空间直角坐标系 说课稿 教案 教学设计
《空间直角坐标系》示范课教学设计【高中数学】
环节一空间直角坐标系【引入新课】思考:在平面向量中,我们通过平面直角坐标系建立了向量的坐标与点的坐标的一一对应关系,从而把平面向量的运算化归为数的运算.类似地,为了把空间向量的运算化归为数的运算,能否利用空间向量基本定理和空间的单位正交基底,建立空间直角坐标系,进而建立空间向量的坐标与空间点的坐标的一一对应呢?【探究新知】为了研究这个问题,我们需要弄清楚:问题1:类比平面直角坐标系,你能猜想如何构建空间直角坐标系吗?追问1:平面直角坐标系包含哪些要素?类比到空间直角坐标系应该有哪些要素?它们需要满足什么条件?答案:追问2:利用单位正交基底概念,我们可以如下这样理解平面直角坐标系. 类比到空间,你能否给出空间直角坐标系的定义呢?答案:空间直角坐标系定义:在空间选定一点O和一个单位正交基底{i, j, }k. 以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴. 这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面,yOz平面,zOx平面,它们把空间分成八个部分.追问3:空间直角坐标系如何画呢?答案:先回想平面直角坐标系Oxy 的画法:在平面内画两条与单位正交基底向量i ,j 方向相同的数轴x 轴和y 轴,它们互相垂直、原点重合.与画平面直角坐标系相比,画空间直角坐标系只是多画一个与x 轴、y 轴都垂直的z 轴而已,所以我们不妨借鉴在立体几何中学习的斜二测画法,在画空间直角坐标系Oxyz 时,让x 轴与y 轴所成的角为135︒(或45︒),即135xOy ︒∠=(或45︒),画z 轴与y 轴垂直,即90yOz ︒∠=.在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系.问题2: 在平面直角坐标系中,每一个点和向量都可以用一对有序实数(即它的坐标)表示,对空间直角坐标系中的每一个点和向量,是否也有类似的表示呢?追问1:空间中任意一点A 与哪个向量的坐标相同?答案:在平面直角坐标系中,点A 的位置由向量OA 唯一确定,类比到空间直角坐标系中,我们可知点A 的坐标与从原点出发的OA 坐标相同. 由此,确定空间直角坐标系中点的坐标,可以从确定与之对应的,以原点为起点,该点为终点的向量的坐标入手.追问2:在空间直角坐标系中如何定义OA 的坐标呢? 答案:平面直角坐标系内空间直角坐标系内取与x 轴、y 轴方向相同的两个单位向量,i ,j 为基底,由平面向量基本定理,有且只有一对实数x ,y 使得取与x 轴、y 轴、z 轴方向相同的两个单位向量,i ,j ,k 为基底,由空间向量基本定理,存在唯一的有序实数组使得OA x y =+i j k +z ,我们把有序实数组x y =+a i j .我们把有序数对(),x y 叫做a 的坐标,记作(),x y =a .(),,x y z 叫做OA 的坐标,记作(),,OA x y z =.所以,在单位正交基底{i ,j ,}k 下与向量OA 对应的有序实数组(x ,y ,)z ,叫做点A 在空间直角坐标系中的坐标,记做A (x ,y ,)z ,其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标.追问3:那么对于给定的向量a 又该如何定义它的坐标呢? 答案:因为空间向量是自由的,我们在空间直角坐标系Oxyz 中可以作OA =a . 由空间向量基本定理,存在唯一的有序实数组(x ,y ,)z ,使x y z =++a i j k ,有序实数组(x ,y ,)z 叫做a 在空间直角坐标系Oxyz 中的坐标,上式可简记为(x =a ,y ,)z这样,在空间直角坐标系中,空间中的点和向量都可以用三个有序实数表示. 问题3: 在空间直角坐标系Oxyz 中,对空间任意一点A ,或任意一个向量OA ,你能借助几何直观确定它们的坐标(),,x y z 吗?答案:过点A 分别作垂直于x 轴、y 轴和z 轴的平面,依次交x 轴、y 轴和z 轴于点B ,C 和D . 可以证明OA 在x 轴、y 轴、z 轴上的投影向量分别为OB ,OC ,OD ,由向量加法的意义可知,OE OB OC +=,OA OE EA OE OD ++==,即OA OB OC OD ++=. 设点B C D ,和在x 轴、y 轴和z 轴上的坐标分别是x ,y 和z ,那么OA x y z =++i j k ,即点A 或者向量OA 的坐标就是(x ,y ,)z .k yzxoi A (x ,y ,z )a思路小结:目前,我们有哪些方法可以用于确定空间中一个点A 或任意一个向量a 的坐标呢?【知识应用】例1 如图,在长方体OABC D A B C ''''-中,3OA =,4OC =,2OD '=,以13OA ⎧⎨⎩,14OC ,12OD ⎫'⎬⎭为单位正交基底,建立如图所示的空间直角坐标系Oxyz . (1)写出D ',C ,A ',B '四点的坐标; (2)写出向量A B '',BB ',A C '',AC '的坐标.追问1:题目条件中的13OA ⎧⎨⎩,14OC ,12OD ⎫'⎬⎭为什么是单位正交基底?答案:由图可知,OA 在x 轴上,且3OA =,所以1=13OA .同理,OC 在y 轴上,OD '在z 轴上,由4OC =,2OD '=知,1=14OC ,1=12OD ',所以13OA ⎧⎨⎩,14OC ,12OD ⎫'⎬⎭是单位正交基底,等同于我们前面用到的{i ,j ,}k .追问2:求空间点的坐标我们有哪些基本解题思路?答案:有两种选择,一种是转化为求与该点对应的,从原点出发,指向该点的空间向量的坐标. 而后依据空间向量基本定理,把空间向量用单位正交基底分解,从而求出坐标;另一种是应用几何直观,找出空间点在x 轴、y 轴、z 轴上的射影,进而得到坐标.思路小结:由几何直观可知,确定空间中一个点的坐标,我们需要先找出该点在各个坐标轴上的射影,再根据空间向量基本定理,得到点的坐标. 所以可以总结步骤如下:(1)过空间点分别作x 轴、y 轴和z 轴的垂面;点A 的坐标给定的向量a 的坐标OA 的坐标应用空间向量基本定理确定坐标根据几何直观确定OA 在各坐标轴上的投影向量,从而求得坐标(2)确定空间点在坐标轴上的射影的坐标; (3)得到空间点的坐标. 解:(1)()()()()0,0,2,0,4,0,3,0,2,3,4,2D C A B '''.(2)()0400,4,0,A B OC ''=++=i j k=()0020,0,2,B B OD ''-=+-=-=i j k()3403,4,0,A C A D D C OA+OC =''''''=+=-=-++-i j k()3423,4,2AC AC CC OA OC CC OA OC OD =''''=+=-++=-++=-++-i j k .问题4:回顾本节课的学习过程,我们是如何得到空间点和空间向量的坐标的? 答案:(1)类比平面直角坐标系,构建了空间直角坐标系.(2)根据空间向量基本定理,在单位正交基底下,得到空间直角坐标系中的每一个点和向量都存在唯一的有序实数组(x ,y ,)z 与之对应,从而引出空间点和空间向量的坐标表示.问题5:如何求空间点或向量的坐标呢?答案:(1)根据空间向量基本定理,将点或向量用单位正交基底{i ,j ,}k 来表示,它们的系数就是点或向量的坐标.(2)由几何直观,过点作垂直于x 轴、y 轴和z 轴的平面,依次确定点对应的向量在各个轴上的投影向量,根据投影向量的坐标得到点或向量的坐标.第二课时 空间向量运算的坐标表示环节一:引入新课本章前半部分的主要内容: 我国著名数学家吴文俊先生曾指出:“数学是研究现实世界中数量关系和空间形式的科学.简单地说,就是研究数和形的科学.”中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”.在前面的学习中,我们已经掌握了空间直角坐标系的概念,进一步通过正交分解的方法将空间向量用唯一的有序实组表示出来,引入坐标后可使向量中形的运算转化成数的运算.今天我们就循着数学家的足迹,大胆类比、猜想,把向量坐标运算从平面拓展到空间,完成一次从二维到三维,从形到数的跨越.环节二:探究新知为了研究这个问题,我们需要弄清楚:问题1: 有了空间向量的坐标表示,你能类比平面向量的坐标运算,得出空间向量运算的坐标表示并给出证明吗?追问1: 平面向量的运算都有哪些?如何对平面向量进行坐标运算? 答案:加法,减法,数乘,数量积.追问2: 你能否类比平面向量运算的坐标表示给出空间向量运算坐标表示的猜想? 答案:设空间向量 123123(,,),(,,),a a a b b b ==a b 猜()112233,,,a b a b a b +=+++a b()112233,,,a b a b a b -=a b ---()123,,,a a a =a 112233.a b a b a b ⋅=++a b追问3:你能否对空间向量运算的坐标表示进行证明呢?