13结构动力学习题.
结构动力学课后习题答案

结构动力学课后习题答案结构动力学是研究结构在动态载荷作用下的响应和行为的学科。
它涉及到结构的振动、冲击响应、疲劳分析等方面。
课后习题是帮助学生巩固课堂知识、深化理解的重要手段。
以下内容是结构动力学课后习题的一些可能答案,供参考:习题1:单自由度系统自由振动分析解答:对于一个单自由度系统,其自由振动的频率可以通过以下公式计算:\[ f = \frac{1}{2\pi}\sqrt{\frac{k}{m}} \]其中,\( k \) 是系统的刚度,\( m \) 是系统的总质量。
系统自由振动的振幅随着时间的衰减可以通过阻尼比 \( \zeta \) 来描述,其衰减系数 \( \delta \) 可以通过以下公式计算:\[ \delta = \sqrt{1-\zeta^2} \]习题2:单自由度系统受迫振动分析解答:当单自由度系统受到周期性外力作用时,其受迫振动的振幅可以通过以下公式计算:\[ A = \frac{F_0}{\sqrt{(k-m\omega^2)^2+(m\zeta\omega)^2}} \] 其中,\( F_0 \) 是外力的幅值,\( \omega \) 是外力的角频率。
习题3:多自由度系统模态分析解答:对于多自由度系统,可以通过求解特征值问题来得到系统的模态。
特征值问题通常表示为:\[ [K]{\phi} = \lambda[M]{\phi} \]其中,\( [K] \) 是系统的刚度矩阵,\( [M] \) 是系统的质量矩阵,\( \lambda \) 是特征值,\( {\phi} \) 是对应的特征向量,即模态形状。
习题4:结构的冲击响应分析解答:对于结构的冲击响应分析,通常需要考虑冲击载荷的持续时间和冲击能量。
结构的冲击响应可以通过冲击响应谱(IRF)来分析,它描述了结构在不同频率下的响应。
冲击响应分析的结果可以用来评估结构的耐冲击性能。
习题5:疲劳分析解答:结构的疲劳分析需要考虑结构在重复载荷作用下的寿命。
《结构动力学》考试复习题

《结构动力学》考试复习题一、(概念题)(1) (填空题)某等效单自由度振动系统具有下列参数:17.5m kg =,70/k N cm =,阻尼比0.2ξ=,则系统的固有频率ω为 rad/s ,等效阻尼系数c 为 N. s/m 。
(2) (填空题)某振动系统具有下列参数:17.5m kg =,70/k N cm =,0.7/c N s cm =⋅,则系统的固有频率ω为 ,阻尼比ξ为 ,对数衰减率n 为 。
(3) (简单计算题)一弹簧悬挂某质量块,弹簧产生了静变形mm 4=∆st ,试确定系统作自由振动的固有频率 (重力加速度取2s m /10=g )。
(10分)(4) (填空题)当系统受简谐力作用发生共振时,系统所受的外力是由 来平衡。
(5) (问答题)某单自由度系统具有非线性的弹簧,其运动方程为:()()mx cx f x F t ++=,能否用杜哈美积分计算该系统的受迫振动响应?并说明理由。
(6) (填空题)同种材料的弦承受相同的张力,如果长度增加到原来的4倍,截面积减小到原来的4倍,则作该弦横向振动的各阶固有频率将 。
(7) (填空题)图示两个系统,已知各质点的质量 i m ,刚架的质量不计,忽略杆的轴向变形,试分别确定两系统的动力自由度: (1) n = ; (2) n = 。
(8) (作图题) 0.1ξ=时单自由度系统受迫振动的相频曲线如图所示,其中ω为系统的固有频率,p 为激振力的频率,ϕ为位移响应滞后于激振力的相位角。
试大致绘出0.05ξ=和0.2ξ=时相频曲线的形状。
(9) (问答题)模态分析法能否求解多自由度系统的弹塑性地震响应?并说明理由。
(10) (选择题) 对于一个单自由度系统而言,其临界阻尼与系统的固有特性参数 ,与系统所受的阻尼力 。
(a) 有关,有关;(b) 无关,无关;(c) 有关,无关;(d) 无关,有关2ωpππ二、(计算题)(1) 图示两个系统,已知EI 和M ,弹簧刚度316k EI l =,不计梁的质量,试确定:(1) 简支梁的等效刚度L k ;(2)两个系统的等效刚度a k 和b k ;(3) 两个系统的固有频率a ω和b ω。
结构动力学习题解答

然后积分求初始速度
̇̇ d t = θ̇0 = θ 0
0+ 0+ 0+
∫
0
∫ hδ ( t ) d t = h ∫ δ ( t ) d t = h
0 0 0+
;
再积分求初位移
̇̇ d t == h )d t = 0 ; θ0 = θ 0
0+
∫
0
∫
0
̇̇ 、 θ̇ 和 θ 的瞬态响应 这样方程(6)的解就是系统对于初始条件 θ 0 0 0
1.6 求图 1-35 所示系统的固有频率。图中磙子半径为 R,质量为 M,作纯滚动。弹簧刚度 为K 。 解:磙子作平面运动, 其动能 T=T 平动 +T 转动 。
K R M 图 1-35 x
T平动 = T转动
1 ̇2; Mx 2 2 2 ̇ ⎞ 1 ⎛ MR 2 ⎞ ⎛ x ̇⎞ 1 ⎛x = I⎜ ⎟ = ⎜ ⎟⎜ ⎟ ; 2 ⎝R⎠ 2 ⎝ 2 ⎠⎝ R ⎠
U= r 2 1 1 1 1⎛ K A ϕ A 2 + K B ϕ B 2 = K Aϕ A 2 + K B ϕ B 2 = ⎜ K A + K B A 2 2 2 2 2⎜ rB ⎝
(
)
⎞ 2 ⎟ϕ ; ⎟ A ⎠
系统的机械能为
T +U = r 2 1 1⎛ ̇ A2 + ⎜ K A + K B A (m A + m B )rA 2ϕ 4 2⎜ rB 2 ⎝
d (T + U ) = 0 ,进一步得到系 dt
统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤: (1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷 的幅值 Ai 、 Ai +1 。 (2)由对数衰减率定义 δ = ln(
结构动力学试题及答案

