圆周运动和向心加速度知识点总结.
高一必修1物理知识点归纳
高一必修1物理知识点归纳高一必修1物理知识点归纳汇总上学期间,相信大家一定都接触过知识点吧!知识点也可以通俗的理解为重要的内容。
你知道哪些知识点是真正对我们有帮助的吗?下面是店铺为大家收集的高一必修1物理知识点归纳,供大家参考借鉴,希望可以帮助到有需要的朋友。
高一必修1物理知识点归纳篇1向心加速度向心加速度(匀速圆周运动中的加速度)的计算公式:a=rω^2=v^2/r说明:a就是向心加速度,推导过程并不简单,但可以说仍在高科里奥利加速度中生理解范围内,这里略去了。
r是圆周运动的半径,v是速度(特指线速度)。
ω(就是欧姆的小写)是角速度。
这里有:v=ωr.1.匀速圆周运动并不是真正的匀速运动,因为它的速度方向在不断的变化,所以说匀速圆周运动只是匀速率运动的一种。
至于说为什么叫他匀速圆周运动呢?可能是大家说惯了不愿意换了吧。
2.匀速圆周运动的向心加速度总是指向圆心,即不改变速度的大小只是不断地改变着速度的方向。
高一必修1物理知识点归纳篇2一、基本概念1、质点2、参考系3、坐标系4、时刻和时间间隔5、路程:物体运动轨迹的长度6、位移:表示物体位置的变动。
可用从起点到末点的有向线段来表示,是矢量。
位移的大小小于或等于路程。
7、速度:物理意义:表示物体位置变化的快慢程度。
分类平均速度:方向与位移方向相同瞬时速度:与速率的区别和联系速度是矢量,而速率是标量平均速度=位移/时间,平均速率=路程/时间瞬时速度的大小等于瞬时速率8、加速度物理意义:表示物体速度变化的快慢程度定义:(即等于速度的变化率)方向:与速度变化量的方向相同,与速度的方向不确定。
(或与合力的方向相同)二、运动图象(只研究直线运动)1、x—t图象(即位移图象)(1)、纵截距表示物体的初始位置。
(2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体静止,曲线表示物体作变速直线运动。
(3)、斜率表示速度。
斜率的绝对值表示速度的大小,斜率的正负表示速度的方向。
高考圆周运动知识点
高考圆周运动知识点在物理学中,我们学习了许多与运动相关的知识,而圆周运动是其中一个重要的概念。
圆周运动是指物体围绕固定点以匀速运动,形成一个圆形轨迹的运动。
在高考中,圆周运动也是一个常见的考点。
本文将介绍高考圆周运动的一些重要知识点和相关应用。
1. 圆周运动的基本概念圆周运动由物体的半径和角速度决定。
半径是指物体到固定点的距离,而角速度则是指物体单位时间内绕固定点转过的角度。
在圆周运动中,物体的速度大小是恒定的,但方向却不断改变。
这是因为物体在不断改变方向的同时,它的速度向心向外的分量也在不断改变。
2. 圆周运动的速度和加速度在圆周运动中,物体沿圆周方向的速度称为切向速度,而向心加速度则是指物体向圆心方向加速的大小。
这两者之间存在着一种关系,即向心加速度等于切向速度平方除以半径。
这也是为什么当我们在转弯时,速度越快,半径越小,感觉向心加速度越大的原因。
3. 圆周运动的力学原理圆周运动的力学原理可以由牛顿第二定律推导得出。
根据牛顿第二定律,物体的向心加速度等于合外力点对物体的向心力除以物体的质量。
在圆周运动中,合外力通常指向圆心方向的力,如重力或绳索的拉力。
根据这个原理,我们可以推导出与圆周运动相关的各种物理公式。
4. 圆周运动的应用圆周运动在现实生活中有着广泛的应用。
一个常见的例子是地球绕太阳的公转运动,这是地球四季变化的原因之一。
此外,圆周运动在机械工程、航天工程等领域也有重要的应用。
例如,卫星绕地球运动的轨道就是一个圆周运动。
5. 圆周运动的衍生知识点除了基本的圆周运动概念之外,还有一些与之相关的衍生知识点也是高考的考点之一。
例如,转动惯量和角动量等概念与圆周运动密切相关。
转动惯量是指物体对角加速度产生抵抗的能力,而角动量是物体绕固定轴旋转时的物理量。
这些概念在解题中会经常出现。
总结起来,高考圆周运动是一个重要的物理知识点,掌握其基本概念和相关公式对于解题和理解其他物理现象都有重要帮助。
理解圆周运动的力学原理、应用以及衍生知识点,可以帮助我们更好地应对考试,同时也能扩展我们对物理学的认识。
圆周运动的速度和加速度
圆周运动的速度和加速度圆周运动是物体在圆周轨道上运动的一种形式。
它具有一定的速度和加速度,这些物理量对于描述和分析圆周运动非常重要。
速度是物体在单位时间内所走过的距离。
在圆周运动中,由于物体沿着圆周轨道运动,所以速度的方向也在不断变化。
我们可以用线速度来描述圆周运动的速度,线速度是物体沿着圆周轨道的路径长度与所用时间的比值。
假设物体在时间 t 内沿圆形轨道运动一周,圆的半径为 r,圆的周长为2πr,则物体所走过的距离就是圆的周长,即S=2πr。
因此,圆周运动的速度 v 可以表示为:v = S / t = (2πr)/ t加速度是物体速度变化的快慢程度。
在圆周运动中,由于速度的方向不断变化,所以加速度的方向也在不断变化。
我们称这种加速度为向心加速度,它的方向指向圆心,大小与速度的变化量有关。
根据物理学原理,向心加速度 a 的大小可以表示为:a = v^2 / r = ((2πr)/ t)^2 / r = 4π^2r / t^2其中,v 是圆周运动的速度,r 是圆的半径,t 是运动所用的时间。
通过以上公式,我们可以计算出圆周运动的速度和加速度。
在实际应用中,这些物理量的计算是非常重要的,它们可以帮助我们了解和分析物体在圆周运动中的行为。
在工程领域,圆周运动的速度和加速度在机械设计和动力学分析中扮演着重要的角色。
比如在车辆运动中,我们需要计算车轮的速度和加速度,来确定车辆的行驶性能和操控性。
总结:圆周运动的速度和加速度是描述物体在圆周轨道上运动的两个重要物理量。
速度是物体在单位时间内所走过的距离,而加速度是速度变化的快慢程度。
通过运用相关的公式,我们可以计算出圆周运动的速度和加速度,进而分析和了解物体在圆周运动中的行为。
在工程应用中,这些物理量对于机械设计和动力学分析具有重要意义。
人教版物理高一知识点总结
人教版物理高一知识点总结人教版物理高一学问点总结第一篇向心加速度向心加速度(匀速圆周运动中的加速度)的计算公式:a=rω^2=v^2/r说明:a就是向心加速度,推导过程并不简洁,但可以说仍在高科里奥利加速度科里奥利加速度中生理解范围内,这里略去了。