答案: 结合空间向量坐标的定义,我们以数量积运算的坐标表示为例进行证明: 第一步:由空间向量基本定理,设{},,i j k 为空间的一个单位正交基底,由向量a 的坐标为123(,,)a a a ,则可将向量a 唯一分解为123a a a =++a i j k , 同理可将向量b 表示为123b b b =++b i j k . 第二步: ()()123123a a a b b b ⋅=++⋅++a b i j k i j k111213212223313233a b a b a b a b a b a b a b a b a b =⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅i i i j i k j i j j j k k i k j k k利用向量数量积的分配律以及======⋅⋅⋅1,⋅⋅⋅0,i i j j k k i j j k k i 得112233.a b a b a b ⋅=++a b其他运算的坐标表示可以类似证明,请同学们课下自主完成.由上述结论可知,空间向量运算的坐标表示与平面向量运算的坐标表示是完全一致的. 类似地,我们还可以得到:一个空间向量的坐标等于表示此向量的有向线段的终点坐标减去起点坐标.即:设 123123(,,),(,,),A a a a B b b b 则向量()112233,,AB b a b a b a =---.问题2: 在学习平面向量运算的过程中,我们了解到向量可以帮助我们解决平面几何中的特殊位置关系与几何度量等问题,这些重要的性质和结论在空间向量中仍然成立吗?追问1: 如何用平面向量的坐标运算刻画平面向量的平行和垂直? 答案:设 1212(,),(,),a a b b ==a b 当≠0b 时,∥a b 的充要条件是=a b , λ属于全体实数,用坐标表示为1212(,)(,),a a b b = 得到方程组1122,,a b a b =⎧⎨=⎩ 消去λ,得到平面向量平行充要条件的坐标表示:a 1b 2−a 2b 1=0.类比平面向量平行的坐标表示,我们可以得到:设空间向量123123(,,),(,,),a a a b b b ==a b 当≠0b 时,∥a b 的充要条件是=a b , λ 属于全体实数.可以用坐标表示为123123(,,)(,,)a a a b b b =,得到方程组()112233,,.a b a b a b =⎧⎪=∈⎨⎪=⎩R ,这就是空间向量平行的充要条件的坐标表示.追问2: 这个充要条件能否表示为312123a a ab b b ==? 答案: 显然,空间向量平行的充要条件不等价于312123a a ab b b ==,因为≠0b 的含义是b 的坐标分量123,,b b b 至少有一个不为零,而非每一个坐标分量都不为零.例如,当b 与坐标平面Oxy 平行时,30b =此时33a b 无意义.因此只有在b 与三个坐标平面均不平行,即123,,b b b 均不为零时才能有312123a a ab b b ==⇔∥a b .特殊地,当=0b 时,(0,0,0)=b .此时b 与任意向量都平行.追问3: 除了上述对空间向量位置关系的研究,类比平面向量运算的应用,能否总结出空间向量的度量关系,如空间向量长度和夹角的坐标表示?答案: 设 123123(,,),(,,),a a a b b b ==a b222123a a a =⋅=++a a a . 112233222222123123cos ,a b a b a b a a a b b b ++⋅==++++a ba b a b.设1111()P x ,y ,z , 2222()Px ,y ,z ,则()()()2221212212121=PP PP x x +y y +z z ---=追问4:得到上面的猜想后,同学们能利用空间向量运算的坐标表示证明空间两点间的距离公式吗?答案:首先,建立空间直角坐标系Oxyz ,设1P , 2P 是空间中任意两点,则向量()1221212121.PP OP OP x x ,y y ,z z ---=-= 于是121212PP PP PP ⋅=,带入坐标,()()()22212212121PP x x +y y +z z ---=.所以()()()2221212212121=PP PP x x +y y +z z ---=.这就是空间两点间的距离公式.因此,空间向量123(,,)a a a =a 的模可以理解为点123(,,)a a a 到原点的距离,这是空间两点间距离公式的特殊化.环节三:知识应用例1 如图,在空间直角坐标系Oxyz 中,正方体1111ABCD A B C D -的棱长为2,E ,F 分别是1BB , 11D B 的中点.(1)求证1EF DA ⊥;(2)求AE 与1CD 所成角的余弦值.追问1: 两条直线的垂直关系可以用向量刻画吗?答案:要证明1EF DA ⊥,只需证明1EF DA ⊥,在前面的学习中,我们已经得到了两个向量垂直的充要条件为数量积为零,即10.EF DA =通过本节课学习的内容,可以将空间向量垂直的充要条件用坐标形式表达,因此在应用向量法求解本题时,我们需要利用题目中的空间直角坐标系,从而建立立体图形与空间向量的联系.追问2: 向量EF 的坐标怎么求?答案: 因为()2,2,1E , (1,1,2)F ,所以(1,1,2)(2,2,1)(1,1,1).EF =-=--分析:因为空间向量的数量积和夹角有关,此我们经常以空间向量的数量积为工具,解决立体几何中与夹角相关的问题,把空间两条直线所成角问题转化为两条直线对应向量的夹角问题.追问3: 两条直线夹角与两向量夹角有区别吗?答案:这二者是有区别的,它们的取值范围不同.具体来说, 两条直线夹角的范围是0,2π⎡⎤⎢⎥⎣⎦,而向量夹角的范围是[]0,π.当AE 与1CD 所成的角为锐角或直角时,直线AE 与1CD 所成的角和向量的夹角相等. 当AE 与1CD 所成的角为钝角时,直线AE 与1CD 所成的角为向量夹角的补角.解:(1)因为()2,2,1E , (1,1,2)F ,所以(1,1,2)(2,2,1)(1,1,1)EF =-=--. 得到向量EF 的坐标后,同理,又因为点()()12,0,2,0,0,0A D ,所以()12,0,2DA =. 所以()()11,1,12,0,22020.EF DA =--=-++= 所以1EF DA ⊥,即1EF DA ⊥. (2)因为()()()()12,0,0,0,2,0,2,2,1,0,0,2A C E D ,所以()()()2,2,12,0,00,2,1AE =-=,()()()10,0,20,2,00,2,2CD =-=-, 15,=22AE DF =.所以()10022122AE CD =⨯+⨯-+⨯=-.所以111cos ,AE CD AE CD AE CD ===所以, AE 与1CD 所成角为向量AE ,向量1CD 夹角的补角.所以, AE 与1CD 方法提炼:在空间直角坐标系中,先写出相关点、相关向量的坐标,把几何问题代数化,然后再利用向量的坐标运算解决位置关系与几何度量等问题,其中要关注空间两条直线所成角与对应向量夹角的取值范围是不同的.需要注意的是,有些问题往往需要我们观察几何体的结构特征,找寻三条两两垂直的线段,先建立空间直角坐标系,再应用向量运算解决几何问题.问题3:回顾本节课对于空间向量坐标运算的探究过程,你都学到了什么?答案:1. 类比平面向量研究空间向量运算的坐标表示 (1)空间向量运算的坐标表示空间向量加法减法的坐标运算只需将其相应的坐标相加或相减; 空间向量数乘的坐标运算等于用这个实数λ乘原来向量的相应坐标; 空间向量数量积的坐标运算是其对应坐标乘积的和. (2)空间向量运算坐标表示的应用我们得到了空间向量平行和垂直这两种特殊位置关系的坐标表示同时,我们证明了空间向量长度和夹角的公式,这些公式可以帮助我们解决立体几何中的度量问题2.关注空间向量与立体几何知识间的联系空间向量体系的建立需要立体几何的基本知识,反过来,立体几何中的问题可以用向量方法解决. 因此,我们说空间向量与立体几何有着天然的联系.空间向量为我们解决立体几何问题提供了新的工具.一般地,利用空间向量解决立体几何问题,有如下的“三步曲”,步骤一:建立恰当的空间直角坐标系,求出相关点、相关向量的坐标;步骤二:进行空间向量的运算,研究空间图形之间的平行、垂直等位置关系以及距离、夹角等度量问题;步骤三:求出答案后,翻译成相应的几何结论,得到相应立体几何问题的解决.课时检测1. (3,2,5),(1,5,1),--a =b =求: (1)+a b ; (2)6a ; (3)ab .2. (2,1,3),(4,2,),x --a =b =且⊥a b .求x 的值.3. 如图,在棱长为1的正方体1111ABCD A B C D -中,M 为1BC 的中点, 1E ,1F 分别在棱11A B ,11C D 上,111114B E A B =,111114D F C D =. (1)求AM 的长.(2)求1BE 与1DF 所成角的余弦值.答案:1. (1) ()2,7,4+-a b =;(2)()618,12,30-a =;(3)2a b =;2. 因为a ⊥b ,所以a ·b =0,即-8-2+3x =0,解得x =103;3. (1)AM =(2) 1517.。
