年北京冬奥会重要交通保障设施之一,全长174km,其中北京境内长akm,剩余都在河北境内.如果高铁以每小时350km的速度行驶,高铁在河北境内需要开___ 小时.13.(填空题,2分)小明的作业不小心被墨水遮盖了一部分(如图所示),根据能看到的数,确定这个除法算式的商是___ .14.(填空题,2分)平行四边形ABCD的底是10cm,高是4.9cm(如图).长方形AEDF的面积是___ cm2.15.(填空题,2分)学校召开运动会,需要为运动员准备560瓶矿泉水.如果张老师按超市的促销活动整箱购买(如图),至少需要买___ 箱矿泉水才能满足运动员的需求.张老师准备600元用于购买这些矿泉水,估一估他准备的钱___ (请填写“够”或“不够”)16.(填空题,2分)如图,用小△摆图形,按照这样的规律摆下去,第6幅图中有___ 个小△,第n幅图中有___ 个小△.17.(问答题,6分)用竖式计算(第(2)题结果保留一位小数).6.05×1.45.13÷2.618.(问答题,12分)脱式计算(能简算的要简算).0.54÷0.09×7.359.6×7.8+2.2×59.68.73×4×2.528×(3.2-3.16)÷162019-2020学年北京市西城区五年级(上)期末数学试卷参考答案与试题解析试题数:18,满分:501.(单选题,2分)根据方程3x-6=18的解,得到5x-6=()A.4B.8C.14D.34【正确答案】:D【解析】:根据等式的性质,先求出方程3x-6=18的解,然后再代入5x-6进行求值.【解答】:解:3x-6=183x-6+6=18+63x=243x÷3=24÷3x=8把x=8代入5x-6可得:5×8-6=40-6=34故选:D。

北京市海淀区2019-2020学年高二上学期期末考试理科数学试卷Word版含解析

北京市海淀区2019-2020学年高二上学期期末考试理科数学试卷Word版含解析

北京市海淀区2019-2020学年高二上学期期末考试理科数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知圆(x+1)2+y 2=2,则其圆心和半径分别为( )A .(1,0),2B .(﹣1,0),2C .D .2.抛物线x 2=4y 的焦点到准线的距离为( )A .B .1C .2D .43.双曲线4x 2﹣y 2=1的一条渐近线的方程为( )A .2x+y=0B .2x+y=1C .x+2y=0D .x+2y=14.在空间中,“直线a ,b 没有公共点”是“直线a ,b 互为异面直线”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.已知A ,B 为圆x 2+y 2=2ax 上的两点,若A ,B 关于直线y=2x+1对称,则实数a=( )A .B .0C .D .16.已知直线l 的方程为x ﹣my+2=0,则直线l ( )A .恒过点(﹣2,0)且不垂直x 轴B .恒过点(﹣2,0)且不垂直y 轴C .恒过点(2,0)且不垂直x 轴D .恒过点(2,0)且不垂直y 轴7.已知直线x+ay ﹣1=0和直线ax+4y+2=0互相平行,则a 的取值是( )A .2B .±2C .﹣2D .08.已知两直线a ,b 和两平面α,β,下列命题中正确的为( )A .若a ⊥b 且b ∥α,则a ⊥αB .若a ⊥b 且b ⊥α,则a ∥αC .若a ⊥α且b ∥α,则a ⊥bD .若a ⊥α且α⊥β,则a ∥β9.已知点A (5,0),过抛物线y 2=4x 上一点P 的直线与直线x=﹣1垂直且交于点B ,若|PB|=|PA|,则cos ∠APB=( )A .0B .C .D .10.如图,在边长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足B 1P ⊥D 1E ,则线段B 1P 的长度的最大值为( )A .B .2C .D .3二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.已知命题p :“∀x ∈R ,x 2≥0”,则¬p : . 12.椭圆x 2+9y 2=9的长轴长为 .13.若曲线C :mx 2+(2﹣m )y 2=1是焦点在x 轴上的双曲线,则m 的取值范围为 .14.如图,在四棱锥P ﹣ABCD 中,底面四边形ABCD 的两组对边均不平行.①在平面PAB 内不存在直线与DC 平行;②在平面PAB 内存在无数多条直线与平面PDC 平行;③平面PAB 与平面PDC 的交线与底面ABCD 不平行;上述命题中正确命题的序号为 .15.已知向量,则与平面BCD 所成角的正弦值为 .16.若某三棱锥的三视图如图所示,则该棱锥的体积为 ,表面积为 .三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.已知△ABC 的三个顶点坐标为A (0,0),B (8,4),C (﹣2,4).(1)求证:△ABC 是直角三角形;(2)若△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,求m 的值.18.如图所示的几何体中,2CC 1=3AA 1=6,CC 1⊥平面ABCD ,且AA 1⊥平面ABCD ,正方形ABCD 的边长为2,E 为棱A 1D 中点,平面ABE 分别与棱C 1D ,C 1C 交于点F ,G .(Ⅰ)求证:AE ∥平面BCC 1;(Ⅱ)求证:A 1D ⊥平面ABE ;(Ⅲ)求二面角D ﹣EF ﹣B 的大小,并求CG 的长.19.已知椭圆G:的离心率为,经过左焦点F1(﹣1,0)的直线l与椭圆G相交于A,B两点,与y轴相交于C点,且点C在线段AB上.(Ⅰ)求椭圆G的方程;(Ⅱ)若|AF1|=|CB|,求直线l的方程.北京市海淀区2019-2020学年高二上学期期末考试理科数学试卷参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知圆(x+1)2+y2=2,则其圆心和半径分别为()A.(1,0),2 B.(﹣1,0),2 C.D.【考点】圆的标准方程.【分析】利用圆的标准方程的性质求解.【解答】解:圆(x+1)2+y2=2的圆心为(﹣1,0),半径为.故选:D.2.抛物线x2=4y的焦点到准线的距离为()A.B.1 C.2 D.4【考点】抛物线的简单性质.【分析】直接利用抛物线方程求解即可.【解答】解:抛物线x2=4y的焦点到准线的距离为:P=2.故选:C.3.双曲线4x2﹣y2=1的一条渐近线的方程为()A.2x+y=0 B.2x+y=1 C.x+2y=0 D.x+2y=1【考点】双曲线的简单性质.【分析】将双曲线的方程化为标准方程,求得a,b,由双曲线的渐近线方程y=±x,即可得到所求结论.【解答】解:双曲线4x2﹣y2=1即为﹣y2=1,可得a=,b=1,由双曲线的渐近线方程y=±x,可得所求渐近线方程为y=±2x.故选:A.4.在空间中,“直线a,b没有公共点”是“直线a,b互为异面直线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】空间中直线与直线之间的位置关系.【分析】利用空间中两直线的位置关系直接求解.【解答】解:“直线a,b没有公共点”⇒“直线a,b互为异面直线或直线a,b为平行线”,“直线a,b互为异面直线”⇒“直线a,b没有公共点”,∴“直线a,b没有公共点”是“直线a,b互为异面直线”的必要不充分条件.故选:B.5.已知A,B为圆x2+y2=2ax上的两点,若A,B关于直线y=2x+1对称,则实数a=()A.B.0 C.D.1【考点】直线与圆的位置关系.【分析】根据题意,圆心C(a,0)在直线y=2x+1上,C的坐标并代入直线2x+y+a=0,再解关于a的方程,即可得到实数a的值.【解答】解:∵A,B为圆x2+y2=2ax上的两点,A,B关于直线y=2x+1对称,∴圆心C(a,0)在直线y=2x+1上,∴2a+1=0,解之得a=﹣故选:A.6.已知直线l的方程为x﹣my+2=0,则直线l()A.恒过点(﹣2,0)且不垂直x轴 B.恒过点(﹣2,0)且不垂直y轴C.恒过点(2,0)且不垂直x轴D.恒过点(2,0)且不垂直y轴【考点】直线的一般式方程.【分析】由直线l的方程为x﹣my+2=0,令y=0,解得x即可得出定点,再利用斜率即可判断出与y轴位置关系.【解答】解:由直线l的方程为x﹣my+2=0,令y=0,解得x=﹣2.于是化为:y=﹣x﹣1,∴恒过点(﹣2,0)且不垂直y轴,故选:B.7.已知直线x+ay﹣1=0和直线ax+4y+2=0互相平行,则a的取值是()A.2 B.±2 C.﹣2 D.0【考点】直线的一般式方程与直线的平行关系.【分析】由直线的平行关系可得1×4﹣a•a=0,解得a值排除重合可得.【解答】解:∵直线x+ay﹣1=0和直线ax+4y+2=0互相平行,∴1×4﹣a•a=0,解得a=2或a=﹣2,经验证当a=﹣2时两直线重合,应舍去故选:A8.已知两直线a,b和两平面α,β,下列命题中正确的为()A.若a⊥b且b∥α,则a⊥α B.若a⊥b且b⊥α,则a∥αC.若a⊥α且b∥α,则a⊥b D.若a⊥α且α⊥β,则a∥β【考点】空间中直线与平面之间的位置关系.【分析】利用空间线面平行、线面垂直以及面面垂直的性质定理和判定定理对选项分别分析选择.【解答】解:对于A,若a⊥b且b∥α,则a与α位置关系不确定;故A错误;对于B,若a⊥b且b⊥α,则a与α位置关系不确定;可能平行、可能在平面内,也可能相交;故B 错误;对于C,若a⊥α且b∥α,根据线面垂直和线面平行的性质定理,可以得到a⊥b;故C正确;对于D ,若a ⊥α且α⊥β,则a ∥β或者a 在平面β内,故D 错误;故选:C .9.已知点A (5,0),过抛物线y 2=4x 上一点P 的直线与直线x=﹣1垂直且交于点B ,若|PB|=|PA|,则cos ∠APB=( )A .0B .C .D .【考点】抛物线的简单性质.【分析】求出P 的坐标,设P 在x 轴上的射影为C ,则tan ∠APC==,可得∠APB=120°,即可求出cos ∠APB .【解答】解:由题意,|PB|=|PF|=PA|,∴P 的横坐标为3,不妨取点P (3,2),设P 在x 轴上的射影为C ,则tan ∠APC==, ∴∠APC=30°,∴∠APB=120°,∴cos ∠APB=﹣. 故选:C .10.如图,在边长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足B 1P ⊥D 1E ,则线段B 1P 的长度的最大值为( )A .B .2C .D .3【考点】点、线、面间的距离计算.【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出线段B 1P 的长度的最大值.【解答】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设P (a ,b ,0),则D 1(0,0,2),E (1,2,0),B 1(2,2,2),=(a ﹣2,b ﹣2,﹣2),=(1,2,﹣2), ∵B 1P ⊥D 1E ,∴=a ﹣2+2(b ﹣2)+4=0,∴a+2b ﹣2=0,∴点P 的轨迹是一条线段,当a=0时,b=1;当b=0时,a=2,设CD 中点F ,则点P 在线段AF 上,当A 与P 重合时,线段B 1P 的长度为:|AB 1|==2; 当P 与F 重合时,P (0,1,0),=(﹣2,﹣1,﹣2),线段B 1P 的长度||==3, 当P 在线段AF 的中点时,P (1,,0),=(﹣1,﹣,﹣2),线段B 1P 的长度||==. ∴线段B 1P 的长度的最大值为3.故选:D .二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.已知命题p :“∀x ∈R ,x 2≥0”,则¬p : ∃x ∈R ,x 2<0 . 【考点】命题的否定.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以命题p :“∀x ∈R ,x 2≥0”,则¬p :∃x ∈R ,x 2<0. 故答案为:∃x ∈R ,x 2<0.12.椭圆x 2+9y 2=9的长轴长为 6 .【考点】椭圆的简单性质.【分析】将椭圆化为标准方程,求得a=3,即可得到长轴长2a .【解答】解:椭圆x 2+9y 2=9即为+y 2=1,即有a=3,b=1,则长轴长为2a=6.故答案为:6.13.若曲线C :mx 2+(2﹣m )y 2=1是焦点在x 轴上的双曲线,则m 的取值范围为 (2,+∞) .【考点】双曲线的简单性质.【分析】将双曲线的方程化为标准方程,由题意可得m >0且m ﹣2>0,解不等式即可得到所求范围.【解答】解:曲线C :mx 2+(2﹣m )y 2=1是焦点在x 轴上的双曲线,可得﹣=1,即有m>0,且m﹣2>0,解得m>2.故答案为:(2,+∞).14.如图,在四棱锥P﹣ABCD中,底面四边形ABCD的两组对边均不平行.①在平面PAB内不存在直线与DC平行;②在平面PAB内存在无数多条直线与平面PDC平行;③平面PAB与平面PDC的交线与底面ABCD不平行;上述命题中正确命题的序号为①②③.【考点】棱锥的结构特征.【分析】①用反证法利用线面平行的性质即可证明.②设平面PAB∩平面PDC=l,则l⊂平面PAB,且在平面PAB中有无数无数多条直线与l平行,即可判断;③用反证法利用线面平行的性质即可证明.【解答】解:①用反证法.设在平面PAB内存在直线与DC平行,则CD∥平面PAB,又平面ABCD∩平面PAB=AB,平面ABCD∩平面PCD=CD,故CD∥AB,与已知矛盾,故原命题正确;②设平面PAB∩平面PDC=l,则l⊂平面PAB,且在平面PAB中有无数无数多条直线与l平行,故在平面PAB内存在无数多条直线与平面PDC平行,命题正确;③用反证法.设平面PAB与平面PDC的交线l与底面ABCD平行,则l∥AB,l∥CD,可得:AB∥CD,与已知矛盾,故原命题正确.故答案为:①②③.15.已知向量,则与平面BCD所成角的正弦值为.【考点】直线与平面所成的角.【分析】求出平面BCD的法向量,利用向量法能求出与平面BCD所成角的正弦值.【解答】解:∵向量,∴==(﹣1,2,0),==(﹣1,0,3),设平面BCD的法向量为=(x,y,z),则,取x=6,得=(6,3,2),设与平面BCD所成角为θ,则sinθ===.∴与平面BCD所成角的正弦值为.故答案为:.16.若某三棱锥的三视图如图所示,则该棱锥的体积为,表面积为3.【考点】由三视图求面积、体积.【分析】几何体为三棱锥,棱锥底面为等腰三角形,底边为2,底边的高为1,棱锥的高为.棱锥顶点在底面的射影为底面等腰三角形的顶点.【解答】解:由三视图可知几何体为三棱锥,棱锥顶点在底面的射影为底面等腰三角形的顶点,棱锥底面等腰三角形的底边为2,底边的高为1,∴底面三角形的腰为,棱锥的高为.∴V==,S=+××2+=3.故答案为,三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.已知△ABC的三个顶点坐标为A(0,0),B(8,4),C(﹣2,4).(1)求证:△ABC 是直角三角形;(2)若△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,求m 的值.【考点】直线与圆的位置关系;直线的斜率;圆的一般方程.【分析】(1)证明•=﹣16+16=0,可得⊥,即可证明△ABC 是直角三角形;(2)求出△ABC 的外接圆的方程,利用△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,可得圆心到直线的距离d=4,即可求m 的值.【解答】(1)证明:∵A (0,0),B (8,4),C (﹣2,4),∴=(8,4),=(﹣2,4),∴•=﹣16+16=0,∴⊥,∴ABC 是直角三角形;(2)解:△ABC 的外接圆是以BC 为直径的圆,方程为(x ﹣3)2+(y ﹣4)2=25,∵△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,∴圆心到直线的距离d=4=,∴m=﹣4或﹣44.18.如图所示的几何体中,2CC 1=3AA 1=6,CC 1⊥平面ABCD ,且AA 1⊥平面ABCD ,正方形ABCD 的边长为2,E 为棱A 1D 中点,平面ABE 分别与棱C 1D ,C 1C 交于点F ,G .(Ⅰ)求证:AE ∥平面BCC 1;(Ⅱ)求证:A 1D ⊥平面ABE ;(Ⅲ)求二面角D ﹣EF ﹣B 的大小,并求CG 的长.【考点】二面角的平面角及求法;直线与平面平行的判定;直线与平面垂直的判定.【分析】(Ⅰ)推导出CC 1∥AA 1,AD ∥BC ,从而平面AA 1D ∥平面CC 1B ,由此能证明AE ∥平面CC 1B . (Ⅱ)法1:推导出AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD ,以AB ,AD ,AA 1分别x ,y ,z 轴建立空间直角坐标系,利用向量法能证明A 1D ⊥平面ABE .法2:推导出AA 1⊥AB ,AB ⊥AD ,从而AB ⊥A 1D ,再由AE ⊥A 1D ,能证明A 1D ⊥平面ABE .(Ⅲ)推导出平面EFD ⊥平面ABE ,从而二面角D ﹣EF ﹣B 为90°,设,且λ∈[0,1],则G (2,2,3λ),再由A 1D ⊥BG ,能求出CG 的长.【解答】证明:(Ⅰ)因为CC 1⊥平面ABCD ,且AA 1⊥平面ABCD ,所以CC 1∥AA 1,因为ABCD 是正方形,所以AD∥BC,因为AA1∩AD=A,CC1∩BC=C,所以平面AA1D∥平面CC1B.因为AE⊂平面AA1D,所以AE∥平面CC1B.(Ⅱ)法1:因为AA1⊥平面ABCD,所以AA1⊥AB,AA1⊥AD,因为ABCD是正方形,所以AB⊥AD,以AB,AD,AA1分别x,y,z轴建立空间直角坐标系,则由已知可得B(2,0,0),D(0,2,0),A1(0,0,2),E(0,1,1),,,因为,所以,所以A1D⊥平面ABE.法2:因为AA1⊥平面ABCD,所以AA1⊥AB.因为ABCD是正方形,所以AB⊥AD,所以AB⊥平面AA1D,所以AB⊥A1D.因为E为棱A1D中点,且,所以AE⊥A1D,所以A1D⊥平面ABE.(Ⅲ)因为A1D⊥平面ABE,且A1D⊂平面EFD,所以平面EFD⊥平面ABE.因为平面ABE即平面BEF,所以二面角D﹣EF﹣B为90°.设,且λ∈[0,1],则G(2,2,3λ),因为A1D⊥平面ABE,BG⊂平面ABE,所以A1D⊥BG,所以,即,所以.19.已知椭圆G :的离心率为,经过左焦点F 1(﹣1,0)的直线l 与椭圆G 相交于A ,B 两点,与y 轴相交于C 点,且点C 在线段AB 上.(Ⅰ)求椭圆G 的方程;(Ⅱ)若|AF 1|=|CB|,求直线l 的方程.【考点】椭圆的简单性质.【分析】(Ⅰ)设椭圆焦距为2c ,运用离心率公式和a ,b ,c 的关系,即可得到椭圆方程;(Ⅱ)由题意可知直线l 斜率存在,可设直线l :y=k (x+1),代入椭圆方程,运用韦达定理和向量共线的坐标表示,解方程即可得到所求方程.【解答】解:(Ⅰ)设椭圆焦距为2c ,由已知可得,且c=1,所以a=2,即有b 2=a 2﹣c 2=3,则椭圆G 的方程为;(Ⅱ)由题意可知直线l 斜率存在,可设直线l :y=k (x+1),由消y ,并化简整理得(4k 2+3)x 2+8k 2x+4k 2﹣12=0,由题意可知△>0,设A (x 1,y 1),B (x 2,y 2),则,因为点C ,F 1都在线段AB 上,且|AF 1|=|CB|,所以,即(﹣1﹣x 1,﹣y 1)=(x 2,y 2﹣y C ),所以﹣1﹣x 1=x 2,即x 1+x 2=﹣1,所以,解得,即.所以直线l的方程为或.。

