2015-2016年新版人教版八年级数学上册全册教案
新人教版八年级数学上册全册名师教案大全5篇_1
新人教版八年级数学上册全册名师教案大全5篇新人教版八班级数学上册全册名师教案【篇1】一、学习目标:1、会推导两数差的平方公式,会用式子表示及用文字语言叙述;2、会运用两数差的平方公式进行计算。
二、学习过程:请同学们快速阅读课本第27—28页的内容,并完成下面的练习题:(一)探究1、计算: (a - b) =方法一:方法二:方法三:2、两数差的平方用式子表示为_________________________;用文字语言叙述为___________________________ 。
3、两数差的平方公式结构特征是什么?(二)现学现用利用两数差的平方公式计算:1、(3 - a)2、 (2a -1)3、(3y-x)4、(2x – 4y)5、( 3a - )(三)合作攻关敏捷运用两数差的平方公式计算:1、(999)2、( a – b – c )3、(a + 1) -(a-1)(四)达标训练1、、选择:下列各式中,与(a - 2b)肯定相等的是()A、a -2ab + 4bB、a -4bC、a +4bD、 a - 4ab +4b2、填空:(1)9x + + 16y = (4y - 3x )(2) ( ) = m - 8m + 162、计算:( a - b) ( x -2y )3、有一边长为a米的正方形空地,现预备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池,你能计算出喷泉水池的面积吗?(四)提升1、本节课你学到了什么?2、已知a – b = 1,a + b = 25,求ab 的值新人教版八班级数学上册全册名师教案【篇2】一、教学目标(一)、学问与技能:(1)使同学了解因式分解的意义,理解因式分解的概念。
(2)熟悉因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。
(二)、过程与方法:(1)由同学自主探究解题途径,在此过程中,通过观看、类比等手段,寻求因式分解与因数分解之间的关系,培育同学的观看力量,进一步进展同学的类比思想。
人教版八年级数学上册全册教案
人教版八年级数学上册全册教案目标本教案的目标是为人教版八年级数学上册提供全册教学计划,包含各单元的教学目标、教学内容、教学方法和评估方式。
教学计划第一单元:有理数- 教学目标:了解有理数的概念和性质,掌握有理数的加减运算规则。
- 教学内容:有理数的概念、有理数的运算规则、有理数的绝对值。
- 教学方法:讲解、示范、练、讨论。
- 评估方式:课堂练、小测、作业。
第二单元:代数方程与不等式- 教学目标:掌握代数方程的解法和不等式的求解方法,能够解决实际问题。
- 教学内容:一元一次方程的解法、二元一次方程的解法、一元一次不等式的解法。
- 教学方法:讲解、示范、练、实际问题分析。
- 评估方式:课堂练、小测、作业、解决实际问题。
第三单元:图形的认识与运用- 教学目标:认识常见图形的性质和特点,能够进行图形的判定和计算。
- 教学内容:平面图形的分类、圆的性质和计算、三角形的性质和计算。
- 教学方法:讲解、示范、练、实际问题分析。
- 评估方式:课堂练、小测、作业、解决实际问题。
第四单元:全等与相似- 教学目标:了解全等和相似的概念,能够进行全等和相似三角形的判定和计算。
- 教学内容:全等三角形的判定和性质、相似三角形的判定和性质、相似三角形的计算。
- 教学方法:讲解、示范、练、实际问题分析。
- 评估方式:课堂练、小测、作业、解决实际问题。
第五单元:三角函数- 教学目标:掌握正弦、余弦、正切的概念和计算方法,能够解决与三角函数相关的实际问题。
- 教学内容:角的概念、正弦、余弦、正切的概念和计算、实际问题中的应用。
- 教学方法:讲解、示范、练、实际问题分析。
- 评估方式:课堂练、小测、作业、解决实际问题。
总结本文档提供了人教版八年级数学上册的全册教案,包含各单元的教学目标、教学内容、教学方法和评估方式。
教案的设计旨在通过简单的教学策略和明确的教学目标,帮助学生轻松理解和掌握数学知识。
人教版八年级上册数学教案(5篇)
人教版八年级上册数学教案(5篇)人教版八年级上册数学教案(5篇)人教版八年级上册数学教案1 一、内容和内容解析1.内容三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.2.内容解析本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的才能;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探究的思想感情。
理解三角形高、角平分线及中线概念到用几何语言准确表述,这是学生在几何学习上的一个深化.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着非常重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.本节的重点是理解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.二、目的和目的解析1.教学目的(1)理解三角形的高、中线与角平分线等概念;(2)会用工具画三角形的高、中线与角平分线;2.教学目的解析(1)经历画图理论过程,理解三角形的高、中线与角平分线等概念.(2)可以纯熟用几何语言表达三角形的高、中线与角平分线的性质.(3)掌握三角形的高、中线与角平分线的画法.(4)理解三角形的三条高、三条中线与三条角平分线分别相交于一点.三、教学问题诊断分析^p三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联络又有本质的区别.人教版八年级上册数学教案2 一、教学目的1、认识中位数和众数,并会求出一组数据中的众数和中位数。
人教版八年级数学上册教案册5篇
人教版八年级数学上册教案全册5篇一、教材分析1、特点与地位:重点中的重点。
本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有肯定的有用意义。
2、重点与难点:结合学生现有抽象思维力量水平,已把握根本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下: (1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。
