第七章 噪声控制技术——吸声

合集下载

3噪声控制技术-吸声

3噪声控制技术-吸声

2013年11月26日
23
2013年11月26日
24
• 2.背后空腔的影响
当多孔吸声材料背后留有空气层时,与该空气层用同样的材料 填满的吸声效果近似,与多孔材料直接实贴在硬底面上相比, 中低频吸声性能都会有所提高,其吸声系数随空气层厚度的增 加而增加,但增加到一定厚度后,效果不再继续明显增加,如 图7—3所示。通常,空气层的厚度为l/4波长的奇数倍时,吸 声系数最大;而为1/2波长的整数倍时,吸声系数最小。
2013年11月26日
10
• 2.吸声量
吸声系数反映房间壁面单位面积的吸声能力,材料实际吸收声能的多少, 除了与材料的吸声系数有关外,还与材料表面积大小有关。吸声材料的实 际吸声量按下式计算:
吸声量的单位是m2。若房间中有敞开的窗,而且其边长远大于声波的波长 ,则入射到窗口上的声能几乎全部传到室外,不再有声能反射回来。这敞 开的窗.即相当于吸声系数为1的吸声材料。若某吸声材料的吸声量力1m2 ,则其所吸声能相当于1m2敞开的窗户所引起的吸声。房间中的其他物体如 家具、人等等,也会吸收声能,而这些物体井不是房间壁面的一部分。因 此,房间总的吸声量A可以表示为: 右式第一项为所有壁面吸声量的总和,第二项是室内各个物体吸声量的总 和
波腹:
Pmax = Pi + Pr
• 声强系数与声压系数之间为平方关系,即: • 由于 τ I = 1 − rI • α代替τI得到: α
2013年11月26日
驻波比 n
Pmax 1 + rp n= = Pmin 1 − rp
Pmin = Pi − Pr
波节:
n −1 rp = n +1
Pr rI = Pi
8
吸声系数和吸声量

噪声控制技术—吸声隔声消声

噪声控制技术—吸声隔声消声

第五次课作业
1、设在墙面与地面交线上有一声源,已知500Hz的声 功率级为85dB,同频带下的房间常数为100m2, 求距 声源5m处之声压级Lp。
2、某房间尺寸为6m*7m*3m,墙壁、天花板、和地板 在1KHz时的吸声系数分别为,,若安装一个在1KHz 倍频程内,吸声系数为的吸声贴面天花板,求该频带 在吸声处理前后的混响时间及处理后的吸声减噪量。
消声室 消声箱
吸声劈尖
四、吸声降噪计算
设吸声前的声压级为:
Lp1LW10lg4Qr2 R 41
吸声后的声压级为:
Lp2 LW10lg4Q r2 R42
则:
Lp
Lp1
Lp2
10lg
Q
4r2
Q
4r2
4 R1
4 R2
当某接受点远离声源时,即: 4 Q
R 4r 2
则:
Lp1l0g R R 1 21l0g 1 21 1 2 1
噪声控制技术—隔声
一、常用隔声评价量
1、透射系数 W t
W
2、隔声量:入射声功率级与透射声功率级之差, 也称传声损失。单位dB
ห้องสมุดไป่ตู้
R10 lgI It
20 lgP Pt 10 lg1
3、插入损失:隔声结构设置前后的声功率级 的差(IL )。
IL L W 1L W 2
二、声波透过单层匀质构件的传播 单层匀质墙的隔声频率特性曲线
✓ 薄板吸声结构的共振频率通常在801000Hz范围,吸声系数约为,一般作为 中低频范围的吸声材料。
薄板共振吸声结构的吸声系数
材料名称
材料 厚度
(cm)
空气层厚度 (cm)
125
倍频带中心频率 (Hz)

精品工程类本科大三课件《建筑环境学》07第七章第 5节 噪声的控制与治理方法

精品工程类本科大三课件《建筑环境学》07第七章第 5节 噪声的控制与治理方法

城市噪声的控制
• 避免交通噪声和工厂噪声干扰居住区 • 利用临街的建筑物作为后面建筑的防噪屏障 • 严格施工噪声管理 • 对居住区,锅炉房、水泵房、变电站等应采取消声建造措施,并布置
边缘角落处
室内设备噪声控制
(1)改革工艺和操作方法来降低噪声 (2)降低噪声源的激振力 (3)降低噪声辐射部件对激振力的响应 ——需要说明的是: • 设备噪声的降低,意味着性能提高和寿命延长。 • 机械产品本身的噪声级,可以做为评价其本身综合性能的一项重
• 风机、水泵的出口加软管连接,也是隔振的一种方式。
隔振器