人教版数学高三期末测试精选(含答案)3

人教版数学高三期末测试精选(含答案)3

【答案】A
15.设 Sn 为等差数列an 的前 n 项和,若 3S3 S2 S4 , a1 2 ,则 a5
A. 12
B. 10
C.10
D.12
【来源】2018 年全国普通高等学校招生统一考试理科数学(新课标 I 卷)
【答案】B
16.若圆的半径为 4,a、b、c 为圆的内接三角形的三边,若 abc=16 2 ,则三角形的
b
c
a
A.都大于 2
B.都小于 2
C.至少有一个不大于 2
D.至少有一个不小于 2
【来源】2015-2016 湖南常德石门一中高二下第一次月考文科数学卷(带解析)
【答案】D
5. ABC 中, A 、 B 、 C 的对边的长分别为 a 、 b 、 c ,给出下列四个结论: ①以 1 、 1 、 1 为边长的三角形一定存在;
人教版数学高三期末测试精选(含答案)
学校:___________姓名:___________班级:___________考号:___________
评卷人 得分
一、单选题
1.在 ABC 中, a 2 3 0°或150
B. 60 或120
A.等腰直角三角形 B.直角三角形
C.等腰三角形
D.等边三角形
【来源】2013-2014 学年河南省郑州一中高二上学期期中考试文科数学试卷(带解析)
【答案】C
21.在△ABC 中,如果 sin A : sin B : sin C 2 : 3 : 4 ,那么 cosC 等于 ( )
2
A.
3
B. 2 3
【答案】D
10.在锐角 ABC 中,a ,b ,c 分别是角 A ,B ,C 的对边,a b cosC 3 c sin B , 3

西城区2023-2024学年第一学期期末高三数学试卷及答案

西城区2023-2024学年第一学期期末高三数学试卷及答案

北京市西城区2023—2024学年度第一学期期末试卷 高三数学 第1页(共6页)北京市西城区2023—2024学年度第一学期期末试卷高三数学 2024.1本试卷共 6 页, 150 分。

考试时长 120 分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共 40 分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合{|13}A x x =-<<,2{|4}B x x =≥,则A B =U(A )(1,)-+∞ (B )(1,2]-(C )(,2](1,)-∞--+∞U (D )(,2](1,3)-∞--U(2)在复平面内,复数i 2i-对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限(3)设,a b ∈R ,且a b >,则(A )11a b< (B )tan tan a b > (C )32a b -<-(D )||||a a b b >(4)已知双曲线C 的一个焦点是1(0,2)F,渐近线为y =,则C 的方程是(A )2213y x -=(B )2213x y -=(C )2213x y -=(D )2213y x -=(5)已知点(0,0)O ,点P 满足||1PO =.若点(,4)A t ,其中t ∈R ,则||PA 的最小值为(A )5 (B )4 (C )3(D )2北京市西城区2023—2024学年度第一学期期末试卷 高三数学 第2页(共6页)(6)在ABC △中,60,2B b a c ∠==-=o,则ABC △的面积为(A(B(C )32(D )34(7)已知函数1()ln1xf x x+=-,则 (A )()f x 在(1,1)-上是减函数,且曲线()y f x =存在对称轴 (B )()f x 在(1,1)-上是减函数,且曲线()y f x =存在对称中心 (C )()f x 在(1,1)-上是增函数,且曲线()y f x =存在对称轴 (D )()f x 在(1,1)-上是增函数,且曲线()y f x =存在对称中心 (8)设,a b 是非零向量,则“||||<a b ”是“2||||<⋅a b b ”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件(9)设{}n a 是首项为正数,公比为q 的无穷等比数列,其前n 项和为n S .若存在无穷多个正整数k ,使0k S ≤,则q 的取值范围是 (A )(,0)-∞ (B )(,1]-∞- (C )[1,0)-(D )(0,1)(10)如图,水平地面上有一正六边形地块ABCDEF ,设计师规划在正六边形的顶点处矗立六根与地面垂直的柱子,用以 固定一块平板式太阳能电池板111111A B C D E F .若其中三根柱 子111,,AA BB CC 的高度依次为12m,9m,10m ,则另外三根 柱子的高度之和为 (A )47m (B )48m (C )49m(D )50m北京市西城区2023—2024学年度第一学期期末试卷 高三数学 第3页(共6页)第二部分(非选择题 共 110 分)二、填空题共5小题,每小题5分,共25分。

北京市西城区2022-2023学年高一上册期末考试数学试卷(含答案)

北京市西城区2022-2023学年高一上册期末考试数学试卷(含答案)

北京市西城区2022-2023学年高一上册期末考试数学试卷(含答案)第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合{|51}A x x =-<≤<,2{|9}B x x =≤9,则A B =(A )[5,3]-(B )(3,1]-(C )[3,1)-(D )[3,3]-(2)已知命题:p 1x ∃<,21x ≤,则p⌝为(A )1x ∀≥,21x >(B )1x ∃<,21x >(C )1x ∀<,21x >(D )1x ∃≥,21x >(3)如图,在平行四边形ABCD 中,AC AB -=(A )CB(B )AD(C )BD (D )CD (4)若a b >,则下列不等式一定成立的是(A )11a b<(B )22a b >(C )e e a b--<(D )ln ln a b>(5)不等式2112x x +-≤的解集为(A )[3,2]-(B )(,3]-∞-(C )[3,2)-(D )(,3](2,)-∞-+∞ (6)正方形ABCD 的边长为1,则|2|AB AD +=uu u r uuu r(A )1(B )3(C (D (7)某物流公司为了提高运输效率,计划在机场附近建造新的仓储中心.已知仓储中心建造费用C (单位:万元)与仓储中心到机场的距离(单位:km )之间满足的关系为80022000C s s=++,则当C 最小时,的值为(A )20(B )(C )40(D )400(8)设2log 3a =,则122a +=(A )8(B )11(C )12(D )18(9)已知为单位向量,则“||||1+-=a b b ”是“存在0λ>,使得λb =a ”的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(10)近年来,踩踏事件时有发生,给人们的生命财产安全造成了巨大损失.在人员密集区域,人员疏散是控制事故的关键,而能见度(单位:米)是影响疏散的重要因素.在特定条件下,疏散的影响程度与能见度满足函数关系:0.20.1,1.4,0.110,110,b x k ax x x ⎧<⎪⎪=+⎨⎪⎪>⎩≤≤,,(,a b 是常数).如图记录了两次实验的数据,根据上述函数模型和实验数据,的值是(参考数据:lg30.48≈)(A )0.24-(B )0.48-(C )0.24(D )0.48第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分。

北京市各区县2019-2020学年高一上学期期末考试数学试题分类汇编三角恒等变换

北京市各区县2019-2020学年高一上学期期末考试数学试题分类汇编三角恒等变换

北京市各区县2019-2020学年高一上学期期末考试数学试题分类汇编三角恒等变换(2015年1月·顺义期末·4.cos80cos 20sin80sin 20+的值等于A.14 D. 12(2015年1月·房山期末·3)cos 25cos35sin 25sin35-的值为(A )0(B )12(C )2(D (2015年1月·丰台期末·5.已知βα,都是锐角,31tan ,21tan ==βα,则βα+的值为( )A .π4B .π3C .π2 D .3π4(2015年1月·东城期末·4. ︒⋅︒+︒-︒15cos 15sin 215sin 15cos 22的值为A.213+ B.32D.21+43 (2015年1月·东城期末·7. 为了得到函数ππsin 3cos cos3sin 33y x x =+的图象,可以将函数sin3y x =图象 A.向右平移π9个单位 B.向右平移π个单位 C.向左平移π9个单位D.向左平移π个单位(2015年1月·石景山期末·8. 下列函数中,既是偶函数,又在[0,1]上单调递增的是 ( )A .cos y x =B .2y x =-C .2sin cos y x x = D .|sin |y x =(2015年1月·石景山期末·9.将函数sin 2y x =的图象向左平移4π个单位,再向上平移1个单位,所得图象的函数解析式是 ( )A .cos 2y x =B .22cos y x =C .sin(2)4y x π=+D .22sin y x =(2015年1月·昌平期末·5)函数2()2sin f x x =的周期是(A )2π(B )π (C )2π (D )4π(2015年1月·昌平期末·8)已知sincos22αα-=且cos 0α<,则tan α=(A (B )(C (D )(2015年1月·东城期末·14. 若1tan()42πθ+=,则tan θ=________.13-(2015年1月·昌平期末·12)已知4cos 5α=,则cos2α=_________ . 725(2015年1月·延庆期末·9.设A 、B 、C 是三角形的三个内角,下列关系恒成立的是 A . C B A sin )sin(=+ B .C B A cos )cos(=+ C .C B A tan )tan(=+D .2sin 2sinCB A =+ (2015年1月·西城期末·5.函数2(sin cos )y x x =-的最小正周期为( ) (A )2π (B )3π2(C )π (D )π2(2015年1月·石景山期末·1. 对于任意的R α∈,sin2α= ( )A .2sin αB .2sin cos ααC .2cos αD .22cos sin αα-(2015年1月·西城期末·8.当[0,π]x ∈时,函数()cos f x x x =-的值域是( )(A )[2,1]-(B )[1,2]-(C )[1,1]-(D )[-(2015年1月·延庆期末·14.已知sin cos αα-=sin 2α=_1-___.(2015年1月·顺义期末·4.0sin 45sin 75cos 45sin165+的值为A.12-B.2-C.12D.2(2015年1月·西城期末·15.函数2()sin sin cos f x x x x =+⋅的最大值是_____(2015年1月·顺义期末·17. (本小题共13分已知sin()410x π-=,3(,)24x ππ∈. (Ⅰ)求cos()4x π-和cos x 的值; (Ⅱ)求sin(2)3x π+的值.解:(Ⅰ)Q324x ππ<<,∴442x πππ<-<,∴cos()410x π-==————4分∴cos cos ()cos()cos sin()sin 444444x x x x ππππππ⎡⎤=-+=---⎢⎥⎣⎦=35-.—7分(Ⅱ)由(Ⅰ)得3cos 5x =-,Q 324x ππ<<,∴4sin 5x =,———8分 24sin 22sin cos 25x x x ==-,27cos 22cos 125x x =-=-————10分∴24sin(2)350x π++=-————13分 (2015年1月·西城期末·17.(本小题满分12分)已知tan 2=-α,其中(,)2π∈πα. (Ⅰ)求πtan()4-α的值; (Ⅱ)求sin 2α的值. 17.(本小题满分12分) (Ⅰ)解:因为 tan 2=-α,所以 πtan tanπ4tan()π41tan tan 4--=+⋅ααα 【 3分】 3=. 【 6分】(Ⅱ)解:由π(,π)2∈α,tan 2α=-, 得sin α=, 【 8分】cos α=. 【10分】所以 4sin 22sin cos 5==-ααα. 【12分】(2015年1月·西城期末·19.(本小题满分10分)已知函数()sin cos f x a x b x =+,其中a ∈Z ,b ∈Z .设集合{|()0}A x f x ==,{|(())0}B x f f x ==,且A B =.(Ⅰ)证明:0b =; (Ⅱ)求a 的最大值.(Ⅰ)证明:显然集合A ≠∅.设 0x A ∈,则0()0f x =. 【 1分】 因为 A B =,所以 0x B ∈, 即 0(())0f f x =,所以 (0)0f =, 【 3分】 所以 0b =. 【 4分】 (Ⅱ)解:由(Ⅰ)得()sin f x a x =,a ∈Z .① 当0a =时,显然满足A B =. 【 5分】 ② 当0a ≠时,此时{|sin 0}A x a x ==;{|sin(sin )0}B x a a x ==, 即{|sin ,}B x a x k k ==π∈Z . 【 6分】因为 A B =,所以对于任意x ∈R ,必有sin a x k ≠π (k ∈Z ,且0)k ≠成立. 【 7分】所以对于任意x ∈R ,sin k x aπ≠,所以 1k a π>, 【 8分】 即 ||||a k <⋅π,其中k ∈Z ,且0k ≠.所以 ||a <π, 【 9分】 所以整数a 的最大值是3. 【10分】(2015年1月·密云期末·16. (本小题满分14分)已知sin θ=. 其中θ是第三象限角. (Ⅰ)求cos ,tan θθ的值;(Ⅱ)求⎪⎭⎫⎝⎛π-θ4tan 的值; (III) 求πθπθθ⎛⎫+-++ ⎪⎝⎭sin 2sin()cos 22的值. 解:(Ⅰ)sin θ=θ是第三象限角,cos 5θ∴==- ----------------2分 sin tan 2.cos θθθ∴== ----------------4分 (Ⅱ)由(Ⅰ),tan tan 4tan()41tan tan4πθπθπθ--=+⋅----------------6分211.1213-==+⨯ ----------------9分(III)πθπθθ⎛⎫+-++ ⎪⎝⎭sin 2sin()cos 22θθθ=++-2cos 2sin 2cos 1 ----------------12分=-+-+--22(2(1555=-3.5 ----------------14分(2015年1月·顺义期末·18.(本小题满分已知函数2()cos cos f x x x x =.(Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在区间[,]122ππ上的取值范围; (Ⅲ)作出()f x 在一个周期内的图象.解:(Ⅰ)因为()fx 1cos 2sin 222x x +=+ π1sin(2)62x =++. ---------------------------------------------------4分所以函数()f x 的最小正周期为π.---------------------------------5分(Ⅱ)π1()sin(2)62f x x =++.因为122x ππ≤≤,所以ππ7π2366x ≤+≤, 所以1πsin(2)126x -+≤≤,因此π130sin(2)622x ++≤≤,即()f x 的取值范围为3[0]2,-----------------------------10分(Ⅲ)()f x 在[,]1212π11π-上的图象如图所示. ----------------------------14分(其它周期上的图象同等给分) (个别关键点错误酌情给分)(2015年1月·顺义期末·19.(本小题满分13分)已知函数2()cos 2sin f x x x =-.(I )求(0)f 的值;(II )求函数()f x 的最大值和最小值,并分别写出使函数取得最大值和最小值时的x 值.解:(I )2(0)cos0sin 01f =-=.------------------------------------------------------------------6分(II )2222()cos 2sin 12sin sin 3sin 1f x x x x x x =-=--=-+, -------------------8分所以)(x f 最大值是1,最小值是2-. ------------------------------------------------10分 当sin 0x =时,即()x k k Z π=∈时函数()f x 取得最大值1, 当sin 1x =±时,即()2x k k Z ππ=+∈时函数()f x 取得最小值2-.-------13分(2015年1月·顺义期末·18.(本小题满分已知函数2()cos cos f x x x x =. (Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在区间[,]122ππ上的取值范围;(Ⅲ)作出()f x 在一个周期内的图象.解:(Ⅰ)因为()f x 1cos 222x x +=+ π1sin(2)62x =++. ---------------------------------------------------4分所以函数()f x 的最小正周期为π.---------------------------------5分(Ⅱ)π1()sin(2)62f x x =++.因为122x ππ≤≤,所以ππ7π2366x ≤+≤, 所以1πsin(2)126x -+≤≤,因此π130sin(2)622x ++≤≤,即()f x 的取值范围为3[0]2,-----------------------------10分(Ⅲ)()f x 在[,]1212π11π-上的图象如图所示. ----------------------------14分(其它周期上的图象同等给分) (个别关键点错误酌情给分)(2015年1月·顺义期末·19.(本小题满分13分)已知函数2()cos 2sin f x x x =-.(I )求(0)f 的值;(II )求函数()f x 的最大值和最小值,并分别写出使函数取得最大值和最小值时的x 值.解:(I )2(0)cos0sin 01f =-=. -------------------6分(II )2222()cos 2sin 12sin sin 3sin 1f x x x x x x =-=--=-+, -------------------8分所以)(x f 最大值是1,最小值是2-. --------------------------10分 当sin 0x =时,即()x k k Z π=∈时函数()f x 取得最大值1, 当sin 1x =±时,即()2x k k Z ππ=+∈时函数()f x 取得最小值2-.-------13分。

