七年级数学下册 同位角、内错角、同旁内角练习含答案

合集下载

1.2同位角、内错角、同旁内角-2023-2024学年浙教版七年级下同步分层作业

1.2同位角、内错角、同旁内角-2023-2024学年浙教版七年级下同步分层作业

1.2同位角、内错角、同旁内角同步分层作业基础过关1. 如图,直线a,b被直线c所截,下列各组角属于同旁内角的是()A.∠1与∠2 B.∠2与∠3 C.∠3与∠4 D.∠1与∠32. 如图,∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠53. 如图,直线AB,CD被EF所截,交点分别是点M,点N,则∠AMF与∠END是()A.同位角B.内错角C.同旁内角D.邻补角4. 下列图形中,∠1和∠2是同位角的是()A.B.C.D.5. 数学课上老师用双手形象的表示了“三线八角”图形,如图所示(两大拇指代表被截直线,食指代表截线).从左至右依次表示()A.同位角、内错角、同旁内角B.同旁内角、同位角、内错角C.同位角、对顶角、同旁内角D.同位角、内错角、对顶角6. 如图,直线BD上有一点C,则:(1)∠1和∠ABC是直线AB,CE被直线所截得的角;(2)∠2和∠BAC是直线CE,AB被直线所截得的角;(3)∠3和∠ABC是直线,被直线所截得的角;(4)∠ABC和∠ACD是直线,被直线所截得的角;(5)∠ABC和∠BCE是直线,被直线所截得的角.7.两条直线都与第三条直线相交,∠1与∠2是内错角,∠3和∠1是同旁内角.(1)根据上述条件,画出符合题意的图形;(2)若∠1:∠2:∠3=1:2:3,求∠1,∠2,∠3的度数.能力提升8. 如图所示,下列说法不正确的是()A.∠1与∠B是同位角B.∠1与∠4是内错角C.∠3与∠B是同旁内角D.∠C与∠A不是同旁内角9. 如图所示,与∠B构成同位角的共有()A.1个B.2个C.3个D.4个10. 如图所示,(1)∠4的内错角有,(2)DE、AC被BC截得的同位角有,(3)∠5和∠7是直线,被直线所截而成的角.11. 如图,(1)∠BED与∠CBE是直线,被直线所截成的角;(2)∠A与∠CED是直线,被直线所截成的角;(3)∠CBE与∠BEC是直线,被直线所截成的角;(4)∠AEB与∠CBE是直线,被直线所截成的角.12. 如图.在图中,(1)同位角共对,内错角共对,同旁内角共对;(2)∠1与∠2是,它们是被截成的;(3)∠3与∠4中被所截而得到的角;(4)AB和BE被AC所截而成的内错角是,同旁内角是.13.两条直线被第三条直线所截,∠1是∠2的同旁内角,∠2是∠3的内错角.(1)画出示意图,标出∠1,∠2,∠3;(2)若∠1=2∠2,∠2=2∠3,求∠1,∠2,∠3的度数.培优拔尖14. (1)同位角相等;(2)内错角相等;(3)同旁内角互补;(4)对顶角相等.以上四种说法中,不正确的有()A.0个B.1个C.2个D.3个15. 如图所示,直线AB∥CD,两相交直线EF、GH与AB、CD都相交,图中的同旁内角共有()A.4对B.8对C.12对D.16对16. 四条直线两两相交,且任意三条不相交于同一点,则四条直线共可构成的同位角有组.17. 如图,填空.(1)若直线ED,BC被直线AB所截,则∠1与是同位角;(2)若直线ED,BC被直线AF所截,则∠3与是内错角;(3)∠1与∠3是直线AB和直线AF被直线所截构成的角;(4)∠2与∠4是直线和直线被直线BC所截构成的角;(5)图中∠5的同旁内角有个,它们是.18. 如图所示.(1)∠1与∠C,∠2与∠B,∠3与∠C各是什么角,是哪两条直线被哪一条直线所截得的?(2)∠3的内错角有哪些?(3)写出直线DE,BC被AB所截得的同旁内角,直线DE,BC被EF所截得的同旁内角.19. (1)若4条直线两两相交于不同点,则对顶角、同位角、内错角、同旁内角各有几对?(2)若n条直线两两相交于不同点,则对顶角、同位角、内错角、同旁内角各有几对?答案与解析基础过关1. 如图,直线a,b被直线c所截,下列各组角属于同旁内角的是()A.∠1与∠2 B.∠2与∠3 C.∠3与∠4 D.∠1与∠3【点拨】根据对顶角、邻补角,同位角、内错角、同旁内角的意义,逐一判断即可解答.【解析】解:A、∠1与∠2属于邻补角,故A不符合题意;B、∠2与∠3属于同旁内角,故B符合题意;C、∠3与∠4属于对顶角,故C不符合题意;D、∠1与∠3属于内错角,故D不符合题意;故选:B.【点睛】本题考查了对顶角、邻补角,同位角、内错角、同旁内角,熟练掌握这些数学概念是解题的关键.2. 如图,∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠5【点拨】根据同位角的定义求解即可.【解析】解:∠1的同位角是∠3,故选:B.【点睛】此题考查了同位角的定义,熟记同位角的定义是解题的关键.3. 如图,直线AB,CD被EF所截,交点分别是点M,点N,则∠AMF与∠END是()A.同位角B.内错角C.同旁内角D.邻补角【点拨】根据内错角,同位角,同旁内角,邻补角的定义解答即可.【解析】解:如图所示,两条直线AB、CD被直线EF所截形成的角中,∠AMF与∠END都在直线AB、CD之间,并且在直线EF的两旁,所以∠AMF与∠END是内错角.故选:B.【点睛】本题考查了同位角,内错角以及同旁内角.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.4. 下列图形中,∠1和∠2是同位角的是()A.B.C.D.【点拨】根据同位角的概念求解即可.【解析】解:A选项中∠1和∠2是同位角,故选:A.【点睛】本题主要考查同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.5. 数学课上老师用双手形象的表示了“三线八角”图形,如图所示(两大拇指代表被截直线,食指代表截线).从左至右依次表示()A.同位角、内错角、同旁内角B.同旁内角、同位角、内错角C.同位角、对顶角、同旁内角D.同位角、内错角、对顶角【点拨】两条线a、b被第三条直线c所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角;两个角分别在截线的异侧,且夹在两条被截线之间,具有这样位置关系的一对角互为内错角;两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.据此作答即可.【解析】解:根据同位角、内错角、同旁内角的概念,可知第一个图是同位角,第二个图是内错角,第三个图是同旁内角.故选:A.【点睛】本题考查了同位角、内错角、同旁内角,掌握同位角、内错角、同旁内角的定义是解题的关键.6. 如图,直线BD上有一点C,则:(1)∠1和∠ABC是直线AB,CE被直线DB所截得的同位角;(2)∠2和∠BAC是直线CE,AB被直线AC所截得的内错角;(3)∠3和∠ABC是直线AB,AC被直线CB所截得的同旁内角;(4)∠ABC和∠ACD是直线AB,AC被直线DB所截得的角;(5)∠ABC和∠BCE是直线AB,EF被直线所截得的同旁内角.【点拨】(1)根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析.(2)根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角进行分析.(3)(4)(5)根据同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行分析.【解析】解:(1)∠1和∠ABC是直线AB,CE被直线DB所截得的同位角;(2)∠2和∠BAC是直线CE,AB被直线AC所截得的内错角;(3)∠3和∠ABC是直线AB,AC被直线CB所截得的同旁内角;(4)∠ABC和∠ACD是直线AB,AC被直线DB所截得的角;(5)∠ABC和∠BCE是直线AB,EF被直线所截得的同旁内角.【点睛】此题主要考查了三线八角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.7.两条直线都与第三条直线相交,∠1与∠2是内错角,∠3和∠1是同旁内角.(1)根据上述条件,画出符合题意的图形;(2)若∠1:∠2:∠3=1:2:3,求∠1,∠2,∠3的度数.【点拨】(1)根据同旁内角两个角都在截线的同旁,又分别处在被截的两条直线的中间位置的角,内错角两个角都在截线的两侧,又分别处在被截的两条直线的中间位置的角,可得答案;(2)根据同一个角的内错角与同旁内角互补,可得角的度数.【解析】解:(1)如图:,由∠1:∠2:∠3=1:2:3,设∠1=x°,∠2=2x°,∠3=3x°.由∠2与∠3是邻补角,得∠2+∠3=2x+3x=180°,解得x=36,2x=72,3x=108.∠1=36°,∠2=72°,∠3=108°.【点睛】本题考查了同位角,内错角,同旁内角,利用了同位角,内错角的定义,同一个角的内错角与同旁内角互补的关系.能力提升8. 如图所示,下列说法不正确的是()A.∠1与∠B是同位角B.∠1与∠4是内错角C.∠3与∠B是同旁内角D.∠C与∠A不是同旁内角【点拨】本题考查同位角、内错角、同旁内角的概念,要根据概念判断,分清楚截线与被截线.【解析】解:A、∠1与∠B是两直线DE、BC被直线AB所截的同位角,正确;B、∠1与∠4是两直线AB、AC被直线DE所截的内错角,正确;C、∠3与∠4是两直线AB、AC被直线DE所截的同旁内角,正确;D、∠C与∠A是两直线AB、BC被直线AC所截的同旁内角,判断错误.故选D.【点睛】对概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.9. 如图所示,与∠B构成同位角的共有()A.1个B.2个C.3个D.4个【点拨】根据同位角的定义,并结合图形作出正确的判断.【解析】解:根据图示知,能与∠B构成同位角的有:∠1,∠2,∠3,共有3个.故选:C.【点睛】本题考查了同位角、内错角、同旁内角.三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.10. 如图所示,(1)∠4的内错角有∠2,∠6,(2)DE、AC被BC截得的同位角有∠5和∠C,(3)∠5和∠7是直线AB,BC被直线DE所截而成的内错角.【点拨】(1)根据内错角是在截线两旁,被截线之内的两角,内错角的边构成”Z“形作答即可;(2)根据两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角,即可得出答案;(3)根据内错角是在截线两旁,被截线之内的两角解答即可.【解析】解:(1)∠4的内错角有∠2,∠6;(2)DE,AC被BC截得的同位角有∠5和∠C;(3))∠5和∠7是直线AB和BC被直线DE所截而成的内错角;故答案为:∠2,∠6;∠5和∠C;AB、BC、DE、内错.【点睛】此题考查了同位角、内错角,用到的知识点是同位角、内错角的定义,关键是能在较复杂的图形中找出内错角、同位角.11. 如图,(1)∠BED与∠CBE是直线DE,CB被直线EB所截成的内错角;(2)∠A与∠CED是直线AD,DE被直线AC所截成的同位角;(3)∠CBE与∠BEC是直线CB,CE被直线EB所截成的同旁内角;(4)∠AEB与∠CBE是直线AE,CB被直线EB所截成的内错角.【点拨】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角分别进行分析即可.【解析】解:(1)∠BED与∠CBE是直线DE,CB被直线EB所截成的内错角;(2)∠A与∠CED是直线AD,DE被直线AC所截成的同位角;(3)∠CBE与∠BEC是直线CB,CE被直线BE所截成的同旁内角;(4)∠AEB与∠CBE是直线AE,BC被直线EB所截成的内错角.【点睛】此题主要考查了三线八角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.12. 如图.在图中,(1)同位角共4对,内错角共6对,同旁内角共12对;(2)∠1与∠2是内错角,它们是AD、BC被AC截成的;(3)∠3与∠4中AB、CD被AC所截而得到的角;(4)AB和BE被AC所截而成的内错角是∠3和∠ACE,同旁内角是∠3和∠2.【点拨】(1)直接利用同位角、内错角、同旁内角的定义得出答案;(2)利用内错角的定义得出答案;(3)利用内错角的定义得出答案;(4)利用已知图形得出内错角、同旁内角.【解析】解:(1)同位角共4对,内错角共6对,同旁内角共12对.故答案为:4;6;12;(2)∠1与∠2是内错角,它们是AD、BC被AC截成的.故答案为:内错角;AD、BC;AC;(3)∠3与∠4中AB、CD被AC所截而得到的角.故答案为:AB、CD;AC;(4)AB和BE被AC所截而成的内错角是∠3和∠ACE,同旁内角是∠3和∠2.故答案为:∠3和∠ACE;∠3和∠2.【点睛】此题主要考查了内错角、同位角、同旁内角的定义,正确把握相关定义是解题关键.13.两条直线被第三条直线所截,∠1是∠2的同旁内角,∠2是∠3的内错角.(1)画出示意图,标出∠1,∠2,∠3;(2)若∠1=2∠2,∠2=2∠3,求∠1,∠2,∠3的度数.【点拨】(1)根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角;同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行分析即可,进而画出图形即可;(2)设∠3=x,则∠2=2x,∠1=4x,利用邻补角的关系得到x,进而求出∠1,∠2,∠3的度数.【解析】解:(1)如图所示:(2)∵∠1=2∠2,∠2=2∠3,∴设∠3=x,则∠2=2x,∠1=4x,∵∠1+∠3=180°,∴x+4x=180°,解得:x=36°,故∠3=36°,∠2=72°,∠1=144°.【点睛】此题主要考查了三线八角以及邻补角的性质,得出∠1与∠3的关系是解题关键.培优拔尖14. (1)同位角相等;(2)内错角相等;(3)同旁内角互补;(4)对顶角相等.以上四种说法中,不正确的有()A.0个B.1个C.2个D.3个【点拨】根据所学定理性质对每个说法分析论证得出正确选项.【解析】解:(1)对顶角相等,正确;(2)只有两条平行线形成的同位角才相等,错误;(3)只有两条平行线形成的同旁内角才互补,错误;(4)只有两条平行线形成的内错角才相等,错误;所以以上四种说法中,不正确的有3个,故选:D.【点睛】此题考查的知识点是同位角、内错角、同旁内角及对顶角的知识,也考查常见的一些易错的知识点,注意对定理的准确掌握.15. 如图所示,直线AB∥CD,两相交直线EF、GH与AB、CD都相交,图中的同旁内角共有()A.4对B.8对C.12对D.16对【点拨】每一个“三线八角”基本图形都有两对同旁内角,从对原图形进行分解入手可知同旁内角共有对数.【解析】解:直线AB、CD被EF所截有2对同旁内角;直线AB、CD被GH所截有2对同旁内角;直线CD、EF被GH所截有2对同旁内角;直线CD、GH被EF所截有2对同旁内角;直线GH、EF被CD所截有2对同旁内角;直线AB、EF被GH所截有2对同旁内角;直线AB、GH被EF所截有2对同旁内角;直线EF、GH被AB所截有2对同旁内角.共有16对同旁内角.故选:D.【点睛】本题考查了同旁内角的定义,熟记同旁内角的定义是解答的关键.16. 四条直线两两相交,且任意三条不相交于同一点,则四条直线共可构成的同位角有48组.【点拨】每条直线都与另3条直线相交,有3个交点.每2个交点决定一条线段,共有3条线段.4条直线两两相交且无三线共点,共有3×4=12条线段.每条线段各有4组同位角,可知同位角的总组数.【解析】解:∵平面上4条直线两两相交且无三线共点,∴共有3×4=12条线段.又∵每条线段各有4组同位角,∴共有同位角12×4=48组,故答案为:48.【点睛】本题考查了同位角的定义.注意在截线的同旁找同位角.要结合图形,熟记同位角的位置特点.两条直线被第三条直线所截所形成的八个角中,有4组同位角.17. 如图,填空.(1)若直线ED,BC被直线AB所截,则∠1与∠2是同位角;(2)若直线ED,BC被直线AF所截,则∠3与∠4是内错角;(3)∠1与∠3是直线AB和直线AF被直线DE所截构成的内错角;(4)∠2与∠4是直线AB和直线AF被直线BC所截构成的同位角;(5)图中∠5的同旁内角有3个,它们是∠A,∠3,∠2.【点拨】根据同位角、内错角、同旁内角的定义逐个求解即可.【解析】解:(1)若直线ED,BC被直线AB所截,则∠1与∠2是同位角;(2)若直线ED,BC被直线AF所截,则∠3与∠4是内错角;(3)∠1与∠3是直线AB和直线AF被直线DE所截构成的内错角;(4)∠2与∠4是直线AB和直线AF被直线BC所截构成的同位角;(5)图中∠5的同旁内角有3个,它们是∠A,∠3,∠2,故答案为:∠2,∠4,DE,内错,AB,AF,同位,3,∠A,∠3,∠2.【点睛】本题考查了同位角、内错角、同旁内角的定义,能根据图形找出同位角、内错角和同旁内角是解此题的关键.18. 如图所示.(1)∠1与∠C,∠2与∠B,∠3与∠C各是什么角,是哪两条直线被哪一条直线所截得的?(2)∠3的内错角有哪些?(3)写出直线DE,BC被AB所截得的同旁内角,直线DE,BC被EF所截得的同旁内角.【点拨】(1)在截线的同旁找同位角;(2)根据内错的概念找到即可;(3)由同旁内角的概念解答即可.【解析】解:(1)∠1与∠C是直线DE、BC被直线AC所截形成的同位角,∠2与∠B是直线DE、BC被直线AB所截形成的同位角,∠3与∠C是直线DF、AC被直线BC所截形成的同位角;(2)当直线DE与BC被DF所截时,∠3与∠EDF是内错角;当直线AB和BC被EF所截时,∠3与∠ADF是内错角;(3)直线DE,BC被AB所截得的同旁内角有∠B与∠BDE,直线DE,BC被EF所截得的同旁内角∠DEF与∠BFE.【点睛】本题主要考查学生对内错角与同旁内角的掌握情况,观察时,关键要抓住各类角的特征,这也是学生易错的地方,并且还容易出现漏解的情况.19. (1)若4条直线两两相交于不同点,则对顶角、同位角、内错角、同旁内角各有几对?(2)若n条直线两两相交于不同点,则对顶角、同位角、内错角、同旁内角各有几对?【点拨】(1)根据4条直线两两相交,共有6个点,每个点有两对对顶角,得出对顶角、内错角、同旁内角的对数;(2)n条直线两两相交,共有n(n﹣1)个点,每个点有两对对顶角,得出对顶角的对数;任意两条直接被第三条截有4对同位角,2对内错角,2对同旁内角,再计算得出n条直线两两相交于不同点,对顶角、同位角、内错角、同旁内角的对数.【解析】解:(1)4条直线两两相交,共有6个点,每个点有两对对顶角,所以对顶角有12对,24对内错角,48对同位角,24对同旁内角;(2)n条直线两两相交,共有n(n﹣1)个点,每个点有两对对顶角,所以对顶角有n(n﹣1)对;任意两条直接被第三条截有4对同位角,2对内错角,2对同旁内角,首先n条里面取两条,剩下n﹣2条,得到n(n﹣1)×2×(n﹣2)=n(n﹣1)(n﹣2)对内错角,2(n﹣2)(n﹣1)n对同位角,n(n﹣1)(n﹣2)对同旁内角.【点睛】本题考查了同位角、内错角、同旁内角的定义.注意在截线的同旁找同位角,在被截直线之间找内错角、同旁内角.要结合图形,熟记同位角、内错角、同旁内角的位置特点.两条直线被第三条直线所截所形成的八个角中,有4组同位角.。

