热泵式干衣机设计
热泵式干衣机的设计与应用分析
热泵式干衣机的设计与应用分析1 干衣机的原理与装置1.1 干衣机原理干衣机是利用电加热来使洗好的衣物中的水分即时蒸发干燥的清洁类家用电器。
对于北方的冬季和南方的“回南天”衣物难干的情况特别需要。
另外,干衣机大量用于工业生产中,用于干燥织物,提高生产效率。
干衣机在工作过程中主要是利用高温气流流经衣物表面实现对衣物的加热,将衣物上的水分蒸发,使衣物快速的干燥。
干衣机在加热过程中常用的加热方式有电热丝加热、半导体加热等。
使用半导体加热方式的干衣机在加热过程中会自动减小一定的功率,在节能的同时还能够控制加热器的最高温度来保护衣物。
干衣机最大的特点就是它不受天气的影响,能够自由的实现衣物的晾干。
1.2 干衣机的装置一种干衣机的控制装置,其特征在于,包括:获取模块,用于获取用户输入的衣物的目标干燥等级;湿度值模块,用于检测所述衣物的湿度值;滤波处理模块,用于根据所述衣物的湿度值计算得到湿度判定值;干燥等级判断模块,用于根据所述湿度判定值确定所述衣物的干燥等级;温度值模块,所述温度值模块包括设置在干衣机的滚筒的排气侧的温度传感器,所述温度传感器用于检测空气经过所述衣物后的温度信号;干燥控制模块,用于根据所述干燥等级以及所述目标干燥等级对所述干衣机进行干燥控制,以及在判断所述衣物的干燥等级达到所述目标干燥等级后,根据所述温度信号、预设目标变量对所述干衣机进行干燥控制。
1.3 干衣机特点1、冷却:当加热时间结束后,电机继续工作但停止加热,清凉的空气进入滚筒内降温冷却衣服。
当定时指示指向“OFF”该程序结束,冷却时间为20分钟,冷却程序是为经过加热烘干后的衣服降温,防止衣服起皱。
2、烫平加热:根据衣服数量选项择定时为30-60分钟,功率开关设定为“弱”档,冷却程序结束后,衣服将有点湿,烫平加热程序适合衣服需要烫平的。
3、标准烘干:该项程序一般至少要60-150分钟,根据你的需要功率开关选择“强”或“弱”档。
程序结束后,衣服是干的,冷而无皱。
热泵式干衣机
热泵式干衣机1 绪论1.1 课题来源及研究的目的和意义针对南方潮湿的气候以及长江中下游地区的梅雨季节给晾晒衣物带来的困难,干衣机产品已逐渐走人人们的说线。
日本70%以上的家庭干衣机是和洗衣机配套使用的;在欧美等一些发达国家人们已经普遍使用干衣机来干燥衣物。
目前市场上最为普及的干衣机产品为电热式滚筒干衣机,其工作原理是利用直接的电加热元件产生的高温空气烘干衣物,能耗较高。
另外,这种干燥方法还容易发生局部过热而损伤衣物。
热泵式千衣机,将热泵技术应用于干衣机中,取代电热装置。
试验研究与性能分析表明,与传统电热式干衣机相比,热泵式干衣机不但干衣温度较低,降低了衣物的损耗,同时能耗较低,具有显著的节能效果。
1.2 国内外技术现状及发展趋势对家用干衣机而言,能耗干燥速度干燥品质小,损伤织物以及设备体积等都足需要综合考虑的问题。
设计热泵系统首先会考虑选择合适的热泵工质,工质决定可以达到的干燥温度,基于传热和除湿的要求受家用设备体积和噪声水平的限制必须考虑干衣所需要的循环空气流量在一个合适的范同内。
循环空气与热泵系统在蒸发器冷凝器部位与热象系统进行耦合发生传热与相变空气循环量过小传热强度不够干燥速率较低干燥叫问会比较长如果空气循环量过大空气与换热器的接触时间不充分可能会际湿不完仝也容易造成离开蒸发器表而的空气随风带水额外消耗冷凝器的热量。
另外热泵干衣机用换热器不需要考虑换热的需求,同时要有利于冷凝水的迅速排放,干衣机内空气为闭路循环。