精密磨床隔振基础




振动传递
• 如某个产生振动的设备与一构件 (固有频率f0)相连,则通过这个构 件传导出去的振动动力占振源输 入动力的百分比称作振动传递比 T
1 T ( f / f0 )2 1
隔振结构固有频率 f0 比振源频率f 越低,振动传递比就越小,隔振效
• 吸声尖劈用于半消声室、全消声室,尺寸可根 据用户要求定制。
吸声减噪法使用原则
1.只能取得 4~12dB的降噪效果,因仅能减少反射声(混响声)
• ——不可能通过吸声处理得到更大的减噪效果
2.在靠近声源、直达声占支配地位的场所,采用吸收减噪法将不会得到 理想的降噪效果。
3.室内平均吸声系数较小时,吸声减噪法收效最大。
• 原理:利用布置在管内壁上的吸声材料或吸声结构的吸声作用,使沿管道 传播的噪声迅速随距离衰减,从而达到消声的目的
(1)在总图设计时应按照“僻静分开” 的原则对强噪声源的位置合理地布置
• 将高噪声车间与办公室、宿舍分开。 • 在车间内部,把高噪声的机器与其他机器设备隔离开来,尽可能集

第七章 吸声技术

第七章 吸声技术

7.2.3 常用的吸声材料的吸声特性
7.3 吸声结构
吸声处理中较常采用的另一措施就是采用 吸声结构。吸声结构的吸声机理,就是利 用赫姆霍兹共振吸声原理。 7.3.1 共振吸声原理
当声波入射到赫姆霍兹共振吸声器的入 口时,容器内口的空气受到激励,将产生 振动,容器内的介质将产生压缩或膨胀变 形,根据等效线路图分析,可以得到单个 赫姆霍兹共振吸声器的等效声阻抗为,
吸声尖劈的吸声性能与吸声尖劈的总长 度 和 以及空腔的深度 H 、填充 的吸声材料的吸声特性等都有关系, 越 长,其低频吸声性能越好。 上述参数之间有一个最佳协调关系,需要 在使用时根据吸声的要求进行优化,必要 时还需要通过实验加以修正。
第七章 吸声技术
在降噪措施中,吸声是一种最有效的方 法,因而在工程中被广泛应用。采用吸声 手段改善噪声环境时,通常有两种处理方 法: 一是采用吸声材料 二是采用吸声结构
7.1 吸声评价方法 吸声材料或吸声结构的声学性能与频率 有关,通常采用吸声系数、吸声量、流阻 等三个与频率有关的物理量来评价
7.1.1 吸声系数
m 为薄膜的面密度, D 为空气层的厚度
• 在板后填充多孔性吸声材料后,系统的吸 声系数和吸声频带都会提高。
3 . 穿孔板吸声结构 由穿孔板构成的共振吸声结构被称做穿孔板共 振吸声结构,它也是工程中常用的共振吸声结构
对于多孔共振吸声结构,实际上可以看成单孔 共振吸声结构的并联结构 , 因此,多孔共振吸声 结构的吸声性能要比单孔共振吸声结构的吸声效 果好,通过孔参数的优化设计可以有效改善其吸 声频带等性能。
为了提高多孔穿孔板的吸声性能与吸声带宽, 可以采用如下方法: (1) 空腔内填充纤维状吸声材料; (2) 降低穿孔板孔径,提高孔口的振动速度和摩 擦阻尼; (3) 在孔口覆盖透声薄膜,增加孔口的阻尼; (4) 组合不同孔径和穿孔率、不同板厚度、不同 腔体深度的穿孔板结构。工程中,采用板厚度为 2~5mm , 孔径 2~10mm ,穿孔率在 1%~10% , 空腔厚度 100~250mm 的穿孔板结构。

吸声-_精品文档

吸声-_精品文档

吸声-第五节噪声控制技术,吸声一、材料的声学分类和吸声特性(一)、吸声材料的分类吸声材料按其吸声机理来分类,可以分成多孔性吸声材料及共振吸声结构两大类。

1.多孔性吸声材料①无机纤维材料,如玻璃棉、岩棉及其制品。

②有机纤维材料,如棉麻植物纤维及木质纤维制品(软质纤维板、木丝板等)。

③泡沫材料,如泡沫塑料和泡沫玻璃、泡沫混凝土等。

④吸声建筑材料,如膨胀珍珠岩、微孔吸声砖等。

2.共振吸声结构由于共振作用,在系统共振频率附近对入射声能具有较大的吸收作用的结构,称为共振吸声结构。

穿孔板吸声结构微穿孔板吸声结构薄板和薄膜吸声结构等。

(二)、吸声系数和吸声量1.吸声系数吸声系数定义为材料吸收的声能与入射到材料上的总声能之比,可用吸声系数来描述吸声材料或吸声结构的吸声特性。

计算式为:式中:Ei—入射声能;Ea—被材料或结构吸收的声能;Er—被材料或结构反射的声能;r—反射系数。

a=0,表示无吸声作用;a=1,表示完全吸收。

一般的材料或结构的吸声系数在0-1之间,a值越大,表示吸声性能越好,它是目前表征吸声性能最常用的参数。

吸声系数是颇率的函数,同一种材料,对于不同的频率,具有不同的吸声系数。

平均吸声系数a:中心频率125,250,500,1000,2000,4000六个倍频程的吸声系数的平均值,称为平均吸声系数a。

2、吸声量吸声材料的实际吸声量按下式计算:A=aS(7-2)吸声量的单位是m2。

房间总的吸声量A可以表示为:右式第一项为所有壁面吸声量的总和,第二项是室内各个物体吸声量的总和。

二、多孔吸声材料(一)、多孔吸声材料的吸声原理内部具有无数细微孔隙,孔隙间彼此贯通,且通过表面与外界相通,当声波入射到材料表面时,一部分在材料表面上反射,一部分则透入到材料内部向前传播。