(2)难点:求解最短路径算法的程序实现。
3、教学安排:最短路径问题包含两种状况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。
依据教学大纲安排,重点讲解第一种状况问题的解决。
安排一个课时讲授。
教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。
二、教学目标分析1、学问目标:把握最短路径概念、能够求解最短路径。
2、力量目标:(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培育学生的数据抽象力量。
(2)通过旅游景点线路选择问题的解决,培育学生的独立思索、分析问题、解决问题的力量。
3、素养目标:培育学生讲究工作方法、与他人合作,提高效率。
三、教法分析课前充分预备,研读教材,查阅相关资料,制作多媒体课件。
教学过程中除了使用传统的“讲授法”以外,主要采纳“案例教学法”,同时辅以多媒体课件,以启发的方式绽开教学。
由于本节课的内容属于图这一章的难点,考虑学生的承受力量,留意与学生沟通,依据学生的反响掌握好教学进度是本节课胜利的关键。
四、学法指导1、课前上次课结课时给学生布置任务,使其有针对性的预习。
2、课中指导学生争论任务解决方法,引导学生分析本节课学问点。
3、课后给学生布置同类型任务,加强练习。
五、教学过程分析(一)课前复习(3~5分钟)回忆“路径”的概念,为引出“最短路径”做铺垫。
教学方法及留意事项:(1)采纳提问方式,留意准时小结,提问的目的是帮忙学生回忆概念。
八年级数学(上)全册优秀教案(新人教版)
第十一章全等三角形11.1全等三角形教学目标:1了解全等形及全等三角形的的概念;2理解全等三角形的性质;3在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉;4学生通过观察、发现生活中的全等形和实际操作中获得全等三角形的体验在探索和运用全等三角形性质的过程中感受到数学的乐趣。
重点:探究全等三角形的性质难点:掌握两个全等三角形的对应边,对应角教学过程:观察下列图案,指出这些图案中中形状与大小相同的图形问题:你还能举出生活中一些实际例子吗?这些形状、大小相同的图形放在一起能够完全重合。
能够完全重合的两个图形叫做全等形能够完全重合的两个三角形叫做全等三角形引导学生完成课本P3思考:归纳:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。
“全等”用“望”表示,读作“全等于”两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如/ ABC和/ DEF全等时,点A和点D,点B和点E,点C和点F是对应顶点,记作/ ABC^/DEF 把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角思考:如课本P3思考图11.1-1中,/ ABC^/ DEF对应边有什么关系?对应角呢?归纳:全等三角形性质:全等三角形的对应边相等;全等三角形的对应角相等。
思考:(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角(2)将/ ABC沿直线BC平移,得到/ DEF说出你得到的结论,说明理由?(3)如图,/ABE^/ACD,AB与AC AD与AE是对应边,已知:/ A=43°, / B=30°, 求/ ADC的大小。
作业:P4习题11.1第1,2,3题课题:11. 2三角形全等的判定(1)教学目标①经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.②掌握三角形全等的“边边边”条件,了解三角形的稳定性.③通过对问题的共同探讨,培养学生的协作精神. 教学难点三角形全等条件的探索过程.一、复习过程,引入新知多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等.反之,这六个元素分别相等,这样的两个三角形一定全等.二、创设情境,提出问题根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,进行交流予以汇总归纳. 三、建立模型,探索发现出示探究1,先任意画一个△ ABC再画一个厶A'B'C',使厶ABC与厶A'B'C',满足上述条件中的一个或两个.你画出的△ A'B'C'与厶ABC-定全等吗?让学生按照下面给出的条件作出三角形.(1) 三角形的两个角分别是30°、50°.(2) 三角形的两条边分别是4cm, 6cm(3) 三角形的一个角为30°,—条边为3cm再通过画一画,剪一剪,比一比的方式,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.出示探究2,先任意画出一个厶A'B'C',使A'B' = AB B'C' = BC,C'A' = CA 把画好的厶A'B'C'剪下,放到△ ABC上,它们全等吗?让学生充分交流后,在教师的引导下作出厶A'B'C',并通过比较得出结论:三边对应相等的两个三角形全等.四、应用新知,体验成功实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.鼓励学生举出生活中的实例.给出例I,如下图△ ABC是一个钢架,A吐AC, AD是连接点A与BC中点D的支架,求证△ ABD^A ACDB D C让学生独立思考后口头表达理由,由教师板演推理过程. 例2女口图是用圆规和直尺画已知角的平分线的示意图,作法如下:①以A为圆心画弧,分别交角的两边于点B和点C;②分别以点B、C为圆心,相同长度为半径画两条弧,两弧交于点D;③画射线ADAD就是/ BAC的平分线.你能说明该画法正确的理由吗?例3 如图四边形ABCD中, A吐CD AD= BC你能把四边形ABCD^成两个相互全等的三角形吗?你有几种方法?你能证明你的方法吗?试一试.A D五、巩固练习:课本P8页的练习.六、反思小结回顾反思本节课对知识的研究探索过程、小结方法及结论,提炼数学思想, 掌握数学规律.七、布置作业课本P15习题11. 2第1、2题.