最新《电力拖动》知识重点

合集下载

电力拖动知识点整理

电力拖动知识点整理

电力拖动知识点整理第二章1.脉宽调制答:利用电力电子开关的导通与关断,将直流电压变成连续可变的电压,并通过控制脉冲宽度或周期达到变压变频的目的。

2. 直流蓄电池供电的电流可反向的两象限直流斩波调速系统,已知:电源电压Us=300V,斩波器占空比为30%,电动机反电动势E=100V,在电机侧看,回路的总电阻R=1Ω。

问蓄电池的电流Id是多少是放电电流还是充电电流答:因斩波电路输出电压u0的平均值: U0=ρ×Us=30%×300=90 V < EaId=( U0- E)/ R=(90-100)/1=-10A是充电电流,电动机工作在第Ⅱ象限的回馈制动状态, 直流蓄电池吸收能量。

3. PWM调速系统的开关频率答: 电力晶体管的开关频率越高,开关动态损耗越大;但开关频率提高,使电枢电流的脉动越小,也容易使电流连续,提高了调速的低速运行的平稳性,使电动机附加损耗减小;从PWM变换器传输效率最高的角度出发,开关频率应有一个最佳值;当开关频率比调速系统的最高工作频率高出10倍左右时,对系统的动态特性的影响可以忽略不计。

4.静差率s与空载转速n0的关系 p19答:静差率s与空载转速n0成反比,n0下降,s上升。

所以检验静差率时应以最低速时的静差率为准。

5. 反馈控制有静差调速成系统原理图,各部件的名称和作用。

答: ①比较器: 给定值与测速发电机的负反馈电压比较,得到转速偏差电压ΔUn 。

②比例放大器A :将转速偏差电压ΔUn 放大,产生电力电子变换器UPE 所需的控制电压Uc 。

③电力电子变换器UPE :将输入的三相交流电源转换为可控的直流电压Ud 。

④M 电机:驱动电机。

⑤TG 发电机:测速发电机检测驱动电机的转速。

⑥电位器:将测速发电机输出电压降压,以适应给定电压幅值Un*。

6.分析转速负反馈单闭环调速系统的基本性质,说明单闭环调速系统能减少稳态速降的原因,改变给定电压或者调整转速反馈系数能否改变电动机的稳态转速为什么答:负反馈单闭环调速系统能够减少稳态速降的实质在于它的自动调节作用,在于它能随着负载的变化而相应地改变电枢电压,以补偿电枢回路电阻压降的变化。

电力拖动基础知识PPT(共60页)

电力拖动基础知识PPT(共60页)

1.刀开关
在电力拖动控制线路中最常用的是由刀开关和熔断器组合 而成的负荷开关。
生产中常用HK系列开启式负荷开关(又称瓷底胶盖刀开关, 简称闸刀开关),适用于照明、电热设备及小容量( 5.5kW 以下)电动机控制线路中,供手动不频繁地接通和分断电路, 起短路保护作用。
结构:开关的瓷座上装有进线 座、静触头、熔体、出线座和 带手柄的刀式动触头,上面盖 有胶盖以防止操作时触及带电 体或分断时产生的电弧飞出伤 人。
结构:熔断器主要由熔体、安装熔体的熔管和熔座组成。
常用的有: 1)RC1A系列插入式熔断器(瓷插式熔断器)
它主要由瓷座、瓷盖、动触头、静触头及熔丝组成。一 般用于交流50HZ、额定电压380V及以下、额定电流200A 及以下的低压线路末端或分支路中,作为电气设备的短路 保护及一定程度的过载保护。
2)RL1系列螺旋式熔断器 它主要由瓷帽、熔断管、瓷套、上接线座、下接线座及
维修电工培训
电力拖动基础知识
授课:永安市技校 陈昌初
第一节:常用低压电器
低压电器简介

开关

熔断器


……


电 器
控 制
接触器 继电器
时间继电器 热继电器

起动器 ……

……
低压电器的分类
生产机械中所用的控制电器多属于低压电器,它 是指在电压在500V以下、用来接通或断开电路,以及 来控制、调节和保护用电设备的电气器具。 电器按动作性质可分为以下两类:
(1) 非自动电器:这类电器没有动力机构,依靠人 力或其他外力来接通或切断电路,如刀开关、转换开关 等。
(2) 自动电器:这类电器有电磁铁等动力机构,按 照指令、信号或参数变化而自动动作,使工作电路接通

电力拖动知识点总结

电力拖动知识点总结

电力拖动知识点总结电力拖动是一种利用电动机作为传动装置的动力传动方式,广泛应用于工业生产中的各个领域,如工厂生产线的输送设备、机械加工设备、自动化装配线和物流输送系统等。

电力拖动系统具有高效、稳定、可靠的特点,能满足现代工业对动力传动的需求。

本文将对电力拖动的基本原理、主要组成部分、常见故障及维护保养等方面进行详细的介绍和总结。

一、基本原理电力拖动系统的基本原理是利用电动机产生的电能转换为机械能,驱动各种传动装置完成工作。

其中,电能通过电源系统供给电动机,经过电动机内部的电磁场作用,产生旋转力矩驱动负载进行工作。

电力拖动系统的基本原理主要包括电源系统、电动机、传动装置和控制系统等几个方面。

1. 电源系统电力拖动系统的电源系统一般采用交流电源或直流电源,根据实际需要进行选择。

在工业生产中,交流电源应用更为广泛,其特点是输送距离远、输出功率大、电源稳定性好,适合长距离输电和大功率负载。

而直流电源系统功率较小,通常用于小功率负载或特殊工况的应用。

2. 电动机电力拖动系统的核心部件是电动机,其主要作用是将电能转换为机械能,驱动负载进行工作。

根据实际需要,电动机可分为交流电动机和直流电动机两种类型。

交流电动机通常采用同步电动机或异步电动机,具有结构简单、维护方便、功率范围广等特点;而直流电动机具有速度调节范围广、起动力矩大、转速稳定等优点,在某些特殊场合得到广泛应用。