北京市西城区2019-2020 学年八年级(上)期末数学试卷(含答案解析)

北京市西城区2019-2020 学年八年级(上)期末数学试卷(含答案解析)

2019-2020学年北京市西城区八年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.图书馆的标志是浓缩了图书馆文化的符号,下列图书馆标志中,不是轴对称的是()A.B.C.D.2.500米口径球面射电望远镜,简称FAST,是世界上最大的单口径球面射电望远镜,被誉为“中国天眼”.2018年4月18日,FAST望远镜首次发现的毫秒脉冲星得到国际认证,新发现的脉冲星自转周期为0.00519秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.将0.00519用科学记数法表示应为()A.0.519×10﹣2B.5.19×10﹣3C.51.9×10﹣4D.519×10﹣63.在△ABC中,AB=3,AC=5,第三边BC的取值范围是()A.10<BC<13 B.4<BC<12 C.3<BC<8 D.2<BC<84.如图,∠1+∠2+∠3+∠4+∠5等于()A.360°B.540°C.720°D.900°5.对于一次函数y=(k﹣3)x+2,y随x的增大而增大,k的取值范围是()A.k<0 B.k>0 C.k<3 D.k>36.下列各式中,正确的是()A.=B.=C.=D.=﹣7.如图,已知△ABC,下面甲、乙、丙、丁四个三角形中,与△ABC全等的是()A .甲B .乙C .丙D .丁8.小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程75km ,线路二全程90km ,汽车在线路二上行驶的平均时速是线路一上车速的1.8倍,线路二的用时预计比线路一用时少半小时,如果设汽车在线路一上行驶的平均速度为xkm /h ,则下面所列方程正确的是( )A .=+B .=﹣C .=+D .=﹣9.如图,△ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,当PC 与PE 的和最小时,∠CPE 的度数是( )A .30°B .45°C .60°D .90°10.如图,线段AB =6cm ,动点P 以2cm /s 的速度从A ﹣B ﹣A 在线段AB 上运动,到达点A 后,停止运动;动点Q 以1cm /s 的速度从B ﹣A 在线段AB 上运动,到达点A 后,停止运动.若动点P ,Q 同时出发,设点Q 的运动时间是t (单位:s )时,两个动点之间的距离为s (单位:cm ),则能表示s 与t 的函数关系的是( )A .B .C.D.二、填空题(本题共18分,第11~16题,每小题2分,第17题3分,第18题3分)11.若分式的值为零,则x的值为.12.在平面直角坐标系中,点P(1,﹣2)关于x轴对称的点的坐标是.13.计算:20+2﹣2=.14.如图,在△ABC中,AB的垂直平分线MN交AC于点D,连接BD.若AC=7,BC=5,则△BDC的周长是.15.如图,边长为acm的正方形,将它的边长增加bcm,根据图形写一个等式.16.如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE=2cm,则△BCD的面积为cm2.17.如图,在平面直角坐标系xOy中,点A的坐标为(4,﹣3),且OA=5,在x轴上确定一点P,使△AOP为等腰三角形.(1)写出一个符合题意的点P 的坐标 ; (2)请在图中画出所有符合条件的△AOP .18.(1)如图,∠MAB =30°,AB =2cm .点C 在射线AM 上,利用图1,画图说明命题“有两边和其中一边的对角分别相等的两个三角形全等”是假命题.你画图时,选取的BC 的长约为 cm (精确到0.1cm ).(2)∠MAB 为锐角,AB =a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC =x ,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是 .三、解答题(本题共30分,每小题6分) 19.(1)分解因式x (x ﹣a )+y (a ﹣x ) (2)分解因式x 3y ﹣10x 2y +25xy20.计算: +21.解方程:+=122.如图,点A ,B ,C ,D 在一条直线上,且AB =CD ,若∠1=∠2,EC =FB .求证:∠E =∠F .23.在平面直角坐标系xOy 中,直线l 1:y =3x 与直线l 2:y =kx +b 交于点A (a ,3),点B (2,4)在直线l上.2(1)求a的值;(2)求直线l的解析式;2(3)直接写出关于x的不等式3x<kx+b的解集.四、解答题(本题共12分,第24题7分,第25题5分)24.在平面直角坐标系xOy中,正方形ABCD的两个顶点的坐标分别为A(﹣2,0),D(﹣2,4),顶点B在x轴的正半轴上.(1)写出点B,C的坐标;(2)直线y=5x+5与x轴交于点E,与y轴交于点F.求△EFC的面积.25.阅读下列材料下面是小明同学“作一个角等于60°的直角三角形”的尺规作图过程.已知:线段AB(如图1)求作:△ABC,使∠CAB=90°,∠ABC=60°作法:如图2,(1)分别以点A,点B为圆心,AB长为半径画弧,两弧交于点D,连接BD(2)连接BD并延长,使得CD=BD;(3)连接AC△ABC就是所求的直角三角形证明:连接AD.由作图可知,AD=BD=AB,CD=BD∴△ABD是等边三角形(等边三角形定义)∴∠1=∠B=60°(等边三角形每个内角都等于60°)∴CD=AD∴∠2=∠C(等边对等角)在△ABC中,∠1+∠2+∠B+∠C=180°(三角形的内角和等于180°)∴∠2=∠C=30°∴∠1+∠2=90°(三角形的内角和等于180°),即∠CAB=90°∴△ABC就是所求作的直角三角形请你参考小明同学解决问题的方式,利用图3再设计一种“作一个角等于60°的直角三角形”的尺规作图过程(保留作图痕迹),并写出作法,证明,及推理依据.五、解答题(本题8分)26.在△ABC中,AB=AC,在△ABC的外部作等边三角形△ACD,E为AC的中点,连接DE并延长交BC于点F,连接BD.(1)如图1,若∠BAC=100°,求∠BDF的度数;(2)如图2,∠ACB的平分线交AB于点M,交EF于点N,连接BN.①补全图2;②若BN=DN,求证:MB=MN.2018-2019学年北京市西城区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.图书馆的标志是浓缩了图书馆文化的符号,下列图书馆标志中,不是轴对称的是()A.B.C.D.【分析】根据轴对称图形的概念解答.【解答】解:A、不是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、是轴对称图形;故选:A.【点评】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.500米口径球面射电望远镜,简称FAST,是世界上最大的单口径球面射电望远镜,被誉为“中国天眼”.2018年4月18日,FAST望远镜首次发现的毫秒脉冲星得到国际认证,新发现的脉冲星自转周期为0.00519秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.将0.00519用科学记数法表示应为()A.0.519×10﹣2B.5.19×10﹣3C.51.9×10﹣4D.519×10﹣6【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00519=5.19×10﹣3.故选:B.【点评】此题主要考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.在△ABC中,AB=3,AC=5,第三边BC的取值范围是()A.10<BC<13 B.4<BC<12 C.3<BC<8 D.2<BC<8【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围.【解答】解:第三边BC的取值范围是5﹣3<BC<5+3,即2<BC<8.故选:D.【点评】考查了三角形三边关系,已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.4.如图,∠1+∠2+∠3+∠4+∠5等于()A.360°B.540°C.720°D.900°【分析】多边形内角和定理:(n﹣2)•180°(n≥3)且n为整数),依此即可求解.【解答】解:(n﹣2)•180°=(5﹣2)×180°=3×180°=540°.故∠1+∠2+∠3+∠4+∠5等于540°.故选:B.【点评】考查了多边形内角和定理,关键是熟练掌握多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数).5.对于一次函数y=(k﹣3)x+2,y随x的增大而增大,k的取值范围是()A.k<0 B.k>0 C.k<3 D.k>3【分析】一次函数y=kx+b,当k>0时,y随x的增大而增大.据此列式解答即可.【解答】解:根据一次函数的性质,对于y=(k﹣3)x+2,当k﹣3>0时,即k>3时,y随x的增大而增大.故选:D .【点评】本题考查了一次函数的性质.一次函数y =kx +b ,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小. 6.下列各式中,正确的是( )A .=B .=C .=D .=﹣【分析】根据分式的基本性质解答即可.【解答】解:A 、=,故错误;B 、=+,故错误;C 、=,故正确;D 、=﹣,故错误;故选:C .【点评】本题考查了分式的基本性质,熟记分式的基本性质是解题的关键.7.如图,已知△ABC ,下面甲、乙、丙、丁四个三角形中,与△ABC 全等的是( )A .甲B .乙C .丙D .丁【分析】根据全等三角形的判定定理作出正确的选择即可.【解答】解:A .△ABC 和甲所示三角形根据SA 无法判定它们全等,故本选项错误;B .△ABC 和乙所示三角形根据SAS 可判定它们全等,故本选项正确; C .△ABC 和丙所示三角形根据SA 无法判定它们全等,故本选项错误;D .△ABC 和丁所示三角形根据AA 无法判定它们全等,故本选项错误;故选:B .【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程75km,线路二全程90km,汽车在线路二上行驶的平均时速是线路一上车速的1.8倍,线路二的用时预计比线路一用时少半小时,如果设汽车在线路一上行驶的平均速度为xkm/h,则下面所列方程正确的是()A.=+B.=﹣C.=+D.=﹣【分析】设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为1.8xkm/h,根据线路二的用时预计比线路一用时少半小时,列方程即可.【解答】解:设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为1.8xkm/h,由题意得:=+,故选:A.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是,读懂题意,设出未知数,找出合适的等量关系,列出方程.9.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC 与PE的和最小时,∠CPE的度数是()A.30°B.45°C.60°D.90°【分析】连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题;【解答】解:如连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°,故选:C.【点评】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.10.如图,线段AB=6cm,动点P以2cm/s的速度从A﹣B﹣A在线段AB上运动,到达点A后,停止运动;动点Q以1cm/s的速度从B﹣A在线段AB上运动,到达点A后,停止运动.若动点P,Q 同时出发,设点Q的运动时间是t(单位:s)时,两个动点之间的距离为s(单位:cm),则能表示s与t的函数关系的是()A.B.C.D.【分析】根据题意可以得到点P运动的慢,点Q运动的快,可以算出动点P和Q相遇时用的时间和点Q到达终点时的时间,从而可以解答本题.【解答】解:设点Q的运动时间是t(单位:s)时,两个动点之间的距离为s(单位:cm),6=2t+t解得,t=2此时,点P离点B的距离为:6﹣2×2=2cm,点Q离点A的距离为:6﹣2=4cm,相遇后,点P到达B点用的时间为:2÷2=1s,此时两个动点之间的距离为3cm,由上可得,刚开始P和Q两点间的距离在越来越小直到相遇时,它们之间的距离变为0,此时用的时间为2s;相遇后,在第3s时点P到达B点,从相遇到点P到达B点它们的距离在变大,1s后P点从B点返回,点P继续运动,两个动点之间的距离逐渐变小,同时达到A点.故选:D.【点评】本题考查动点问题的函数图象,解题的关键是明确各个时间段内它们对应的函数图象.二、填空题(本题共18分,第11~16题,每小题2分,第17题3分,第18题3分)11.若分式的值为零,则x的值为 1 .【分析】分式的值为0的条件是分子为0,分母不能为0,据此可以解答本题.【解答】解:,则x﹣1=0,x+1≠0,解得x=1.故若分式的值为零,则x的值为1.【点评】本题考查分式的值为0的条件,注意分式为0,分母不能为0这一条件.12.在平面直角坐标系中,点P(1,﹣2)关于x轴对称的点的坐标是(1,2).【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【解答】解:点P(1,﹣2)关于x轴对称的点的坐标是(1,2),故答案为:(1,2).【点评】本题考查了关于x轴对称的点的坐标,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.13.计算:20+2﹣2=.【分析】根据零指数幂和负指数幂的知识点进行解答.【解答】解:原式=1+=.故答案为.【点评】本题主要考查了幂的负指数运算,先把底数化成其倒数,然后将负整指数幂当成正的进行计算,任何非0数的0次幂等于1,比较简单.14.如图,在△ABC中,AB的垂直平分线MN交AC于点D,连接BD.若AC=7,BC=5,则△BDC的周长是12 .【分析】根据线段的垂直平分线的性质得到DA=DB,根据三角形的周长公式计算即可.【解答】解:∵NM是AB的垂直平分线,∴DA=DB,∴△BDC的周长=BD+CD+BC=AD+CD+BC=AC+BC=12,故答案为:12.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.如图,边长为acm的正方形,将它的边长增加bcm,根据图形写一个等式a2+2ab+b2=(a+b)2.【分析】依据大正方形的面积的不同表示方法,即可得到等式.【解答】解:由题可得,大正方形的面积=a2+2ab+b2;大正方形的面积=(a+b)2;∴a2+2ab+b2=(a+b)2,故答案为:a2+2ab+b2=(a+b)2.【点评】本题主要考查了完全平方公式的几何背景,即运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.16.如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE=2cm,则△BCD的面积为 6 cm2.【分析】作DF⊥BC于F,根据角平分线的性质求出DF,根据三角形的面积公式计算即可.【解答】解:作DF⊥BC于F,∵CD是它的角平分线,DE⊥AC,DF⊥BC,∴DF=DE=2,∴△BCD的面积=×BC×DF=6(cm2),故答案为:6.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.17.如图,在平面直角坐标系xOy中,点A的坐标为(4,﹣3),且OA=5,在x轴上确定一点P,使△AOP为等腰三角形.(1)写出一个符合题意的点P的坐标答案不唯一,如:(﹣5,0);(2)请在图中画出所有符合条件的△AOP.【分析】(1)根据等腰三角形的性质即可求解;(2)可分三种情况:①AO=AP;②AO=PO;③AP=PO;解答出即可.【解答】解:(1)一个符合题意的点P的坐标答案不唯一,如:(﹣5,0);(2)如图所示:故答案为:答案不唯一,如:(﹣5,0).【点评】本题主要考查了作图﹣复杂作图、等腰三角形的判定和坐标与图形的性质,注意讨论要全面,不要遗漏.18.(1)如图,∠MAB=30°,AB=2cm.点C在射线AM上,利用图1,画图说明命题“有两边和其中一边的对角分别相等的两个三角形全等”是假命题.你画图时,选取的BC的长约为答案不唯一如:BC=1.2cm cm(精确到0.1cm).(2)∠MAB为锐角,AB=a,点C在射线AM上,点B到射线AM的距离为d,BC=x,若△ABC的形状、大小是唯一确定的,则x的取值范围是x=d或x≥a..【分析】(1)答案不唯一,可以取BC=1.2cm(1cm<BC<2cm);(2)当x=d或x≥a时,三角形是唯一确定的;【解答】解:(1)取BC=1.2cm,如图在△ABC和△ABC′中满足SSA,两个三角形不全等.故答案为:答案不唯一如:BC=1.2cm.(2)若△ABC的形状、大小是唯一确定的,则x的取值范围是x=d或x≥a,故答案为x=d或x≥a.【点评】本题考查全等三角形的判定和性质,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本题共30分,每小题6分)19.(1)分解因式x(x﹣a)+y(a﹣x)(2)分解因式x3y﹣10x2y+25xy【分析】(1)直接提取公因式(x﹣a)分解因式即可.(2)先提取公因式xy,然后利用完全平方公式进一步进行因式分解.【解答】(1)解:x(x﹣a)+y(a﹣x)=x(x﹣a)﹣y(x﹣a)=(x﹣a)(x﹣y);(2)解:x3y﹣10x2y+25xy=xy(x2﹣10x+25)=xy ( x ﹣5)2.【点评】考查了因式分解﹣提公因式法.当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.20.计算: +【分析】原式先计算除法运算,再计算加减运算即可求出值.【解答】解:原式=+•=+=+=.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.21.解方程: +=1【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:方程两边乘 (x ﹣3)(x +3),得 x (x +3)+6 (x ﹣3)=x 2﹣9,解得:x =1,检验:当 x =1 时,(x ﹣3)(x +3)≠0,所以,原分式方程的解为x =1.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.如图,点A ,B ,C ,D 在一条直线上,且AB =CD ,若∠1=∠2,EC =FB .求证:∠E =∠F .【分析】求出∠DBF =∠ACE ,AC =DB ,根据SAS 推出△ACE ≌△DBF ,根据全等三角形的性质得出即可.【解答】证明:∵∠1+∠DBF =180°,∠2+∠ACE =180°.又∵∠1=∠2,∴∠DBF =∠ACE ,∵AB =CD ,∴AB +BC =CD +BC ,即AC =DB ,在△ACE 和△DBF 中,∴△ACE ≌△DBF (SAS ),∴∠E =∠F .【点评】本题考查了全等三角形的性质和判定,能求出△ACE ≌△DBF 是解此题的关键.23.在平面直角坐标系xOy 中,直线l 1:y =3x 与直线l 2:y =kx +b 交于点A (a ,3),点B (2,4)在直线l 2上.(1)求a 的值;(2)求直线l 2的解析式;(3)直接写出关于x 的不等式3x <kx +b 的解集.【分析】(1)把A (a ,3)代入y =3x 可求出a 的值;(2)利用待定系数法求直线l 2的解析式;(3)写出直线l 2:y =kx +b 在直线l 1:y =3x 上方所对应的自变量的范围即可.【解答】解:(1)直线 l 1:y =3x 与直线 l 2:y =kx +b 交于点 A (a ,3),所以3a =3. 解得a =1.(2)由(1)得点 A (1,3),直线 l 2:y =kx +b 过点 A (1,3),点 B ( 2,4 ),所以,解得所以直线 l 2 的解析式为 y =x +2.4 分(3)不等式3x<kx+b的解集为x<1.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.四、解答题(本题共12分,第24题7分,第25题5分)24.在平面直角坐标系xOy中,正方形ABCD的两个顶点的坐标分别为A(﹣2,0),D(﹣2,4),顶点B在x轴的正半轴上.(1)写出点B,C的坐标;(2)直线y=5x+5与x轴交于点E,与y轴交于点F.求△EFC的面积.【分析】(1)根据正方形的性质以及A、D、B的位置即可求得;(2)求得E、F点的坐标,进而求得OB=2,BC=4,OF=5,OE=1,EB=3,根据三角形的面积公式和梯形的面积公式求得即可.【解答】解:(1)如图,∵正方形ABCD的两个顶点的坐标分别为A(﹣2,0),D(﹣2,4),顶点B在x轴的正半轴上,∴B (2,0),C (2,4);(2)∵直线y =5x +5与x 轴交于点E ,与y 轴交于点F ,∴E (﹣1,0),F (0,5),∵B (2,0),C (2,4),∴OB =2,BC =4,OF =5,OE =1,EB =3,∴S 梯形OBCF =(OF +BC )•OB =×(5+4)×2=9,S △OEF =OE •OF =×2×5=5,S △EBC =EB •BC =×3×4=6,∴S △EFC =S 梯形OBCF +S △OEF ﹣S △EBC =9+5﹣6=8.【点评】本题考查一次函数图象上点的坐标特征以及正方形的性质,坐标与图形的性质,求得点的坐标解题的关键.25.阅读下列材料下面是小明同学“作一个角等于60°的直角三角形”的尺规作图过程.已知:线段AB (如图1)求作:△ABC ,使∠CAB =90°,∠ABC =60°作法:如图2,(1)分别以点A,点B为圆心,AB长为半径画弧,两弧交于点D,连接BD(2)连接BD并延长,使得CD=BD;(3)连接AC△ABC就是所求的直角三角形证明:连接AD.由作图可知,AD=BD=AB,CD=BD∴△ABD是等边三角形(等边三角形定义)∴∠1=∠B=60°(等边三角形每个内角都等于60°)∴CD=AD∴∠2=∠C(等边对等角)在△ABC中,∠1+∠2+∠B+∠C=180°(三角形的内角和等于180°)∴∠2=∠C=30°∴∠1+∠2=90°(三角形的内角和等于180°),即∠CAB=90°∴△ABC就是所求作的直角三角形请你参考小明同学解决问题的方式,利用图3再设计一种“作一个角等于60°的直角三角形”的尺规作图过程(保留作图痕迹),并写出作法,证明,及推理依据.【分析】根据题意设计“作一个角等于60°的直角三角形”的尺规作图过程,连接DC.得到△DBC 是等边三角形,根据等边三角形的性质得到∠B=60°,根据等腰三角形的性质证明.【解答】解:作法:(1)延长BA至D,使AD=AB;(2)分别以点B,点D为圆心,BD长为半径画弧,两弧交于点C;(3)连接AC,BC.则△ABC就是所求的直角三角形,证明:连接DC.由作图可知,BC=BD=DC,∴△DBC是等边三角形,∴∠B=60°,∵CD=CB,AD=AB,∴AC⊥BD,∴△ABC就是所求作的直角三角形.【点评】本题考查的是等边三角形的性质,基本尺规作图,掌握等边三角形的判定定理和性质定理,等腰三角形的三线合一是解题的关键.五、解答题(本题8分)26.在△ABC中,AB=AC,在△ABC的外部作等边三角形△ACD,E为AC的中点,连接DE并延长交BC于点F,连接BD.(1)如图1,若∠BAC=100°,求∠BDF的度数;(2)如图2,∠ACB的平分线交AB于点M,交EF于点N,连接BN.①补全图2;②若BN=DN,求证:MB=MN.【分析】(1)分别求出∠ADF,∠ADB,根据∠BDF=∠ADF﹣∠ADB计算即可;(2)①根据要求画出图形即可;②设∠ACM=∠BCM=α,由AB=AC,推出∠ABC=∠ACB=2α,可得∠NAC=∠NCA=α,∠DAN=60°+α,由△ABN≌△ADN(SSS),推出∠ABN=∠ADN=30°,∠BAN=∠DAN=60°+α,∠BAC=60°+2α,在△ABC中,根据∠BAC+∠ACB+∠ABC=180°,构建方程求出α,再证明∠MNB=∠MBN即可解决问题;【解答】(1)解:如图1中,在等边三角形△ACD中,∠CAD=∠ADC=60°,AD=AC.∵E为AC的中点,∴∠ADE=∠ADC=30°,∵AB=AC,∴AD=AB,∵∠BAD=∠BAC+∠CAD=160°,∴∠ADB=∠ABD=10°,∴∠BDF=∠ADF﹣∠ADB=20°.(2)①补全图形,如图所示.②证明:连接AN.∵CM平分∠ACB,∴设∠ACM=∠BCM=α,∵AB=AC,∴∠ABC=∠ACB=2α.在等边三角形△ACD中,∵E为AC的中点,∴DN⊥AC,∴NA=NC,∴∠NAC=∠NCA=α,∴∠DAN=60°+α,在△ABN和△ADN中,∴△ABN≌△ADN(SSS),∴∠ABN=∠ADN=30°,∠BAN=∠DAN=60°+α,∴∠BAC=60°+2α,在△ABC中,∠BAC+∠ACB+∠ABC=180°,∴60°+2α+2α+2 α=180°,∴α=20°,∴∠NBC=∠ABC﹣∠ABN=10°,∴∠MNB=∠NBC+∠NCB=30°,∴∠MNB=∠MBN,∴MB=MN.【点评】本题考查全等三角形的判定和性质,等边三角形的性质,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。

