路基顶面回弹模量确定的新方法

合集下载

水泥混凝土路面基层顶面当量回弹模量的计算

水泥混凝土路面基层顶面当量回弹模量的计算

水泥混凝土路面基层顶面当量回弹模量的计算城讳道析与防珙2006年3月第2期水泥混凝土路面基层顶面当量回弹模量的计算文畅平(邵阳学院城市建设学院,湖南邵阳422000)摘要:在94水泥混凝土路面设计规范中,基层顶面当量回弹模量E是通过查图确定的,2002年的规范对此作了改进,但计算公式有6个,计算过程更复杂烦琐.为此,通过2002年规范提供的E 计算公式,计算了1280+175+960个实例,根据基层的非线性特征,用最小二乘法对计算结果进行回归,得到1个E非线性回归方程.通过实例计算验证,得到的这个E非线性回归方程完全能够满足水泥混凝土路面基层顶面当量回弹模量的计算要求.关键词:水泥混凝土路面;道路基层;结构设计;当量回弹模量;非线性回归方程;归一化中圈分类号:U416.o2文献标识码:A文章编号:100977l6(2006)02—0016一O3O前言1994年水泥混凝土路面设计规范通过土基和基层材料的回弹模量,查图确定新建路面基层顶面当量回弹模量E],尽管方法简单,但很不方便.2002年的规范对此作了改进,但计算公式有6个[23,计算过程仍略嫌烦琐.目前,在公路水泥混凝土路面结构组合设计中,较多地采用水泥稳定碎石,二灰土碎石等半刚性基层,或沥青类柔性基层以及级配碎(砾)石等粒料垫层,因而为水泥混凝土路面基层顶面当量回弹模量的分析计算缩小了范围.半刚性基层材料,沥青类柔性基层材料具有非线性特征,其顶面当量回弹模量同样具有非线性特征.这种非线性特征可以用以下类似规范E计算式[2]的回归公式形式来描述.E,===ah^;EfE;E(1)式中:E——基层顶面当量回弹模量E,Ez,E.——分别为基层,垫层,土基的回弹模量h,hz——分别为基层,垫层的厚度a,b,f,d,,严回归系数本文通过把规范口]提供的"新建公路的基层顶面当量回弹模量"6个计算公式,计算了1280+175+960个实例,用最小二乘法[对计算结果进行回归,分别得到一个半刚性基层,不设垫层的半刚性基层,沥青类柔性基层的回归方程.通过实例计算验证,结果令人满意,完全能够满足水泥混凝土路面设收稿日期:2005—04—20作者简介:文畅平(1965一),男,湖南邵阳人,高级工程师.副院长,从事路基路面教学和科研工作计的工程要求,从而将6个计算公式归化为一个计算公式,使计算过程大为简化.1E与h,Ei的回归方程在研究中,试图将所有基层E的计算公式归化为一个计算式,但计算实例检验误差较大,有极少数误差超出10%.为了提高回归精度,将基层按半刚性基层,不设垫层的半刚性基层,沥青类柔性基层,分别进行回归分析计算,从而得到E与h,E的回归方程.1.1设置垫层的半刚性基层E与hhE的回归方程1.1.1基层材料及计算参数取值基层材料采用水泥稳定碎石,二灰土碎石等半刚性基层,回弹模量El=10001900MPa,厚度h一14~20cm.回归计算中,E,h都取4个等级,即1000,1300,1600,1900(MPa)}14,16,18,20(cm)..1.1.2垫层材料及计算参数取值垫层材料采用级配碎(砾)石等粒料垫层,回弹模量E2=100~400MPa,厚度h2—14~20cm回归计算中,E2,h都取4个等级,即100,200,300,400(MPa);14,16,18,20(cm).1.1.3土基计算参数取值土基回弹模量E.=20~60MPa.回归计算中,取20,30,4O,50,60(MPa)5个等级.1.1.4回归方程将上述计算参数进行组合,得到1280个计算实例.将计算结果进行回归,得到回归系数如表1所示.于是得到回归方程:2006年3月第2期由《i讳道析5筋殃17E,一4.2353"磅"'.'¨铀.¨中,取30,40,50(MPa)3个等级.(2)(4)回归方程:裹1半刚性基层计算参数及回归计算结果裹计算参数回归系数E】hiE2h2E0a=4.2353100014100142O6=0.5675R一0.993l300162OO1630f一0.1634F=35464> 160018300l840d=0.2780F(0.01.5,1274)=3.∞19002O4002O5OP一0.155960,=0.57411.2不设垫层的半刚性基层E与^,EI的回归方程1.2.1基层计算参数E1取5个等级,即700,1000,1300,1600,1900 MPa;h1取7个等级l0,12,14,16,18,20,22cm. 1.2.2土基回弹模量取20,30,40,50,60MPa5个等级.1.2.3回归方程将上述计算参数进行组合,得到175个计算实例,将计算结果进行回归.得到回归系数如表2所示.裹2不设垫层的半刚性基层计算参数及回归计算结果裹计算参数回归系数E1^lEI】口=4.17087000.102Ob=0.780310000.123Of=0.3307R一0.99813000.1440d一0.6729F=23951>16OO0.165OF(0.01,3,171)=3.919000.186o0.200.22于是得到回归方程;E,===4.1708研的.E?-"'6729(3)1.2沥青类柔性基层E与^,El的回归方程(1)基层采用沥青碎石或沥青混凝土基层材料,回弹模量E1;600~l400MPa.厚度h4~10 cm.回归计算中.E,取5个等级.即600,800, 1000,1200,1400(MPa);hl取4个等级4,6,8,10 (cm).(2)底基层材料及计算参数取值:底基层材料采用水泥稳定碎石,二灰土碎石等,回弹模量E一1000~1900(MPa),厚度hz一14~20(cm).回归计算中.E,h2都取4个等级,即1000,1300,l600,1900(MPa);14,16,18,20(cm).(3)土基计算参数取值;土基回弹模量E.一30~50MPa.回归计算将上述计算参数进行组合,得到960个计算实例,将计算结果进行回归.得到回归系数如表3所示.裹3柔性基层计算参数及回归计算结果裹计算参数回归系数ElhiEzh2Eo口=5.82366o041000143O6=0.1925R一0.994 800613001640c一0.5878F=29653> 100081600185Od=0.1253F(0.01,5,954)=3.04120010190020=0.24271400,0.6324于是得到回归方程:E一5.8236砖磅盯.日'.'(4)2回归结果分析及实例验证2.1E的精度范围规范l_2中E,的精度范围体现在的计算中.一0.077'∞h-o.077[0.湖^(.-o.oss.(从上式可以得到,当E的误差在19,6,29,6,3,49,6,5时.的误差分别为0.002,0.004,0.006,0.008,0.010.因此,E的误差控制在4以内时,完全能够满足公路水泥混凝土路面工程的设计要求.2.2回归结果分析[.](1)回归方程式(2),(3),(4)的相关系数R分别为0.993,0.998,0.994.经显着性检验,分别得到F===35464>F(0.01,5,1274)一3.03;F一23951 >F(0.01,3.171)=3.9;F一29653>F(0.01,5, 954)=3.04.说明回归特别显着.(2)将上述1280+175+960个计算实例进行残差检验,计算结果符合精度要求.2.3实例验证计算hi,Ei不在上述组合中的部分实例.按回归方程式(2),(3),(4)以及规范计算公式r2]分别进行计算,并将计算结果进行比对.用回归方程式(2),(3),(4)计算的结果误差范围在29,6以内.只有极少数超出39,6,且不超过5.证明用回归方程式计算水泥混凝土路面基层顶面当量回弹模量能够满足工程设计要求,这样就将一个复杂的计算过程大大简化了.城席道析5防珙2006年3月第2期袖阀式劈裂注浆和动力固结法路基补强处理李家杰,郑义(深圳市西伦土木结构有限公司,广东深圳518034)摘要:结合工程实例,对道路下雨污水管槽回填密实度不满足设计要求而导致的路面开裂,采取袖阀式劈裂注浆法和动力固结法进行加固,并分析影响加固效果的原因以及总结值得吸取的经验教训l..关键词:城市道路;路基加固;管槽回填;袖阀式劈裂注浆;动力固结法;深圳市中圉分类号:TU472文献标识码:A文章编号:1009—7716(2oo6)02一OO18—031概况深圳市龙岗区七号路是龙岗中心城南北方向主干道,南起深惠路,北至龙平大道.红线宽80m,双向八车道,长约5.5km.该工程早在1993年已做设计,施工期间有关部门提出修改该路横断面,中间绿化带由原来的2.0m加宽到13.5m.而纵断面及管线设计,由于已经施工,未做修改.因此,原来设于非机动车道下的雨,污水管便改在了机动车道下.在施工期间,主车道混凝土板浇筑完后,不到二个月时间就出现了裂缝,裂缝主要分布在东西两侧机动车道最外缘两块板上.2裂缝成因(1)该段路基大部分处于挖方段.板缝出现部位下面是管槽回填土,裂缝出现的原因应与管槽回填沉降有关.参见图1.收稿日期:2006—01—12作者简介:李家杰(1971一).男,辽宁岫岩人,工程师.从事道桥设计.图1遭路横断面从图1可知,污水管覆土约5.5m,雨水管覆土约3.5m.道路西侧管沟开挖后,路面的第四块板完全处于回填区内,而第三块板则为半填半挖.第四块板上的裂缝较不规则,井位处出现较多,范围约45012"i长.第三块板裂缝出现在板中,沿纵向产生,较有规则,主要在两处出现,长度各2512"i.道路东侧由于未埋设雨水管,第三块板未发现裂缝,第四块板裂缝与西侧基本一致,但裂缝较少.从裂缝产生的部位和形状,基本可以判断,原因是管槽回填土沉降所致.从现场的探槽也证明以上分析是正确的.I◆IIII◆III1.IIII●IIII◆...I◆...{●...{●IIIf●IIII◆...I◆...J◆IIIf●{III●...14.川f◆...{●IIII●IIII◆...I◆...I◆]III◆...{●IIII◆...I◆ (I)●III1.…14.川I◆IIII◆…II◆III1.III1.…I●川I◆IIII◆IIII●…I●IIII◆IIII◆IIII◆…I◆…I◆川I◆川I●lI¨●川J◆川J◆…f◆13结语(1)从水泥混凝土路面基层的非线性特性出发,利用规范[2的E计算公式,通过回归分析计算,分别得到了水泥混凝土路面半刚性基层,不设垫层的半刚性基层以及沥青类柔性基层的顶面当量回弹模量的归一化计算式.将回归方程式,规范计算公式分别对实例进行计算,计算结果比对后表明,回归方程式的计算精度能够满足水泥混凝土路面设计的要求,这样就将规范中的6个计算式简化为一个计算式,从而大大简化了计算过程.(2)在实际应用中,作好基层结构的组合设计是关键.只有做到基层结构组合合理,符合规范要求,才能够使归一化公式计算结果具有工程设计实用性.参考文献:[1]中华人民共和国行业标准.公路水泥混凝土路面设计规范(JTJ014—94)[S].北京人民交通出版社,1994.12.E2]中华人民共和国行业标准.公路水泥混凝土路面设计规范(JTGD40—2002)EsI.北京;人民交通出版社,2003.5. [3]郑少华,姜奉华.试验设计与数据处理[M].北京:中国建材工业出版社,20043.. .。