3. 传动装置传动装置是电力拖动系统的关键组成部分,用于将电动机产生的旋转力矩传递给负载进行工作。

常见的传动装置包括联轴器、减速机、齿轮传动、带传动等,其选择应根据实际工况及传动比、传动效率等因素进行综合考虑,以确保系统的工作效率和可靠性。

4. 控制系统电力拖动系统的控制系统用于对电动机进行启停、速度调节、方向控制等操作。

常见的控制方式包括手动控制、自动控制和远程控制等,可根据实际需要选择。

现代工业生产中,自动化程度越来越高,电力拖动系统的控制系统也逐渐向着智能化、网络化方向发展,以满足高效、精密的工业生产需求。

电力拖动基础知识

电力拖动基础知识

电力拖动基础知识电力拖动基础知识引言电力拖动是指利用电动机将动力传递给装置或机械的一种技术。

它在现代工业中起着至关重要的作用,广泛应用于各个行业。

本文将介绍电力拖动的基础知识,包括电动机的工作原理、电力传动系统的组成以及一些常见的应用。

一、电动机的工作原理电动机是电力拖动的核心部件,它将电能转换为机械能,通过轴向动力输出。

电动机的工作原理主要基于电磁感应和洛伦兹力。

1. 电磁感应电磁感应是电动机实现转动的基本原理。

当电流通过电动机的线圈时,会在线圈周围产生磁场。

根据法拉第电磁感应定律,当磁场改变时,会在线圈中产生感应电动势。

这个电动势会与电源电压产生差异,导致电流流经线圈。

差异越大,电流越大。

2. 洛伦兹力电动机实现转动的另一个原理是洛伦兹力。

当线圈中有电流通过时,它在磁场中受到力的作用。

根据右手定则,电流方向与磁场方向之间的关系将决定所受力的方向。

由于线圈的结构,导线受到力的方向相同,这将产生一个力矩,使电机开始旋转。

二、电力传动系统的组成电力传动系统是电力拖动的基础,它由电动机、传动装置和负载组成,各部分通过轴连接。

1. 电动机电动机是传动系统的动力源,它的类型有很多种。

常见的电动机包括直流电动机、交流异步电动机和交流同步电动机。

不同类型的电动机有不同的应用领域和工作原理。

2. 传动装置传动装置用于将电动机的转速和转矩传递给负载。

常见的传动装置包括齿轮传动、皮带传动和链传动。

通过不同的传动装置,可以实现不同的转速和转矩要求。

3. 负载负载是电力传动系统中的目标设备或机械。

它可以是任何需要动力传递的装置,如机床、输送带和风扇。

负载的特点和要求将决定电动机和传动装置的选择。

三、常见的电力拖动应用电力拖动在工业中的应用广泛,以下是一些常见的应用领域:1. 工业生产线工业生产线通常需要大量的电力来驱动各种设备和机械。

电力拖动被广泛应用于各个环节,如输送链、旋转装置和起重机。

2. 交通运输交通运输中的电力拖动主要应用于轨道交通和电动汽车。

电拖知识点

电拖知识点

电拖知识点第一章电机中的电磁学基本知识1.4铁磁材料1.起始磁化曲线、磁滞回线、基本磁化曲线的特点2.简单了解磁滞损耗与涡流损耗这两个概念。

第二章电力拖动系统动力学2.1 运动方程式及转矩的符号分析1.电动机工作状态的确定方法2.2 复杂电力拖动系统的简化1.折算原则2.旋转运动简化:转矩折算、转动惯量、飞轮矩的折算3.直线运动:转矩折算、质量折算,提升下放与提升重物效率关系2.3负载特性三种负载的特性2.4稳定运行1.稳定含义2.电力拖动系统稳定运行的充要条件3.根据充要条件进行平衡点稳定与否的判定第三章直流电机3.1 .3 直流电机铭牌数据定义3.2直流电机的电枢绕组1.实槽、虚槽等的概念及相互关系2.电枢绕组分类3.几个节距的定义及相互关系4.各种类型绕组并联支路对数与电机极对数之间的关系3.3电枢磁动势对电机运行的影响1.空载磁化曲线2.直流电机励磁方式:分类及各方式电压电流关系,很重要3.电枢反应的定义,交轴直轴电枢反映对每极总磁通的影响3.4电枢电动势与电磁转矩Ea与Tem的表达式,电势常数与转矩常数的关系3.5运行原理1.按电动机定向,各参数的方向定义(掌握运行原理图)。

2.电动机运行状态判断方法。

3.直流电机(发电机、电动机)稳态电压平衡方程4.电动机功率传递关系:注意并励与他励不同,并励要加上励磁电阻损耗5.定值损耗与变值损耗的区别,及其与效率的关系6.电机工作特性:他励电动机各工作特性的变化规律。

