自动控制原理-课后习题及答案.doc

合集下载

自动控制原理课后习题与答案

自动控制原理课后习题与答案

目录1自动控制系统的基本概念1.1内容提要1.2习题与解答2自动控制系统的数学模型2.1内容提要2.2习题与解答3自动控制系统的时域分析3.1内容提要3.2习颗与他答4根轨迹法4.1内容提要4.2习题与解答5频率法5.1内容提要5.2习题与解答6控制系统的校正及综合6.1内容提要6.2习题与解答7非线性系统分析7.1内容提要7.2习题与解答8线性离散系统的理论基础8.1内容提要8.2习题与解答9状态空间法9.1内容提要9.2习题与解答附录拉普拉斯变换参考文献1自动控制系统的基本概念1. 1内容提要基本术语:反馈量,扰动量,输人量,输出量,被控对象;基本结构:开环,闭环,复合;基本类型:线性和非线性,连续和离散,程序控制与随动;基本要求:暂态,稳态,稳定性。

本章要解决的问题,是在自动控制系统的基本概念基础上,能够针对一个实际的控制系统,找出其被控对象、输人量、输出量,并分析其结构、类型和工作原理。

1.2习题与解答题1-1图P1-1所示,为一直流发电机电压白动控制系统示意图。

图中,1为发电机;2为减速器;3为执行电机;4为比例放大器;5为可调电位器。

(1)该系统有哪些环节组成,各起什么作用” (2)绘出系统的框图,说明当 负载电流变化时,系统如何保持发 电机的电压恒定 (3)该系统是有差系统还是无 差系统。

(4)系统中有哪些可能的扰动, 答(1)该系统由给定环节、比较环节、中间环节、执行结构、检测环节、 发电机等环节组成。

给定环节:电压源0U 。

用来设定直流发电机电压的给定值。

比较环节:本系统所实现的被控量与给定量进行比较,是通过给定电 压与反馈电压反极性相接加到比例放大器上实现的中间环节:比例放大器。

它的作用是将偏差信号放大,使其足以带动 执行机构工作。

该环节又称为放大环节执行机构:该环节由执行电机、减速器和可调电位器构成。

该环节的 作用是通过改变发电机励磁回路的电阻值,改变发电机的磁场,调节发 电机的输出电压被控对象:发电机。

自动控制原理课后习题第四章答案

自动控制原理课后习题第四章答案

G(s)H(s)=
Kr s(s+1)(s+3)
σ根 s=3-K+ω轨r4-3-迹+p4s132ω1-3的+~3ω32分p===s2-离+001K点.p-3r=3:KK~0θrr===012+ωω6021,o=3,=0+±1810.7o
8

1.7
s1
A(s)B'系(s)统=根A'轨(s迹)B(s)
s3 p3
s=sK2±r没=j24有.8.6位×于2K.r根6=×4轨80.迹6=上7,. 舍去。
2
第四章习题课 (4-9)
4-9 已知系统的开环传递函数,(1) 试绘制出
根轨迹图。
G(s)H与(s虚)=轴s交(0点.01s+1K)(系0.统02根s+轨1迹)

70.7
解: GKK(rr=s=)10H5(0s)=ωω2s1,(3=s=0+±17000K.7)r(s+50)
s1
A(s)B'(系s)统=A根'(轨s)迹B(s)
s3 p3
p2
p1
-4
-2
0
((24))ζ阻=尼03.振5s2荡+1响2应s+s的81==K-r0值0.7范+围j1.2
s=s-s10=3=.-80-56.8+50K.7r×=20=s.82-=54×-.631..1155×3.15=3.1
-2.8
450
1080
360


第四章习题课 (4-2)
4-2 已知开环传递函数,试用解析法绘制出系
统的根轨迹,并判断点(-2+j0),(0+j1),

(完整版)自动控制原理课后习题答案

(完整版)自动控制原理课后习题答案

第一章引论1-1 试描述自动控制系统基本组成,并比较开环控制系统和闭环控制系统的特点。

答:自动控制系统一般都是反馈控制系统,主要由控制装置、被控部分、测量元件组成。

控制装置是由具有一定职能的各种基本元件组成的,按其职能分,主要有给定元件、比较元件、校正元件和放大元件。

如下图所示为自动控制系统的基本组成。

开环控制系统是指控制器与被控对象之间只有顺向作用,而没有反向联系的控制过程。

此时,系统构成没有传感器对输出信号的检测部分。

开环控制的特点是:输出不影响输入,结构简单,通常容易实现;系统的精度与组成的元器件精度密切相关;系统的稳定性不是主要问题;系统的控制精度取决于系统事先的调整精度,对于工作过程中受到的扰动或特性参数的变化无法自动补偿。

闭环控制的特点是:输出影响输入,即通过传感器检测输出信号,然后将此信号与输入信号比较,再将其偏差送入控制器,所以能削弱或抑制干扰;可由低精度元件组成高精度系统。

闭环系统与开环系统比较的关键,是在于其结构有无反馈环节。

1-2 请说明自动控制系统的基本性能要求。

答:自动控制系统的基本要求概括来讲,就是要求系统具有稳定性、快速性和准确性。

稳定性是对系统的基本要求,不稳定的系统不能实现预定任务。

稳定性通常由系统的结构决定与外界因素无关。

对恒值系统,要求当系统受到扰动后,经过一定时间的调整能够回到原来的期望值(例如恒温控制系统)。

对随动系统,被控制量始终跟踪参量的变化(例如炮轰飞机装置)。

快速性是对过渡过程的形式和快慢提出要求,因此快速性一般也称为动态特性。

在系统稳定的前提下,希望过渡过程进行得越快越好,但如果要求过渡过程时间很短,可能使动态误差过大,合理的设计应该兼顾这两方面的要求。

准确性用稳态误差来衡量。

在给定输入信号作用下,当系统达到稳态后,其实际输出与所期望的输出之差叫做给定稳态误差。

显然,这种误差越小,表示系统的精度越高,准确性越好。

当准确性与快速性有矛盾时,应兼顾这两方面的要求。

自动控制原理课后习题答案

自动控制原理课后习题答案

C1 ( s ) R1 ( s ) (2)求传递函数阵 G(s),其中,C(s)=G(s)R(s), C(s)= ,R(s)= 。 C 2 ( s ) R2 ( s )
8
图 2.80 习题 2.16 图
解: (1)
G1G2 G3 (1 G5 H 2 ) C1 ( s) G11 ( s) R1 ( s) 1 G5 H 2 G3 H 1 G5 G7 G8 G1G5 G6 G7 C 2 ( s) G21 ( s) R1 ( s) 1 G5 H 2 G3 H 1 G5 G7 G8 G3G4 G5 G9 C1 ( s) G12 ( s) R2 ( s) 1 G5 H 2 G3 H 1 G5 G7 G8 G4 G5 G( C 2 ( s) 6 1 G3 H 1) G22 ( s) R2 ( s) 1 G5 H 2 G3 H 1 G5 G7 G8
解:
(a)
u u du u u 1 ur uc i2 dt , 2 c , i1 , i1 ( 1 C1 1 ) , i2 1 , u 2 R1 R2 dt R3 R4 R5 C2