八年级数学教案(马兰勤)课题:11.2~~三角形全等的判定2)教学目标①经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力.②在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.③通过对问题的共同探讨,培养学生的协作精神.教学难点指导学生分析问题,寻找判定三角形全等的条件.知识重点应用“边角边”证明两个三角形全等,进而得出线段或角相等.教学过程(师生活动)一、情境,引入课题多媒体出示探究3:已知任意厶ABC画厶A'B'C',使A'B' = AB, AC = AC,/ A =/ A.教帅点拨,学生边学边画图,再让学生把画好的△ A'B'C',剪下放在厶ABC上,观察这两个三角形是否全等.二、交流对话,探求新知根据前面的操作,鼓励学生用自己的语言来总结规律:两边和它们的夹角对应相等的两个三角形全等. (SAS)补充强调:角必须是两条相等的对应边的夹角,边必须是夹相等角的两对边.三、应用新知,体验成功出示例2,如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A 和B的点C,连接AC并延长到D,使C[> CA连接BC并延长到E,使CE =CB.连接DE那么量出DE 的长就是A、B的距离,为什么?让学生充分思考后,书写推理过程,并说明每一步的依据.(若学生不能顺利得到证明思路,教师也可作如下分析:要想证A吐DE只需证△ ABC^A DEC△ ABC tA DEC全等的条件现有……还需要……)明确证明分别属于两个三角形的线段相等或者角相等的问题,常常通过证明这两个三角形全等来解决.补充例题:1、已知:如图AB=AC,AD=AE, BAC=/ DAE ACADAB=AC(已知) / BAD=Z CAE (已证) AD=AE(已知) •••△ ABD^A ACE ( SAS ) 思考:求证:1.BD=CE 2./ B= / C 3. / ADB=Z AEC 变式 1:已知:如图,AB 丄 AC,ADL AE,AB=AC,AD=AE. 求证: △ DAC^A EABBE=DC / B= / C / D= Z E BE 丄 CD四、再次探究,释解疑惑出示探究4,我们知道,两边和它们的夹角对应相等的两个 三角形全等.由“两边及其中一边的对角对应相等”的条件 能判定两个三角形全等吗?为什么?让学生模仿前面的探究方法,得出结论:两边及其中一边的对角对应相等的两 个三角形不一定全等.教师演示:方法(一)教科书10页图11.2-7 . 方法(二)通过画图,让学生更直观地获得结论.五、巩固练习 课本P10页,练习1、2.六、 小结提高1. 判定三角形全等的方法;2.证明线段、角相等常见的方法有哪些 ?让学生自由表述,其他学生补充,让学生 自己将知识系统化,以自己的方式进行建构.七、 布置作业1. 课本P15页,习题11. 2第3、4题.2. 选作题:DE= DF, EH h FH,你能发现哪些结沦?并说求证BO DE(1)小明做了一个如图所示的风筝,测得 明理由.八年级数学教案(马兰勤)课题:11.2~~三角形全等的判定(3)教学目标① 探索并掌握两个三角形全等的条件:“ASA “AAS ,并能应用它们判别两个三角形 是否全等. ② 经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等 能力;并通过对知识方法的总结,培养反思的习惯,培养理性思维.③ 敢于面对教学活动中的困难,能通过合作交流解决遇到的困难.教学重点 理解,掌握三角形全等的条件:“ASA “AAS .教学难点探究出“ ASA “AAS 以及它们的应用.教学过程(师生活动)创设情境复习:师:我们已经知道,三角形全等的判定条件有哪些 ?生: “SSS “SAS师:那除了这两个条件,满足另一些条件的两个三角形 也可能全等呢?今天我们就来探究三角形全等的另一些 探究新知:一张教学用的三角形硬纸板不小心被撕坏了,如图,你能制作一张与原来同样大小的新教具?能恢复原来三角形的原貌吗?1. 师:我们先来探究第一种情况.(课件出示“探究5……”)⑴探究5先任意画出一个厶ABC 再画一个厶A'B'C',使 A'B' = AB, / A' =Z A ,Z B'= / B (即使两角和它们的夹边对应相等).把画好的△ A'B'C'剪下,放到△ ABC 上,它 们全等吗?师:怎样画出△ A'B'C'?先自己独立思考,动手画一画。
八年级数学(上)全册教案(新人教版)
八年级数学(上)全册教案(新人教版)第一章:一元一次方程1.1 认识一元一次方程了解一元一次方程的定义和形式掌握一元一次方程的解法1.2 解一元一次方程学习使用代入法、加减法解一元一次方程练习解不同系数的一元一次方程1.3 应用一元一次方程运用一元一次方程解决实际问题练习列方程解应用题第二章:不等式与不等式组2.1 认识不等式了解不等式的定义和性质学会解不等式2.2 解一元一次不等式学习一元一次不等式的解法练习解不同系数的一元一次不等式2.3 不等式组了解不等式组的概念和解法学会解不等式组第三章:整式的加减3.1 同类项理解同类项的定义和性质学会合并同类项3.2 整式的加减学习整式的加减法则练习整式的加减运算3.3 乘法公式掌握完全平方公式和平方差公式学会应用乘法公式进行整式乘法第四章:函数及其图象4.1 认识函数了解函数的定义和性质学会用图象表示函数4.2 一次函数学习一次函数的定义和图象掌握一次函数的性质和图象的变换4.3 一次函数的应用运用一次函数解决实际问题练习列方程解应用题第五章:平面直角坐标系5.1 平面直角坐标系的定义了解平面直角坐标系的定义和构成学会在坐标系中确定点的位置5.2 坐标轴上的点学习坐标轴上点的特点和表示方法练习坐标轴上点的运算5.3 象限内的点掌握象限内点的坐标特征学会象限内点的坐标运算第六章:数据的收集、整理与描述6.1 数据的收集学习调查方法,掌握收集数据的方式练习使用调查问卷、观察等方法收集数据6.2 数据的整理学习数据的整理方法,如分类、排序等练习使用图表对数据进行整理和展示6.3 数据的描述学习利用统计量描述数据,如平均数、中位数等练习计算和解读统计量,了解数据分布特征第七章:多边形的面积7.1 多边形的定义了解多边形的概念和性质学会多边形的分类和识别7.2 三角形的面积学习三角形面积的计算方法练习计算不同类型的三角形面积7.3 平行四边形和梯形的面积掌握平行四边形和梯形面积的计算方法练习计算平行四边形和梯形面积第八章:概率初步8.1 概率的概念了解概率的定义和性质学会计算简单事件的概率8.2 随机事件的概率学习利用频率估计概率练习计算不同随机事件的概率8.3 概率的加法法则和乘法法则掌握概率的加法法则和乘法法则练习应用概率法则解决实际问题第九章:函数的性质9.1 函数的性质学习函数的单调性、奇偶性、周期性等性质学会运用函数性质解决实际问题9.2 反比例函数学习反比例函数的定义和图象掌握反比例函数的性质和应用9.3 二次函数学习二次函数的定义和图象掌握二次函数的性质和应用第十章:综合复习10.1 复习要点梳理梳理本册书的主要知识点和技能巩固重点,解决疑难问题10.2 复习题训练完成不同难度的复习题,提高解题能力10.3 总复习测试进行全面的复习测试,检验学习成果根据测试结果,制定针对性的改进计划重点和难点解析一、认识一元一次方程:重点关注学生对于方程概念的理解,特别是对“未知数”、“等式”这两个关键词的理解。