他、串、并、复四种电动机的比较7.他励直流发电机空载特性、外特性的特点8.自励直流发电机自励条件第四章直流电机的电力拖动4.1机械特性1.他励直流电动机基本方程(重要)2.机械特性方程式、固有机械特性表达式,斜率及几个重要点的对应坐标3. 人为机械特性(重要):三种人为机械特性的图形、特点,表达式。

4.人为机械特性的绘制:根据各特性的特点绘制,并考虑电枢绕组电阻Ra的计算法(系数一般取0.5),课本例题要弄明白,主要是几何图形的计算。

(完整版)电力拖动自动控制系统的重点复习

(完整版)电力拖动自动控制系统的重点复习

1.运动控制系统是由电动机、功率放大与变换装置、控制器及相应的传感器等构成,交流调速系统取代直流调速系统已成为不争的事实。

2.V-M系统:晶闸管整流器—电动机调速系统;SPVWM:电压空间矢量PWM控制3.直流PWM调速系统:脉宽调整变换器—直流电动机调速系统;脉宽调制变换器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电动机转速4.泵升电压:当系统工作在逆变状态时,会对滤波电路中滤波电容进行充电,使电容两端电压升高5.静特性:表示闭环系统电动机转速与负载电流(转矩)间的稳态关系6.有静差调速系统:在比例控制调速系统中,存在扰动引起的稳态误差;7.无静差调速系统:对于积分控制和比例积分控制系统,由阶跃扰动引起的稳态误差为0;8.电流截止负反馈:当电流大到一定程度时才接入电流负反馈以限制电流,而电流正常时仅有转速负反馈起作用控制转速。

9.准时间最优控制:在设备物理上的允许条件下,实现最短时间的控制;10.双闭环调速系统:在电流、转速反馈控制系统中,从闭环结构上看,由电流环在里面构成的内环和由转速环在外面构成的外环,两个闭环构成的控制系统称作双闭环调速系统;11.可逆调速系统:可以实现电机正反转,具有四象限运行功能的调速系统称为可逆调速系统;12.环流的定义:采用两组晶闸管反并联的可逆V-M系统,如果两组装置的整流电压同时出现,便会产生不流过负载而直接在两组晶闸管之间流通的短路电流,称作环流(1)静态环流——两组可逆线路在一定控制角下稳定工作时出现的环流,其中又有两类:直流平均环流——由晶闸管装置输出的直流平均电压所产生的环流称作直流平均环流。

瞬时脉动环流——两组晶闸管输出的直流平均电压差为零,但因电压波形不同,瞬时电压差仍会产生脉动的环流,称作瞬时脉动环流。

(2)动态环流——仅在可逆V-M系统处于过渡过程中出现的环流。

电力拖动基础知识

电力拖动基础知识

常见故障的诊断与排除
电机故障
检查电机是否有异常声音、振动或过热现象,如 有异常应及时停机检查并排除故障。
控制电路故障
检查控制电路是否有断路、短路等现象,及时修 复故障电路,确保系统正常运行。
传动装置故障
检查传动装置是否有松动、磨损等现象,如有异 常应及时调整或更换部件。
05
电力拖动的发展趋势
电力拖动系统的智能化
伺服电机
具有快速响应和精确控制的特点,常用于高 精度定位和运动控制。
交流电机
结构简单、维护方便,常用于工业生产中。
步进电机
通过控制脉冲数实现精确的位置控制,常用 于开环控制系统。
电机的原理
直流电机
基于通电导体在磁场中受力的原理,通过改变电流方向或磁场方向实现电机的 旋转。
交流电机
基于电磁感应原理,通过定子产生旋转磁场,使转子产生感应电流并受到磁场 力作用而旋转。
电力拖动基础知 识
汇报人: 202X-01-05
目录
• 电力拖动概述 • 电机与控制器 • 电力拖动系统设计 • 安全与维护 • 电力拖动的发展趋势
01
电力拖动概述
定义与原理
定义
电力拖动是一种利用电动机作为原动 机来驱动机械设备运动的技术。
原理
通过改变电动机的输入电压、电流或 频率,可以控制机械设备的运动状态 ,如速度、方向和加速度等。
01
根据实际需求选择合适的电机类型和控制方式,如需要高精度 速度控制时选择伺服电机和变频器。
02
考虑电机的功率、扭矩、转速等参数,以及控制器的输入输出
点数、控制精度和稳定性等参数。
考虑成本和维护的便利性,选择性价比高的电机和控制方案。
03

电力拖动重点知识整理

电力拖动重点知识整理

电力拖动重点知识整理
电力拖动是电机传动技术中应用较为广泛的一种技术。

它是利用电源供给,将电流转换成机械能量,以推动机械装置运动的技术。

电力拖动技术可以实现机械设备之间良好的动力连接,可提高机械系统工作效率,是先进的运动学装置技术。

电力拖动技术的实现通常需要三个元件:电机、拖动器以及拖动物体,以上三者的结合才能实现电力拖动技术的应用。

电机将电能转换为机械能,拖动器将电机的机械能转换为拖动物体的动力,拖动物体就是被拖动的物体。

电力拖动技术的基本原理是:拖动器将电机的机械转矩传递给拖动物体,使拖动物体产生动作。

电力拖动技术有几种应用方式,如直接拖动、间接拖动和扭矩拖动。

其中,直接拖动是电机直接带动拖动器,而拖动器拉动拖动物体的方式;间接拖动是利用带轮或皮带将电机传动转矩传递给拖动器;扭矩拖动是利用旋转机构把电机传递的转矩转换为拖动物体所需的扭矩。