在传播过程中,引起孔隙中的空气运动,与形成孔壁的固体筋络发生摩擦,由于粘滞性和热传导效应,将声能转变为热能而耗散掉。

声波在刚性璧面反射后,经过材料回到其表面时,一部分声波透回空气中,一部分又反射回材料内部,声波的这种反复传播过程,就是能量不断转换耗散的过程,如此反复,直到平衡,这样,材料就“吸收”了部分声能。

噪声控制技术——吸声80页PPT

噪声控制技术——吸声80页PPT

谢谢!
80
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
16、云无心以出岫,鸟倦飞而知还。 17、童孺纵行歌,斑白欢游诣。 18、福不虚至,祸不易来。 19、久在樊笼里,复得返自然。 20、羁鸟恋旧林,池鱼思故渊。
噪声控制技术——吸声

概述吸声与隔声的概念、联系及区别

概述吸声与隔声的概念、联系及区别

概述吸声与隔声的概念、联系及区别摘要:一、吸声与隔声的概念1.吸声:声波在材料内部反射、衰减,达到降低噪音的目的2.隔声:通过材料结构、密度等特性,阻止声波传播,降低噪音二、吸声与隔声的联系1.都属于噪声控制技术2.在实际应用中常结合使用三、吸声与隔声的区别1.吸声材料:多孔、疏松、纤维状,如玻璃棉、矿棉等2.隔声材料:密度较大、结构紧密,如混凝土、金属板等3.吸声材料侧重于降低反射声,改善室内音质4.隔声材料侧重于阻止声波传播,降低噪音入侵正文:在我们的生活中,噪音无处不在,严重影响人们的生活质量和身体健康。

为了降低噪音,噪声控制技术应运而生,其中包括吸声和隔声两大概念。

不少人认为这两者是相同的,但实际上它们有着一定的联系和区别。

首先,我们来了解一下吸声和隔声的概念。

吸声是指声波在材料内部经过反射、衰减,从而达到降低噪音的目的。

这类材料多为多孔、疏松、纤维状,如玻璃棉、矿棉等。

而隔声则是通过材料的结构、密度等特性来阻止声波传播,从而降低噪音。

这类材料密度较大、结构紧密,如混凝土、金属板等。

其次,吸声和隔声在实际应用中常常结合使用。

它们都属于噪声控制技术,旨在降低噪音对人们的影响。

例如,在室内装修时,可以使用吸声材料降低反射声,改善音质;同时使用隔声材料隔离外界噪音,保证室内安静。

然而,吸声和隔声之间也存在一定的区别。

吸声材料主要侧重于降低反射声,改善室内音质。

这类材料对声波具有较强的吸收能力,使声波能量转化为热能或其他形式的能量。

而隔声材料则主要侧重于阻止声波传播,降低噪音入侵。

这类材料具有较高的密度和紧密结构,能够有效阻挡声波的传播。

总之,吸声和隔声虽然都属于噪声控制技术,但在实际应用中有所区别。

吸声降噪技术原理及应用

吸声降噪技术原理及应用

吸声降噪技术原理及应用吸声降噪技术是指利用吸声材料和降噪设备对噪声进行消除或减轻的技术。

吸声降噪技术有广泛的应用领域,包括建筑、交通、航空航天、电子通信等。

吸声降噪技术的原理主要包括物理原理、电子原理和数字信号处理原理。

物理原理是利用吸声材料,通过激发材料中的多孔结构,吸收噪声中的能量,将噪声能量转化为热能。

吸声材料一般采用多孔质材料,如聚酯纤维、聚氨酯泡沫等,其孔隙结构可以将声波能量分散吸收。

电子原理是通过对噪声信号进行实时采集和处理,利用控制电路产生与噪声信号相反的反向信号,来抵消原始噪声信号。

这种原理一般用于噪声频率较高、波形复杂的场景,如电子设备噪声、通信信号噪声等。

数字信号处理原理是利用计算机技术对噪声信号进行数字化采样和处理,通过滤波和降噪算法,将噪声信号降低到可接受的水平。

数字信号处理技术具有高效、灵活的特点,可以广泛应用于车载、航空等领域。

吸声降噪技术的应用领域非常广泛,以下举几个例子:1.建筑领域:在大型会议室、音乐厅、影视录音棚等场所,通过采用吸声材料和降噪设备,可以有效降低噪声对声音传播的影响,提高声学环境质量。