同位角、内错角、同旁内角(习题及答案)

同位角、内错角、同旁内角(习题及答案)
∴∠ABE=∠DBE(角平分线的定义)
∵∠DBE=∠A(______________________________)
∴_______=∠A(______________________________)
∴BE_____AC(______________________________)
6.已知:如图,E为DF上的点,B为AC上的点,∠1=∠2,AC∥DF.
推理就是由一个或几个已知的判断(前提),推导出一个未知的结论的思维过程.其作用是从已知的知识得到未知的知识,特别是可以得到不可能通过感觉经验掌握的未知知识.几何推理是我们中学接触最多的一种推理形式.
要想进行严格的几何推理,首先要有一些对应前提.这些前提我们叫做“基本事实”或“定理”,比如我们学过的“同位角相等,两直线平行”、“两点确定一条直线”等都是一些基本事实.这些作为大前提,是我们进行推理的主要依据.而根据这些“基本事实”或“定理”,我们对某个句子进行判断或说明的过程就是证明.
例如,如下的推理:
已知:如图,∠ABC=∠1.
求证:AD∥BC.
证明:如图,
∵∠ABC=∠1(已知)
∴AD∥BC(同位角相等,两直线平行)
我们分析可知,每一个判断都有自己的条件和结论.上述推理中的条件就是∠ABC=∠1,代表着一组同位角相等,而结论就是AD∥BC.由条件得到结论的过程叫做证明,而这个证明必须依据基本事实.我们把基本事实放在结论后的括号中,表明我们是以此为依据进行推理的.
6.已知
对顶角相等
等量代换
同位角相等,两直线平行
两直线平行,同位角相等
已知
两直线平行,内错角相等
思考小结
1.同位角相等,两直线平行(或内错角相等,两直线平行,或同旁内角互补,两直线平行)

人教版七年级数学下册5-1-3-同位角、内错角、同旁内角-习题(含答案及(7)精选全文

人教版七年级数学下册5-1-3-同位角、内错角、同旁内角-习题(含答案及(7)精选全文

可编辑修改精选全文完整版5.1.3 同位角、内错角、同旁内角学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.如图,下列各语句中,错误的语句是( )A .∠ADE 与∠B 是同位角B .∠BDE 与∠C 是同旁内角 C .∠BDE 与∠AED 是内错角 D .∠BDE 与∠DEC 是同旁内角2.下列各图中,∠1与∠2是内错角的是( )A .B .C .D .3.如图所示,下列结论中不正确的是( )A .1∠和2∠是同位角B .2∠和3∠是同旁内角C .1∠和4∠是同位角D .2∠和4∠是内错角4.如图,下列各组角是内错角( )A .∠1和∠2B .∠3和∠4C .∠2和∠3D .∠1和∠45.如图所示,下列说法错误的是( )A.∠C与∠1是内错角B.∠2与∠3是内错角C.∠A与∠B是同旁内角D.∠A与∠3是同位角6.由图可知,∠1和∠2是一对()A.对顶角B.同位角C.内错角D.同旁内角7.如图,下列6种说法:①∠1与∠4是内错角;②∠1与∠2是同位角;③∠2与∠4是内错角;④∠4与∠5是同旁内角;⑤∠2与∠4是同位角;⑥∠2与∠5是内错角.其中正确的有 ( )A.1个B.2个C.3个D.4个二、填空题1.如图,按角的位置关系填空:∠A与∠1是______;∠A与∠3是______;∠2与∠3是______.2.如图,∠3和∠9是直线________、_______被直线_______所截而成的______角;∠6和∠9是直线_____、______被直线________所截而成的_______角.3.如图,∠1的同旁内角是____________,∠2的内错角是____________.三、解答题1.如图,直线a、b被直线l所截,已知∠1=40°,试求∠2的同位角及同旁内角的度数.参考答案一、单选题1.B解析:A、由同位角的概念可知,∠ADE与∠B是同位角,不符合题意;B、由同位角同旁内角的概念可知,∠BDE与∠C不是同旁内角,符合题意;C、由内错角的概念可知,∠BDE与∠AED是内错角,不符合题意;D、由同旁内角的概念可知,∠BDE与∠DEC是同旁内角,不符合题意.2.A解析:根据内错角的定义可知,内错角是成“Z”字形的两个角,据此逐项分析可得答案. 详解:A. ∠1与∠2是内错角,正确.B. ∠1与∠2不是内错角,故错误.C. ∠1与∠2不是内错角,故错误.D. ∠1与∠2是同旁内角,故错误.故选:A.点睛:本题考查了内错角的判断,熟记内错角的定义是解题的关键;两条直线被第三条直线所截形成的八个角中,两个角分别在截线的两侧,且在两条直线之间,具有这样位置关系的一对角叫做内错角;3.A解析:根据同位角,内错角,同旁内角以及对顶角的定义进行解答.详解:A、∠1和∠2是同旁内角,故本选项错误,符合题意;B、∠2和∠3是同旁内角,故本选项正确,不符合题意;C、∠1和∠4是同位角,故本选项正确,不符合题意;D、∠2和∠4是内错角,故本选项正确,不符合题意;故选A.点睛:考查了同位角,内错角,同旁内角以及对顶角的定义.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.4.B解析:A、∠1和∠2不是内错角,故本选项错误;B、∠3和∠4是内错角,故本选项正确;C、∠2和∠3不是内错角,故本选项错误;D、∠1和∠4不是内错角,故本选项错误,故选B.点睛:本题考查了内错角,熟知内错角的定义以及位置特征是解题的关键.5.B解析:根据同位角,同旁内角,内错角的定义可以得到A、C、D是正确的,∠2与∠3是邻补角,不是内错角.详解:A、∠C与∠1是内错角,故本选项正确;B、∠2与∠3是邻补角,故本选项错误;C、∠A与∠B是同旁内角,故本选项正确;D、∠A与∠3是同位角,故本选项正确.故选:B.点睛:本题主要考查了同位角,内错角,同旁内角的概念,比较简单.6.C解析:试题∠1与∠2是两直线被一条直线所截得到的两角,这两角分别位于截线的两侧,并且位于被截直线之间,因而是内错角.故选C.7.C解析:试题根据同位角,内错角,同旁内角的定义可知①∠1与∠4是内错角;错误,②∠1与∠2是同位角;正确,③∠2与∠4是内错角;错误, ④∠4与∠5是同旁内角;正确,⑤∠2与∠4是同位角;错误,⑥∠2与∠5是内错角.正确.有3个正确.故选C.点睛:同位角:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角;内错角:两个角在截线的两旁,又分别处在被截的两条直线异侧的位置的角;同旁内角:两个角都在截线的同旁,又分别处在被截的两条直线异侧的位置的角;二、填空题1.同旁内角同位角内错角解析:根据两直线被第三条直线所截,在截线的同一侧,被截线的同一方向的两个角是同位角;在截线的两侧,被截线的内部的两个角是内错角;在截线的同一侧,被截线的内部的两个角是同旁内角,结合图形找出即可.详解:解:根据图形,∠A与∠1是直线AC、MN被直线AB所截形成的同旁内角,∠A与∠3是直线AC、MN被直线AB所截形成的同位角,∠2与∠3是直线AC、AB被直线MN所截形成的内错角.故应填:同旁内角,同位角,内错角.点睛:本题考查了三线八角中的同旁内角,同位角,内错角的概念,知同位角、内错角、同旁内角是两直线被第三条直线所截而成的角.2.AD BD AC 同位 AC BC BD 同位角解析:根据两直线被第三条直线所截,在截线的同一侧,被截线的同一方向的两个角是同位角;在截线的两侧,被截线的内部的两个角是内错角;在截线的同一侧,被截线的内部的两个角是同旁内角,结合图形解答即可.详解:如图,∠3和∠9是直线AD、BD被直线AC所截而成的同位角;∠6和∠9是直线BC、AC被直线BD所截而成的同位角.故答案为AD、BD、AC、同位;BC、AC、BD、同位.点睛:本题考查了同位角、内错角、同旁内角,属于三线八角的问题,熟记同位角、内错角、同旁内角的位置关系是解决此类问题的关键.3.∠3,∠B;∠3解析:由内错角和同旁内角的定义可知:∠1与∠3,∠B是同旁内角;∠2的内错角是∠3.故答案为∠3,∠B;∠3.三、解答题1.∠2的同位角是140°,∠2的同旁内角是40°.解析:试题分析:首先要确定∠2的同位角、同旁内角是哪一个:因l为截线,这两个角与∠2必然位于l的同旁,即直线l的右边的∠3与∠4;再根据对顶角性质及补角定理,就可求出两角大小.解:如图,∵∠1=40°,∴∠4=∠1=40°,∠3=180°﹣∠1=140°,即∠2的同位角是140°,∠2的同旁内角是40°.。

同位角、内错角、同旁内角训练题及答案

同位角、内错角、同旁内角训练题及答案

同位角、内错角、同旁内角训练题及答案一、选择题(共10 小题;共30 分)1.如图所示,已知 AB ∥CD,与∠1是同位角的角是A. ∠2B. ∠3C. ∠4D. ∠52. 在同一平面内的三条直线,如果要使其中两条且只有两条平行,那么它们()A. 有三个交点B. 只有一个交点C. 有两个交点D. 没有交点3. 下列说法中正确的有()A.连接两点的线段叫做两点间的距离B.过一点有且只有一条直线与已知直线平行C.若 AB = BC,则点 B 是 AC 的中点D.直线 AC 和直线 CA 是同一条直线4.如图,把教室中墙壁的棱看做直线的一部分,那么下列表示两条棱所在的直线的位置关系不正确的是A. AB ⊥BCB. AD ∥BCC. CD ∥BFD. AE ∥BF5.已知直线 a, b ,c, d ,下面推理正确的是 ( )A. 因为 a ∥d, b ∥c,所以 c ∥dB. 因为 a ∥c, b ∥d ,所以 c ∥dC. 因为 a ∥b, a ∥c,所以 b ∥cD. 因为 a ∥b, c ∥d ,所以 a ∥c6. 如图所示,∠1和∠2是同位角的有A. ①②B. ①③C. ①④D. ②③7.如图,下列判断不正确的是A. ∠B与∠A是同旁内角B. ∠C与∠1是内错角C. ∠2与∠3是内错角D. ∠B与∠1是同位角8.在同一平面内,下列说法正确的是( )A. 不相交的两条直线是平行线B. 不相交的两条射线是平行线C. 不相交的两条线段是平行线D. 不平行的两条线段一定相交9.三条直线 a, b ,c,若 a ∥c, b ∥c,则 a 与 b 的位置关系是 ( )A. a ⊥bB. a ∥bC. a ⊥b 或 a ∥bD. 无法确定10. 下列结论中,不正确的是 ()A.两点确定一条直线B.等角的余角相等C.过一点有且只有一条直线与已知直线平行D.两点之间的所有连线中,线段最短二、填空题(共 6 小题;共 18 分)11.在同一平面内,两条直线的位置关系只有和两种.12.平行公理的推论是:如果两条直线都与,那么这两条直线也.即三条直线 a, b ,c,如果 a ∥b , b ∥c,那么.13.若 AB ∥CD, AB ∥EF,则∥,理由是.14.下图有对内错角.15.已知平面内四条直线共有三个交点,则这四条直线中最多有条平行线.16.如图,平行直线 AB 、 CD 与相交直线 EF 、 GH 相交,图中的同旁内角共有对.三、解答题(共 6 小题;共52 分)17.如图所示, a ∥b ,b ∥c, d 与 a 相交于点 M.(1)试判断直线 a,c 的位置关系,并说明理由;(2)判断 c 与 d , b 与 d 的位置关系,并说明理由.18.工人师傅在铺设电缆时,为了检验三条电缆线是否平行,只检查了其中两条电缆线是否与第三条电缆线平行,你认为这种做法正确吗?请作出合理解释.19.如图,指出下列各组角是由哪两条直线被哪一条直线所截得的,并说出它们是什么角?∠1和∠2,∠2和∠6,∠4和∠7,∠3和∠5.20. 如图,直线DE,BC 被直线 AB 所截.(1)∠1与∠2,∠1与∠3,∠1与∠4各是什么角?(2)如果∠1= ∠4,那么∠1和∠2相等吗?∠1和∠3呢?为什么?21. 在同一平面内有n 条直线,当 n = 1 时,如图( 1),一条直线将一个平面分成两个部分;当 n = 2时,如图( 2),两条直线将一个平面最多分成四个部分.(1)在作图区分别画出当 n = 3 时,三条直线将一个平面分成最少部分和最多部分的情况;(2)当 n = 4 时,请写出四条直线将一个平面分成最少部分的个数和最多部分的个数;(3) 若 n 条直线将一个平面最多分成a n个部分, ( n + 1) 条直线将一个平面最多分成a n+1个部分,请写出 a n, a n+1, n 之间的关系式.22. 我们知道相交的两直线的交点个数是 1 ,记两平行直线的交点个数是0;这样平面内的三条平行线它们的交点个数就是0 ,经过同一点的三直线它们的交点个数就是 1 ;依次类推? .(1)请你画图说明同一平面内的五条直线最多有几个交点?(2)平面内的五条直线可以有 4 个交点吗?如果有,请你画出符合条件的所有图形;如果没有,请说明理由.(3)在平面内画出 10 条直线,使交点个数恰好是31.答案第一部分1.D2.C3.D4.C5. C6.A7.B8.A9.B10. [2]第二部分11.相交;平行12.第三条直线平行;互相平行; a ∥c13.CD; EF;如果两条直线都与第三条直线平行,那么这两条直线也互相平行14.2415. 316.16第三部分17.(1) 因为 a ∥b , b ∥c,所以 a ∥c.理由:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.17.(2) 因为 d , a 都过 M 点且 a ∥c,所以 d 与 c 相交;同理: b 与 d 相交.理由:经过直线外一点,有且只有一条直线与这条直线平行.18.(1) 正确.如果两条直线都与第三条直线平行,那么这两条直线也互相平行.19. (1)∠1和∠2是同位角,是直线 BD, DE 被 AB 所截得到的;∠2和∠6是内错角,是直线AB, CD 被 BD 所截得到的;∠4和∠7是同旁内角,是直线AB, BC 被 CE 所截得到的;∠3和∠5是同旁内角,是直线DE, DC 被 CE 所截得到的.20.(1) ∠1与∠2是内错角,∠1与∠3是同旁内角,∠1与∠4是同位角.20.(2) 如果∠1= ∠4,那么∠1和∠2相等,∠1和∠3互补.理由是:因为∠1= ∠4,又根据对顶角相等知∠2= ∠4,所以∠1= ∠2.因为∠3和∠4互为补角,°所以∠3+ ∠4= 180 ,°所以∠1+ ∠3= 180 ,即∠1和∠3互补.21. (1)21.(2) 最少 5 部分,最多 11 部分.21.(3) a n+1 - a n = n + 122.(1) 如图,最多有 10 个交点.22.(2) 可以有 4 个交点,有 3 种不同的情形,如图.22. (3) 在平面内画出10 条直线,使交点个数恰好是31 ,如图。

七年级数学下册-同位角、内错角、同旁内角练习含答案(最新整理)

七年级数学下册-同位角、内错角、同旁内角练习含答案(最新整理)