2019-2020学年北京市朝阳区高三(上)期中数学试卷1 (含答案解析)

2019-2020学年北京市朝阳区高三(上)期中数学试卷1 (含答案解析)

2019-2020学年北京市朝阳区高三(上)期中数学试卷1一、选择题(本大题共8小题,共40.0分)1.已知集合A={x|4−x>0},B={x|x>1},则A∩B=()A. φB. (1,4)C. (1,+∞)D. (4,+∞)2.已知函数f(x)=sinx−x,则下列错误的是()A. f(x)为奇函数B. f(x)在R上单调递减C. f(x)在R上无极值点D. f(x)在R上有三个零点3.已知向量a⃗=(2,−1),a⃗+b⃗ =(5,k),且a⃗⊥b⃗ ,则k=()A. 5B. −5C. 52D. −524.执行如图所示的程序图,输出的S值为()A. −1B. 12C. 1D. 25.已知向量a⃗=(−2,m),b⃗ =(1,m2),m∈R,则“a⃗⊥b⃗ ”是“m=2”的()A. 充要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件6.设α、β、γ为平面,m、n、l为直线,则能推出m⊥β的是()A. α⊥β,α∩β=l,m⊥lB. α∩γ=m,α⊥γ,β⊥γC. α⊥γ,β⊥γ,m⊥αD. n⊥α,n⊥β,m⊥α7.某三棱锥的三视图如图所示,则其体积为()A. 4B. 8C. 43D. 838.已知函数y=f(x)的周期为2,当x∈[0,2]时,f(x)=(x−1)2,如果g(x)=f(x)−log5|x+1|,则函数g(x)的所有零点之和为()A. −10B. −8C. 0D. 8二、填空题(本大题共6小题,共30.0分)9.已知sinα=35,且α∈(π2,π),则cosα=______ .10.已知等差数列{a n}的公差为3,且a2=−2,则a6=______.11.已知{2x+3y≤6x−y≥0y≥0则z=3x+y的最大值为______ .12.一天晚上,甲、乙、丙、丁四人要过一座吊桥,这座吊桥只能承受两个人的重量,且过桥需要手电筒照明,其中甲过桥要1min,乙过桥要2min,丙过桥要5min,丁过桥要8min,而且只有一个手电筒,所以过去的人要把手电筒再送过去,则最快过桥需要____________min.13.如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin(π6x+φ)+k的图象,据此函数可知,这段时间水深(单位:m)的最大值为__________.14.已知函数f(x)={3|x−1|x>0−x2−2x+1x≤0,若关于x的方程f2(x)+(a−1)f(x)=a有7个不等的实数根,则实数a的取值范围是______ .三、解答题(本大题共6小题,共80.0分)15.已知函数f(x)=2√3sinωxcosωx−2sin2ωx(其中ω>0)图象的两条相邻对称轴之间的距离为π2.(1)求ω的值及f(x)的单调减区间;(2)若f(x0)=15,x0∈[−π12,π4],求f(x0+π6)的值.16.等比数列{a n}的各项均为正数,且a2=2,a4=12.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log2a n,求数列{b n}的前n项和T n.17.如图,在四棱锥P−ABCD中,侧棱PA⊥底面ABCD,底面ABCD为矩形,AD=2AB=2PA=2,E为PD的上一点,且PE=2ED.(Ⅰ)若F为PE的中点,求证:BF//平面AEC;(Ⅱ)求三棱锥P−AEC的体积.18.在△ABC中,角A,B,C所对的边分别为a,b,c,已知sin(A+B)a+b =sinA−sinBa−c,b=3.(Ⅰ)求角B;(Ⅱ)若cosA=√63,求△ABC的面积.19.设f(x)=e x(ax2+x+1),且曲线y=f(x)在x=1处的切线与x轴平行.(Ⅰ)求a的值,并求f(x)的极值;(Ⅱ)k(k∈R)如何取值时,函数y=f(x)+kx2e x存在零点,并求出零点.20.已知二次函数ℎ(x)=ax2+bx+2,其导函数y=ℎ′(x)的图象如图,f(x)=6lnx+ℎ(x).(1)求函数f(x)的解析式;(2)若函数f(x)在区间(1,m+12)上是单调函数,求实数m的取值范围.-------- 答案与解析 --------1.答案:B解析:解:∵A={x|x<4};∴A∩B={x|1<x<4}=(1,4).故选:B.可解出集合A,然后进行交集的运算即可.考查描述法的定义,以及交集的运算.2.答案:D解析:解:∵f(x)=sinx−x,∴f(−x)=sin(−x)+x=−sinx+x=−(sinx−x),故f(x)为奇函数,即A正确;又∵f′(x)=cosx−1≤0恒成立,故f(x)在R上单调递减,即B正确;故f(x)在R上无极值点,即C正确;故f(x)在R上有且只有一个零点,即D错误;故选:D由已知中函数的解析式,分析出函数的奇偶性,单调性,是否存在极值及零点个数,可得答案.本题考查的知识点是函数的奇偶性,单调性,是否存在极值及零点个数,是函数图象和性质的综合应用,难度不大,属于基础题.3.答案:A解析:解:b⃗ =a⃗+b⃗ −a⃗=(3,k+1);∵a⃗⊥b⃗ ;∴a⃗⋅b⃗ =2⋅3+(−1)⋅(k+1)=0;解得k=5.故选:A.根据a⃗,a⃗+b⃗ 的坐标即可求出b⃗ =(3,k+1),而由a⃗⊥b⃗ 即可得出a⃗⋅b⃗ =0,这样进行数量积的坐标运算即可求出k的值.考查向量坐标的减法和数量积运算,向量垂直的充要条件.4.答案:A解析:【分析】本题考查的知识要点:程序框图的应用,属于基础题.直接利用程序框图得循环结构求出结果.【解答】解:在执行循环前:k=1,S=2,在执行第一次循环时:由于k<9,,所以:k=2,S=12在执行第二次循环时,k=3,S=−1,在执行第三次循环时,k=4,S=2,,在执行第四次循环时,k=5,S=12在执行第五次循环时,k=6,S=−1,在执行第六次循环时,k=7,S=2,在执行第七次循环时,k=8,S=1,2当k=9时,S=−1,不满足k<9,直接输出S=−1.故选:A.5.答案:B解析:【分析】本题考查了向量的坐标运算,考查充分必要条件的定义,是基础题.由向量垂直的坐标表示求得m值,再根据充分必要条件的定义判断即可.【解答】),m∈R,a⃗⊥b⃗ ,解:∵向量a⃗=(−2,m),b⃗ =(1,m2=0,解得m=±2.∴a⃗⋅b⃗ =0,即−2+m22∴“a⃗⊥b⃗ ”是“m=2”的必要不充分条件.故选:B.6.答案:D解析:【分析】本题主要考查空间线面关系、面面关系等知识,考查空间想象能力、推理论证能力,属于基础题.逐一进行判断即可.【解答】解:对于A,α⊥β,α∩β=l,m⊥l,根据面面垂直的性质定理可知,缺少条件m⊂α,故不正确;对于B,α∩γ=m,α⊥γ,β⊥γ,而α与β可能平行,也可能相交,则m与β不一定垂直,故不正确;对于C,α⊥γ,β⊥γ,m⊥α,而α与β可能平行,也可能相交,则m与β不一定垂直,故不正确;对于D,n⊥α,n⊥β⇒α//β,而m⊥α,则m⊥β,故正确.故选D.7.答案:C解析:【分析】本题主要考查了棱锥的体积,空间几何体的三视图,属于基础题.【解答】解:由已知中的三视图,可得该几何体是一个三棱锥,如图所示,则体积为13×12×22×2=43.故选C.8.答案:B解析:【分析】本题考查了函数的周期性和函数零点与方程根的关系,根据函数f(x)的周期性可画出函数f(x)的图象,在同一坐标系中再画出函数y=log5|x+1|的图象,根据两函数图象的交点情况可以判断出零点的个数.【解答】解:由题意可得g(x)=f(x)−log 5|x +1|,根据周期性画出函数f(x)=(x −1)2的图象以及y =log 5|x +1|的图象,根据y =log 5|x +1|在(−1,+∞)上单调递增函数,当x =6时,log 5|x +1|=1,∴当x >6时,y =log 5|x +1|>1,此时与函数,y =f(x)无交点.再根据y =log 5|x +1|的图象和f(x)的图象都关于直线x =−1对称,结合图象可知有8个交点,则函数g(x)=f(x)−log 5|x +1|的零点个数为− 8,故选B .9.答案:−45 解析:解:∵sinα=35,且α∈(π2,π),∴cosα=−√1−sin 2α=−45. 故答案为:−45.本题考查同角三角函数基本关系的运用,利用同角三角函数的平方关系,即可得出结论. 10.答案:10解析:解:在等差数列{a n }中,∵公差为3,且a 2=−2,∴a 1+d =−2,即a 1=−5.则a 6=a 1+5d =−5+5×3=10.故答案为:10.由已知条件求解得到a 1的值,然后利用等差数列的通项公式化简代值即可得答案.本题考查了等差数列的通项公式,是基础题.11.答案:9解析:解:作出不等式组{2x +3y ≤6x −y ≥0y ≥0表示的平面区域得到如图的△AB0及其内部,其中A(3,0),B(65,65),O(0,0)设z =F(x,y)=3x +y ,将直线l :z =3x +y 进行平移,当l 经过点A 时,目标函数z 达到最大值∴z 最大值=F(3,0)=3×3+0=9故答案为:9作出题中不等式组表示的平面区域,得如图的△ABO及其内部,再将目标函数z=3x+y对应的直线进行平移,可得当x=3,y=0时,z=3x+y取得最大值为9.本题给出二元一次不等式组,求目标函数z=3x+y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.12.答案:15解析:【分析】此题主要考查了应用类问题,结合实际发现用时最少的两人先过桥往返送灯会节省时间是解题关键,关键是此题的条件中必须有一人来回送手电筒,回来的时间越短,则总时间就越短.【解答】解:根据要求出四个人过桥最少时间,即可得出应首先让用时最少的两人先过桥,让他们往返送灯会节省时间,故:(1)1分钟的甲和2分钟的乙先过桥(此时耗时2分钟).(2)1分钟的甲回来,(此时共耗时2+1=3分钟).(3)5分钟的丙和8分钟的丁过桥(共耗时2+1+8=11分钟).(4)2分钟的乙回来(共耗时2+1+8+2=13分钟).(5)1分钟的甲和2分钟的乙过桥(共耗时2+1+8+2+2=15分钟).此时全部过桥,共耗时15分钟.故答案为15.13.答案:8解析:【分析】本题考查三角函数的图象和性质,涉及三角函数的最值,属基础题.由题意和最小值易得k的值,进而可得最大值.【解答】x+φ)取最小值−1时,解:由题意可得当sin(π6函数取最小值y min=−3+k=2,解得k=5,x+φ)+5,∴y=3sin(π6x+φ)取最大值3时,∴当3sin(π6函数取最大值y max=3+5=8,故答案为8.14.答案:(−2,−1)解析:解:函数f(x)={3|x−1|x >0−x 2−2x +1x ≤0,的图象如图: 关于x 的方程f 2(x)+(a −1)f(x)=a ,即f(x)=−a 或f(x)=1f(x)=1时有3个不等的实数根,f(x)=−a 时,有4个不等的实数根,由函数f(x)图象,可得−a ∈(1,2),∴a ∈(−2,−1).故答案为(−2,−1).画出函数的图象,f(x)=1时有3个不等的实数根,f(x)=−a 时,有4个不等的实数根,利用函数的图象,求解a 的范围.本题考查函数与方程的应用,函数的零点个数的判断与应用,考查数形结合以及计算能力. 15.答案:解:(1)函数f(x)=2√3sinωxcosωx −2sin 2ωx , =√3sin2ωx −(1−cos2ωx), =2sin(2ωx +π6)−1,(ω>0)由于函数的图象的两条相邻对称轴之间的距离为π2.故,解得ω=1,所以f(x)=2sin(2x +π6)−1.令π2+2kπ≤2x +π6≤2kπ+3π2(k ∈Z), 解得:π6+kπ≤x ≤kπ+2π3,(k ∈Z), 所以f(x)的单调减区间为[π6+kπ,kπ+2π3](k ∈Z).(2)由于f(x 0)=15,x 0∈[−π12,π4], 所以:f(x 0)=2sin(2x 0+π6)−1=15,解得:sin(2x 0+π6)=35,由于x 0∈[−π12,π4],所以:2x 0+π6∈[0,2π3], 则:cos(2x 0+π6)=45,则:cos2x 0=cos[(2x 0+π6)−π6]=cos(2x 0+π6)cos π6+sin(2x 0+π6)sin π6 =4√3+310 所以f(x 0+π6)=2sin(2x 0+π2)−1=2cos2x 0−1=4√3−25.解析:本题考查的知识要点:两角和与差的三角函数公式,二倍角公式,函数y =Asin(ωx +φ)性质的应用,主要考查学生的运算能力和转换能力,属于中档题.(1)首先利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,根据周期求得ω,得到函数解析式,进一步求出函数的单调区间.(2)利用(1)的函数解析式将f(x 0)=15化简整理,根据cos2x 0=cos[(2x 0+π6)−π6]展开求值,最后代入f(x 0+π6)即可求出结果.16.答案:解:(Ⅰ)设数列a n 的公比为q ,则{a 2=a 1q =2a 4=a 1q 3=12 解得q =12,a 1=4(负值舍去).所以a n =a 1q n−1=4⋅(12)n−1=2−n+3.(Ⅱ)因为a n =2−n+3,b n =log 2a n ,所以b n =log 22−n+3=−n +3,b n −b n−1=(−n +3)−[−(n −1)+3]=−1,因此数列{b n }是首项为2,公差为−1的等差数列,所以T n =n(2+3−n)2=−n 2+5n 2.解析:(Ⅰ)由a 2=2,a 4=12,利用等比数列的通项公式得{a 2=a 1q =2a 4=a 1q 3=12,解得q =12,a 1=4,由此能求出数列{a n }的通项公式.(Ⅱ)因为a n =2−n+3,b n =log 2a n ,所以b n =log 22−n+3=−n +3,由此能求出数列{b n }的前n 项和T n .本小题主要考查等差数列、等比数列等基础知识,考查运算求解能力,考查函数与方程思想.17.答案:(Ⅰ)证明:连接BD 交AC 于O ,连接OE ,∵E 为PD 的上一点,且PE =2ED ,F 为PE 的中点∴E 为DF 中点,OE//BF又∵BF ⊄平面AEC ,∴BF//平面AEC(Ⅱ)解:∵侧棱PA ⊥底面ABCD ,CD ⊂底面ABCD∴PA⊥CD,∵CD⊥AD,AD∩PA=A,∴CD⊥平面PAD,又AD=2AB=2PA=2,∴三棱锥P−AEC的体积为V P−AEC=V C−AEP=13CD⋅S△PAE=13CD⋅23S△PAD=29×1×12×1×2=29解析:本题考查线面平行,考查三棱锥的体积,解题的关键是掌握线面平行的判定,正确运用转换底面法求体积.(Ⅰ)利用三角形中位线的性质,OE//BF,再利用线面平行的判定定理,即可证得BF//平面AEC;(Ⅱ)证明CD⊥平面PAD,从而三棱锥P−AEC的体积转化为求三棱锥C−AEP的体积,即三棱锥C−PAD的体积的23.18.答案:解:(Ⅰ)因为A+B+C=π,所以A+B=π−C,所以sin(A+B)=sinC,由正弦定理得:ca+b =a−ba−c,整理得a2+c2−b2=ac,由余弦定理得:cosB=a2+c2−b22ac =ac2ac=12.又B∈(0,π),所以B=π3.(Ⅱ)因为cosA=√63,且A∈(0,π),所以sinA=√1−cos2A=√33,由正弦定理可得:√33=√32,解得a=2.又sinC=sin(A+B)=sinAcosB+cosAsinB=√33×12+√63×√32=√3+3√26.所以△ABC的面积S=12 absinC=12×2×3×√3+3√26=√3+3√22.解析:本题主要考查了诱导公式,正弦定理,余弦定理,同角三角函数基本关系式,两角和的正弦函数公式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.(Ⅰ)由三角形内角和定理和诱导公式,正弦定理化简已知等式得a2+c2−b2=ac,由余弦定理求出cos B的值,结合范围B∈(0,π),可求B的值;(Ⅱ)利用同角三角函数基本关系式可求sin A,由正弦定理可得a的值,利用两角和的正弦函数公式可求sin C的值,进而利用三角形面积公式即可计算得解.19.答案:解:(Ⅰ)f′(x)=e x(ax2+x+1+2ax+1)…(2分)由已知条件知,f′(1)=0,故a+3+2a=0⇒a=−1…(3分)于是f′(x)=e x(−x2−x+2)=−e x(x+2)(x+1)…(4分)故当x∈(−∞,−2)∪(1,+∞)时,f′(x)<0;当x∈(−2,1)时,f′(x)>0.从而f(x)在x=−2处取得极小值−5e−2,在x=1处取得极大值e…(8分)(Ⅱ)由y=f(x)+kx2e x=e x[(k−1)x2+x+1]=0,得(k−1)x2+x+1=0(∗)…(10分)当k=1时,方程(∗)有一解x=−1,函数y=f(x)+kx2e x有一零点x=−1;…(11分)当k≠1时,方程(∗)有二解⇔△=−4k+5>0⇔k<54,函数y=f(x)+kx2e x有两个零点x=−1±√−4k+52(k−1);方程(∗)有一解⇔△=0⇔k=54,函数y=f(x)+kx2e x有一个零点x=−2…(13分)综上,当k=1时,函数有一零点x=−1;当k=54时,函数有一零点x=−2;当k<54且k≠1时,函数y=f(x)+kx2e x有两个零点x=−1±√−4k+52(k−1)…(14分)解析:(Ⅰ)求导函数,利用曲线y=f(x)在x=1处的切线与x轴平行,即可求a的值,确定函数的单调性,可求f(x)的极值;(Ⅱ)由y=f(x)+kx2e x=e x[(k−1)x2+x+1]=0,得(k−1)x2+x+1=0,分类讨论,即可得出结论.本题考查导数知识的综合运用,考查导数的几何意义,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,正确分类是关键.20.答案:解:(1)由已知,ℎ′(x)=2ax+b,其图象为直线,且过(0,−8),(4,0)两点,把两点坐标代入ℎ′(x)=2ax+b,∴{2a=2b=−8,解得:{a=1b=−8,∴ℎ(x)=x2−8x+2,ℎ′(x)=2x−8,∴f(x)=6lnx+x2−8x+2,(2)f′(x)=6x +2x−8=2(x−1)(x−3)x,∵x>0,∴x,f′(x),f(x)的变化如下:要使函数f(x)在区间(1,m+12)上是单调函数,则{m+12≤31<m+12,解得:12<m≤52.解析:本题考查了求函数的解析式问题,考查导数的应用,考查函数的单调性问题,是一道中档题.(1)先求出f(x)的导数,通过待定系数法求出a,b的值,从而求出f(x)的解析式;(2)求出f(x)的导数,得到函数的单调区间,集合函数的单调性求出m的范围即可.。