八年级数学(上)全册教案(新人教版)
八年级数学(上)全册教案(新人教版)第一章:勾股定理1.1 勾股定理的发现导入:通过直角三角形的实际测量,让学生感受勾股定理的背景。
探究:引导学生通过实际操作,发现勾股定理,并能够用字母表示。
练习:让学生通过解决实际问题,巩固勾股定理的应用。
1.2 勾股定理的证明导入:通过回顾三角形知识,引导学生思考勾股定理的证明方法。
探究:让学生通过割补、折叠等方法,尝试证明勾股定理。
练习:让学生通过解决实际问题,加深对勾股定理证明的理解。
第二章:实数与方程2.1 实数的分类导入:通过生活中的实例,引导学生理解实数的概念。
探究:让学生通过分类讨论,理解实数的分类,包括有理数和无理数。
练习:让学生通过解决实际问题,加深对实数分类的理解。
2.2 一元一次方程导入:通过实例引入方程的概念,引导学生理解一元一次方程的特点。
探究:让学生通过解方程的方法,掌握一元一次方程的解法。
练习:让学生通过解决实际问题,巩固一元一次方程的应用。
第三章:不等式与不等式组3.1 不等式的概念导入:通过比较大小引入不等式的概念,引导学生理解不等式的表示方法。
探究:让学生通过实际操作,理解不等式的性质。
练习:让学生通过解决实际问题,加深对不等式概念的理解。
3.2 不等式的解法导入:通过实例引入不等式的解法,引导学生掌握解不等式的方法。
探究:让学生通过实际操作,掌握不等式的解法。
练习:让学生通过解决实际问题,巩固不等式的解法。
第四章:函数及其图象4.1 函数的概念导入:通过实例引入函数的概念,引导学生理解函数的表示方法。
探究:让学生通过实际操作,理解函数的性质。
练习:让学生通过解决实际问题,加深对函数概念的理解。
4.2 一次函数的图象导入:通过实例引入一次函数的图象,引导学生理解一次函数图象的特点。
探究:让学生通过实际操作,绘制一次函数的图象。
练习:让学生通过解决实际问题,巩固一次函数图象的应用。
第五章:平面图形的认识5.1 线段的性质导入:通过实例引入线段的概念,引导学生理解线段的性质。
人教版数学八年级上册全册教案
11.1.1变量教学目标:理解变量与函数的概念以及相互之间的关系教学重点:变量与常量教学难点:对变量的判断教学设计:引入:信息1:当你坐在摩天轮上时,想一想,随着时间的变化,你离开地面的高度是如何变化的?信息2:汽车以60km/h的速度匀速前进,行驶里程为skm,行驶的时t的式子表示s.新课:问题:(1)每张电影票的售价为10元,如果早场售出票150张,日场售出票205张,晚场售出票310张,三场电影的票房收入各多少元?设一场电影受出票x张,票房收入为y元,怎样用含x的式子表示y?(2)在一根弹簧的下端悬挂中重物,改变并记录重物的质量,观察并记录弹簧长度的变化规律,如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含重物质量m(单位:kg)的式子表示受力后弹簧长度l(单位:cm)?(3)要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含圆面积S的式子表示圆的半径r?(4)用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化。
记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律,设长方形的长为xm,面积为Sm2,怎样用含x的式子表示S?在一个变化过程中,我们称数值发生变化的量为变量(variable).数值始终不变的量为常量。
指出上述问题中的变量和常量。
范例:写出下列各问题中所满足的关系式,并指出各个关系式中,哪些量是变量,哪些量是常量?(1)用总长为60m的篱笆围成矩形场地,求矩形的面积S(m2)与一边长x(m)之间的关系式;(2)购买单价是0.4元的铅笔,总金额y(元)与购买的铅笔的数量n(支)的关系;(3)运动员在4000m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步的速度v(m/s)的关系;(4)银行规定:五年期存款的年利率为2.79%,则某人存入x元本金与所得的本息和y(元)之间的关系。
活动:1.分别指出下列各式中的常量与变量.(1)圆的面积公式S=πr2;(2)正方形的l=4a;(3)大米的单价为2.50元/千克,则购买的大米的数量x(kg)与金额与金额y的关系为y=2.5x.2.写出下列问题的关系式,并指出不、常量和变量.(1)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.(2)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与n之间的关系式.思考:怎样列变量之间的关系式?小结:变量与常量11.1.2函数教学目标:理解函数的概念,能准确识别出函数关系中的自变量和函数教学重点:函数的概念教学难点:函数的概念教学媒体:多媒体电脑,计算器教学说明:注意区分函数与非函数的关系,学会确定自变量的取值范围教学设计:引入:信息1:小明在14岁生日时,看到他爸爸为他记录的以前各年周岁时体重信息2:当你坐在摩天轮上时,随着旋转时间t(min)与你离开地面的高度新课:问题:(1)如图是某日的气温变化图。
八年级数学(上)全册教案(新人教版)
八年级数学(上)全册教案(新人教版)教案内容:第一章:一元一次方程1.1 方程的概念学习目标:了解方程的定义,掌握一元一次方程的一般形式。