R1 R3 R4 C1C 2 RRRC c 1 3 4 2 u c u c u r u R5 R2 R5
解:
(a)
G( s)
G( s)
0.5K s 3.5s 2 s 0.5K
3
(b)
G1G2 G3G4 G1G5 G6 (1 G4 H 2 ) 1 G1G2 H 1 G1G2 G3 G1G5 G4 H 2 G1G2 G4 H 1 H 2
2.14 试梅逊公式求图 2.78 所示结构图的传递函数 C(s)/R(s)。

自动控制原理答案——第一章

自动控制原理答案——第一章

第1章 习 题1-1 日常生活中存在许多控制系统,其中洗衣机的控制是属于开环控制还是闭环控制?卫生间抽水马桶水箱蓄水量的控制是开环控制还是闭环控制?解:洗衣机的洗衣过程属于开环控制,抽水马桶的蓄水控制属于闭环控制。

1-2 用方块图表示驾驶员沿给定路线行驶时观察道路正确驾驶的反馈过程。

解:驾驶过程方块图如图 所示。

图 驾驶过程方块图1-3自动热水器系统的工作原理如图T1.1所示。

水箱中的水位有冷水入口调节阀保证,温度由加热器维持。

试分析水位和温度控制系统的工作原理,并以热水出口流量的变化为扰动,画出温度控制系统的原理方块图。

图T1.1 习题1-3图解:水位控制:输入量为预定的希望水位,设为H r, 被控量为水箱实际水位,设为H。

当H=H r时,浮子保持一定位置,冷水调节阀保持一定开度,进水量=出水量,水位保持在希望水位上。

当出水量增加时,实际水位下降,浮子下沉,冷水入口调节阀开大,进水量增加,水位上升直到H=H r。

同理,当出水量减少时,实际水位上升,浮子上升,冷水入口调节阀关小,进水量减少,水位下降直到H=H r。

温度控制:在热水电加热器系统中,输入量为预定的希望温度(给定值),设为T r,被控量(输出量)为水箱实际水温,设为,控制对象为水箱。

扰动信号主要是由于放出热水并注入冷水而产生的降温作用。

当T=T r时,温控开关断开,电加热器不工作,此时水箱中水温保持在希望水温上。

当使用热水时,由于扰动作用使实际水温下降,测温元件感受T<T r的变化,并把这一温度变化转换为电信号使温控开关接通电源工作,电加热器工作,使水箱中的水温上升,直到T=T r为止。

温度控制系统的原理方块图如图 所示。

图 热水电加热器控制原理方块图1-4 仓库大门自动开闭系统原理示意图如图T1.2所示。

试说明自动控制大门开闭的工作原理并画出原理方块图。

图T1.2 习题1-4图解:当合上开门开关时,电位器桥式测量电路的偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起,与此同时,和大门连在一起的电刷也向上移动。

自动控制原理完整版课后习题答案

自动控制原理完整版课后习题答案

1 请解释下列名字术语:自动控制系统、受控对象、扰动、给定值、参考输入、反馈。

解:自动控制系统:能够实现自动控制任务的系统,由控制装置与被控对象组成;受控对象:要求实现自动控制的机器、设备或生产过程扰动:扰动是一种对系统的输出产生不利影响的信号。

如果扰动产生在系统内部称为内扰;扰动产生在系统外部,则称为外扰。

外扰是系统的输入量。

给定值:受控对象的物理量在控制系统中应保持的期望值参考输入即为给定值。

反馈:将系统的输出量馈送到参考输入端,并与参考输入进行比较的过程。

2 请说明自动控制系统的基本组成部分。

解:作为一个完整的控制系统,应该由如下几个部分组成:①被控对象:所谓被控对象就是整个控制系统的控制对象;②执行部件:根据所接收到的相关信号,使得被控对象产生相应的动作;常用的执行元件有阀、电动机、液压马达等。

③给定元件:给定元件的职能就是给出与期望的被控量相对应的系统输入量(即参考量);④比较元件:把测量元件检测到的被控量的实际值与给定元件给出的参考值进行比较,求出它们之间的偏差。

常用的比较元件有差动放大器、机械差动装置和电桥等。

⑤测量反馈元件:该元部件的职能就是测量被控制的物理量,如果这个物理量是非电量,一般需要将其转换成为电量。

常用的测量元部件有测速发电机、热电偶、各种传感器等;⑥放大元件:将比较元件给出的偏差进行放大,用来推动执行元件去控制被控对象。

如电压偏差信号,可用电子管、晶体管、集成电路、晶闸管等组成的电压放大器和功率放大级加以放大。

⑦校正元件:亦称补偿元件,它是结构或参数便于调整的元件,用串联或反馈的方式连接在系统中,用以改善系统的性能。

常用的校正元件有电阻、电容组成的无源或有源网络,它们与原系统串联或与原系统构成一个内反馈系统。

3 请说出什么是反馈控制系统,开环控制系统和闭环控制系统各有什么优缺点?解:反馈控制系统即闭环控制系统,在一个控制系统,将系统的输出量通过某测量机构对其进行实时测量,并将该测量值与输入量进行比较,形成一个反馈通道,从而形成一个封闭的控制系统;开环系统优点:结构简单,缺点:控制的精度较差;闭环控制系统优点:控制精度高,缺点:结构复杂、设计分析麻烦,制造成本高。

自动控制原理课后习题答案王万良版.doc

自动控制原理课后习题答案王万良版.doc
et
(2) X(S)=2s2
5s
1
s(s2
1)
解:X (S)
2s2
5s
1=1
S
5
s(s2
1)
S
S2
1
精选
=
1
S
5
1
S
S
2
1
2
1
S
x(t ) u(t ) cost
5sin t
(3) X(S)=
3s2
2s
8
2)(s2
2s
4)
s( s
解:X (S)
3s2
2s
8
1
2
S 1
s(s 2)( s2
2s
4)
=S
S 2
1) 10(1
KhS) 0
即S2
(10Kh
1)S
10
0
精选
S2
1
10
S1
10 Kh
1
S010
当10Kh1>0,即Kh>0.1稳定,当Kh=0.1时,系统临界稳定。
3.7在零初始条件下,控制系统在输入信号r(t)=1(t)+t1(t)的作用下的输出响应为c(t)=t1(t),求
系统的传递函数,并确定系统的调节时间ts。
T1
Kp
s 0
s
0
(4)、K0
,T变化,对上述结果无影响, 因为K0,T处于外扰n(t)作用点的后面对
ess( ) 0
无影响,而系统为二阶无差度系统,
r(t)=t
时,ess(
) 0。故K0,T等变化,只要不改变系
统结构,即ess( )
0,当Kp,T1发生变化时,对

自动控制原理_胡寿松第5版_课后习题及答案_完整_.(DOC)