2.交通领域:在高速公路、城市道路等噪声污染比较严重的地方,可以通过建设吸音隔音墙、设置降噪设备等手段,有效减轻噪声对周边居民的影响。

3.航空航天领域:在飞机机舱、发动机舱以及航天器内部,通过吸声材料和降噪设备,可以减少噪声对乘客和船员的干扰,提高舒适性和工作环境。

4.电子通信领域:在电子设备和通信系统中,噪声往往会降低设备和系统的性能。

通过采用吸声材料和降噪算法,可以减少电子设备的噪声输出,提高设备的工作效率和通信质量。

总之,吸声降噪技术是应对噪声污染的一种重要手段,它既可以通过物理手段吸收噪声能量,也可以通过电子和数字信号处理手段对噪声信号进行抑制和消除,广泛应用于建筑、交通、航空航天、电子通信等领域,为人们提供了更加安静和舒适的生活和工作环境。

噪声学-复习整理

噪声学-复习整理

噪声学-复习整理环境噪声控制⼯程第⼀章:绪论⼀、环境噪声标准分为以下三种:1.城市区域环境噪声标准GB3096-93;2.⼯业企业⼚界标准GB12348-90;3.⼯业企业⼚区各类场所噪声限制(噪声卫⽣标准)GBJ87-85。

掌握1和2的功能区分类等,如下:第⼆章:声波的物理基础⼀、频谱频谱图:把某⼀信号中所包含的频率成分,按其幅值或相位作为频率的函数作出的分布图,称作该信号的频谱图。

分:1.离散谱:2.连续谱3.复合谱(见书11)⼆、频程把某⼀范围的频率划分成若⼲⼩的频率段,每⼀段以它的中⼼频率为代表,然后求出声信号在各频率段的中⼼频率上的幅值,作为⼀种频谱,将这样分出来的频率段叫频程。

在划分频程时,使每⼀个频率段的下限频率与上限频率的⽐值为确定的常数。

掌握概念:倍频程和1/3倍频程(见书11)三、声强级、声压级、声功率级定义声强级:⼀个声⾳的声强级L I是该声⾳的声强与基准声强之⽐的常⽤对数乘以10,以分贝计,即: 基准声强I0在空⽓中为10-12W/m2,它是1000Hz声⾳的可听阈声强。

声压级:某声压p与基准声压p0之⽐的常⽤对数乘以20称为该乘以的声压级,以分贝计,即: 基准声压p0在空⽓中为2×10-5Pa。

声功率级:某声功率W与基准声功率W0之⽐的常⽤对数乘以10称为该乘以的声功率级,以分贝计,即:基准声压p0在空⽓中为10-12W。

四、声压级的叠加(计算)有n个不同的噪声源互不相⼲,其中第i个噪声源在某测点处测得的声压级为Lpi,当n个噪声源同时发声,在该点处产⽣的总声压级为:注意:2个⼤⼩相等的噪声叠加后,总声压级⽐原来单独时⾼3(dB)五、声波的反射和透射反射系数r p:反射声压幅值与⼊射声压幅值之⽐。

r p⼤,则吸声差,r值⼩的材料称为吸声材料。

声压透射系数t p:透射声压幅值与⼊射声压幅值之⽐。

t p⼤,则隔声差,t p值⼩的材料称为隔声材料。

六、声传播中的距离衰减(计算)点源:计算从距离r1传播到距离r2时,声强级或声压级衰减量△L,则有:连续线声源:当传播距离从r0⾄r2时,声压级或声强级的衰减量为:第三章:噪声基本评价量⼀、响度级以1KHz纯⾳为基准声⾳,任何声⾳如果听起来和某个1KHz纯⾳⼀样响,那么这个1KHz纯⾳声压级的分贝值就是该声⾳的响度级,单位phon。

《吸声降噪》课件

《吸声降噪》课件

绿色环保与可持续发展
总结词
绿色环保和可持续发展是未来吸声降噪发展的必然趋势。
详细描述
随着环保意识的不断提高,吸声降噪产品将更加注重环保和节能设计,减少对环境的影 响。同时,吸声降噪技术的发展也将更加注重可持续发展,推动行业的长期健康发展。
THANKS
感谢观看
吸声性能评价
吸声性能评价是指对吸声材料的性能和降噪效果进行评估和比较,以选 择最佳的吸声材料和结构设计。
常见的吸声性能评价方法包括实验室测量和现场测试,通过测量吸声材 料的吸声系数、传递损失等指标,以及实际使用中的降噪效果,对吸声
材料的性能进行评价。
吸声性能评价需要考虑的因素包括使用环境、使用条件、经济成本等, 以达到最佳的降噪效果。
详细描述
新型吸声材料,如纳米材料、超材料等,具有更高的吸声性 能和更广泛的适用范围,能够满足各种复杂环境下的降噪需 求。同时,随着人工智能、大数据等新技术的应用,吸声降 噪将更加智能化和高效化。
智能化与定制化发展
总结词
智能化和定制化是未来吸声降噪发展的 另一个重要方向。
VS
详细描述
通过引入智能化技术,可以实现吸声降噪 系统的自适应调节和远程监控,提高系统 的稳定性和可靠性。同时,随着个性化需 求的增加,吸声降噪产品将更加定制化, 满足不同用户的需求。
03
CATALOGUE
降噪原理与技术
降噪原理
吸声降噪原理
吸声降噪是通过吸收和衰减声波 能量来实现降低噪声的方法。
反射、透射和吸收
声音传播过程中,遇到不同介质会 进行反射、透射和吸收。吸声材料 主要通过吸收声波能量来降低噪声 。
共振吸声
利用共振原理,使特定频率的声音 能量被大量吸收,从而达到降噪效 果。