空间直角坐标系说课稿
空间直角坐标系说课稿空间直角坐标系说课稿1今天我说课的内容是空间直角坐标系,下面我分别从教材分析、教学目标的确定、教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。
一、教材分析本节内容选自人民教育出版社出版的普通高中课程标准实验教科书《数学》必修二的第四章第3节,属于解析几何领域的知识,它是平面直角坐标系的进一步推广,是学生思维从一维二维空间到三维空间的过渡。
为以后在选修中利用空间向量解决空间中的平行、垂直以及空间中的夹角与距离问题的打好基础;而且必修二第三、四章是平面解析几何的基础内容,本节“空间直角坐标系”的内容是空间立体几何的基础,与平面几何的内容共同体现了“用代数方法解决几何问题”的解析几何思想。
本小节内容主要包含空间直角坐标系的建立、空间中点与其坐标的一一对应关系、以及如何由空间中点的位置确定点的坐标或由点的坐标确定点的位置等问题。
在本节课中教学重点是三维空间坐标系的建立过程,以及空间中点与其坐标的一一对应关系的理解;教学难点和关键是理解空间直角坐标系的相关概念,以及空间中点与其坐标的一一对应关系。
基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,制定如下的教学目标:二、教学目标的确定知识与技能:(1)理解空间直角坐标系的相关概念,空间中点的坐标及其坐标对应的点;(2)理解空间直角坐标系的建立过程以及空间中点与坐标一一对应的关系。
过程与方法:(1)通过空间直角坐标系的建立,体会由一维空间到二维空间再到三维空间的拓展和推广,培养学生利用类比的数学思想方法探索空间直角坐标系;(2)通过空间点与坐标的对应关系,进一步加强学生对“数形结合”思想方法的认识。
情感态度与价值观:体会到数学的严谨的思维逻辑以及抽象概括力。
三、教学方法的选择本节内容是高中数学中概念原理的教学,根据布鲁纳的发现学习理论,本节课主要采用了启发式、探究式的教学方法,通过激发学生解决问题的欲望,使学生主动参与教学实践活动。
空间直角坐标系 说课稿 教案 教学设计
空间直角坐标系空间两点间的距离公式●三维目标1.知识与技能(1)通过具体情境,使学生感受建立空间直角坐标系的必要性.(2)了解空间直角坐标系,掌握空间点的坐标的确定方法和过程,感受类比思想在探究新知识过程中的作用.(3)理解空间两点间距离公式的推导过程,掌握空间两点间的距离公式.2.过程与方法让学生经历用类比的数学思想方法探索空间直角坐标系的建立方法,进一步体会数学概念、方法产生和发展的过程,学会科学的思维方法.3.情感、态度与价值观(1)通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系和研究事物从低维到高维的一般方法.(2)通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,不断地拓展自己的思维空间.●重点难点重点:空间直角坐标系的有关概念,空间点的坐标的确定方法及空间两点间的距离公式.难点:空间直角坐标系的产生过程及空间两点间距离公式的推导.重难点突破:以学生熟知的身边实例为切入点,让学生感知建立空间直角坐标系的必要性,在此基础上,类比平面直角坐标系的建系原则,引导学生建立空间直角坐标系,同时借助长方体,以形象直观的方式,引入空间点的坐标及空间两点间的距离公式.为了更好的突出重点、突破难点,教师可适当引入案例,通过学生的训练及教师的点拨,帮助学生实现知识的内化.●教学建议本节知识是在二维平面直角坐标系基础上的推广,是空间立体几何的代数化,是以后学习“空间向量”等内容的基础,具有承前启后的作用.鉴于本节知识的特点,本节课易采用启发式教学方法,从回忆平面直角坐标系的建立方法,点的坐标的确定过程、表示方法,平面内的点与坐标之间的一一对应关系入手,逐一讲解空间直角坐标系的有关概念及空间点的坐标的确定方法.教学时,可围绕在空间直角坐标系中点的坐标的确定这一教学重点,通过巩固与练习反复强化如何在坐标系中利用点的坐标的概念来确定点的坐标这一过程,以巩固学生对新知识的理解,实现从感性认识到理性认识的飞跃.对于空间两点间距离公式的推导可采用“空间问题平面化”的思想给予解决,适当训练掌握其形式便可,不必扩充过多.●教学流程创设问题情境,引出问题:如何确定空间中某一点的位置?⇒引导学生类比平面直角坐标系的建系原则建立空间直角坐标系.⇒通过引导学生回答所提问题理解空间直角坐标系中点的确定方式及两点间的距离公式.⇒通过例1及其变式训练,使学生掌握空间直角坐标系中点的确定方法.⇒通过例2及其变式训练,使学生掌握点的对称坐标的求法.⇒通过例3及其变式训练,使学生掌握两点间的距离求法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.课标解读 1.了解空间直角坐标系的建系方式.(难点) 2.能在空间直角坐标系中求出点的坐标和已知坐标作出点.(重点、易错点)3.理解空间两点间距离公式的推导过程和方法.(难点)4.掌握空间两点间的距离公式,能够用空间两点间距离公式解决简单的问题.(重点)空间直角坐标系(1)在数轴上(如图),一个实数就能确定一个点的位置.(2)在平面直角坐标系中(如图),需要一对有序实数才能确定一个点的位置.1.为了确定空间中任意一点的位置,需要几个实数?【提示】三个.2.空间直角坐标系需要几个坐标轴,它们之间什么关系?【提示】空间直角坐标系需要三个坐标轴,它们之间两两相互垂直.1.空间直角坐标系及相关概念(1)空间直角坐标系:从空间某一定点引三条两两垂直,且有相同单位长度的数轴:x轴、y轴、z轴,这样就建立了一个空间直角坐标系Oxyz.(2)相关概念:点O叫做坐标原点,x轴、y轴、z轴叫做坐标轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面、yOz平面、xOz平面.2.右手直角坐标系在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系.3.空间一点的坐标空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M 在此空间直角坐标系中的坐标,记作M(x,y,z).其中x叫做点M的横坐标,y叫做点M 的纵坐标,z叫做点M的竖坐标.空间两点间的距离公式如图,在长方体ABCD-A1B1C1D1中,若长方体的长、宽、高分别为a,b,c,则其对角线AC1的长等于多少?【提示】a2+b2+c2.空间两点间的距离公式(1)在空间中,点P(x,y,z)到坐标原点O的距离|OP|=x2+y2+z2.(2)在空间中,P1(x1,y1,z1)与P2(x2,y2,z2)的距离|P1P2|=(x1-x2)2+(y1-y2)2+(z1-z2)2.求空间点的坐标图4-3-1如图4-3-1,在长方体ABCD-A1B1C1D1中,AD=BC=3,AB=5,AA1=4,建立适当的直角坐标系,写出此长方体各顶点的坐标.【思路探究】以D为原点,DA,DC,DD1所在直线分别为x,y,z轴建立空间直角坐标系,先找出点在平面xDy内的射影以确定其横纵坐标,再找出点在z轴上的射影以确定其竖坐标.【自主解答】如图,以DA所在直线为x轴,以DC所在直线为y轴,以DD1所在直线为z轴,建立空间直角坐标系Dxyz.由题意知长方体的棱长AD=BC=3,DC=AB=5,DD1=AA1=4,显然D(0,0,0),A在x轴上,∴A(3,0,0);C在y轴上,∴C(0,5,0);D1在z轴上,∴D1(0,0,4);B在xOy平面内,∴B(3,5,0);A1在xOz平面内,∴A1(3,0,4);C1在yOz平面内,∴C1(0,5,4).由B1在xOy平面内的射影为B(3,5,0),∴B1的横坐标为3,纵坐标为5,∵B1在z轴上的射影为D1(0,0,4),∴B1的竖坐标为4,∴B1(3,5,4).1.建立空间直角坐标系时应遵循的两个原则: (1)让尽可能多的点落在坐标轴上或坐标平面上. (2)充分利用几何图形的对称性. 2.求某点M 的坐标的方法:作MM ′垂直平面xOy ,垂足M ′,求M ′的横坐标x ,纵坐标y ,即点M 的横坐标x ,纵坐标y ,再求M 点在z 轴上射影的竖坐标z ,即为M 点的竖坐标z ,于是得到M 点坐标(x ,y ,z ).3.坐标平面上的点的坐标特征:xOy 平面上的点的竖坐标为0,即(x ,y,0). yOz 平面上的点的横坐标为0,即(0,y ,z ). xOz 平面上的点的纵坐标为0,即(x,0,z ). 4.坐标轴上的点的坐标特征:x 轴上的点的纵坐标、竖坐标都为0,即(x,0,0). y 轴上的点的横坐标、竖坐标都为0,即(0,y,0). z 轴上的点的横坐标、纵坐标都为0,即(0,0,z ).画一个正方体ABCD -A 1B 1C 1D 1,以A 为坐标原点,以棱AB ,AD ,AA 1所在的直线为坐标轴,取正方体的棱长为单位长度,建立空间直角坐标系.