自动控制原理_胡寿松第5版_课后习题及答案_完整_.(DOC)
整理得
mdx0(f
f)dx0f
dxi
dt2
12dt
1dt
将上式进行拉氏变换,并注意到运动由静止开始,即初始条件全部为零,可得
ms2(f
f2
)sX
0(s)
f1sXi
(s)
于是传递函数为
X0(s)
Xi(s)
f1
msf1f2
②图2—57(b):其上半部弹簧与阻尼器之间,取辅助点A,并设A点位移为x,方向朝下;而在其下半部工。引出点处取为辅助点B。则由弹簧力与阻尼力平衡的原则,从A和B两点可以分别列出如下原始方程:
解:系统结构图及微分方程得:
G(s)
20
6s10
H(s)
10
20s5
1020
E(s)1010
C(s)
10G(s)
6s10
R(s)
1G(s)H(s)
2010
R(s)
1G(s)H(s)12010
1
6s1020s5
6s1020s5
10(20s5)(6s10)
1200s21500s500
200(20s5)
200(20s5)
图2-58电网络与机械系统
1
R1
1CsRR
解:(a):利用运算阻抗法得:Z
R//
111
11Cs
RCs
Ts
1R1
1
C1s
11111
Z2R2
1
C2s
1
C2s
R2C2
s1
1
C2s
T2s1
U(s)Z
1
(T2s1)
Cs
(Ts1)(Ts1)
所以:02212
Ui(s)

自动控制原理课后习题答案第一章

自动控制原理课后习题答案第一章

1-1 图1-2是液位自动控制系统原理示意图。

在任意情况下,希望液面高度c 维持不变,试说明系统工作原理并画出系统方块图。

图1-2 液位自动控制系统解:被控对象:水箱;被控量:水箱的实际水位;给定量电位器设定水位r u (表征液位的希望值r c );比较元件:电位器;执行元件:电动机;控制任务:保持水箱液位高度不变。

工作原理:当电位电刷位于中点(对应r u )时,电动机静止不动,控制阀门有一定的开度,流入水量与流出水量相等,从而使液面保持给定高度r c ,一旦流入水量或流出水量发生变化时,液面高度就会偏离给定高度r c 。

当液面升高时,浮子也相应升高,通过杠杆作用,使电位器电刷由中点位置下移,从而给电动机提供一定的控制电压,驱动电动机,通过减速器带动进水阀门向减小开度的方向转动,从而减少流入的水量,使液面逐渐降低,浮子位置也相应下降,直到电位器电刷回到中点位置,电动机的控制电压为零,系统重新处于平衡状态,液面恢复给定高度r c 。

反之,若液面降低,则通过自动控制作用,增大进水阀门开度,加大流入水量,使液面升高到给定高度r c。

系统方块图如图所示:1-10 下列各式是描述系统的微分方程,其中c(t)为输出量,r (t)为输入量,试判断哪些是线性定常或时变系统,哪些是非线性系统? (1)222)()(5)(dt t r d t t r t c ++=;(2))()(8)(6)(3)(2233t r t c dt t dc dt t c d dt t c d =+++; (3)dt t dr t r t c dt t dc t )(3)()()(+=+; (4)5cos )()(+=t t r t c ω; (5)⎰∞-++=t d r dt t dr t r t c ττ)(5)(6)(3)(;(6))()(2t r t c =;(7)⎪⎩⎪⎨⎧≥<=.6),(6,0)(t t r t t c解:(1)因为c(t)的表达式中包含变量的二次项2()r t ,所以该系统为非线性系统。

《自动控制原理》黄坚课后习题答案解析word版本

《自动控制原理》黄坚课后习题答案解析word版本

《⾃动控制原理》黄坚课后习题答案解析word版本2-1试建⽴图所⽰电路的动态微分⽅程-u o+u o解:u 1=u i -u oi 2=C du 1dt i 1=i-i 2u o i=R 2u 1i 1=R 1=u i -u oR1dtd (u i -u o )=C(a)u C d (u i -u o )dtu o -R 2=i -u o R 1i=i 1+i 2i 2=C du 1dt u o i 1=R 2u 1-u o =L R2du odtR 1i=(u i -u 1)(b)解:)-R 2(u i -u o )=R 1u 0-CR 1R 2(dui dt dt duo CR 1R 2du o dt du idt +R 1u o +R 2u 0=CR 1R 2+R 2u iu o+C R 2du 1dt o +L R 2du odtu du o dt R 1R 2L du o dt +CL R 2d 2u o dt 2=--i R 1u o R 1u oR 2+C )u o R 1R 2L du o dt ) CL R 2d 2u o dt 2=++(u i R 11R 11R 2+(C+2-2 求下列函数的拉⽒变换。

(1) f(t)=sin4t+cos4tL [sin ωt ]= ωω2+s 2=s+4s 2+16L [sin4t+cos4t ]= 4s 2+16s s 2+16+s ω2+s 2L [cos ωt ]=解:(2) f(t)=t 3+e 4t解:L [t 3+e 4t ]= 3!s 41s-4+6s+24+s 4s 4(s+4)=(3) f(t)=t n e atL [t n e at ]=n!(s-a)n+1解:(4) f(t)=(t-1)2e 2tL [(t-1)2e 2t ]=e -(s-2)2(s-2)3解:2-3求下列函数的拉⽒反变换。

A 1=(s+2)s+1(s+2)(s+3)s=-2=-1=2f(t)=2e -3t -e -2t(1) F(s)=s+1(s+2)(s+3)解:A 2=(s+3)s+1(s+2)(s+3)s=-3F(s)= 2s+31s+2-= A 1s+2s+3+ A 2(2) F(s)=s (s+1)2(s+2)f(t)=-2e -2t -te -t +2e -t解:= A 2s+1s+2+ A 3+A 1(s+1)2A 1=(s+1)2s (s+1)2(s+2)s=-1A 3=(s+2)s (s+1)2(s+2)s=-2d ds s s+2][A 2= s=-1=-1=2=-2(3) F(s)=2s 2-5s+1s(s 2+1)F(s)(s 2+1)s=+j =A 1s+A 2s=+jA 2=-5A 3=F(s)s s=0f(t)=1+cost-5sint解:= s + A 3s 2+1A 1s+A 2=12s s 2-5s+1=A 1s+A2 s=j s=jj -2-5j+1=jA 1+A 2-5j-1=-A 1+jA 2A 1=1F(s)= 1s s 2+1s -5s 2+1++(4) F(s)=s+2s(s+1)2(s+3)解:=+s+1A 1s+3A 2(s+1)2+s A 3+A 4-12A 1= 23A 3= 112A 4= A 2= d [s=-1ds ](s+2)s(s+3) -34= -34A 2= +-43+f(t)=e -t 32e -3t 2-t e -t 121= s=-1 [s(s+3)]2[s(s+3)-(s+2)(2s+3)](2-4)求解下列微分⽅程。

自动控制原理课后习题

自动控制原理课后习题
已知系统开环传递函数,
分析稳定性,若稳定计
算性能指标。
G
(
s
)
(
s
1
)
1 (0
0 .
0
1
s
1
)2
1、环节特性分析
2、Bode曲线的绘制 3、性能指标计算 结论:系统稳定。
ωc≈10;
令 得
::(t gωγ111ω)88014128.02013ltt8ggωg01101c100.0c021tωg11 0.ω10c8101100
0
(-1,j0)
已知:Gk
(s)
k s(Ts 1)
得:P
1, q
1
绘制Nyquist曲线
N p 2(a b) 1 2(0 0.5) 2
结论:不稳定,右半平面有两个特征根。
0
(1)T1>T2 (-1,j0)
0 (2) T1<T2
已知:Gk
(s)
k(T2 s 1) , s 2 (T1s 1)
其中:( Ta ) 或( Ta )
2)分析两种情况下系统的稳定性.
3、某最小相位系统的如图所示。
1)求传递函数 2)求剪切频率和相角裕量
G k( s )
k(10s 1)2
s2 s 1(Ts 1)
(10s 1)2
s2 s 1(0.003 s
1)
c 100 , 73.76
4、已知单位反馈系统的
(-1,j0)
0
(2)
(1)
0
(-1,j0)
已知:P 2, q 0
已知:G(s) k , p 1,q 0,绘制Nyquist曲线,系统1: k 1;系统2 : k 1。 (Ts 1)