噪声控制技术——隔声(5)

噪声控制技术——隔声(5)

吻合效应的条件
图 吻合的成立条件
b
sin
入射角
临界吻合频率 fc
•定义:产生吻合效应的最低频率,即 b
频率f c
fc
c2 的计m 算 公c2式
2 B 2 h
12m (1 2 )
E
时的

fc
0.551 c2 h
m
E
其中B为墙板的弯曲劲度,N·m
由式可知,临界吻合频率受墙板厚度、密度、弹性影响
(一)双层隔声墙
1.双层隔声墙的隔声原理 2.双层墙的隔声特性曲线 3.双层墙的共振频率及其隔声量的实际估算
2.双层墙的隔声特性曲线
双层隔声墙相当于一个由 c—满铺吸声材料
进入吻合效应两区层后墙,体在与临空气层组成的
超过2 f0 以后,界隔吻合频率 处振f c又动出系现统。一
b—有少量吸声材料
常用双层墙的隔声量见表
三 多层墙的隔声特性
(一)双层隔声墙 (二)多层复合板隔声
(二)多层复合板隔声
• 多层复合板是由几层面密度或性质不同的板材组 成的复合隔声构件.
• 通常用金属或非金属的坚实薄板做面层,内侧覆 盖阻尼材料,或填入多孔吸声材料或空气层等组 成。
• 多层复合板质轻和隔声性能良好,广泛用于多种 隔声结构中,如隔声门(窗)、隔声罩、隔声间的 墙体等。
第一共振频率
临界吻合频率
刚度控制
图 单层匀质墙的隔声频率特性曲线
单层匀质墙的隔声量与入射声波的频率关系很大
吻合效应
•一定频率的声波以入射角θ投射到墙板上,激起构件弯曲振动 •若入射声波的波长λ在墙板上的投影正好与墙板的固有弯曲波 波长λb相等时,墙板弯曲波振动的振幅便达到最大,声波向墙 板的另面辐射较强,墙板隔声量明显下降,此现象称为“吻合效 应” 。

第七章 吸声降噪技术

第七章 吸声降噪技术





39/ 94












40/ 94









பைடு நூலகம்



41/ 94








三、穿孔板共振吸声结构
由穿孔板构成的共振吸声结构被称做穿孔 板共振吸声结构,它也是工程中常用的共 振吸声结构。 对于多孔共振吸声结构,实际上可以看成 单孔共振吸声结构的并联结构,因此,多 孔共振吸声结构的吸声性能要比单孔共振 吸声结构的吸声效果好,通过孔参数的优 化设计可以有效改善其吸声频带等性能。
南 通 大 學
30/ 94












31/ 94












32/ 94








护面层 多孔材料疏松,无法固定,不美观,需表面覆 盖护面层,如护面穿孔板,织物或网纱等 穿孔板,穿孔率超过 20% 薄膜,厚度小于0.05mm 温度和湿度 温度下降时,低频吸声性能增加;温度上升时, 低频吸声性能下降 随着孔隙内含水量的增大,孔隙被堵塞,吸声 材料中的空气不再连通,空隙率下降,吸声性 能下降
23/ 94





噪声控制技术-吸声

噪声控制技术-吸声
吸声系数的影响因素
材料的结构
使用条件
声波频率
吸声系数 影响因素
2
5
3
ห้องสมุดไป่ตู้
4
1
材料的性质
声波入射角度
【声波频率】 同种吸声材料对不同频率的声波具有不同的吸声系数。 平均吸声系数 :工程中通常采用125Hz、250 Hz、500 Hz、1000 Hz、2000 Hz、4000 Hz六个频率的吸声系数的算术平均值表示某种材料的平均吸声系数。 通常,吸声材料 在0.2以上,理想吸声材料 在0.5以上。
一种多孔吸声材料对应存在一个最佳吸声性能的密度范围。
空腔:材料层与刚性壁之间一定距离的空气层; 吸声系数随腔深D(空气层)增加而增加; 空腔结构节省材料,比单纯增加材料厚度更经济。
3
空腔对吸声性能的影响
图 背后空气层厚度对吸声性能的影响
多孔材料的吸声系数随空气层厚度增加而增加,但增加到一定厚度后,效果不再继续明显增加。 当腔深D近似等于入射声波的1/4波长或其奇数倍时,吸声系数最大。 当腔深为1/2波长或其整倍数时,吸声系数最小。 一般推荐取腔深为5~10cm。 天花板上的腔深可视实际需要及空间大小选取较大的距离。
【入射吸声系数】工程设计中常用的吸声系数有 混响室法吸声系数(无规入射吸声系数) 驻波管法吸声系数(垂直入射吸声系数) 应用:测量材料的垂直入射吸声系数 ,按表,将 换算为无规入射吸声系数 。
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.25
0.40
0.50
0.60
(二) 吸声量(等效吸声面积)
【注】工程上通常采用吸声量评价吸声材料的实际吸声效果。