(1)求各顶点的坐标; (2)求棱C 1C 中点的坐标;(3)求面AA 1B 1B 对角线交点的坐标.【解】 建立空间直角坐标系如图所示,且正方体的棱长为1.(1)各顶点坐标分别是A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),C 1(1,1,1),D 1(0,1,1).(2)棱CC 1的中点为M (1,1,12).(3)面AA 1B 1B 对角线交点为N (12,0,12).求对称点的坐标求点A(1,2,-1)关于坐标平面xOy及x轴对称的点的坐标.【思路探究】解决本题的关键是明确关于各坐标轴,各坐标平面对称的两点的坐标的关系,可借助于图形.【自主解答】如图所示,过A作AM⊥xOy交平面于M,并延长到C,使AM=CM,则A与C关于坐标平面xOy对称,且C(1,2,1).过A作AN⊥x轴于N并延长到点B,使AN=NB,则A与B关于x轴对称且B(1,-2,1).∴A(1,2,-1)关于坐标平面xOy对称的点C(1,2,1);A(1,2,-1)关于x轴对称的点B(1,-2,1).对称关系可简记为“关于谁对称谁不变,其余的均相反”.特别地,关于原点对称,三个坐标符号都要变.在空间直角坐标系中,点P(-2,1,4)关于点M(2,-1,-4)对称的点P′的坐标是() A.(0,0,0)B.(2,-1,-4)C.(6,-3,-12) D.(-2,3,12)【解析】根据题意知M为线段PP′的中点,设P′(x,y,z),由中点坐标公式,可得x=2×2-(-2)=6,y=2×(-1)-1=-3,z=2×(-4)-4=-12,所以P′(6,-3,-12).【答案】 C求空间两点间的距离已知△ABC的三个顶点A(1,5,2),B(2,3,4),C(3,1,5).(1)求△ABC中最短边的边长;(2)求AC边上中线的长度.【思路探究】本题是考查空间两点间的距离公式的运用,直接运用公式计算即可.【自主解答】(1)由空间两点间距离公式得|AB|=(1-2)2+(5-3)2+(2-4)2=3,|BC|=(2-3)2+(3-1)2+(4-5)2=6,|AC|=(1-3)2+(5-1)2+(2-5)2=29,∴△ABC中最短边是|BC|,其长度为 6.(2)由中点坐标公式得,AC 的中点坐标为(2,3,72).∴AC 边上中线的长度为 (2-2)2+(3-3)2+(4-72)2=12.1.求空间两点间的距离问题就是把点的坐标代入距离公式进行计算,其中确定点的坐标或合理设出点的坐标是关键.2.若所给题目中未建立坐标系,需结合已知条件建立适当的坐标系,再利用空间两点间的距离公式计算.(2013·济宁高一检测)已知点A (4,5,6),B (-5,0,10),在z 轴上有一点P ,使|P A |=|PB |,则点P 的坐标是________.【解析】 设点P (0,0,z ), 则由|P A |=|PB |,得(0-4)2+(0-5)2+(z -6)2 =(0+5)2+(0-0)2+(z -10)2, 解得z =6,即点P 的坐标是(0,0,6). 【答案】 (0,0,6)因对空间直角坐标系中三轴间的关系不清导致建系错误在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,所有的棱长都是1,建立适当的直角坐标系,并写出各点的坐标.【错解】 如图(1)所示,分别以AB ,AC ,AA 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系,则A (0,0,0).∵各棱长均为1,且B ,C ,A 1均在坐标轴上, ∴B (1,0,0),C (0,1,0),A 1(0,0,1),B 1(1,0,1),C 1(0,1,1).【错因分析】 ∵三棱柱各棱长均为1,∴△ABC 为正三角形,即∠BAC =60°,故本题做错的根本原因在于建立直角坐标系时没有抓住空间直角坐标系三条坐标轴两两垂直的本质.【防范措施】 建立空间直角坐标系时,应选择从一点出发的三条两两垂直的线作为坐标轴,如果图中没有满足条件的直线,可以通过“辅助线”达到建系的目的.【正解】 如图(2)所示,取AC 的中点O 和A 1C 1的中点O 1, 连接BO ,OO 1,可得BO ⊥AC ,BO ⊥OO 1,分别以OB ,OC ,OO 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系. ∵各棱长均为1,∴OA =OC =O 1C 1=O 1A 1=12,OB =32.∵A ,B ,C 均在坐标轴上,∴A (0,-12,0),B (32,0,0),C (0,12,0).∵点A 1,C 1均在yOz 平面内, ∴A 1(0,-12,1),C 1(0,12,1).∵点B 1在xOy 面内的射影为点B ,且BB 1=1, ∴B 1(32,0,1).小结1.结合长方体的长宽高理解点的坐标(x ,y ,z ),培养立体思维,增强空间想象力. 2.学会用类比联想的方法理解空间直角坐标系的建系原则,切实体会空间中点的坐标及两点间的距离公式同平面内点的坐标及两点间的距离公式的区别和联系.3.在导出空间两点间的距离公式的过程中体会转化化归思想的应用,突出化空间为平面的解题思想.。
空间直角坐标系》教案(人教A版必修
空间直角坐标系》教案(人教A版必修)第一章:空间直角坐标系的建立1.1 坐标系的定义与分类让学生理解坐标系的概念,掌握坐标系的分类及特点通过实例让学生了解坐标系在几何图形中的应用1.2 空间直角坐标系的定义与结构让学生理解空间直角坐标系的定义,掌握其结构特点通过实例让学生了解空间直角坐标系在空间几何中的应用第二章:点的坐标2.1 坐标的概念与表示方法让学生理解坐标的概念,掌握坐标的表示方法通过实例让学生了解坐标在空间几何中的应用2.2 点的坐标与坐标轴的关系让学生了解点的坐标与坐标轴的关系,掌握坐标轴上点的坐标特点通过实例让学生了解坐标轴上点的坐标在空间几何中的应用第三章:直线的方程3.1 直线方程的概念与表示方法让学生理解直线方程的概念,掌握直线方程的表示方法通过实例让学生了解直线方程在空间几何中的应用3.2 直线方程的求解方法让学生掌握直线方程的求解方法,能够灵活运用各种方法求解直线方程通过实例让学生了解直线方程的求解方法在空间几何中的应用第四章:平面的方程4.1 平面方程的概念与表示方法让学生理解平面方程的概念,掌握平面方程的表示方法通过实例让学生了解平面方程在空间几何中的应用4.2 平面方程的求解方法让学生掌握平面方程的求解方法,能够灵活运用各种方法求解平面方程通过实例让学生了解平面方程的求解方法在空间几何中的应用第五章:空间几何图形与坐标系5.1 空间几何图形在坐标系中的表示让学生了解空间几何图形在坐标系中的表示方法,掌握坐标系中几何图形的性质通过实例让学生了解空间几何图形在坐标系中的应用5.2 空间几何图形的位置关系与坐标系的变换让学生了解空间几何图形的位置关系,掌握坐标系变换的方法通过实例让学生了解坐标系变换在空间几何中的应用第六章:空间距离与角度6.1 空间两点间的距离让学生理解空间两点间的距离公式,掌握如何计算空间两点间的距离通过实例让学生了解空间两点间距离在几何中的应用6.2 空间角度的计算让学生理解空间角度的计算方法,掌握如何计算空间角度通过实例让学生了解空间角度在几何中的应用第七章:向量及其应用7.1 向量的概念与表示方法让学生理解向量的概念,掌握向量的表示方法通过实例让学生了解向量在空间几何中的应用7.2 向量的运算让学生掌握向量的运算规则,包括加法、减法、数乘和点乘通过实例让学生了解向量运算在空间几何中的应用第八章:空间解析几何8.1 解析几何的基本概念让学生理解解析几何的基本概念,如参数方程、极坐标方程等通过实例让学生了解解析几何在空间几何中的应用8.2 解析几何与坐标系的转换让学生掌握如何将解析几何问题转换为坐标系问题,以及如何利用坐标系解决解析几何问题通过实例让学生了解解析几何与坐标系的转换在空间几何中的应用第九章:空间几何体的性质与判定9.1 空间几何体的性质让学生了解空间几何体的基本性质,如表面积、体积、对称性等通过实例让学生了解空间几何体的性质在几何中的应用9.2 空间几何体的判定让学生掌握如何判定空间几何体的类型,如球、圆柱、锥体等通过实例让学生了解空间几何体的判定在几何中的应用第十章:空间几何的综合应用10.1 空间几何问题的一般解决方法让学生掌握解决空间几何问题的基本方法,如分割、投影、对称等通过实例让学生了解空间几何问题的一般解决方法10.2 空间几何在实际问题中的应用让学生了解空间几何在实际问题中的应用,如建筑设计、物理学中的力学问题等通过实例让学生了解空间几何在实际问题中的应用重点和难点解析重点环节一:坐标系的概念与分类补充和说明:本环节需要重点关注坐标系的定义、各种坐标系的结构特点以及坐标系在几何图形中的应用。
空间直角坐标系》教案(人教A版必修
空间直角坐标系》教案(人教A版必修)一、教学目标1. 理解空间直角坐标系的定义和意义。
2. 学会在空间直角坐标系中确定点的位置。
3. 掌握空间直角坐标系中线段和距离的计算方法。
4. 能够运用空间直角坐标系解决实际问题。
二、教学重点1. 空间直角坐标系的定义和意义。