同位角、内错角、同旁内角练习要求:熟悉并掌握三线八角。

A卷一、填空题1.如图1,直线a、b被直线c所截,∠1和∠2是,∠3和∠4是,∠3和∠2是。

2.如图2,∠1和∠2是直线和直线被直线所截得的角。

3.如图3,∠1的内错角是,∠A的同位角是,∠B的同旁内角是。

4.如图4,和∠1构成内错角的角有个;和∠1构成同位角的角有个;和∠1构成同旁内角的角有个。

5.如图5,指出同位角是,内错角是,同旁内角是。

二、选择题6.如图6,和∠1互为同位角的是( )(A)∠2; (B)∠3;(C)∠4; (D)∠5。

7.如图7,已知∠1与∠2是内错角,则下列表达正确的是( )(A)由直线AD、AC被CE所截而得到的;(B)由直线AD、AC被BD所截而得到的;(C)由直线DA、DB被CE所截而得到的;(D)由直线DA、DB被AC所截而得到的。

8.在图8中1和2是同位角的有( )(A)(1)、(2); (B)(2)、(3); (C)(1)、(3); (D)(2)、(4)。

9.如图9,在指明的角中,下列说法不正确的是( )(A)同位角有2对; (B)同旁内角有5对;(C)内错角有4对; (D)∠1和∠4不是内错角。

10.如图10,则图中共有( )对内错角 (A)3; (B)4; (C)5; (D)6。

三、简答题11.如图11(1)说出∠1与∠2互为什么角?(2)写出与∠1成同位角的角;(3)写出与∠1成内错角的角。

12.如图12(1)说出∠A与∠1互为什么角?(2) ∠B与∠2是否是同位角;(3)写出与∠2成内错角的角。

B卷一、填空题1.如图1,∠1和∠2可以看作直线和直线被直线所截得的角。

2.如图2,∠1和∠2是直线和直线被直线被直线所截得的角。

3.如图3,直线DE、BC被直线AC所截得的内错角是;∠B与∠C可以看作直线、被直线所截得的角。

4.如图4,与∠EFC构成内错角的是;与∠EFC构成同旁内角的是。

5.如图5,与∠1构成内错角的角有个;与∠1构成同位角的角有个;与∠1构成同旁内角的角有个。

2022-2022年人教版数学七年级下册同步训练:5.1.3《同位角、内错角、同旁内角》

2022-2022年人教版数学七年级下册同步训练:5.1.3《同位角、内错角、同旁内角》

2022-2022年人教版数学七年级下册同步训练:5.1.3《同位角、内错角、同旁内角》选择题如图,三条直线两两相交,则图中∠1和∠2是()A.同位角B.内错角C.同旁内角D.互为补角【答案】B【解析】根据内错角的定义,结合图即可得∠1与∠2是内错角.【考点精析】通过灵活运用同位角、内错角、同旁内角,掌握两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角;判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全即可以解答此题.选择题如图所示,下列说法错误的是()A.∠1和∠4是同位角B.∠1和∠3是同位角C.∠1和∠2是同旁内角D.∠5和∠6是内错角【答案】A【解析】根据同位角、内错角、同旁内角的定义,结合图即可得∠1与∠3是同位角,∠1和∠2是同旁内角,∠5和∠6是内错角,而∠1和∠4不是同位角.所以选A【考点精析】本题主要考查了同位角、内错角、同旁内角的相关知识点,需要掌握两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角;判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全才能正确解答此题.选择题下列图形中,∠1和∠2不是同位角的是()A.B.C.D.【答案】B【解析】同位角是指两条直线同时被第三条直线所截,所形成的在截线同旁,并且在被截两条直线同侧的角.故选B.【考点精析】关于本题考查的同位角、内错角、同旁内角,需要了解两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角;判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全才能得出正确答案.选择题如图,下列判断正确的是()A.∠2与∠5是对顶角B.∠2与∠4是同位角C.∠3与∠6是同位角D.∠5与∠3是内错角【答案】D【解析】根据对顶角、同位角、同旁内角、内错角的定义分别进行分析即可.【考点精析】通过灵活运用对顶角和邻补角和同位角、内错角、同旁内角,掌握两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个;两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角;判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全即可以解答此题.选择题下列四幅图中,∠1和∠2是同位角的是()A.⑴⑵B.⑶⑷C.⑴⑵⑶D.⑵、⑶⑷【答案】A【解析】由同位角定义可知,两条直线被一条直线所截,所构成的同一方向的角叫同位角,图⑴、⑵符合定义. 掌握同位角的定义解答本题关键.本题考查同位角.选择题如图,∠1与∠2是()A.对顶角B.同位角C.内错角D.同旁内角【答案】B【解析】根据同位角的定义得出结论∠1与∠2是同位角.【考点精析】认真审题,首先需要了解同位角、内错角、同旁内角(两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角;判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全).选择题如图,已知AB∥CD,与∠1是同位角的角是()A.∠2B.∠3C.∠4D.∠5【答案】D【解析】根据同位角的定义得出结论∠1与∠5是同位角.掌握同位角的定义解答本题关键.本题考查同位角.选择题如图,与∠1是同位角的是()A.∠2B.∠3C.∠4D.∠5【答案】C【解析】根据同位角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角即可求解.观察图形可知,与∠1是同位角的是∠4.【考点精析】通过灵活运用同位角、内错角、同旁内角,掌握两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角;判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全即可以解答此题.选择题如图,下列各语句中,错误的语句是()A.∠ADE与∠B是同位角B.∠BDE与∠C是同旁内角C.∠BDE与∠AED是内错角D.∠BDE与∠DEC是同旁内角【答案】B【解析】A、由同位角的概念可知,∠ADE与∠B是同位角,不符合题意;B、由同位角同旁内角的概念可知,∠BDE与∠C不是同旁内角,符合题意;C、由内错角的概念可知,∠BDE与∠AED是内错角,不符合题意;D、由同旁内角的概念可知,∠BDE与∠DEC是同旁内角,不符合题意.故选B.根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角作答.选择题如图,在所标识的角中,同位角是()A.∠1和∠2B.∠1和∠3C.∠1和∠4D.∠2和∠3【答案】C【解析】根据同位角、邻补角、对顶角的定义进行判断,A、∠1和∠2是邻补角,故A错误;B、∠1和∠3是邻补角,故B错误;C、∠1和∠4是同位角,故C正确;D、∠2和∠3是对顶角,故D错误.故选:C.【考点精析】根据题目的已知条件,利用同位角、内错角、同旁内角的相关知识可以得到问题的答案,需要掌握两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角;判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全.选择题已知:如图,直线AB、CD被直线EF所截,则∠EMB的同位角是()A.∠AMFB.∠BMFC.∠ENCD.∠END【答案】D【解析】∵直线AB、CD被直线EF所截,∴只有∠END与∠EMB 在截线EF的同侧,且在AB和CD的同旁,即∠END是∠EMB的同位角.故选D【考点精析】利用同位角、内错角、同旁内角对题目进行判断即可得到答案,需要熟知两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角;判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全.选择题如图,若直线MN与△ABC的边AB、AC分别交于E、F,则图中的内错角有()A.2对B.4对C.6对D.8对【答案】C【解析】根据内错角定义,先找出两直线被第三条直线所截:MN、BC被AB所截得∠MEB与∠ABC,被AC所截得∠NFC与∠C;AC、MN被AB所截得∠A与∠AEM,MN、AB被AC所截得∠A与∠AFN;AB、AC被MN所截得∠AEF与∠CFE,∠AFE与∠BEF.所以,有6对.故选C【考点精析】解答此题的关键在于理解同位角、内错角、同旁内角的相关知识,掌握两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角;判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全.选择题如图,下列说法中错误的是()A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠4是内错角【答案】D【解析】根据同位角、同旁内角、内错角的定义判断A、同位角:在截线同旁,被截线相同的一侧的两角.同位角的边构成“F“形,∠5和∠3是同位角,正确;B、同旁内角:在截线同旁,被截线之内的两角,同旁内角的边构成”U“形.∠1和∠2是同旁内角、∠4和∠5是同旁内角,正确;C、对顶角:有公共顶点且一角的两边是另外角的两边的反向延长线,∠4和∠2是对顶角,正确;D、内错角:在截线两旁,被截线之内的两角,内错角的边构成”Z“形,∠1和∠4不是内错角,错误.故选D.【考点精析】掌握同位角、内错角、同旁内角是解答本题的根本,需要知道两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角;判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全.选择题如图所示,与∠α构成同位角的角的个数为()A.1B.2C.3D.4【答案】C【解析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.同时,同位角的边构成“F“形,由此可判断,与∠α构成同位角的角为∠ACD,∠FAC,∠FAE.【考点精析】认真审题,首先需要了解同位角、内错角、同旁内角(两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角;判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全).选择题如图,下列6种说法:①∠1与∠4是内错角;②∠1与∠2是同位角;③∠2与∠4是内错角;④∠4与∠5是同旁内角;⑤∠2与∠4是同位角;⑥∠2与∠5是内错角.其中正确的有( )A.1个B.2个C.3个D.4个【答案】C【解析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角作答.所以,题干中只有②④⑥正确,所以选C.【考点精析】本题主要考查了同位角、内错角、同旁内角的相关知识点,需要掌握两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角;判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全才能正确解答此题.填空题如图,根据图形填空.(1)∠A和是同位角;(2)∠B和是内错角;(3)∠A和是同旁内角.【答案】(1)∠ECD,∠BCD(2)∠BCE,∠BCD(3)∠ACB,∠ECA,∠BCA【解析】(1)∠A和∠ECD,∠BCD是同位角;(2)∠B和∠BCE,∠BCD是内错角;(3)∠A和∠ACB,∠ECA,∠BCA是同旁内角;【考点精析】根据题目的已知条件,利用同位角、内错角、同旁内角的相关知识可以得到问题的答案,需要掌握两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角;判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全.填空题如图所示,与∠C构成同旁内角的有个.【答案】3【解析】∠C构成同旁内角的有∠EBC、∠DBC、∠BDC,共3个.;共3个.故填3.【考点精析】解答此题的关键在于理解同位角、内错角、同旁内角的相关知识,掌握两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角;判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全.填空题如图,与图中的∠1成内错角的角是.【答案】∠BDC【解析】如图,AB与CD被BD所截,∵∠1和∠BDC在AB与DC之间,且在BD两侧,∴∠1的内错角是∠BDC.所以答案是:∠BDC.【考点精析】解答此题的关键在于理解同位角、内错角、同旁内角的相关知识,掌握两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角;判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全.填空题如图:△ABC中,∠A的同旁内角是.【答案】∠B和∠C【解析】∠A的同旁内角是∠B和∠C.【考点精析】认真审题,首先需要了解同位角、内错角、同旁内角(两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角;判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全).填空题如图,直线MN分别交直线AB,CD于E,F,其中,∠AEF的对顶角是∠,∠BEF的同位角是∠.【答案】∠BEM;∠DFN【解析】∠AEF的对顶角是∠BEM,∠BEF的同位角是∠DFN.∠AEF与∠BEM有公共顶点,∠BEM的两边是∠AEF的两边的反向延长线,所以是对顶角;∠BEF与∠DFN,在截线MN的同侧,被截线AB、CD的同旁,所以是同位角.解答题如图所示,BF、DE相交于点A,BG交BF于点B,交AC于点C.(1)指出ED、BC被BF所截的同位角,内错角,同旁内角;(2)指出ED、BC被AC所截的内错角,同旁内角;(3)指出FB、BC被AC所截的内错角,同旁内角.【答案】(1)解:同位角:∠FAE和∠B;内错角:∠B和∠DAB;同旁内角:∠EAB和∠B(2)解:内错角:∠EAC和∠BCA,∠DAC和∠ACG;同旁内角:∠EAC和∠ACG,∠DAC和∠BCA(3)解:内错角:∠BAC和∠ACG,∠FAC和∠BCA;同旁内角:∠BAC和∠BCA,∠BAC和∠ABC,∠B和∠ACB,∠FAC和∠ACG【解析】(1)从复杂的图形中分解出我们需要关注部分的图形,然后根据根据三线八角的特点,同位角形如“F”形,内错角形如“Z”形,同旁内角形如“U”形一一写出即可;(2)从复杂的图形中分解出我们需要关注部分的图形,然后根据根据三线八角的特点,同位角形如“F”形,内错角形如“Z”形,同旁内角形如“U”形一一写出即可;(3)从复杂的图形中分解出我们需要关注部分的图形,然后根据根据三线八角的特点,同位角形如“F”形,内错角形如“Z”形,同旁内角形如“U”形一一写出即可。

5.1.3 同位角、内错角、同旁内角(解析版)

5.1.3 同位角、内错角、同旁内角(解析版)

5.1.3 同位角,内错角,同旁内角 七年级【下】人教版同步练习【解析版】一、单选题1.如图,1∠和2∠不是同旁内角的是( )A .B .C .D .【答案】D解:选项A 、B 、C 中,∠1与∠2在两直线的之间,并且在第三条直线(截线)的同旁,是同旁内角,故不符合题意;选项D 中,∠1与∠2的两条边都不在同一条直线上,不是同旁内角,符合题意.2.如图,下列说法错误的是( )A .∠1与∠3是对顶角B .∠3与∠4是内错角C .∠2与∠6是同位角D .∠3与∠5是同旁内角【答案】C A 、∠1与∠3是对顶角,故A 说法正确;B 、∠3与∠4是内错角,故B 说法正确;C 、∠2与∠6不是同位角,故C 说法错误;D 、∠3与∠5是同旁内角,故D 说法正确;3.如图的四个图中,∠1与∠2是同位角的有( )A .②③B .①②③C .①D .①②④【答案】D 解:①∠1和∠2是同位角;②∠1和∠2是同位角;③∠1的两边所在的直线没有任何一条和∠2的两边所在的直线公共,∠1和∠2不是同位角; ④∠1和∠2是同位角.∴∠1与∠2是同位角的有①②④.4.如图,直线1l 和2l 被直线3l 所截,则( )A .1∠和2∠是同位角B .1∠和2∠是内错角C .1∠和3∠是同位角D .1∠和3∠是内错角【答案】C 同位角是位于两直线及截线的同侧,内错角是位于两直线内侧及截线两侧,故1∠和3∠是同位角; 5.下列图形中,∠1与∠2不是同位角的是( )A .B .C .D .【答案】B解:观察A 、B 、C 、D ,四个答案,A 、C 、D 都是“F”形状的,而B 不是.6.如图,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角【答案】A 解:直线a ,b 被直线c 所截,∠1与∠2是同位角.7.如图所示,下列说法不正确的是( )A .1∠和B 是同位角B .2∠和A ∠是内错角C .2∠和B 是同旁内角D .3∠和B 是同旁内角【答案】C 解:1∠和B 是同位角,A 正确;2∠和A ∠是内错角,B 正确;2∠和B 不是同旁内角,C 错误;3∠和B 是同旁内角,D 正确;8.如图,下列说法中不正确的是( )A .1∠和3∠是同旁内角B .2∠和3∠是内错角C .2∠和4∠是同位角D .3∠和5∠是对顶角【答案】CA .∠1和∠3是同旁内角,故正确,不合题意;B .∠2和∠3是内错角,故正确,不合题意;C .∠2和∠4不是同位角,故错误,符合题意;D .∠3和∠5是对顶角,故正确,不合题意; 9.如图,直线AB BE 、被AC 所截,下列说法,正确的有( )①1∠与2∠是同旁内角;②1∠与ACE ∠是内错角;③B 与4∠是同位角;④1∠与3∠是内错角.A .①③④B .③④C .①②④D .①②③④【答案】D解:①1∠与2∠是同旁内角,说法正确;①1∠与ACE ∠是内错角,说法正确;①B 与4∠是同位角,说法正确;①1∠与3∠是内错角说法正确,10.如图,直线AB ,CD 被直线EF 所截,与AB ,CD 分别交于点E ,F ,下列描述:①∠1和∠2互为同位角 ②∠3和∠4互为内错角③∠1=∠4 ④∠4+∠5=180°其中,正确的是( )A .①③B .②④C .②③D .③④【答案】C ①∠1和∠2互为邻补角,故错误;②∠3和∠4互为内错角,故正确;③∠1=∠4,故正确;④∵AB 不平行于CD ,∴∠4+∠5≠180°故错误,二、填空题11.如图,共有_____对同位角,有_____对内错角,有_____对同旁内角.【答案】20 12 12解:同位角:①AEO和①CGE,①OEF和①EGH,①OFB和①OHD,①OFE和①OHG,①IGH和①IEF,①AEI 和①CGI,①AFJ和①CHJ,①DHJ和①JFB,①AEO和①AFO,①OEB和①OFB,①AEG和①AFH,①GEB 和①HFB,①EGH和①OHD,①OGC和①OHC,①O与①EFH,①O与①GEF,①O和①IGH,①O和①GHJ,①CGI和①CHJ,①HGI和①DHJ,共20对;内错角:①O和①OEA,①O和①OFB,①O和①OGC,①O和①OHD,①AEG和①EGH,①BEG和①EGC,①BFH和①FHC,①AFH和①FHD,①OEF和①EFH,①GEF和①OFE,①OGH和①GHJ,①OHG和①IGH,共12对;同旁内角:①OEF和①O,①OFE和①O,①O和①OGH,①O和①OHC,①OEF和①OFE,①OGH和①OHG,①GEF和①EFH,①IGH和①GHJ,①AEG和①CGE,①BFH和①FHD,①FEG和①EGH,①EFH和①GHF,共12对,故答案为:20;12;12.12.如图,∠1与∠2是直线_____和_____被直线_____所截的一对_____角.【答案】a b c 内错解:①1与①2是直线a和b被直线c所截的一对内错角.构成内错角的角是______;13.如图,与CDE【答案】∠DEA和∠BCD.解:∠CDE与∠DEA可以看成直线AC与直线CD被直线DE所截的内错角;∠CDE与∠BCD可以看成直线DE与直线BC被直线CD所截的内错角.14.如图,已知直线a,b被直线c所截,那么∠1的同位角是_____.【答案】∠2解:∠1的同位角是∠2,15.如图,∠1和∠2是________角,∠2和∠3是________角.【答案】同位同旁内【详解】如图,∠1和∠2是同位角,∠2和∠3是同旁内角.16.如图,直线 AB CD 、被直线 EF 所截, A ∠和__________是同位角, A ∠和__________是内错角【答案】1∠ 3∠解:直线AB 、CD 被直线EF 所截,∠A 和∠1是同位角,∠A 和∠3是内错角.三、解答题17.两条直线被第三条直线所截,1∠和2∠是同旁内角,3∠和2∠是内错角.(1)根据上述条件,画出符合题意的示意图;(2)若132∠=∠、233∠=∠,求1∠,2∠的度数【答案】(1)答案见解析;(2)∠1=162°,∠2=54°.解:(1)如图,下图为所求作.(2)132∠=∠,233∠=∠,193∴∠=∠,又13180∠+∠=︒,933180∴∠+∠=︒,318∴∠=︒,1162∴∠=︒,254∠=︒.18.如图所示,找出图中的同位角、内错角、同旁内角(仅限于用数字表示).【详解】根据题意,由图可知,同位角:1∠和3,3∠∠和5∠内错角: 1∠和4,4∠∠和5∠同旁内角: 1∠和2,5∠∠和6∠19.如图,已知直线a ,b 被直线c ,d 所截,直线a ,c ,d 相交于点O ,按要求完成下列各小题.(1)在图中的∠1~∠9这9个角中,同位角共有多少对?请你全部写出来;(2)∠4和∠5是什么位置关系的角?∠6和∠8之间的位置关系与∠4和∠5的相同吗?【答案】(1)如题图所示:同位角共有5对:解:(1)如题图所示:同位角共有5对:分别是∠1和∠5,∠2和∠3,∠3和∠7,∠4和∠6,∠4和∠9;(2)由三线八角的判断方法∠4和∠5是由c,b,d三线组成,并且构成“U”形图案,所以∠4和∠5是同旁内角,同理可得:∠6和∠8也是同旁内角,故∠6和∠8之间的位置关系与∠4和∠5的相同.故答案是:(1)同位角共有5对:分别是∠1和∠5,∠2和∠3,∠3和∠7,∠4和∠6,∠4和∠9;∠4和∠5是同旁内角;(2)∠6和∠8之间的位置关系与∠4和∠5的相同.20.如图,BF,DE相交于点A,BG交BF于点B,交AC于点C.(1)指出DE,BC被BF所截形成的同位角、内错角、同旁内角;(2)指出DE,BC被AC所截形成的内错角、同旁内角;(3)指出FB,BC被AC所截形成的内错角、同旁内角.解:(1)同位角:∠FAE和∠B;内错角:∠B和∠DAB;同旁内角:∠EAB和∠B.(2)内错角:∠EAC和∠BCA,∠DAC和∠ACG;同旁内角:∠EAC和∠ACG,∠DAC和∠BCA.(3)内错角:∠BAC和∠ACG,∠FAC和∠BCA;同旁内角:∠BAC和∠BCA,∠FAC和∠ACG.。