(完整版)自动控制原理课后习题答案

(完整版)自动控制原理课后习题答案

第1章控制系统概述【课后自测】1-1 试列举几个日常生活中的开环控制和闭环控制系统,说明它们的工作原理并比较开环控制和闭环控制的优缺点。

解:开环控制——半自动、全自动洗衣机的洗衣过程。

工作原理:被控制量为衣服的干净度。

洗衣人先观察衣服的脏污程度,根据自己的经验,设定洗涤、漂洗时间,洗衣机按照设定程序完成洗涤漂洗任务。

系统输出量(即衣服的干净度)的信息没有通过任何装置反馈到输入端,对系统的控制不起作用,因此为开环控制。

闭环控制——卫生间蓄水箱的蓄水量控制系统和空调、冰箱的温度控制系统。

工作原理:以卫生间蓄水箱蓄水量控制为例,系统的被控制量(输出量)为蓄水箱水位(反应蓄水量)。

水位由浮子测量,并通过杠杆作用于供水阀门(即反馈至输入端),控制供水量,形成闭环控制。

当水位达到蓄水量上限高度时,阀门全关(按要求事先设计好杠杆比例),系统处于平衡状态。

一旦用水,水位降低,浮子随之下沉,通过杠杆打开供水阀门,下沉越深,阀门开度越大,供水量越大,直到水位升至蓄水量上限高度,阀门全关,系统再次处于平衡状态。

开环控制和闭环控制的优缺点如下表1-2 自动控制系统通常有哪些环节组成?各个环节分别的作用是什么?解:自动控制系统包括被控对象、给定元件、检测反馈元件、比较元件、放大元件和执行元件。

各个基本单元的功能如下:(1)被控对象—又称受控对象或对象,指在控制过程中受到操纵控制的机器设备或过程。

(2)给定元件—可以设置系统控制指令的装置,可用于给出与期望输出量相对应的系统输入量。

(3)检测反馈元件—测量被控量的实际值并将其转换为与输入信号同类的物理量,再反馈到系统输入端作比较,一般为各类传感器。

(4)比较元件—把测量元件检测的被控量实际值与给定元件给出的给定值进行比较,分析计算并产生反应两者差值的偏差信号。

常用的比较元件有差动放大器、机械差动装置和电桥等。

(5)放大元件—当比较元件产生的偏差信号比较微弱不足以驱动执行元件动作时,可通过放大元件将微弱信号作线性放大。

(完整版)自动控制原理习题及答案.doc

(完整版)自动控制原理习题及答案.doc

第一章 习题答案1-1 根据题1-1图所示的电动机速度控制系统工作原理图(1) 将a,b 与c ,d 用线连接成负反馈状态;(2) 画出系统方框图。

解 (1)负反馈连接方式为:d a ↔,c b ↔;(2)系统方框图如图解1—1 所示。

1—2 题1—2图是仓库大门自动控制系统原理示意图。

试说明系统自动控制大门开闭的工作原理,并画出系统方框图。

题1-2图 仓库大门自动开闭控制系统解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。

与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。

反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。

系统方框图如图解1—2所示。

1—3 题1-3图为工业炉温自动控制系统的工作原理图。

分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。

题1-3图 炉温自动控制系统原理图解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。

炉子的实际温度用热电偶测量,输出电压f u 。

f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压。

在正常情况下,炉温等于某个期望值T °C,热电偶的输出电压f u 正好等于给定电压r u .此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值.这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。

当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程: 控制的结果是使炉膛温度回升,直至T °C 的实际值等于期望值为止。

自动控制原理课后习题答案

自动控制原理课后习题答案

du3 (t) dt
(R1C2
1)u3 (t)
R1R2C1C2
d 2V (t) dt 2
(R1C1
R2C2
R1C2 )
dV (t) dt
( R1C2
1)V (t)
G(S ) u3 (s) R1R2C1C2 S 2 (R1C1 R2C2 R1C2 )S (R1C2 1)
V (s)
R1R2C1C2 S 2 (R1C1 R2C2 )S (R1C2 1)
第三章:作业3.5
试用Routh稳定判据判断下列(a)(b)(c)(d)(e)特征方程描述的系统的稳 定性,若不稳定说明右半复数平面或虚轴上的根的个数。
解:(a) s5+6s4+3s3+2s2+s+1=0
1
3
6
2
16
5
2
16
-1
-(1/-1)×1×16=16
1 1
一行同乘分母6 一行同乘分母16 一行同乘2/246
没有互不接触回路: ∑LbLc = ∑LdLeLf = ···=0 特征式:△(s)=1-[L1 + L2+ L3]=1+G2(s) G3(s)G6(s)+G3(s) G4(s)G5(s)+ G1(s) G2(s) G3(s) G4(s) G7(s) 余子式:△1 (s)=1
H(s)=y(s)/u(s)= Q1(s)/ △(s)
的控制方法。
• 反馈控制原理-通过反馈信息形成反馈控制作用的原理,称为反馈控制原理。
3、反馈控制系统的基本构成及特点?
简答:反馈控制系统由被控对象和控制器两大部分组成。
控制器又主要由以下基本元件构成:

自动控制原理-课后习题及答案.doc

自动控制原理-课后习题及答案.doc

第一章 绪论1-1试比较开环控制系统和闭环控制系统的优缺点.解答: 1 开环系统(1) 优点 : 结构简单,成本低,工作稳定。

用于系统输入信号及扰动作用能预先知道时,可得到满意的效果。

(2) 缺点:不能自动调节被控量的偏差。

因此系统元器件参数变化,外来未知扰动存在时,控制精度差。

2闭环系统⑴优点:不管由于干扰或由于系统本身结构参数变化所引起的被控量偏离给定值,都会产生控制作用去清除此偏差, 所以控制精度较高。

它是一种按偏差调节的控制系统。

在实际中应用广泛。

⑵缺点:主要缺点是被控量可能出现波动,严重时系统无法工作。

1-2什么叫反馈?为什么闭环控制系统常采用负反馈?试举例说明之。

解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反馈。

闭环控制系统常采用负反馈。

由 1-1 中的描述的闭环系统的优点所证明。

例如,一个温度控制系统通过热电阻(或热电偶)检测出当前炉子的温度,再与温度值相比较,去控制加热系统,以达到设定值。

1-3 试判断下列微分方程所描述的系统属于何种类型 (线性,非线性,定常,时变)?d 2 y(t)dy(t ) du (t )2 234y(t ) 56u(t )(1) dt dtdt(2) y(t )2 u(t)(3)t dy(t)2 y(t)4 du(t)u(t)dtdtdy (t )2 y(t ) u(t )sin t( 4) dtd 2 y(t)y(t ) dy (t ) 2 y(t ) 3u(t )(5) dt 2dtdy (t ) y 2 (t) 2u(t )(6) dt(7) y(t ) 2u(t )3 du (t )5 u(t) dtdt解答: (1)线性定常(2)非线性定常 (3)线性时变 (4)线性时变 (5)非线性定常 (6)非线性定常(7)线性定常1-4 如图 1-4 是水位自动控制系统的示意图,图中Q1,Q2分别为进水流量和出水流量。