2. 在空间直角坐标系中确定点的位置。
3. 空间直角坐标系中线段和距离的计算方法。
三、教学难点1. 空间直角坐标系的建立和理解。
2. 在空间直角坐标系中进行距离计算。
四、教学准备1. 教学课件或黑板。
2. 空间直角坐标系的模型或图示。
3. 练习题和答案。
五、教学过程1. 引入:通过实际例子,如确定一个物体的位置,引出空间直角坐标系的概念。
2. 讲解:讲解空间直角坐标系的定义和意义,介绍坐标轴和坐标点。
3. 演示:通过模型或图示,展示空间直角坐标系的建立和应用。
4. 练习:让学生通过练习题,巩固空间直角坐标系的知识。
5. 总结:总结本节课的重点内容,强调空间直角坐标系在实际问题中的应用。
6. 布置作业:布置一些有关空间直角坐标系的练习题,让学生课后巩固。
六、教学内容:点与坐标的关系1. 教学目标:学生能够理解点的坐标与其在空间直角坐标系中的位置的关系。
学生能够通过坐标来识别和描述空间中的点。
2. 教学重点:点的坐标与空间位置的对应关系。
3. 教学难点:理解和计算点在不同象限中的坐标特征。
4. 教学准备:坐标系图示和模型。
相关练习题和答案。
5. 教学过程:引入:通过实际例子,如确定房间中家具的位置,引导学生思考坐标的作用。
讲解:讲解点的坐标是如何反映其在坐标系中的位置,区分各象限内点的坐标特征。
演示:通过图示和模型,展示不同象限内点的坐标表示。
练习:让学生通过练习题,运用坐标描述空间中的点。
总结:总结点与坐标的关系,强调坐标在描述空间位置中的应用。
布置作业:布置一些有关点与坐标关系的练习题,让学生课后巩固。
七、教学内容:直线与坐标系1. 教学目标:学生能够理解直线在空间直角坐标系中的表示方法。
高中数学《空间直角坐标系》教案11新人教A版必修2(优秀范文五篇)
高中数学《空间直角坐标系》教案11新人教A版必修2(优秀范文五篇)第一篇:高中数学《空间直角坐标系》教案11 新人教A版必修24.3.1 空间直角坐标系教案教学要求:使学生能通过用类比的数学思想方法得出空间直角坐标系的定义、建立方法、以及空间的点的坐标确定方法。
教学重点:在空间直角坐标系中,确定点的坐标教学难点:通过建立适当的直角坐标系,确定空间点的坐标教学过程:一.复习准备:1.提问:平面直角坐标系的建立方法,点的坐标的确定过程、表示方法?2.讨论:一个点在平面怎么表示?在空间呢?二、讲授新课:1.空间直角坐标系:如图,OBCD-D,A,B,C,是单位正方体.以A为原点,分别以OD,OA,OB的方向为正方向,建立三条数轴x轴.y轴.z轴。
这时建立了一个空间直角坐标系Oxyz.1)叫做坐标原点2)x 轴,y轴,z轴叫做坐标轴.3)过每两个坐标轴的平面叫做坐标面。
2.右手表示法:令右手大拇指、食指和中指相互垂直时,可能形成的位置。
大拇指指向为x轴正方向,食指指向为y轴正向,中指指向则为z轴正向,这样也可以决定三轴间的相位置。
3.有序实数组1)空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z)(x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标思考:原点O的坐标是什么?讨论:空间直角坐标系内点的坐标的确定过程。
例题1:在长方体OBCD-D,A,B,C,中,OA=3,oC=4,OD,=2.写出D,C,A,B,四点坐标.(建立空间坐标系→写出原点坐标→各点坐标)讨论:若以C点为原点,以射线BC、CD、CC1 方向分别为ox、oy、oz轴的正半轴,建立空间直角坐标系,那么,各顶点的坐标又是怎样的呢?(得出结论:不同的坐标系的建立方法,所得的同一点的坐标也不同。
)4.练习:V-ABCD为正四棱锥,O为底面中心,若AB=2,VO=3,试建立空间直角坐标系,并确定各顶点的坐标。
【参考教案】《空间直角坐标系》(人教)
《空间直角坐标系》(人教)第一章:空间直角坐标系的引入1.1 学习目标(1) 了解空间直角坐标系的定义和意义。
(2) 学会在空间直角坐标系中确定一个点的坐标。
1.2 教学内容(1) 空间直角坐标系的定义:三维空间中的一个参照系统,由三个互相垂直的坐标轴组成。
(2) 坐标轴的表示:通常用x, y, z表示三个坐标轴。
(3) 坐标点表示:一个点在空间直角坐标系中的位置由一对有序实数(x, y, z)表示。
1.3 教学活动(1) 利用实际例子(如地图上的位置表示)引出空间直角坐标系的定义。
(2) 通过图形和模型展示坐标轴的互相垂直关系。
(3) 让学生通过实际操作,学会在空间直角坐标系中表示一个点。
1.4 作业与练习(1) 完成练习题,包括在给定的坐标系中表示不同点的坐标。
(2) 设计一个小项目,要求学生自己创造一个坐标系,并标出一些特定的点。
第二章:坐标系的转换2.1 学习目标(1) 学会在不同坐标系之间进行转换。
(2) 理解坐标系转换的原理和意义。
2.2 教学内容(1) 坐标系之间的转换:通过变换矩阵实现不同坐标系之间的转换。
(2) 变换矩阵的定义和性质:变换矩阵是一个方阵,用于描述坐标系的转换关系。
2.3 教学活动(1) 通过图形和实例解释坐标系转换的原理。
(2) 引导学生学习变换矩阵的定义和性质。
(3) 进行实际操作,让学生学会使用变换矩阵进行坐标系之间的转换。
2.4 作业与练习(1) 完成练习题,包括使用变换矩阵进行坐标系转换。
(2) 设计一个小项目,要求学生自己创建一个坐标系转换问题,并给出解答。
第三章:坐标系的应用3.1 学习目标(1) 学会使用坐标系解决实际问题。
(2) 了解坐标系在各个领域中的应用。
3.2 教学内容(1) 坐标系在几何中的应用:通过坐标系解决几何问题,如计算距离、角度等。
(2) 坐标系在物理学中的应用:描述物体的运动轨迹和速度等。
3.3 教学活动(1) 通过实际例子展示坐标系在几何中的应用。
空间直角坐标系教案
空间直角坐标系教案教案标题:空间直角坐标系教案教案目标:1. 理解空间直角坐标系的概念和基本要素;2. 掌握在空间直角坐标系中表示点、直线和平面的方法;3. 能够进行空间直角坐标系中的简单几何问题求解。
教学重点:1. 空间直角坐标系的概念和基本要素;2. 空间直角坐标系中点、直线和平面的表示方法;3. 空间直角坐标系中的简单几何问题求解。
教学难点:1. 空间直角坐标系中点、直线和平面的表示方法;2. 空间直角坐标系中的简单几何问题求解。
教学准备:1. 教师准备:教学投影仪、空间直角坐标系的示意图、教学板书;2. 学生准备:课本、练习册。
教学过程:Step 1:导入(5分钟)教师通过引入一个与学生生活相关的问题,如“你们在学校的哪个位置可以看到最远的地方?”来引起学生对于空间概念的思考,并激发学生的学习兴趣。
Step 2:概念讲解(10分钟)教师通过投影仪展示空间直角坐标系的示意图,向学生解释空间直角坐标系的概念和基本要素,包括三个坐标轴(x轴、y轴和z轴)、原点和坐标轴的正负方向。
教师可以结合实际生活中的例子,如建筑物的坐标定位等,让学生更好地理解概念。
Step 3:点的表示方法(10分钟)教师通过示意图和板书,向学生介绍点在空间直角坐标系中的表示方法。
教师可以选取几个具体的点进行示范,让学生通过观察和思考找出点的表示规律,并进行练习。
Step 4:直线和平面的表示方法(15分钟)教师通过示意图和板书,向学生介绍直线和平面在空间直角坐标系中的表示方法。
教师可以选择几个具体的直线和平面进行示范,让学生通过观察和思考找出直线和平面的表示规律,并进行练习。
Step 5:问题求解(15分钟)教师出示一些简单的几何问题,要求学生利用空间直角坐标系的知识进行求解。
教师可以引导学生分析问题,确定解题思路,并指导学生进行计算和推理。
Step 6:小结(5分钟)教师对本节课的内容进行小结,并强调学生在课后需要进行练习巩固所学知识。
空间直角坐标系教案
空间直角坐标系教案教案:空间直角坐标系一、教学目标:1.掌握空间直角坐标系的基本概念和表示方法;2.理解空间直角坐标系在数学和物理中的应用;3.能够熟练使用空间直角坐标系解决相关问题。
二、教学重点:1.空间直角坐标系的概念和表示方法;2.空间直角坐标系的应用。
三、教学难点:1.理解三维空间直角坐标系的三个坐标轴及其方向;2.掌握使用空间直角坐标系表示空间点的方法。
四、教学过程:1.导入:通过实际例子引入空间直角坐标系的概念和应用。
(教师示范:例如,让学生想象一个立方体盒子,盒子内有一只蚂蚁,蚂蚁的位置如何描述?)2.空间直角坐标系的概念及表示方法:(教师介绍)(教师在黑板上画出空间直角坐标系)请注意,这里x、y、z轴是相互垂直的,并且z轴通常是向上的,但在一些特殊的实际问题中,z轴可能指向下方。
(教师示范)例如,假设有一个点P,它在x轴上的坐标是3,y轴上的坐标是-2,z轴上的坐标是5、我们可以用P(3,-2,5)来表示点P在空间直角坐标系中的位置。
3.空间直角坐标系的应用:(教师例举实际例子)4.课堂练习:(教师出题)请同学们根据以下信息,用空间直角坐标系表示出对应的点。
1)点A位于x轴上,其坐标为4;2)点B的y轴坐标为-3,z轴坐标为2;3)点C位于z轴上,其坐标为-6(学生练习)请同学们完成上述题目,并在纸上标出相关坐标。