结构动力学试题及答案(本文按试题和答案格式进行编写)试题一:1. 请问什么是结构动力学?2. 简述结构动力学的研究对象和主要内容。
3. 结构动力学分析常用的方法有哪些?4. 结构动力学分析中常用的数学模型有哪些?5. 结构动力学的应用领域有哪些?答案一:1. 结构动力学是研究结构在外力作用下的动态响应及其稳定性的学科。
2. 结构动力学的研究对象是各种工程结构,主要内容包括结构的振动、冲击响应、瞬态响应和稳态响应等。
3. 结构动力学分析常用的方法有模态分析法、频率响应分析法、时程分析法等。
4. 结构动力学分析中常用的数学模型有单自由度体系、多自由度体系、连续体系等。
5. 结构动力学的应用领域广泛,包括建筑结构工程、桥梁工程、风力发电机组、地震工程等。
试题二:1. 结构动力学分析中,模态分析的基本原理是什么?2. 简述模态分析的步骤和计算方法。
3. 常用的模态分析软件有哪些?4. 请问什么是结构的固有频率和阻尼比?5. 结构的模态振型对结构动力响应有什么影响?答案二:1. 模态分析是基于结构的振动特性,通过求解结构的固有频率、模态振型和阻尼比等参数,来研究结构的动力响应。
2. 模态分析的步骤包括建立结构有限元模型、求解结构的固有频率和模态振型、计算结构的阻尼比等。
常用的计算方法有有限元法、拉普拉斯变换法等。
3. 常用的模态分析软件有ANSYS、ABAQUS、MSC.NASTRAN等。
4. 结构的固有频率是结构在无外力作用下自由振动的频率,阻尼比是结构振动过程中能量耗散的程度。
5. 结构的模态振型对结构动力响应有很大影响,不同的模态振型会导致不同的振动特性和反应。
试题三:1. 结构动力学分析中,频率响应分析的基本原理是什么?2. 简述频率响应分析的步骤和计算方法。
3. 频率响应分析和模态分析有什么区别?4. 结构的频率响应函数和传递函数有什么区别?5. 频率响应分析在结构设计中的应用有哪些?答案三:1. 频率响应分析是研究结构在单频激励下的响应特性,通过求解结构的频率响应函数,来获得结构的响应。
湖南大学13年结构动力学考卷

一、填空题1、由实验测得某单自由度体系阻尼比0.05ξ=,则其自由振动的振幅经3个周期后降为初始振幅的 %。
2、对于有阻尼受迫振动体系,当振动时间足够长时,体系初始状态只对响应的 振动有影响,而对响应的 振动并无太大影响。
3、阻尼比为ξ的单自由度体系,在简谐荷载作用下位移动力系数μ=极值max μ= , 此时,简谐激励频率与结构固有频率之比==ωθβ/ 。
4、悬臂结构和简支结构的各振型所具有的共同特性:(1)、第一主振型 不动点;(2)、第n 主振型具有 个不动点;(3)、两不同振型之间具有 性。
5、分布质量简化为有限自由度体系有三种方法,它们分别是 , , 。
二、1. 图示为一单自由度体系(抗弯刚度EI ,梁自重不计),试建立其振动方程。
2. 下列函数均可作为周期荷载,其周期各等于多少?近似给出下列荷载的幅值谱?(1)()sin(0.25)0.75sin(1.750.5)f t t t ππ=+++(2)()sin(0.25)0.75sin(1.750.5)0.25sin(2.5)f t t t t πππ=+++++(3)()sin(0.25)0.75sin(1.750.5)0.25sin(2.5)0.125sin(3.125 1.25)f t t t t t ππππ=+++++++3. 若取m =600kg,42110MPa E =⨯,I=78cm 4,l =6m,干扰力取为()sin(0.25)0.75sin(1.750.5)0.25sin(2.5)P F t t t t πππ=+++++,试计算体系的自振频率, 并画出上述激励作用下的响应幅值谱(不考虑阻尼影响)。
0.5l 0.5l题二图 三、图示两跨对称、匀质等截面连续梁,各跨跨径均为l ,抗弯刚度均为EI ,单位长度质量均为m 。
在两跨的跨中另置一质块(质量为ml ),试用Rayleigh 法求该结构的基本频率。
题三图 四、图示框架结构,忽略其轴向变形及转动惯量的影响,将质量堆积在结点上1、 建立体系振动方程2、 求系统的自振频率3、 求系统振型并绘出振型图题四图l l。
结构动力学与应用考试试题