控制的目的是保持水位为一定的高度。

《自动控制原理》课后习题答案

《自动控制原理》课后习题答案

掌握自动控制系统的一般概念(控制方式,分类,性能要求)6.(1)结构框图:Ug U Udn Uc UUr给定输入量: 给定值Ug 被控制量: 加热炉的温度扰动量: 加热炉内部温度不均匀或坏境温度不稳定等外部因素 被控制对象:加热器控制器: 放大器、发动机和减速器组成的整体 (2)工作原理:给定值输入量Ug 和反馈量Ur 通过比较器输出 U , 经放大器控制发动机的转速n ,再通过减速器与调压器调节加热器的电压U 来控制炉温。

T Ur U Ud n Uc U T7.(1)结构框图 略给定输入量:输入轴θr 被控制量: 输出轴θc扰动量: 齿轮间配合、负载大小等外部因素 被控制对象:齿轮机构 控制器: 液压马达 (2)工作原理:θc Ue Ug i θm θc比较器 放大器 减速器 调压器 电动机 加热器 热电偶干扰量实际温度掌握系统微分方程,传递函数(定义、常用拉氏变换),系统框图化简;1.(a)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=dtdu C i R u i i u iR u t ct ct t r )(02)(0)(01)()2......()1(.......... 将(2)式带入(1)式得:)()(01)(021)(0t r t t t u dtdu C R u R R u =++拉氏变换可得)()(01)(0221s r s s U CsU R u R R R =+⎪⎪⎭⎫ ⎝⎛+整理得 21212)()(0)(R R Cs R R R U U G S r S s ++==1.(b)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=dtdi L u R u i i u iR u Lt o t Lt t r )(2)(0)(01)()2........()1......(.......... 将(2)式代入(1)式得)()(0221)(01t r t t u u R R R dt u L R =++⎰ 拉氏变换得)()(0221)(01s r s s U U R R R U Ls R =++ 整理得LsR R R R LsR U U G s r s s )(21212)()(0)(++==2.1)微分方程求解法⎪⎪⎪⎩⎪⎪⎪⎨⎧+=-=+=-31224203221211111Rudt du c Ruu R u R u Rudt du c R u u c c c c c c c c r中间变量为1c u,2c u及其一阶导数,直接化简比较复杂,可对各微分方程先做拉氏变换⎪⎪⎪⎩⎪⎪⎪⎨⎧+=-=+=-3122423221211111RUU sc R U U RU R U RUU sc R U U c c c c c c c c r移项得⎪⎪⎪⎩⎪⎪⎪⎨⎧++==++=2432432211211)11()111(c c c c rUR R sc RU R RU U U R R sc R U可得11121432432143214320)111()11(RR sc R R R R sc R R R R R R R R sc R R sc Ur U ++++=++++=2)复阻抗法⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧+=+++=++=2211232223234212121111*11*11sc R sc z U sc R sc z U sc R sc R R z sc R sc R R z r解得:1112143243RR sc R R R R sc R R Ur U ++++=3.分别以m 2,m 1为研究对象(不考虑重力作用)⎪⎪⎩⎪⎪⎨⎧--=---=11212121121222222)()()(ky dty y d c dt y d m dty y d cdt dy c t f dt y d m 中间变量含一阶、二阶导数很难直接化简,故分别做拉氏变换⎪⎩⎪⎨⎧--=---=112112112122222)()()(kY Y Y s c Y s m Y Y s c sY c s F Y s m 消除Y1中间变量21211222))1(()(Yk s c s m sc s c s c s m s F s++-++=10.系统框图化简:G 1(s)G 2(s)G 3(s)X i (s)X o (s)+H 1(s)H 3(s)H 2(s)---++G 1(s)G 2(s)G 3(s)X i (s)X o (s)+H 1(s)H 3(s)H 2(s)/G 1(s)G 3(s)---+G 1(s)/(1+G 1(s)H 1(s))G 2(s)G 3(s)/(1+G 3(s)H 3(s))X i (s)X o (s)+H 2(s)/G 1(s)G 3(s)-G 1(s)G 2(s)G 3(s)/(1+G 1(s)H 1(s))(1+G 3(s)H 3(s))X i (s)X o (s)+H 2(s)/G 1(s)G 3(s)- +1.综合点前移,分支点后移G 1(s)G 2(s)G 3(s)X i (s)X o (s)+H 1(s)H 3(s)H 2(s)/G 1(s)G 3(s)---++2.交换综合点,交换分支点3.化简1231133221231133221133()()()()()(1()())(1()())()()()()()1()()()()()()()()()()o i X s G s G s G s X s G s H s G s H s G s H s G s G s G s G s H s G s H s G s H s G s H s G s H s =+++=++++11.系统框图化简:G 1(s)G 2(s)G 3(s)X i (s)X o (s)+H 1(s)-++ 1.综合点前移,分支点后移2.交换综合点,合并并联结构H 4(s)G 4(s)H 2(s)H 3(s)++--G 1(s)G 2(s)G 3(s)X i (s)X o (s)+H 1(s)/G 1(s)G 4(s)-+H 4(s)/G 1(s)G 2(s)G 4(s)H 2(s)/G 4(s)H 3(s)++--+-G 1(s)G 2(s)G 3(s)X i (s)X o (s)+-G 4(s)H 2(s)/G 4(s)-H 3(s)-H 1(s)/G 1(s)G 4(s)+H 4(s)/G 1(s)G 2(s)3.化简G 1(s)G 2(s)G 3(s)G 4(s)X i (s)X o (s)+-H 2(s)/G 4(s)-H 3(s)-H 1(s)/G 1(s)G 4(s)+H 4(s)/G 1(s)G 2(s)12341234243114412123123212343231344()()()()()()1()()()()(()/()()()/()()()/()())()()()1()()()()()()()()()()()()()()(o i X s G s G s G s G s X s G s G s G s G s H s G s H s H s G s G s H s G s G s G s G s G s G s G s G s H s G s G s G s G s H s G s G s H s G s G s H =+--+=+--+)s第三章掌握时域性能指标,劳斯判据,掌握常用拉氏变换-反变换求解时域响应,误差等2.(1)求系统的单位脉冲响应12()()()TsY(s)+Y(s)=KX(s)X(s)=1Y(s)=1()=20e t tTT y t y t Kx t K Ts k w t e T∙--+=+=已知系统的微分方程为:对微分方程进行零初始条件的拉氏变换得当输入信号为单位脉冲信号时,所以系统输出的拉式变换为:进行拉式反变换得到系统的时域相应2.(2)求系统的单位阶跃响应,和单位斜坡响应22()()()TsY(s)+Y(s)=KX(s)X(s)=5Y(s)=1111110()10-10e ;1X(s)=Y(s)=t T y t y t Kx t KTK Ts Ts Ts sK s s s y t s∙-+=+++=-=-=已知系统的微分方程为:对微分方程进行零初始条件的拉氏变换得当输入信号为单位阶跃信号时,所以系统输出的拉式变换为:进行拉式反变换得到系统的时域相应当输入信号为单位阶跃信号时,所以系统输出的拉式变换为:22222110550111()510t+5e ;t K K KT T K Ts s s s Ts s s Ts y t -=-+=-++++=-+进行拉式反变换得到系统的时域相应9.解:由图可知该系统的闭环传递函数为22()(22)2b kG s s k s kτ=+++ 又因为:2122%0.20.512222r n n n e t k kπξξσπβωξξωτω--⎧⎪==⎪-⎪==⎨-⎪=+⎪⎪=⎩ 联立1、2、3、4得0.456; 4.593;10.549;0.104;n K ξωτ==== 所以0.76931.432p ds nt s t sπωξω====10.解:由题可知系统闭环传递函数为210()1010b kG s s s k=++ 221010n nk ξωω=⎧⎪⎨=⎪⎩ 当k=10时,n ω=10rad/s; ξ=0.5;所以有2/12%16.3%0.36130.6p n s n e t s t sπξξσπωξξω--⎧⎪==⎪⎪⎪==⎨-⎪⎪⎪==⎪⎩当k=20时,n ω=14.14rad/s; ξ=0.35;所以有2/12%30.9%0.24130.6pn s n e t s t sπξξσπωξξω--⎧⎪==⎪⎪⎪==⎨-⎪⎪⎪==⎪⎩当0<k<=2.5时,为过阻尼和临界阻尼,系统无超调,和峰值时间;其中调整时间不随k 值增大而变化; 当k>2.5时,系统为欠阻尼,超调量σ%随着K 增大而增大,和峰值时间pt 随着K 增大而减小;其中调整时间s t 不随k 值增大而变化;14.(1)解,由题可知系统的闭环传递函数为32560-1403256000056014014k 00()1440kb k k k s s s ks kG s s s s k->><<∴=+++∴⎧⎨⎩∴劳斯表系统稳定的充要条件为:14.(2)解,由题可知系统的闭环传递函数为320.60.8832430.60.80010.20.80.210.8k 00(1)()(1)k b k k k kk s s s ks k s G s s s k s k-->>>>-∴+=++-+∴⎧⎪⎨⎪⎩∴劳斯表系统稳定的充要条件为:20.解:由题可知系统的开环传递函数为(2)()(3)(1)k k s G s s s s +=+-当输入为单位阶跃信号时,系统误差的拉氏变换为11()111()lim limlim ()0k ss k ssss s s k s ss G s E G s ssE G s e →→→+=+===∞∴=又根据终值定理e 又因为25.解:由题可知系统的开环传递函数为1212()(1)(1)k k k G s T s T s =++当输入为给定单位阶跃信号时1()i X s s=,系统在给定信号下误差的拉氏变换为111211211()111()lim limlim ()11k ss k ss ss s s k s ss G s E G s ssE G s k k e k k →→→+=+===∴=+又根据终值定理e 又因为当输入为扰动信号时1()N s s=,系统扰动信号下误差的拉氏变换为22121122212212121()111()lim limlim ()111k ss k ss ss s s k s ss ss ss ss k G s k T s E G s ssE G s k k k e k k k e e e k k →→→-+-+=+===-∴=+-∴=+=+又根据终值定理e 又因为第四章 根轨迹法掌握轨迹的概念、绘制方法,以及分析控制系统4-2 (2)G(s)=)15.0)(12.0(++s s s K;解:分析题意知:由s(0.2s+1)(0.5s+1)=0得开环极点s 1=0,s 2=-2,s 3=-5。