(教师核对)请同学们将答案说出来,并进行核对。
五、课堂总结:通过本节课的学习,我们了解了空间直角坐标系的基本概念和表示方法,掌握了用坐标轴表示空间点的方法,并了解了空间直角坐标系在数学和物理中的应用。
六、作业布置:1.继续练习在空间直角坐标系中表示点的方法,并举一些实际例子;2.阅读相关教材,进一步了解空间直角坐标系在数学和物理中的应用。
七、教学反思:通过本节课的教学,学生对空间直角坐标系有了初步的了解,并能够熟练使用空间直角坐标系表示点的方法。
但是,部分学生在练习过程中存在困惑,需要进一步梳理和讲解。
人教版高一数学必修二《空间直角坐标系》说课稿
人教版高一数学必修二《空间直角坐标系》说课稿一、教材分析1. 教材内容概述本节课的教材内容是《空间直角坐标系》。
在高中数学必修二的学习中,这一章节是非常重要的基础内容,它为学生提供了进一步理解和掌握三维空间中直角坐标系的基本概念和性质的机会。
2. 教材知识结构教材围绕着以下几个主要知识点展开教学:•点的坐标与向量•空间直角坐标系•直线的方程与旋转•平面的方程与选点•空间图形的平移和旋转通过这些知识点的学习,学生能够理解并掌握在三维空间中描述点、直线和平面的方法,同时能够运用所学知识解决相关问题。
3. 学生特点分析本节课所面对的学生对象为高一学生。
他们正处于数学知识的初步学习阶段,基本熟悉了平面直角坐标系的概念和性质。
但对于空间直角坐标系和相关知识仍存在一定的陌生感。
因此,需要通过本课程的教学,引导学生逐步理解和掌握空间直角坐标系的概念和运用方法。
二、教学目标1. 知识与能力目标•理解空间直角坐标系的概念和性质•掌握点、直线和平面在空间直角坐标系中的表示方法•能够解决与空间直角坐标系相关的简单几何问题2. 过程与方法目标•培养学生观察、分析和解决问题的能力•培养学生合作学习和团队合作的能力•提高学生对数学概念的形象化理解和运用能力3. 情感态度和价值观目标•培养学生对数学的兴趣和热爱•培养学生思维的逻辑性和严谨性•培养学生独立思考和解决问题的能力三、教学重点和难点1. 教学重点•理解空间直角坐标系的概念和性质•能够正确表示点、直线和平面在空间直角坐标系中的位置关系•运用所学知识解决与空间直角坐标系相关的简单几何问题2. 教学难点•理解空间直角坐标系三维空间的特点和表示方法•掌握直线和平面的方程表示方法•能够准确应用空间直角坐标系解决几何问题四、教学过程设计1. 导入与概念解释为了让学生了解本节课的重要性,我们可以通过以下问题引导学生思考:•什么是空间直角坐标系?•空间直角坐标系有什么特点和作用?通过提问和学生的回答,引起学生对空间直角坐标系的兴趣,并激发他们运用此概念解决问题的欲望。
空间直角坐标系》教案(人教A版必修
“空间直角坐标系”教案(人教A版必修)一、教学目标1. 理解空间直角坐标系的定义和意义,掌握空间直角坐标系的构成和基本概念。
2. 学会在空间直角坐标系中确定点的位置,理解坐标与点的位置的关系。
3. 掌握空间直角坐标系中的距离和向量的概念,学会计算点之间的距离和向量的坐标表示。
4. 能够运用空间直角坐标系解决实际问题,提高空间想象能力和解决问题的能力。
二、教学重点1. 空间直角坐标系的定义和意义。
2. 点在空间直角坐标系中的坐标表示。
3. 空间直角坐标系中点之间的距离计算。
4. 向量的坐标表示和运算。
三、教学难点1. 空间直角坐标系中点的位置确定。
2. 空间直角坐标系中距离的计算。
3. 向量的坐标表示和运算。
四、教学方法1. 采用问题驱动法,引导学生通过探究和思考来理解和掌握空间直角坐标系的知识。
2. 利用多媒体辅助教学,通过动画和图像来形象地展示空间直角坐标系的概念和运算。
3. 结合实际例子,让学生通过解决实际问题来运用空间直角坐标系的知识。
五、教学内容1. 空间直角坐标系的定义和意义。
2. 空间直角坐标系的构成和基本概念。
3. 在空间直角坐标系中确定点的位置,理解坐标与点的位置的关系。
4. 空间直角坐标系中的距离和向量的概念。
5. 计算点之间的距离和向量的坐标表示。
教学过程:1. 引入:通过实际例子,引导学生思考如何在空间中确定点的位置。
2. 讲解:讲解空间直角坐标系的定义和意义,介绍空间直角坐标系的构成和基本概念。
3. 演示:利用多媒体动画,展示空间直角坐标系中点的位置确定和坐标表示。
4. 练习:让学生通过练习题,巩固空间直角坐标系中点的位置确定和坐标表示的知识。
5. 总结:对本节课的内容进行总结,强调重点和难点。
教学反思:通过本节课的教学,学生应该能够理解和掌握空间直角坐标系的基本概念和运算方法,并能够在实际问题中运用空间直角坐标系的知识。
教师应该根据学生的实际情况,适当调整教学方法和节奏,确保学生能够顺利地掌握空间直角坐标系的知识。
高中数学《空间直角坐标系》说课稿新人教B版必修2
空间直角坐标系讲课稿敬爱的各位评委:上午好!今日我讲课的课题是?空间直角坐标系? 我试试利用新课标的理念来指导教课,关于本节课,我将以“教什么,怎么教,为何这样教〞为思路,从教材剖析、目标剖析、教法学法剖析、教课过程剖析和评论剖析五个方面来说说我对教材的理解和教课的设计,敬请各位评委责备指正。
一、教材剖析〔一〕地位与作用该课是在学生学习了平面直角坐标系,利用平面直角坐标系解决平面几何图形问题有了必定的数形联合思想的根基上的进一步推行,有了以上的根基,学生学习空间直角坐标系就有了必定的知识根基,有了平面分析几何知识,学生的知识迁徙就有了保障,学生又学习了空间几何知识,学习了空间直角坐标系后,学生经过知识迁徙就能利用空间直角坐标系解决空间立体几何知识,把数形联合思想由平面推行到空间,为立体几何问题的解决供给新的解题门路供给了一个平台。
〔二〕学情剖析专题互动一方面学生经过对空间几何体:柱、锥、台、球的学习,办理了空间中点、线、面的关系,初步掌握了简单几何体的直观图画法,所以脑筋中已成立了必定的空间思想能力.另一方面学生刚才学习认识析几何的根基内容:直线和圆,对成立平面直角坐标系,依据坐标利用代数的方法办理问题有了必定的认识,所以也成立了必定的转变和数形联合的思想.这两方面都为学习本课内容打下了根基.二、目标剖析“三维目标〞是一个亲密联系的有机整体,应当以获取悉识与技术的同时,学会学习和建立正确价值观。
这要求我们在教课中以知识技术的培育为主线,浸透感情态度与价值观,并把这二者充足表达在教课过程中,教课的主体是学生,所以目标的拟订和设计一定从学生的角度出发,依据空间直角坐标系在教材内容中的地位与作用,联合学情剖析,本节课教课应实现以下教课目的:〔一〕教课目的1.知识与技术①经过详细情境,使学生感觉成立空间直角坐标系的必需性②认识空间直角坐标系,掌握空间点的坐标的确定方法和过程③感觉类比思想在研究新知识过程中的作用2.过程与方法①联合详细问题引入,引诱学生研究②类比学习,顺序渐进3.感情态度与价值观经过用类比的数学思想方法研究新知识,使学生感觉新旧知识的联系和研究事物从低维到高维的一般方法.经过实质问题的引入和解决,让学生领会数学的实践性和应用性,感觉数学刻画生活的作用,不停地拓展自己的思想空间.〔二〕要点难点本节课的教课要点是空间直角坐标系的理解,教课难点是经过成立适合的空间直角坐标系,确立空间点的坐标。
高中数学-《空间直角坐标系》教案、教学设计
《空间直角坐标系》教案、教学设计人教版高中数学必修二一、教学目标1.掌握空间直角坐标系的有关概念。
2.通过空间直角坐标系的建立,使学生初步意识到:将空间问题转化为平面问题是解决空间问题的基本思想方法。
3.通过本节的学习,培养学生类比、迁移、化归的能力,培养学生积极参与,大胆探索的精神。
二、教学重难点【重点】空间直角坐标系的建立过程。
【难点】空间中任意点的坐标表示。
三、教学方法提问法、讲授法、小组讨论法。
四、教学过程环节一:情境导入大屏幕展示国庆60周年阅兵仪式飞行表演的视频,请学生思考:如何保证高速飞行的飞机不相撞,学生不难回答出在划定某条航线时,不仅要指出航线的经纬度,还需要指出航线距离地面的高度。
环节二:.探究新知活动一:空间直角坐标系的建立引导学生回忆初中学习过的直角坐标系,请学生思考:问题1:如何建立平面直角坐标系;问题2:平面直角坐标系上的点如何表示;问题3:如何确定教室里某位同学的头所在的位置,学生思考回答,引导学生得出至少需要三个实数来表示这位同学的头所在的位置。
教师及时给出建立空间直角坐标系的方法。
并板书作图(课本134页图4.3-1)。
强调空间坐标系的三要素:原点、坐标轴方向、单位长度。
概念讲解完成后,向学生介绍右手直角坐标系。
活动二:空间直角坐标系的划分提出问题:三个坐标轴确定几个平面,这些平面可把空间分成几个部分。
学生根据空间几何知识得出,三个平面,八个部分。
活动三:空间中点的坐标引导学生思考:在建立了空间直角坐标系以后如何来确定空间中点的坐标。
提示学生可类比平面直角坐标系,设置小组讨论环节,学生可根据平面直角坐标系推出做垂直,在空间中过一点做一条直线的垂线不唯一,所以需要做垂面。
教师进行归纳总结方法一:过M点分别做三个平面分别垂直于x,y,z轴。