r是圆周运动的半径,v是速度(特指线速度)。
ω(就是欧姆的小写)是角速度。
这里有:v=ωr.1.匀速圆周运动并不是真正的匀速运动,因为它的速度方向在不断的改变,所以说匀速圆周运动只是匀速率运动的一种。
至于说为什么叫他匀速圆周运动呢?可能是大家说惯了不情愿换了吧。
2.匀速圆周运动的向心加速度总是指向圆心,即不转变速度的大小只是不断地转变着速度的方向。
重力加速度地球外表附近的物体因受重力产生的加速度叫做重力加速度,也叫自由落体加速度,用g表示。
重力加速度g的方向总是竖直向下的。
在同一地区的同一高度,任何物体的重力加速度都是相同的。
重力加速度的数值随海拔高度增大而减小。
当物体距地面高度远远小于地球半径时,g改变不大。
而离地面高度较大时,重力加速度g数值显着减小,此时不能认为g为常数距离面同一高度的重力加速度,也会随着纬度的升高而变大。
由于重力是万有引力的一个分力,万有引力的另一个分力提供了物体绕地轴作圆周运动所需要的向心力。
物体所处的地理位置纬度越高,圆周运动轨道半径越小,需要的向心力也越小,重力将随之增大,重力加速度也变大。
地理南北两极处的圆周运动轨道半径为0,需要的向心力也为0,重力等于万有引力,此时的重力加速度也到达。
由于g随纬度改变不大,因此国际上将在纬度45°的海平面精确测得物体的重力加速度g=9.80665m/s^2;作为重力加速度的.标准值。
在解决地球外表附近的问题中,通常将g作为常数,在一般计算中可以取g=9.80m/s^2。
理论分析及精的确验都说明,随纬度增大,重力加速度g的数值渐渐增大。
如:赤道g=9.780m/s^2广州g=9.788m/s^2武汉g=9.794m/s^2上海g=9.794m/s^2东京g=9.798m/s^2北京g=9.801m/s^2纽约g=9.803m/s^2莫斯科g=9.816m/s^2北极地区g=9.832m/s^2注:月球面的重力加速度约为1.62m/s^2,约为地球重力的六分之一。
圆周运动向心加速度与向心力
向心力与向心加速度的关系
总结词
向心力的大小与向心加速度的大小成正比,方向始终指向圆心。
详细描述
在圆周运动中,向心力的大小与向心加速度的大小成正比,方向始终指向圆心。当物体 受到的向心力增大或减小时,其向心加速度也相应增大或减小,使物体始终沿着圆周路
径运动。
04 圆周运动的实例分析
匀速圆周运动的向心力
物体沿着圆周轨迹运动,速度大小保持不变, 方向时刻变化。例如:旋转木马、钟表指针 等。
在匀速圆周运动中,向心加速度的大小恒定, 方向始终指向圆心,向心力的大小也恒定, 方向始终指向圆心。
变速圆周运动的实例
要点一
变速圆周运动
物体沿着圆周轨迹运动,速度大小或方向发生变化。例如 :过山车、赛车等。
详细描述
向心加速度的大小与线速度的平方成正比,与圆周运动的半 径成反比。当线速度一定时,半径越小,向心加速度越大; 当半径一定时,线速度越大,向心加速度越大。
向心加速度的方向判断
总结词
向心加速度的方向始终指向圆心,可以通过右手定则或左手定则来判断。
详细描述
右手定则:将右手手掌伸直,四指并拢且与线速度方向一致,大拇指与四指垂直,此时若手掌心向下,则向心加 速度方向垂直于掌心指向上;左手定则:将左手手掌伸直,四指并拢且与线速度方向一致,大拇指与四指垂直, 此时若手掌心向下,则向心加速度方向垂直于掌心指向下。
感谢您的观看
向心加速度的求解方法
求解向心加速度的方法有多种,可以通过牛顿第二定律、 运动学公式等求解。
05 圆周运动的应用与拓展
圆周运动在生活中的应用
车辆转弯
车辆在转弯时,由于向心 力的作用,外侧车轮的轮 缘会受到向内的挤压力, 使车辆顺利转弯。
【知识点】高中物理圆周运动及向心力知识点总结
【知识点】高中物理圆周运动及向心力知识点总结一、匀速圆周运动1.定义:物体的运动轨迹是圆的运动叫做圆周运动,物体运动的线速度大小不变的圆周运动即为匀速圆周运动。
2.特点:①轨迹是圆;②线速度、加速度均大小不变,方向不断改变,故属于加速度改变的变速曲线运动,匀速圆周运动的角速度恒定;③匀速圆周运动发生条件是质点受到大小不变、方向始终与速度方向垂直的合外力;④匀速圆周运动的运动状态周而复始地出现,匀速圆周运动具有周期性。
3.描述圆周运动的物理量:(1)线速度v是描述质点沿圆周运动快慢的物理量,是矢量;其方向沿轨迹切线,国际单位制中单位符号是m/s,匀速圆周运动中,v的大小不变,方向却一直在变;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量;国际单位符号是rad/s;(3)周期T是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s;(4)频率f是质点在单位时间内完成一个完整圆周运动的次数,在国际单位制中单位符号是Hz;(5)转速n是质点在单位时间内转过的圈数,单位符号为r/s,以及r/min.4.各运动参量之间的转换关系:模型一:共轴传动模型二:皮带传动模型三:齿轮传动二、向心加速度1.定义:任何做匀速圆周运动的物体的加速度都指向圆心,这个加速度叫向心加速度。
注:并不是任何情况下,向心加速度的方向都是指向圆心。
当物体做变速圆周运动时,向心加速度的一个分加速度指向圆心。
2.方向:在匀速圆周运动中,始终指向圆心,始终与线速度的方向垂直。
向心加速度只改变线速度的方向而非大小。
3.意义:描述圆周运动速度方向方向改变快慢的物理量。
4.公式:5.两个函数图像:三、向心力1.定义:做圆周运动的物体所受到的沿着半径指向圆心的合力,叫做向心力。
2.方向:总是指向圆心。
3.公式:4.注意:①向心力的方向总是指向圆心,它的方向时刻在变化,虽然它的大小不变,但是向心力也是变力。
②在受力分析时,只分析性质力,而不分析效果力,因此在受力分析是,不要加上向心力。
高中物理圆周运动和向心加速度专题讲解
圆周运动和向心加速度【要点梳理】要点一、圆周运动的线速度 要点诠释:1、线速度的定义:圆周运动中,物体通过的弧长与所用时间的比值,称为圆周运动的线速度。
公式:tlv ∆∆=(比值越大,说明线速度越大) 方向:沿着圆周上各点的切线方向 单位:m/s 2、 说明1)线速度是指物体做圆周运动时的瞬时速度。