七年级数学下册同位角、内错角、同旁内角练习题

七年级数学下册同位角、内错角、同旁内角练习题

七年级数学下册同位角、内错角、同旁内角练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,直线l 1,l 2被直线l 3所截,则( )A .∠1和∠2是同位角B .∠1和∠2是内错角C .∠1和∠3是同位角D .∠1和∠3是内错角2.如图,直线a 、b 被直线c 所截,则下列说法错误的是( )A .1∠与2∠是邻补角B .1∠与3∠是对顶角C .2∠与4∠是同位角D .3∠与4∠是内错角3.下列各图中,∠1与∠2是对顶角的是( )A .B .C .D .4.如图所示,下列说法错误的是( )A.∠1和∠3是同位角B.∠1和∠5是同位角C.∠1和∠2是同旁内角D.∠5和∠6是内错角5.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(3)相等的两个角是对顶角;(4)从直线外一点到这条直线的垂线段,叫作这点到直线的距离.其中正确的有()A.0个B.1个C.2个D.3个6.在下图中,1∠和2∠是同位角的是()A.(1)、(2)B.(1)、(3)C.(2)、(3)D.(2)、(4)7.下列四幅图中,1∠和2∠是同位角的是()A.(1)(2)B.(3)(4)C.(1)(2)(3)D.(1)(3)(4)8.如图,下列两个角是同旁内角的是( )A .1∠与2∠B .1∠与3∠C .1∠与4∠D .2∠与4∠9.如图所示,下列说法正确的是( )A .∠2与∠1是内错角B .∠2与∠3是同位角C .∠3与∠B 是同旁内角D .∠A 与∠3是内错角10.下列图形中,1∠与2∠是同位角的是( )A .B .C .D .11.下列所示的四个图形中,∠1和∠2是同位角的是( )A .∠∠B .∠∠∠C .∠∠∠D .∠∠12.下列说法正确的是( )A .同位角相等B .在同一平面内,如果a ∠b ,b ∠c ,则a ∠cC .相等的角是对顶角D .在同一平面内,如果a ∠b ,b ∠c ,则a ∠c二、填空题13.如图所示,(1)1∠和2∠是直线______和直线_______被第三条直线_______所截而成的_______角;(2)2∠和3∠是直线______和直线_______被第三条直线______所截而成的______角;(3)4∠和A ∠是直线______和直线______被第三条直线______所截而成的_______角.14.如图,直线,AB CD 与直线,EF GH 分别相交,图中的同旁内角共有_______对.15.如图,∠1和∠B 是直线____和直线____被直线____所截得到的_____角;∠2和∠4是直线____和直线____被直线____所截得到的_____角;∠D和∠4是直线___和直线___被直线___所截得到的_____角.16.如图,四边形ABCD是正方形,点E在BC上,∠ABE绕正方形的中心经顺时针旋转后与∠DAF重合,则∠DGE=______度.17.回顾之前所学内容填空:同位角:图中∠1与∠5,这两个角分别在直线AB,CD的同一方(上方),并且都在直线EF的同侧(右侧),具有这种位置关系的一对角叫做__________.图中还有同位角:__________.内错角:∠3与∠5,这两个角分别在直线AB,CD之间,并且分别在直线EF两侧,(∠3在直线EF左侧,∠5在直线EF右侧),具有这种位置关系的一对角叫做__________.图中还有内错角:__________.同旁内角:∠3与∠6,这两个角分别在直线AB,CD之间,但它们在直线EF的同一旁(左侧),具有这种位置关系的一对角叫做__________.图中还有同旁内角:__________.18.如图所示,1∠与2∠是________角,2∠与4∠是______角,2∠与3∠是__________角.19.空间两条不重合的直线的位置关系有________、________、________三种.三、解答题20.如图中,共有几对内错角?这几对内错角分别是哪两条直线被哪一条直线所截构成的?21.根据图形填空:(1)若直线,ED BC 被直线AB 所截,则1∠和_____是同位角;(2)若直线,ED BC 被直线AF 所截,则3∠和_____是内错角;(3)1∠和3∠是直线,AB AF 被直线______所截构成的内错角;(4)2∠和4∠是直线AB ,______被直线BC 所截构成的_____角.22.如图∠1、∠2、∠3、∠4、∠5中,哪些是同位角?哪些是内错角?哪些是同旁内角?参考答案:1.C【分析】两条直线a、b被第三条直线c所截,在截线c的同旁,被截两直线a、b的同一侧的角(都在左侧或者都在右侧),把这样的两个角称为同位角;根据定义分别判断即可.【详解】解:∠1和∠2既不是同位角,也不是内错角,故选项A、B错误;∠1和∠3是同位角,故选项C正确,选项D错误;故答案为:C.【点睛】本题考查了同位角、内错角、同旁内角,掌握同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形是解题的关键.2.D【分析】利用邻补角、对顶角、同位角、同旁内角定义解答即可.【详解】解:A 、1∠与2∠是邻补角,故原题说法正确;B 、1∠与3∠是对顶角,故原题说法正确;C 、2∠与4∠是同位角,故原题说法正确;D 、3∠与4∠是同旁内角,故原题说法错误;答案:D .【点睛】此题主要考查了邻补角、对顶角、同位角、同旁内角,关键是掌握各种角的定义.3.A【分析】根据对顶角的定义,即可一一判定.【详解】解:A 、∠1与∠2是对顶角,故A 选项正确;B 、∠1与∠2不是对顶角,故B 选项错误;C 、∠1与∠2不是对顶角,故C 选项错误;D 、∠1与∠2不是对顶角,故D 选项错误.故选:A .【点睛】本题主要考查了对顶角的定义,熟记对顶角的图形是解题的关键.4.B【分析】根据同位角、内错角、同旁内角的意义:两条直线被第三条直线所截,在截线的同旁,在被截的两直线的同一侧的角叫做同位角;两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间的两个角叫做内错角;两条直线被第三条直线所截,在截线同旁,且在被截两条直线之内的两角叫做同旁内角,可得答案.【详解】解:A 、∠1和∠3是同位角,故此选项不符合题意;B 、∠1和∠5不存在直接联系,故此选项符合题意;C 、∠1和∠2是同旁内角,故此选项不符合题意;D 、∠1和∠6是内错角,故此选项不符合题意;故选B .【点睛】本题考查了同位角、内错角、用旁内角,利用同位角、内错角、同旁内角的意义是解题关键. 5.B【分析】正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.【详解】解:(1)同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;(2)强调了在平面内,正确;(3)不符合对顶角的定义,错误;(4)直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.故选:B.【点睛】本题主要考查了对顶角、同位角、相交线、平行线、点到直线的距离,正确理解相关概念是解题的关键.6.B【分析】根据同位角的特征:两条直线被第三条直线所截形成的角中,两个角都在两条被截直线的同侧,并且在第三条直线(截线)的同旁,由此判断即可.【详解】解:∠∠1和∠2是同位角;∠∠1的两边所在的直线没有任何一条和∠2的两边所在的直线公共,∠1和∠2不是同位角;∠∠1和∠2是同位角;∠∠1的两边所在的直线没有任何一条和∠2的两边所在的直线公共,∠1和∠2不是同位角.故选:B.【点睛】本题考查三线八角中的某两个角是不是同位角,同位角完全由两个角在图形中的相对位置决定.在复杂的图形中判别同位角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形.7.A【分析】互为同位角的两个角,都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.【详解】解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角;图(3)∠1、∠2的两边都不在同一条直线上,不是同位角;图(4)∠1、∠2不在被截线同侧,不是同位角.故选:A.【点睛】本题考查同位角的概念,是需要熟记的内容.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.8.B【分析】根据同旁内角的概念求解即可.【详解】解:由图可知,∠1与∠3是同旁内角,∠1与∠2是内错角,∠4与∠2是同位角,故选:B .【点睛】本题考查了同旁内角的概念,属于基础题,熟练掌握同位角,同旁内角,内错角的概念是解决本题的关键.9.C【分析】根据内错角、同位角、同旁内角的定义进行判断即可.【详解】∠2与∠1不是内错角,A 选项错误,不符合题意;∠2与∠3是邻补角,B 选项错误,不符合题意;∠3与∠B 是同旁内角,C 选项正确,符合题意;∠A 与∠3是同位角,D 选项错误,不符合题意;故选:C .【点睛】本题考查了内错角、同位角、同旁内角的定义,即同位角:在截线的同旁,在被截两直线的同方向;内错角:在截线的两旁,在被截两直线的内部;同旁内角:在截线的同一侧,夹在被截两直线的之间;熟练掌握知识点是解题的关键.10.D【分析】根据同位角的定义解答.【详解】A 、B 、C 中的1∠与2∠不是同位角,D 中的1∠与2∠是同位角;故选:D .【点睛】此题考查同位角的定义,熟记定义是解题的关键.11.C【分析】在截线的同侧,并且在被截线的同一方的两个角是同位角,所以∠∠∠符合要求.【详解】解:图∠、∠、∠中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;图∠中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选:C .【点睛】此题主要考查了内错角、同位角和同旁内角的定义,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.12.D【分析】根据同位角的定义、垂线的性质、对顶角的性质、平行公理依次判断.【详解】解:A. 同位角不一定相等,故该项不符合题意;B. 在同一平面内,如果a ∠b ,b ∠c ,则a //c ,故该项不符合题意;C. 相等的角不一定是对顶角,故该项不符合题意;D. 在同一平面内,如果a//b,b//c,则a//c,故该项符合题意;故选:D.【点睛】此题考查了语句的判断,正确掌握同位角的定义、垂线的性质、对顶角的性质、平行公理是解题的关键.13.BA CE BD同位BA CA BD同旁内BA CE AC内错【分析】根据同位角、内错角及同旁内角的定义:两直线被第三条直线所截,在截线的同一侧,被截线的同一方向的两个角是同位角;在截线的两侧,被截线的内部的两个角是内错角;在截线的同一侧,被截线的内部的两个角是同旁内角,结合图形即可得出答案.【详解】解:由图可知:(1)1∠和2∠是直线BA和直线CE被第三条直线BD所截而成的同位角;∠是直线BA和直线CA被第三条直线BD所截而成的同旁内角;(2)2∠和3(3)4∠和A∠是直线BA和直线CE被第三条直线AC所截而成的内错角,故答案为:BA;CE;BD;同位;BA;CA;BD;同旁内;BA;CE;AC;内错.【点睛】此题考查了同位角、内错角及同旁内角的知识,属于基础题,掌握定义是关键.14.16【分析】根据同旁内角的定义:两直线被第三条直线所截,在截线的同一侧,被截线的内部的两个角是同旁内角,注意每一个“三线八角”基本图形都有两对同旁内角,从对原图形进行分解入手即可求得答案.【详解】解:直线AB、CD被EF所截有2对同旁内角;直线AB、CD被GH所截有2对同旁内角;直线CD、EF被GH所截有2对同旁内角;直线CD、GH被EF所截有2对同旁内角;直线GH、EF被CD所截有2对同旁内角;直线AB、EF被GH所截有2对同旁内角;直线AB、GH被EF所截有2对同旁内角;直线EF、GH被AB所截有2对同旁内角.共有16对同旁内角.故答案为:16.【点睛】此题考查了同旁内角的知识,属于基础题,掌握定义是关键.15.(1)AD(2)BC(3)AB(4)同位(5)AB(6)CD(7)AC(8)同位(9)AC(10)AD(11)CD(12)同旁内【分析】根据两直线被第三条直线所截,在截线的同一侧,被截线的同一方向的两个角是同位角;在截线的两侧,被截线的内部的两个角是内错角;在截线的同一侧,被截线的内部的两个角是同旁内角,结合图形解答.【详解】∠1和∠B是直线AD和直线BC被直线A所截得到的同位角;∠2和∠4是直线AB和直线CD被直线AC所截得到的同位角;∠D和∠4是直线AC和直线AD被直线DC所截得到的同旁内角.【点睛】本题主要考查了三线八角的问题,熟记同位角、内错角、同旁内角的位置关系是解决此类问题的关键.16.90【分析】由旋转的性质得∠ADF=∠BAE,再根据正方形的性质,得∠DAF=90°,从而得∠AFD+∠ADF=90°,即∠AFD+∠BAE=90°,再由三角形内角和定理得出∠AGF=90°,即可由对顶角相等求得答案.【详解】解:∠△ABE绕正方形的中心经顺时针旋转后与△DAF重合,∠∠ADF=∠BAE,∠四边形ABCD是正方形,∠∠DAF=90°,∠∠AFD+∠ADF=90°,∠∠AFD+∠BAE=90°,∠∠AFD+∠BAE+∠AGF=180°,∠∠AGF=90°,∠∠DGE=∠AGF=90°,故答案为:90.【点睛】本题考查旋转的性质,三角形内角和定理,对顶角性质,熟练掌握旋转的性质是解题的关键.17.同位角∠2和∠6;∠3和∠7;∠4和∠8内错角∠4和∠6同旁内角∠4和∠5【解析】略18.同位同旁内内错【分析】根据同位角、内错角及同旁内角的定义:两直线被第三条直线所截,在截线的同一侧,被截线的同一方向的两个角是同位角;在截线的两侧,被截线的内部的两个角是内错角;在截线的同一侧,被截线的内部的两个角是同旁内角,结合图形即可得出答案.【详解】解:由图形可得,∠1与∠2是同位角;∠2与∠4是同旁内角;∠2与∠3是内错角.故答案为:同位、同旁内、内错.【点睛】此题考查了同位角、内错角及同旁内角的知识,属于基础题,掌握定义是关键.19.相交平行异面【分析】在空间,直线与直线的位置关系有平行、相交、异面三种,在同一平面内两条不重合的直线的位置关系是平行或相交,根据两条直线所在的空间解答即可.【详解】在空间,直线与直线的位置关系有相交、平行、异面,故答案为:相交、平行、异面.【点睛】此题考查相交于平行的特征及性质,关键是要明确两条直线所在的平面是在空间或是在同一平面内.20.BC、BE被DF截得的两对内错角;∠DFB和∠CDF;∠FDB和∠FDB;AC、AD被BE截得的两对内错角:∠AFE和∠CEF,∠AEF和∠EFD【分析】根据内错角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.所以由图形可得答案.【详解】∠DFB和∠CDF,∠FDB和∠FDB 是BC、BE被DF截得的内错角;∠AFE和∠CEF,∠AEF和∠EFD是AC、AD被BE截得的内错角.【点睛】本题主要考查了内错角的定义,三线八角中的某两个角是不是内错角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别内错角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.内错角的边构成“Z“形,认真识图是关键.21.(1)2∠;(3)ED;(4)AF,同位∠;(2)4【分析】(1)根据图形及同位角的概念可直接进行求解;(2)根据图形及内错角的概念可直接进行求解;(3)根据图形及内错角的概念可直接进行求解;(4)根据图形及同位角的概念可直接进行求解.【详解】解:由图可得:(1)若直线,ED BC 被直线AB 所截,则1∠和2∠是同位角;故答案为2∠;(2)若直线,ED BC 被直线AF 所截,则3∠和4∠是内错角;故答案为4∠;(3)1∠和3∠是直线,AB AF 被直线ED 所截构成的内错角;故答案为ED ;(4)2∠和4∠是直线AB ,AF 被直线BC 所截构成的同位角;故答案为AF ,同位.【点睛】本题主要考查内错角及同位角的概念,熟练掌握同位角及内错角的概念是解题的关键. 22.同位角有∠1和∠5;∠4和∠3;内错角有∠2和∠3;∠1和∠4;同旁内角有∠3和∠5;∠4和∠5;∠4和∠2.【分析】同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.依此即可得出答案.【详解】解:∠∠1和∠5在截线AC 同侧,在被截直线BE ,CE 同方向所成的角;∠4和∠3,在截线CE 的上方,被截直线DB 、EB 的左侧,∠同位角有∠1和∠5;∠4和∠3,共2对;∠∠2和∠3在截线BD 两侧,被截直线AC 与CE 内部;∠1和∠4在截线BE 两侧,被截直线AC 与CE 内部, ∠内错角有∠2和∠3;∠1和∠4,共2对;∠∠3和∠5在截线CD 同侧,被截直线CB 与DB 内部;∠4和∠5在截线CE 同侧,被截直线CB 与EB 的内部;∠4和∠2在截线BE 同侧,被截直线DB 与DE 的内部,∠同旁内角有∠3和∠5;∠4和∠5;∠4和∠2,共3对.【点睛】本题考查了同位角、内错角、同旁内角,三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.。