环节三:巩固提升请学生观察大屏幕呈现的例1中各点的位置关系,同时分析相应点的坐标关系。
师生共同得出结论,出示第二种确定点的坐标的方法:过M点作xOy面的垂线,得到M的横坐标、纵坐标。
空间直角坐标系》教案(人教A版必修
空间直角坐标系》教案(人教A版必修)一、教学目标1. 理解空间直角坐标系的定义和意义。
2. 学会在空间直角坐标系中确定点的坐标。
3. 掌握空间直角坐标系中线段、距离和角的计算方法。
二、教学内容1. 空间直角坐标系的定义和建立。
2. 点的坐标及其表示方法。
3. 线段的坐标表示和计算。
4. 距离的计算。
5. 角的计算。
三、教学重点与难点1. 空间直角坐标系的建立和点的坐标表示。
2. 空间直角坐标系中线段、距离和角的计算。
四、教学方法与手段1. 采用问题驱动法,引导学生主动探究空间直角坐标系的相关概念和性质。
2. 利用多媒体课件,直观展示空间直角坐标系及其相关几何图形。
3. 运用实例分析,让学生在实际问题中体验空间直角坐标系的应用价值。
五、教学过程1. 导入新课:通过简单的实例,引导学生思考如何在空间中确定一个点的位置。
2. 讲解空间直角坐标系的定义和建立,让学生理解坐标系的意义。
3. 教授点的坐标表示方法,让学生学会如何在坐标系中表示一个点。
4. 利用多媒体课件,展示线段在空间直角坐标系中的表示和计算方法。
5. 讲解距离和角的计算方法,让学生掌握空间直角坐标系中距离和角的计算。
6. 课堂练习:布置相关练习题,让学生巩固所学知识。
7. 总结与拓展:对本节课内容进行总结,并提出一些拓展问题,激发学生的学习兴趣。
8. 课后作业:布置作业,让学生进一步巩固空间直角坐标系的相关知识。
六、教学评估1. 课堂提问:通过提问了解学生对空间直角坐标系的掌握情况。
2. 课堂练习:观察学生在练习中的表现,评估其对知识的运用能力。
3. 课后作业:批改作业,检查学生对课堂内容的掌握情况。
七、教学反思1. 针对学生的反馈,调整教学方法和节奏,确保学生能够较好地掌握空间直角坐标系的知识。
2. 关注学生在课堂上的参与度,提高课堂教学效果。
3. 结合课后作业的完成情况,了解学生对重点知识的掌握,为后续教学提供参考。
八、教学拓展1. 空间直角坐标系在现实生活中的应用:如建筑设计、航空航天等领域。
《空间直角坐标系》教学设计
《空间直角坐标系》教学设计教学设计:空间直角坐标系一、教学目标:1.了解空间直角坐标系的概念,掌握坐标系的构建方法;2.学会在空间直角坐标系中表示一个点;3.能够识别和绘制一个物体在空间中的位置;4.能够用坐标系进行简单的空间运算。
二、教学重难点:1.如何建立空间直角坐标系;2.在坐标系中表示点和物体的位置;3.用坐标进行简单的空间运算。
三、教学准备:1.教学工具:投影仪、白板;2.教学材料:教科书、绘图工具等。
四、教学过程:1.引入新知识(10分钟)教师通过投影仪或板书展示空间直角坐标系的概念和作用,引导学生思考在平面上表示一个点需要多少个坐标,而在空间中表示一个点又需要多少个坐标。
然后,介绍空间直角坐标系的三个坐标轴以及坐标轴的正方向。
2.建立空间直角坐标系(10分钟)教师在白板上以适当的比例,绘制出三个相互垂直的坐标轴,并在坐标轴上标出正方向。
然后,将坐标轴连接起来,形成一个空间直角坐标系。
3.表示点和物体的位置(20分钟)教师通过实际的案例,例如:“请用空间直角坐标系表示出教室中黑板的位置”,引导学生认识到点在坐标系中的表示方法。
然后,教师逐步讲解如何确定点的坐标,并要求学生根据案例自己进行实践。
4.绘制图形(20分钟)教师通过绘制一个简单的立方体图形,引导学生理解如何在空间直角坐标系中表示一个物体的位置。
然后,要求学生根据案例绘制图形。
5.空间运算(20分钟)教师通过实际问题,例如:“请计算点A(2,3,4)与点B(5,6,7)之间的距离”,引导学生认识到在空间直角坐标系中进行简单的空间运算的方法。
然后,教师逐步讲解如何进行坐标的加减法,并要求学生根据案例进行实践。
6.练习与作业(20分钟)教师布置相关的练习题,要求学生巩固所学的知识,并留作业:完成教科书上的相关练习。
五、课后反思:通过这堂课的教学,学生能够建立起空间直角坐标系的概念,掌握如何在坐标系中表示一个点和一个物体的位置,以及进行简单的空间运算。
【参考教案】《空间直角坐标系》(人教)
一、教学目标1. 理解空间直角坐标系的定义和基本概念。
2. 学会在空间直角坐标系中确定点的位置。
3. 掌握空间直角坐标系中线段、距离和角度的计算方法。
4. 能够应用空间直角坐标系解决实际问题。
二、教学内容1. 空间直角坐标系的定义和基本概念。
2. 如何在空间直角坐标系中确定点的位置。
3. 空间直角坐标系中线段、距离和角度的计算方法。
4. 实际问题中的应用案例。
三、教学重点与难点1. 教学重点:空间直角坐标系的定义和基本概念,确定点的位置方法,线段、距离和角度的计算方法。
2. 教学难点:空间直角坐标系中线段、距离和角度的计算方法。
四、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、思考、探究和讨论来理解空间直角坐标系的概念和方法。
2. 使用多媒体课件和实物模型辅助教学,帮助学生直观地理解空间直角坐标系。
3. 结合实例和练习题,培养学生的实际应用能力。
五、教学过程1. 导入:通过简单的实例引入空间直角坐标系的概念,激发学生的兴趣。
2. 讲解:讲解空间直角坐标系的定义和基本概念,引导学生理解并掌握相关知识。
3. 实践:让学生通过实际操作,学会在空间直角坐标系中确定点的位置。
4. 讲解:讲解空间直角坐标系中线段、距离和角度的计算方法,引导学生理解和掌握相关知识。
5. 练习:布置练习题,让学生巩固所学知识,培养实际应用能力。
6. 总结:对本节课的主要内容进行总结,强调重点和难点。
7. 作业:布置作业,巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对空间直角坐标系概念的理解程度。
2. 练习题:布置练习题,评估学生对基本知识和计算方法的掌握情况。
3. 小组讨论:观察学生在小组讨论中的表现,了解他们的合作能力和问题解决能力。
七、教学资源1. 多媒体课件:使用课件展示空间直角坐标系的图像和动画,帮助学生直观理解。
2. 实物模型:使用模型展示空间直角坐标系,让学生更直观感受。
3. 练习题库:准备不同难度的练习题,适应不同学生的学习需求。
【参考教案】《空间直角坐标系》(人教)
【参考教案】《空间直角坐标系》(人教)一、教学目标:1. 让学生理解空间直角坐标系的定义和基本概念,掌握坐标轴和坐标点的表示方法。
2. 培养学生运用空间直角坐标系解决实际问题的能力。
3. 提高学生对数学知识的兴趣和积极性。
二、教学内容:1. 空间直角坐标系的定义和基本概念。
2. 坐标轴和坐标点的表示方法。
3. 空间直角坐标系在实际问题中的应用。
三、教学重点与难点:1. 教学重点:空间直角坐标系的定义,坐标轴和坐标点的表示方法。
2. 教学难点:空间直角坐标系在实际问题中的应用。
四、教学方法:1. 采用直观演示法,通过实物模型和图形展示空间直角坐标系的概念和应用。
2. 运用讲解法,引导学生理解坐标轴和坐标点的表示方法。
3. 利用案例教学法,分析实际问题,培养学生运用空间直角坐标系解决问题的能力。
4. 组织小组讨论,激发学生思考,提高学生的合作能力。
五、教学过程:1. 引入新课:通过展示现实生活中的实例,引发学生对空间直角坐标系的兴趣。
2. 讲解空间直角坐标系的定义和基本概念,引导学生掌握坐标轴和坐标点的表示方法。
3. 演示空间直角坐标系的应用,分析实际问题,培养学生运用空间直角坐标系解决问题的能力。
4. 组织小组讨论,让学生分享自己的理解和应用体会。
6. 布置作业,巩固所学知识。
教学反思:在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问。
针对学生的不同需求,可以适当调整教学内容和教学方法,以提高教学效果。
要注重培养学生的空间想象能力和逻辑思维能力,激发学生对数学知识的兴趣。
六、教学评价:1. 通过课堂提问、作业批改和小组讨论,评估学生对空间直角坐标系的基本概念和表示方法的掌握程度。
2. 设计一些实际问题,让学生运用空间直角坐标系进行解答,以此评价学生的应用能力。
3. 结合学生的课堂表现和作业完成情况,对学生的学习态度和合作能力进行评价。
七、教学资源:1. 准备空间直角坐标系的实物模型或图形展示。
高中数学《空间直角坐标系》说课稿 新人教A版
《空间直角坐标系》说课稿一、教材分析:本节课为高中一年级第四章《平面解析几何初步》的第三节第一课时的内容。
本节课是在学生已经学过的二维的平面直角坐标系的基础上的推广。
学生在九年制义务教育阶段已经画过长方体的直观图,在高一第一章中又画过棱柱与棱锥的直观图,在此基础上,我只作了适当的点拨,学生就自然而然地得出了空间直角坐标系的画法。
在研究过程中,我充分运用了类比、交换、数形结合等数学思想方法,有效地培养学生的思想品质。
在求空间直角坐标系中点的坐标时,学生不仅会很自然地运用类比的思想方法,同时也锻炼了他们的空间思维能力。