路基顶面回弹模量确定的新方法

路基顶面回弹模量确定的新方法

路基顶面回弹模量确定的新方法-CAL-FENGHAI.-(YICAI)-Company One1路基顶面回弹模量确定的新方法——学习新的《公路沥青路面设计规范》征求意见稿笔记吴祖德(常州市建设工程施工图设计审查中心,江苏常州 213002)内容提要新的《公路沥青路面设计规范》征求意见稿,对路基顶面回弹模量值的确定,改变了现有规范采用的方法,提出了新方法。

本文详细介绍了新的规范征求意见稿中,对路基顶面回弹模量值的确定方法,并与现规范的方法进行比较,供技术人员在学习中参考。

关键词征求意见稿路基顶面回弹模量的确定0 前言路基土的回弹模量是沥青路面结构力学响应分析的重要参数之一。

现规范与新规范征求意见稿对路基顶面回弹模量的要求、测试及有关规定的区别,列表如下:表1 现规范与新规范征求意见稿对路基顶面回弹模量的要求、测试及有关规定的区1 三轴试验测试路基土的回弹模量路基土回弹模量主要受其应力状况、物理状况(含水量与密实度)和材料性质三方面的因素的影响。

对于处于特定状态(一定含水量和密实度值)的各类路基土来说,影响其模量的主要因素便是应力状况。

在不同的交通等级下,以及不同的路面类型和结构组合中,路基土的应力状况是不相同的,故其模量值也是不一样的。

因而,路基土的模量参数的测试方法和指标值取用,一方面要遵循反映材料基本特性的要求,另一方面则要与结构应力—应变分析时所选用的方法和条件相一致。

我国现行沥青路面设计规范中,采用“室内试验法(小承载板法)”及“现场实测法(承载板法或贝克曼梁法)”来确定路基模量,而室内小承载板试验中试件的受力状况与现场路基上的应力状况并不一致,并且这种测试方法仅适用于静态模量标定,这些都影响了路基回弹模量取值的科学性和合理性。

所以经过对我国各种路面结构中路基土的受力水平进行分析,制定出了更加合理的室内三轴重复加载测试回弹模量的方法与取值标准。

(注:①可参阅附后的“粒料与路基土室内回弹模量试验测试方法草案”;②该试验方法:对圆柱体试件施加一个固定幅度、加载试件(路基—,粒料基层/底基层—)和循环周期(一般取)的轴向重复荷载。

基层顶面当量回弹模量

基层顶面当量回弹模量

B.1.5新建公路的基层顶面当量回弹模量可按式(B.1.5.1)计算确定。

式中:
E t——基层顶面的当量回弹模量(MPa);
E0——路床顶面的回弹模量(MPa);
E x——基层和底基层或垫层的当量回弹模量(MPa),按式(B.1.5-2)计算;
E1、E2——基层和底基层或垫层的回弹模量(MPa);
h x——基层和底基层或垫层的当量厚度(m),按式(B.1.5-3)计算;
D x——基层和底基层或垫层的当量弯曲刚度(MN-m),按式(B.1.5-4)计算;
h1、h2——基层和底基层或垫层的厚度(m);
a、b——与E x/E0有关的回归系数,分别按式(B.1.5-5)和式(B.1.5-6)计算。

底基层和垫层同时存在时,可先按式(B.1.5-2)~式(B.1.5-4)将底基层和垫层换算成具有当量回弹模量和当量厚度的单层,然后再与基层一起按上述各式计算基层顶面当量回弹模量。