教学内容:介绍方程的定义,解释一元一次方程的概念,举例说明。
教学活动:教师讲解,学生跟随举例,互动提问。
1.2 一元一次方程的解法学习目标:学会使用代入法、加减法解一元一次方程。
教学内容:讲解代入法、加减法的解题步骤,给出实例进行演示。
教学活动:教师演示,学生跟随练习,解答练习题。
1.3 方程的应用学习目标:能够应用一元一次方程解决实际问题。
教学内容:分析实际问题,设置方程,求解问题。
教学活动:教师提出实际问题,学生分组讨论,展示解题过程。
第二章:不等式与不等式组2.1 不等式的概念学习目标:理解不等式的定义,掌握不等式的表示方法。
教学内容:介绍不等式的定义,解释不等式的表示方法,举例说明。
教学活动:教师讲解,学生跟随举例,互动提问。
2.2 一元一次不等式的解法学习目标:学会使用图像法、符号法解一元一次不等式。
教学内容:讲解图像法、符号法的解题步骤,给出实例进行演示。
教学活动:教师演示,学生跟随练习,解答练习题。
2.3 不等式组的解法学习目标:学会解不等式组,能够找出解集。
教学内容:讲解不等式组的解法步骤,给出实例进行演示。
教学活动:教师演示,学生跟随练习,解答练习题。
第三章:函数及其性质3.1 函数的概念学习目标:理解函数的定义,掌握函数的表示方法。
教学内容:介绍函数的定义,解释函数的表示方法,举例说明。
教学活动:教师讲解,学生跟随举例,互动提问。
3.2 一次函数的图像与性质学习目标:学会绘制一次函数的图像,理解一次函数的性质。
教学内容:讲解一次函数的图像与性质,给出实例进行演示。
教学活动:教师演示,学生跟随练习,绘制图像,解答练习题。
3.3 反比例函数的图像与性质学习目标:学会绘制反比例函数的图像,理解反比例函数的性质。
教学内容:讲解反比例函数的图像与性质,给出实例进行演示。
2015-2016年新版人教版八年级数学上册-全册教案
第11章三角形教材内容本章主要内容有三角形的有关线段、角,多边形及内角和,镶嵌等。
三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。
教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于1800的基础上,进行推理论证,从而得出三角形外角的性质。
接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。
这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。
最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用.教学目标〔知识与技能〕1、理解三角形及有关概念,会画任意三角形的高、中线、角平分线;2、了解三角形的稳定性,理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形;3、会证明三角形内角和等于1800,了解三角形外角的性质。
4、了解多边形的有关概念,会运用多边形的内角和与外角和公式解决问题。
5、理解平面镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用它们进行简单的平面镶嵌设计。
〔过程与方法〕1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。
〔情感、态度与价值观〕1、体会数学与现实生活的联系,增强克服困难的勇气和信心;2、会应用数学知识解决一些简单的实际问题,增强应用意识;3、使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点。
重点难点三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角和等于1800的证明,根据三条线段的长度判断它们能否构成三角形及简单的平面镶嵌设计是难点。
课时分配11.1与三角形有关的线段……………………………………… 2课时11.2 与三角形有关的角………………………………………… 2课时11.3多边形及其内角和………………………………………… 2课时本章小结………………………………………………………… 2课时11.1.1三角形的边[教学目标]〔知识与技能〕1了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形 ;2理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题. 〔过程与方法〕在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯; 〔情感、态度与价值观〕体会数学与现实生活的联系,增强克服困难的勇气和信心[重点难点] 三角形的有关概念和符号表示,三角形三边间的不等关系是重点;用三角形三边不等关系判定三条线段可否组成三角形是难点。
八年级数学(上)全册教案(新人教版)
八年级数学(上)全册教案(新人教版)教案内容:一、第一章:勾股定理1. 教学目标:理解勾股定理的定义和证明;能够运用勾股定理解决实际问题。
2. 教学重点:勾股定理的表述和证明;勾股定理的应用。
3. 教学难点:勾股定理的证明;解决实际问题时的计算和应用。
4. 教学准备:教学课件;练习题。
5. 教学过程:导入:介绍勾股定理的背景和意义;讲解:讲解勾股定理的表述和证明;练习:学生练习解决实际问题;总结:回顾本节课的重点和难点。
二、第二章:平行四边形1. 教学目标:理解平行四边形的定义和性质;能够识别和判断平行四边形。
2. 教学重点:平行四边形的定义和性质;平行四边形的判定。
3. 教学难点:平行四边形的性质证明;平行四边形的判定方法。
4. 教学准备:教学课件;练习题。
5. 教学过程:导入:介绍平行四边形的背景和意义;讲解:讲解平行四边形的定义和性质;练习:学生练习识别和判断平行四边形;总结:回顾本节课的重点和难点。
三、第三章:三角形1. 教学目标:理解三角形的定义和性质;能够识别和判断三角形。
2. 教学重点:三角形的定义和性质;三角形的判定。
3. 教学难点:三角形的性质证明;三角形的判定方法。
4. 教学准备:教学课件;练习题。
5. 教学过程:导入:介绍三角形的背景和意义;讲解:讲解三角形的定义和性质;练习:学生练习识别和判断三角形;总结:回顾本节课的重点和难点。