人教版七年级数学下册5-1-3 同位角、内错角、同旁内角 习题(含答案及(6)

人教版七年级数学下册5-1-3 同位角、内错角、同旁内角 习题(含答案及(6)

5.1.3 同位角、内错角、同旁内角学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.如图所示,下列说法,正确的有( )①∠1与∠2是同旁内角;②∠1与∠ACE是内错角;③∠B与∠4是同位角;④∠1与∠3是内错角.A.①③④B.③④C.①②④D.①②③④2.如图,与∠B是同旁内角的角有( )A.1个B.2个C.3个D.4个3.如图所示,有下列五种说法:①∠1和∠4是同位角;②∠3和∠5是内错角;③∠2和∠6旁内角;④∠5和∠2是同位角;⑤<1和∠3是同旁内角;其中正确的是()A.①②③④B.①②③④C.①②③④⑤D.①②④⑤4.如图∠1与∠2是同位角的个数有()A.1个B.2个C.3个D.4个5.如图所示,下列说法不正确的是()A.∠1和∠2是同旁内角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠4是内错角6.如图所示,同位角共有()对.A.1 B.2 C.3 D.47.如图,下列说法中,错误的是()A.∠4与∠B是同位角B.∠B与∠C是同旁内角C.∠2与∠C是同位角D.∠1与∠3是内错角二、填空题1.根据图形填空:(1)若直线ED,BC被直线AB所截,则∠1和____是同位角;(2)若直线ED,BC被直线AF所截,则∠3和____是内错角;(3)∠1和∠3是直线AB,AF被直线____所截构成的_______;(4)∠2和∠4是直线____,____被直线BC所截构成的_____.2.如图,∠ABC与_____是同位角;∠ADB与________是内错角;∠ABC与___________是同旁内角.3.图中的内错角是________ .三、解答题1.如图,试判断∠1与∠2,∠1与∠7,∠1与∠BAD,∠2与∠9,∠2与∠6,∠5与∠8各对角的位置关系.参考答案一、单选题1.D解析:根据同位角、内错角、同旁内角的定义进行解答即可.详解:①∠1与∠2是直线AB、BC被直线AC所截形成的同旁内角,故正确;②∠1与∠ACE是直线AB、CE被直线AC所截形成的内错角,故正确;③∠B与∠4是直线AB、CD被直线BE所截形成的同位角,故正确;④∠1与∠3是直线AB、CD被直线AC所截形成的内错角,故正确,故选D.点睛:本题考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.2.C解析:与∠B是同旁内角的角有∠C, ∠BAC, ∠BAE共3个.故选C.3.D解析:如图,①∠1和∠4是直线AC和直线BC被直线AB截得的同位角,所以①正确;②∠3和∠5是直线BC和直线AB被直线AC截得的内错角,所以②正确;③∠2和∠6是直线AB和直线AC被直线CB截得的内错角,所以③错误;④∠5和∠2是直线AC和直线BC被直线AB截得的同位角,所以④正确;⑤∠1和∠3是直线BC和直线AB被直线AC截得的同旁内角,所以⑤正确.故答案选D.点睛:(1)准确识别同位角、内错角、同旁内角的关键,是弄清两角是由哪两条直线被哪条直线截得,这其中的关键是辨别出截线,在截线的两旁的是内错角,在截线的同旁的为同位角或同旁内角;(2)辨别截线方法:先找出两角的边所在直线,公共直线即是截线.4.D详解:第一个图中∠1与∠2符合同位角的位置特征,是同位角;第二个图中∠1与∠2符合同位角的位置特征,是同位角;第三个图中∠1与∠2符合同位角的位置特征,是同位角;第四个图中∠1与∠2符合同位角的位置特征,是同位角,故选D.5.A分析:根据对顶角、邻补角、同位角、内错角定义判断即可.详解:A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选A.点睛:此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义.6.B解析:试题如图所示:∠1和∠2,∠3和∠4是同位角,共2对,故选B .7.A解析:试题A. ∠4与∠B 应为同旁内角,说法错误;B. ∠B 与∠C 是同旁内角,说法正确;C. ∠2与∠C 是同位角,说法正确;D. ∠1与∠3是内错角,说法正确;故选A.二、填空题1.∠2 ∠4 ED 内错 AB AF 同位分析:根据同位角、内错角的定义进行分析解答即可,两个角分别在截线的两侧,且在两条直线之间,具有这样位置关系的一对角互为内错角,两个角都在截线的同旁,又分别处在被截的两条线的同侧,具有这样位置关系的一对角叫做同位角.详解:(1)若直线ED ,BC 被直线AB 所截,则∠1和∠2是同位角;(2)若直线ED ,BC 被直线AF 所截,则∠3和∠4是内错角;(3)∠1和∠3是直线AB ,AF 被直线ED 所截构成的内错角;(4)∠2和∠4是直线AB ,AF 被直线BC 所截构成的同位角.点睛:本题主要考查内错角、同位角的定义,解答此类题确定三线八角是关键,可直接从截线入手.2.∠EAD ∠DBC,∠EAD ∠DAB,∠BCD解析:试题根据同位角,内错角和同旁内角的概念进行判断,(1)ABC ∠与EAD ∠是同位角;(2)ADB ∠与DBC EAD ∠∠,是内错角;(3)ABC ∠与DAB BCD ∠∠,是同旁内角.故答案为:()()()1.2.,3.,.EAD DBC EAD DAB BCD ∠∠∠∠∠3.∠A与∠AEC;∠B与∠BED详解:解:根据内错角的定义得:∠A与∠AEC;∠B与∠BED;故答案为:∠A与∠AEC;∠B与∠BED.三、解答题1.∠1与∠2是同旁内角,∠1与∠7是同位角,∠1与∠BAD是同旁内角,∠2与∠9没有特殊的位置关系,∠2与∠6是内错角,∠5与∠8是对顶角.解析:根据同旁内角、同位角、内错角和对顶角的概念即可解答.详解:由图可知:∠1与∠2是同旁内角.∠1与∠7是同位角.∠1与∠BAD是同旁内角.∠2与∠9没有特殊的位置关系.∠2与∠6是内错角.∠5与∠8是对顶角.点睛:本题考查的知识点是同旁内角、同位角、内错角和对顶角,解题的关键是熟练的掌握同旁内角、同位角、内错角和对顶角.。

(完整版)同位角,内错角,同旁内角习题(含答案)

(完整版)同位角,内错角,同旁内角习题(含答案)

2019年4月16日初中数学作业一.单选题1.已知Z1和Z2是同旁内角,Zl=60° , Z2等于() A. 140°B. 120°C. 60。

D.无法确定 【答案】D【解析】【分析】 本题只是给出两个角的同旁内角关系,没有两直线平行的条件,故不能判断两个角的数 量关系.【详解】解:同旁内角只是一种位置关系,两直线平行时同旁内角互补,不平行时无法确定同旁 内角的人小关系,故选D.【点睛】特别注意,同旁内角互补的条件是两直线平行.[Wr]【分析】 本题需先根据同位角的定义进行筛选,即町得岀答案.【详解】A 、•••根据同位角的定义得:Z1与Z2不是同位角,故本选项错误:E 、I 根据同位角的定义得:Z1与Z2是同位角,故本选项正确:C. I 根据同位角的定义得:学校: _____________ 姓名: _____________ 班级:____________ 考号: _____________ 2.下列各图中,乙1与乙2是同位角的是(Z1与Z2不是同位角,故本选项错误:D 、•・•根据同位角的定义得:Z1与Z2不是同位角,故本选项错误.故选E.【点睛】本题主要考查了同位角,在解题时要根据同位角的定义进行筛选是本题的关键.【答案]C【分析】 根据同位角:两条直线彼第三条直线所截形成的角中,若两个角都在两直线的同侧,并 且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.【详解】如图①,Zls Z2是直线加与直线“被直线"所截形成的同位角,故①符合题意;如图②,ZU Z2是直线卩与直线q 被直线『所截形成的同位角,故②符合题意;如图③,Z1是直线d 与直线e 构成的夹角,Z2是直线g 与直线/形成的夹角,Z1与Z2不是同位角,故③不符合题意;如图④,ZU Z2是直线a 与直线b 被直线c 所截形成的同位角,故④符合题意.故选C.【点睛】本题考查了同位角,关键是掌握同位角的边构成“F “形,内错角的边构成“Z“形,同3.如图所示,乙1和乙2是同位角的是(D.旁内角的边构成W 形・4.下列所示的四个图形中,Z1和Z2是同位角的是()• • •【答案】D【解析】【分析】 根据同位角,内错角,同旁内角的概念解答即可.【详解】Z1和Z2是同位角的是①©④.故选D.【点睛】本题考查了同位角,内错角,同旁内角的概念,关键是根据同位角, 【分析】 根据同位角的特征:两条直线被第三条直线所截形成的角中,两个角都在两条被截直线 的同侧,并且在第三条直线(截线)的同旁,由此判断即可.【详解】 解:A 、B. D 中Z1和Z2是同位角;C 、Z1和Z2不满足两条直线彼第三条直线所截 形成的角,所以不是同位角;故选:C.【点睛】 本题考查三线八角中的某两个角是不是同位角,同位角完全由两个角在图形中的相对位 置决定.在复杂的图形中判别同位角时,应从角的两边入于具有上述关系的角必有两 试卷第3页,总18页B.①® 内错角,同旁内角A.③©D ・④ 的概念解答.【衢]A.对顶角【答案】DB.同位角C.内错角 0.同旁内角边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即 为被截的线.同位角的边构成“F “形.6.如图,下列说法不正确的是()两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直 线(截线)的同旁,则这样一对角叫做同位角;两条直线被第三条直线所截形成的角中, 若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁 内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第 三条直线(截线)的两旁,则这样一对角叫做内错角.【详解】A ・Z1和ZB 是DE 与被AB 所截得到的同位角,正确;B. Z1和Z4是初与AC 被DE 所截得到的内错角,正确;C. Z3和ZB 是DE 与BC 被AB 所截得到的同旁内角,正确;D. ZC 和ZA 是AB 与BC 被AC 所截得到的同旁内角,故不正确:故选D.【点睛】本题考查了同位角、内错角、同旁内角的定义,熟练掌握三种角的特征是解答本题的关 键.7.如图,直线b.c 被直线a 所截,则Z1和Z2的关系是()【衢】【分析】A. Z1和ZB 是同位角C. Z3和ZB 是同旁内角【答案】D 【梯】【分析】B. Z1和Z4是内错角 D. ZC 和ZA 不是同旁内角结合图形,根据同位角、内错角、同旁内角的概念进行判断即可.【详解】观察图形可知,Z1和Z2两个角都在两被截直线b和c的内侧,并且在第三条直线a(截线)的同旁,故Z1和Z2是直线b、c被a所截而成的同旁内角,故选D.【点睛】本题考查了“三线八角”,熟练掌握同位角、内错角、同旁内角的图形特征是解题的关键.8.Z1与Z2是内错角,Zl=30°,则Z2的度数为()A.30°B. 150°C. 30°或150°D.不能确定【答案】D【和】【分析】两直线平行时内错角相等,不平行时无法确定内错角的人小关系,据此分析判断即可得.【详解】内错角只是一种位置关系,并没有一定的大小关系,只有两直线平行时,内错角才相等,故选D.【点睛】本题考查了三线八角,明确同位角、内错角、同旁内角只是两个角的一种位置关系,而没有一定的大小关系是解此类问题的关键.9.两条直线被第三条直线所截,若Z1与Z2是同旁内角,且Zl=70°,则()A.Z2=70°B. Z2=110°C. Z2=70O S EZ2=110°D. Z2的度数不能确定【答案】D【解析】【分析】两直线被第三条直线所截,只有当两条被截直线平行时,内错角相等,同位角相等,同旁内角互补.不平行时以上结论不成立.【详解】】解:因为两条直线的位置关系不明确,所以无法判断Z1和Z2大小关系.故选:D.【点睛】本题考查平行线的性质,注意性质定理的条件是两直线平行.10.如图,点O是宜线AB上一点,OE, OF分别平分ZAOC和ZBOC,当OC的位置发生变化时(不与直线AB重合),那么ZEOF的度数()A.不变,都等于90°B.逐渐变大C.逐渐变小D.无法确定【答案】A【解析】【分析】由0E与OF为角平分线,利用角平分线定义得到两对角相等,由平角的定义及等式的性质即可求出所求角的度数.【详解】TOE、OF分别是ZAOC. ZBOC的角平分线,A ZAOE=ZCOE, ZCOF=ZBOF, V ZAOC+ ZCOB= ZAOE+ ZCOE+ ZCOF+ ZBOF=180。

5.1.3 同位角、内错角、同旁内角 人教版七年级数学下册分层作业(含答案)

5.1.3 同位角、内错角、同旁内角 人教版七年级数学下册分层作业(含答案)