结构动力学与应用考试试题一、选择题1. 结构动力学是研究结构在______时的力学响应和形态相互关系的学科。
A. 静力学B. 动力学C. 热力学D. 光力学2. 结构的固有频率是指结构在______下产生共振的频率。
A. 外加荷载B. 自激振动C. 静力平衡D. 温度变化3. 结构动力学分析中常用的求解方法包括有限元法、模态超级法和______法等。
A. 静力平衡法B. 频率响应法C. 换能法D. 变位法4. 结构动力学分析常用的传递函数表示为______。
A. H(ω) = X(ω) / F(ω)B. H(ω) = F(ω) / X(ω)C. X(ω) = F(ω) / H(ω)D. F(ω) = X(ω) / H(ω)5. 结构的阻尼比对于结构动力学响应的影响是______。
A. 提高结构的刚度和强度B. 减小结构的固有频率C. 显著改变结构的失稳现象D. 不影响结构的动力响应6. 结构在动力荷载作用下的振动响应可以通过______分析得到。
A. 弹性力学理论B. 弹塑性力学理论C. 塑性力学理论D. 极限平衡理论7. 结构地震反应的计算方法一般可以分为几种类型?A. 1种B. 2种C. 3种D. 4种8. 结构地震反应计算中常用的几种简化方法包括等效静力法、反应谱法和______法。
A. 位移反应法B. 达比法C. 传递函数法D. 干涉法9. 结构动力学与应用在哪些领域具有广泛的应用?A. 建筑结构设计B. 地震工程C. 桥梁工程D. 所有选项都正确10. 结构动力学的研究对于提高建筑物和桥梁的______具有重要意义。
A. 施工速度B. 建筑安全性C. 建筑造价D. 建筑使用寿命二、填空题1. 结构动力学研究的核心是研究______和______之间的相互关系。
2. 结构固有频率是由结构的______和______决定的。
3. 结构在动力荷载作用下的振动分析可以采用______方法。
4. 结构地震反应计算中的等效静力法是通过将______引入到结构动力方程中进行计算的。
结构动力学试题

结构动力学试题一、选择题1. 结构动力学中的“动力响应”是指:A. 结构在静态载荷下的变形B. 结构在动态载荷下的变形C. 结构的自然频率D. 结构的阻尼比2. 单自由度系统的周期公式为:A. T = 2π√(m/k)B. T = 2π√(k/m)C. T = 2π/mD. T = π√(m/k)3. 多自由度系统的振型分解法是基于以下哪个原理?A. 结构的对称性B. 结构的不确定性C. 结构的线性叠加原理D. 结构的能量守恒原理4. 在地震分析中,反应谱方法的主要优点是:A. 考虑了地震动作用的非线性B. 可以处理任意形状的地震波形C. 能够直接给出结构的响应结果D. 适用于快速评估结构的地震安全性5. 结构阻尼比的增大通常会导致:A. 自然频率的提高B. 振幅的减小C. 周期的延长D. 响应的不稳定二、填空题1. 在结构动力学中,________是用来描述结构在动态载荷作用下的运动状态。
2. 动态载荷下,结构的响应可以通过________方法进行求解,该方法基于结构振动的线性叠加原理。
3. 地震波的________特性对结构的响应有显著影响,因此在进行地震分析时需要特别考虑。
4. 结构的阻尼比可以通过________方法进行实验测定,以评估结构的能量耗散能力。
5. 在进行结构动力分析时,通常需要将结构简化为________自由度系统,以便于计算和分析。
三、简答题1. 请简述单自由度系统与多自由度系统的区别及其各自的适用场景。
2. 描述地震波的基本特性,并解释为什么需要对其进行频谱分析。
3. 说明结构阻尼对动力响应的影响,并讨论如何通过设计来提高结构的阻尼性能。
四、计算题1. 一个单自由度系统的质量为500 kg,刚度为2000 N/m。
请计算该系统的自然频率和阻尼比为0.05时的周期。
2. 假设一个结构在地震作用下的最大加速度为0.3g,其中g为重力加速度(9.81 m/s²),请使用反应谱方法计算该结构在自然频率为2Hz时的响应加速度。
结构动力学1~15

《结构动力学》习题答案1~151. 1简述求多自由度体系时程反应的振型叠加法的主要步骤 答1)建立多自由度体系的运动方程)()()()(t p t kv t v c t vm =++ 2)进行振型和频率分析对无阻尼自由振动,这个矩阵方程能归结为特征问题)(ˆ2t p vm k =-ω 由此确定振型矩阵φ和频率向量ω 3)求广义质量和荷载依次取每一个振型向量n φ,计算每一个振型的广义质量和广义荷载n T n nm Mφφ= )()(t p t p Tn n φ=4)求非耦合运动方程用每个振型的广义质量、广义力、振型频率n ω和给定的振型阻尼比n ξ就能写出每一个振型的运动方程2)(2)(ωωξ++t Y t Y n n n n nn nMt P t Y )()(=5)求对荷载的振型反应根据荷载类型,用适当的方法解这些单自由度方程,每一个振型的一般动力反应表达式用Duhamel 积分给出ττωτωξτωd t t P M t Y Dn n n tn nn n )(sin )](exp[)(1)(0---=⎰写出标准积分形式τττd t h P t Y n tn n )()()(0-=⎰式中)](exp[)(sin 1)(τωξτωωτ---=-t t M t h n n Dn nn n 10<<n ξ6)振型自由振动每一个振型有阻尼自由振动反应的通式为)exp[]sin )0()0(cos )0([)(t t Y Y t Y t Y n n Dn Dnnn n n Dn n n ωξωωωξω-++=7)求在几何坐标中的位移反应通过正规坐标变换求几何坐标表示的位移式)()()()(2211t Y t Y t Y t V n n φφφ+++=显然,它反映了各个振型贡献的叠加。
因此命名为振型叠加法。
8)弹性力反应抵抗结构变形的弹性力)()()(t Y k t kv t f s φ==当频率、振型从柔度形式的特征方程中求出时,可以采用另一种弹性力的表达式。
工程力学结构动力学复习题