2021年北京市西城区高三期末数学试题及答案

2021年北京市西城区高三期末数学试题及答案

2021年北京市西城区高三期末数学试卷2021.1 本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时长120分钟。

考生务必将答案写在答题纸上,在试卷上作答无效。

考试结束后,将本试卷和答题纸一并交回。

第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1. 已知集合{|13}A x x =-<<,{|04}B x x =<≤,则A B =A .(0,3)B .(1,4)-C .(0,4]D .(1,4]-2. 在复平面内,复数z 所对应的点的坐标为(1,1)-,则z z ⋅=A .2B .2i -C D .2i3. 已知()f x 为奇函数,其局部图象如图所示,那么A .(2)2f =B .(2)2f =-C .(2)2f >-D .(2)2f <-4. 已知(4,8)A ,(2,4)B ,(3,)C y 三点共线,则y 的值为 A .4B .5C .6D .75. 已知双曲线22221x y a b -=的焦距等于实轴长的2倍,则其渐近线的方程为A.y =B .2y x =±C.3y x =±D .12y x =±6. 已知半径为2的圆经过点(1,0),其圆心到直线34120x y -+=的距离的最小值为 A .0B .1C .2D .37. 已知函数()sin 2,[,]f x x x a b =∈,则“π2b a -≥”是“()f x 的值域为[1,1]-”的 A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8. 被誉为信息论之父的香农提出了一个著名的公式:2log (1)SC W N =+,其中C 为最大数据传输速率,单位为bit /s ;W 为信道带宽,单位为Hz ;SN为信噪比.香农公式在5G 技术中发挥着举足轻重的作用.当99SN=,2000Hz W =时,最大数据传输速率记为1C ;当9999SN=,3000Hz W =时,最大数据传输速率记为2C ,则21C C 为A .1B .52C .154D .39. 设函数()f x 和()g x 的定义域为D ,若存在非零实数c D ∈,使得()()0f c g c +=,则称函数()f x 和()g x 在D 上具有性质P . 现有三组函数:①()f x x =,2()g x x = ②()2x f x -=,()e x g x =- ③2()f x x =-,()2x g x =其中具有性质P 的是A .①②B .①③C .②③D .①②③10. 在棱长为1的正方体1111ABCD A B C D -中,M ,N 分别为111,BD B C 的中点,点P 在正方体的表面上运动,且满足MP CN ⊥,则下列说法正确的是 A.点P 可以是棱1BB 的中点B.线段MP 的最大值为32C.点P 的轨迹是正方形D.点P 轨迹的长度为25+第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分。