这节课是为以后的《空间向量及其运算》打基础的。
同时,在第二章《空间中点、直线、平面的位置关系》第一节《异面直线》学习时,有些求异面直线所成的角的大小,借助于空间向量来解答,要容易得多,所以,本节课为沟通高中各部分知识,完善学生的认知结构,起到很重要的作用。
二、教学方法和教材处理:本节课主要采用了启发式教学方法,通过激发学生学习的求知欲望,使学生主动参与教学实践活动。
首先,为了使学生比较顺利地从平面到空间的变化,即从二维向量到三维向量的变化,我采用了类比的数学教学手段,顺利地引导学生实现了这一转化,同时也引起了学生的兴趣。
然后,从与平面直角坐标系内点的坐标是借助一个长方形得到的过程,使学生顺理成章地想到空间点的坐标可能是通过借助长方体得到的,让学生亲手实践后,证实了这一结论,增强了学生学习的信心。
此后,马上将书上的例1作为学生的口答练习,〔一般学生都能回答正确〕然后,及时提出问题;如果改变坐标系的确定方法,点的坐标会发生什么变化?经过思考,学生一般也能回答正确,同时,又让学生明确了:坐标系建立的不同,得到的点的坐标也不同。
再让学生练习正四棱锥、正三棱锥的空间直角坐标系的建立方法以及根据不同的坐标系,求出各顶点的坐标。
在整个教学过程中,内容由浅入深、环环相扣,不仅使学生在学习过程中了解了知识的发生、发展的过程,也使学生尝到了成功的喜悦,对于增强学生的学习信心,起到了很好的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间直角坐标系
教材分析
这节课是在学生已经学过的二维的平面直角坐标系的基础上的推广,是以后学习“空间向量”等内容的基础.通过建立空间直角坐标系,可以将空间内任一点用有序数组来表示;反过来,任一有序数组就对应一个点,这样空间直角坐标系中的点就有了坐标表示.在空间中引入坐标的目的和物理学中引入单位制一样,是提供一个度量几何对象的方法.因此,研究空间图形就可以代数化,实现了形向数的转化,将数与形紧密地结合起来.这节课学完后,如把几何体放入空间直角坐标系中来研究,几何体上的点就有了坐标表示,一些题目如两点间距离、异面直线成的角、二面角的平面角等就可借助于空间向量来解答,所以,这节课对于沟通高中各部分知识,完善学生的认知结构,起到了很重要的作用.
教学目标
1. 让学生经历用类比的数学思想方法探索空间直角坐标系的建立方法,进一步体会数学概念、方法产生和发展的过程,学会科学的思维方法.
2. 理解空间直角坐标系与点的坐标的意义,掌握由空间直角坐标系内的点确定其坐标或由
坐标确定其在空间直角坐标系内的点,认识空间直角坐标系中的点与坐标的关系.
3. 进一步培养学生的空间想象能力与确定性思维能力.
任务分析
点在三维空间内位置的确定是一个比较抽象的过程,学生在这个方面还没有形成清晰的认识,教学时应充分类比以往点在直线、点在平面内位置的确定方式.通过实例,激发学生的学习兴趣与探索欲望,充分发挥学生的主体作用,引导学生顺理成章地得出通过建立空间直角坐标系利用点的坐标来确定点在空间内的位置.要特别强调点与坐标的一一对应关系,来强化对点的坐标的理解.围绕在空间直角坐标系中点的坐标的确定这一教学重点,通过巩固与练习反复强化如何在坐标系中利用点的坐标的概念来确定点的坐标这一过程,以巩固学生对新知识的理解,实现从感性认识到理性认识的飞跃.
教学设计
一、问题情景
1. 确定一个点在一条直线上的位置的方法.
2. 确定一个点在一个平面内的位置的方法.
例:如图26-1,要在一块长10cm、宽5cm的铁板上钻一个孔.若孔中心到铁板左边为2cm,到下边为4cm(铁板摆放位置已定),问孔中心的位置是否确定.
3. 如何确定一个点在三维空间内的位置?
例:如图26-2,在房间(立体空间)内如何确定电灯位置?
在学生思考讨论的基础上,教师明确:确定点在直线上,通过数轴需要一个数;确定点在平面内,通过平面直角坐标系需要两个数.那么,要确定点在空间内,应该需要几个数呢?通过类比联想,容易知道需要三个数.要确定电灯的位置,知道电灯到地面的距离、到相邻的两个墙面的距离即可.
(此时学生只是意识到需要三个数,还不能从坐标的角度去思考,因此,教师在这儿要重点引导)
教师明晰:在地面上建立直角坐标系xOy,则地面上任一点的位置只须利用x,y就可确定.为了确定不在地面内的电灯的位置,须要用第三个数表示物体离地面的高度,即需第三个坐标z.因此,只要知道电灯到地面的距离、到相邻的两个墙面的距离即可.例如,若这个电灯在平面xOy上的射影的两个坐标分别为4和5,到地面的距离为3,则可以用有序数组(4,5,3)确定这个电灯的位置(如图26-3).
这样,仿照初中平面直角坐标系,就建立了空间直角坐标系O—xyz,从而确定了空间点的位置.
二、建立模型
1. 在前面研究的基础上,先由学生对空间直角坐标系予以抽象概括,然后由教师给出准确的定义.
从空间某一个定点O引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系O—xyz,点O叫作坐标原点,x轴、y轴、z轴叫作坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xO平面,yO平面,zOx平面.
教师进一步明确:
(1)在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向则称这个坐标系为右手坐标系,课本中建立的坐标系都是右手坐标系.(2)将空间直角坐标系O—xyz画在纸上时,x轴与y轴、x轴与z轴成135°,而y轴垂直于z轴,y轴和z轴的单位长度相等,但x轴上的单位长度等于y轴和z轴上的单位长度的
,这样,三条轴上的单位长度直观上大致相等.
2. 空间直角坐标系O—xyz中点的坐标.
思考:在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)有什么样的对应关系?
在学生充分讨论思考之后,教师明确:
(1)过点A作三个平面分别垂直于x轴,y轴,z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,这样,对空间任意点A,就定义了一个有序数组(x,y,z).
(2)反之,对任意一个有序数组(x,y,z),按照刚才作图的相反顺序,在坐标轴上分别作出点P,Q,R,使它们在x轴、y轴、z轴上的坐标分别是x,y,z,再分别过这些点作垂直于各自所在的坐标轴的平面,这三个平面的交点就是所求的点A.
这样,在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)之间就建立了一种一一对应关系:A(x,y,z).
教师进一步指出:空间直角坐标系O—xyz中任意点A的坐标的概念
对于空间任意点A,作点A在三条坐标轴上的射影,即经过点A作三个平面分别垂直于x 轴、y轴和z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,我们把有序数组(x,y,z)叫作点A的坐标,记为A(x,y,z).(如图26-4)
三、解释应用
[例题]
1. 在空间直角坐标系O—xyz中,作出点P(5,4,6).
注意:在分析中紧扣坐标定义,强调三个步骤,第一步从原点出发沿x轴正方向移动5个单位,第二步沿与y轴平行的方向向右移动4个单位,第三步沿与z轴平行的方向向上移动6个单位(如图26-5).
2. (1)在空间直角坐标系中,坐标平面xOy,xOz,yOz上点的坐标有什么特点?
(2)在空间直角坐标系中,x轴、y轴、z轴上点的坐标有什么特点?
解:(1)xOy平面、xOz平面、yOz平面内的点的坐标分别形如(x,y,0),(x,0,z),(0,y,z).
(2)x轴、y轴、z轴上点的坐标分别形如(x,0,0),(0,y,0),(0,0,z).3. 已知长方体ABCD-A′B′C′D′的边长AB=12,AD=8,AA′=5,以这个长方体的顶点A 为坐标原点,射线AB,AD,AA′分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标.
注意:此题可以由学生口答,教师点评.
解:A(0,0,0),B(12,0,0),D(0,8,0),A′(0,0,5),C(12,8,0),B′(12,0,5),D′(0,8,5),C′(12,8,5).
讨论:若以C点为原点,以射线CB,CD,CC′方向分别为x,y,z轴的正半轴,建立空间直角坐标系,那么各顶点的坐标又是怎样的呢?
得出结论:建立不同的坐标系,所得的同一点的坐标也不同.
[练习]
1. 在空间直角坐标系中,画出下列各点:A(0,0,3),B(1,2,3),C(2,0,4),D(-1,2,-2).
2. 已知:长方体ABCD-A′B′C′D′的边长AB=12,AD=8,AA′=7,以这个长方体的顶点B为坐标原点,射线AB,BC,BB′分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标.
3. 写出坐标平面yOz上∠yOz平分线上的点的坐标满足的条件.
四、拓展延伸。