噪声控制技术—吸声隔声消声119页PPT

噪声控制技术—吸声隔声消声119页PPT

1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读。——培根
噪声控制技术—吸声隔声消声
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生

吸声降噪技术

吸声降噪技术

特殊吸声结构
空间吸声体 吸声尖劈
多孔吸声材料应用
教室
写字楼
木丝吸音板 会议室 剧院
多孔吸声材料应用
珍珠岩吸音板
隧道
高速公路
多孔吸声材料应用
玻璃纤维天花板
布艺吸音板
木质吸音板
音乐厅
学术报告厅
变电室
7.1.2 吸声性能评价量
1. 吸声系数 2. 平均吸声系数和降噪系数 3. 吸声量
4. 声阻抗
2

多孔时系统共振频率:
fr c 2 P D(t )


穿孔率:1%-10%
空腔深:10~25cm
1.空腔深度
圆孔正方形排列时 P= d 2 / 4 B 2 圆孔等边三角形排列时 P= d / 2 3B
2 2
fr 2 吸声带宽: f 4 D c
2.填充多孔吸声材料 α=αmax/2 3.不同穿孔率、空腔深度的穿孔 板共振吸声结构进行组合 几十HZ—200~300HZ
α 频率/Hz 5cm厚超细玻璃棉的密度变化 对吸声系数的影响
岩棉的最佳密度范围 为150~200kg/m3
5.背后空腔的影响
图7-10 背后空腔深度对吸声系数的影响
6.材料护面层的影响
作用: 保护吸声材料,防止污染环境。 种类: 护面网罩、纤维布、塑料薄膜和穿孔板等。 要求: 要有良好的通气性。
7.2.2 吸声机理
7.2.3 影响材料吸声的因素
1.空气流阻 2.孔隙率 3.材料厚度的影响 4.材料平均密度的影响 5.背后空腔的影响 6. 护面层的影响 7. 温度、湿度的影响
1. 空气流阻(Rf)
定义:在稳定气流状态下,吸声材料两面的静压强 差与气流线速度之比。

5噪声控制技术 吸声

5噪声控制技术  吸声

α2 ΔL p = 10 lg α1
7.5.1 吸声设计计算
5.吸声降噪量计算 由于:
0.161V 0.161V = T60 = A Sα
α2 T1 ΔL p = 10 lg = 10 lg α1 T2
7.5.1 吸声设计计算
5.吸声降噪量计算
α2/α1 或T2/T1 降噪量 (dB)
1 0
2 3
3 5
4 6
5 7
6 8
8 9
10 10
20 13
40 16
计算实例
某厂控制室:房间尺寸为14m×10m×3m ,房间在各个倍频程中心频 率处的平均吸声系数列于下表中。噪声源为房间内的空调设备,位于 10m×3m墙壁的中心部位。 控制要求:距该空调7m处符合NR-50曲线。
7.5.1 吸声设计程序
根据声源特性估算受 声点的各频带声压级 了解环境特点,选定噪声控制标准 确定受声点允许的噪声 级和各频带声压级 计算各频带所需吸声量
计算室内应有的吸声系数
确定各吸声面的吸声系数
选择合适的吸声材料
7.5.1 吸声设计程序
(1)确定吸声处理前室内的噪声级和各倍频带的声压级并 了解噪声源的特性,选定相应的噪声标准; (2)确定降噪地点的允许噪声级和各倍频带的允许声压级, 计算所需吸声降噪量∆Lp; (3)根据降噪量值,计算吸声处理后应有的室内平均吸声 系数α2 ; (4)由室内平均吸声系数α2和房间可供设置吸声材料的面 积,确定吸声面的吸声系数 ; (5)由确定吸声面的吸声系数,选择合适的吸声材料或吸声 结构、类型、材料厚度、安装方式等。
4.穿孔板吸声结构
缺点: 声阻小,吸声频带较窄。 增大吸声系数和带宽的方法: 多孔吸声材料填充 不同穿孔率、腔深的多层穿孔板组合 穿孔板孔径取偏小值,提高孔内阻尼 穿孔板后蒙一层玻璃丝布等透声仿制品,增加 孔径摩擦
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大的距离。
4 护面层对吸声性能的影响
实际使用中,为便于固定和美观,往往要对
疏松材质的多孔材料作护面处理。
护面层的要求:
良好的透气性; 微穿孔护面板穿孔率应大于20%,否则会影响高频
吸声效果;
透气性较好的纺织品对吸声特性几乎没有影响。
对成型多孔材料板表面粉饰时,应采用水质涂料