四、第四章:数的开方与乘方1. 教学目标:理解数的开方和乘方的概念;能够熟练进行数的开方和乘方运算。
2. 教学重点:数的开方和乘方的概念;数的开方和乘方的运算规则。
3. 教学难点:数的乘方运算;数的开方和乘方的逆运算。
4. 教学准备:教学课件;练习题。
5. 教学过程:导入:介绍数的开方和乘方的意义;讲解:讲解数的开方和乘方的概念和运算规则;练习:学生练习进行数的开方和乘方运算;总结:回顾本节课的重点和难点。
五、第五章:实数1. 教学目标:理解实数的定义和性质;能够运用实数解决实际问题。
人教版初中数学八年级上册全册教案
人教版初中数学八年级上册全册教案第一课数与代数
教学目标
- 掌握数字的读法和写法。
- 了解数的分类和数的特性。
- 掌握数的比较和数的大小顺序。
- 能够解决实际问题中的数的应用。
教学内容
1. 数的概念和分类
- 自然数、整数、有理数的概念和特性
- 正整数、负整数、零的概念和表示方法
2. 数的比较和大小顺序
- 数的大小比较
- 数的大小顺序
3. 数的应用
- 数的读法和写法
- 数的应用实例分析和解决
教学步骤
1. 引入数字的概念和分类,介绍数的基本特性。
2. 通过示例演示和练,巩固学生对数的比较和大小顺序的掌握。
3. 教授数字的读法和写法,让学生进行读数和写数的练。
4. 结合实际问题,教学数的应用,并引导学生分析和解决问题。
5. 进行小组讨论和总结,复本节课的内容。
6. 布置作业,让学生练巩固所学知识。
教学评价
1. 课堂表现:观察学生的参与度、注意力、回答问题的准确性
和自信度。
2. 作业完成情况:检查学生对课堂内容的理解和应用能力。
参考资料
- 《初中数学八年级上册》,人教版
- 《数学教学指导大纲》,教育部发布
>注意: 以上为简要教案概述,具体教学内容和安排可根据实际
情况进行调整和修改。
人教版八年级上册数学全册教案
11.1全等三角形(1课时)教学目标通过实例表述全等图形的概念和特征,并能找出全等图形;能叙述全等三角形的定义及其相关概念,并能找出两个全等三角形的对应边和对应角;总结出全等三角形的性质,并能进行简单的推理和计算,解决一些实际问题。
教学重、难点重点:全等三角形的概念、性质。
难点:对应边和对应角的确定。
课时安排:1课时教学过程设计(一)生活导入我们身边经常看到“一模一样”的图形,比如同一版面的记念邮票,同一版面的人民币、用两张纸叠在一起剪出的两张窗花等,请大家举出这类图形的例子。
(二)新课问题1:几何中,我们把上述所例举的“一模一样”的图形叫做“全等形”,以下是描述全等形的三种不同的说法,你认为哪种说法是恰当的?(l)形状相同的两个图形叫全等形。
(2)大小相等的两个图形叫全等形。
(3)能够完全重合的两个图形叫全等形。
总结概念:能够完全重合的两个三角形叫做全等三角形。
做一做:请你用两张半透明的薄纸分别描出下中的两个三角形.然后把它们叠放在一起,观察这两个图形是否完全重合.(提高学生的动手能力和观察能力)思考:课本图11.1、11.2、11.3中,各图中的两个三角形全等吗?总结出结论:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。
小组讨论,得出全等三角形有这样的性质:全等三角形的对应边相等;全等三角形的对应角相等。
(三)练习课本课后的练习1、2。
(五)小结引导学生总结出本节的主要知识点。
(六)布置作业:创新作业11.2 三角形全等的条件 (共4课时)教学目标能叙述三角形全等的条件,体会三角形的稳定性;能灵活地运用三角形全等的条件,进行有条理的思考和简单的推理,并能利用三角形的全等解决实际问题;提高动手能力。
教学重、难点重点:三角形全等的条件。
难点:利用三角形全等的条件解题。
课时安排:4课时教学过程设计第一课时(一)复习提问1.怎样的两个三角形是全等三角形?2.全等三角形的性质?(二)SSS定理的得出给出任意两个三角形,有些是全等的,有些不是全等的,我们知道如果△ABC与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C ′这六个条件,就能保证△ABC≌△A′B′C′。
新人教版八年级数学上册教案设计(全册)
新人教版八年级数学上册教案新人教版八年级上册数学教学计划一、指导思想通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。
本班是刚刚接手,对班上学生不了解,从原科任老师处得知:优生不多,但后进生却较多,有少数学生不上进,基础特差,问题较严重。
要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
三、努力目标对于八()、()班学生要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,注重方法,培养学生能力,和学生的学习的积极性。
通过本期的学习,在知识与技能上,学生在数学的认识与理解上应该要上一个台阶。
在情感与态度上,培养学生实事求是、严肃认真的学习态度,激发学生的学习兴趣,培养学生对数学的热爱,对生活的热爱,提高学生的逻辑推理能力与逻辑思维能力,自主探究,解决问题的能力,提高运算能力,使所有学生在数学上都有不同的发展,尽可能接近其发展的最大值,培养学生良好的学习习惯,发展学生的非智力因素。
四、教材分析第十一章全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。
更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。
第十二章轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。
第十三章实数从平方根于立方根说起,学习有关实数的有关知识,并以这些知识解决一些实际问题。
人教新版八年级数学上册教案(精选10篇)
人教新版八年级数学上册教案人教新版八年级数学上册教案(精选10篇)作为一名辛苦耕耘的教育工作者,可能需要进行教案编写工作,借助教案可以提高教学质量,收到预期的教学效果。
写教案需要注意哪些格式呢?下面是小编整理的人教新版八年级数学上册教案,希望对大家有所帮助。
人教新版八年级数学上册教案篇1教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力。