随着衣物的干燥过程进行衣物不可避免的有毛屑散出,如果不对毛屑进行过滤回收,很容易积聚在换热器表面影响换热效率,甚至会导致风道堵塞系统无法正常运作。
作为新型的家用干燥设备需要增加自动温度传感,方便用户的使用。
做到衣干即停即保护衣物,不至于过度干燥损伤织物也避免多余的能源消耗。
1.3主要研究内容、研究方法及思路基于环境温度与湿度稳定的情况(温度为20℃,相对湿度为60%),然而干衣机的使用随着一年四季环境的变化,其实际能效将有所变化。
高温热泵烘干系统设计方案
高温热泵烘干系统设计方案高温热泵烘干系统设计方案一、引言高温热泵烘干系统是一种高效能、节能环保的烘干设备,通过利用热泵技术将低温废热转化为高温热能,可以广泛应用于食品、农产品、木材等行业的烘干工艺中。
本文将详细介绍高温热泵烘干系统的设计方案,并分析其优势和应用前景。
二、系统组成高温热泵烘干系统主要由以下几个部分组成:1. 烘干室:用于放置需要烘干的物料,并提供充分的通风和空间。
2. 热泵主机:负责热能的转换和传递,将低温废热转化为高温热能,以实现烘干的目的。
3. 空气送风系统:负责将热泵产生的热风送入烘干室,并保持室内通风良好。
4. 温度、湿度控制系统:用于监测和控制烘干室内的温度和湿度,保证烘干过程的稳定性和效果。
三、系统工作原理高温热泵烘干系统的工作原理是通过热泵主机工作循环将外界的低温热能转化为高温热能。
具体步骤如下:1. 蒸发器:在低温状态下,制冷剂从蒸发器中蒸发,吸收外界的低温热量,发生蒸发-吸热过程。
2. 压缩机:将低温低压制冷剂加压,使其温度和压力升高。
3. 冷凝器:加压后的制冷剂在冷凝器中释放热量,传递给热泵主机,形成高温高压制冷剂。
4. 膨胀阀:高温高压制冷剂经过膨胀阀放出部分压力,温度迅速下降,形成低温低压制冷剂。
通过以上循环往复,热泵主机可以不断将外界的低温废热转化为高温热能,并通过空气送风系统送入烘干室,进行烘干工艺。
四、系统优势高温热泵烘干系统相比传统的燃气或电力烘干设备具有以下几个优势:1. 节能环保:利用废热的回收和再利用,减少了对传统能源的依赖,降低了能源消耗和二氧化碳排放。
2. 高效烘干:热泵主机可以根据烘干工艺的要求,自动调节温度和湿度,保证烘干效果和产品质量的稳定。
3. 安全可靠:热泵主机采用全封闭设计,无需燃气供应和高压电,避免了火灾和安全事故的风险。
4. 灵活适应:热泵烘干系统适用于多种物料和工艺,可根据不同需求进行调整和扩展。
五、应用前景高温热泵烘干系统在食品、农产品、木材等行业的烘干工艺中具有广阔的应用前景:1. 食品行业:可用于面粉、饼干、奶粉等食品的烘干,保持原有的营养成分和口感。
热泵烘干除湿一体机设计原理
热泵烘干除湿一体机设计原理
热泵烘干除湿一体机是利用热泵技术和除湿原理实现的一种家用电器,其设计原理如下:
1. 热泵技术:热泵机制可以通过制热和制冷过程来转移热量。
当需要除湿时,热泵机制将室内空气中的水分蒸发转化为水蒸气,并将水蒸气制冷并凝结成液体水。
2. 除湿原理:除湿原理是利用湿空气与干燥剂之间的相互作用进行湿度调节。
干燥剂通常是一种吸湿性强的物质,例如硅胶或者氯化钙。
湿空气通过除湿机内置的干燥剂,干燥剂会吸收空气中的水分,从而实现除湿效果。
基于以上原理,热泵烘干除湿一体机的设计结构通常包括以下几个部分:
1. 热泵系统:热泵系统由压缩机、换热器、膨胀阀和蒸发器组成。
压缩机通过循环流动制冷剂来实现蒸发和冷凝的过程,使得湿空气中的水分得以凝结。