工程力学结构动力学复习题一、简答题1、结构的动力特性主要指什么?对结构做动力分析可分为哪几个阶段?2、何谓结构的振动自由度?它与机动分析中的自由度有何异同?3、何谓动力系数?简谐荷载下动力系数与哪些因素有关?4、动力荷载与静力荷载有什么区别?动力计算与静力计算的主要差别是什么?5、为什么说结构的自振频率和周期是结构的固有性质?怎样改变他们?6、简述振型分解法是如何将耦联的运动方程解耦的.7、时域法求解与频域法求解振动问题各有何特点?8、什么叫动力系数,动力系数大小与哪些因素有关?单自由度体系位移动力系数与内力动力系数是否一样?答:动力放大系数是指动荷载引起的响应幅值与动荷载幅值作为静荷载所引起的结构静响应之比值。
简谐荷载下的动力放大系数与频率比、阻尼比有关。
当惯性力与动荷载作用线重合时,位移动力系数与内力动力系数相等;否则不相等。
原因是:当把动荷载换成作用于质量的等效荷载时,引起的质量位移相等,但内力并不等效,根据动力系数的概念可知不会相等。
9、振型正交性的物理意义是什么?振型正交性有何应用?答:由振型关于质量、刚度正交性公式可知,i 振型上的惯性力在j 振型上作的虚功为0。
由此可知,既然每一主振型相应的惯性力在其他主振型上不做功,那么它的振动能量就不会转移到别的主振型上去。
换句话说,当一个体系只按某一主振型振动时,不会激起其他主振型的振动。
这说明各个主振型都能单独出现,彼此线性无关。
这就是振型正交的物理意义。
一是可用于校核振型的正确性;二是在已知振型的条件下,可以通过折算质量与折算刚度计算对应的频率。
而更主要的是任一同阶向量均可用振型的线性组合来表示,在受迫振动分析中,利用振型的正交性,在阻尼矩阵正交的假设下可使运动方程解藕。
10、什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼?答:振动过程的能量耗散称为阻尼。
产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。
结构动力学试题及答案

结构动力学试题及答案一、选择题1. 在结构动力学中,下列哪项不是描述结构动力响应的参数?A. 自然频率B. 阻尼比C. 静力平衡D. 模态阻尼2. 以下哪个不是结构动力学分析中的常用方法?A. 模态分析B. 时域分析C. 频域分析D. 静力分析二、简答题1. 简述结构动力学中模态分析的目的和重要性。
2. 描述阻尼对结构动力响应的影响。
三、计算题1. 假设一个单自由度系统,其质量为m,刚度为k,初始位移为x0,初始速度为v0。
若外力为F(t) = F0 * sin(ωt),求该系统在任意时间t的位移响应。
答案一、选择题1. 正确答案:C. 静力平衡解析:静力平衡是静力学的概念,与结构动力学无关。
2. 正确答案:D. 静力分析解析:静力分析是分析结构在静载荷作用下的响应,而结构动力学分析动态载荷下的结构响应。
二、简答题1. 模态分析的目的在于识别结构的自然振动特性,包括自然频率、阻尼比和模态形状。
它的重要性在于:- 预测结构在动态载荷下的响应。
- 为控制结构的振动提供基础数据。
- 优化设计,提高结构的抗震性能。
2. 阻尼对结构动力响应的影响主要表现在:- 减少振动幅度,提高结构的稳定性。
- 改变系统的自然频率和模态形状。
- 影响系统的动态响应时间。
三、计算题1. 单自由度系统的位移响应可以通过以下步骤求解:- 写出系统的动力学方程:m * d²x/dt² + c * dx/dt + k * x = F(t)- 应用初始条件:x(0) = x0, v(0) = v0- 应用外力:F(t) = F0 * sin(ωt)- 通过傅里叶变换或拉普拉斯变换求解方程。
- 应用逆变换得到位移响应的解析解或数值解。
位移响应的一般形式为:x(t) = X * cos(ωt - φ) + Y *sin(ωt - φ),其中X和Y是与系统参数和初始条件有关的常数,φ是相位角。
具体的数值需要根据系统参数和初始条件进行计算。
《结构动力学》考试复习题

《结构动力学》考试复习题一、(概念题)(1) (填空题)某等效单自由度振动系统具有下列参数:17.5m kg =,70/k N cm =,阻尼比0.2ξ=,则系统的固有频率ω为 rad/s ,等效阻尼系数c 为 N. s/m 。
(2) (填空题)某振动系统具有下列参数:17.5m kg =,70/k N cm =,0.7/c N s cm =⋅,则系统的固有频率ω为 ,阻尼比ξ为 ,对数衰减率n 为 。
(3) (简单计算题)一弹簧悬挂某质量块,弹簧产生了静变形mm 4=∆st ,试确定系统作自由振动的固有频率 (重力加速度取2s m /10=g )。
(10分)(4) (填空题)当系统受简谐力作用发生共振时,系统所受的外力是由 来平衡。
(5) (问答题)某单自由度系统具有非线性的弹簧,其运动方程为:()()mx cx f x F t ++=,能否用杜哈美积分计算该系统的受迫振动响应?并说明理由。
(6) (填空题)同种材料的弦承受相同的张力,如果长度增加到原来的4倍,截面积减小到原来的4倍,则作该弦横向振动的各阶固有频率将 。
(7) (填空题)图示两个系统,已知各质点的质量 i m ,刚架的质量不计,忽略杆的轴向变形,试分别确定两系统的动力自由度: (1) n = ; (2) n = 。
(8) (作图题) 0.1ξ=时单自由度系统受迫振动的相频曲线如图所示,其中ω为系统的固有频率,p 为激振力的频率,ϕ为位移响应滞后于激振力的相位角。
试大致绘出0.05ξ=和0.2ξ=时相频曲线的形状。
(9) (问答题)模态分析法能否求解多自由度系统的弹塑性地震响应?并说明理由。
(10) (选择题) 对于一个单自由度系统而言,其临界阻尼与系统的固有特性参数 ,与系统所受的阻尼力 。
(a) 有关,有关;(b) 无关,无关;(c) 有关,无关;(d) 无关,有关2ωpππ二、(计算题)(1) 图示两个系统,已知EI 和M ,弹簧刚度316k EI l =,不计梁的质量,试确定:(1) 简支梁的等效刚度L k ;(2)两个系统的等效刚度a k 和b k ;(3) 两个系统的固有频率a ω和b ω。
结构动力学【习题课】(单自由度体系1)