2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤。
3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力。
重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用。
2.难点:灵活地应用公式法进行因式分解。
3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的。
教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容。
教学过程一、回顾交流,导入新知【问题牵引】1.分解因式:(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;(3)x2-0.01y2.【知识迁移】2.计算下列各式:(1)(m-4n)2;(2)(m+4n)2;(3)(a+b)2;(4)(a-b)2.【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律。
3.分解因式:(1)m2-8mn+16n2(2)m2+8mn+16n2;(3)a2+2ab+b2;(4)a2-2ab+b2.【学生活动】从逆向思维的角度入手,很快得到下面答案:解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.二、范例学习,应用所学【例1】把下列各式分解因式:(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;(3)(x+y)2-14(x+y)+49;(4)+n4.【例2】如果x2+axy+16y2是完全平方,求a的值。
八级上册数学教案人教版(全册)
八级上册数学教案人教版(第一部分)一、第一章:勾股定理与面积计算1.1 勾股定理【学习目标】1. 理解勾股定理的定义及其应用。
2. 学会运用勾股定理解决实际问题。
【教学内容】1. 引导学生通过观察直角三角形,发现勾股定理。
2. 讲解勾股定理的证明方法。
3. 举例说明勾股定理在实际问题中的应用。
【课堂练习】1. 完成课后练习题1-5。
2. 运用勾股定理解决实际问题。
1.2 面积计算【学习目标】1. 掌握直角三角形、平行四边形、梯形的面积计算方法。
2. 学会运用面积计算解决实际问题。
【教学内容】1. 复习直角三角形、平行四边形、梯形的面积计算公式。
2. 讲解面积计算在实际问题中的应用。
3. 引导学生通过实际操作,加深对面积计算方法的理解。
【课堂练习】1. 完成课后练习题6-10。
2. 运用面积计算解决实际问题。
二、第二章:一次函数与不等式2.1 一次函数【学习目标】1. 理解一次函数的定义及其图像特点。
2. 学会运用一次函数解决实际问题。
【教学内容】1. 引导学生通过观察图像,理解一次函数的定义。
2. 讲解一次函数的图像特点。
3. 举例说明一次函数在实际问题中的应用。
【课堂练习】1. 完成课后练习题11-15。
2. 运用一次函数解决实际问题。
2.2 不等式【学习目标】1. 掌握不等式的解法及其应用。
2. 学会运用不等式解决实际问题。
【教学内容】1. 讲解不等式的定义及其解法。
2. 举例说明不等式在实际问题中的应用。
3. 引导学生通过实际操作,加深对不等式解法的理解。
【课堂练习】1. 完成课后练习题16-20。
2. 运用不等式解决实际问题。
三、第三章:平行四边形与梯形3.1 平行四边形【学习目标】1. 理解平行四边形的性质及其应用。
2. 学会运用平行四边形解决实际问题。
【教学内容】1. 引导学生通过观察图形,理解平行四边形的性质。
2. 讲解平行四边形的应用实例。
3. 举例说明平行四边形在实际问题中的应用。
八年级数学(上)全册教案(新人教版)
八年级数学(上)全册教案(新人教版)第一章:一元一次方程1.1 方程与方程的解理解方程的概念,掌握方程的解的定义。
学会解一元一次方程,掌握解方程的基本步骤。
1.2 方程的解法学习使用加减法、乘除法解一元一次方程。
学会使用移项、合并同类项解方程。
1.3 方程的应用学会将实际问题转化为方程,解决实际问题。
练习使用一元一次方程解决实际问题。
第二章:不等式与不等式组2.1 不等式理解不等式的概念,掌握不等式的性质。
学会解一元一次不等式,掌握解不等式的基本步骤。
2.2 不等式组理解不等式组的概念,掌握不等式组的解法。
学会解不等式组,掌握解不等式组的基本步骤。
2.3 不等式的应用学会将实际问题转化为不等式,解决实际问题。
练习使用不等式解决实际问题。
第三章:函数的初步认识3.1 函数的概念理解函数的概念,掌握函数的定义。
学会判断两个变量之间的关系是否为函数。
3.2 函数的性质学习函数的单调性、奇偶性、周期性等基本性质。
学会判断函数的单调性、奇偶性、周期性。
3.3 函数的应用学会将实际问题转化为函数问题,解决实际问题。
练习使用函数解决实际问题。
第四章:整式的加减4.1 整式的概念理解整式的概念,掌握整式的定义。
学会判断两个整式是否相等。
4.2 整式的加减法学习整式的加减法运算,掌握加减法的基本步骤。
学会使用合并同类项进行整式的加减法运算。
4.3 整式的应用学会将实际问题转化为整式问题,解决实际问题。
练习使用整式解决实际问题。
第五章:数据的收集、整理与描述5.1 数据的收集学会使用调查、实验等方法收集数据。
掌握数据的整理方法,如列表、画图等。
5.2 数据的整理学习数据的整理方法,掌握数据的分类、排序等基本操作。
学会使用图表展示数据,如条形图、折线图等。
5.3 数据的描述学习数据的描述方法,掌握数据的平均数、中位数、众数等基本统计量。
学会使用统计量对数据进行描述和分析。
八年级数学(上)全册教案(新人教版)第六章:三角形6.1 三角形的概念理解三角形的基本概念,掌握三角形的定义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 课时 2 课时 2 课时 2 课时
11.1.1 三角形的边
[ 教学目标 ]
〔知识与技能〕
1 了解三角形的意义 , 认识三角形的边、内角、顶点,能用符号语言表示三角形
;
2 理解三角形三边不等的关系,会判断三条线段能否构成一个三角形
, 并能运用它解决有关的问题 .