电力拖动技术具有许多优点,如易操作、运行可靠、安全可靠、拖动力大、精度高等。

由于直接利用电能,可以把电机能量转换为气动能,而不受油压材料的限制,还能把电能转换为机械能,使用灵活性更高。

此外,电力拖动适用于各种情况,具有良好的操作适应性,如拖动速度、转矩等可根据工况实际情况动态调整。

总之,电力拖动技术是一种相对比较先进的技术,它的应用越
来越广泛,能够提高机械系统的效率,也能改善某些工况下动力系统运行的可靠性。

电力拖动自动控制知识点总结

电力拖动自动控制知识点总结

电力拖动自动控制知识点总结电力拖动自动控制是一种利用电动机作为动力源,完成一系列运动控制和操作的技术。

它通过电力传动系统来把控制命令转换为电机动力输出,实现对设备的位置、速度和转矩等参数的精确控制。

电力拖动自动控制在各个行业的自动化生产中广泛应用,提高了生产效率和产品质量,降低了劳动强度和人为失误。

一、电力拖动自动控制基本原理电力拖动自动控制的基本原理是通过电动机来实现运动控制。

一般来说,电力拖动自动控制主要包括三个基本组成部分:传感器、控制器和执行器。

传感器用于采集反馈信号,控制器进行信号处理和计算,并将处理后的信号发送给执行器。

执行器则根据控制信号,调节电动机的转速、方向和输出力矩,实现对设备的运动控制。

二、电力拖动自动控制系统组成1.电动机电动机是电力拖动自动控制系统的核心部件,它将电能转换为机械能来驱动设备运动。

常用的电动机有直流电动机、交流感应电动机和步进电动机等。

选择合适的电动机型号和规格,对于实现精确控制至关重要。

2.传感器传感器用于采集各种物理信号,比如位置、速度、力矩等,并将其转换为电信号送入控制器。

常用的传感器有编码器、接近开关、力传感器和位移传感器等。

传感器的准确度和稳定性对于控制系统的精确性和性能至关重要。

3.控制器控制器是电力拖动自动控制系统的智能核心,负责信号的处理和控制算法的执行。

根据控制要求和应用场景的不同,常用的控制器有PLC(可编程逻辑控制器)、单片机和工控机等。

控制器的设计和参数设置决定了系统的稳定性和运行特性。

4.电力传动装置电力传动装置一般由电动机、传动装置和工作机构组成。

传动装置根据控制信号来调整输出轴的转速和转矩,使工作机构按照预设的规律运动。

常用的电力传动装置有齿轮传动、皮带传动、链传动和螺杆传动等。

5.控制回路控制回路是电力拖动自动控制系统中最关键的部分,它根据输入信号和反馈信号进行比较和判断,产生控制信号送入执行器。

常见的控制回路有位置闭环控制、速度闭环控制和转矩闭环控制等。

电力拖动系统知识点总结

电力拖动系统知识点总结

电力拖动系统知识点总结一、电力拖动系统概述电力拖动系统是指利用电动机驱动,通过变速器、机械传动装置和控制系统,实现对各种机械设备的动力传递和控制的系统。

它是现代工业中广泛应用的一种动力传动方式,具有结构简单、运行可靠、效率高、调速范围广等优点,被广泛应用于各种生产设备和工业机械中。

二、电力拖动系统结构1. 电动机:电力拖动系统的驱动源,常见的电动机有直流电动机、交流异步电动机、交流同步电动机等。

根据不同的工况和要求,选择适合的电动机类型。

2. 变速器:用于调节和控制电动机的转速,使其适应不同的工况和负载要求。

根据需要,可以选择机械变速器或者电子变速器。

3. 机械传动装置:包括联轴器、齿轮传动、链传动等,用于将电动机的旋转运动传递给工作机构,实现对工作机构的动力传递和控制。

4. 控制系统:用于控制电动机的启停、调速、反向等动作,使整个电力拖动系统能够按照要求进行运行和控制。

控制系统通常包括PLC、变频器、传感器等设备。

5. 电源系统:用于提供电动机所需的电能,包括电源线路、电箱、开关柜等设备。

三、电力拖动系统的工作原理电力拖动系统的工作原理可以分为如下几个步骤:1. 电源供应:电源系统将电能供应给电动机,使其转动。

2. 变速器控制:利用变速器对电动机的转速进行调节,根据不同的负载要求和工作条件进行调整。

3. 机械传动:通过机械传动装置将电动机的转动传递给工作机构,实现对工作机构的动力传递。

4. 控制系统作用:控制系统对整个电力拖动系统进行控制和监控,保证其安全稳定地运行。

这样,整个电力拖动系统就能够实现对工作机构的动力传递和控制,满足各种不同的生产要求和工业应用。

四、电力拖动系统的应用领域电力拖动系统广泛应用于各种生产设备和工业机械中,包括:机床、起重设备、输送设备、风机、泵等。

特别是对于需要频繁启停、调速和反向的设备,电力拖动系统具有明显的优势。

在自动化生产线和智能制造系统中,电力拖动系统更是不可或缺的一部分,它能够实现对整个生产线的动力传递和控制,完全符合现代工业的生产要求。

电力拖动复习大纲

电力拖动复习大纲

电力拖动复习大纲漆海霞第三章 直流电机的电力拖动 一、本章重点:1、电力拖动系统动力学基础:电力拖动系统动力学方程式,多轴电力拖动系统折算,生产机械负载特性,电力拖动系统稳定运行条件,调速系统性能指标;调速方式与负载类型的配合。