无底基层和垫层时,相应层的厚度和回弹模量分别以零值代入上述各式进行计算。

3.路面材料参数确定
按表3.O.6,取普通混凝土面层的弯拉强度标准值为5.0MPa,相应弯拉弹性模量标准值为31GPa。

查附录F.1,路基回弹模量取30MPa。

查附录F.2,低剂量无机结合料稳定土垫层回弹模量取600MPa,水泥稳定粒料基层回弹模量取1300MPa。

按式(B.1.5)计算基层顶面当量回弹模量如下:
普通混凝土面层的相对刚度半径按式(B.1.3.2)计算为。

路基路面回弹模量

路基路面回弹模量

(二)、方法与步骤
1、准备工作选择洁净路基表面、路面表面作为测点,作好标记并编号。无结合料粒料基层的整层试验段应符合要求。①整层试槽可修筑在行车带范围内或路肩及其他合适处,也可在室内修筑,但均应适用于汽车测定弯沉。②试槽应选择在干燥或中湿路段处,不得铺筑在软土基上。③试槽面积不小于3m×2m,厚度不宜小于1m。铺筑时,先挖 3m×2m×1m(长×宽×深)的坑,然后用欲测定同一种路面材料按有关规定的压实度分层铺筑并压实。直至顶面,使其达到 要求的压实度标准。同时应严格控制材料组成,配比均匀一致,符合施工质量要求。
0.06α
0.12α
0.18α
0.24α
0.36α
0.48α
0.60α
第10页/共23页
2、将各级计算回弹变形值点绘于标准计算纸上,排除显著偏离的异常点并绘出顺滑的P~L曲线,如曲线起始部分出现反弯,应修正原点O,则是修正的原
点。
3、按下式计算相当于各级荷载下的土基回弹模量值:
第10页/共23页
4、取结束试验前的各回弹变形值按线形回归方法计算土基回弹模量E0值。
第10页/共23页
(四)报告
1)本实验采用的标准记录格式。2)试验报告应记录下列结果:(1)试验时所采用的汽车;(2)近期天气情况;(3)试验时土基的含水量;(4)土基密度和压实度;(5)相应于各级荷载下的土基回弹模量值;(6)土基回弹模量值。
第10页/共23页
感谢您的观看!
第10页/共23页
第10页/共23页
第10页/共23页
第10页/共23页
⑶各级荷载的回弹变形和总变形,按以下方法计算:回弹变形L=(加载后读数平均值-卸载后读数平均值)×弯沉仪杠杆比总变形=(加载后读数平均值-加载初始前读数平均值)×弯沉仪杠杆比⑷测定总影响量α。最后一次加载卸载循环结束后,取走千斤顶,重新读取百分表初读数,然后将汽车开出10m以外,读取终读数,两只百分表的初、终读数差之平均值即为总影响量α。总影响量是汽车后轴荷载对施测点的回弹变形。⑸在试验点下取样,测定材料含水量,取样数量如下:最大粒径不大于5mm,试样数量约120g;最大粒径不大于25mm,试样数量约250g;最大粒径不大于40mm,试样数量约500g。⑹在紧靠试验点旁边的适当位置,用灌砂法或环刀法等测定土基的密度。

城市道路路面设计中的土基回弹模量值

城市道路路面设计中的土基回弹模量值

城市道路路面设计中的土基回弹模量值吴祖德(常州市市政工程设计研究院有限公司)内容提要在城市道路路面设计中,应综合诸多因素来确定设计的土基回弹模量值。

本文介绍土基回弹模量的确定方法,供设计人员参考。

关键词土基回弹模量城市道路0 前言我国道路路面设计方法中,路基力学性能参数都是采用的土基回弹模量,它是我国路面设计中的重要力学参数,它的确定直接影响到其他参数的选择与结构设计的结果。

本文主要叙述对土基回弹模量的确定及其变化对沥青路面路基工作区的影响分析。

1 设计土基回弹模量确定因素分析1.1 首先是根据规范要求,不能低于要求的设计值1.1.1《城镇道路路面设计规范》(CJJ169-2012)注:要求路床应处于干燥或中湿状态。

1.1.2《公路水泥混凝土路面设计规范》(JTG D40-2011)1.1.3《公路沥青路面设计规范》(JTG D50-2006)1.2 根据设计工程所在地区所处自然区划查表法估计土基回弹模量参考值如江苏省在自然区划Ⅳ1、Ⅳ1a,摘录列于表5中:经整理后见下表:表6 江苏省不同干湿状态下的土基回弹模量值注:1)c W 为土的平均稠度值;2)过湿状态的回弹模量是推算值 (图1)。

图1 过湿状态的回弹模量是推算值1.3 由于城市道路的路床顶面的80cm 范围大部分接近于地下水位,路基土均处于过湿状态,路基土的土基回弹模量均为15MPa 左右,不能作为设计所用的土基回弹模量值,均要经过处理后,才能达到设计采用值,并结合路床土在路基工作区范围,要求达到规定的压实度要求,一般采用翻挖回填压实,采用6%石灰土处理。

对土基进行处理时,处于过湿状态假定E 0=15MPa ,当用20~100cm6%石灰土处理时,经计算得出处理层顶面的弯沉值,再经换算成顶面的土基回弹模量值,见下表:表7 常州地区6%灰土处理地基厚度值计算表表8常州地区各种设计土基回弹模量值的6%石灰土处理厚度表按此处理方法,当路基工作区(规范要求的压实深度)为80cm时,则土基回弹模量值已经达到34MPa,已经满足于《城镇道路路面设计规范》(CJJ169-2012)的要求,不应小于30MPa和不应小于20MPa的要求。

路基路面现场试验检测方法之回弹模量试验检测方法修订稿

路基路面现场试验检测方法之回弹模量试验检测方法修订稿

路基路面现场试验检测方法之回弹模量试验检测方法WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-路基路面现场试验检测方法之回弹模量试验检测方法回弹模量是指路基,路面及筑路材料在荷载作用下产生的应力与其相应的回弹应变的比值,土基回弹模量表示土基在弹性变形阶段内,在垂直荷载作用下,抵抗竖向变形的能力,如果垂直荷载为定值,土基回弹模量值愈大则产生的垂直位移就愈小;如果竖向位移是定值,回弹模量值愈大,则土基承受外荷载作用的能力就愈大,因此,路面设计中采用回弹模量作为土基抗压强度的指标。

测定回弹模量的方法,目前国内常用的主要有:承载板法、贝克曼梁法和其他间接测试方法(如贯人仪测定法和CBR测定法)。

一、承载板法1.目的和适用范围(1)本方法适用于在现场土基表面,通过承载板对土基逐级加载、卸载的方法,测出每级荷载下相应的土基回弹变形值,经过计算求得土基回弹模量。

(2)本方法测定的土基回弹模量可作为路面设计参数使用。

2.仪具与材料(1)加载设施:载有铁块或集料等重物、后轴重不小于60kN的载重汽车一辆。

在汽车大梁的后轴之后约80cm处,附设加劲小梁一根作反力架。

汽车轮胎充气压力为0.50MPa。

(2)现场测试装置,由千斤顶、测力计(测力环或压力表)及球座组成。

(3)刚性承载板一块,板厚20mm,直径为Φ30cm ,直径两端设有立柱和可以调整高度的支座供安放弯沉仪测头,承载板放在土基表面上。

(4)路面弯沉仪两台,由贝克曼梁、百分表及其支架组成。

(5)液压千斤顶一台,80~100KN,装有经过标定的压力表或测力环,其容量不小于土基强度,测定精度不小于测力什量程的1/1oo。

(6)秒表。

(7)水平尺。

(8)其他:细砂、毛刷、垂球、镐、铁锹、铲等。

3.试验前准备工作(1)根据需要选择有代表性的测点,测点应位于水平的路基上,土质均匀,不含杂物;(2)仔细平整土基表面,撒干燥洁净的细砂填平土基凹处,砂子不可覆盖全部土基表面避免形成一层。

道路工程课题7道路现场质量检测5测定路基路面回弹模量贝克曼梁

道路工程课题7道路现场质量检测5测定路基路面回弹模量贝克曼梁
时,先挖 3m × 2m × 1m (长×宽×深)的坑,然后用 欲测定的同一种路面材料按有关施工规范规定的压实层厚 度分层铺筑并压实,直至顶面,使其达到要求的压实度标 准。同时应严格控制材料组成,配比均匀一致,符合施工 质量要求。 • ④试槽表面的测点间距可布置在中间 2m × 1m 的范围内, 可测定 23 点。
图4-13 承载板试验现场测试装置 1-加劲横梁;2-测力计;3-钢板及球座;4钢圆筒;
5-加载千斤顶;6-立柱及支座;7-承载板
l检测方法:
• 落垂式弯沉仪法 • 利用重锤自由落下的瞬间产生的冲击荷载测定弯
沉,属动态测试,快速连续,但须用贝克曼梁法 进行标定换算。
• FWD是利用重锤自由落下的瞬间产生的冲击荷载测定 弯沉,近年来,采用落锤式弯沉仪(FWD)测定路面的 动态弯沉,并反算路面的回弹模量,已成为世界各国 道路界的热门课题。
l检测方法:
★贝克曼梁法 • (1)本方法适用于测定各类路基、路面的回弹
弯沉,用以评定其整体承载能力,可供路面结 构设计使用。 • (2)沥青路面的弯沉以标准温度20℃时为准, 在其他温度(超过20土2℃范围)测试时,对厚 度大于5cm的沥青路面,弯沉值应予温度修正。
• 二、仪器和仪具
• 本试验要下列仪具:
• 国内外普遍采用回弹弯沉值来表示路基路面的 承载能力,回弹弯沉值越大,承载能力越小,反 之则越大。通常所说的回弹弯沉值是指标准后轴 载双轮组轮隙中心处的最大回弹弯沉值。在路表 测试的回弹弯沉值可以反映路基、路面的综合承 载能力。回弹弯沉值在我国已广泛使用且有很多 的经验及研究成果,它不仅用于路面结构的设计 中(设计回弹弯沉);用于施工控制及施工验收 中(竣工验收弯沉值);同时还用在旧路补强设 计中,是公路工程的一个基本参数,所以正确的 测试具有重要的意义。