2)线速度的方向就是圆周上某点的切线方向线速度的大小是tl∆∆的比值。
所以v 是矢量。
3)匀速圆周运动是一个线速度大小不变的圆周运动。
4)线速度的定义式tlv ∆∆=,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要t ∆取得足够小,公式计算的结果就是瞬时线速度注:匀速圆周运动中的“匀速”二字的含义:仅指速率不变,但速度的方向(曲线上某点的切线方向)时刻在变化。
【典型例题】类型一、描述匀速圆周运动的各个物理量例1、一个直径为1.4m 的圆盘以中心为轴匀速转动,转速为2转/秒,求圆盘边缘一点的线速度、角速度、周期和向心加速度。
例2、 (2015 海南会考模拟)如图所示,钟表的秒针、分针、时针转动周期、角速度都不同,下列说法中正确的是( )A .秒针的周期最大,角速度最大B .秒针的周期最小,角速度最大C .时针的周期最大,角速度最大D .时针的周期最小,角速度最大 【解析】时针的周期是12h ,分针的周期是1h ,秒针的周期是1min ,秒针的周期最小,根据2Tπω=可知秒针的角速度最大,故A 错误B 正确;时针的周期是12h ,分针的周期是1h ,秒针的周期是1min ,时针的周期最大,根据2Tπω=可知时针的角速度最小,故CD 错误。
【变式】电风扇叶片边缘一点的线速度为56.7m/s ,若它转动半径为18cm ,求电扇转动的角速度和周期。
【解析】根据线速度与角速度的关系r v ω=得)s (02.022)rad/s (315=====v rT T rv rv ππω所以又因为要点二、描写圆周运动的角速度 要点诠释:1、角速度的定义:圆周运动物体与圆心的连线扫过的角度θ∆与所用时间t ∆的比值叫做角速度。
物理圆周运动总结归纳
物理圆周运动总结归纳物理学中,圆周运动是一个重要的概念。
它涉及到物体在一个固定半径的圆形轨道上运动的问题。
在本文中,我们将对物理圆周运动进行总结归纳,探讨其相关理论和应用。
一、基本概念圆周运动是指物体在固定半径的圆形轨道上运动,维持在此轨道上的力称为向心力。
向心力的大小与物体质量成正比,与物体的速度的平方成正比,与物体运动半径的倒数成正比。
圆周运动的速度大小恒定,而速度的方向则始终朝向圆心。
同时,圆周运动还存在一个与速度大小相对的概念,即角速度。
二、角速度与角加速度角速度是描述物体在圆周运动中旋转快慢的物理量。
它的大小等于物体绕圆心转动的角度的变化率。
使用符号ω表示,单位为弧度/秒。
公式为:ω = Δθ / Δt其中,Δθ是物体绕圆心转动的角度变化量,Δt是时间的变化量。
角加速度则是描述物体在圆周运动中转速变化的物理量。
它的大小等于角速度随时间的变化率。
使用符号α表示,单位为弧度/二次方秒。
公式为:α = Δω / Δt三、牛顿第二定律在圆周运动中的应用牛顿第二定律是物理学中最基本的定律之一,它在圆周运动中也有重要的应用。
当物体受到向心力作用时,可以利用牛顿第二定律来推导物体的运动方程。
假设质量为m的物体在半径为r的圆形轨道上运动,并受到向心力F_c的作用。
根据牛顿第二定律,物体的向心加速度a_c与向心力的关系为:F_c = m * a_c由于向心加速度与角加速度之间存在关联,可以推导出物体在圆周运动中的运动方程为:a_c = r * α将上述两个等式结合,可以得到:F_c = m * r * α四、应用领域1. 行星公转行星公转是天体运动中的一种圆周运动。
行星沿着围绕恒星的轨道运动,即围绕一个公共圆心进行圆周运动。
该应用领域研究行星的轨道、速度以及力学规律,对于了解天体运动和星际空间探索具有重要的意义。
2. 粒子加速器粒子加速器是一种利用电磁场加速高能粒子的装置,广泛应用于粒子物理学和核物理学领域。
考点2匀速圆周运动 线速度、角速度和周期 向心加速度和向心力(知识梳理)
考点2 匀速圆周运动、线速度、角速度和周期、向心加速度和向心力第一部分 考纲扫描1.了解线速度、角速度、周期、频率、转速等概念。
理解向心力及向心加速度。
2.能结合生活中的圆周运动实例熟练地应用向心力和向心加速度处理问题。
3.能正确处理竖直平面内的圆周运动。
4.了解离心现象。
第二部分 知识梳理一、描述圆周运动的物理量1.线速度①定义:质点做圆周运动通过的弧长l 与通过这段弧长所用的时间t 的比值叫做圆周运动的线速度。
②线速度的公式为:2l r v t Tπ==。
③方向为沿圆周的切线方向。
作匀速圆周运动的物体速度方向时刻在变化,因此匀速圆周运动是一种变速运动。
2.角速度①定义:用连接物体和圆心的半径转过的角度θ跟转过这个角度所用的时间t 的比值叫做角速度。
②公式为:2t Tθπω==,单位是:弧度/秒(rad/s)。
3.周期①定义:做匀速圆周运动的物体运动一周所用的时间,称为周期。
周期越大,运动越慢。
②公式:2r T vπ= 频率——质点在1秒内转动的圈数。
频率越大,物体运动越快。
转数——质点每秒钟(或每分钟)所转过的圈数。
常用的单位有:转/分(r/min)。
4.描述匀速圆周运动的各个物理量的关系①角速度ω与周期的关系是:ω=2π/T②角速度和线速度的关系是:v=ωr③周期与频率的关系是: 1T f=; ④向心加速度与以上各运动学物理量之间的关系:a=2v r=2r ω=224r T π 5.描述圆周运动的力学物理量是向心力(F 向):它的作用是改变速度的方向。
描述圆周运动的运动学物理量和力学物理量之间的关系是:F 向= m 2v r= m 2r ω =m 224r T π=ma 。
[规律总结]在分析传送带或边缘接触问题时,要抓住的关系是:同转轴的各点角速度相同,而同一皮带(不打滑时)或相吻合的两轮边缘的线速度相同。
当分析既不同轴又不同皮带的问题时,往往需要找一个联系轴与皮带的中介点作为桥梁。
圆周运动的知识点总结
圆周运动的知识点总结1. 圆周运动的基本概念圆周运动是指物体在固定半径的圆周轨道上运动的物理现象。
在圆周运动中,物体绕着某一点或轴以恒定的速度运动,运动轨迹为圆形或圆周。
2. 圆周运动的基本参数在圆周运动中,有一些基本的物理量和参数需要了解:1)角速度:角速度是指物体绕圆周轨道旋转的速度。
它的单位是弧度/秒或者转/秒。
2)线速度:线速度是物体在圆周运动中沿着轨道运动的速度。
它是物体每单位时间在圆周轨道上所走过的长度。