EI l
m
4.图 所示结构周期为T 则图b 4.图a所示结构周期为Ti,则图b所示体系的周期为
T =
T1 + T + T
2 2 2
2 3
ki m
k1 k2 k3 m
(a) 5.图示体系的自振频率为 5.图示体系的自振频率为 .
(b)
EI = ∞ k
l l
m
6.图示体系的动力自由度为5. 6.图示体系的动力自由度为5. 图示体系的动力自由度为 EI=常数
第1 、2 章
小结 动力特性计算 公式法 能量守恒 幅值方程 动力反应计算 简谐荷载 周期荷载 阶跃荷载 冲击荷载 一般荷载
动荷载及其分类 自由度及其确定 运动方程的建立 惯性力法 虚功法 运动方程的求解方法 经典解法 频域解法 时域解法 数值解法 确定动力特性的试验方法 阻尼力假定及阻尼的影响
1.若使单自由度体系的阻尼增大,其结果是周期变短. 1.若使单自由度体系的阻尼增大,其结果是周期变短. 若使单自由度体系的阻尼增大 错
EA = ∞
7.体系的振幅和自振频率与初始条件有关. 7.体系的振幅和自振频率与初始条件有关. 体系的振幅和自振频率与初始条件有关
8.在图示体系中,若要使其自振频率增大,可以 8.在图示体系中,若要使其自振频率增大, 在图示体系中 A.增大 ; A.增大P; 增大 C.增大 ; C.增大m; 增大 B.增大EI; B.增大EI; 增大 D.增大 l . D.增大
ωD = ω 1−ξ 2
&& + 2ξω y + ω 2 y = P ( t ) / m & y
)
2.单自度体系运动方程为 2.单自度体系运动方程为 其中未考虑质体重力,这是因为( 其中未考虑质体重力,这是因为(
结构动力学复习题

结构动力学复习题1、对单自由度体系的自由振动,加速度始终与位移方向相反。
2、下图所示为对称的四自由度体系,则正对称振型和反对称振型个数分布为2,23.结构体系的动力特性主要指频率、振型及阻尼4.图示体系(EI= 常数)的自振频率 为:(5={1 0.5}TΦ2={0.5 −1}TΦ6、如图所示振动体系不计杆件的轴向变形,则动力自由度数目是2。
7、单自由度体系只有当阻尼比1时才会产生振动现象。
8、已知结构的自振周期T=0.3s,阻尼比ζ=0.04,质量m在的初始条件下开始振动,则至少经过14个周期后振幅可以衰减到0.1mm以下。
9、多自由度框架结构顶部刚度和质量突然变小时,自由振动中顶部位移很大的现象称为鞭梢效应。
10.结构体系简化的自由度数目与计算结果的精度有关。
11.单自由度体系发生无阻尼自由振动时,若初始速度为零时,体系的振幅和初始位移大小相等。
12、如图2层框架结构,梁与楼板平面内的质量各为120吨,梁的刚度为无穷大,各柱的抗弯刚度EI 均为4×104 kNm 2,在2层楼面处有动荷载F P sin θt ,F P =5 Kn ,θ=2.5 rad/s ,不计阻尼,求最大动力位移和最大动力弯矩图。
⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⋅⎥⎦⎤⎢⎣⎡-⨯⨯-⨯--⨯50105.1105.1105.110321244424A A m m θθ13、地震反应谱是在阻尼比为0.05条件下地震影响系数与体系自振周期T 的关系曲线。
假设在上题2层楼体系条件下第1振型和第2振型振动的阻尼比均为0.05,在特定激励下测得体系按第1振型振动时的1,2层楼的层间相对侧移为0.06m 。
试按反应谱理论计算该体系第1振型振动时的顶层相对地面的位移。
解:1)求自振频率⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⋅⎥⎦⎤⎢⎣⎡-⨯⨯-⨯--⨯00105.1105.1105.110321244424A A m m ωω s rad /91.61=ω ,s rad /09.182=ω2)求振型:()⎪⎪⎭⎫ ⎝⎛=618.111A ,()⎪⎪⎭⎫ ⎝⎛-=618.012A 3)顶层的侧移刚度为m kN /105.14⨯,故顶层受到的激励作用力大小为 kN 90006.0105.14=⨯⨯根据反应谱理论:1,2层的作用力为900618.1120111211221=⋅⨯=⋅⋅⋅=γααγA w FkN A w F 24.556618.19001120111111112==⋅⨯⨯=⋅⋅⋅=γααγ9004)顶层相对地面的位移为:m d 157.006.0105.124.5569004=+⎪⎭⎫ ⎝⎛⨯+=14、图3为三种不同支承情况的单跨梁,EI=常数,在梁中点有一集中质量m,不计梁的质量,试比较三者的自振频率。
13结构动力学习题