基层顶面当量回弹模量

基层顶面当量回弹模量
• 可靠度 reliability:路面结构在规定的时 间内和规定的条件下完成预定功能的概率
。→设计值的折减系数
• 目标可靠度 objective reliability:作为 设计依据的可靠度。→设计目标的可靠程度
• 可靠度系数: reliability coefficient: 为保证所设计的结构具有规定的可靠度,而在 极限状态设计表达式中采用的单一综合系数。
相对刚度半径
• 来源:荷载单次作用应力计算过程中引入的一个 组合参数,由地基当量回弹模量、水泥混凝土模 量的比值及板厚确定
• 物理意义的理解:可认为是荷载在板中引起的应 力响应范围,水泥混凝土模量越高、地基模量越 低,厚度越大,则在标准荷载作用下的板块承担 的荷载效应越多,响应范围越大。
• 注意点:相对刚度半径针对不同的地基模型有不 同的计算公式。

(c)
• 式中: —钢纤维的体积率(%); —钢纤维的长度(mm); —钢纤维的直径(mm)。
临界荷载位置
• 定义:其他条件相同,标准荷载移动在有限尺寸板上, 如果在板体内某处(通常是板顶)出现了最大拉应力, 则确定该位置为最不利荷载位置,由此引起的应力是 单次应力计算的标准取值。
• 方法:有限元内分布荷载进行搜索,寻找最大拉应力 位置,比较拉应力大小,最终确定最不利荷位。
95
90
85
80
目标可靠指标
1.64
1.28
1.04
0.84
变异水平等级

低-中

中-高
表 2 变异系数cv的变化范围
变异水平等级



水泥混凝土弯拉强度、弯 cv<=0.10 0.10 < cv <=0.15 0.15 <cv<=0.20 拉弹性模量

【doc】水泥混凝土路面基层顶面当量回弹模量的计算资料

【doc】水泥混凝土路面基层顶面当量回弹模量的计算资料

水泥混凝土路面基层顶面当量回弹模量的计算城讳道析与防珙2006年3月第2期水泥混凝土路面基层顶面当量回弹模量的计算文畅平(邵阳学院城市建设学院,湖南邵阳422000)摘要:在94水泥混凝土路面设计规范中,基层顶面当量回弹模量E是通过查图确定的,2002年的规范对此作了改进,但计算公式有6个,计算过程更复杂烦琐.为此,通过2002年规范提供的E计算公式,计算了1280+175+960个实例,根据基层的非线性特征,用最小二乘法对计算结果进行回归,得到1个E非线性回归方程.通过实例计算验证,得到的这个E非线性回归方程完全能够满足水泥混凝土路面基层顶面当量回弹模量的计算要求.关键词:水泥混凝土路面;道路基层;结构设计;当量回弹模量;非线性回归方程;归一化中圈分类号:U416.o2文献标识码:A文章编号:100977l6(2006)02—0016一O3O前言1994年水泥混凝土路面设计规范通过土基和基层材料的回弹模量,查图确定新建路面基层顶面当量回弹模量E],尽管方法简单,但很不方便.2002年的规范对此作了改进,但计算公式有6个[23,计算过程仍略嫌烦琐.目前,在公路水泥混凝土路面结构组合设计中,较多地采用水泥稳定碎石,二灰土碎石等半刚性基层,或沥青类柔性基层以及级配碎(砾)石等粒料垫层,因而为水泥混凝土路面基层顶面当量回弹模量的分析计算缩小了范围.半刚性基层材料,沥青类柔性基层材料具有非线性特征,其顶面当量回弹模量同样具有非线性特征.这种非线性特征可以用以下类似规范E计算式[2]的回归公式形式来描述.E,===ah^;EfE;E(1)式中:E——基层顶面当量回弹模量E,Ez,E.——分别为基层,垫层,土基的回弹模量h,hz——分别为基层,垫层的厚度a,b,f,d,,严回归系数本文通过把规范口]提供的"新建公路的基层顶面当量回弹模量"6个计算公式,计算了1280+175+960个实例,用最小二乘法[对计算结果进行回归,分别得到一个半刚性基层,不设垫层的半刚性基层,沥青类柔性基层的回归方程.通过实例计算验证,结果令人满意,完全能够满足水泥混凝土路面设收稿日期:2005—04—20作者简介:文畅平(1965一),男,湖南邵阳人,高级工程师.副院长,从事路基路面教学和科研工作计的工程要求,从而将6个计算公式归化为一个计算公式,使计算过程大为简化.1E与h,Ei的回归方程在研究中,试图将所有基层E的计算公式归化为一个计算式,但计算实例检验误差较大,有极少数误差超出10%.为了提高回归精度,将基层按半刚性基层,不设垫层的半刚性基层,沥青类柔性基层,分别进行回归分析计算,从而得到E与h,E的回归方程.1.1设置垫层的半刚性基层E与hhE的回归方程1.1.1基层材料及计算参数取值基层材料采用水泥稳定碎石,二灰土碎石等半刚性基层,回弹模量El=10001900MPa,厚度h一14~20cm.回归计算中,E,h都取4个等级,即1000,1300,1600,1900(MPa)}14,16,18,20 (cm)..1.1.2垫层材料及计算参数取值垫层材料采用级配碎(砾)石等粒料垫层,回弹模量E2=100~400MPa,厚度h2—14~20cm回归计算中,E2,h都取4个等级,即100,200,300,400(MPa);14,16,18,20(cm).1.1.3土基计算参数取值土基回弹模量E.=20~60MPa.回归计算中,取20,30,4O,50,60(MPa)5个等级.1.1.4回归方程将上述计算参数进行组合,得到1280个计算实例.将计算结果进行回归,得到回归系数如表1所示.于是得到回归方程:2006年3月第2期由《i讳道析5筋殃17E,一4.2353"磅"'.'¨铀.¨中,取30,40,50(MPa)3个等级.(2)(4)回归方程:裹1半刚性基层计算参数及回归计算结果裹计算参数回归系数E】hiE2h2E0a=4.2353100014100142O6=0.5675R一0.993l300162OO1630f一0.1634F=35464&gt; 160018300l840d=0.2780F(0.01.5,1274)=3.∞19002O4002O5OP一0.155960,=0.57411.2不设垫层的半刚性基层E与^,EI的回归方程1.2.1基层计算参数E1取5个等级,即700,1000,1300,1600,1900 MPa;h1取7个等级l0,12,14,16,18,20,22cm. 1.2.2土基回弹模量取20,30,40,50,60MPa5个等级.1.2.3回归方程将上述计算参数进行组合,得到175个计算实例,将计算结果进行回归.得到回归系数如表2所示.裹2不设垫层的半刚性基层计算参数及回归计算结果裹计算参数回归系数E1^lEI】口=4.17087000.102Ob=0.780310000.123Of=0.3307R一0.99813000.1440d一0.6729F=23951&gt;16OO0.165OF(0.01,3,171)=3.919000.186o0.200.22于是得到回归方程;E,===4.1708研的.E?-"'6729(3)1.2沥青类柔性基层E与^,El的回归方程(1)基层采用沥青碎石或沥青混凝土基层材料,回弹模量E1;600~l400MPa.厚度h4~10 cm.回归计算中.E,取5个等级.即600,800, 1000,1200,1400(MPa);hl取4个等级4,6,8,10 (cm).(2)底基层材料及计算参数取值:底基层材料采用水泥稳定碎石,二灰土碎石等, 回弹模量E一1000~1900(MPa),厚度hz一14~20(cm).回归计算中.E,h2都取4个等级,即1000,1300,l600,1900(MPa);14,16,18,20(cm). (3)土基计算参数取值;土基回弹模量E.一30~50MPa.回归计算将上述计算参数进行组合,得到960个计算实例,将计算结果进行回归.得到回归系数如表3所示.裹3柔性基层计算参数及回归计算结果裹计算参数回归系数ElhiEzh2Eo口=5.82366o041000143O6=0.1925R一0.994 800613001640c一0.5878F=29653&gt; 100081600185Od=0.1253F(0.01,5,954)=3.04120010190020=0.24271400,0.6324于是得到回归方程:E一5.8236砖磅盯.日'.'(4)2回归结果分析及实例验证2.1E的精度范围规范l_2中E,的精度范围体现在的计算中.一0.077'∞h-o.077[0.湖^(.-o.oss.(从上式可以得到,当E的误差在19,6,29,6,3,49,6,5时.的误差分别为0.002,0.004,0.006,0.008,0.010.因此,E的误差控制在4以内时,完全能够满足公路水泥混凝土路面工程的设计要求.2.2回归结果分析[.](1)回归方程式(2),(3),(4)的相关系数R分别为0.993,0.998,0.994.经显着性检验,分别得到F===35464&gt;F(0.01,5,1274)一3.03;F一23951 &gt;F(0.01,3.171)=3.9;F一29653&gt;F(0.01,5, 954)=3.04.说明回归特别显着.(2)将上述1280+175+960个计算实例进行残差检验,计算结果符合精度要求.2.3实例验证计算hi,Ei不在上述组合中的部分实例.按回归方程式(2),(3),(4)以及规范计算公式r2]分别进行计算,并将计算结果进行比对.用回归方程式(2),(3),(4)计算的结果误差范围在29,6以内.只有极少数超出39,6,且不超过5.证明用回归方程式计算水泥混凝土路面基层顶面当量回弹模量能够满足工程设计要求,这样就将一个复杂的计算过程大大简化了.城席道析5防珙2006年3月第2期袖阀式劈裂注浆和动力固结法路基补强处理李家杰,郑义(深圳市西伦土木结构有限公司,广东深圳518034)摘要:结合工程实例,对道路下雨污水管槽回填密实度不满足设计要求而导致的路面开裂,采取袖阀式劈裂注浆法和动力固结法进行加固,并分析影响加固效果的原因以及总结值得吸取的经验教训l..关键词:城市道路;路基加固;管槽回填;袖阀式劈裂注浆;动力固结法;深圳市中圉分类号:TU472文献标识码:A文章编号:1009—7716(2oo6)02一OO18—03 1概况深圳市龙岗区七号路是龙岗中心城南北方向主干道,南起深惠路,北至龙平大道.红线宽80m,双向八车道,长约5.5km.该工程早在1993年已做设计,施工期间有关部门提出修改该路横断面,中间绿化带由原来的2.0m加宽到13.5m.而纵断面及管线设计,由于已经施工,未做修改.因此,原来设于非机动车道下的雨,污水管便改在了机动车道下.在施工期间,主车道混凝土板浇筑完后,不到二个月时间就出现了裂缝,裂缝主要分布在东西两侧机动车道最外缘两块板上.2裂缝成因(1)该段路基大部分处于挖方段.板缝出现部位下面是管槽回填土,裂缝出现的原因应与管槽回填沉降有关.参见图1.收稿日期:2006—01—12作者简介:李家杰(1971一).男,辽宁岫岩人,工程师.从事道桥设计.图1遭路横断面从图1可知,污水管覆土约5.5m,雨水管覆土约3.5m.道路西侧管沟开挖后,路面的第四块板完全处于回填区内,而第三块板则为半填半挖.第四块板上的裂缝较不规则,井位处出现较多,范围约45012"i长.第三块板裂缝出现在板中,沿纵向产生,较有规则,主要在两处出现,长度各2512"i.道路东侧由于未埋设雨水管,第三块板未发现裂缝,第四块板裂缝与西侧基本一致,但裂缝较少.从裂缝产生的部位和形状,基本可以判断,原因是管槽回填土沉降所致.从现场的探槽也证明以上分析是正确的.I◆IIII◆III1.IIII●IIII◆…I◆…{●…{●IIIf●IIII◆…I◆…J◆IIIf●{III●…14.川f◆…{●IIII●IIII◆…I◆…I◆]III◆…{●IIII◆…I◆…I●III1.…14.川I◆IIII ◆…II◆III1.III1.…I●川I◆IIII◆IIII●…I●IIII◆IIII◆IIII◆…I◆…I◆川I◆川I ●lI¨●川J◆川J◆…f◆13结语(1)从水泥混凝土路面基层的非线性特性出发,利用规范[2的E计算公式,通过回归分析计算,分别得到了水泥混凝土路面半刚性基层,不设垫层的半刚性基层以及沥青类柔性基层的顶面当量回弹模量的归一化计算式.将回归方程式,规范计算公式分别对实例进行计算,计算结果比对后表明,回归方程式的计算精度能够满足水泥混凝土路面设计的要求,这样就将规范中的6个计算式简化为一个计算式,从而大大简化了计算过程.(2)在实际应用中,作好基层结构的组合设计是关键.只有做到基层结构组合合理,符合规范要求,才能够使归一化公式计算结果具有工程设计实用性.参考文献:[1]中华人民共和国行业标准.公路水泥混凝土路面设计规范(JTJ014—94)[S].北京人民交通出版社,1994.12.E2]中华人民共和国行业标准.公路水泥混凝土路面设计规范(JTGD40—2002)EsI.北京;人民交通出版社,2003.5. [3]郑少华,姜奉华.试验设计与数据处理[M].北京:中国建材工业出版社,20043.。