2. 除湿系统:除湿系统通常包括湿度传感器、干燥剂和排湿装置。
湿度传感器用于检测室内湿度水平,当湿度达到一定程度时,除湿系统启动工作。
干燥剂通过吸湿作用吸收空气中的水分,保持室内湿度在合适的范围内。
排湿装置用于排除湿空气中的水蒸气。
3. 空气循环系统:空气循环系统包括风扇和空气管道,用于将
湿空气引导至热泵系统和除湿系统进行处理,并将处理过的干燥空气再次送回室内。
通过热泵烘干除湿一体机的设计原理,可以实现对室内空气的除湿和烘干效果,提高室内环境的舒适度。
热泵干衣机的设计与性能测试
热泵干衣机的设计与性能测试热泵干衣机是一种节能环保的干衣设备。
与传统的电阻式干衣机相比,热泵干衣机采用热泵技术,可以将热能从空气中提取出来进行加热。
热泵干衣机的热能利用率高,能耗低,同时还可以减少对环境的污染。
本文将探讨热泵干衣机的设计与性能测试。
一、热泵干衣机的设计热泵干衣机的设计主要涉及到热泵系统、干燥系统和控制系统三个方面。
1.热泵系统热泵系统是热泵干衣机能否正常运行的关键。
由于热泵技术的特殊性,热泵干衣机需要使用干燥空气进行加热。
干燥空气中的水分和污染物会对热泵系统造成危害。
因此,为了保证热泵系统的正常运行,需要在热泵系统中设置过滤器和换热器等装置,以保证空气的干燥和干净。
2.干燥系统干燥系统是热泵干衣机中的主要功能部分。
干燥系统需要进行加热、透气和脱湿等过程,以将湿衣服中的水份蒸发掉。
为了提高干衣效率,干燥系统还需要设置自动转动衣桶的功能,以便湿度能够均匀地分布到每一件衣物中。
3.控制系统控制系统是热泵干衣机的核心部分。
控制系统需要对干燥系统和热泵系统进行集成控制,确保整个烘干过程正常运行。
控制系统还需要对烘干时间、热泵温度等进行合理设置,并能够对温度、湿度等参数进行实时监测,以便及时调整烘干进度。
二、热泵干衣机的性能测试热泵干衣机的性能测试主要包括以下方面。
1.能耗测试能耗是衡量热泵干衣机性能的重要指标之一。
能耗测试需要先将一定量的湿衣服放入干衣机中,按照设定的烘干程序进行烘干。
测试完成后,根据所消耗的能量计算出热泵干衣机的能耗。
2.干燥效果测试干燥效果是衡量热泵干衣机性能的另一个重要指标。
干燥效果测试需要在不同的湿度和温度条件下,测试热泵干衣机的干燥效率。
通过对不同衣料进行干燥测试,可以得出热泵干衣机在不同的干衣条件下的干燥效果。
3.噪音测试噪音是衡量热泵干衣机性能的重要指标之一。
噪音测试需要在厂房等噪音环境较大的地方进行测试。
通过测试热泵干衣机在不同的工作状态下的噪音水平,可以评估热泵干衣机的噪音性能。
热泵干燥装置课程设计
热泵干燥装置课程设计一、课程目标知识目标:1. 学生能够理解热泵干燥装置的基本原理和运行机制;2. 学生能够掌握热泵干燥装置的主要组成部分及各部分功能;3. 学生能够了解热泵干燥技术在现代农业、食品加工等领域的应用。
技能目标:1. 学生能够运用所学知识分析热泵干燥装置的优缺点;2. 学生能够通过小组合作,设计简单的热泵干燥装置实验方案;3. 学生能够运用实验数据,评估热泵干燥装置的节能效果。
情感态度价值观目标:1. 培养学生对热泵干燥技术的研究兴趣,激发学生探索新技术的热情;2. 培养学生团队合作精神,让学生在合作中学会相互尊重、沟通和解决问题;3. 增强学生的环保意识,使学生认识到热泵干燥技术在节能减排方面的重要性。
课程性质:本课程为应用物理与技术实践相结合的课程,旨在让学生在实际操作中掌握热泵干燥装置的相关知识。