13结构动⼒学习题1.1 不计轴向变形,图⽰体系的振动⾃由度为2。
1.2 不计轴向变形,图⽰体系的振动⾃由度为1。
1.3 不计轴向变形,图⽰体系的振动⾃由度为2。
1.4 结构的⾃振频率不仅与质量和刚度有关,还与⼲扰⼒有关。
1.5 单⾃由度体系,考虑阻尼时,频率变⼩。
1.6 弹性⼒与位移反向,惯性⼒与加速度反向,阻尼⼒与速度反向。
1.7 如简谐荷载作⽤在单⾃由度体系的质点上且沿着振动⽅向,体系各截⾯的内⼒和位移动⼒系数相同。
1.8 在建⽴质点振动微分⽅程时,考虑不考虑质点的重⼒,对动位移⽆影响。
1.9 图⽰体系在简谐荷载作⽤下,不论频率⽐如何,动位移y(t) 总是与荷载P(t) 同向。
1.10 多⾃由度体系⾃由振动过程中,某⼀主振型的惯性⼒不会在其它主振型上做功。
⼆、单项选择题2.1 在单⾃由度体系受迫振动的动位移幅值计算公式中,yst是A 质量的重⼒所引起的静位移B 动荷载的幅值所引起的静位移C 动荷载引起的动位移D 质量的重⼒和动荷载复制所引起的静位移2.2 ⽆阻尼单⾃由度体系的⾃由振动⽅程:。
则质点的振幅y max=2.3 多⾃由度振动体系的刚度矩阵和柔度矩阵的关系是2.4 图⽰四结构,柱⼦的刚度、⾼度相同,横梁刚度为⽆穷⼤,质量相同,集中在横梁上。
它们的⾃振频率⾃左⾄右分别为ω1,ω2,ω3,ω4,那么它们的关系是2.5 图⽰四结构,柱⼦的刚度、⾼度相同,横梁刚度为⽆穷⼤,质量相同,集中在横梁上。
它们的⾃振频率⾃左⾄右分别为ω1,ω2,ω3,ω4,那么它们的关系是2.6 已知两个⾃由度体系的质量矩阵为,Y22等于A -0.5B 0. 5C 1D -0.252.7 不计阻尼,不计⾃重,不考虑杆件的轴向变形,图⽰体系的⾃振频率为2.8 图⽰四个相同的桁架,只是集中质量m的位置不同,,它们的⾃振频率⾃左⾄右分别为ω1,ω2,ω3,ω4,(忽略阻尼及竖向振动作⽤,各杆EA为常数),那么它们的关系是2.9 设ω为结构的⾃振频率,θ为荷载频率,β为动⼒系数下列论述正确的是A ω越⼤β也越⼤B θ越⼤β也越⼤C θ/ω越接近1,β绝对值越⼤Dθ/ω越⼤β也越⼤2.10 当简谐荷载作⽤于有阻尼的单⾃由度体系时,若荷载频率远远⼤于体系的⾃振频率时,则此时与动荷载相平衡的主要是A 弹性恢复⼒B 阻尼⼒C 惯性⼒D 重⼒2.11 图⽰(a )、(b )两体系中,EI 、EI1及h 均为常数,则两者⾃振频率ωa 与ωb 的关系是2.12 图⽰三个单跨梁的⾃振频率分别为ωa ,ωb ,ωc ,它们之间的关系是2.13 ⼀单⾃由度振动体系,其阻尼⽐为ξ,共振时的动⼒系数为β则ABCD2.14 当荷载频率θ接近结构的⾃振频率ω时A 可作为静荷载处理B 荷载影响⾮常⼩C 引起共振D 可以不考虑阻尼的影响求图⽰体系的⾃振频率ω。
结构动力学习题

第九章 结构动力计算一、是非题1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。
2、忽略直杆的轴向变形,图示结构的动力自由度为4个。
3、仅在恢复力作用下的振动称为自由振动。
4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。
5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。
l /2l /2l /2l /2(a)(b)6、单 自 由 度 体 系 如 图 ,W =98.kN ,欲 使 顶 端 产 生 水平 位 移 ∆=001.m ,需 加 水 平 力 P =16kN ,则 体 系 的 自振 频 率 ω=-40s 1。
∆7、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。
8、由于阻尼的存在,任何振动都不会长期继续下去。
9、桁 架 ABC 在 C 结 点 处 有 重 物 W ,杆 重 不 计 ,EA 为 常 数 ,在 C 点 的 竖 向 初 位 移 干 扰 下 ,W 将 作 竖 向 自 由 振 动 。
AC10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 :m m X X h EI EI EI EI X X P t 00148242424012312⎡⎣⎢⎤⎦⎥⎧⎨⎩⎫⎬⎭+--⎡⎣⎢⎤⎦⎥⎧⎨⎩⎫⎬⎭=⎧⎨⎩⎫⎬⎭()二、选择题1、图 示 体 系 ,质 点 的 运 动 方 程为 :A .()()()y l P s in m y EI =-77683θ t /;B .()()m y EI y lP s in /+=19273θ t ;C .()()m y EI y l P s in /+=38473θ t ;D .()()()y l P s in m y EI =-7963θ t / 。
ll0.50.52、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以A .增 大 P ;B .增 大 m ;C .增 大 E I ; D .增 大 l 。
结构动力学试题及答案