自动控制原理_第二版_课后答案

自动控制原理_第二版_课后答案

《自动控制原理》(第2版)习题答案1第2章2-1 (1)t e t ett23sin 3123cos122--+- (2)6 + 3t(3))334(322+++---t t e e t t (4)t t ωωωsin 1132-2-2 (1)2351853tt e e --+-(2)t e 2-(3)t e a b t ae n t nnn t n n ωωζωωζωζωsin cos --++(4)t a Aa t a A e b a A atωωωωωωωsin cos 222222++++⎪⎭⎫ ⎝⎛++- 2-3 (a ))()()(2110f f ms f s X s X i ++=(b )212110)()()(k k s k k f fsk s X s X i ++=2-4 (a ))()()(t u t kx t xm =+ (b ))()()(2121t u t x k k k k t x m =++ 2-5 (a ))()()()()(2212121t u R dt t du C R R t u R R dt t du CR R r r c c +=++ (b ))()()()()()(22121221t u R t u R R dt t du C R R L dt t u d LC R r c c c =++++ 2-6 252312)14(100)()(2+++=s s s s R s C 2523125231210)()(22++++⋅=s s s s s R s E 2-7 t t e e t c 2241)(--+-= 2-8 )1)(2(23)(+++=s s s s G t t e e t h ---=24)(22-9 (a )1)(1)()(32213+++⋅-=s R R C s CR R R s U s U r c (b )13221)()()(R R R s R CR s U s U r c ++-= 2-10 (a )))((1)()(432121G G G G G G s R s C -+++=(b ))(1)1()()(21221H H G G G s R s C -++=(c )331311321332123113211)()(H G H G H G G G G H G G H G G H G G G G s R s C ++++++=2-11 (a )32211)()(G G G G s R s C ++=(b )H G H H G s R s C 111)1()()(+--=(c )121223121)()()(H G G H G G G G s R s C +++=2-12 (a )))((1)1()()(23111232123111134321H G H G H H G G G H G H G H G G G G G G s R s C --++++++=))((1)1(1)()(2311123212311123423H G H G H H G G G H G H G H H G G H G s R s E --++++-+⋅=(b )21212121312)()(G G G G G G G G s R s C ++-++-= 21212131)1(1)()(G G G G G G s R s E ++-+⋅=2-13 (a )12121211)()(H G G G G G G s R s C ++= 121211211)1(1)()(H G G G G H G G s R s E +++⋅=12121231211)1(1)()(H G G G G G G H G G s D s C ++++⋅-=12121231211)1(1)()(H G G G G G G H G G s D s E ++-+⋅= (b )434242143421)()(G G G G G G G G G G G s R s C ++++= 434242111)()(G G G G G G G s R s E ++-=434241)()(G G G G G s D s C ++= 434241)()(G G G G G s D s E ++-=32-14 (a )))((1)(23113343321231134321H G H G H G G H G G G H G H G G G G G G s G -+++-++=(b )3541432326543211)(H G G H G G H G G G G G G G G s G +-+=(c ) 15.1 (d )))((1)1()(ch af ehgf ch gb af gb ed abcd s G +----++=45σ % = 56.2% t p = 1.006 t s = 63-13 0 < K < 0.75 3-14 (1)0(2)1 3-16 (1)∞ ∞6分离点:d = -0.8857(4) 渐近线:σa = -1 ϕa = ± 60︒,180︒与虚轴的交点:K = 3 s = ± j1.414分离点:d = -0.423 根迹图略(5) 渐近线:σa = -2/3 ϕa = ± 60︒,180︒与虚轴的交点:K = 4 s = ± j1.414(6)渐近线:σa = -1.5 ϕa = ± 45︒,± 135︒起始角:ϕ1 = -63.4︒根迹图略 (7)(8)894-9 零度根轨迹。