〔过程与方法〕
在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;
第 11 章 三角形
教材内容
本章主要内容有三角形的有关线段、角,多边形及内角和,镶嵌内角、外角。教材通过实
验让学生了解三角形的稳定性,在知道三角形的内角和等于
1800 的基础上,进行推理论证,从而得出三角
形外角的性质。接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了
以选择 ?各条路线的长一样吗 ?为什么?
有两条路线: ( 1)从 B→C,( 2)从 B→A→C ;不一样, AB+A C> BC ①;因为两点之间线段最短。
同样地有 AC+BC > AB ②
AB+BC
> AC ③
由式子①②③我们可以知道什么?
三角形的任意两边之和大于第三边 .
四、三角形的分类
我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角
腰
腰
底角
底角
底边
三角形 不等边三角形
等腰三角形 五、例题
底和腰不等的等腰三角形 等边三角形
例 用一条长为 18 ㎝的细绳围成一个等腰三角形。 ( 1)如果腰长是底边的
少?( 2)能围成有一边长为 4 ㎝的等腰三角形吗?为什么?
2 倍,那么各边的长是多
分析 :( 1)等腰三角形三边的长是多少?若设底边长为
处都有三角形的形象。
那么什么叫做三角形呢? 二、三角形及有关概念 不在一条直线上的三条线段首尾顺次相接组成的图形叫做
注意 :三条线段必须①不在一条直线上,②首尾顺次相接。
三角形。
B
c
a
A
b
(1)
C
组成三角形的线段叫做三角形的 边 ,相邻两边所组成的角叫做三角形的 内角 ,简称角,相邻两边的公 共端点是三角形的 顶点 。
多边形的内角和、外角和公式。这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是
研究其它图形的基础。最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应
用.
教学目标
〔知识与技能〕
1、理解三角形及有关概念,会画任意三角形的高、中线、角平分线;
2、了解三角形的稳定性,理解
〔情感、态度与价值观〕
体会数学与现实生活的联系,增强克服困难的勇气和信心
[ 重点难点 ] 三角形的有关概念和符号表示,三角形三边间的不等关系是重点;用三角形三边不等关
系判定三条线段可否组成三角形是难点。
[ 教学过程 ]
一、情景导入
三角形是一种最常见的几何图形, [投影 1-6] 如古埃及金字塔,香港中银大厦,交通标志,等等,处
际问题,增强应用意识; 3、使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观
点。
重点难点
三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角和等于 明,根据三条线段的长度判断它们能否构成三角形及简单的平面镶嵌设计是难点。
1800 的证
课时分配
11.1 与三角形有关的线段 ……………………………………… 11.2 与三角形有关的角 ………………………………………… 11.3 多边形及其内角和 ………………………………………… 本章小结 …………………………………………………………
三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形;
3、会证明三角形内角和
等于 1800,了解三角形外角的性质。 4、了解多边形的有关概念,会运用多边形的内角和与外角和公式解
决问题。 5、理解平面镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用它们进行
简单的平面镶嵌设计。
形统称为斜三角形。
按角分类 :
三角形 直角三角形 斜三角形 锐角三角形 钝角三角形
那么三角形按边如何进行分类呢?请你按“有几条边相等”将三角形分类。 三边都相等的三角形叫做 等边三角形 ; 有两条边相等的三角形叫做 等腰三角形 ; 三边都不相等的三角形叫做 不等边三角形 。
顶角
显然,等边三角形是特殊的等腰三角形。 按边分类 :
〔过程与方法〕
1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;
2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理
和进行简单推理的能力。
〔情感、态度与价值观〕
1、体会数学与现实生活的联系,增强克服困难的勇气和信心;
2、会应用数学知识解决一些简单的实
三角形 ABC 用符号表示为△ ABC 。三角形 ABC 的顶点 C 所对的边 AB 可用 c 表示 ,顶点 B 所对的边
AC 可用 b 表示 ,顶点 A 所对的边 BC 可用 a 表示 . 三、三角形三边的不等关系
探究 :[投影 7]任意画一个△ ABC, 假设有一只小虫要从 B 点出发 ,沿三角形的边爬到 C,它有几种路线可
4 ㎝的等腰三角形。
作业 : 课本 8 頁 1、 2、 6;
教后记
11.1.2 三角形的高、中线与角平分线
〔教学目标〕 〔知识与技能〕
1、经历画图的过程,认识三角形的高、中线与角平分线;
x ㎝,则腰长是多少?( 2)“边长为 4 ㎝”是
什么意思? 解:( 1)设底边长为 x ㎝,则腰长 2 x ㎝。 x+2x+2x=18 解得 x=3.6 所以,三边长分别为 3.6 ㎝, 7.2 ㎝, 7.2 ㎝. ( 2)如果长为 4 ㎝的边为底边,设腰长为 x ㎝,则 4+2x=18 解得 x=7 如果长为 4 ㎝的边为腰,设底边长为 x ㎝,则 2× 4+x=18 解得 x=10 因为 4+4<10,出现两边的和小于第三边的情况,所以不能围成腰长是 由以上讨论可知,可以围成底边长是 4 ㎝的等腰三角形。 五、课堂练习 课本 4 頁练习 1、 2 题。 六、课堂小结 1、三角形及有关概念; 2、三角形的分类; 3、三角形三边的不等关系及应用。