路基顶面回弹模量

路基顶面回弹模量

路基顶面回弹模量
路基顶面回弹模量是指在一定活跃度下,路基的车辙处顶面承受的常规竖向荷载作用下,从原有的凹陷形状回弹到原状时所需要的能量系数,也称为回弹系数。

路基顶面回弹模量是衡量路基耐久性能的一个重要指标,它反映出路基结构和材料在承受车辙处竖向载荷作用下的抗弹性能,因此路基顶面的回弹模量是路基质量评定的重要指标之一,它可以反映路基的整体质量和状况。

路基顶面回弹模量是通过测量车轮面直径、质量和车速运动时路基在车流作用下对外形变化的可接受大小而测定的。

其具体测定步骤为:1.在预先测量好的车辙处安装一横纹纸;2.载上
规定质量和直径的车轮,将车轮提高到路表,使车轮压印纸上;
3.以规定的车速在路面上行驶;
4.从纸上取下回弹后的车轮印迹,和原始的车轮印迹进行比较;
5.将计算得出的回弹模量与
规范中的规定值比较,得出路基的质量评定;
路基顶面回弹模量是衡量路面质量的一项重要指标,它同时反映出路面结构和材料的抗弹性及路面整体质量状况,因此,在路基施工中,应确保路基材料和结构具有合理的结实度和良好的抗弹性,并且在施工环节中,要重视路基顶面回弹模量的测试,以确保路基质量得到良好保障。

城市道路土基回弹模量设计值的确定因素审批稿

城市道路土基回弹模量设计值的确定因素审批稿

城市道路土基回弹模量设计值的确定因素YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】城市道路土基回弹模量设计值的确定因素吴祖德(常州市建设工程施工图设计审查中心)内容提要城市道路设计规范规定,在不利季节,路基顶面设计回弹模量值,对于快速路和主干路不应小于30Mpa;对于次干路和支路不应小于20MPa。

除设计应满足此规定外,确定路基顶面设计回弹模量值时,还应与某些要求相结合考虑,本文综合叙述有关因素的考虑,供设计参考。

关键词城市道路土基回弹模量确定因素1 原状路基顶面回弹模量值的确定常州地区,按查表法,根据江苏省所处自然区划图为Ⅳ1、、、Ⅳ1a,摘录列于表1:表1 自然区划各土组土基回弹模量参考值根据《公路沥青路面设计规范》(JTG D50-2006)P69页,经整理后详见下表:表2 常州市不同干湿状态下的土基回弹模量值(MPa)表注:1) Wc为土的平均稠度值;2)过湿状态的回弹膜量是推算值。

由上表可知,根据不同土质、稠度,土基回弹模量在20MP a~40MPa之间。

由于城市道路路面设计标高受条件限制,常离地下水位较近,以及季节性土基含水量的影响,常处于过湿状态,就是土基回弹模量的设计值为15MPa。

2 常州地区各种设计土基回弹模量值的6%石灰土处理厚度对土基进行处理时,处于过湿状态假定E0=15MPa,当用20~100cm6%石灰土处理时,经计算得出处理层顶面的弯沉值,再经换算成顶面的土基回弹模量值,见下表:表3 常州地区6%灰土处理地基厚度值计算表注:《公路沥青路面设计规范》(JTG D50-2006)要求土基回弹模量值应大于30MPa,重交通、特重交通公路土基回弹模量值应大于40MPa。