3)周期和频率:物体绕圆周轨道运动一周所需要的时间称为周期,而单位时间内完成的周期数称为频率。
4)向心加速度:向心加速度是指物体在圆周运动中指向轴心的加速度。
3. 圆周运动的运动规律在圆周运动中,物体遵循一些基本的运动规律:1)圆周运动的速度是恒定的,但是速度方向会不断变化,因此会产生向心加速度。
2)向心加速度的大小与角速度的平方成正比,与运动半径的倒数成反比。
3)圆周运动的线速度与角速度和运动半径成正比。
4)根据牛顿运动定律,物体在做圆周运动时会受到向心力的作用,从而产生向心加速度。
4. 圆周运动的应用圆周运动在自然界和日常生活中都有着广泛的应用:1)行星绕太阳的运动:行星在天体引力的作用下,绕太阳做圆周运动。
其运动规律和速度大小可以通过圆周运动的物理规律进行描述。
2)地球自转和公转:地球的自转和公转运动也是圆周运动的一种,它们决定了地球的昼夜交替和季节变化。
3)机械设备的转动运动:例如汽车的轮子和发动机的转动、电风扇的叶片转动等都是圆周运动的应用。
4)摩擦力和离心力的应用:圆周运动的物体会产生向心加速度,从而在运动过程中会受到摩擦力和离心力的作用。
这些力在机械设备和工程设计中有着重要的应用。
5. 圆周运动的相关问题在圆周运动中,会涉及到一些常见的问题和挑战:1)离心力与向心力的平衡:当物体在做圆周运动时,会受到向心力和离心力的相互作用,需要通过合适的设计来平衡这两种力。
2)材料的强度和耐久性:在圆周运动的机械设备中,材料的强度和耐久性对于长期运行和安全性有着重要的影响。
圆周运动知识点与经典练习
圆周运动知识点与经典练习一、圆周运动的基本概念圆周运动是指物体沿着圆周路径进行的运动。
在圆周运动中,物体的运动轨迹是一个圆,其速度方向不断变化。
1、线速度(v)线速度是物体在圆周运动中通过的弧长与所用时间的比值。
线速度的大小等于弧长除以时间,即 v =Δs/Δt。
线速度的方向沿圆周的切线方向。
2、角速度(ω)角速度是物体在单位时间内转过的角度。
角速度的大小等于角度的变化量除以时间,即ω =Δθ/Δt。
角速度的单位是弧度每秒(rad/s)。
3、周期(T)和频率(f)周期是物体做圆周运动一周所用的时间,频率则是单位时间内完成圆周运动的次数。
它们之间的关系是 T = 1/f。
4、转速(n)转速是指物体单位时间内转过的圈数,单位通常为转每秒(r/s)或转每分钟(r/min)。
二、圆周运动的线速度、角速度、周期之间的关系1、线速度与角速度的关系v =ωr,其中 r 是圆周运动的半径。
2、线速度与周期的关系v =2πr/T3、角速度与周期的关系ω =2π/T三、向心加速度向心加速度是描述物体在圆周运动中速度方向变化快慢的物理量。
向心加速度的大小为 a = v²/r =ω²r,方向始终指向圆心。
四、向心力1、向心力的定义向心力是使物体做圆周运动的力,其方向始终指向圆心。
2、向心力的来源向心力可以由一个力提供,也可以由几个力的合力提供,还可以由某个力的分力提供。
3、向心力的大小F = ma = mv²/r =mω²r五、常见的圆周运动模型1、水平圆盘上的物体随圆盘转动当圆盘匀速转动时,物体受到的摩擦力提供向心力。
若摩擦力不足以提供所需的向心力,物体将相对圆盘滑动。
2、圆锥摆摆球在水平面内做圆周运动,摆线的拉力和重力的合力提供向心力。
3、汽车在弯道上行驶汽车在水平弯道上转弯时,地面对汽车的摩擦力提供向心力。
为了安全,弯道通常设计成外高内低的倾斜路面,以减小对摩擦力的依赖。
4、拱形桥和凹形桥汽车通过拱形桥的最高点时,重力和支持力的合力提供向心力;通过凹形桥的最低点时,支持力和重力的合力提供向心力。
圆周运动总结知识要点
圆周运动问题是高考考查的热点,物体在竖直面内的圆周运动中临界条件的考查在高考中多有出现圆周运动的特点:物体所受外力在沿半径指向圆心的合力才是物体做圆周运动的向心力,因此利用矢量合成的方法分析物体的受力情况同样也是本单元的基本方法;只有物体所受的合外力的方向沿半径指向圆心,物体才做匀速圆周运动。
另外,由于在具体的圆周运动中,物体所受除重力以外的合外力总指向圆心,与物体的运动方向垂直,因此向心力对物体不做功,所以物体的机械能守恒。
(一)匀速圆周运动1. 定义:做圆周运动的质点,若在相等的时间内通过的圆弧长度相等,这种运动就叫做匀速圆周运动。
2. 运动学特征:v 大小不变,T 不变,ω不变,向a 大小不变;v 和向a 的方向时刻在变,匀速圆周运动是加速度不断改变的变速运动。
3. 动力学特征:合外力大小恒定,方向始终指向圆心。
(二)描述圆周运动的物理量 1. 线速度(1)物理意义:描述质点沿圆周运动的快慢。
(2)方向:质点在圆弧某点的线速度方向沿圆弧该点的切线方向。
(3)大小:(s 是t 时间内通过的弧长)。
2. 角速度 (1)物理意义:描述质点绕圆心转动的快慢。
(s /rad ),ϕ是连接质点(2)大小:和圆心的半径在t 时间内转过的角度。
3. 周期T ,频率f 做匀速圆周运动的物体运动一周所用的时间叫做周期。
做匀速圆周运动的物体单位时间内沿圆周绕圆心转过的圈数,叫做频率,也叫转速。
4. v 、ω、T 、f 的关系f 1T =f 2T 2π=π=ωω=π=r r T 2v5. 向心加速度(1)物理意义:描述线速度方向改变的快慢。
(2)大小:=a 0222222v r T 4r f 4r r v ω=π=π=ω=(3)方向:总是指向圆心(三)向心力向F1. 作用效果:产生向心加速度,不断改变质点的速度方向,维持质点做圆周运动,但不改变速度的大小。
2. 大小:rm r mv F 22ω==向3. 来源:向心力是按效果命名的力,可以由某个力提供,也可以由几个力的合力提供或由某个力的分力提供,如同步卫星的向心力由万有引力提供,圆锥摆摆球所受向心力由重力和绳上的拉力的合力提供4. 匀速圆周运动中向心力就是合外力,而在非匀速圆周运动中,向心力是合外力沿半径方向的一个分力,合外力的另一个分力沿切线方向,用来改变线速度的大小。
高一物理《圆周运动》知识点总结