吸声结构
吸声处理中常采用吸声结构。 吸声结构机理:共振吸声原理 常用的吸声结构
(一)薄板共振吸声结构
(二)穿孔板共振吸声结构
(三)微穿孔板吸声结构
(一)薄板共振吸声结构
机理:声波入射引起薄板振动,薄板振动克服自身阻尼和 板-框架间的摩擦力,使部分声能转化为热能而耗损。当入 射声波的频率与振动系统的固有频率相同时,发生共振,薄 板弯曲变形最大,振动最剧烈,声能消耗最多。 结构
喷涂,不宜用油漆涂刷,以防止涂料封闭孔隙。
5 使用环境对吸声性能的影响
温度
温度引起声速、波长
湿度
空气湿度引起多孔材
气流
通风管道和消声器内
及空气粘滞性变化, 影响材料吸声性能。 温度升高,吸声性能 向高频方向移动; 温度降低则向低频方
向移动。
料含水率变化。 湿度增大,孔隙吸水量 增加,堵塞细孔,吸声系 数下降,先从高频开始。 湿度较大环境应选用耐 潮吸声材料。
单共振体的共振频率
c f0 2
式中
S VlK
改变孔颈尺寸或空腔体 积,可得不同共振频率 的共振器,而与小孔和 空腔的形状无关。 ——小孔截面积,m2; ——小孔有效颈长,m,
若小孔为圆形则有
V ——空腔体积,m3; l K
lK l
c——声波速度,m/s; S

4
d l 0.8d
(一)薄板共振吸声结构
(二)穿孔板共振吸声结构
(三)微穿孔板吸声结构
(二)穿孔板共振吸声结构
特征:穿孔薄板与刚性壁面间留一定深度的
空腔所组成的吸声结构。
分类:按薄板穿孔数分为
单腔共振吸声结构
多孔穿孔板共振吸声结构
材料:轻质薄合金板、胶
合板、塑料板、石膏板等。
穿孔吸声板
1.单腔共振吸声结构
吸声材料
(一) 吸声系数
(二) 吸声量 (二) 多孔吸声材料
(二) 吸声量(等效吸声面积)
定义:吸声系数与吸声面积的乘积
A S
式中 A ——吸声量,m2; ——某频率声波的吸声系数; S ——吸声面积,m2。
【注】工程上通常采用吸声量评价吸声材料的
实际吸声效果。
(二) 吸声量(等效吸声面积)
多孔吸声材料
多孔吸声材料是应用最广泛的吸声材料。
最初的多孔吸声材料以麻、棉、棕丝、毛发、
甘蔗渣等天然动植物纤维为主;
目前则以玻璃棉、矿渣棉等无机纤维为主。
吸声材料可以是松散的,也可以加工成棉
絮状或粘结成毡状或板状。
(二) 多孔吸声材料
木丝板吸声材料
多孔槽型木质吸声材料
KTV软包阻燃吸声材料
第七章 噪声控制技术——吸声
吸声降噪是控制室内噪声常用的技术措施。 通过吸声材料和吸声结构来降低噪声的技 术称为吸声。 一般情况下,吸声控制能使室内噪声降低 约3~5dBA,使噪声严重的车间降噪6~10 dBA。
第七章 噪声控制技术——吸声

吸声材料

吸声结构
三 室内吸声降噪

吸声材料
(一) 吸声系数
龙骨 空气层 1-刚性壁面
龙骨
3—阻尼材料
4—薄板
采用组合不同单元或不同腔 深的薄板结构,或直接采用 木丝板、草纸板等可吸收中、 高频声的板材,拓宽吸声频 带。
在薄板结构边缘(板-龙骨 交接处)填置能增加结构阻 尼的软材料,如泡沫塑料条、 软橡皮、海绵条、毛毡等, 增大吸声系数。