学生特点:初三学生具有一定的物理基础和实验操作能力,对新技术有一定的兴趣和好奇心。
教学要求:注重理论与实践相结合,通过实验、案例分析等教学方法,引导学生主动参与,提高学生的实践操作能力和解决问题的能力。
同时,关注学生的情感态度价值观培养,使学生在掌握知识技能的同时,形成良好的团队合作精神和环保意识。
教学过程中,将课程目标分解为具体的学习成果,便于教学设计和评估。
二、教学内容1. 热泵干燥装置原理:介绍热泵干燥装置的工作原理,包括制冷剂循环、热交换过程等,结合课本第五章第三节内容。
2. 热泵干燥装置的组成部分:详细讲解压缩机、蒸发器、冷凝器、膨胀阀等主要部件的功能和作用,参考课本第五章第四节。
3. 热泵干燥技术的应用:分析热泵干燥技术在现代农业、食品加工、药品制造等领域的应用案例,结合课本第五章第五节。
4. 热泵干燥装置实验:设计实验方案,让学生动手操作,观察热泵干燥装置的运行过程,收集实验数据,与课本第六章实验内容相结合。
5. 热泵干燥装置的优缺点分析:从节能、环保、干燥效果等方面分析热泵干燥装置的优缺点,对比其他干燥方法,参考课本第五章第六节。
热泵式干衣机设计
热泵式干衣机设计热泵由压缩机、冷凝器、节流阀、蒸发器四个主要部分构成,内部充以适宜的循环工质。
基本工作过程为:低温低压的工质饱和蒸气从蒸发器出来,进入压缩机;压缩机消耗少量电能,把低压工质蒸气压缩为高压高温过热蒸气,进入冷凝器;工质在冷凝器中凝结,同时把工质内部积蓄的热量传给被加热空气,工质自身变为高压中温饱和液;之后进入节流阀,通过节流阀后变为低压低温湿蒸气,进入蒸发器;在蒸发器中吸收干衣箱排风或环境大气、地下水、海水、河水、湖水等低温热源处的热量,工质变为低压低温饱和蒸气,又进入压缩机开始下一个循环。
如此持续运行实现热量由低温热源向被加热空气的连续高效泵送。
热泵式干衣机的基本工作过程为:热泵冷凝器加热循环空气产生40℃~80℃,左右的干燥空气在循环风机推动下进入干衣箱;在干衣箱中,干燥空气流过湿衣物表面与湿衣物间进行热湿交换,吸收其中的水分,变为20℃~40℃左右的低温潮湿空气,排出干衣箱,进入热泵蒸发器;在热泵蒸发器中,低温潮湿空气被冷却至露点温度以下,析出从湿衣物中吸收的水分,变为0℃左右的冷冻干燥空气,进入热泵冷凝器;在热泵冷凝器中,冷冻干燥空气又被加热为40℃~80℃左右的中温干燥空气,通过循环风机提高压力后再进入干衣箱,开始下一个循环。
如此循环运行,实现衣物的连续高效干燥。
由此可见,热泵式干衣机可有如下几个突出优点:加热低温空气所用的热量绝大部分来自热泵蒸发器从干衣箱排风中吸收的余热(包括干燥空气的显热和水蒸汽的潜热),少部分是热泵压缩机的电能,系统具有较高的能效,电能的消耗量(运行费用)比直接电加热方式大幅度降低;在热泵蒸发器中用冷冻方法析出空气在干衣箱中吸收的衣物中的水分,出热泵蒸发器后冷冻干燥空气中的含湿量已很小(0℃时,仅为约4g水蒸气/kg干空气),只需再加热到中温,即可具有较好的吸湿能力,从而使衣物可以在较温和的条件下被干燥,可减少高温干燥对衣物材料的热损伤;热泵式干衣机是采用空气的密闭循环方式,可减少空气中灰尘和细菌对衣物的污染,且没有潮湿排入房间。
高效热泵烘干设计
高效热泵烘干设计高效热泵烘干设计高效热泵烘干是一种能够高效率地将湿衣物转变为干燥衣物的技术。
下面是一篇关于高效热泵烘干设计的文章,按照逐步思考的方式进行描述。
第一步:确定烘干需求在设计高效热泵烘干系统之前,我们首先需要确定烘干的需求。
这包括烘干的衣物种类、数量以及烘干时间等。