自动控制原理第版(胡寿松)课后答案-全文可读

自动控制原理第版(胡寿松)课后答案-全文可读
(b) 2-13 2-14
2-15
(2-11题~2-15题) (b)
32
k3
3
2-17(a) (c) (e) 2-18(a)
(b) 2-19与2-17同 2-21(a)
(2-17题~2-21题) (b)
(d) (f)
2-20与2-18同
(b)
2-22(a) (b) 9个单独回路:
6对两两互不接触回路: L1L2 L1L3 L2L3 L7L2 L8L2 L9L2 三个互不接触回路1组: L1L2L3
4条前向通路及其余子式: P1=G1G2G3G4G5G6 ,Δ1=1 ; P2=G7G3G4G5G6 , Δ2=1 ; P3=-G7H1G8G6 ,Δ3=1+G4H2 ; P4=G1G8G6 , Δ4=1+G4H2 ;
(c)
(d)
(e)
(f)
3-1 3-2 (2) 3-3 (1) 3-4 3-5
3-6 3-8 (a)
(Ts+1)寄生因子不影响系统稳定性,且因为它为非主导极点 所以也不太影响动态性能,但附加极点有增大阻尼的作用。
(7-3题~7-10题)
7-3 (1) e(nT)=10(2n-1)
(2)
7-4 (1) 7-5 (1)
(2) (2)
7-7
7-8 (1)
(2)
(3)
7-9 (a)
(b)
7 - 1 0( a )
(2)
-2
- 0.404
-2
- 3.29
-21.13
(4-11题~4-12题)
s1= - 9.98 s2,3= - 2.46
-4
系统始终不稳定!
时稳定
( - 8.47

自动控制原理第三版课后答案

自动控制原理第三版课后答案

自动控制原理第三版课后答案 1. 课后习题答案。

1.1 第一章。

1.1.1 选择题。

1. A。

2. C。

3. B。

4. A。

5. D。

1.1.2 填空题。

1. 系统。

2. 控制。

3. 输入。

4. 输出。

5. 误差。

1.1.3 简答题。

1. 控制系统是指能够对某一对象进行控制的系统,包括反馈控制系统和前馈控制系统两种类型。

2. 控制系统的基本组成包括输入端、输出端、控制器和执行器四个部分。

3. 控制系统的闭环和开环是指系统是否具有反馈环节,闭环系统具有反馈环节,开环系统则没有。

1.2 第二章。

1.2.1 选择题。

1. B。

2. A。

3. D。

4. C。

5. B。

1.2.2 填空题。

1. 传递函数。

2. 时域。

3. 频域。

4. 线性。

5. 时不变。

1.2.3 简答题。

1. 传递函数是描述系统输入输出关系的函数,通常用H(s)表示。

2. 时域分析是指通过对系统的状态方程进行求解,得到系统的时域响应。

3. 频域分析是指通过对系统的传递函数进行频域分析,得到系统的频域特性。

2. 综合题。

2.1 第三章。

2.1.1 选择题。

1. D。

2. A。

3. B。

4. C。

5. D。

2.1.2 填空题。

1. 稳定。

2. 系统。

3. 极点。

4. 零点。

5. 阶跃响应。

2.1.3 简答题。

1. 稳定性是指系统在受到干扰或参数变化时,能够保持稳定的特性。

2. 极点和零点是描述系统传递函数特性的重要参数,极点决定系统的稳定性,零点则影响系统的动态响应特性。

2.2 第四章。

2.2.1 选择题。

1. B。

2. C。

3. A。

4. D。

5. B。

2.2.2 填空题。

1. PID。

2. 比例。

3. 积分。

4. 微分。

5. 控制。

2.2.3 简答题。

1. PID控制器是一种常用的控制器,由比例、积分和微分三部分组成,能够实现对系统的稳定控制。

2. 比例控制器的作用是根据当前误差的大小来调节控制量,积分控制器的作用是根据误差的历史累积值来调节控制量,微分控制器的作用是根据误差变化速度来调节控制量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论1-1试比较开环控制系统和闭环控制系统的优缺点.解答:1开环系统(1)优点:结构简单,成本低,工作稳定。

用于系统输入信号及扰动作用能预先知道时,可得到满意的效果。

(2)缺点:不能自动调节被控量的偏差。

因此系统元器件参数变化,外来未知扰动存在时,控制精度差。

2闭环系统⑴优点:不管由于干扰或由于系统本身结构参数变化所引起的被控量偏离给定值,都会产生控制作用去清除此偏差,所以控制精度较高。

它是一种按偏差调节的控制系统。

在实际中应用广泛。

⑵缺点:主要缺点是被控量可能出现波动,严重时系统无法工作。

1-2什么叫反馈?为什么闭环控制系统常采用负反馈?试举例说明之。

解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反馈。

闭环控制系统常采用负反馈。

由1-1中的描述的闭环系统的优点所证明。

例如,一个温度控制系统通过热电阻(或热电偶)检测出当前炉子的温度,再与温度值相比较,去控制加热系统,以达到设定值。

1-3试判断下列微分方程所描述的系统属于何种类型(线性,非线性,定常,时变)?(1)22()()()234()56() d y t dy t du ty t u t dt dt dt++=+(2)()2() y t u t=+(3)()()2()4() dy t du tt y t u t dt dt+=+(4)()2()()sin dy ty t u t t dtω+=(5)22()()()2()3() d y t dy ty t y t u t dt dt++=(6)2()()2() dy ty t u t dt+=(7)()()2()35()du ty t u t u t dtdt=++⎰解答:(1)线性定常(2)非线性定常(3)线性时变(4)线性时变(5)非线性定常(6)非线性定常(7)线性定常1-4如图1-4是水位自动控制系统的示意图,图中Q1,Q2分别为进水流量和出水流量。

控制的目的是保持水位为一定的高度。

试说明该系统的工作原理并画出其方框图。

题1-4图水位自动控制系统解答:,出水流量Q2的大小对应的水位高度是给定量。

当水箱水位高于给定水位,通过浮子连杆机构使阀门关小,进入流量减小,水位降低,当水箱水位低于给定水位时,通过浮子连杆机构使流入管道中的阀门开大,进入流量增加,水位升高到给定水位。

1-5图1-5是液位系统的控制任务是保持液位高度不变。

水箱是被控对象,水箱液位是被控量,电位器设定电压时(表征液位的希望值Cr)是给定量。

题1-5图液位自动控制系统解答:,使水箱中流入水量与流出水量相等。

从而液面保持在希望高度上。

一旦流入水量或流出水量发生变化,例如当液面升高时,浮子位置也相应升高,通过杠杆作用使电位器电刷从中点位置下移,从而给电动机提供一事实上的控制电压,驱动电动机通过减速器减小阀门开度,使进入水箱的液位流量减少。

此时,水箱液面下降,浮子位置相应下降,直到电位器电刷回到中点位置,系统重新处于平衡状态,液面恢复给定高度。

反之,若水箱液位下降,则系统会自动增大阀门开度,加大流入量,使液位升到给定的高度。

1-6题图1-6是仓库大门自动控制系统的示意图,试说明该系统的工作原理,并画出其方框图。

题1-6图仓库大门自动控制系统示意图解答:(1)仓库大门自动控制系统方框图:开门开关或关门开关合上时,对应电位器上的电压,为给定电压,即给定量。

仓库大门处于开启或关闭位置与检测电位器上的电压相对应,门的位置是被控量。

当大门所处的位置对应电位器上的电压与开门(或关门)开关合上时对应电位器上的电压相同时,电动机不动,控制绞盘处于一定的位置,大门保持在希望的位置上,如果仓库大门原来处于关门位置,当开门开关合上时,关门开关对应打开,两个电位器的电位差通过放大器放大后控制电动机转动,电动机带动绞盘转动将仓库大门提升,直到仓库大门处于希望的开门位置,此时放大器的输入为0,放大器的输出也可能为0。