2020-2021学年北京市西城区高一上学期期末考试数学试卷及答案

2020-2021学年北京市西城区高一上学期期末考试数学试卷及答案

绝密★启用前2020-2021学年北京市西城区高一上学期期末考试数学试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上一、单选题1.已知集合{}1,0,2,3A =-,{21,}B xx k k ==-∈N ∣,那么A B =()A .{}1,0-B .{}1,2-C .{}0,3D .{}1,3-答案:D【分析】根据交集的定义可求AB .解:因为{21,}B xx k k ==-∈N ∣,故B 中的元素为大于或等于1-的奇数, 故{}1,3A B =-, 故选:D. 2.方程组22x y x x +=⎧⎨+=⎩的解集是() A .()(){}1,1,?1,1- B .()(){}1,1,2,2- C .()(){}1,1,2,2-- D .()(){}2,2,2,2--答案:C【分析】解出方程组202x y x x +=⎧⎨+=⎩得解,再表示成集合的形式即可.解:由方程组202x y x x +=⎧⎨+=⎩可得22x y =-⎧⎨=⎩或11x y =⎧⎨=-⎩ 所以方程组202x y x x +=⎧⎨+=⎩的解集是()(){}1,1,2,2--故选:C3.函数11lg x x y =+-的定义域是() A .(0,)+∞ B .(1,)+∞C .()0,11(),⋃+∞D .[)0,11(),⋃+∞答案:C【分析】根据对数式的真数大于零、分式的分母不为零,求解出x 的取值范围即为定义域. 解:因为010x x >⎧⎨-≠⎩,所以01x <<或1x >,所以函数的定义域为:()()0,11,+∞,故选:C.点评:结论点睛:常见函数的定义域分析: (1)偶次根式下被开方数大于等于零; (2)分式分母不为零; (3)对数式的真数大于零; (4)0y x =中{}0x x ≠.4.为了解学生在“弘扬传统文化,品读经典文学”月的阅读情况,现从全校学生中随机抽取了部分学生,并统计了他们的阅读时间(阅读时间[]0,50t ∈),分组整理数据得到如图所示的频率分布直方图.则图中a 的值为()A .0.028B .0.030C .0.280D .0.300答案:A【分析】根据五个矩形的面积和为1列式可得结果.解:由(0.0060.0400.0200.006)101a ++++⨯=得0.028a =. 故选:A5.若a b >,则一定有() A .11a b< B .|a |>|b|C 22a bD .33a b >答案:D【分析】利用不等式的性质或反例逐项检验后可得正确的选项.解:取1,1a b ==-,则11a b>,||||a b =,22a b =,故A 、B 、C 均错误, 由不等式的性质可得33a b >,故D 正确. 故选:D.6.在平行四边形ABCD 中,设对角线AC 与BD 相交于点O ,则AB CB +=() A .2BO B .2DOC .BDD .AC答案:B【分析】根据向量的线性运算可得正确的选项.解:因为四边形ABCD 为平行四边形,故0AO CO +=, 故22AB CB AO OB CO OB OB DO +=+++==, 故选:B.7.设23m n =,则m ,n 的大小关系一定是() A .m n > B .m n <C .m n ≥D .以上答案都不对答案:D【分析】根据23m n =可分三种情况讨论:,,m n m n m n >=<,根据指数函数的单调性分析出每一种情况下,,0m n 的大小关系,由此得到,m n 的大小关系.解:当m n >时,因为2xy =为()0,∞+上增函数,所以232m n n =>,所以312n⎛⎫> ⎪⎝⎭,所以0n >,所以0m n >>;当m n =时,312n⎛⎫= ⎪⎝⎭,所以0n =,所以0m n ==; 当m n <时,因为2xy =为()0,∞+上增函数,所以232m n n =<,所以312n⎛⎫< ⎪⎝⎭,所以0n <,所以0m n <<, 故选:D.点评:方法点睛:已知(,1m na ba b =>或)0,1a b <<,比较,m n 大小的常用方法:(1)分类讨论法:,,m n m n m n <=>,根据指数函数的单调性分析出,m n 的大小关系;(2)数形结合法:在同一平面直角坐标系作出,x x y a y b ==的图象,作直线y t =与两图象相交,根据交点横坐标的大小关系判断出,m n 的大小关系.8.从2015年到2020年,某企业通过持续的技术革新来降低其能源消耗,到了2020年该企业单位生产总值能耗降低了20%.如果这五年平均每年降低的百分率为x ,那么x 满足的方程是() A .50.2x = B .()510.8x -=C .50.2x =D .5(1)0.8x -=答案:D【分析】根据题设逐年列出生产总值能耗后可得正确的选择.解:设2015年该企业单位生产总值能耗为a ,则2016年该企业单位生产总值能耗()1a x -,2017年该企业单位生产总值能耗()21a x -,2018年该企业单位生产总值能耗()31a x -,2019年该企业单位生产总值能耗()41a x -,2020年该企业单位生产总值能耗()51a x -,由题设可得()510.8a x a -=即()510.8x -=, 故选:D.9.设,a b 是非零向量,则“存在实数λ,使得a b =λ”是“a b a b +=+”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件答案:B【分析】由题意结合向量共线的性质分类讨论充分性和必要性是否成立即可. 解:存在实数λ,使得λab ,说明向量,a b 共线,当,a b 同向时,a b a b +=+成立, 当,a b 反向时,a b a b +=+不成立,所以,充分性不成立.当a b a b +=+成立时,有,a b 同向,存在实数λ,使得λa b 成立,必要性成立,即“存在实数λ,使得λa b ”是“a b a b +=+”的必要而不充分条件.故选B.点评:本题主要考查向量共线的充分条件与必要条件,向量的运算法则等知识,意在考查学生的转化能力和计算求解能力. 10.设()f x 为定义在R 上的函数,函数()1f x +是奇函数.对于下列四个结论:①()10f =;②()()11f x f x -=-+;③函数()f x 的图象关于原点对称; ④函数()f x 的图象关于点()1,0对称; 其中,正确结论的个数为() A .1 B .2C .3D .4答案:C【分析】令()()1g x f x =+,①:根据()00g =求解出()1f 的值并判断;②:根据()g x 为奇函数可知()()g x g x -=-,化简此式并进行判断;根据()1y f x =+与()y f x =的图象关系确定出()f x 关于点对称的情况,由此判断出③④是否正确. 解:令()()1g x f x =+,①因为()g x 为R 上的奇函数,所以()()0010g f =+=,所以()10f =,故正确; ②因为()g x 为R 上的奇函数,所以()()g x g x -=-,所以()()11f x f x -+=-+,即()()11f x f x -=-+,故正确;因为()1y f x =+的图象由()y f x =的图象向左平移一个单位得到的,又()1y f x =+的图象关于原点对称,所以()y f x =的图象关于点()1,0对称,故③错误④正确,所以正确的有:①②④, 故选:C.点评:结论点睛:通过奇偶性判断函数对称性的常见情况:(1)若()f x a +为偶函数,则函数()y f x =的图象关于直线x a =对称; (2)若()f x a +为奇函数,则函数()y f x =的图象关于点(),0a 成中心对称. 二、填空题11.已知向量()1,2a =-,()3,1b =-,那么a b -=__________. 答案: 5【分析】求出a b -的坐标后可得a b -.解:因为()1,2a =-,()3,1b =-,故()4,3a b -=-,故5a b -=, 故答案为:512.若方程220x x a -+=有两个不相等的正实数根,则实数a 的取值范围是__________. 答案:01a <<【分析】根据条件可得1212000x x x x ∆>⎧⎪+>⎨⎪>⎩,列出不等式求解即可.解:由方程220x x a -+=有两个不相等的正实数根,设为12,x x则1212000x x x x ∆>⎧⎪+>⎨⎪>⎩,即1212440200a x x x x a ∆=->⎧⎪+=>⎨⎪=>⎩,解得01a << 故答案为:01a <<13.设定义在R 上的奇函数()f x 在()0+∞,上为增函数,且()20f =,则不等式()0f x <的解集为__________.答案:(,2)(0,2)-∞-⋃解:定义在R 上的奇函数()f x 在()0+∞,上为增函数, 则(0)0f =,且()f x 在(,0)-∞为增函数, 由于(2)0f =,则(2)0f -=,函数图象关于原点对称,画出函数的模拟图象可知, 不等式()0f x <的解集为(,2)(0,2)-∞.故答案为:(,2)(0,2)-∞.14.某厂商为推销自己品牌的可乐,承诺在促销期内,可以用3个该品牌的可乐空罐换1罐可乐.对于此促销活动,有以下三个说法:①如果购买10罐可乐,那么实际最多可以饮13罐可乐; ②欲饮用100罐可乐,至少需要购买67罐可乐:③如果购买*()n n ∈N 罐可乐,那么实际最多可饮用可乐的罐数1()2n f n n -⎡⎤=+⎢⎥⎣⎦.(其中[]x 表示不大于x 的最大整数) 则所有正确说法的序号是__________. 答案:②③.【分析】①10罐可乐有10个可乐空罐,第一次可换3罐可乐还剩1个空罐,第二次可换1罐可乐还剩2个空罐,由此算出最多可饮用的可乐罐数;②:先分析购买66罐可乐的情况,再分析购买67罐可乐的情况,由此确定出至少需要购买的可乐罐数;③:先分析购买1到9罐可乐分别可饮用多少罐可乐以及剩余空罐数,然后得到规律,再分奇偶罐数对所得到的规律进行整理,由此计算出()f n 的结果.解:①:购买10罐可乐时,第一次可换3罐还剩1个空罐,第二次可换1罐还剩2个空罐,所以最多可饮用103114++=罐可乐,故错误;②:购买66罐时,第一次可换22罐可乐,第二次可换7罐可乐还剩1个空罐, 第三次可换2罐可乐还剩2个空罐,第四次可换1罐可乐还剩2个空罐,所以一共可饮用662272198++++=罐;购买67罐时,第一次可换22罐可乐还剩1个空罐,第二次可换7瓶可乐还剩2个空罐, 第三次可换3罐可乐,第四次可换1罐可乐还剩1个空罐,所以一共可饮用6722731100++++=罐;所以至少需要购买67罐可乐,故正确;③:购买1到9罐可乐分别可饮用可乐罐数以及剩余空罐数如下表所示:由表可知如下规律:(1)当购买的可乐罐数为奇数时,此时剩余空罐数为1,当购买的可乐罐数为偶数时,此时剩余的空罐数为2; (2)实际饮用数不是3的倍数;(3)每多买2罐可乐,可多饮用3罐可乐,(4)实际饮用的可乐罐数要比购买的可乐罐数的1.5倍少0.5或1; 设购买了n 罐可乐,实际可饮用的可乐罐数为()f n ,所以()()()**3221,312,m n m m N f n m n m m N ⎧-=-∈⎪=⎨-=∈⎪⎩,即()()()**3121,2322,2n n m m N f n n n m m N -⎧=-∈⎪⎪=⎨-⎪=∈⎪⎩,即()()()**121,222,2n n n m m N f n n n n m m N -⎧+=-∈⎪⎪=⎨-⎪+=∈⎪⎩,又因为12,22n n --可看作12n -⎡⎤⎢⎥⎣⎦,即不大于12n -的最大整数,所以1()2n f n n -⎡⎤=+⎢⎥⎣⎦成立,故正确;故答案为:②③.点评:关键点点睛:解答本题时,一方面需要通过具体购买的可乐罐数去分析实际饮用的可乐罐数,另一方面需要对实际的购买情况进行归纳,由此得到购买的可乐罐数与实际饮用的可乐罐数的关系,从而解决问题. 三、双空题15.已知函数0.52log ,0()2,0x x f x x x x >⎧=⎨+≤⎩,那么()2f =_________;当函数()y f x a =-有且仅有三个零点时,实数a 的取值范围是__________. 答案:1-10a -<<【分析】由()0.52log 2f =可得结果,函数()y f x a =-有且仅有三个零点,即函数()y f x =的图象与y a =的图象仅有三个交点,作出函数()y f x =的图象,根据图象可得答案.解:()0.52log 21f ==-函数()y f x a =-有且仅有三个零点,即函数()y f x =的图象与y a =的图象仅有三个交点.作出函数()y f x =的图象,如图.由图可知,当10a -<<时,函数()y f x =的图象与y a =的图象有三个交点. 所以函数()y f x a =-有且仅有三个零点时,实数a 的取值范围是10a -<< 故答案为:1-;10a -<< 四、解答题16.某校高一年级1000名学生全部参加了体育达标测试,现从中随机抽取40名学生的测试成绩,整理并按分数段[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图如下(I )估计该校高一年级中体育成绩大于或等于70分的学生人数;(II )现从体育成绩在[)60,70和[)80,90的样本学生中随机抽取2人,求其中恰有1人体育成绩在[)60,70的概率. 答案:(I )750;(II )35【分析】(I )根据折线图可以得到体育成绩大于或等于70分的学生人数,从而可以估计出该校高一年级中体育成绩大于或等于70分的学生频率,进而得到学生人数. (II )利用列举法可得基本事件的总数和随机事件中基本事件的个数,从而可求概率. 解:(I )根据折线图可以得到体育成绩大于或等于70分的学生人数为1431330++=,所以该校高一年级中体育成绩大于或等于70分的学生人数估计为:30100075040⨯=. (II )体育成绩在[)60,70和[)80,90的人数分别为2、3,分别记为,,,,a b A B C 若随机抽取2人,则所有的基本事件为:()()()()()()()()()(),,,,,,,,,,,,,,,,,,,a b a A a B a C b A b B b C A B A C B C ,故基本事件的总数为10.其中恰有1人体育成绩在[)60,70的基本事件的个数有6个, 设A 为:“恰有1人体育成绩在[)60,70”,则()63105P A ==. 点评:思路点睛:古典概型的概率的计算,关键是基本事件的总数和随机事件中基本事件的个数的计算,计算时可采用枚举法、树形图等帮助计数(个数较少时),也可以利用排列组合的方法来计数(个数较大时). 17.设函数4()3f x x x=++(1)求函数()f x 的图像与直线2y x =交点的坐标:(2)当(0,)x ∈+∞时,求函数()f x 的最小值(3)用单调性定义证明:函数()f x 在()2,+∞上单调递增.答案:(1)()4,8或()12--,(2)7(3)证明见解析. 【分析】(1)由432x x x++=解出方程可得答案. (2)利用均值不等式433x x ++≥可得答案. (3)由定义法证明函数单调性的步骤即可证明.解:(1)由432x x x++=,即2340x x --=,解得4x =或1x =- 所以函数()f x 的图像与直线2y x =交点的坐标为()4,8或()12--, (2)当0x >时,4()337f x x x =++≥= 当且仅当4x x=,即2x =时,取得等号. 所以当(0,)x ∈+∞时,函数()f x 的最小值为7.(3)任取12,2x x >,且12x x <则()()2121224433f x f x x x x x ⎛⎫⎛⎫-=++-++ ⎪ ⎪⎝⎭⎝⎭()()()2111211222444x x x x x x x x x x ⎛⎫-= ⎪⎝⎭-=-+-+ ()()2112112122441x x x x x x x x x x ⎛⎫-= ⎪⎝⎭=--- 由12,2x x >,且12x x <,则124x x >,210x x ->所以1240x x ->,则()12122140x x x x x x ->- 所以()()210f x f x ->,即()()21f x f x >所以函数()f x 在()2,+∞上单调递增点评:思路点睛:本题考查利用函数的奇偶性求参数,证明函数的单调性和利用单调性解不等式.证明函数的单调性的基本步骤为:(1)在给定的区间内任取变量12,x x ,且设12x x <.(2)作差()()12f x f x -变形,注意变形要彻底,变形的手段通常有通分、因式分解、配方、有理化等.(3)判断符号,得出()()12f x f x ,的大小.(4)得出结论.18.以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a 表示.(I )若甲、乙两组的数学平均成绩相同,求a 的值;(II )求乙组平均成绩超过甲组平均成绩的概率;(III )当3a =时,试比较甲、乙两组同学数学成绩的方差的大小.(结论不要求证明) 答案:(I )1a =;(II )45;(III )甲组同学数学成绩的方差大于乙组同学数学成绩的方差.【分析】(I )先求解出甲、乙两组的数学平均成绩,根据平均成绩相同求解出a 的值; (II )先确定出a 的所有可取值,再求解出满足条件的a 的取值,根据满足条件a 的取值个数与总的可取值个数的比值求解出对应概率;(III )根据数据的分布情况直接判断出甲、乙两组同学数学成绩的方差大小. 解:(I )因为889292272909190271,3333a a x x ++++++====甲乙,且x x =甲乙,所以27227133a +=,所以1a =; (II )记“乙组平均成绩超过甲组平均成绩”为事件A , 因为乙组平均成绩超过甲组平均成绩,所以27127233a +>,所以1a >, 所以a 的可取值有:{}2,3,4,5,6,7,8,9,共8个数,又因为{}0,1,2,3,4,5,6,7,8,9a ∈,集合中共有10个元素,所以()84105P A ==; (III )甲组同学数学成绩的方差大于乙组同学数学成绩的方差. (理由如下:因为889292272909193274,3333x x ++++====甲乙,所以22222722722728892923233339s ⎛⎫⎛⎫⎛⎫-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==甲, 22222742742749091931433339s ⎛⎫⎛⎫⎛⎫-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==乙,因为321499>,所以22s s >甲乙) 19.设函数21()21x x f x +=- (I )若()2f a =,求实数a 的值;(II )判断函数()f x 的奇偶性,并证明你的结论;(III )若()f x m ≤对于[)1,x ∈+∞恒成立,求实数m 的最小值.答案:(I )2log 3;(II )奇函数,证明见解析;(III )3.【分析】(I )代入x a =,得到21221a a +=-,由此求解出2a 的值,即可求解出a 的值; (II )先判断奇偶性,然后分析定义域并计算()(),f x f x -的数量关系,由此完成证明;(III )先求解出()f x 在[)1,+∞上的最大值,再根据()max m f x ⎡⎤≥⎣⎦求解出m 的最小值.解:(I )因为()2f a =,所以21221a a +=-,所以21222a a +=⋅-且21a ≠, 所以23a =,所以2log 3a =;(II )()f x 为奇函数,证明如下:因为210x -≠,所以定义域为{}0x x ≠关于原点对称, 又因为()()211221211221x x x x x x f x f x --+++-===-=----,所以()f x 为奇函数; (III )因为()2121221212121x x x x x f x +-+===+---, 又因为21x y =-在[)1,+∞上递增,所以221x y =-在[)1,+∞上递减,所以()()1max 211321f x f ==+=⎡⎤⎣⎦-,又因为()f x m ≤对于[)1,x ∈+∞恒成立,所以()max m f x ⎡⎤≥⎣⎦,所以3m ≥,所以m 的最小值为3.点评:思路点睛:判断函数()f x 的奇偶性的步骤如下:(1)先分析()f x 的定义域,若()f x 定义域不关于原点对称,则()f x 为非奇非偶函数,若()f x 的定义域关于原点对称,则转至(2);(2)若()()f x f x =-,则()f x 为偶函数;若()()f x f x -=-,则()f x 为奇函数.20.经销商经销某种农产品,在一个销售季度内,每售出1吨该产品获利润500元,未售出的产品,每1吨亏损300元.经销商为下一个销售季度购进了130吨该农产品.以x (单位:吨,100150x ≤≤)表示下一个销售季度内的市场需求量,y (单位:元)表示下一个销售季度内销售该农产品的利润.(I )将y 表示为x 的函数:(II )求出下一个销售季度利润y 不少于57000元时,市场需求量x 的范围.答案:(I )80039000,10013065000,130150x x y x -≤<⎧=⎨≤≤⎩;(II )[]120150,. 【分析】(I )分情况考虑:100130,130150x x ≤<≤≤,分别求解出每一种情况下y 的表示,由此可得到y 关于x 的分段函数;(II )根据条件分段列出不等式,求解出每一个不等式的解集,由此求解出市场需求量x 的范围.解:(I )当100130x ≤<时,此时130吨的该农产品售出x 吨,未售出()130x -吨, 所以()500300130y x x =--,即80039000y x =-;当130150x ≤≤时,此时130吨的该农产品全部售出,所以500130y =⨯,即65000y =,综上可知:80039000,10013065000,130150x x y x -≤<⎧=⎨≤≤⎩; (II )当100130x ≤<时,令8003900057000x -≥,解得120130x ≤<, 当130150x ≤≤,此时6500057000>符合,所以市场需求量x 的范围是[]120150,. 21.设函数()f x 的定义域为R .若存在常数(0)m m ≠,对于任意x ∈R ,()()f x m mf x +=成立,则称函数()f x 具有性质Γ.记P 为满足性质Γ的所有函数的集合.(I )判断函数y x =和2y =是否属于集合P ?(结论不要求证明)(II )若函数()x g x =,证明:()g x P ∈;(III )记二次函数的全体为集合Q ,证明:P Q =∅.答案:(I )y x =不属于集合P ,2y =属于集合P ;(II )证明见解析;(III )证明见解析.【分析】(I )根据性质Γ的定义判断y x =与2y =是否具有性质Γ,由此判断出函数y x =和2y =是否属于集合P ;(II )先根据定义证明函数()xg x =具有性质Γ,然后即可证明()g x P ∈; (III )将问题转化为证明二次函数不具备性质Γ,先假设二次函数具备性质Γ,然后通过已知条件推出与条件矛盾的结果,由此完成证明.解:(I )y x =不属于集合P ,2y =属于集合P ;(理由如下:设()f x x =,若()()f x m mf x +=,则有x m mx +=,解得0m =,不符题意,所以y x =不具有性质Γ,所以y x =不属于集合P ;设()2f x =,若()()f x m mf x +=,则有22m =,所以1m =,所以2y =具有性质Γ,所以2y =属于集合P )(II )证明如下:因为()x g x =,不妨令()()g x m mg x +=,所以x m x m +=,所以m m =,显然关于m 的方程有解:2m =,所以()xg x =具有性质Γ, 所以()g x P ∈;(III )根据题意可知:P Q =∅⇔二次函数不具备性质Γ,假设存在二次函数()()20f x ax bx c a =++≠具备性质Γ,所以存在常数()0m m ≠对于任意x ∈R 都有()()f x m mf x +=成立,所以存在常数()0m m ≠使()()22a x m b x m c amx bmx cm ++++=++成立,所以存在常数()0m m ≠使()2222ax am b x am bm c amx bmx cm +++++=++成立,所以22a am am b bm am bm c cm =⎧⎪+=⎨⎪++=⎩,解得0,0,1a b m ===,这与假设中0a ≠矛盾,所以假设不成立,所以二次函数都不具备性质Γ,所以P Q =∅.点评:关键点点睛:解答本题第三问的关键是将待证明的问题转化为分析二次函数是否具备性质Γ,再通过“反证”的思想完成证明.。