根据这些需求,我们可以选择适当的烘干设备和配置。
第二步:选择合适的热泵系统高效热泵烘干需要使用热泵系统来提供热量。
在选择热泵系统时,我们需要考虑烘干的效率和能耗。
一种常见的选择是空气源热泵,它能够从环境空气中提取热量,并将其传递到烘干室中。
另外,我们还可以考虑其他类型的热泵系统,如地源热泵或水源热泵,根据具体情况选择合适的系统。
第三步:确定烘干室的设计烘干室的设计需要考虑多个因素,包括空间需求、热量传递效率以及衣物的排列方式等。
为了提高热量传递效率,我们可以增加热交换器的表面积,以便更好地传递热量到衣物上。
此外,还应该考虑到衣物的通风情况,以保证衣物能够均匀受热。
第四步:优化热量传递过程为了进一步提高热量传递效率,我们可以采取一些优化措施。
例如,可以增加热风循环系统,将热空气重新循环到热泵系统中,以增加热量的回收利用。
此外,还可以考虑使用热泵系统的废热来预热新鲜空气,从而减少能耗。
第五步:控制系统的设计高效热泵烘干系统需要一个智能的控制系统来监测和控制烘干过程。
控制系统可以根据衣物的湿度和烘干时间来自动调节热泵系统的工作状态。
此外,还可以通过传感器监测热泵系统的温度和湿度,以及烘干室中衣物的状态。
第六步:能源管理和维护设计高效热泵烘干系统后,我们还需要考虑能源管理和系统的维护。
通过合理管理能源使用,例如合理设置烘干温度和时间,可以进一步节约能源。
此外,定期检查和维护热泵系统,保持其正常运作也是非常重要的。
总结:高效热泵烘干是一种能够高效利用能源并提高烘干效率的技术。
通过逐步思考,我们可以设计出一个符合烘干需求、能耗低且易于维护的系统。
高温热泵烘干工程方案设计
高温热泵烘干工程方案设计一、引言高温热泵烘干技术是一种新型节能环保的烘干方式,它利用高温热泵技术将低温热能转化为高温热能,用于烘干过程中,不仅有效提高了烘干效率,而且减少了能源消耗和烘干过程中的排放物。
本文将针对高温热泵烘干的优势、工程设计方案、设备选型和运行维护等方面进行详细的介绍和分析。
二、高温热泵烘干技术的优势1. 高效节能:利用高温热泵技术将低温热能转化为高温热能,提高能源利用率,烘干效率高,节能效果显著。
2. 环保减排:采用高温热泵烘干技术,不产生废气、废水和废渣,减少烘干过程中对环境的污染,符合现代低碳环保理念。
3. 温度控制精准:高温热泵烘干设备采用先进的温度控制系统,温度可精准可调,能够确保物料在烘干过程中不受二次污染。
4. 广泛适用性:高温热泵烘干技术适用于各种物料的烘干,如食品、农产品、木材、化工原料等,适用范围广泛。
5. 运行稳定可靠:高温热泵烘干设备结构简单,运行稳定可靠,维护方便,大大降低了设备的运行成本。
综上所述,高温热泵烘干技术具有明显的优势,在各行业中得到了广泛的应用。
下面将具体介绍高温热泵烘干工程的设计方案。
三、高温热泵烘干工程设计方案1. 工程选址:首先需要根据烘干物料的种类、产量和运输便捷性选址。
一般需要选择在空气清新、交通便利、有电源供应的地方,同时要考虑周边环境对设备运行的影响。
2. 工程规划:根据选址情况,制定高温热泵烘干工程的总体规划布局,包括烘干车间的位置、烘干设备的布置、原料和成品的存储等。
3. 设备选型:选择适合烘干物料的高温热泵设备,包括压缩机、换热器、膨胀阀、蒸发器等,需要综合考虑设备的热泵性能、能耗、耐用度等指标。
4. 工程施工:进行设备的安装和调试,包括管道的铺设、电气设备的连接、系统的调试等,确保设备运行正常。