2、直流电动机的电力拖动;(1)直流电动机电力拖动动态数学模型, (2)直流电机的起动、调速、制动方法及特性。

3、直流电机的四象限运行分析。

二、复习指导1、电力拖动系统动力学方程式,2375em L d GD dnT T J dt dtΩ-== (3-1)~(3-3)Note :①正确理解方程式的应用,明确电机输出转矩及负载转矩正方向的规定,熟悉方程式的使用条件,并运用该方程式分析各种电力拖动系统的运行状态。

②明确方程式中各字母符号的物理意义及单位。

2、多轴电力拖动系统等效(折算方法);掌握折算的概念、原则及方法。

折算概念:对于多轴电力拖动系统,将负载转矩及惯量进行折算为等效的单轴系统。

折算的原则是:确保折算前后系统传递的功率或系统储存的动能不变。

折算的方法有:(1)、机械机构转矩折算;(2)直线作用力的折算;(3)惯量与飞轮矩GD 2的折算;(4)直线运动的质量折算。

(1)、机械机构转矩折算电机工作在电动状态, ()()L L LL t t t L L T T T T n j n ηηη'''===ΩΩ (3-4) 电机工作在发电状态, ()()L tL t L t L LLT T T T nj n ηηη'''===ΩΩ (3-5) j=j 1·j 2·j 3…为传动机构总转速比。

(2)直线作用力的折算电机工作在电动状态,重物提升时,9.55260L L L L L L L t ttF v F v F vT n n πηηη===Ω (3-6)电机工作在发电制动状态,重物下放时,9.55260L L t L L t L L t L F v F v F v T n n ηηηπ'''===Ω (3-7)且对于同一重物有:12t tηη'=-(3-8)(3)惯量与飞轮矩GD 2的折算惯量的折算:2221212()()()L M L J J J J J ΩΩΩ=++++ΩΩΩ(3-9) 飞轮矩的折算:2222222221122112222222211212()()()()L L L L MM LG D G D G D G D G D G D GD GD GD n n n j j j j n n n =++++=++++ (3-10) (4)直线运动的质量折算22222222211()3652242460L L L L L L M L L M G v m v G v gJ m v GD g n g n π''Ω=⇒===Ω⎛⎫⎪⎝⎭ (3-11)3、生产机械负载特性恒转矩负载转矩特性(反抗性负载和位能负载特性),恒功率负载转矩特性,风机、泵类负载转矩特性。

电力拖动自动控制知识点总结

电力拖动自动控制知识点总结

根据直流电机转速方程 n — 转速(r/min ); U — 电枢电压(V ) I — 电枢电流(A ); R — 电枢回路总电阻( Ω ); Φ — 励磁磁通(Wb );Ke — 由电机结构决定的电动势常数。

三种方法调节电动机的转速:(1)调节电枢供电电压 U ; (2)减弱励磁磁通 Φ;(3)改变电枢回路电阻 R 。

第1章 闭环控制的直流调速系统1、常用的可控直流电源有以下三种⏹ 旋转变流机组——用交流电动机和直流发电机组成机组,以获得可调的直流电压。

⏹ 静止式可控整流器——用静止式的可控整流器,以获得可调的直流电压。

⏹ 直流斩波器或脉宽调制变换器——用恒定直流电源或不控整流电源供电,利用电力电子开关器件斩波或进行脉宽调制,以产生可变的平均电压。

2、由原动机(柴油机、交流异步或同步电动机)拖动直流发电机 G 实现变流,由 G 给需要调速的直流电动机 M 供电,调节G 的励磁电流 i f 即可改变其输出电压 U ,从而调节电动机的转速 n 。

这样的调速系统简称G-M 系统,国际上通称Ward-Leonard 系统。

3、晶闸管-电动机调速系统(简称V-M 系统,又称静止的Ward-Leonard 系统),4、采用简单的单管控制时,称作直流斩波器,后来逐渐发展成采用各种脉冲宽度调制开关的电路,脉宽调制变换器(PWM-Pulse Width Modulation )。

PWM 系统的优点(1)主电路线路简单,需用的功率器件少;(2)开关频率高,电流容易连续,谐波少,电机损耗及发热都较小;(3)低速性能好,稳速精度高,调速范围宽,可达1:10000左右;(4)若与快速响应的电机配合,则系统频带宽,动态响应快,动态抗扰能力强;(5)功率开关器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗也不大,因而装置效率较高;(6)直流电源采用不控整流时,电网功率因数比相控整流器高。

5、晶闸管触发和整流装置的放大系数和传递函数在动态过程中,可把晶闸管触发与整流装置看成是一个纯滞后环节,其滞后效应是由晶闸管的失控时间引起的。

电力拖动重点知识整理

电力拖动重点知识整理

1.电力拖动自动控制系统按控制的物理量分类:调速系统、位置随动系统、张力控制系统、多电机同步控制系统2.直流调速系统用的可控直流电源:旋转变流机组、静止式可控整流器、直流斩波器或脉宽调制变换器3.晶闸管管可控整流装置中电路,谐波与无功功率造成的电力危害,必须添置无功补偿和谐波滤波装置。