表4常州地区各种设计土基回弹模量值的6%石灰土处理厚度表3 各级沥青路面在不同土基回弹模量值时的设计累计标准轴次值表5 各级沥青路面在不同土基回弹模量值时的设计累计标准轴次值注:增加交通量累计轴次值是土基回弹模量增加值的倍。

道路工程_课题7道路现场质量检测5测定路基路面回弹模量(贝克曼梁)讲解

道路工程_课题7道路现场质量检测5测定路基路面回弹模量(贝克曼梁)讲解
模量是公路设计中一个必不可少的参 数。随着对施工质量要求的提高,回弹模量值 检测将会作为控制施工质量的一个重要指标。 常用方法:承载板法、贝克曼梁法、现场CBR 法等。
l检测方法:
★承载板法 适用于在现场土基表面,通过承载板对土
基逐级加载、卸载的方法,测出每级荷载下相 应的土基回弹变形值,经过计算求得土基回弹 模量。所测定的土基回弹模量可作为路面设计 参数使用。
• ( 1 )标准车:双轴,后轴双侧4轮的载重 车,其标准轴荷载、轮胎尺寸、轮胎间隙 及轮胎气压等主要参数应符合表4-4要求。 测试车应采用后轴100kN的BZZ-100。
( 2 )路面弯沉仪:由贝克曼梁、百分表及表架 组成。贝克曼梁由合金铝制成,上有水准泡,其 前臂(接触路面)与后臂(装百分表)长度比为
di Li L
• 2 、计算各测点的测定值与算术平均值的偏 差值 d i = Li -L,并计算较大的偏差与自 然误差之比 d i / r 0 。当某个测点观测值的 d i / r 0 值大于表 中的 d / r 极限值时则应舍 弃该测点,然后重复四 .1 的步骤计算所余 各测点的算术平均值( L )及标准差 ( S )。
道路现场质量检测
强度和模量
• 国内外普遍采用回弹弯沉值来表示路基路面的 承载能力,回弹弯沉值越大,承载能力越小,反 之则越大。通常所说的回弹弯沉值是指标准后轴 载双轮组轮隙中心处的最大回弹弯沉值。在路表 测试的回弹弯沉值可以反映路基、路面的综合承 载能力。回弹弯沉值在我国已广泛使用且有很多 的经验及研究成果,它不仅用于路面结构的设计 中(设计回弹弯沉);用于施工控制及施工验收 中(竣工验收弯沉值);同时还用在旧路补强设 计中,是公路工程的一个基本参数,所以正确的 测试具有重要的意义。

贝克曼梁测定路基路面回弹模量试验方法

贝克曼梁测定路基路面回弹模量试验方法
N
L Li

2
) (
(T0944-2)
74
ro=0. 675S (T0944-3)
式中:L --回弹弯沉的平均值(0. 01mm);
S--回弹弯沉测定值的标准差(0. 01mm);
r0--回弹弯沉测定的自然误差(0. 01mm);
Li--各测点的回弹弯沉值
N--测点总数。
4. 2计算各测点的测定值与算术平均值的偏差值di=Li- L,并计算较大的偏
3. 1准备工作
(1)选择洁净的路基路面表面作为测点,在测点处作好标记并编号。
(2)无结合料粒料基层的整层试验段(试槽)应符合下列要求:
①整层试槽可修筑在行车带范围内或路户及其他合适处,也可在室内修筑,
但均应适于用汽车测定弯沉。
②试槽应选择在干燥或中湿路段处,不得铺筑在软土基上。
③试槽面积不小于3m×2m,厚度不宜小于1m。铺筑时,先挖3m×2m×1m(长
上有水准泡,其前臂(接触路面)与后臂(装百分表)长度比为2:1,标准弯沉仪前
后臂分别为240mm和120mm,加长弯沉仪分别为360mm和180mm。弯沉采用百分表
量得。
(3)路表湿度计:分度不大于1℃。
(4)接长杆:直径Φ16mm,长500mm。
(5)其它:皮尺、口哨、粉笔、指挥旗等。
3方法与步骤
差与自然误差之比di/r0,当某个测观测值的di/r0值大于表T9944-1中的d/r
极限值时则应舍弃该测点,然后重复式(T0944-1)的步骤计算所余各测点的算术
平均值L及标准差S。
表T0944-1相应于不同观测次数的d/r极限值
N 5 10 15 20 50
d/r 2. 5 2. 9 3. 2 3. 3 3. 8

路基路面回弹模量试验检测方法

路基路面回弹模量试验检测方法
为了使加载和计算方便,加载数值可适当调整为整数。每次加载至预定荷载后,稳定1min,立即读记两台弯沉仪百分表数值,然后轻轻放开千斤顶油门卸载至0,待卸载稳定1min后,
再次读数,每次卸载后百分表不再对零。当两台弯沉仪百分表读数之差小于平均
值的30%时,取平均值。如超过30%,则应重测,当回弹变形值超过1mm时,即可停止加
最大粒径不大于40mm,试样数量约500g。
(6)在紧靠试验点旁边的适当位置,用灌砂法或环刀法或其他方法测定土基的密度。
5.计算
(1) 各级压力的回弹变形加上该级的影响量后,则为计算回弹变形值。表6-7是以后轴重60KN
的标准车为测试车的各级荷载影响量的计算值。当使用其它类型测试车时,计算各级压力下
表初读数,然后将汽车开出10m以外,读取终值数,两只百分表的初、终读数差之平均值乘
弯沉仪杠杆比即为总影响量a。
(5)在试验点下取样,测定材料含水量。取样数量如下:
最大粒径不大于5mm,试样数量约120g;
最大粒径不大于25mm,试样数量约250g;
斤顶倾倒发生事故并影响测试数据的准确性。
(6)安放弯沉仪,将两台弯沉仪的测头分别置于承载板立柱的支座上,百分表对零或其
他合适的初始位置。
4.土基回弹模量测定仪测试步骤
(1)用千斤顶开始加载,注视测力环或压力表,至预压0.O5MPa、稳压1min,使承载板
面避免形成一层。
(3)安置承载板,并用水平尺进行校正,使承载板置水平状态。
(4)将试验卒置于测点上,在加劲小梁中部悬挂垂球测试,使之恰好对准承载板中心,然后
收起垂球。
(5)在承载板上安放千斤顶,上面衬垫钢圆筒,并将球座置于顶部与加劲横梁接触。如用测

城市道路土基回弹模量设计值的确定因素

城市道路土基回弹模量设计值的确定因素

城市道路土基回弹模量设计值的确定因素吴祖德(常州市建设工程施工图设计审查中心)内容提要 城市道路设计规范规定,在不利季节,路基顶面设计回弹模量值,对于快速路和主干路不应小于30Mpa ;对于次干路和支路不应小于20MPa 。

除设计应满足此规定外,确定路基顶面设计回弹模量值时,还应与某些要求相结合考虑,本文综合叙述有关因素的考虑,供设计参考。

关 键 词 城市道路 土基回弹模量 确定因素1 原状路基顶面回弹模量值的确定常州地区,按查表法,根据江苏省所处自然区划图为Ⅳ1、、、Ⅳ1a ,摘录列于表1: 区划 稠度c w土组0.80 0.90 1.00 1.05 1.10 1.15 1.20Ⅳ1 粘性土21.5 25.5 30.0 32.5 35.0 37.5 40.5Ⅳ1a 粉质土 22.0 26.5 32.0 35.0 37.5 40.5序号 干湿状态黏质土 粉质土 WcE0(MPa ) Wc E0(MPa ) 1干燥 Wc ≥1.10 35.0~40.5 Wc ≥1.05 35.0~40.5 2中湿 1.10>Wc ≥0.95 30.0~32.5 1.05>Wc ≥0.90 26.5~32.0 3潮湿 0.95>Wc ≥0.80 21.5~25.5 0.90>Wc ≥0.75 22.0~ 4 过湿 Wc <0.80 (≤15) Wc <0.75 (≤15)由上表可知,根据不同土质、稠度,土基回弹模量在20MPa ~40MPa 之间。