结构动力学试题及答案一、选择题(每题2分,共10分)1. 结构动力学中,动力响应分析通常不包括以下哪一项?A. 自振频率分析B. 模态分析C. 静力分析D. 动力放大系数分析答案:C2. 在结构动力学中,下列哪一项不是确定结构动力特性的基本参数?A. 质量B. 刚度C. 阻尼D. 材料强度答案:D3. 单自由度振动系统的动力平衡方程中,下列哪一项是正确的?A. m\(\ddot{x}\) + c\(\dot{x}\) + kx = F(t)B. m\(\ddot{x}\) + c\(\dot{x}\) + kx = 0C. m\(\ddot{x}\) + c\(\dot{x}\) + kx = FD. m\(\ddot{x}\) + c\(\dot{x}\) + kx = F(t) - F答案:A4. 对于多自由度振动系统,下列哪一项不是求解动力响应的方法?A. 模态叠加法B. 直接积分法C. 能量守恒法D. 振型分解法答案:C5. 在结构动力学中,阻尼比通常用来描述阻尼的相对大小,其定义为:A. 临界阻尼比B. 阻尼比C. 阻尼比的倒数D. 阻尼比的平方答案:B二、填空题(每题2分,共10分)1. 结构动力学中,当外力作用频率与结构的_________相等时,结构会发生共振。
答案:自振频率2. 多自由度振动系统的振型是指系统在自由振动时的_________。
答案:位移分布模式3. 动力响应分析中,_________是指在给定的外力作用下,结构的响应随时间变化的过程。
答案:动力响应4. 在结构动力学中,_________是指结构在动力作用下,其响应与外力作用的关系。
答案:动力特性5. 阻尼比越大,结构的_________越小,振动衰减越快。
答案:振幅三、简答题(每题5分,共20分)1. 简述结构动力学中模态分析的目的和意义。
答案:模态分析的目的是确定结构的自振频率和振型,意义在于了解结构的动力特性,为结构设计提供依据,以及评估结构在动力作用下的安全性和稳定性。
结构动力学-力学-练习

ωD = ω 1−ξ 2
&& + 2ξω y + ω 2 y = P ( t ) / m & y
)
2.单自度体系运动方程为 2.单自度体系运动方程为 其中未考虑质体重力,这是因为( 其中未考虑质体重力,这是因为(
X12 = 3.614 X22
30.求图示体系的自振频率和周期,EI=常数. 30.求图示体系的自振频率和周期,EI=常数. 求图示体系的自振频率和周期 常数 解:
m
l
5l 3 δ 11 = ; 3EI
1 3EI = ω = mδ11 5ml3
2
l =1 l
ω=
3EI 3EI 5ml3
5ml3 = 2π T= ω 3EI
l
2π
m EI
l/2 (a) l/2
2m 2EI
l/2 l/2
2m 2EI
l (c) 。 l
(b) 13.图示体系 不计阻尼及杆件质量, 图示体系, 13.图示体系,不计阻尼及杆件质量,其振动微分方程为
M 0 sin θ t
EI
l
m
14.无阻尼单自由度体系在自由振动中惯性力与位移方向一致。 14.无阻尼单自由度体系在自由振动中惯性力与位移方向一致。 无阻尼单自由度体系在自由振动中惯性力与位移方向一致 15.单自由度体系在简谐荷载作用下,位移与内力的动力系数时一样的。 15.单自由度体系在简谐荷载作用下,位移与内力的动力系数时一样的。 单自由度体系在简谐荷载作用下 16.计算自振频率时可以不计阻尼。 16.计算自振频率时可以不计阻尼。 计算自振频率时可以不计阻尼 17.振幅算式 表示体系上静荷载产生的位移。 17.振幅算式 A = y st µ 中的 y st 表示体系上静荷载产生的位移。 18.增大刚度就必能减小振幅。 18.增大刚度就必能减小振幅。 增大刚度就必能减小振幅 19.把静载P改换成任何动荷载P(t),位移一定增大。 19.把静载P改换成任何动荷载P(t),位移一定增大。 把静载 P(t) 20.有限自由度体系在自由振动中振动形状保持不变。 20.有限自由度体系在自由振动中振动形状保持不变。 有限自由度体系在自由振动中振动形状保持不变 21.对称体系的振型都是对称的。 21.对称体系的振型都是对称的。 对称体系的振型都是对称的 22.用能量法算出的基频一般都偏大。 22.用能量法算出的基频一般都偏大。 用能量法算出的基频一般都偏大 23.任何体系均能发生自由振动。 23.任何体系均能发生自由振动。 任何体系均能发生自由振动
结构动力学结构动力学试卷(练习题库)(2023版)

结构动力学结构动力学试卷(练习题库)1、结构动力计算与静力计算的主要区别是什么?2、什么是动力自由度,确定体系动力自由度的目的是什么?3、结构动力自由度与体系几何分析中的自由度有何区别?4、结构的动力特性一般指什么?5、什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼?6、采用集中质量法、广义位移法(坐标法)和有限元法都可使无限自由度体系简化为有限自由度体系,它们采用的手7、建立运动微分方程有哪几种基本方法?各种方法的适用条件是什么?8、直接动力平衡法中常用的有哪些具体方法?它们所建立的方程各代表什么条件?9、刚度法与柔度法所建立的体系运动方程间有何联系?各在什么情况下使用方便?10、计重力与不计重力所得到的运动方程是一样的吗?11、自由振动的振幅与哪些量有关?12、什么叫动力系数,动力系数大小与哪些因素有关?单自由度体系位移动力系数与内力动力系数是否一样?13、若要避开共振应采取何种措施?14、增加体系的刚度一定能减小受迫振动的振幅吗?15、突加荷载与矩形脉冲荷载有何差别。
16、平断面假定17、弯曲要素18、梁的边界条件19、叠加原理20、三弯矩方程21、平断面假定22、梁的边界条件23、叠加原理24、三弯矩方程25、虚位移原理26、虚力原理27、位能驻值原理28、板条梁29、开口和闭口薄壁杆件。
30、应力的重新分布。
31、几何不变体32、自由度33、多余约束34、超静定结构35、形常数和载常数36、试简述影响线与内力图的区别?37、力法和位移法的解题思路?38、几何瞬变体系产生的运动非常微小并很快就转变成几何不变体系,因而可以用作工程结构。
39、有多余约束的体系一定是几何不变体系。
40、计算自由度W小于等于零是体系几何不变的充要条件。
41、两刚片或三刚片组成几何不变体系的规则中,不仅指明了必需的约束数目,而且指明了这些约束必须满足的条件。
42、静定结构的全部内力及反力,只根据平衡条件求得,且解答是唯一的。
结构动力学习题.ppt