高一物理《圆周运动》知识点总结一、线速度1.定义:物体做圆周运动,在一段很短的时间Δt 内,通过的弧长为Δs ,则Δs 与Δt 的比值叫作线速度的大小,公式:v =Δs Δt. 2.意义:描述做圆周运动的物体运动的快慢.3.方向:物体做圆周运动时该点的切线方向.4.匀速圆周运动(1)定义:物体沿着圆周运动,并且线速度的大小处处相等,这种运动叫作匀速圆周运动.(2)性质:匀速圆周运动的线速度方向是在时刻变化的,所以它是一种变速运动,这里的“匀速”是指速率不变.二、角速度1.定义:连接物体与圆心的半径转过的角Δθ与所用时间Δt 之比叫作角速度,公式:ω=ΔθΔt. 2.意义:描述做圆周运动的物体绕圆心转动的快慢.3.单位:弧度每秒,符号是rad/s ,在运算中角速度的单位可以写为s -1.4.匀速圆周运动是角速度不变的圆周运动.三、周期1.周期T :做匀速圆周运动的物体,运动一周所用的时间.单位:秒(s).2.转速n :物体转动的圈数与所用时间之比.单位:转每秒(r/s)或转每分(r/min).3.周期和转速的关系:T =1n(n 的单位为r/s 时). 四、线速度与角速度的关系1.在圆周运动中,线速度的大小等于角速度的大小与半径的乘积.2.公式:v =ωr .五、向心力的大小向心力的大小可以表示为F n =mω2r 或F n =m v 2r . 六、匀速圆周运动的加速度大小1.向心加速度公式a n =v 2r或a n =ω2r . 2.向心加速度的公式既适用于匀速圆周运动,也适用于非匀速圆周运动.七、变速圆周运动和一般曲线运动的受力特点1.变速圆周运动的合力:变速圆周运动的合力产生两个方向的效果,如图所示.(1)跟圆周相切的分力F t:改变线速度的大小.(2)指向圆心的分力F n:改变线速度的方向.2.一般的曲线运动的处理方法(1)一般的曲线运动:运动轨迹既不是直线也不是圆周的曲线运动.(2)处理方法:可以把曲线分割为许多很短的小段,质点在每小段的运动都可以看作圆周运动的一部分,分析质点经过曲线上某位置的运动时,可以采用圆周运动的分析方法来处理.。
第六章-圆周运动章末复习-知识点和题型总结-2023年高一物理期末高效复习专题
第六章:圆周运动章末复习知识点一:匀速圆周运动及其描述一、匀速圆周运动1.圆周运动:物体的运动轨迹是圆的运动.2.匀速圆周运动:质点沿圆周运动,如果在相等的时间内通过的圆弧长度相等,这种运动就叫匀速圆周运动.二、匀速圆周运动的线速度、角速度和周期1.线速度(1)定义式:v=Δs Δt.如果Δt取的足够小,v就为瞬时线速度.此时Δs的方向就与半径垂直,即沿该点的切线方向.(2)线速度的方向:质点在圆周某点的线速度方向沿圆周上该点的切线方向.(3)物理意义:描述质点沿圆周运动的快慢.2.角速度:半径转过的角度Δφ与所用时间Δt的比值,即ω=ΔφΔt(如图所示).国际单位是弧度每秒,符号是rad/s.3.转速与周期(1)转速n:做圆周运动的物体单位时间内转过的圈数,常用符号n表示.(2)周期T:做匀速圆周运动的物体运动一周所用的时间叫做周期,用符号T 表示.(3)转速与周期的关系:若转速的单位是转每秒(r/s),则转速与周期的关系为T=1n .4.匀速圆周运动的特点(1)线速度的大小处处相等.(2)由于匀速圆周运动的线速度方向时刻在改变,所以它是一种变速运动.这里的“匀速”实质上指的是“匀速率”而不是“匀速度三、描述圆周运动的各物理量之间的关系1.线速度与周期的关系:v=2πr T.2.角速度与周期的关系:ω=2πT.3.线速度与角速度的关系:v=ωr.知识点二、同轴转动和皮带传动1.同轴转动(1)角速度(周期)的关系:ωA=ωB,T A=T B.(2)线速度的关系:vAvB=rR.2.皮带(齿轮)传动(1)线速度的关系:v A=v B(2)角速度(周期)的关系:ωAωB=rR、TATB=Rr.知识点三、向心力1.定义:物体做匀速圆周运动时所受合力方向始终指向圆心,这个指向圆心的合力就叫做向心力.2.大小:F=mω2r=m v2 r.3.方向:总是沿半径指向圆心,方向时刻改变.4.效果力向心力是根据力的作用效果来命名的,凡是产生向心加速度的力,不管属于哪种性质,都是向心力.二:向心力的来源物体做圆周运动时,向心力由物体所受力中沿半径方向的力提供.几种常见的实例如下:实例向心力示意图用细线拴住的小球在竖直面内转动至最高点时绳子的拉力和重力的合力提供向心力,F向=F+G用细线拴住小球在光滑水平面内做匀速圆周运动线的拉力提供向心力,F向=F T物体随转盘做匀速圆周运动,且相对转盘静止转盘对物体的静摩擦力提供向心力,F向=F f小球在细线作用下,在水平面内做圆周运动重力和细线的拉力的合力提供向心力,F向=F合知识点四:向心加速度的方向及意义1.物理意义描述线速度改变的快慢,只表示线速度的方向变化的快慢,不表示其大小变化的快慢.2.方向总是沿着圆周运动的半径指向圆心,即方向始终与运动方向垂直,方向时刻改变.3.圆周运动的性质不论向心加速度a n的大小是否变化,a n的方向是时刻改变的,所以圆周运动的向心加速度时刻发生改变,圆周运动一定是非匀变速曲线运动.“匀速圆周运动中”的“匀速”应理解为“匀速率”.4.变速圆周运动的向心加速度做变速圆周运动的物体,加速度一般情况下不指向圆心,该加速度有两个分量:一是向心加速度,二是切向加速度.向心加速度表示速度方向变化的快慢,切向加速度表示速度大小变化的快慢.所以变速圆周运动中,向心加速度的方向也总是指向圆心.二:向心加速度的公式和应用1.公式a n =v2r=ω2r=4π2T2r=4π2n2r=4π2f2r=ωv.2.向心加速度的大小与半径的关系(1)当半径一定时,向心加速度的大小与角速度的平方成正比,也与线速度的平方成正比.随频率的增大或周期的减小而增大.(2)当角速度一定时,向心加速度与运动半径成正比.(3)当线速度一定时,向心加速度与运动半径成反比.(4)a n与r的关系图象:如图552所示.由a nr图象可以看出:a n与r成正比还是反比,要看ω恒定还是v恒定.图552知识点五:生活在的圆周运动一:火车转弯问题1.轨道分析火车在转弯过程中,运动轨迹是一圆弧,由于火车转弯过程中重心高度不变,故火车轨迹所在的平面是水平面,而不是斜面.火车的向心加速度和向心力均沿水平面指向圆心.图5732.向心力分析如图573所示,火车速度合适时,火车受重力和支持力作用,火车转弯所需的向心力完全由重力和支持力的合力提供,合力沿水平方向,大小F=mg tan θ.3.规定速度分析若火车转弯时只受重力和支持力作用,不受轨道压力,则mg tan θ=m v 2 0R,可得v0=gR tan θ(R为弯道半径,θ为轨道所在平面与水平面的夹角,v0为转弯处的规定速度).4.