第五章相交线与平行线5.1.3 同位角、内错角、同旁内角1.(2021春·河南洛阳·七年级校考期中)如图所示,图中共有内错角().A.2组B.3组C.4组D.5组【答案】B【分析】根据内错角的定义即可求解.【详解】解:根据内错角的定义可知:直线,被所截,和是一组内错角,和是一组内错角;射线,直线被所截,和是一组内错角;因此内错角有3组.故选B.【点睛】本题考查内错角的识别,解题的关键是掌握内错角的定义.两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角.2.(2022春·七年级统考期末)下列图形中,与是同位角的有()A.①②B.①③C.②③D.②④【答案】B【分析】同位角首先是两条直线被第三条直线所截形成的,其次是同位角在截线的同一侧,在两条被截线的同一方向,根据定义逐一判断即可.【详解】解:①和符合同位角的定义,是同位角;②和不是两条直线被第三条直线所截形成的,不是同位角;③和符合同位角的定义,是同位角;④和不是两条直线被第三条直线所截形成的,不是同位角;即与是同位角的有①③,故选:B.【点睛】本题考查了同位角的定义与识别,理解同位角的形成与相对的位置关系,掌握同位角的边构成“”形是解题的关键.3.(2021春·甘肃庆阳·七年级统考期中)如图,AB和CD相交于点O,则下列结论错误的是()A.∠1与∠2互为对顶角B.∠B与∠1互为同位角C.∠A与∠C互为内错角D.∠B与∠C互为同旁内角【答案】C【分析】根据对顶角、同位角、内错角、同旁内角定义判断求解即可.【详解】解:∠1与∠2互为对顶角,故A正确,不符合题意;∠B与∠1互为同位角,故B正确,不符合题意;∠A与∠C不是内错角,故C错误,符合题意;∠B与∠C互为同旁内角,故D正确,不符合题意;故选:C.【点睛】此题考查了对顶角、同位角、内错角、同旁内角,熟记对顶角、同位角、内错角、同旁内角定义是解题的关键.4.(2021春·广东梅州·七年级校联考期末)如图所示,结论中正确的是()A.和是内错角B.和是同旁内角C.和是同位角D.和是同旁内角【答案】D【分析】根据同位角、内错角、同旁内角的意义结合图形进行判断即可.【详解】解:如图,与并不属于同位角、内错角或同旁内角,因此选项A不符合题意;与是直线与直线被直线所截的同位角,因此选项B不符合题意;与是直线与直线被直线所截的内错角,因此选项C不符合题意;与是直线与直线被直线所截的同旁内角,因此选项D符合题意;故选:D.【点睛】本题考查同位角、内错角、同旁内角的意义,掌握同位角、内错角、同旁内角的意义是正确判断的前提,判断两个角是由哪两条直线被第三条直线所截所得到的角是判断的关键.5.(2022春·江苏·七年级专题练习)如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是()A.∠2 和∠4B.∠6和∠4C.∠2 和∠6D.∠6和∠3【答案】A【分析】同位角:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角,根据此定义即可得出答案.【详解】解:∵直线AD,BE被直线BF和AC所截,∴∠1与∠2是同位角,∠5与∠4是内错角,故选A.【点睛】本题考查的知识点是同位角和内错角的概念,解题关键是熟记内错角和同位角的定义.6.(2022春·山东聊城·七年级统考阶段练习)如图,直线a、b 被直线c 所截,下列说法不正确的是()A.∠1 和∠4 是内错角B.∠2 和∠3 是同旁内角C.∠1 和∠3 是同位角D.∠3 和∠4 互为邻补角【答案】A【分析】同位角:两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角;内错角:两个角分别在截线的两侧,且在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同旁内角:两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.【详解】解:A、和不是内错角,此选项符合题意;B、和是同旁内角,此选项不符合题意;C、和是同位角,此选项不符合题意;D、和是邻补角,此选项不符合题意;故选A.【点睛】本题主要考查了同位角,同旁内角,内错角,邻补角,理解同位角,内错角和同旁内角和邻补角的定义是关键.7.(2021春·山东滨州·七年级统考期末)初中第二学期的学习生活已经结束,在你们成长的花季里,一定有很多收获.很高兴和你们合作完成这道考试题.现在我作一个100°的角,你作一个80°的角,下面结论正确的是()A.这两个角是邻补角B.这两个角是同位角C.这两个角互为补角D.这两个角是同旁内角【答案】C【分析】根据互为补角的定义、邻补角的定义、同位角的定义、同旁内角的定义进行判断.【详解】解:一个是的角,另一个是的角,这两个角和等于,这两个角互为补角,这两个角若具备特殊的位置,也可能是邻补角,或同位角,或同旁内角.所以选项、、不一定正确,只有选项是正确的.故选:C.【点睛】本题考查互为补角、邻补角、同位角、同旁内角.解题的关键是灵活掌握补角的定义、邻补角的定义、同位角的定义、同旁内角的定义.8.(2021春·湖南湘西·七年级统考期末)如图所示,若平面上4条两两相交,且无三线共点的4条直线,则共有同旁内角的对数为( )A.12对B.15对C.24对D.32对【答案】C【分析】一条直线与另3条直线相交(不交于一点),有3个交点.每2个交点决定一条线段,共有3条线段.4条直线两两相交且无三线共点,共有条线段.每条线段两侧各有一对同旁内角,可知同旁内角的总对数.【详解】解:平面上4条直线两两相交且无三线共点,共有条线段.又每条线段两侧各有一对同旁内角,共有同旁内角(对.故选:C.【点睛】本题考查了同旁内角的定义.解题的关键是注意在截线的同旁找同旁内角.要结合图形,熟记同旁内角的位置特点.两条直线被第三条直线所截所形成的八个角中,有两对同旁内角.9.(2021春·湖北黄冈·七年级校考阶段练习)如图,直线被直线所截,和__________是同位角,和__________是内错角【答案】【分析】据同位角,内错角,同旁内角的定义判断即可.【详解】解:直线AB、CD被直线EF所截,∠A和∠1是同位角,∠A和∠3是内错角.故答案为:∠1;∠3.【点睛】本题考查了同位角,内错角,同旁内角的定义,熟记定义是解题的关键.10.(2022春·河北保定·七年级统考期中)如图,与∠1是同旁内角的是_____,与∠2是内错角的是_____.【答案】∠5 ∠3【分析】根据同旁内角、内错角的概念:在截线的同旁找同位角和同旁内角,在截线的两旁找内错角.结合题干中图形即可得到答案.【详解】解:如图,与∠1是同旁内角的是∠5,与∠2是内错角的是∠3.故答案为:∠5;∠3.【点睛】本题考查同旁内角和内错角的概念,正确判别内错角和同旁内角是解题关键.11.(2022春·山东济宁·七年级统考期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是______(填序号).【答案】①②③【分析】①根据同位角的定义即可判断;②根据同旁内角的定义即可判断;③根据内错角的定义即可判断;④根据同位角的定义即可判断.【详解】①∠A与∠1是同位角,正确;②∠A与∠B是同旁内角,正确;③∠4与∠1不是内错角,故错误;④∠1与∠3不是同位角,故错误.∴正确的是①②,故答案为:①②.【点睛】本题主要考查同位角,内错角,同旁内角的定义,掌握同位角,内错角,同旁内角的定义是解题的关键.12.(2020春·七年级校考课时练习)如图,直线AB、CD被DE所截,则∠1和∠3是_______,∠1和∠5是_____,∠1和_____是同旁内角.【答案】同位角内错角∠2【分析】利用同位角,内错角,同旁内角的定义判断即可.【详解】解:如图所示,直线AB,CD被DE所截,则∠1和∠3是同位角,∠1和∠5是内错角,∠1和∠2是同旁内角,故答案为:同位角;内错角;∠2.【点睛】本题考查了同位角,内错角,同旁内角,熟练掌握各自的定义是解本题的关键.13.(2022春·全国·七年级专题练习)如图,下列结论:①与是内错角;②与是同位角;③与是同旁内角;④与不是同旁内角,其中正确的是___________(只填序号).【答案】①②③.【分析】根据内错角、同位角及同旁内角的性质逐一判断即可.【详解】与是内错角,①正确;与是同位角,②正确;与是同旁内角,③正确;与是同旁内角,④错误;故答案为:①②③.【点睛】本题主要考查了内错角、同位角及同旁内角的判断,熟练掌握相关概念是解题关键. 14.(2021春·江苏南京·七年级南京玄武外国语学校校考阶段练习)如图,(1)∠1 和∠3 是直线_________和_____被直线_____所截而成的_____角;(2)能用图中数字表示的∠3 的同位角是_____;(3)图中与∠2 是同旁内角的角有_____个.【答案】内错 3【分析】同位角的意思是在被截直线同一侧,而且在截线同侧的两个角;内错角的意思是在两被截直线的内侧,且在截线异侧的两个角;同旁内角的意思是在两被截直线的内侧,且在截线同侧的两个角;据此判断即可.【详解】解:(1)∠1和∠3是直线AB和AC被直线DE所截而成的内错角;故答案为:AB、AC、DE、内错;(2)图中与∠3是同位角的角是∠7,故答案为:∠7;(3)图中与∠2 是同旁内角的角有∠6、∠5、∠7,共3个,故答案为:3.【点睛】本题考查了同位角、内错角、同旁内角等知识点,能根据图形找出各对角是解此题的关键.15.(2023秋·广西贵港·七年级统考期末)如图,直线AB、CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC=∠EOD,求∠BOD的度数.【答案】(1)35°;(2)36°;【分析】(1)根据角平分线的定义和对顶角相等计算求值即可;(2)由∠EOC+∠EOD=180°和∠EOC=∠EOD求得∠EOC,再结合(1)解答计算求值即可;【详解】(1)解:∵OA平分∠EOC,∴∠AOC=∠EOC,∵∠EOC=70°,∴∠AOC=×70°=35°,∵直线AB、CD相交于点O,∴∠BOD=∠AOC=35°;(2)解:∵∠EOC=∠EOD,∠EOC+∠EOD=180°,∴∠EOD +∠EOD=180°,∴∠EOD =180°,∴∠EOD =108°,∴∠EOC=×108°=72°,∵OA平分∠EOC,∴∠AOC=∠EOC=×72°=36°,∵直线AB、CD相交于点O,∴∠BOD=∠AOC=36°;【点睛】本题考查了相交线,与角平分线有关的角的计算,补角的定义;掌握对顶角的性质是解题关键.16.(2022春·江苏·七年级专题练习)如图,(1)DE为截线,∠E与哪个角是同位角?(2)∠B与∠4是同旁内角,则截出这两个角的截线与被截线是哪些直线?(3)∠B和∠E是同位角吗?为什么?【答案】(1)DE为截线,∠E与∠3是同位角;(2)截出这两个角的截线是直线BC,被截线是直线BF、DE;(3)不是,因为∠B与∠E的两边中任一边没有落在同一直线上,所以∠B和∠E不是同位角;【分析】(1)根据“三线八角”模型,截直线和,得到和为同位角;(2)与是同旁内角,两角的一个边在直线上,截线是直线,被截直线为、;(3)与没有公共边,没有被截直线,因此不是同位角.【详解】解:(1)由图形可知,截线为,被截直线为和根据“三线八角”模型可知和为同位角;(2)与是同旁内角,观察图形可知直线是这两个角的公共边,∴为被截直线,、为被截直线;(3)不是,理由如下:∵与没有公共边∴和不是∴和不是同位角.【点睛】此题主要考查了)若直线被直线所截,则和)若直线被直线所截,则和)和是直线被直线______所截构成的内错角;)和是直线,______被直线所截构成的【答案】(1);(2);(3);(4),同位【分析】(1)根据图形及同位角的概念可直接进行求解;(2)根据图形及内错角的概念可直接进行求解;(3)根据图形及内错角的概念可直接进行求解;(4)根据图形及同位角的概念可直接进行求解.【详解】解:由图可得:(1)若直线被直线所截,则和是同位角;故答案为;(2)若直线被直线所截,则和是内错角;故答案为;(3)和是直线被直线所截构成的内错角;故答案为;(4)和是直线,被直线所截构成的同位角;故答案为,同位.【点睛】本题主要考查内错角及同位角的概念,熟练掌握同位角及内错角的概念是解题的关键.1.(2023秋·河南南阳·七年级校考期末)如图,下列判断:①与是同位角;②与是同旁内角;③与是内错角;④与是同位角.其中正确的是()A.B.C.D.【答案】A【分析】根据同位角、内错角、同旁内角的定义,即两条直线被第三条直线所截,在截线的同旁,被截两直线的同一方的角,这样的两个角称为同位角;两条直线被第三条直线所截,两个角都在被截两条直线之间,并且在第三条直线的两侧,这样的一对角叫做内错角;两条直线被第三条直线所截,两个角都在被截两条直线之间,并且在第三条直线的同侧,这样的一对角叫做同旁内角,进行判断即可.【详解】解:①由同位角的概念得出:与是同位角,正确;②由同旁内角的概念得出:与是同旁内角,正确;③由内错角的概念得出:与不是内错角,错误;④由内错角的概念得出:与是内错角,错误.故正确的有2个,是,故选:A.【点睛】本题考查了同位角、内错角、同旁内角的定义,理解和掌握同位角、内错角、同旁内角的意义是正确判断的前提.2.(2023春·全国·七年级专题练习)下列图中和是同位角的是()A.①②③B.②③④C.①②④D.①②【答案】D【分析】根据同位角的定义,即两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.对每个图进行判断即可.【详解】解:①图中∠1和∠2是同位角,符合题意;②图中∠1和∠2是同位角,符合题意;③图中∠1和∠2不是同位角,不符合题意;④图中∠1和∠2不是同位角,不符合题意;图中是同位角的是①②.故选:D.【点睛】本题考查了同位角的定义,掌握基本概念是解题的关键.3.(2021春·上海奉贤·七年级校考期中)如图,下列说法错误的是()A.∠A与∠AEF是同旁内角B.∠BED与∠CFG是同位角C.∠AFE与∠BEF是内错角D.∠A与∠CFE是同位角【答案】B【分析】本题考查的是两直线相交所成角的问题,根据同位角、同旁内角、内错角定义解答即可【详解】A. ∠A与∠AEF是同旁内角,正确B. ∠BED与∠CFG是同位角,错误C. ∠AFE与∠BEF是内错角,正确D. ∠A与∠CFE是同位角,正确【点睛】本题的关键是掌握同位角、同旁内角、内错角的定义4.(2022秋·八年级课时练习)下列推理正确的是()A.∵∠1+∠2=90°,∠2+∠3=90°,∴∠1+∠3=90°B.∵∠1+∠3=90°,∠3+∠2=90°,∴∠1=∠2C.∵∠1与∠2是对顶角,又∠2=∠3,∴∠1与∠3是对顶角D.∵∠1与∠2是同位角,又∠2与∠3是同位角,∴∠1与∠3是同位角【答案】B【分析】根据对顶角,同位角的概念和等量代换等知识点逐项进行判断即可.【详解】解:A. ∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,不能推出∠1+∠3=90°,故本选项错误;B. ∵∠1+∠3=90°,∠3+∠2=90°,∴∠1=∠2(等量代换),故本选项正确;C. ∵∠1与∠2是对顶角,又∠2=∠3,∴∠1与∠3是对顶角,由对顶角的概念可知本选项错误;D. ∵∠1与∠2是同位角,又∠2与∠3是同位角,∴∠1与∠3是同位角,由同位角的概念可知本选项错误;故选B【点睛】本题考查了等量代换、对顶角,同位角的概念,准确掌握各种概念和性质是关键.5.(2020春·甘肃张掖·七年级校考阶段练习)下列图中∠1和∠2是同位角的是()A.(1)、(2)、(3)B.(2)、(3)、(4)C.(3)、(4)、(5)D.(1)、(2)、(5)【答案】D【分析】根据同位角的定义,对每个图进行判断即可.【详解】(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D.【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.6.(2022春·云南昭通·七年级统考期中)如图:下列四个判断中,正确的个数是().①∠1的内错角只有∠4②∠1的同位角是∠B③∠1的同旁内角是∠3、∠E、∠ACD④图中∠B的同位角共有4个A.1个B.2个C.3个D.4个【答案】C【分析】同位角在截线的同侧,在被截线的同一方向上;内错角在截线的两侧,在被截线的内侧;同旁内角在截线的同侧,在被截线的内侧.【详解】①∠1的内错角只有∠4,正确;②∠1的同位角是∠B,错误;③∠1的同旁内角是∠3、∠E、∠ACD,正确;④图中∠B的同位角有∠ECD、∠ACD、∠FAE、∠FAC共有4个,正确;故①③④正确.故选C.【点睛】本题考查同位角,内错角,同旁内角的概念,要熟记这些概念.7.(2022春·四川绵阳·七年级校考阶段练习)如图所示,下列说法错误的是( )A.∠C与∠1是内错角B.∠2与∠3是内错角C.∠A与∠B是同旁内角D.∠A与∠3是同位角【答案】B【分析】根据同位角,同旁内角,内错角的定义可以得到A、C、D是正确的,∠2与∠3是邻补角,不是内错角.【详解】A、∠C与∠1是内错角,故本选项正确;B、∠2与∠3是邻补角,故本选项错误;C、∠A与∠B是同旁内角,故本选项正确;D、∠A与∠3是同位角,故本选项正确.故选B.【点睛】本题主要考查了同位角,内错角,同旁内角的概念,比较简单.8.(2021春·浙江杭州·七年级期中)下列各图中,∠1,∠2不是同位角的是( )A.B.C.D.【答案】B【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.【详解】根据同位角定义可得B不是同位角,故选B.【点睛】此题主要考查了同位角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.9.(2022春·湖北黄冈·七年级校考阶段练习)如图,与是内错角的是__________.【答案】【分析】内错角在截线的两侧,在被截线的内侧.【详解】如图所示,与∠C是内错角的是∠2,∠3;故答案是:∠2,∠3.【点睛】本题考查了内错角,解答此类题确定三线八角是关键,可直接从截线入手.10.(2023春·七年级课时练习)如图,直线AF和AC被直线EB所截,∠EBC的同位角是∠EOF,直线DC、AC被直线AF所截,∠FAC同位角是_____.【答案】∠COF.【分析】根据同位角的位置特点进行解答即可.【详解】解:根据同位角的图形特点,可得∠FAC的同位角是∠COF,故答案为∠COF.【点睛】本题考查同位角、内错角、同旁内角的定义;牢记两直线被第三条直线所截,同位角的位置关系是解本题的关键。