吸声结构
吸声处理中常采用吸声结构。 吸声结构机理:赫姆霍兹共振吸声原理。 常用的吸声结构
刚性壁 空气层
框架
小孔或狭缝

多孔穿孔板共振吸声结构
多孔穿孔板共振吸声结构的共振频率
c f0 2
式中
S c FhlK 2
P hlK
——声波速度,m/s; S ——小孔截面积,m2; F ——每一共振单元所分占薄板的面积,m2; h ——空腔深度,m; lK ——小孔有效颈长,m; P ——穿孔率, P = S / F 。
吸声系数的影响因素
材料的性质
2
材料的结构
1
3
使用条件
吸声系数 影响因素
声波频率
5
4
声波入射角 度
【声波频率】
同种吸声材料对不同频率的声波具有不同的吸声
系数。
平均吸声系数 :工程中通常采用125Hz、250 Hz、500 Hz、1000 Hz、2000 Hz、4000 Hz六个频
率的吸声系数的算术平均值表示某种材料的平均 吸声系数。
【讨论】 M 增大或 D 增加,共振频率下降。
通常取薄板厚度3~6mm,空气层厚度3~10mm,共振
频率多在80~300Hz之间,故一般用于低频吸声;
吸声频率范围窄,吸声系数不高,约为0.2~0.5。
改善薄板共振吸声性能的措施:
在空腔中,沿框架四周 放置多孔吸声材料,如 矿棉、玻璃棉等。
3
空腔对吸声性能的影响
多孔材料的吸声系数随空气层厚度增加而增加,
但增加到一定厚度后,效果不再继续明显增加。
当腔深D近似等于入射声波的1/4波长或其奇数倍
时,吸声系数最大。
当腔深为1/2波长或其整倍数时,吸声系数最小。 一般推荐取腔深为5~10cm。
天花板上的腔深可视实际需要及空间大小选取较
的换算关系

0 T 与 的换算关系
0.4 0.60 0.5 0.75 0.6 0.85 0.7 0.90 0.8 0.98 0.9 1
0 T
0.1 0.25
0.2 0.40
0.3 0.50
混响室:声学实验室
混响室法吸声系数(无规入射吸声系数) :
在混响室中,使不同频率的声波以相等几率从
1-刚性壁面
龙骨
空气层
龙骨
3—阻尼材料
入射声波
4—薄板
薄金属板、胶合板、 硬质纤维板、石膏板等
图 薄板共振吸声结构示意图
薄板共振吸声结构的共振频率
600 f0 MD
式中 M ——板的面密度,kg/m2, mt ,其中m为板密 M 度,kg/m3,t为板厚,m; D ——板后空气层厚度,㎝。
吸声性能的影响因素
孔隙率与密度
2
厚度
1
3
空腔
吸声性能 影响因素 使用环境
5 4
护面层
1
厚度对吸声性能的影响
由实验测试可知: 同种材料,厚度增加一倍,吸声最佳频 率向低频方向近似移动一个倍频程 厚度越大,低频时吸声系数越大; >2000Hz,吸声系数与材料厚度无关; 增加厚度,可提高低频声的吸收效果, 对高频声效果不大。
各个角度入射到材料表面,测得的吸声系数。
测试较复杂,对仪器设备要求高,且数值往往
偏差较大,但比较接近实际情况。
在吸声减噪设计中采用。
驻波管法吸声系数(垂直入射吸声系数)
驻波管法简便、精确,
但与一般实际声场不 符。
用于测试材料的声学
性质和鉴定。
设计消声器。
驻波管法吸声系数测试仪

又称“亥姆霍兹”共振吸声器或单孔共振吸声器
结构:
封闭空腔壁上开一个

入射声波 单腔共振吸声结构示意图
小孔与外部空气相通; 腔体中空气具有弹性, 相当于弹簧; 孔颈中空气柱具有一 定质量,相当于质量块。
原理:入射声波激发孔颈中空气柱往复运动,与颈壁

摩擦,部分声能转化为热能而耗损,达到吸声目的。 当入射声波的频率与共振器的固有频率相同时,发生 共振,空气柱运动加剧,振幅和振速达最大,阻尼也 最大,消耗声能最多,吸声性能最好。
气流易吹散多孔材料, 吸声效果下降; 飞散的材料会堵塞管 道,损坏风机叶片; 应根据气流速度大小 选择一层或多层不同 的护面层。
保温吸声层
阻燃吸声板 羊毛阻燃吸声板
外墙保温吸声层
注意特殊的使用条件,如腐蚀、高温或火焰等情况对多孔材料的影响。
第七章 噪声控制技术——吸声

吸声材料

吸声结构
三 室内吸声降噪
木质穿孔吸声板
丝质吸声材料
混凝土复合吸声型声屏障
轻质复合吸声型声屏障
吸声门
吸声体
吸声材料构造特性
材料的孔隙率要高,一般在70%以上, 多数达到90%左右; 孔隙应该尽可能细小,且均匀分布; 微孔应该是相互贯通,而不是封闭的; 微孔要向外敞开,使声波易于进入微孔 内部。

1 吸声原理
通常,吸声材料 在0.2以上,理想吸声材料 在0.5以上。
【入射吸声系数】工程设计中常用的吸声系数有
混响室法吸声系数(无规入射吸声系数) T
驻波管法吸声系数(垂直入射吸声系数) 0 应用:测量材料的垂直入射吸声系数 0 ,按
表,将 0 换算为无规入射吸声系数T。
(二) 吸声量 (二) 多孔吸声材料
(一) 吸声系数
吸声材料:能吸收消耗一定声能的材料。 吸声系数:材料吸收的声能( Ea )与入射到
材料上的总声能( Ei )之比,即
Ea Ei
【讨论】: 表示材料吸声能力的大小, 值在0~1之 间, 值愈大,材料的吸声性能愈好; =0,声波 完全反射,材料不吸声; =1,声能全部被吸收。
相关文档
最新文档