轨道压力分析(1)当火车行驶速度v等于规定速度v0时,所需向心力仅由重力和弹力的合力提供,此时火车对内外轨道无挤压作用.(2)当火车行驶速度v与规定速度v0不相等时,火车所需向心力不再仅由重力和弹力的合力提供,此时内外轨道对火车轮缘有挤压作用,具体情况如下:①当火车行驶速度v>v0时,外轨道对轮缘有侧压力.②当火车行驶速度v<v0时,内轨道对轮缘有侧压力.二:拱形桥汽车过凸形桥(最高点)汽车过凹形桥(最低点) 受力分析牛顿第二定律求向心力 F n =mg -F N =m v 2rF n =F N -mg =m v 2r牛顿第三定律求压力F 压=F N =mg -m v 2rF 压=F N =mg +m v 2r讨论v 增大,F 压减小;当v 增大到rg 时,F 压=0v 增大,F 压增大 超、失重汽车对桥面压力小于自身重力,汽车处于失重状态汽车对桥面压力大于自身重力,汽车处于超重状态知识点六:离心运动1.离心运动的实质离心现象的本质是物体惯性的表现.做圆周运动的物体,由于惯性,总是有沿着圆周切线飞出去的趋向,之所以没有飞出去,是因为受到向心力的作用.从某种意义上说,向心力的作用是不断地把物体从圆周运动的切向方向拉回到圆周上来.2.离心运动的条件做圆周运动的物体,提供向心力的外力突然消失或者合外力不能提供足够大的向心力.3.离心运动、近心运动的判断如图578所示,物体做圆周运动是离心运动还是近心运动,由实际提供的向心力F n 与所需向心力⎝ ⎛⎭⎪⎫m v 2r 或mr ω2的大小关系决定.图578(1)若F n =mr ω2(或m v 2r)即“提供”满足“需要”,物体做圆周运动.(2)若F n>mrω2(或m v2r)即“提供”大于“需要”,物体做半径变小的近心运动.(3)若F n<mrω2(或m v2r)即“提供”不足,物体做离心运动.由以上关系进一步分析可知:原来做圆周运动的物体,若速率不变,所受向心力减少(或向心力不变,速率变大)物体将做离心运动;若速度大小不变,所受向心力增大(或向心力不变,速率减小)物体将做近心运动.知识点七.竖直平面的圆周运动1.“绳模型”如上图所示,小球在竖直平面内做圆周运动过最高点情况。
圆周运动知识点总结
圆周运动知识点总结圆周运动是物体绕着某一固定点旋转的运动形式,是我们日常生活中常见的一种运动。
下面将对圆周运动的相关知识点进行总结。
一、圆周运动的基本概念圆周运动是指物体在一个平面内绕着固定点作轨迹为圆的运动。
在圆周运动中,有以下基本概念需要了解:1. 轨迹:物体在圆周运动中的路径称为轨迹,通常为圆形。
2. 圆心:圆周运动中,固定点被称为圆心,所有运动的物体都位于圆心的周围。
3. 半径:圆周运动中,固定点到运动物体所处位置的距离称为半径,通常用字母r表示。
4. 弧长:圆周上任意两点之间的弧长是物体在圆周运动中所走过的距离。
5. 角度:圆周运动中,以圆心为顶点,以两条半径为边的夹角称为圆周角,通常用单位度(°)或弧度(rad)表示。
6. 周期:圆周运动中,物体重复一次完整运动所需要的时间称为周期,通常用字母T表示。
周期和圆周角之间有以下关系:圆周角 = 周期 ×角速度。
二、角速度与线速度在圆周运动中,角速度和线速度是计算物体运动状态的重要概念。
1. 角速度:角速度表示物体单位时间内转过的角度,通常用字母ω表示,可以用以下公式表示:角速度 = 圆周角 / 时间。
角速度的单位一般为弧度/秒(rad/s)。
2. 线速度:线速度表示物体运动的快慢程度,是物体单位时间内沿着圆周运动轨迹所走过的弧长。
线速度与角速度之间有以下关系公式:线速度 = 半径 ×角速度。
三、圆周运动的力学分析在圆周运动中,存在一些力学性质的规律和定律,下面将介绍其中的两个重要概念:1. 向心力:向心力是指使物体沿圆周运动轨迹向圆心靠拢的力。
向心力的大小与物体的质量、角速度和半径有关,可以用公式表示:向心力 = 物体的质量 ×线速度的平方 / 半径。
2. 向心加速度:向心加速度是物体在圆周运动中的加速度,是物体沿着圆周方向的加速度。
向心加速度与向心力之间的关系可以用公式表示:向心力 = 物体的质量 ×向心加速度。
圆周运动知识点总结
圆周运动知识点总结圆周运动是物体沿圆周路径运动的一种形式,它在物理学中占有重要地位。
以下是关于圆周运动的一些关键知识点:1. 圆周运动的基本概念:圆周运动是指物体沿圆周轨迹运动的过程,其中物体的速度方向时刻变化,始终指向圆心。
2. 圆周运动的类型:圆周运动可以分为匀速圆周运动和变速圆周运动。
匀速圆周运动是指物体以恒定速度沿圆周轨迹运动,而变速圆周运动则是指物体的速度大小或方向在运动过程中发生变化。
3. 圆周运动的描述:描述圆周运动时,通常使用线速度、角速度、周期、频率等物理量。
线速度是物体沿圆周轨迹的切线方向的速度,角速度是物体绕圆心转过的角度与时间的比值,周期是物体完成一次圆周运动所需的时间,频率是单位时间内物体完成圆周运动的次数。
4. 圆周运动的物理量关系:对于匀速圆周运动,线速度v、角速度ω、周期T和频率f之间的关系为v = ωr = 2πr/T = 2πf,其中r是圆周运动的半径。
5. 向心力:物体做圆周运动时,需要一个指向圆心的力来维持运动,这个力称为向心力。
向心力的大小与物体的质量、速度和半径有关,其公式为F_c = mω^2r = mv^2/r。
6. 向心加速度:物体做圆周运动时,由于速度方向时刻改变,会产生向心加速度,其大小为a_c = vω = ω^2r = v^2/r,方向始终指向圆心。
7. 圆周运动的实例:生活中的许多现象都涉及到圆周运动,如行星绕太阳的运动、车轮的旋转、钟摆的摆动等。
8. 圆周运动的动力学分析:在分析圆周运动时,需要考虑物体所受的所有力,包括向心力、摩擦力、重力等,并通过牛顿第二定律进行动力学分析。
9. 圆周运动的稳定性:圆周运动的稳定性与物体的质量和速度有关,质量越大、速度越小,圆周运动越稳定。
10. 圆周运动的实验研究:通过实验可以研究圆周运动的规律,例如使用旋转圆盘实验来测量角速度和线速度的关系,或者通过测量物体在圆周运动中的向心力来验证物理定律。
这些知识点为理解和分析圆周运动提供了基础,对于深入学习物理学中的动力学和运动学问题至关重要。
圆周运动知识点总结