由于城市道路路面设计标高受条件限制,常离地下水位较近,以及季节性土基含水量的影响,常处于过湿状态,就是土基回弹模量的设计值为15MPa 。

2 常州地区各种设计土基回弹模量值的6%石灰土处理厚度对土基进行处理时,处于过湿状态假定E 0=15MPa ,当用20~100cm6%石灰土处理时,经计算得出处理层顶面的弯沉值,再经换算成顶面的土基回弹模量值,见下表:序号 原土基回弹模量值(MPa ) 加20cm6%石灰土层后顶面计算弯沉值 (mm ) 顶面弯沉值换算成回弹模量值(MPa ) L 0=9308 E 0-0.938 对6%灰土处理因无严格强度控制要求考虑施工设计取用 E 0 (MPa )顶面设计弯沉值 (mm )(季节影响系数常州地区采用为1.4)因素,给予折减系数1 15 3.43 24 1.09 22 3.742 22 2.70 31 1.19 26 3.203 26 2.42 35 1.17 30 2.794 30 2.20 39 1.15 34 2.485 34 2.03 42 1.05 40 2.13 特重交通公路土基回弹模量值应大于40MPa。

城市道路土基回弹模量设计值的确定因素

城市道路土基回弹模量设计值的确定因素

城市道路土基回弹模量设计值的确定因素吴祖德(常州市建设工程施工图设计审查中心)内容提要城市道路设计规范规定,在不利季节,路基顶面设计回弹模量值,对于快速路和主干路不应小于30Mpa;对于次干路和支路不应小于20MPa。

除设计应满足此规定外,确定路基顶面设计回弹模量值时,还应与某些要求相结合考虑,本文综合叙述有关因素的考虑,供设计参考。

关键词城市道路土基回弹模量确定因素1 原状路基顶面回弹模量值的确定常州地区,按查表法,根据江苏省所处自然区划图为Ⅳ1、、、Ⅳ1a,摘录列于表1:根据《公路沥青路面设计规范》(JTG D50-2006)P69页,经整理后详见下表:表2 常州市不同干湿状态下的土基回弹模量值(MPa)表由上表可知,根据不同土质、稠度,土基回弹模量在20MP a~40MPa之间。

由于城市道路路面设计标高受条件限制,常离地下水位较近,以及季节性土基含水量的影响,常处于过湿状态,就是土基回弹模量的设计值为15MPa。

2 常州地区各种设计土基回弹模量值的6%石灰土处理厚度对土基进行处理时,处于过湿状态假定E0=15MPa,当用20~100cm6%石灰土处理时,经计算得出处理层顶面的弯沉值,再经换算成顶面的土基回弹模量值,见下表:注:《公路沥青路面设计规范》(JTG D50-2006)要求土基回弹模量值应大于30MPa,重交通、特重交通公路土基回弹模量值应大于40MPa。

3 各级沥青路面在不同土基回弹模量值时的设计累计标准轴次值注:增加交通量累计轴次值是土基回弹模量增加值的2.80-5.30倍。

当提高土基回弹模量设计值后,就可以满足高一级别道路的设计累计标准轴次值,也就是与原设计相比,提高土基回弹模量值,不增加路面厚度,就可以提高较多的设计累计标准轴次值。

4 结合路基工作区要求确定设计土基回弹值根据各级沥青路面路基工作区深度和现行规范挖方路基压实深度的综合要求,一般路基工作区深度要求为80cm,重型要求为120cm(注:见公路路基设计规范)。

以路床顶面当量回弹模量控制的路基设计探讨

以路床顶面当量回弹模量控制的路基设计探讨

相关规范可得出湿度均衡情况下回弹模量取值: 砂砾石 MR=100MPa,E0 = KS Kη MR=1.0×0.7×100=70MPa; 开 山 毛 石 MR= (200+50) /2=125MPa, E0 = KS Kη MR=
1.0×0.7×125=87.5MPa。
路堤回弹模量:
( ) E
* i
(b)周边收敛
计值为 40.5mm。随着监测时间的增加,拱顶沉降和周边收敛持 续增加,但增加速率逐渐变缓。当监测时间小于 40d,拱顶沉降 和周边收敛的变化速率加快 (近似线形);当监测时间超过40d, 拱顶沉降和周边收敛变化幅度较小,此时隧道的拱顶下沉速率 小于 0.5mm/d,周边收敛速率小于 1.0mm/d,满足 《公路隧道设 计规范》(JTG D70—2—2014) 中关于允许变形速率的规定。说 明塌方隧道在经过地表注浆加固措施处治后,围岩强度和稳定 性得到了明显的提升,可以顺利进入下一步施工。
并不大,所以导致三层换算的模量值比双层换算模量值小。此
外,在双层转换过程中,第一层土基与垫层等效转换时,一级
荷载通过垫层得到扩散,土体结构中的均匀荷载转变为钟形荷
载,而在三层转换过程中垫层会对一级荷载进行二次扩散,从
钟形荷载转变为均匀荷载[2],通过比较可以看出,三层转换过程
中垫层扩散荷载的作用增大,其在地基模量换算和挠度计算过
* i
=
E
i1
h
3 i1
h i1
+ +
E
i2
h
3 i2
h i2
+
h i1
3 +1 + Ei2 hi2
-1
(5) (6)

基于路床顶面回弹模量确定路基设计的合理性

基于路床顶面回弹模量确定路基设计的合理性

文章编号:1673-6052(2020)09-0055-03 DOI:10.15996/j.cnki.bfjt.2020.09.014基于路床顶面回弹模量确定路基设计的合理性王重阳(辽宁省公路勘测设计公司 沈阳市 110006) 摘 要:现行规范中将路床顶面回弹模量作为路基的设计指标,通过计算分析不同路基填料以及不同换填或填筑厚度下,路床顶面回弹模量是否满足规范要求,从而判断路床换填厚度及路基填料的合理性。

关键词:路基湿度状态;路床顶面回弹模量;路基填料中图分类号:U416.1 文献标识码:B 新建公路在标准状态下路基土的回弹模量值需通过重复加载三轴压缩试验确定,但考虑设计单位尚未装备土动三轴仪,则采用查表法或CBR换算法来确定路基土回弹模量值。

下面介绍在路基设计中如何利用查表法计算路床顶面回弹模量及利用路床顶面回弹模量设计值确定路基设计合理性。

1 计算路床顶面回弹模量(查表法)1.1 平衡湿度状态下路基填料回弹模量将路基填料的最佳含水率和最大干密度时的路基湿度作为标准状态MR,并充分考虑湿度变化、干湿循环或冻融循环对路基回弹模量的影响,此时为平衡湿度状态下的路基填料回弹模量E0。

E0不应低于现行《公路沥青路面设计规范》(JTGD50-2017)和《公路水泥混凝土路面设计规范》(JTGD40-2011)规定的路面结构设计的路基回弹模量要求值。

新建公路路基回弹模量设计值E0应按式(1)确定,并满足式(2)的要求。

E0=KSKηMR(1)E0≥[E0](2)式中:E0—平衡湿度状态下路基回弹模量设计中(MPa);[E0]—路面结构设计的路基回弹模量要求值(MPa);MR—标准状态下路基动态回弹模量(MPa);KS—路基回弹模量湿度调整系数,为平衡湿度(含水率)状态下的回弹模量与标准状态下的回弹模量之比。

Kη—干湿循环或冻融循环条件下路基土模量折减系数,通过实验确定。

初步设计时,非冰冻地区可根据土质类型、失水率确定。

城市道路土基回弹模量设计值的确定因素土基回弹模量

城市道路土基回弹模量设计值的确定因素土基回弹模量

城市道路土基回弹模量设计值的确定因素土基回弹模量城市道路土基回弹模量设计值的确定因素吴祖德(常州市建设工程施工图设计审查中心)内容提要城市道路设计规范规定,在不利季节,路基顶面设计回弹模量值,对于快速路和主干路不应小于30Mpa ;对于次干路和支路不应小于20MPa 。

除设计应满足此规定外,确定路基顶面设计回弹模量值时,还应与某些要求相结合考虑,本文综合叙述有关因素的考虑,供设计。

关键词城市道路土基回弹模量确定因素1 原状路基顶面回弹模量值的确定常州地区,按查表法,根据江苏省所处自然区划图为Ⅳ1、、、Ⅳ1a ,摘录列于表1:根据《公路沥青路面设计规范》(JTG D50-xx)P69页,经后详见下表:表2 常州市不同干湿状态下的土基回弹模量值(MPa )表由上表可知,根据不同土质、稠度,土基回弹模量在20MP a ~40MPa 之间。