5. 能源供应:选用适合的能源供应方式,如电力、天然气或太阳能等,为高温热泵烘干设备提供稳定的能源支持。
6. 热泵系统设计:制定高温热泵系统的设计方案,包括循环系统、热交换系统、控制系统等,确保系统运行稳定可靠。
热泵式烘干机的整体设计空调毕业设计说明书
目录1 绪论 (2)1.1 本课题的研究背景和意义 (2)1.2 国内外研究现状 (3)1.3 本课题的主要研究内容 (3)2 热泵式烘干机的整体设计 (4)2.1 箱体的设计 (5)2.1.1 箱体钢板的选择 (5)2.1.2保温层材料的选择 (5)2.1.3 箱体有效容积的确定 (6)2.2 热泵系统的设计 (6)2.2.1 制冷剂的选择 (6)2.2.2热泵系统形式的选择 (7)3 传热传质过程热力分析和计 (8)3.1 干燥过程有关概念 (8)3.2 空气传热传质的分析计算 (10)3.3 干燥介质传热传质过程的分析计算 (12)4 热泵系统的设计计算 (14)4.1 热泵系统工作条件的确定 (14)4.2 热泵系统的热力计算 (15)5 热泵系统的设备设计计算与选型 (16)5.1 压缩机的设计选择 (17)5.2 冷凝器的设计选型 (20)5.3 蒸发器的设计选型 (21)5.4 热力膨胀阀的选型 (22)5.5 油分离器的选择 (24)5.6 储液器的选择 (24)5.7 气液分离器的选择 (25)5.8 干燥过滤器的选择 (26)6 风系统的设计 (27)6.1 冷凝风机和风口的设计 (27)6.2 蒸发器风机的选择 (28)6.3 过滤器的设计 (29)7 控制系统的设计和选型 (29)7.1 电机启动、停止控制设计 (29)7.2 位式温度控制设计和选型 (30)7.3 温度调节仪的选型 (32)7.4 温度传感器的选择 (33)8 结论 (34)谢辞 (36)参考文献 (37)1 绪论1.1 本课题的研究背景和意义干燥技术的应用,在我国具有十分悠久的历史。
闻名于世的造纸技术,就显示了干燥技术的应用。
随着工业现代化的进展,干燥操作广泛用于国民经济各部门,如农业、制革、林业、化工、食品、造纸、矿业、纺织和建筑等生产过程。
干燥工艺先进与否直接影响着产品的质量与能耗。
汉果盛产于广西桂林,一种名贵药材,性凉味甘,功能清肺润肠。
热泵烘干设计方案
热泵烘干设计方案热泵烘干是一种采用热泵技术进行烘干的设备,它通过热泵循环系统将空气中的热能转移到湿衣物上,使其迅速蒸发水分,从而实现快速高效的烘干效果。
下面是一个热泵烘干设计方案。
1. 设备选型:根据需要烘干的衣物量和烘干效果要求,选择合适的热泵烘干机型号。
要考虑机器的容量、热泵系统的效率和耐用性等因素,以确保设备能够稳定、高效地工作。
2. 热泵循环系统设计:热泵烘干机的核心部分是热泵循环系统,它由压缩机、蒸发器、膨胀阀和冷凝器等组成。
在设计时,要充分考虑热泵系统的热能转换效率和能量利用率,尽量减少能源的消耗。
可以采用双回路或多回路的热泵循环系统,以提高烘干效率。
3. 烘干室设计:热泵烘干机的烘干室是衣物放置的区域,要适当设计烘干室的大小和结构,以满足不同批次的烘干需求。
同时,要考虑烘干室的通风和排湿能力,确保烘干效果和衣物质量。
4. 控制系统设计:热泵烘干机的控制系统包括温度控制、湿度控制和时间控制等功能。
要设计合理可靠的控制系统,保证烘干机的操作简便、稳定可靠。
可以考虑采用自动控制系统,根据衣物的湿度和烘干时间来实现智能控制。
5. 安全保护措施:热泵烘干机在运行过程中可能会产生高温和高压等危险因素,需要设计相应的安全保护措施。