4.V-M系统中整流电路输出电流波形是脉动的,可能出现电流连续和断续两种情况。

抑制电流脉动的措施:1增加整流电路相数或采用多重化技术2设置平波电抗器5.桥式可逆PWM系统,PWM变化器中的电容作用:1滤波2当电机制动时吸收运行系统动能。

由于直流电源靠二极管整流器供电,不能回馈电能,电机制动时只能对滤波电容充电,电容两端电压升高,称作“泵升电压”6.静态性能指标:调速范围、静差率7.一个系统的调速范围是指在低速时还能满足所需静差率的转速可调范围。

8.开环系统机械特性和闭环系统静特性的关系结论:1闭环系统静特性可以比开环系统机械特性硬得多2闭环系统静差率比开环系统小得多3静差率一定时,闭环系统可大大提高调速范围4获得以上优势闭环系统必须设置放大器9.反馈控制规律:1只有比例放大器的反馈控制系统,其被调量仍有静差2反馈控制系统的作用:抵抗扰动,服从给定3系统的精度依赖于给定和反馈检测的精度10.比例积分控制综合了比例控制和积分控制两种规律的优点,克服了各自的缺点,扬长避短,互相补充。

比例部分能迅速响应控制作用,积分部分则最终消除稳态偏差11.电压负反馈的构成:反馈检测原件即起分压作用的电位器。

12.转速、电流双闭环直流调速系统,设置2个调节器分别调节转速和电流,即引入转速负反馈和电流负反馈。

二者串级联接,转速调节器的输出作为电流调节器的输入电流调节器输出控制电力电子变换器。

从闭环结构上,电流环在里面,称作内环;转速环在外边,称作外环。

这就形成了转速、电流双闭环调速系统13.(判断)PI调节器输出量在动态过程中决定于输入量的积分,达到稳态时,输入为零,输出的稳态值与输入无关,而是由他后面的环节决定14.双闭环直流调速系统根据起动过程中转速调节器ASR经历不饱和、饱和、退饱和3种情况动态过程分为3个阶段:电流上升阶段、恒流升速阶段、转速调节阶段。

电力拖动复习资料

电力拖动复习资料

电力拖动复习资料电力拖动复习资料电力拖动是一种利用电能来驱动机械设备的技术。

它通过将电能转化为机械能,实现对设备的控制和操作。

在现代工业生产中,电力拖动广泛应用于各个领域,如制造业、交通运输、能源等。

本文将对电力拖动的基本原理、应用领域以及发展趋势进行简要介绍和讨论。

一、电力拖动的基本原理电力拖动的基本原理是利用电动机将电能转化为机械能,通过传动装置将机械能传递给被驱动设备,实现对设备的控制和操作。

电动机是电力拖动的核心部件,它可以根据不同的要求选择不同类型的电动机,如直流电动机、交流电动机等。

电动机通过电源提供的电能,产生旋转力矩,驱动机械设备的运动。

二、电力拖动的应用领域1. 制造业:在制造业中,电力拖动被广泛应用于各种生产设备,如机床、输送设备、起重设备等。

电力拖动可以提高设备的运行效率和精度,降低能耗和生产成本。

同时,电力拖动还可以实现自动化生产,提高生产线的自动化水平。

2. 交通运输:电力拖动在交通运输领域也有重要应用。

例如,电动车辆利用电力拖动技术实现驱动,可以减少对传统燃料的依赖,降低环境污染。

此外,电力拖动还被应用于轨道交通、船舶等领域,提高交通工具的运行效率和安全性。

3. 能源:电力拖动在能源领域的应用主要体现在电力输送和储能方面。

电力拖动可以实现高效的电力输送,将电能从发电厂输送到用户终端,提高电网的输电效率。

此外,电力拖动还可以应用于储能设备,如电池、超级电容器等,实现电能的储存和释放。

三、电力拖动的发展趋势1. 高效节能:随着能源紧缺和环境污染问题的日益突出,电力拖动在未来的发展中将更加注重高效节能。

新型电动机和传动装置的研发将使电力拖动系统的效率进一步提高,降低能源消耗和环境负荷。

2. 智能化控制:随着信息技术和自动化技术的发展,电力拖动系统将越来越智能化。

通过引入先进的控制算法和传感器技术,电力拖动系统可以实现更加精确的控制和监测,提高设备的运行稳定性和安全性。

3. 多能源协同:未来的电力拖动系统将更加注重多能源协同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(P1)根据电动机的分类,电力拖动分为交流拖动系统和直流拖动系统。

用交流异步电动机和交流同步电动机拖动生产机械的系统称为交流拖动系统;以直流电动机拖动生产机械的系统称为直流拖动系统。

根据系统中电动机的数量,电力拖动又分为单机拖动系统和多机拖动系统。

单机拖动系统结构简单,应用较广;多机拖动常用于大功率和有特殊控制要求的系统中。

什么是电力拖动?电力拖动系统由哪几部分组成?各部分有何作用?电力拖动是以电力为原动力,通过电气设备(如电动机等)带动生产机械来完成一定的生产任务。

电力拖动系统由电源、电动机、生产机械和控制设备等4个基本部分组成。

电源的作用是用以向拖动系统提供能源。

电动机是生产机械的原动力,它的作用是将电能转变为机械能带动生产机械工作。

生产机械是电动机拖动的对象,如提升机、通风机、水泵等。

有时生产机械需要改变运行方式传递动力,电动机通过传动装置拖动生产机械完成生产工艺。

控制设备是按照生产机械的要求去控制电动机的启动、调速、制动等运行过程的。

采用电动机拖动有哪些优点?(1)电能输送方便、经济、便于分配(2)可满足不同类型生产机械的需要,并且拖动效率高;(3)拖动性能好,能达到生产工艺要求的最佳工作状态;(4)能进行远距离监视、测量和控制,便于集中管理,容易实现生产过程的自动化。