22
1
2
5.5556
EI ma 3
2
1
2
EI 5.5556 ma3
2.357
EI ma3
1
A(1) 2
A(1) 1
1
12
11m1
12m2
1 11m1 12m2
1.15321 0.306 0.5
2
A(2) 2
A(2) 1
1
22
m 0
t1
F t1 sin (t )d F t1 sin (t )d
m 0
mt1 0
F
m
1
cos(t
) t1 0
F
mt1
1
cos(t
)
1
2
sin (t
)
t1 0
F
m 2
(cos (t
t1 )
cos t
1 2
3a 16
23a3 192 EI
12
21
1 EI
1 2
2a
a 2
1 2
3a 16
3a3 64 EI
结构动力学习题
1 11m1 22m2
11m1 22m2
2
4
11 22
2 12
0.012 0.01072 0.01465m
结构动力学习题
14-8 求图示结构在阻尼比为=0.05时的自振频率和周期。 并求当初始位移为10mm,初始速度为0.1m/s时的振幅值 和 t=1s时的位移值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 不计轴向变形,图示体系的振动自由度为2。
1.2 不计轴向变形,图示体系的振动自由度为1。
1.3 不计轴向变形,图示体系的振动自由度为2。
1.4 结构的自振频率不仅与质量和刚度有关,还与干扰力有关。
1.5 单自由度体系,考虑阻尼时,频率变小。
1.6 弹性力与位移反向,惯性力与加速度反向,阻尼力与速度反向。
1.7 如简谐荷载作用在单自由度体系的质点上且沿着振动方向,体系各截面的内力和位移动力系数相同。
1.8 在建立质点振动微分方程时,考虑不考虑质点的重力,对动位移无影响。
1.9 图示体系在简谐荷载作用下,不论频率比如何,动位移y(t) 总是与荷载P(t) 同向。
1.10 多自由度体系自由振动过程中,某一主振型的惯性力不会在其它主振型上做功。
二、单项选择题
2.1 在单自由度体系受迫振动的动位移幅值计算公式中,yst是
A 质量的重力所引起的静位移
B 动荷载的幅值所引起的静位移
C 动荷载引起的动位移
D 质量的重力和动荷载复制所引起的静位移
2.2 无阻尼单自由度体系的自由振动方程:。
则质点的振幅y max=
2.3 多自由度振动体系的刚度矩阵和柔度矩阵的关系是
2.4 图示四结构,柱子的刚度、高度相同,横梁刚度为无穷大,质量相同,集中在横梁上。
它们的自振频率自左至右分别为ω1,ω2,ω3,ω4,那么它们的关系是
2.5 图示四结构,柱子的刚度、高度相同,横梁刚度为无穷大,质量相同,集中在横梁上。
它们的自振频率自左至右分别为ω1,ω2,ω3,ω4,那么它们的关系是
2.6 已知两个自由度体系的质量矩阵为,Y22等于
A -0.5
B 0. 5
C 1
D -0.25
2.7 不计阻尼,不计自重,不考虑杆件的轴向变形,图示体系的自振频率为
2.8 图示四个相同的桁架,只是集中质量m的位置不同,,它们的自振频率自左至右分别为ω1,ω2,ω3,ω4,(忽略阻尼及竖向振动作用,各杆EA为常数),那么它们的关系是
2.9 设ω为结构的自振频率,θ为荷载频率,β为动力系数下列论述正确的是
A ω越大β也越大
B θ越大β也越大
C θ/ω越接近1,β绝对值越大Dθ/ω越大β也越大
2.10 当简谐荷载作用于有阻尼的单自由度体系时,若荷载频率远远大于体系的自振频率时,则此时与动荷载相平衡的主要是
A 弹性恢复力
B 阻尼力
C 惯性力
D 重力
2.11 图示(a )、(b )两体系中,EI 、EI1及h 均为常数,则两者自振频率ωa 与ωb 的关系是
2.12 图示三个单跨梁的自振频率分别为ωa ,ωb ,ωc , 它们之间的关系是
2.13 一单自由度振动体系,其阻尼比为ξ,共振时的动力系数为β 则
A
B
C
D
2.14 当荷载频率θ接近结构的自振频率ω时
A 可作为静荷载处理
B 荷载影响非常小
C 引起共振
D 可以不考虑阻尼的影响
求图示体系的自振频率ω。
11a b a b a b a b A B EI EI C D EI EI ωωωωωωωω>>>≈=<<≈当时当时
l l 0.5l 0.5
求图示体系的自振频率ω。
EI = 常数。
l l 0.5
求图示单自由度体系的自振频率。
已知其阻尼比ξ=0.05。
m
15、图示体系
kN,5 s 20 kN/cm 102-124==⨯=P ,,EI θ
2cm kN, 480020==I W 。
求质点处最大动位移和最大动弯矩。
W
4m m 2sin θP t
错 错 错 错 对 对 对 对 错 对
BCDAC DADCC DAAC
)ml /(EI ,EI /l 32316483==ωδ
)5/(48,48/5323ml EI EI l ==ωδ
()'=ω2453./EI ml。