2019-2020学年北京市西城区北师大版六年级上册数学期末试卷(含答案)

2019-2020学年北京市西城区北师大版六年级上册数学期末试卷(含答案)

2019-2020学年北京市西城区六年级(上)期末数学试卷一、选择题1.下面图()中的阴影部分可能是圆心角为100°的扇形.A.B.C.D.2.一台电脑D盘存储空间的使用情况如图所示,下面描述中不正确的是()A.已用空间占整个D盘存储空间的40%B.D盘还有60%的可用空间C.可用空间是已用空间的1.5倍D.已用空间一定是0.4G(G是计算机存储信息的单位)3.的比值是()A.B.C.D.4.如图所示图形中,对称轴条教最少的是()A.B.C.D.5.在0.57,5.7%,和中,最大的数是,()A.0.57 B.5.7% C.D.6.食品安全检测机构对4个批次的食品进行检测,检测结果如表所示:批次第一批第二批第三批第四批检测食品总数/件100 90 110 90合格食品数/件92 80 92 82检测合格单最高的是()A.第一批B.第二批C.第三批D.第四批7.如图所示圆环的面积是()cm2.(计算时π取3.14)A.3.14 B.28.26 C.113.04 D.263.768.下面各情境中的问题,不能用算式12解决的是()①一共能截多少段?②这个桶最多能装多少千克油?③甲有12元钱,买笔花去全部的,买笔花了多少无?④某人小时骑行了12km.照这样,他每小时骑行多少千米?A.①B.②C.③D.④9.已知0<a<1,下面各式中结果最大的是()A.×a B.×a C.÷a D.a÷10.如图中,三角形ABC是等腰直角三角形,图中阴影部分和空白部分的面积相比较,()A.阴影部分的面积大B.空白部分的面积大C.面积一样大D.无法判断二、填空.(共12分)11.÷30=6:15=12.在边长是12cm的正方形中画一个最大的圆,这个圆的半径是cm.13.在一场篮球比赛中,甲队全场共得了98分,上半场和下半场所得分数的比是3:4.甲队下半场得了分.14.把一个由草绳编织成的圆形茶杯垫沿直径剪开,得到两个近似的三角形,再拼成平行四边形(如图所示),在剪拼的过程中面积保持不变,这个平行四边形的面积是cm2.15.两个小组的同学帮助社区修剪一块面积是120m2的草坪,甲组单独修剪需要4小时完成,乙組单独修剪需要2小时完成.两个小组合作,修剪完这块草坪需要小时.16.用白色和黑色的小正方形按下面的方法摆图形.按这样的方法继续摆下去,第5个图形中,黑色的小正方形有个;当一个图形中有33个黑色的小正方形时,白色的小正方形有个.17.脱式计算(能简算的要简算)()×36四、按要求做.(共9分)18.甲船在海上航行,位置如图所示:(1)甲船在灯塔偏、度方向上,距离km处.(2)港口在甲船南偏东40°方向6km处.根据描述,在平面图上确定港口的位置,并用“△”标出.19.在学习了“圆”的知识后,某同学用圆规和直尺设计了一个图案(如图所示).(1)用圆规和直尺将该同学的设计图案画在方格纸上.(2)该同学设计的图案中,空白部分的面积是多少平方厘米?五、解决问题.(共31分)20.甲跑步时测得每分钟心跳是126次,跑步结束休息后心跳恢复正常,每分钟心跳次数是跑步时的.甲的心跳恢复正常后是每分钟多少次?21.某市2017﹣2019年前三季度PM2.5平均浓度如表所示.年份2017 2018 2019PM2.5平均浓度(微克/立方米)60 48 422019年前三季度PM2.5平均浓度比2018年前三季度下降了百分之几?22.有一组互相咬合的齿轮,大齿轮有75个齿,小齿轮的齿数比大齿轮少,小齿轮有多少个齿?23.在爱心义卖活动中,甲出售一个玩具,他先把原价上调20%定为售价,在此基础上,再退还给顾客6元现金,实际顾客只需花54元就能买到这个玩具.这个玩具的原价是多少元?24.天津海河上的永乐桥摩天轮号称“天津之眼”,是世上唯一建在桥上的摩天轮.如图是摩天轮的照片和示意图.(1)摩天轮的周长是多少米?(2)摩天轮按照固定的速度转动,转一周大约需要30分钟,小明从点P进入座舱,运行了20分钟时,他乘坐的应舱更接近的位置.(在正确答案后面的括号里画“√”)点A();点B();点C();点Q()25.无障碍设施建设体现了城市“以人为本”的建设理念.无障碍出入口应设计轮椅坡道,坡道的坡度要符合无障碍设施的设计要求,坡度指每段坡道的垂直高度与水平长度的比(如图).(1)一条轮椅坡道的坡度是1:16、水平长度是12.8m,这条轮椅坡道的垂直高度是多少米?(2)建设轮椅坡道有最大垂直高度的规定,坡度、最大垂直高度及水平长度的要求见如表.例如:当坡度是1:20时,垂直高度不能超过1.2m.坡度1:20 1:16 1:12 1:10 1:8最大垂直高度/m 1.2 0.9 0.75 0.6 0.3水平长度/m 24 14.4 9 6 2.4如图是一条坡道的示意图,这条坡道是否符合轮椅坡道的选设要求?列式计算并说明理由.26.王阿姨要在网上买一台加湿器.她对某款加湿器的处观和功能比较满意,就进入评论区浏览购买过的人们对该商品的评价,在评论区中,好评,中评和差评的人数统计如下:(1)下面图中能代表此款商品好评、中评、差评的是.(2)这款加湿器的好评率是%.(3)王阿姨把好,中、差评情况进行分类整理.得到下面的结果.王阿姨比较看重产品的质量,根据上面的数据,你是否建议她购买这款加温器?写出两个支持你建议的理由.(横钱上填“建议购买”或“不建议购买”)理由:.参考答案与试题解析一、选择题1.【分析】首先根据圆心角的含义:顶点在圆心上的角叫做圆心角;然后运用量角器量出角的度数即可进行选择.【解答】解:根据圆心角的含义并用量角器进行度量,A、中的阴影部分可能是圆心角为100°的扇形;B、中的阴影部分可能是圆心角接近180°的扇形;C、中的阴影部分可能是圆心角是60°的扇形;D、中的角不是圆心;故选:A.【点评】明确圆心角含义,会使用量角器度量角,是解答此题的关键.2.【分析】把D盘的储存空间看作单位“1”,已用空间占整个D盘存储空间的40%,那么剩余空间是1﹣40%=60%,60%÷40%=1.5倍.据此解答即可.【解答】解:已用空间占整个D盘存储空间的40%那么剩余空间是1﹣40%=60%60%÷40%=1.5所以,描述不正确的是已用空间一定是0.4G(G是计算机存储信息的单位).故选:D.【点评】此题考查的目的是理解掌握扇形统计图的特点及作用,并且能够根据统计图提供的信息,解决有关的实际问题.3.【分析】用比的前项除以后项即可.【解答】解:==故选:C.【点评】此题考查了求比值的方法,求比值的结果是一个数.4.【分析】根据轴对称图形的定义:一个图形沿一条直线对折,直线两旁的部分能够完全重合,则这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,据此即可解答.【解答】解:有2条对称轴,有1条对称轴,有无数条对称轴,有3条对称轴,故选:B.【点评】此题考查了利用轴对称图形的定义,确定图形对称轴条数的方法.5.【分析】有几个不同形式的数比较大小,一般情况下,都先化为小数,再按照小数大小比较的方法:即先比较整数部分,整数部分大的,那个小数就大,整数部分相同,再比较十分位,十分位大的,那个小数就大…;进行比较得解.【解答】解:5.7%=0.057,≈0.444,≈0.5710.571>0.57>0.444>0.057所以>0.57>>5.7%,即最大的数是;故选:D.【点评】解决有关小数、百分数、分数之间的大小比较,一般都把分数、百分数化为小数再进行比较,从而解决问题.6.【分析】根据产品合格率的求法:合格率=合格食品数量÷检验食品总数量×100%,分别求各批次产品的合格率,然后进行比较,即可得出结论.【解答】解:92÷100×100%=92%80÷90×100%≈88.9%92÷110×100%≈83.6%82÷90×100%≈91.1%92%>91.1%>88.9%>83.6%答:检测合格单最高的是第一批.故选:A.【点评】本题注意考查从统计图表中获取信息,关键利用合格率计算公式计算.7.【分析】根据圆环的面积公式S=π(R2﹣r2);列式计算即可求解.【解答】解:10÷2=5(cm)3.14×(52﹣42)=3.14×9=28.26(cm2)答:圆环的面积是28.26cm2.故选:B.【点评】本题考查了圆环的面积公式S=π(R2﹣r2)的灵活运用.8.【分析】①每米截一段,求12米可以截成几段,就是求12米里面有多少个米,就用12除以即可;②把这桶油的总质量看成单位“1”,它的是12千克,根据分数除法的意义,用12千克除以即可求出这桶油的总质量;③把甲的总钱数12元看成单位“1”,买笔花去全部的,求买笔花了多少元,就是求12元的是多少,用12乘求解;④小时骑行了12km,求他每小时行驶的路程,就是求速度,用路程除以时间即可.【解答】解:①是求12米里面有多少个米,根据除法的包含意义,列式为:12÷;②这桶油的总质量是单位“1”,它的是12千克,根据分数除法的意义可知,求总质量的列式就是:12÷;③把12元看成单位“1”,求买笔花了多少元,就是求12元的是多少,列式为:12×;④12千米是路程,小时是时间,求速度,根据速度=路程÷时间,可以列式为:12÷;只有③不能用12÷来解决.故选:C.【点评】解决本题根据除法的包含意义,分数乘除法的意义,以及速度、路程和时间三者之间的关系进行分析求解.9.【分析】运用赋值法进行解答,设这个数是0.2=代入数值进行解答,然后根据计算结果进行选择即可.也可以运用乘以或除以小于1的数的计算规律进行解答即可,一个数(0除外)除以小于1的数,商大于这个数;一个数(0除外)乘小于1的数,积小于这个数;一个数(0除外)除以大于1的数,商小于这个数;据此解答.【解答】解:根据分析可知,令a=0.2=:当0<a<1时,A、×a=×=B、×a=×=C、÷a=×5=D、a÷=×=所以当0<a<1时,得数最大的是:÷a.故选:C.【点评】此题考查了不用计算判断因数与积之间大小关系、商与被除数之间大小关系的方法.10.【分析】如上图,连接圆心和中点,那么②=③+④=三角形ABC面积的一半,①=③,然后即可求出图中阴影部分和空白部分的面积相比较出谁大即可.【解答】解:根据分析可得,②=③+④=三角形ABC面积的一半,①=③那么,空白部分的面积=②+③=三角形ABC面积的一半+③阴影部分的面积=①+④=③+④=三角形ABC面积的一半所以,空白部分的面积大;故选:B.【点评】在求不规则图形面积时,往往利用割补结合:观察图形,把图形分割,再进行移补,形成一个容易求得的图形进行解答.二、填空.(共12分)11.【分析】根据比与分数的关系6:15=,再根据分数的基本性质的分子、分母都除以3就是;根据比与除法的关系6:15=6÷15,再根据商不变的性质被除数、除数都乘2就是12÷30.【解答】解:12÷30=6:15=.故答案为:12,5.【点评】此题主要是考查除法、分数、比之间的关系及转化.利用它们之间的关系和性质进行转化即可.12.【分析】在正方形中画出的最大的圆的直径等于正方形的边长,所以圆的直径是12cm,则圆的半径是12÷2=6(厘米).据此解答即可.【解答】解:由分析得出:圆的半径为:12÷2=6(厘米)答:圆的半径是6厘米.故答案为:6.【点评】解决本题的关键是明确在正方形中画出的最大的圆的直径等于正方形的边长.13.【分析】上半场和下半场得分的比是3:4,则下半场得分占全场共得分的,用全场共得分乘下半场得占的比率即可得甲队下半场得了多少分.【解答】解:98×=98×=56(分)答:甲队下半场得了56分.故答案为:56.【点评】本题考查了比的应用,关键是得出下半场得分占全场共得分的.14.【分析】把圆平均分成若干份,拼成一个近似的平行四边形,平行四边形的高即圆的半径,平行四边形的底即圆周长的一半,据此即可解答问题.【解答】解:根据题干分析可得,设圆的半径是r,则拼成的平行四边形的底是2πr÷2=πr平行四边形的高是r,15.7÷3.14=5(厘米)3.14×52=78.5(平方厘米)答:这个平行四边形的面积是 78.5cm2.故答案为:78.5.【点评】解答此题的关键是应明确:把圆平均分成若干份,拼成一个近似的平行四边形,平行四边形的底等于圆的周长的一半,平行四边形的高等于圆的半径;据此解答即可.15.【分析】首先根据工作效率=工作量÷工作时间,分别用1除以两人单独完成需要的时间,求出他们每小时完成这项工程的几分之几;然后根据工作时间=工作量÷工作效率,用1除以两人的工作效率之和,求出甲组和乙组合作,几小时能完成这项工程即可.【解答】解:1÷()=1÷=1(小时),答:两个人合作需要1小时完成.故答案为:1.【点评】此题主要考查了工程问题的应用,对此类问题要注意把握住基本关系,即:工作量=工作效率×工作时间,工作效率=工作量÷工作时间,工作时间=工作量÷工作效率.16.【分析】根据所给图形,发现其规律:大正方形的边长是奇数,第n个图形,白色和黑色的小正方形的总个数是(2n+1)2;黑色的小正方形的总个数是(2n+1)×2﹣1=4n+1;据此解答即可.【解答】解:根据分析可得,第n个图形,白色和黑色的小正方形的总个数是(2n+1)2;黑色的小正方形的总个数是(2n+1)×2﹣1=4n+1;(1)4×5+1=20+1=21(个)(2)4n+1=334n=32n=8(2×8+1)2﹣33=289﹣33=256(个)答:第5个图形中,黑色的小正方形有21个;当一个图形中有33个黑色的小正方形时,白色的小正方形有 256个.故答案为:21;256.【点评】本题主要考查数与形结合的规律,关键根据所给图形,发现其中的规律,并运用规律做题.17.【分析】(1)按照从左向右的顺序进行计算;(2)、(4)根据乘法分配律进行简算;(3)先算除法,再算加法;(5)先算小括号里面的加法,再算除法;(6)先算小括号里面的减法,再算中括号里面的乘法,最后算除法.【解答】解:(1)==(2)=×(13.1+8.9)=×22=18(3)=+=(4)()×36 =×36﹣×36=21﹣20=1(5)==(6)=2.4÷[]=2.4÷=6.4【点评】考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算定律简便计算.四、按要求做.(共9分)18.【分析】(1)根据图上距离和比例尺,计算甲船与灯塔的实际距离,结合图上确定方向的方法确定甲船的位置;(2)根据实际距离和比例尺,计算港口与甲船的图上距离,结合图上确定方向的方法确定港口的位置.【解答】解:(1)2×2=4(千米)答:甲船在灯塔东偏北、30度方向上,距离 4km处.(2)6÷2=3(厘米)港口位置如图所示:故答案为:东;北;30;4.【点评】此题主要考查依据方向(角度)和距离判定物体位置的方法以及线段比例尺的意义.19.【分析】(1)用圆规和直尺作图的方法设计图案即可,先画一条线段.以中点为圆心画一个半圆,然后再以半圆的半径为直径画圆,同时画出它的内接正方形.(2)空白部分的面积=以半圆的半径为直径为圆的面积﹣正方形的面积.【解答】解:(1)设计如下:(2)小圆的半径=8÷2÷2=2(厘米)正方形的面积是有2个底是4厘米高是2厘米的三角形面积组成,(4×2÷2)×2=4×2=8(平方厘米)空白部分的面积3.14×22﹣8=12.56﹣8=4.56(平方厘米)答:空白部分的面积是4.56平方厘米.【点评】本题考查了学生动手画图能力,考查了圆的面积公式及正方形的面积可以转化为2个三角形的面积进行计算.五、解决问题.(共31分)20.【分析】把甲跑步时测得每分钟心跳看成单位“1”,跳恢复正常,每分钟心跳次数占跑步时的.根据分数乘法的意义即可求出甲恢复正常后的心跳次数.【解答】解:126×=70(次)答:甲的心跳恢复正常后是每分钟70次.【点评】本题的关键是找出单位“1”,已知单位“1”的量求它的几分之几是多少用乘法求解.21.【分析】把2018年重度污染的天数看成单位“1”,先求出2019年与2018前三季度重度污染的平均浓度的差,除以2018年重度污染的平均浓度.【解答】解:(48﹣42)÷42×100%=6÷42×100%≈14.3%答:2019年前三季度PM2.5平均浓度比2018年前三季度下降了14.3%.【点评】解答此类问题,首先找清单位“1”,进一步理清解答思路,列式的顺序,从而较好的解答问题.22.【分析】把大齿轮的齿看作单位“1”,大齿轮有75个齿,小齿轮的齿数比大齿轮少,也就是大齿轮的齿数是小齿轮齿数的(1﹣),根据一个数乘分数的意义,用乘法解答.【解答】解:75×(1﹣)=75×=45(个).答:小齿轮有45个齿.【点评】解答这类题目关键是找准单位“1”,单位“1”是已知的用乘法解答;单位“1”是未知的用除法解答.23.【分析】把原价看成单位“1”,售出的价格是原价的(1+20%),它对应的数量是54+6元,由此用除法求出原价.【解答】解:(54+6)÷(1+20%)=60÷120%=50(元)答:这种玩具原价是50元.【点评】本题关键是理解售出的价格是原价的(1+20%)对于的数量是那几部分,即还给顾客的6元加上付出的钱的总和.24.【分析】(1)根据圆的周长公式:C=πd,把数据代入公式解答.(2)摩天轮按照固定的速度转动,转一周大约需要30分钟,那么20分钟转了摩天轮周长的,所以小明从点P进入座舱,运行了20分钟时,他乘坐的应舱更接C的位置.