电动机绞盘不动,大门保持在希望的开门位置不变。

反之,则关闭仓库大门。

1-7 题图1-7是温湿度控制系统示意图。

试说明该系统的工作原理,并画出其方框图。

题1-7图温湿度控制系统示意图解答:(1)方框图:(2)被控对象为温度和湿度设定,,设定温度和设定湿度为给定量。

第二章控制系统的数学模型2-2试求图示两极RC 网络的传递函数U c (S )/U r (S )。

该网络是否等效于两个RC 网络的串联?解答:故所给网络与两个RC 网络的串联不等效。

2-4某可控硅整流器的输出电压 U d =KU 2Φcos α式中K 为常数,U 2Φ为整流变压器副边相电压有效值,α为可控硅的控制角,设在α在α0附近作微小变化,试将U d 与α的线性化。

解答:.202002020cos (sin )()...sin sin )d u ku ku ku ku φφφφαααααααα=--+∆=-⋅∆=-d d 线性化方程:u 即u (2-9系统的微分方程组为式中1T 、2T 、1K 、2K 、3K 均为正的常数,系统地输入量为()r t ,输出量为()c t ,试画出动态结构图,并求出传递函数()()C s R s 。

解答:2-12简化图示的动态结构图,并求传递函数()()C s R s 。

解答:(a)(b) (c) (d) (e)2-13简化图示动态结构图,并求传递函数()()C s R s 。

解答: (a) (b)(c)(d)(e)(d)(f)第三章时域分析法3-1已知一阶系统的传递函数今欲采用负方馈的方法将过渡过程时间s t 减小为原来的0.1倍,并保证总的放大倍数不变,试选择H K 和0K 的值。

题3-1图解答:闭环传递函数:10()0.2110s s θ=+由结构图知:00010()10110()0.21()0.21101110HHh H K k G S k K s K G S s k S K θ+===+++++由00101011011010100.910H H H k k k k k ⎧⎪⎪⎨⎪⎪⎩⎧⎪⎨⎪⎩=++===3-2已知系统如题3-2图所示,试分析参数b 对输出阶跃过渡过程的影响。

题3-2图解答:系统的闭环传递函数为:由此可以得出:b 的大小影响一阶系统的时间常数,它越大,系统的时间常数越大,系统的调节时间,上升时间都会增大。

3-3设温度计可用1(1)Ts +描述其特性。

现用温度计测量盛在容器内的水温,发现1分钟可指示98%的实际水温值。

如果容器水温依10℃/min 的速度线性变化,问温度计的稳态指示误差是多少?解答:本系统是个开环传递函数 系统的闭环传递函数为:系统的传递函数:1()1G s Ts =+则题目的误差传递函数为:3-4设一单位反馈系统的开环传递函数试分别求110K s -=和120K s -=时系统的阻尼比ζ、无阻尼自振频率n w 、单位阶跃响应的超调量p σ%和峰值时间p t ,并讨论K 的大小对动态性能的影响。

解答:开环传递函数为3-8设控制系统闭环传递函数试在s 平面上给出满足下列各要求的闭环特征根可能位于的区域:1.10.707,2n ζω>≥≥ 2.0.50,42n ζω≥>≥≥ 3.0.7070.5,2n ζω≥≥≤ 解答:欠阻尼二阶系统的特征根:1.由0.7071,arccos ζβζ<<=,得045β︒︒<≤,由于对称关系,在实轴的下半部还有。

2.由00.5,arccos ζβζ<≤=,得6090β︒︒≤<,由于对称关系,在实轴的下半部还有。

3.由0.50.707,arccos ζβζ≤≤=,得出4560β︒︒≤≤,由于对称关系,在实轴的下半部还有。

则闭环特征根可能位于的区域表示如下:1. 2. 3.3-10设单位反馈系统开环传递函数分别为: 1.[]()(1)(0.21)G s K s s s =-+ 2.()(1)[(1)(0.21)]G s K s s s s =+-+ 试确定使系统稳定的K 值。

解答:1.系统的特征多项式为:()D s 中存在特征多项式中存在负项,所以K 无论取什么值,系统都不会稳定。

2.系统的特征多项式为:32()0.20.8(1)D s s s k s k =++-+ 劳斯阵列为:3s 0.2k-12s 0.8k 0s k系统要稳定则有0.60.800.80k k ⎧⎪⎨⎪⎩->>所以系统稳定的K 的范围为43k >3-14已知单位反馈系统开环传递函数如下: 1.[]()10(0.11)(0.51)G s s s =++2.2()7(1)(4)(22)G s s s s s s ⎡⎤=++++⎣⎦ 3.2()8(0.51)(0.11)G s s s s ⎡⎤=++⎣⎦ 解答:1.系统的闭环特征多项式为: 可以判定系统是稳定的.则对于零型系统来说,其静态误差系数为:那么当()1()r t t =时,11111ss p e k ==+当()1()r t t t =⋅时,1ss ve k ==∞当2()1()r t t t =⋅时,2ss ae k ==∞2.系统的闭环特征多项式为: 可以用劳斯判据判定系统是稳定的.则对于一型系统来说,其静态误差系数为:那么当()1()r t t =时,11ss pe k ==∞+当()1()r t t t =⋅时,187ss v e k ==当2()1()r t t t =⋅时,20ss a e k ==3.系统的闭环特征多项式为: 可以用劳斯判据判定系统是稳定的.则对于零型系统来说,其静态误差系数为:那么当()1()r t t =时,11ss pe k ==+当()1()r t t t =⋅时,10ss v e k ==当2()1()r t t t =⋅时,214ss a e k ==第四章根轨迹法4-2已知单位反馈系统的开环传递函数,绘出当开环增益1K 变化时系统的根轨迹图,并加以简要说明。

1.1()(1)(3)K G s s s s =++2.12()(4)(420)K G s s s s s =+++解答:(1)开环极点: p1=0,p2=-1,p3=-3实轴上的根轨迹区间: (-∞,-3],[-1,0] 渐进线:分离点:111013d d d ++=++解得d1、2=-0.45,-2.2。

d2=-2.2不在根轨迹上,舍去。

与虚轴交点:特征方程321()430D s s s s K =+++= 将s =j ω代入后得解之得ω=112K =当∞<≤10K 时,按180相角条件绘制根轨迹如图4-2(1)所示。

(2)开环极点:p1=0,p2=-4,p3、4=-2±j4实轴上的根轨迹区间:[-4,0] 渐进线:分离点:)8018368(2341++++-=s s s s K由01=ds dK解得s1、2=-2,624,3j s ±-=分离点可由a 、b 、c 条件之一进行判定:a .∠G (s 3)=-(129o+51o -90o+90o)=-180o,满足相角条件;b .100)80368()(62234313>=+++-=+-=j s s s s s s KK 1在变化范围)0[∞→内;c .由于开环极点对于σ=-2直线左右对称,就有闭环根轨迹必定也是对于σ=-2直线左右对称,故s3在根轨迹上。

相关文档
最新文档