(P3)机械特性:拖动系统中的转矩改变时,将导致系统速度的变化,它们之间的这种关系称为系统的转矩—转速特性,也称为机械特性。

电动机的机械特性可用特性方程式或特性曲线图表示,它是生产机械选配电动机和分析拖动系统的重要依据。

(P4)固有机械特性:固有机械特性也称为自然特性,它是在电动机额定电压、额定频率(交流电动机)、额定励磁电流(直流电动机)的条件下,电动机回路无附加电阻或电抗时得到的机械特性。

人为机械特性:人为机械特性也称人工特性,是通过改变电动机的电压、频率、励磁电流以及串接电阻、电抗的方法而得到的机械特性。

利用人为特性可以满足不同生产工艺过程的需要。

稳定工作点是指当拖动系统受到瞬时外来干扰后,系统能自动恢复到原来的静态工作点;否则为不稳定工作点。

工作点的稳定性是由电动机的机械特性和生产机械的机械特性二者之间的配合关系所决定的。

(P7)直流电动机可将直流电转换为机械能,所以它需要直流电源供电。

直流电动机的结构主要由定子和转子两部分组成。

定子用于产生磁场;转子通过换向器输入直流电流与磁场相互作用产生电磁转矩。

直流电动机的转子通常称为电枢。

根据定子励磁绕组和电枢绕组连接方式的不同,直流电动机可分为他励、串励、并励和复励4种。

他励电动机的励磁绕组与电枢绕组分别由两组电源供电,串励、并励和复励电动机的两个绕组分别接成串联、并联和混合串并联形式,由同一个电源供电。

直流电动机具有良好的调速性能。

不同类型的直流电动机其机械特性不同。

只要人为地改变电动机电枢端电压U、改变磁通Φ或在电枢回路串接附加电阻R A,都可以改变电动机的机械特性。

(P10)启动:电动机从静止到稳定运行的过程称为启动。

电动机拖动生产机械正常启动的条件是:在启动的全过程应满足电动机的启动转矩大于负载转矩,其次是要有平稳的启动过程。

他励直流电动机常用的启动方法有:直接启动、电枢回路串接电阻启动及降低电枢端电压启动。

他励直流电动机直接启动:直接启动是不采取任何限流措施,将额定电压直接加在电枢两端,使电动机在较大的电流下启动。

这种启动方法只用于小容量直流他励电动机。

电动机对电力拖动系统的制动一般分为两类,即限速制动和减速制动。

限速制动:为了限制下放速度,应使电动机产生一个与系统旋转方向相反的转矩,当这个转矩与负载转矩相等时,系统达到稳定的下放速度。

这种状态称为限速制动运行状态。

(P12)电动机是一种电能与机械能相互转换的电气设备。

电动状态和制动状态是电动机可以相互转换的两种基本工作状态。

直流他励电动机常用的三种制动方式是发电反馈制动、动力制动、反接制动。

它们都是通过改变电枢电流方向的方法实现的。

当电动机的转速在生产机械的作用下超过理想空载转速时(如提升机下放重物),电动机由电动状态变为发电反馈制动状态。

所以,产生发电反馈制动的条件是n>n0。

发电反馈制动的优点是不改变电动机的接线方式,而且能将机械能转变为电能反馈回电网,因此经济效益好。

在电动机制动过程中,电枢回路串接的电阻越小,制动转矩越大,但对电动机的冲击也越大。

所以,在制动时可以逐渐减小附加电阻,以增大制动转矩缩短制动时间。

(P14)电枢反接制动:工作在电动状态下的电动机,制动时突然改变电枢电压极性,使电动机工作在发电状态产生制动转矩,由于这种制动方法是改变电枢电压极性,故称电枢反接制动。

(P16)直流他励电动机有两种工作状态:电动状态与发电状态。

电动状态又分正转工作状态和反转工作状态,其特点是电动机产生的电磁转矩与其转速方向相同,工作在机械特性的第一象限和第三象限,电枢电流与电源电压方向相同,电动机将电能转换为机械能带动负载转动。