七年级数学(下)第五章《相交线与平行线——同位角、内错角、同旁内角》练习题含答案

七年级数学(下)第五章《相交线与平行线——同位角、内错角、同旁内角》练习题含答案

七年级数学(下)第五章《相交线与平行线——同位角、内错角、同旁内角》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,以下说法正确的是A.∠1和∠2是内错角B.∠2和∠3是同位角C.∠1和∠3是内错角D.∠2和∠4是同旁内角【答案】C【解析】观察图形可得,∠1和∠2是同位角、∠2和∠3是对顶角、∠1和∠3是内错角、∠2和∠4是邻补角,所以正确的答案为C,故选C.2.如图,下列说法错误的是A.∠A与∠EDC是同位角B.∠A与∠ABF是内错角C.∠A与∠ADC是同旁内角D.∠A与∠C是同旁内角【答案】D3.如图所示,∠1与∠2不是同位角的是A.B.C.D.【答案】B【解析】A中,∠1与∠2有一边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;B中,∠1与∠2的两条边都不在同一条直线上,不是同位角,符合题意;C中,∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D中,∠1与∠2有一边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意.故选B.4.如图,属于内错角的是A.∠1和∠2 B.∠2和∠3C.∠1和∠4 D.∠3和∠4【答案】D5.∠1与∠2是直线a,b被直线c所截得的同位角,∠1与∠2的大小关系是A.∠1=∠2 B.∠1>∠2C.∠1<∠2 D.无法确定【答案】D【解析】因为不知道直线a、b之间的位置关系,所以∠1与∠2的大小关系无法确定.故选D.二、填空题:请将答案填在题中横线上.6.如图,如果∠2=100°,那么∠1的同位角等于__________,∠1的内错角等于__________,∠1的同旁内角等于__________.【答案】80°,80°,100°7.如图,∠ABC 与__________是同位角;∠ADB 与__________是内错角;∠ABC 与__________是同旁内角.【答案】∠EAD ,∠DBC 和∠EAD ,∠DAB 和∠BCD 【解析】根据同位角,内错角和同旁内角的概念进行判断, (1)ABC ∠与EAD ∠是同位角;(2)ADB ∠与DBC EAD ∠∠,是内错角; (3)ABC ∠与DAB BCD ∠∠,是同旁内角.故答案为:∠EAD ,∠DBC 和∠EAD ,∠DAB 和∠BCD . 三、解答题:解答应写出文字说明、证明过程或演算步骤.8.如图,∠A 与哪个角是内错角,与哪个角是同旁内角?它们分别是哪两条直线被哪一条直线所截形成的?【解析】根据内错角的边构成“Z ”形,同旁内角的边构成“U ”形进行分析即可.A ∠与ACD ∠是内错角,它是直线AB ,DE 被直线AC 所截形成的; A ∠与ACB ∠是同旁内角,它是直线AB ,BC 被直线AC 所截形成的; A ∠与ACE ∠是同旁内角,它是直线AB ,CD 被直线AC 所截形成的;A∠是同旁内角,它是直线BC,AC被直线AB所截形成的.∠与B9.如图:(1)找出直线DC,AC被直线BE所截形成的同旁内角;(2)指出∠DEF与∠CFE是由哪两条直线被哪一条直线所截形成的什么角;(3)试找出图中与∠DAC是同位角的所有角.10.如图所示,如果内错角∠1与∠5相等,那么与∠1相等的角还有吗?与∠1互补的角有吗?如果有,请写出来,并说明你的理由.【解析】∠1=∠2,与∠1互补的角有∠3和∠4.理由:因为∠1=∠5,∠5=∠2,所以∠1=∠2.因为∠1=∠5,且∠5与∠3和∠4互补,所以与∠1互补的角有∠3和∠4.。

同位角、内错角、同旁内角 浙教版七年级数学下册一课一练(含答案)

同位角、内错角、同旁内角 浙教版七年级数学下册一课一练(含答案)

1.2 同位角、内错角、同旁内角课课练一、单选题1.如图,下列各角与∠A是同位角的是()A.∠1B.∠2C.∠3D.∠42.如图,下列两个角是同旁内角的是()A.∠1与∠2B.∠1与∠3C.∠1与∠4D.∠2与∠4 3.如图,下列说法错误的是()A.∠1与∠3是对顶角B.∠3与∠4是内错角C.∠2与∠6是同位角D.∠3与∠5是同旁内角4.如图,直线a,b,c被射线l和m所截,则下列关系正确的是()A.∠1与∠2是对顶角B.∠1与∠3是同旁内角C.∠3与∠4是同位角D.∠2与∠3是内错角5.如图,∠A与∠1是()A.同位角B.内错角C.同旁内角D.对顶角6.如图,已知两直线l1与l2被第三条直线l3所截,则下列说法中错误的是()A.∠2与∠4是邻补角B.∠2与∠3是对顶角C.∠1与∠4是内错角D.∠1与∠2是同位角7.如图,∠1和∠2不是同旁内角的是()A.B.C.D.8.如图,下列说法中错误的是().A.∠FBC和∠ACE是内错角B.∠ABD和∠ACH是同位角C.∠GBD和∠HCE是同位角D.∠GBC和∠BCE是同旁内角9.如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=20°,∠EFC=130°,则∠A的度数是()A.20°B.30°C.40°D.50°10.如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,如果∠EFG=64°,那么∠EGD的大小是()A.122°B.124°C.120°D.126°二、填空题11.如图,∠1与∠2是直线和被直线所截的一对角.12.如图,若AB,AF被ED所截,则∠1与是内错角.13.如图,∠1和∠2是角,∠2和∠3是角.14.如图,与∠B构成同位角的角是.15.如图,下列结论:①∠2与∠3是内错角;②∠2与∠B是同位角;③∠A与∠B是同旁内角;④∠A与∠ACB不是同旁内角,其中正确的是(只填序号).16.如图,共有对同位角,有对内错角,有对同旁内角.17.如图,直线AB,CD被直线EF所截,如果∠2=100°,那么∠1的同位角等于度.18.如图,同旁内角有对.19.如图,与∠1是同旁内角的是,与∠2是内错角的是.20.如图,有下列3个结论:①能与∠DEF构成内错角的角的个数是2;②能与∠EFB构成同位角的角的个数是1;③能与∠C构成同旁内角的角的个数是4,以上结论正确的是.21.将一把直尺和一块直角三角板如图放置,如果∠α=43°,则∠β的度数是度.22.如图,AB∥CD,∠A=35°,∠C=80°,则∠E=.23.请完成下面的解答过程.如图,∠1=∠B,∠C=110°,求∠3的度数.解:∵∠1=∠B,∴AD∥()∴∠C+=180°.(两直线平行,同旁内角互补)∵∠C=110°,∴∠2=°.∴∠3==70°.()三、解答题24.如图所示的图形中,同位角有多少对。

人教版初一数学7年级下册 第5章(相交线与平行线)同位角、内错角、同旁内角 练习卷(含解析)

人教版初一数学7年级下册 第5章(相交线与平行线)同位角、内错角、同旁内角  练习卷(含解析)

同位角、内错角、同旁内角练习一、选择题1.如图,下列各组角中,互为内错角的是( )A. ∠1和∠2B. ∠2和∠3C. ∠1和∠3D. ∠2和∠52.如图,直线a,b被c所截,则∠1与∠2是( )A. 同位角B. 内错角C. 同旁内角D. 邻补角3.如图,直线a,b被直线c所截,则∠1与∠2的位置关系是( )A. 同位角B. 内错角C. 同旁内角D. 邻补角4.如下图,∠1和∠2为同旁内角的是( )A. B.C. D.5.如图,下列结论中错误的是( )A. ∠1与∠2是同旁内角B. ∠1与∠4是内错角C. ∠5与∠6是内错角D. ∠3与∠5是同位角6.如图,直线a,b被直线c所截,则∠1与∠2的位置关系是()A. 同位角B. 内错角C. 同旁内角D. 邻补角7.如图,在图中∠BAO和∠AOC是一对()A. 内错角B. 同旁内角C. 同位角D. 对顶角8.如图,直线l1,l2被直线13所截,则( )A. ∠1和∠2是同位角B. ∠1和∠2是内错角C. ∠1和∠3是同位角D. ∠1和∠3是内错角9.如图,∠1的内错角是( )A. ∠1B. ∠2C. ∠3D. ∠410.如图,下列说法错误的是( )A. ∠1与∠3是对顶角B. ∠3与∠4是内错角C. ∠2与∠6是同位角D. ∠3与∠5是同旁内角11.如图,直线AB,CD分别与直线EF交于点G,M,GH,MN分别与AB,CD交于点G,M,有下列结论:①∠1与∠4是同位角;②∠2与∠5是同位角;③∠EGB与∠GMD是同位角;④∠3与∠4是同旁内角.其中正确的结论有()A. 4个B. 3个C. 2个D. 1个二、填空题12.如下图,如果∠2=100°,那么∠1的同位角等于______度,∠1的内错角等于______度,∠1的同旁内角等于_____度.13.如下图,标有数字的四个角中,属于内错角的是________.14.已知直线a、b被直线c所截,则与∠1是内错角关系的是____.15.如图,∠1的同位角是,∠2的内错角,∠A的同旁内角是.16.如图所示,把一根筷子的一端放在水里,一端露出水面,筷子变弯了,它真的弯了吗?其实没有,这是光的折射现象,光从空气中射入水中,光的传播方向发生了改变.若不再添加新的标注,则图中与∠1是同旁内角的有________;与∠2是内错角的有________.三、解答题17.两条直线被第三条直线所截,∠1是∠2的同旁内角,∠2是∠3的内错角.(1)画出大致示意图;(2)若∠1=2∠2,∠2=2∠3,求∠1和∠2的度数.18.如图,∠1与∠2,∠3与∠4各是哪两条直线被哪一条直线所截而形成的什么角?19.两条直线都与第三条直线相交,∠1与∠2是内错角,∠1和∠3是同旁内角.(1)根据上述条件,画出符合题意的图形;(2)若∠1:∠2:∠3=1:2:3,求∠1,∠2,∠3的度数.答案和解析1.【答案】B【解析】解:A、∠1和∠2是对顶角,不是内错角,故本选项不符合题意;B、∠2和∠3是内错角,故本选项符合题意;C、∠1和∠3是同位角,不是内错角,故本选项不符合题意;D、∠2和∠5是同旁内角,不是内错角,故本选项不符合题意;2.【答案】B【解答】解:两条直线a、b被直线c所截形成的角中,∠1与∠2都在a、b直线的之间,并且在直线c的两旁,所以∠1与∠2是内错角.3.【答案】A【解答】解:直线a,b被直线c所截,∠1与∠2是同位角.4.【答案】C【解析】本题考查同旁内角的判定。

人教版七年级数学下册5-1-3 同位角、内错角、同旁内角 习题(含答案及(2)

人教版七年级数学下册5-1-3 同位角、内错角、同旁内角 习题(含答案及(2)

5.1.3 同位角、内错角、同旁内角学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.如图,是同位角关系的是( )A.∠3和∠4B.∠1和∠4C.∠2和∠4D.不存在2.如图,与∠1互为同旁内角的角共有()个.A.1 B.2 C.3 D.43.已知∠1与∠2是同旁内角,若∠1=60°,则∠2的度数是( )A.60°B.120°C.60°或120°D.不能确定4.如图,按各组角的位置判断错误的是()A.∠1与∠4是同旁内角B.∠3与∠4是内错角C.∠5与∠6是同旁内角D.∠2与∠5是同位角5.如图,直线a,b被直线c所截,则下列说法中错误的是( )A.∠1与∠2是邻补角B.∠1与∠3是对顶角C.∠2与∠4是同位角D.∠3与∠4是内错角6.如图,与∠4是同旁内角的是( )A.∠1B.∠2C.∠3D.∠57.如图,能与∠a构成同旁内角的角有()A.5个B.4个C.3个D.2个二、填空题1.若平面上4条直线两两相交且无三线共点,则共有同旁内角________对.2.如图,与∠1是同位角的角是___,与∠1是内错角的角是___,与∠1是同旁内角的角是___.3.如图,如果∠2=100°,那么∠1的同位角等于______,∠1的内错角等于_____,∠1的同旁内角等于____.三、解答题1.如图,由∠1=∠2能判断AB∥DF吗?若不能判断AB∥DF,你认为还需要再添加一个什么样的条件?并说明理由.参考答案一、单选题1.B解析:根据同位角的性质可得选项A中的∠1和∠2不是同位角;选项B中的∠1和∠3不是同位角;选项C中的∠1和∠4是同位角;选项D中的∠2和∠3不是同位角.故选B.2.C解析:根据AB和AC被BC所截得出∠2,根据BC和AC被AB所截得出∠CAB,根据DE和BC被AB所截得出∠EAB,即可得出答案.详解:与∠1互为同旁内角的是:∠CAB、∠2、∠EAB,共3个.故选C.点睛:本题考查了对同旁内角的定义的理解和运用,关键是能找出符合条件的所有情况,题目比较好,是一道比较容易出错的题目.3.D分析:同旁内角只有在两条线平行的情况下才是互补的.详解:两直线平行线,同旁内角互补.但是在不知道直线平行的情况下,同旁内角的关系是不确定的. 点睛:本题考查了平行线的性质,熟悉掌握平行线的性质是解题的关键.4.C解析:试题分析:A、∠1和∠A是同旁内角,说法正确;B、∠3和∠4是内错角,说法正确;C、∠5和∠6不是两条直线被第三条直线截成的角,说法错误;D、∠2和∠5是同位角,说法正确.故选C.考点:1.同位角2.内错角3.同旁内角.5.D详解:解:∠3与∠4是同旁内角.故选:D6.C解析:根据同位角、内错角、同旁内角、对顶角的定义逐个判断即可.详解:A、∠1和∠4是内错角,不是同旁内角,故本选项错误;B、∠2和∠4是同位角,不是同旁内角,故本选项错误;C、∠3和∠4是同旁内角,故本选项正确;D、∠4和∠5是邻补角,不是同旁内角,故本选项错误;故选C.点睛:本题考查了同位角、内错角、同旁内角、对顶角的定义的应用,能熟记同位角、内错角、同旁内角、对顶角的定义是解此题的关键,注意:数形结合思想的应用.7.A解析:如图有5个同旁内角,故选A.点睛:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”,否则同位角,内错角不一定相等,同旁内角不一定互补.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.二、填空题1.24解析:根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.详解:解:如图所示观测点A和点B,同旁内角有2对;A和C有2对;A和D,没有同旁内角;A和E有2对;A 和F有2对.B和C有2对;B和D有2对;B和E有2对;B和F没有同旁内角.C和D有2对,C和E没有同旁内角,C和F有2对.D和E有2对;D和F有2对.E和F有2对.共有2×12=24对.故答案是:24.点睛:本题主要考察三线八角中的同旁内角,正确理解同旁内角和准确的分类是解题的关键.2.∠4 ∠2 ∠5解析:根据同位角、内错角和同旁内角的特征(同位角形如“F”,内错角形如“Z”,同旁内角形如“U”)判断即可.详解:∠1与∠4的两条边组成“F”形的图案,故∠1的同位角是∠4;∠1与∠2的两条边组成“Z”形的图案,故∠1的内错角是∠2;∠1与∠5的两条边组成“U”形的图案,故∠1的同旁内角是∠5.故答案是:∠4;∠2;∠5点睛:本题主要考察三线八角中三种角的找法,正确区分同位角、内错角和同旁内角的特点是解题的关键.3.80° 80° 100°解析:试题根据图形可知,∠1的同位角与∠2互补,则∠1的同位角等于80°,∠1的内错角与∠2互补,则∠1的内错角等于80°,∠1的同旁内角与∠2是对顶角,则∠1的同旁内角等于100°.故答案为80°;80°;100°.三、解答题1.不能,理由见解析.解析:分析:∠1=∠2不是AB,DF两条直线的内错角或同位角,不符合平行线的判定条件;如果∠CBD=∠EDB,则∠CBD+∠1=∠EDB+∠2,即∠ABD=∠FDB,满足AB∥DF的条件.详解:不能,添加条件:∠CBD=∠EDB,∵∠CBD=∠EDB,∠1=∠2,∴∠CBD+∠1=∠EDB+∠2,即∠ABD=∠FDB,∴AB∥DF.点睛:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.。

人教版七年级数学下册5.1.3《同位角、内错角、同旁内角》重难点专项练习【四大题型】(原卷版+解析)

人教版七年级数学下册5.1.3《同位角、内错角、同旁内角》重难点专项练习【四大题型】(原卷版+解析)