据此解答.【解答】解:(1)3.14×(120﹣10)=3.14×110=345.4(米)答:摩天轮的周长是345.4米.(2)20÷30=摩天轮按照固定的速度转动,转一周大约需要30分钟,那么20分钟转了摩天轮周长的,所以小明从点P进入座舱,运行了20分钟时,他乘坐的应舱更接C的位置.故答案为:C.点A();点B();点C(√);点Q()【点评】此题主要考查圆周长公式的灵活运用,关键是熟记公式.25.【分析】(1)坡度指每段坡道的垂直高度与水平长度的比,这条轮椅坡道的坡度是1:16,水平长度是12.8m,则垂直高度=坡度×水平长度,据此可求出垂直高度.(2)先用垂直高度:水平高度化简算出坡度,再对照表格看是否符合要求即可.【解答】解:(1)12.8×=0.8(米)答:这条轮椅坡道的垂直高度是0.8米.(2)0.85:10.2=1:12对照表格得知,1:12坡度对应的垂直高度是0.75米,0.85米超过了最大高度,所以不符合要求.答:这条坡追是不符合轮椅坡道的选设要求.【点评】此题考查了运用比例解决问题的能力.26.【分析】(1)根据数据先求总人数:360+8+32=400(人),然后根据好评、中评和差评占总人数的百分率,选择合适的扇形统计图.(2)根据公式:好评率=好评数量÷总人数×100%,计算即可.(3)我建议王阿姨购买,因为:①好评中对产品质量的评价占80%;②中、差评中对产品质量的评价仅占10%.【解答】解:(1)360÷(360+8+32)=360÷400=90%8÷(360+8+32)=8÷400=2%32÷(360+8+32)=32÷400=8%所以能代表此款商品好评、中评、差评的是 B.(2)360÷(360+8+32)×100%=360÷400×100%=90%答:这款加湿器的好评率是 90%.(3)我建议王阿姨购买,因为:①好评中对产品质量的评价占80%;②中、差评中对产品质量的评价仅占10%.故答案为:B;90;建议购买;①好评中对产品质量的评价占80%;②中、差评中对产品质量的评价仅占10%.【点评】本题主要考查扇形统计图的应用,关键根据扇形统计图的特点即所给数据完成问题.结束语:同学们,祝贺你们已完成,请再仔细检查哟!考试小提示:同学们,天道酬勤,经过一个学期的勤奋努力,相信你们都收获满满!现在请你用心做题,认真书写,细心检查,相信你们一定会给自己一份满意的答卷,加油!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第Ⅰ卷(选择题 共40分)一㊁选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合A ={x |x <a },B ={-3,0,1,5},若集合A ɘB 有且仅有2个元素,则实数a 的取值范围为(A )(-3,+¥)(B )(0,1](C )[1,+¥)(D )[1,5)2.若复数z =3-i1+i,则在复平面内z 对应的点位于(A )第一象限(B )第二象限(C )第三象限(D )第四象限3.在әA B C 中,若a =6,A =60ʎ,B =75ʎ,则c =(A )4(B )22(C )23(D )264.设x >y ,且x y ʂ0,则下列不等式中一定成立的是(A )1x >1y (B )l n |x |>l n |y|(C )2-x <2-y(D )x 2>y25.已知直线x +y +2=0与圆x 2+y 2+2x -2y +a =0有公共点,则实数a 的取值范围为(A )(-¥,0](B )[0,+¥)(C )[0,2)(D )(-¥,2)6.设三个向量a,b,c互不共线,则 a+b+c=0 是 以|a|,|b|,|c|为边长的三角形存在 的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件7.紫砂壶是中国特有的手工制造陶土工艺品,其制作始于明朝正德年间.紫砂壶的壶型众多,经典的有西施壶㊁掇球壶㊁石瓢壶㊁潘壶等.其中,石瓢壶的壶体可以近似看成一个圆台(即圆锥用平行于底面的平面截去一个锥体得到的).下图给出了一个石瓢壶的相关数据(单位:c m),那么该壶的容量约为(A)100c m3(B)200c m3(C)300c m3(D)400c m38.已知函数f(x)=x+1+k,若存在区间[a,b],使得函数f(x)在区间[a,b]上的值域为[a+1,b+1],则实数k的取值范围为(A)(-1,+¥)(B)(-1,0](C)(-14,+¥)(D)(-14,0]第Ⅱ卷(非选择题共110分)二㊁填空题:本大题共6小题,每小题5分,共30分.9.在(1-x)5的展开式中,x2的系数为.10.已知向量a=(-4,6),b=(2,x)满足aʊb,其中xɪR,那么|b|=.11.在公差为d(dʂ0)的等差数列{a n}中,a1=-1,且a2,a4,a12成等比数列,则d=.12.某四棱锥的三视图如图所示,则该四棱锥的四个侧面中,直角三角形有个.13.对于双曲线,给出下列三个条件:①离心率为2;②一条渐近线的倾斜角为30ʎ;③实轴长为8,且焦点在x轴上.写出符合其中两个条件的一个双曲线的标准方程.14.某商贸公司售卖某种水果.经市场调研可知:在未来20天内,这种水果每箱的销售利润r(单位:元)与时间t(1ɤtɤ20,tɪN,单位:天)之间的函数关系式为r=14t+10,且日销售量y(单位:箱)与时间t之间的函数关系式为y=120-2t.①第4天的销售利润为元;②在未来的这20天中,公司决定每销售1箱该水果就捐赠m(mɪN*)元给 精准扶贫 对象.为保证销售积极性,要求捐赠之后每天的利润随时间t的增大而增大,则m 的最小值是.三㊁解答题:本大题共6小题,共80分.解答应写出必要的文字说明㊁证明过程或演算步骤.15.(本小题满分13分)已知函数f(x)=2c o s x㊃s i n(x-π6).(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数f(x)在区间[-π2,0]上的最小值和最大值.16.(本小题满分13分)高铁和航空的飞速发展不仅方便了人们的出行,更带动了我国经济的巨大发展.据统计,在2018年这一年内从A市到B市乘坐高铁或飞机出行的成年人约为50万人次.为了解乘客出行的满意度,现从中随机抽取100人次作为样本,得到下表(单位:人次):满意度老年人中年人青年人乘坐高铁乘坐飞机乘坐高铁乘坐飞机乘坐高铁乘坐飞机10分(满意)1212022015分(一般)2362490分(不满意)106344 (Ⅰ)在样本中任取1个,求这个出行人恰好不是青年人的概率;(Ⅱ)在2018年从A市到B市乘坐高铁的所有成年人中,随机选取2人次,记其中老年人出行的人次为X.以频率作为概率,求X的分布列和数学期望;(Ⅲ)如果甲将要从A市出发到B市,那么根据表格中的数据,你建议甲是乘坐高铁还是飞机?并说明理由.17.(本小题满分14分)如图,在三棱柱A B C-A1B1C1中,B B1ʅ平面A B C,әA B C为正三角形,侧面A B B1A1是边长为2的正方形,D为B C的中点.(Ⅰ)求证:A1Bʊ平面A C1D;(Ⅱ)求二面角C-A C1-D的余弦值;(Ⅲ)试判断直线A1B1与平面A C1D的位置关系,并加以证明18.(本小题满分13分)已知椭圆W:x24+y2=1的右焦点为F,过点F且斜率为k(kʂ0)的直线l与椭圆W 交于A,B两点,线段A B的中点为M.O为坐标原点.(Ⅰ)证明:点M在y轴的右侧;(Ⅱ)设线段A B的垂直平分线与x轴㊁y轴分别相交于点C,D.若әO D C与әC M F的面积相等,求直线l的斜率k.19.(本小题满分14分)已知函数f(x)=e x-a x+12x2,其中a>-1.(Ⅰ)当a=0时,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)当a=1时,求函数f(x)的单调区间;(Ⅲ)若f(x)ȡ12x2+x+b对于xɪR恒成立,求b-a的最大值.20.(本小题满分13分)设整数集合A={a1,a2, ,a100},其中1ɤa1<a2< <a100ɤ205,且对于任意i,j(1ɤiɤjɤ100),若i+jɪA,则a i+a jɪA.(Ⅰ)请写出一个满足条件的集合A;(Ⅱ)证明:任意xɪ{101,102, ,200},x∉A;(Ⅲ)若a100=205,求满足条件的集合A的个数.数学试题参考答案1-8BDDCA ABD 9.101011.312.313.答案不唯一,如2211648x y -=14.1232;515.解:(Ⅰ)因为1()2cos (cos )22f x x x x =⋅-2cos cos x x x -112cos2222x x =--π1sin(2)62x =--,所以函数()f x 的最小正周期为2ππ2T ==.(Ⅱ)因为π02x -≤≤,所以7πππ2666x ---≤≤.所以当ππ262x -=-,即π6x =-时,()f x 取得最小值32-.当π7π266x -=-,即π2x =-时,()f x 取得最大值0.16.解:(Ⅰ)设事件:“在样本中任取1个,这个出行人恰好不是青年人”为M ,由表可得:样本中出行的老年人、中年人、青年人人次分别为19,39,42,所以在样本中任取1个,这个出行人恰好不是青年人的概率193929()10050P M +==.(Ⅱ)由题意,X 的所有可能取值为:0,1,2.因为在2018年从A 市到B 市乘坐高铁的所有成年人中,随机选取1人次,此人为老年人概率是151755=,所以022116(0)C (1)525P X ==⨯-=,12118(1)C (15525P X ==⨯⨯-=,22211(2)C ()525P X ==⨯=.所以随机变量X 的分布列为:P1625825125………………9分故16812()0122525255E X =⨯+⨯+⨯=.………………10分(Ⅲ)答案不唯一,言之有理即可.如可以从满意度的均值来分析问题,参考答案如下:由表可知,乘坐高铁的人满意度均值为:521012511011652121115⨯+⨯+⨯=++,乘坐飞机的人满意度均值为:410145702241475⨯+⨯+⨯=++,因为11622155>,所以建议甲乘坐高铁从A 市到B 市.17.解:(Ⅰ)由题意,三棱柱111ABC A B C -为正三棱柱.连接1A C .设11A C AC E = ,则E 是1A C 的中点.连接DE .由D ,E 分别为BC 和1A C 的中点,得1//DE A B .又因为DE ⊂平面1AC D ,1A B ⊄平面1AC D ,所以1//A B 平面1AC D .(Ⅱ)取11B C 的中点F ,连接DF .因为△ABC 为正三角形,且D 为BC 中点,所以AD BC ⊥.由D ,F 分别为BC 和11B C 的中点,得1//DF BB ,又因为1BB ⊥平面ABC ,所以DF ⊥平面ABC ,所以DF AD ⊥,DF BC ⊥.分别以DC ,DF ,DA 为x 轴,y 轴,z则A ,1(1,2,0)C ,(1,0,0)C ,(0,0,0)D ,(1,0,0)B -,所以1(1,2,0)DC = ,DA = ,(CA =- ,1(0,2,0)CC =,设平面1AC D 的法向量1111(,,)x y z =n ,由10DA ⋅= n ,110DC ⋅= n,得1110,20,x y =+=⎪⎩令11y =,得1(2,1,0)=-n .设平面1AC C 的法向量2222(,,)x y z =n ,由20CA ⋅= n ,120CC ⋅= n,得2220,20,x y ⎧-+=⎪⎨=⎪⎩令21z =,得2=n .设二面角1C AC D --的平面角为θ,则121215|cos |||||||5θ⋅==⋅n n n n ,由图可得二面角1C AC D --为锐二面角,所以二面角1C AC D --的余弦值为5.(Ⅲ)结论:直线11A B 与平面1AC D 相交.证明:因为(1,0,AB =-,11//A B AB ,且11=A B AB ,所以11(1,0,A B =-.又因为平面1AC D 的法向量1(2,1,0)=-n ,且11120A B ⋅=≠n ,所以11A B与1n 不垂直,所以11A B ⊄平面1AC D ,且11A B 与平面1AC D 不平行,故直线11A B 与平面1AC D 相交.18.解:(Ⅰ)由题意,得F,直线(l y k x =:(0k ≠),设11(,)A x y ,22(,)B x y ,联立22(1,4y k x x y ⎧=-⎪⎨+=⎪⎩消去y,得2222(41)(12k xx k +-+-显然0∆>,12x x +=,则点M 的横坐标2122241M x x k x k +==+,因为0M x =>,所以点M 在y 轴的右侧.(Ⅱ)由(Ⅰ)得点M 的纵坐标2(41M M y k x k ==+.即222(,)4141M k k -++.所以线段AB 的垂直平分线方程为:y +令0x =,得D ;令0y =所以△ODC 的面积12ODCS ∆=⋅△CMF 的面积221|241CMFS k ∆=⋅-+因为△ODC 与△CMF 的面积相等,所以22222227||3(1)||2(41)2(41)k k k k k k ⋅+⋅=++,解得所以当△ODC 与△CMF 19.解:(Ⅰ)由21()e 2x f x x =+,得()e x f x '=+所以(0)1f =,(0)1f '=.所以曲线()y f x =在点(0,(0))f (Ⅱ)由21()e 2x f x x x =-+,得()e 1x f x '=-则(0)0f '=.当0x >时,由e 10,0x x ->>,得(f '所以函数()f x 在(0,)+∞上单调递增;当0x <时,由e 10,0x x -<<,得()e 10x f x x '=-+<所以函数()f x 在(,0)-∞上单调递减.综上,函数()f x 的单调递增区间为(0,)+∞(Ⅲ)由21()2f x x x b ++≥,得e (1)0x a x b -+-≥在x ∈R 设()e (1)xg x a x b =-+-,则()e (1)x g x a '=-+.由()e (1)0x g x a '=-+=,得ln(1)x a =+,(1a >-).随着x 变化,()g x '与()g x 的变化情况如下表所示:x(,ln(1))a -∞+ln(1)a +(ln(1),)a ++∞()g x '-0+()g x ↘极小值↗所以()g x 在(,ln(1))a -∞+上单调递减,在(ln(1),)a ++∞上单调递增.所以函数()g x 的最小值为(ln(1))(1)(1)ln(1)g a a a a b +=+-++-.由题意,得(ln(1))0g a +≥,即1(1)ln(1)b a a a --++≤.设()1ln (0)h x x x x =->,则()ln 1h x x '=--.因为当10e x <<时,ln 10x -->;当1ex >时,ln 10x --<,所以()h x 在1(0,e 上单调递增,在1(,)e +∞上单调递减.所以当1e x =时,max 11()(1e eh x h ==+.所以当11e a +=,1(1)ln(1)b a a a =+-++,即11e a =-,2eb =时,b a -有最大值为11e+.20.解:(Ⅰ)答案不唯一.如{1,2,3,,100}A = ;(Ⅱ)假设存在一个0{101,102,,200}x ∈ 使得0x A ∈,令0100x s =+,其中s ∈N 且100s ≤≤1,由题意,得100s a a A +∈,由s a 为正整数,得100100s a a a +>,这与100a 为集合A 中的最大元素矛盾,所以任意{101,102,,200}x ∈ ,x A ∉.(Ⅲ)设集合{201,202,,205}A 中有(15)m m ≤≤个元素,100m a b -=,由题意,得12100200m a a a -<<< ≤,10011002100200m m a a a -+-+<<<< ,由(Ⅱ),得100100m a b -=≤.假设100b m >-,则1000b m -+>.因为10010010055100b m m -+-+=<-≤,由题设条件,得100100m b m a a A --++∈,因为100100100100200m b m a a --+++=≤,所以由(Ⅱ)可得100100100m b m a a --++≤,这与100m a -为A 中不超过100的最大元素矛盾,所以100100m a m --≤,又因为121001m a a a -<<< ≤,i a ∈N ,所以(1100)i a i i m =-≤≤.任给集合{201,202,203,204}的1m -元子集B ,令0{1,2,,100}{205}A m B =- ,以下证明集合0A 符合题意:对于任意,i j 00)(1i j ≤≤≤1,则200i j +≤.若0i j A +∈,则有m i j +≤100-,所以i a i =,j a j =,从而0i j a a i j A +=+∈.故集合0A 符合题意,所以满足条件的集合A 的个数与集合{201,202,203,204}的子集个数相同,。

相关文档
最新文档