圆周运动知识点总结圆周运动知识点总结圆周运动是物体在一个固定点周围进行的运动,也被称为旋转运动。
在圆周运动中,物体的运动轨迹是一个圆,而固定点被称为圆心。
以下是关于圆周运动的一些重要知识点:1. 角度和弧度:圆周运动可以用角度或弧度来描述。
角度是常用的单位,圆周有360度。
弧度是国际单位制中用于描述角度的单位,一个圆周有2π弧度。
2. 角速度和角加速度:角速度用来描述物体在圆周运动中的旋转速度,通常用符号ω表示,单位是弧度/秒(rad/s)。
角加速度表示角速度的变化率,用符号α表示,单位是弧度/秒²(rad/s²)。
3. 周期和频率:周期是物体完成一次完整圆周运动所需的时间,用符号T 表示,单位是秒(s)。
频率是指单位时间内发生的圆周运动次数,用符号f表示,单位是赫兹(Hz)。
它们之间的关系是T=1/f 。
4. 向心加速度:向心加速度是指物体在圆周运动中沿圆的方向所受的加速度。
它是由于向心力产生的,向心力的大小等于物体的质量乘以向心加速度,用符号ac表示。
向心加速度的计算公式是ac = ω²r ,其中r表示物体与圆心的距离。
5. 引力和圆周运动:圆周运动中的物体也可能受到引力的作用。
在这种情况下,通过向心力与引力的平衡,可以计算出物体的圆周运动半径。
6. 衡量圆周运动的力量:物体在圆周运动中的力量可以用角动量来衡量。
角动量是由物体的质量、角速度和距离组成,计算公式为L = Iω,其中I为物体的转动惯量。
7. 平均速度和瞬时速度:平均速度是物体在圆周运动中在某段时间内移动的平均速度。
瞬时速度是物体在某一时刻的瞬时速度。
在圆周运动中,瞬时速度的大小等于物体在圆周上移动的弧长与时间的比值。
8. 离心力和切向速度:离心力是物体在圆周运动中由于惯性而产生的力,它的方向指向远离圆心的方向。
切向速度指的是物体在圆周运动中沿着圆的切线方向的速度。
这些是关于圆周运动的一些重要知识点,它们帮助我们理解和描述物体在圆周运动中的特性和规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周运动和向心加速度知识点总结知识点一:圆周运动的线速度要点诠释:1、线速度的定义:圆周运动中,物体通过的弧长与所用时间的比值,称为圆周运动的线速度。
公式:(比值越大,说明线速度越大)方向:沿着圆周上各点的切线方向单位:m/s2、说明1)线速度是指物体做圆周运动时的瞬时速度。
2)线速度的方向就是圆周上某点的切线方向。
线速度的大小是的比值。
所以是矢量。
3)匀速圆周运动是一个线速度大小不变的圆周运动。
4)线速度的定义式,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要取得足够小,公式计算的结果就是瞬时线速度。
注:匀速圆周运动中的“匀速”二字的含义:仅指速率不变,但速度的方向(曲线上某点的切线方向)时刻在变化。
知识点二:描写圆周运动的角速度要点诠释:1、角速度的定义:圆周运动物体与圆心的连线扫过的角度与所用时间的比值叫做角速度。
公式:单位:(弧度每秒)2、说明:1)这里的必须是弧度制的角。
2)对于匀速圆周运动来说,这个比值是恒定的,即匀速圆周运动是角速度保持不变的圆周运动。
3)角速度的定义式,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要取得足够小,公式计算的结果就是瞬时角速度。
4)关于的方向:中学阶段不研究。
5)同一个转动的物体上,各点的角速度相等。
例如. 木棒OA以它上面的一点O为轴匀速转动时,它上面的各点与圆心O的连线在相等时间内扫过的角度相等。
即:3、关于弧度制的介绍(1)角有两种度量单位:角度制和弧度制(2)角度制:将一个圆的周长分为360份,其中的一份对应的圆心角为一度。
因此一个周角是360°,平角和直角分别是180°和90°。
(3)弧度制:定义半径长的弧所对应的圆心角为一弧度,符号为rad。
一段长为的圆弧对应的圆心角是 rad,(4)特殊角的弧度值:在此定义下,一个周角对应的弧度数是:;平角和直角分别是(rad)。
(5)同一个角的角度和用弧度制度量的之间的关系是:rad ,说明:在物理学中弧度并没有量纲,因为它是两个长度之比,弧度(rad)只是我们为了表达的方便而“给”的。
知识点三:匀速圆周运动的周期与转速要点诠释:1、周期的定义:做匀速圆周运动的物体运动一周所用的时间叫做周期,单位:s。
它描写了圆周运动的重复性。
2、周期T的意义:不难看到,周期是圆周运动的线速度大小和方向完全恢复初始状态所用的最小时间;周期长说明圆周运动的物体转动得慢,周期短说明转动得快。
观察与思考:同学们看一看你所戴的手表或者墙上钟表上的时、分、秒针,它们的周期分别是多少?想一想角速度和周期的关系如何?(秒针的周期最小,其针尖的最大,也最大。
)3、匀速圆周运动的转速转速n:指转动物体单位时间内转过的圈数。
单位: r/s(转每秒),常用的单位还有(转每分)关系式:s(n单位为r/s)或s(n单位为r/min)注意:转速与角速度单位的区别:知识点四:描述圆周运动快慢的几个物理量的相互关系要点诠释:因为这几个都是描述圆周运动快慢,所以它们之间必然有内在联系1、线速度、角速度和周期的关系匀速圆周运动的线速度和周期的关系匀速圆周运动的角速度和周期的关系匀速圆周运动的角速度和周期有确定的对应关系:角速度与周期成反比。
2、线速度、角速度与转速的关系:匀速圆周运动的线速度与转速的关系:(n的单位是r/s)匀速圆周运动的角速度与转速的关系:(n的单位是r/s)3、线速度和角速度的关系:(1)线速度和角速度关系的推导:特例推导:设物体沿半径为r的圆周做匀速圆周运动,在一个T时间内转过的弧长2πr及2π角度,则:一般意义上的推导:由线速度的定义:而,所以又因为,所以(2) 线速度和角速度的关系:可知:,同理:一定时,一定时(3)对于线速度与角速度关系的理解:是一种瞬时对应关系,即某一时刻的线速度与这一时刻的角速度的关系,适应于匀速圆周运动和变速圆周运动。
知识点五:向心加速度要点诠释:1、向心加速度产生的原因:向心加速度由物体所受到的向心力产生,根据牛顿第二定律知道,其大小由向心力的大小和物体的质量决定。
2、向心加速度大小的计算方法:(1)由牛顿第二定律计算:;(2)由运动学公式计算:如果是匀速圆周运动则有:3、向心加速度的方向:沿着半径指向圆心,时刻在发生变化,是一个变量。