5.1.3《同位角、内错角、同旁内角》重难点题型专项练习考查题型一 同位角典例1.(2023·广西贺州·统考三模)如图,直线a 、b 被直线c 所截,∠1的同位角是( )A .∠2B .∠3C .∠4D .∠5变式1-1.(2023·广西柳州·统考一模)如图,与1∠是同位角的是( )A .2∠B .3∠C .4∠D .5∠变式1-2.(2023·广西贺州·统考中考真题)如图,直线a ,b 被直线c 所截,下列各组角是同位角的是( )A .1∠与2∠B .1∠与3∠C .2∠与3∠D .3∠与4∠变式1-3.(2023秋·浙江杭州·七年级校考期中)如图,∠1和∠2是同位角的是( ).A .B .C .D .考查题型二 内错角典例2.(2023秋·江苏淮安·七年级校考阶段练习)下列四个图形中,1∠和2∠是内错角的是( ) A . B .C .D .变式2-1.(2023秋·湖北武汉·七年级校考阶段练习)如图,下列各组角中,互为内错角的是( )A .1∠与3∠B .2∠与5∠C .3∠与5∠D .4∠与5∠变式2-2.(2023秋·新疆乌鲁木齐·七年级乌鲁木齐市第四十一中学校考期末)如图中1∠与2∠是内错角是( )A .①②B .②③C .③④D .②④变式2-3.(2023秋·安徽安庆·七年级校考阶段练习)如图,直线a ,b 被直线c 所截,则∠1与∠2是( )A .内错角B .同位角C .对顶角D .邻补角考查题型三 同旁内角典例3.(2023秋·浙江宁波·七年级校考期中)如图,直线∠∠、∠∠被直线∠∠所截,则∠1的同旁内角是( )A .∠2B .∠3C .4∠D .5∠变式3-1.(2023秋·湖北鄂州·七年级统考期中)如图,与2∠互为同旁内角的角是( )A .1∠与5∠B .8∠与9∠C .3∠与12∠D .7∠与10∠变式3-2.(2023秋·浙江温州·七年级统考期中)如图,1∠和2∠是( )A .同位角B .内错角C .对顶角D .同旁内角变式3-3.(2023秋·湖北孝感·七年级校联考阶段练习)如图,与∠3是同旁内角的是( )A .∠2B .∠3C .∠4D .∠5考查题型四 同位角、内错角、同旁内角的综合判断典例4.(2023秋·辽宁沈阳·七年级沈阳市南昌初级中学(沈阳市第二十三中学)阶段练习)如图,下列说法中错误的是( )A .3∠和5∠是同位角B .4∠和5∠是同旁内角C .2∠和4∠是对顶角D .2∠和5∠是内错角变式4-1.(2023春·河北邯郸·八年级校考开学考试)如图,下列判断正确的是( )A .3∠与6∠是同旁内角B .2∠与4∠是同位角C .1∠与6∠是对顶角D .5∠与3∠是内错角变式4-2.(2023秋·浙江杭州·七年级校考期中)如图所示,下列说法中,错误的是()A.∠3与∠B是同旁内角B.∠A与∠1是同位角C.∠2与∠3是内错角D.∠1与∠B是同位角变式4-3.(2023秋·陕西渭南·七年级统考阶段练习)如图,下列说法错误的是()A.∠1与∠2是同旁内角B.∠3与∠5是同位角C.∠1与∠4是内错角D.∠5与∠6是内错角5.1.3《同位角、内错角、同旁内角》重难点题型专项练习考查题型一 同位角典例1.(2023·广西贺州·统考三模)如图,直线a 、b 被直线c 所截,∠1的同位角是( )A .∠2B .∠3C .∠4D .∠5【答案】A【分析】根据同位角的定义逐个判断即可.【详解】解:A 、∠2与∠1是同位角,故本选项符合题意;B 、∠3与∠1不是同位角,故本选项不符合题意;C 、∠4与∠1不是同位角,故本选项不符合题意;D 、∠5与∠1不是同位角,故本选项不符合题意;故选:A .【点睛】本题考查了同位角,内错角,同旁内角等知识点,能熟记同位角的定义是解此题的关键.变式1-1.(2023·广西柳州·统考一模)如图,与1∠是同位角的是( )A .2∠B .3∠C .4∠D .5∠【答案】C【分析】根据同位角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角即可求解.【详解】解:观察图形可知,与∠1是同位角的是∠4.故选:C .【点睛】本题考查了同位角、内错角、同旁内角,三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.变式1-2.(2023·广西贺州·统考中考真题)如图,直线a ,b 被直线c 所截,下列各组角是同位角的是( )A .1∠与2∠B .1∠与3∠C .2∠与3∠D .3∠与4∠【答案】B【分析】两条线a 、b 被第三条直线c 所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角,据此作答即可.【详解】解:∠1与∠2是对顶角,选项A 不符合题意;∠1与∠3是同位角,选项B 符合题意;∠2与∠3是内错角,选项C 不符合题意;∠3与∠4是邻补角,选项D 不符合题意;故选:B .【点睛】此题考查了同位角、内错角、同旁内角,熟记同位角、内错角、同旁内角的定义是解题的关键.变式1-3.(2023秋·浙江杭州·七年级校考期中)如图,∠1和∠2是同位角的是( ).A .B .C .D .【答案】C 【分析】根据同位角的定义,逐一判断选项,即可.【详解】解:A 、∠1和∠2不是同位角,故选项A 不合题意;B 、 ∠1和∠2 不是同位角,故选项B 不合题意;C 、 ∠1和∠2 是同位角,故选项C 符合题意;D 、∠1和∠2 不是同位角,故选项D 不合题意.故答案为:C .【点睛】本题主要考查同位角的定义,掌握“两条直角被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.考查题型二 内错角典例2.(2023秋·江苏淮安·七年级校考阶段练习)下列四个图形中,1∠和2∠是内错角的是( )A .B .C .D .【答案】B【分析】根据内错角的概念:处于两条被截直线之间,截线的两侧,再逐一判断即可.【详解】解:A 、∠1与∠2不是内错角,选项不符合题意;B 、∠1与∠2是内错角,选项符合题意;C 、∠1与∠2不是内错角,选项不符合题意;D 、∠1和∠2不是内错角,选项不符合题意;故选:B .【点睛】本题考查了内错角,关键是根据内错角的概念解答.注意:内错角的边构成“Z”形.变式2-1.(2023秋·湖北武汉·七年级校考阶段练习)如图,下列各组角中,互为内错角的是( )A .1∠与3∠B .2∠与5∠C .3∠与5∠D .4∠与5∠【答案】C【分析】根据内错角的定义结合具体的图形进行判断即可.【详解】解:A. 1∠与3∠是直线a ,直线b 被直线c 所截的同位角;B. 2∠与5∠不具备特殊位置关系;C.3∠和5∠是直线a ,直线b 被直线c 所截的内错角;D. 4∠和5∠是直线a ,直线b 被直线c 所截的同旁内角;故选:C .【点睛】本题考查内错角,理解内错角的定义是正确判断的前提.两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.变式2-2.(2023秋·新疆乌鲁木齐·七年级乌鲁木齐市第四十一中学校考期末)如图中1∠与2∠是内错角是( )A.①②B.②③C.③④D.②④【答案】D【分析】根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角进行分析即可.【详解】解:由内错角的定义可知,图②和图④中,1∠是内错角,∠和2故选:D.【点睛】本题考查了内错角、同位角、同旁内角的概念,同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.变式2-3.(2023秋·安徽安庆·七年级校考阶段练习)如图,直线a,b被直线c所截,则∠1与∠2是()A.内错角B.同位角C.对顶角D.邻补角【答案】A【分析】根据同位角、内错角、同旁内角的定义逐个判断即可.【详解】解:直线a,b被直线c所截,则∠1与∠2是内错角.故选:A.【点睛】本题考查了同位角、内错角、同旁内角的定义,能理解同位角、内错角、同旁内角的定义是解此题的关键,注意:数形结合思想的运用.考查题型三同旁内角典例3.(2023秋·浙江宁波·七年级校考期中)如图,直线∠∠、∠∠被直线∠∠所截,则∠1的同旁内角是()A .∠2B .∠3C .4∠D .5∠【答案】B【分析】根据同旁内角的定义,结合已给图形分析,即可得到答案.【详解】解:由同旁内角的定义知,∠1和∠3在直线AB 和CD 之间,且在直线EF 的同一侧,所以,∠1的同旁内角是∠3.故选:B【点睛】本题考查同旁内角的定义,解题的关键是结合图形,牢记定义内容去分析判断. 变式3-1.(2023秋·湖北鄂州·七年级统考期中)如图,与2∠互为同旁内角的角是( )A .1∠与5∠B .8∠与9∠C .3∠与12∠D .7∠与10∠【答案】B【分析】根据两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行解答即可.【详解】解:根据题意得: 9∠与2∠互为同旁内角,8∠与2∠互为同旁内角. 故选:B【点睛】本题考查了同旁内角的定义.注意在截线的同旁找同旁内角.要结合图形,熟记同旁内角的位置特点.变式3-2.(2023秋·浙江温州·七年级统考期中)如图,1∠和2∠是( )A .同位角B .内错角C .对顶角D .同旁内角【答案】D【分析】利用同旁内角的定义解答.两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.【详解】解:∠1和∠2是同旁内角.故选:D .【点睛】本题主要考查了同旁内角,解题时要注意:同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.变式3-3.(2023秋·湖北孝感·七年级校联考阶段练习)如图,与∠3是同旁内角的是( )A .∠2B .∠3C .∠4D .∠5【答案】C【分析】根据同位角、内错角、同旁内角的定义逐个判断即可.【详解】解:A .∠2与∠3是内错角,不是同旁内角,故本选项不符合题意;B .∠3与∠3是同一个角,不是同旁内角,故本选项不符合题意;C .∠4与∠3是同旁内角,故本选项符合题意;D .∠5与∠3是同位角,不是同旁内角,故本选项不符合题意;故选:C .【点睛】本题考查了同位角、内错角、同旁内角的定义等知识点,能正确识图是解此题的关键.考查题型四 同位角、内错角、同旁内角的综合判断典例4.(2023秋·辽宁沈阳·七年级沈阳市南昌初级中学(沈阳市第二十三中学)阶段练习)如图,下列说法中错误的是( )A .3∠和5∠是同位角B .4∠和5∠是同旁内角C .2∠和4∠是对顶角D .2∠和5∠是内错角【答案】D【分析】根据同位角,同旁内角,对顶角以及内错角的定义进行判断.【详解】解:A .3∠和5∠是同位角,正确,不符合题意;B .4∠和5∠是同旁内角,正确,不符合题意;C .2∠和4∠是对顶角,正确,不符合题意;D .2∠和5∠不是内错角,错误,符合题意.故选D .【点睛】考查了同位角、内错角、同旁内角以及对顶角.解答此类题确定三线八角是关键,可直接从截线入手.变式4-1.(2023春·河北邯郸·八年级校考开学考试)如图,下列判断正确的是( )A .3∠与6∠是同旁内角B .2∠与4∠是同位角C .1∠与6∠是对顶角D .5∠与3∠是内错角【答案】A【分析】根据同位角、同旁内角、内错角和对顶角的概念解答即可.【详解】解:A 、3∠与6∠是同旁内角,故本选项符合题意;B 、2∠与4∠不是同位角,故本选项不合题意;C 、1∠与6∠不是对顶角,故本选项不合题意;D 、5∠与3∠不是内错角,故本选项不合题意;故选:A .【点睛】本题考查了同位角、内错角、同旁内角的定义,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角;两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角;两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.变式4-2.(2023秋·浙江杭州·七年级校考期中)如图所示,下列说法中,错误的是( )A .∠3与∠B 是同旁内角 B .∠A 与∠1是同位角C .∠2与∠3是内错角D .∠1与∠B 是同位角【答案】D【分析】根据两线被第三线所截,同旁内角,内错角和同位角的定义进行判断即可.【详解】解:A 、∠3与∠B 是同旁内角,选项正确,不符合题意;B 、∠A 与∠1是同位角,选项正确,不符合题意;C、∠2与∠3是内错角,选项正确,不符合题意;D、∠1与∠B不是同位角,选项错误,符合题意;故选D.【点睛】本题考查三线八角,在找角的时候,首先要确定截线,然后根据它们之间的位置关系进行确定.变式4-3.(2023秋·陕西渭南·七年级统考阶段练习)如图,下列说法错误的是()A.∠1与∠2是同旁内角B.∠3与∠5是同位角C.∠1与∠4是内错角D.∠5与∠6是内错角【答案】C【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角分别进行分析可得答案.【详解】解:A、∠1与∠2是同旁内角,原题说法正确,不符合题意;B、∠3与∠5是同位角,原题说法正确,不符合题意;C、∠1与∠4不是内错角,原题说法错误,符合题意;D、∠5与∠6是内错角,原题说法正确,不符合题意;故选:C.【点睛】此题主要考查了三线八角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同位角、内错角、同旁内角
练习要求
熟悉并掌握三线八角。

A卷
一、填空题
1.如图1,直线a、b被直线c所截,∠1和∠2是,∠3和∠4是,∠3和∠2是。

2.如图2,∠1和∠2是直线和直线被直线所截得的角。

3.如图3,∠1的内错角是,∠A的同位角是,∠B的同旁内角是。

4.如图4,和∠1构成内错角的角有个;和∠1构成同位角的角有个;和∠1构成同旁内角的角有个。

5.如图5,指出同位角是,内错角是,同旁内角是。

二、选择题
6.如图6,和∠1互为同位角的是( )
(A)∠2; (B)∠3;
(C)∠4; (D)∠5。

7.如图7,已知∠1与∠2是内错角,则下列表达正确的是
( )
(A)由直线AD、AC被CE所截而得到的;
(B)由直线AD、AC被BD所截而得到的;
(C)由直线DA、DB被CE所截而得到的;
(D)由直线DA、DB被AC所截而得到的。

8.在图8中1和2是同位角的有( )
(A)(1)、(2); (B)(2)、(3); (C)(1)、(3); (D)(2)、(4)。

9.如图9,在指明的角中,下列说法不正确的是( )
(A)同位角有2对; (B)同旁内角有5对;
(C)内错角有4对; (D)∠1和∠4不是内错角。

10.如图10,则图中共有( )对内错角
(A)3; (B)4; (C)5; (D)6。

三、简答题
11.如图11
(1)说出∠1与∠2互为什么角?
(2)写出与∠1成同位角的角;
(3)写出与∠1成内错角的角。

12.如图12
(1)说出∠A与∠1互为什么角?
(2) ∠B与∠2是否是同位角;
(3)写出与∠2成内错角的角。

13.如图13,指出同位角、内错角、同旁内角。

B卷
一、填空题
1.如图1,∠1和∠2可以看作直线和直线被直线所截得的
角。

2.如图2,∠1和∠2是直线和直线被直线被直线所截得的角。

3.如图3,直线DE、BC被直线AC所截得的内错角是;∠B与∠C可以看作直线、被直线所截得的角。

4.如图4,与∠EFC构成内错角的是;与∠EFC构成同旁内角的是。

5.如图5,与∠1构成内错角的角有个;与∠1构成同位角的角有个;与∠1构成同旁内角的角有个。

二、选择题
6.如图6,与∠C互为同位角的是( )
(A) ∠1; (B) ∠2; (C) ∠3; (D) ∠4。

7.在图7,∠1和2是对顶角的是( )
8.如图8,
(1) ∠1与∠4是内错角; (2) ∠1与∠2是同位角;
(3) ∠2与∠4是内错角; (4) ∠4与∠5是同旁内角;
(5) ∠3与∠4是同位角; (6) ∠2与∠5是内错角。

其中正确的共有( )
(A)1个; (B)2个; (C)3个; (D)4个。

9.如图9,下列说法错误的是( )
(A) ∠3与∠A是同位角; (B) ∠B是∠A是同旁内角;
(C) ∠2与∠3是内错角; (D) ∠2与∠B是内错角。

10.如图10,AB、CD、EF三条直线两两相交,则图中共有( )同位角。

(A)12对 (B)8对; (C)4对; (D)以上都不对。

三、简答题
11.如图11,
(1)说出∠1与∠2互为什么角?
(2)写出与∠1成同位角的角;
(3)写出与∠1成同旁内角的角。

12.如图12,
(1)说出∠1与∠2互为什么角?
(2)写出与∠2成同位角的角;
(3)写出与∠2成内错角的角。

13.如图13,指出同位角、内错角、同旁内角。

参考答案
A卷一、1.同位角、同旁内角、内错角 2.EF、CD、AB、同位角 3.∠3、∠1、∠1或∠2 4.3、3、3 5. ∠1与∠5,∠2与∠4、∠1与∠4,∠2与∠5、∠1与∠3,∠2与∠3,∠1与∠2 二、6.C 7.B 8.B 9.C 10.B 三、11.(1)内错角 (2) ∠MEB (3) ∠2,∠AEF 12.(1)同位角 (2)不是 (3) ∠DOB,∠DEA,∠1 13.同位角:∠2与∠6,∠1与∠4,∠1与∠5,∠3与∠7;内错角:∠2与∠4,∠3与∠5;同旁内角:∠1与∠2,∠1与∠3,∠2与∠3,∠5与∠4,∠5与∠6,∠4与∠7,∠6与∠7,∠1与∠7,∠1与∠6
B卷一、1.AB,BC,CD,内错角 2.AB,AC,BC,同位角 3. ∠C与∠EAC;AB,AC,BC,同旁内角 4. ∠FCB,∠DEF,∠AEF、∠ECF,∠FEC 5.2,4,2 二、6.A 7.D 8.D 9.D 10.A 三、11.(1)同位角 (2) ∠2,∠MEB (3) ∠H,∠FEB,∠FEH 12.(1)内错角(2) ∠F,∠BCA,∠DMC (3) ∠1,∠BDE 13.同位角;∠1与∠8,∠3与∠9;内错角:∠2与∠4,∠3与∠5,∠4与∠7,∠6与∠8,同旁内角:∠1与∠2, ∠1与∠3,∠2与∠3,∠4与∠5,∠4与∠6,∠5与∠6,∠7与∠8,∠7与∠9,∠8与∠9,∠1与∠9。

相关文档
最新文档