调速:根据生产过程的要求,人为或自动地改变电动机的转速称为调速。

调速的实质是改变拖动系统的稳定运行点,即从某一稳定转速过渡到另一稳定转速。

实现调速的方法是改变电动机的运行条件。

静差率是反映系统的负载变化时引起电动机转速变化的程度,即反映电动机的相对稳定性。

静差率越小,相对稳定性越好。

静差率的大小,与电动机机械特性的硬度和理想空载转速有关。

(P18)直流串励电动机电路的特点是励磁绕组与电枢绕组串联,所以励磁电流就是电枢电流,因而磁通Φ将随电枢电流而变化。

根据直流串励电动机的机械特性方程n=K1U/√ ̄M - K2R可知,当转矩M为零时,串励电动机的转矩n趋于无穷大。

实际上由于电动机铁心总有剩磁存在和机械摩擦阻力的影响,电动机的空载转速可达到额定转速的5~6倍。

这样高的转速会造成电动机及其拖动设备的损坏。

因此串励电动机不允许空载启动和空载运行。

为保证这一点,串励电动机将不得采用皮带传动或链传动,以防止皮带断裂或链脱落造成电动机的空载运行。

同时在串励电动机检修后,不能在额定电压下进行空载试运转。

(P23)交流异步电动机也称为感应电动机。

它可将交流电能转换为机械能,所以采用正弦交流电源供电。

异步电动机的结构主要包括转子和定子两部分。

按转子结构的不同,异步电动机可分为鼠笼式和绕线式两种。

鼠笼式异步电动机具有结构简单、使用方便、价格低、运行中不产生火花等优点。

绕线式异步电动机的转子绕组通过滑环引出,可外接附加电阻,用以改善电动机的调速性能。

为了防止电动机过载,定义Mm与M N之比为电动机的过载倍数λ,一般电动机的λ取 1.6~2.2。

过载倍数也称为过载能力,它反映电动机在额定转矩时的过载极限。

(P27)交流异步电动机的启动电流可达到额定工作电流的4~7倍。

启动瞬间,电动机产生的冲击电流将会影响电网的正常运行。

因此,与直流电动机一样,限制启动电流也是异步电动机启动必须考虑的问题。

异步电动机常用的启动方法有直接启动、降压启动和转子回路串电阻或阻抗启动。

直接启动和降压启动常用于鼠笼型电动机;转子回路串电阻或阻抗启动用于绕线式电动机。

交流异步电动机直接启动:直接启动也称为全压启动,是一种最简单的启动方法。

启动时将额定电压直接加在定子绕组上使电动机启动。

这种方法对容量较大的电动机将会产生很大的启动电流,所以要求电网有足够大的容量;否则,直接启动只能用于小容量异步电动机。

交流异步电动机降压启动:降压启动是在启动瞬间,采用不同的方式将加在电动机定子绕组上的电压降低,使电动机在低于额定电压的条件下启动,从而减小启动电流。

当转速升高到一定程度时,再投入全压使电动机在额定电压下正常运行。

交流异步电动机常用的降压启动方式有定子串接电阻或电抗降压启动、自耦变压器降压启动、星形- 三角(Y )变换降压启动、延边三角形降压启动等。

(P28)绕线式异步电动机启动电阻根据分段切除的方式不同,分为三相平衡切除和不平衡切除两类。

转子回路所使用的电阻多为金属电阻,它是由一箱箱电阻片构成。

根据所计算的电阻值,选用不同规格的电阻箱。

电阻值的改变由控制电器将金属电阻逐段短接来实现。

启动电阻的级数确定以后,各段电阻确定的原则是每次切除电阻后,转子电流和启动转矩的变化幅度应保持恒定,以满足启动过程的平稳性。

(P34)异步电动机有哪些工作状态?各有什么特点?异步电动机和直流电动机一样也有两种工作状态,即电动状态和发电状态。

电动状态的特点是异步电动机的电磁转矩M与其转速n的方向相同,工作在机械特性曲线的第一、第三象限。

第一象限表示电动机正转运行,第三象限表示电动机反转运行。

工作在电动状态的电动机是将电能转换为机械能。

发电状态的特点是异步电动机的电磁转矩M与转速n方向相反,工作在机械特性曲线的第二、第四象限。

这时电动机产生的电磁转矩将阻止拖动系统的运动,故称为制动转矩。

交流异步电动机的动力制动是将运行中的异步电动机三相交流电源断开,在其中两相接入直流电源,同时在转子回路串入附加电阻。

第二章(P51)接触器与继电器的相同点与不同点?接触器和继电器都是拖动系统常用的控制电器,主要用于接通和断开电路,但接触器主要用于频繁切换大功率(大电流)电路,而继电器主要用于传递控制信号,即切换小电流电路。

接触器主要由电磁系统、主触头、辅助触头、灭弧装置、支架及外壳等几部分组成。

按主触头接通和断开电流的种类,接触器可分为交流接触器和直流接触器。

(P56)接触器使用注意事项?接触器属频繁操作的控制电器,使用时应注意以下事项:(1)接触器的工作条件必须与铭牌相符,包括触头的控制容量和铁心线圈的电压等级、电流种类等。

(2)要定期检查接触器各活动部分是否灵活,各固定部分有无松脱,接线端头是否紧固。

发现问题应及时修理或更换。

(3)接触器触头要经常保持清洁,不允许涂油,触头表面的电弧烧蚀痕迹应及时打磨。

当触头磨损至原厚度1/3时,应及时更换。

镀银或银合金触头表面生成的黑色氧化膜不能磨去,以免影响触头寿命。

(4)铁心圈应通风良好,避免受潮,以保持其应有的绝缘性能,防止匝间短路。

(5)有灭弧装置的接触器,禁止不带灭弧装置使用,以防发生电弧短路事故或烧毁接触器。

(P57)灭弧罩应及时清扫,除去积于内表面的金属粒子,保证灭弧装置能够有效地熄灭电弧。

继电器是一类以某种物理为输入,具有跳跃输出特性的电器组件。

继电器的输入量可以是电压、电流、光、热、压力、速度、机械位移等物理量。

其输出是处于不同状态的触点。

(P61)主令电器:是按生产工艺的要求发出控制指令的操作电器,主要用于闭合或断开各种控制电路。

常用的主令电器有按钮开关、行程开关等。

(P65)组合电器是由多种作用的电器组合在一起的开关。

常用的组合电器有刀形开关、自动空气开关和磁力起动器等。

相关文档
最新文档