4、向心加速度的意义:在一个半径一定的圆周运动中,向心加速度描述的是线速度方向改变的快慢。
5、关于向心加速度的说明(1)从运动学上看:速度方向时刻在发生变化,总是有必然有向心加速度;(2)从动力学上看:沿着半径方向上指向圆心的合外力必然产生指向圆心的向心加速度。
思考回答:为什么匀速圆周运动不是匀变速运动?加速度是个矢量,既有大小又有方向,匀速圆周运动中加速度大小不变,而方向却不断变化。
因此,匀速圆周运动不是匀变速运动。
规律方法总结1、注意圆周运动的速度和加速度的方向是变化的。
(1)圆周运动的线速度的方向时刻在发生变化,但是总是与半径垂直;(2)无论是匀速圆周运动还是变速圆周运动,都是加速度变化的曲线运动,都不是匀变速运动。
2、熟练掌握线速度、角速度、周期和转速的关系能给解题带来方便。
(1)尽管线速度、角速度、周期和转速都能描写圆周运动的快慢,但是它们是有区别的;(2)线速度与角速度的关系和是瞬时对应关系,匀速圆周运动和变速圆周运动都适应;(3)在具体计算中,要注意角的单位和转速的单位。
3、同一个转动的物体上不同的点,其角速度是相同的,其线速度与半径成正比;皮带传动时或者齿轮传动时,两个轮子边缘上的点线速度是相同的,其角速度或转速与轮子的半径成反比。
4、向心加速度的计算公式适用于圆周运动任何瞬时的向心加速度的计算,其中的线速度和角速度都是瞬时值,无论是匀速圆周运动还是变速圆周运动都可以用来计算某时刻的向心加速度。
典型例题透析类型一——角速度和线速度的计算1、闹钟的秒针长4cm,求秒针针尖运动的线速度和角速度。
思路点拨:秒针的周期是60s,是一个不言而喻的条件,应自觉的运用。
解析:秒针转动的周期T=60s,又因为,故针尖转动一周走过的弧长是2πr,所以针尖上一点的线速度也可以用线速度和角速度的关系求解线速度2、(2010 全国Ⅰ卷)图1是利用激光测转速的原理示意图,图中圆盘可绕固定轴转动,盘边缘侧面上有一小段涂有很薄的反光材料。
当盘转到某一位置时,接收器可以接收到反光涂层所反射的激光束,并将所收到的光信号转变成电信号,在示波器显示屏上显示出来(如图2所示)。
(1)若图2中示波器显示屏横向的每大格(5小格)对应的时间为,则圆盘的转速为__转/秒。
(保留3位有效数字)(2)若测得圆盘直径为10.20cm,则可求得圆盘侧面反光涂层的长度为__cm。
(保留3位有效数字)思路点拨:从题目中提炼出相关条件,是解题的关键:小的矩形虚线的宽度表示反光涂层的运动时间,两个矩形虚线框之间的宽度表示圆盘运动一周的时间。
解析:(1)从图2可知圆盘转一圈的时间在横坐标上显示22格,由题意知图2中横坐标上每格表示,所以圆盘转动的周期是0.22s,则转速为4.55转/秒。
(2)反光涂层的长度为。
答案:(1)4.55(2)1.46总结升华:如何从题目中挖掘条件是解题的首要任务,也是一种阅读能力,从本题来看,紧密结合图1和图2,对两图中的对应量进行迁移,才会正确解题。
同时一定要在平时训练这方面的能力。
举一反三【变式1】:电风扇叶片边缘一点的线速度为56.7m/s,若它转动半径为18cm,求电扇转动的角速度和周期。
解析:根据线速度与角速度的关系得【变式2】(2011 山东聊城模拟)如图所示,用一根长杆和两个定滑轮的组合装置来提升重物M,长杆的一端放在地上通过铰链联结形成转轴,其端点恰好处于左侧滑轮正下方O点处,在杆的中点C处拴一细绳,绕过两个滑轮后挂上重物M. C点与O点距离为L,现在杆的另一端用力使其逆时针匀速转动,由竖直位置以角速度ω缓缓转至水平位置(转过了90°角),此过程中下列说法正确的是( )A.重物M做匀速直线运动B.重物M做匀变速直线运动C.重物M的最大速度是ωLD.重物M的速度先减小后增大解析:由题知,C点的速度大小为v C=ωL,设v C与绳之间的夹角为θ,把v C沿绳和垂直绳方向分解可得,v绳=v C cosθ,在转动过程中θ先减小到零再增大,故v绳先增大后减小,重物M做变加速运动,其最大速度为ωL,C正确.类型二——向心加速度的计算3、在长20cm的细绳的一端系一个小球,绳的另一端固定在水平桌面上,使小球以5m/s的速度在桌面上做匀速圆周运动,求小球运动的向心加速度和转动的角速度。
解析:由题意可知根据向心加速度的计算公式4、如图所示,定滑轮的半径r=2cm,绕在滑轮上的细线悬挂着一个重物,由静止开始释放,测得重物以加速度a=2m/s2做匀加速运动。
在重物由静止下落距离为1m的瞬间,滑轮边缘上的点的角速度多大?向心加速度a多大?思路点拨:这是一个关于变速圆周运动向心加速度计算的问题。
物体的速度时刻等于轮缘上一点的线速度,求出物体下落1m时的瞬时速度,然后利用角速度、向心加速度和线速度的关系可以求解。
解析:(1)重物下落1m时,瞬时速度为显然,滑轮边缘上每一点的线速度也都是2m/s,故滑轮转动的角速度,即滑轮边缘上每一点的转动角速度为:(2)向心加速度为:总结升华:此题讨论的是变速运动问题,重物落下的过程中滑轮转动的角速度,轮上各点的线速度都在不断增加,但在任何时刻角速度与线速度的关系,向心加速度与角速度、线速度的关系仍然成立。
类型三——皮带传动问题5、如图,主动轮匀速转动,通过皮带不打滑地带动从动轮O2转动,已知分别为r1、r2上的中点,A为O2轮边缘上一点,B为O1轮边缘上一点,C为皮带上一点。
试比较:(1)A、B、C点线速度的大小?(2)A、B、E、F各点角速度的大小?(3)E、F点线速度的大小?思路点拨:分析比较各个点运动情况的异同,建立相互关系是解题的切入点。
解析:(1)因为皮带传动过程与轮子不打滑,所以A、B、C三个点可以看成是皮带上的三个点,相同时间必定通过相同的路程,因此,A、B、C点的线速度相等,这也是两个轮子的联系。
即(2)比较各点角速度:比较应通过入手分析因为A、F是同一物体上的点,角速度必然相等即,同理所以(3)由总结升华:(1)同一转动物体上的各点,角速度必然相等;(2)皮带传动时,与皮带接触的点线速度相等。
举一反三变式1、如图所示,一皮带不打滑的皮带传动装置,A、B两点是轮缘上的点,C是O2B连线中点上的一点。
大轮与小轮的半径之比为2:1,试分析A、B、C三点线速度、角速度、周期、向心加速度的关系。
解析:A、B、C三者中,A、B都是轮边缘上的点,所以具有相同的线速度。