由于城市道路路面设计标高受条件限制,常离地下水位较近,以及季节性土基含水量的影响,常处于过湿状态,就是土基回弹模量的设计值为15MPa 。

2 常州地区各种设计土基回弹模量值的6%石灰土处理厚度对土基进行处理时,处于过湿状态假定E 0=15MPa,当用20~100cm6%石灰土处理时,经计算得出处理层顶面的弯沉值,再经换算成顶面的土基回弹模量值,见下表:注:《公路沥青路面设计规范》(JTG D50-xx)要求土基回弹模量值应大于30MPa ,重交通、特重交通公路土基回弹模量值应大于40MPa 。

3 各级沥青路面在不同土基回弹模量值时的设计累计标准轴次值注:增加交通量累计轴次值是土基回弹模量增加值的2.80-5.30倍。

当提高土基回弹模量设计值后,就可以满足高一级别道路的设计累计标准轴次值,也就是与原设计相比,提高土基回弹模量值,不增加路面厚度,就可以提高较多的设计累计标准轴次值。

4 结合路基区要求确定设计土基回弹值根据各级沥青路面路基工作区深度和现行规范挖方路基压实深度的综合要求,一般路基工作区深度要求为80cm ,重型要求为120cm (注:见公路路基设计规范)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

路基顶面回弹模量确定的新方法
——学习新的《公路沥青路面设计规范》征求意见稿笔记
吴祖德
(常州市建设工程施工图设计审查中心,江苏常州 213002)
内容提要新的《公路沥青路面设计规范》征求意见稿,对路基顶面回弹模量值的确定,改变了现有规范采用的方法,提出了新方法。

本文详细介绍了新的规范征求意见稿中,对路基顶面回弹模量值的确定方法,并与现规范的方法进行比较,供技术人员在学习中参考。

关键词征求意见稿路基顶面回弹模量的确定
0 前言
路基土的回弹模量是沥青路面结构力学响应分析的重要参数之一。

现规范与新规范征求意见稿对路基顶面回弹模量的要求、测试及有关规定的区别,列表如下:
表1 现规范与新规范征求意见稿对路基顶面回弹模量的要求、测试及有关规定的区别
1 三轴试验测试路基土的回弹模量
路基土回弹模量主要受其应力状况、物理状况(含水量与密实度)和材料性质三方面的因素的影响。

对于处于特定状态(一定含水量和密实度值)的各类路基土来说,影响其模量的主要因素便是应力状况。

在不同的交通等级下,以及不同的路面类型和结构组合中,路基土的应力状况是不相同的,故其模量值也是不一样的。

因而,路基土的模量参数的测试方法和指标值取用,一方面要遵循反映材料基本特性的要求,另一方面则要与结构应力—应变分析时所选用的方法和条件相一致。

我国现行沥青路面设计规范中,采用“室内试验法(小承载板法)”及“现场实测法(承载板法或贝克曼梁法)”来确定路基模量,而室内小承载板试验中试件的受力状况与现场路基上的应力状况并不一致,并且这种测试方法仅适用于静态模量标定,这些都影响了路基回弹模量取值的科学性和合理性。

所以经过对我国各种路面结构中路基土的受力水平进行分析,制定出了更加合理的室内三轴重复加载测试回弹模量的方法与取值标准。

(注:①可参阅附后的“粒料与路基土室内回弹模量试验测试方法草案”;
②该试验方法:对圆柱体试件施加一个固定幅度、加载试件(路基—,粒料基层/底基层—)和循环周期(一般取)的轴向重复荷载。

试验时,试件承受动循环轴向应力和三轴室提供的静侧压力,通过测量其轴向总回弹变形响应来计算回弹模量;③该方法所用试验条件是对移动轮载作用下柔性路面中粒料层及路基物理状态(如密度、含水量)和应力状态(可能的代表性应力范围)的近似模拟。

回弹模量测试过程中施加于试件的应力水平应根据其在路面结构中所处的位置决定,即对于基层/底基层材料应采用不同于路基土的应力水平;④回弹模量—未处治材料的回弹模量是施加于试件的轴向重复偏应力峰值与试件轴向回弹应变峰值之比)
2 路基平衡状态湿度时的回弹模量值
现行规范中采用最不利季节测定的土基回弹模量值作为土基强度的设计值,即在土基回弹模量取值的过程中没有考虑一年中含水量变化对土基强度的影响。

这种影响是不能忽略不计的,因为采用最不利季节的土基回弹模量值时,从偏安全的角度进行设计的,但对于沥青混凝土路面往往会造成路面偏厚的现象,而实际土基回弹模量在要求的压实度条件下往往超过设计值,自然会造成资金浪费……。

所谓路基平衡湿度,是指公路通车后一段时间后,路基湿度在地下水、大气降雨与蒸发等因素作用下达到平衡的状态,湿度相对稳定,此时的湿度定义为路基平衡湿度。

路基干湿类型按路基工作区的湿度来源分为三类:
(1)受地下水控制的潮湿类:
地下水控制的潮湿类路基—地下水或地表水长期积水的水位高,路基工作区处于地下水毛细润湿区影响范围内,路基平衡湿度由地下水或地表水长期积水的水位升降所控制。

路基湿度受地下水或地表长期积水影响的临界水位深度可根据土质,由当地经验确定,缺乏实际资料时,粘土可采用6m,砂质粘土和粉土可采用3m,砂可采用0.9m。

(2)受气候因素控制的干燥类:
气候因素控制的干燥类路基—地下水位很低,路基工作区处于毛细润湿区之上,路基平衡湿度由气候因素变化所控制。

(3)兼受两方面影响的中湿类:
兼受地下水和气候因素影响的中湿类路基—地下水位较高,路基工作区下部处于地下水毛细润湿区影响范围内,上部则受气候因素影响。

路面结构分析采用平衡湿度状态下路基顶面的回弹模量,并进行结构层模量调整,由标准条件下的回弹模量值乘以湿度调整系数和结构层模量调整系数得到。

湿度调整系数根据所在地区和路基湿度状况,参照附录确定。

基层或底基层采用无机结合料类材料的路面,结构层模量调整系数为,其它结构类型,结构层调整系数为。

(注:结构层模量调整系数用以协调弹性层状力学体系与实际路面工作状态的差异)
3 路基回弹模量湿度调整系数
4 标准状态下路基顶面回弹模量的确定
5 (5.2.5)路基工作区采取换填、掺灰等措施,设置路基改善层或由于其他原因导致的路基工作区不同深度处模量差异较大时,根据路基工作区内不同材料的分层情况,分别确定各层回弹模量值,按照层厚进行加权确定路基顶面的回弹模量。

6 设计应采取的相应措施
(1)路基地下水位或地表长期积水水位值的确定,是路基平衡湿度确定的重要指标,故道路全线应在纵断面图上测定、标出地下水位线,然后相应标出路床顶面线,以及路基工作区范围线,根据不同土质应标出路基湿度受积水影响的临界水位深度。

综合分析得出,路基所处为潮湿类、干燥类、中湿类,根据相关资料得出路基的回弹模量值。

(2)路基工作区的确定是计算路基回弹模量的重要依据,所以先要确定道路路面计算路基工作区设计的汽车轴载、路面的各层结构厚度,同时要确定路基工作区深度计算位置定在荷载应力:自重应力为或处,或者是其他的数值。

新规范应就此做出具体规定。

具体计算,可根据沥青路面的层状体系理论,采用SHELL公司的软件计算。

7 结束语
在沥青路面的设计中,路基回弹模量值的确定是一个重要的参数之一,新规范征求意见稿与现行规范按路基土的分界稠度确定路基干湿类型的规定,以及路基土的回弹模量值确定已经完全不同。

本文就新规范征求意见稿的内容,作了详细的讲述,供大家参考,全面深入的理解、运用,要等新规范的正式实施。

【参考文献】
[1]粒料与路基土室内回弹模量试验测试方法草案.中交公路规划设计院.同济大学.2006年10月.[2]中华人民共和国行业标准.公路沥青路面设计规范(征求意见稿).中交路桥技术有限公司.。

相关文档
最新文档