例如,安装高温报警装置和压力保护装置,以及防止电器部件过热的散热措施等。
6. 节能环保设计:热泵烘干机作为一种新型烘干设备,要充分考虑节能环保因素。
可以采用余热回收技术,利用热泵系统产生的余热进行再利用,减少能源的消耗。
同时,要使用环保冷媒,减少对大气层的损害。
以上是一个热泵烘干设计方案的主要内容,通过合理的选型、循环系统设计、烘干室设计、控制系统设计、安全保护措施和节能环保设计等方面的考虑,可以保证热泵烘干机具有高效、稳定和可靠的烘干效果,同时降低能源的消耗和环境污染。
两级加热的高温热泵烘干机组设计计算
设计两阶段高温热泵干燥装置时,要考虑几个关键因素。
在第一阶段,热泵会从周围的空气中吸收热量,使其更热。
这通常涉及使用气压器
和热交换器。
在第二阶段,空气在进入干燥室之前会变得更热。
这个步骤往往包括另一个热交换器和也许一些额外的加热元件。
当它设计一个高温热泵干燥装置时,有很多事情需要考虑。
我们指的
是理想的干燥温度,周围空气的热度或冷度,空气的耐热能力,让事
物干燥需要多长时间,以及我们工作的空气的强度。
通过考虑所有这
些变量,我们可以找出热泵的完美尺寸和功率,并且决定建立热交换
器的最佳方法,以及我们需要的任何额外的加热装置。
这就像拼图拼图的片段,但是,而不是一个漂亮的图片在结尾,我们得到完美的干货!
还必须根据党的原则和政策,考虑热泵干燥装置的能源效率。
这可以
通过热泵的性能系数(COP)来评估,该系数代表向干燥室提供的热
量与热泵运行所必需的能量输入的比例。
通过优化热泵设计,考虑干
燥过程的具体要求,可以最大限度地减少能源消耗,确保干燥机组的
高效运转,与党对可持续高效资源利用的重视保持一致。
热泵烘干机风机风道的设计与优化
热泵烘干机风机风道的设计与优化摘要:热泵烘干机是一种高效、节能的烘干设备,其风机风道的设计与优化对于提高烘干效率、减少能源消耗具有重要意义。
本文旨在研究热泵烘干机风机风道的设计与优化方法,通过分析烘干过程的特点和对风机风道的要求,提出了相应的设计原则和优化策略,以期为热泵烘干机的设计与应用提供参考。
关键词: 热泵烘干机;风机风道;设计;优化;节能热泵烘干机以其高效、节能的特点在许多领域得到了广泛应用,但其烘干效率和能源消耗与风机风道的设计密切相关。
风机风道是热泵烘干机中负责空气循环和热能传递的重要组成部分,其合理的设计与优化可以提高烘干效率,降低能源消耗。
因此,研究热泵烘干机风机风道的设计与优化方法具有重要的理论和实践意义。
1热泵烘干机的工作原理和烘干特点1.1热泵烘干机的基本原理和工作流程热泵烘干机利用热泵技术将空气中的热能转移到被烘干衣物上,以加速水分的蒸发并实现烘干的目的。
其基本原理是通过压缩机将低温低压制冷剂蒸汽压缩成高温高压制冷剂蒸汽,然后进入冷凝器,向空气侧释放热量,加热空气,使得空气成为干燥的热空气,由风机吹入烘干室内,将水分从被烘干衣物中蒸发出来,成为高温湿空气,经蒸发器成为低温干空气,经冷凝器加热再次进入烘干室内。
冷凝器向空气侧放热后,制冷剂成为中温高压液态,经节流阀,成为低温低压制冷剂湿蒸汽(两相态),进入蒸发器吸收空气侧高温湿空气的热量,成为低温低压制冷剂蒸汽,制冷剂蒸汽再次进入压缩机,开始新的循环,实现连续的烘干过程。
1.2热泵烘干机的烘干特点和要求相对于传统烘干方法,热泵烘干机具有以下特点:首先,热泵烘干机具有高效能源利用率,能够节约大量的能源消耗。
其次,热泵烘干机能够实现较低的烘干温度,避免了被烘干衣物的过度热处理,从而保持烘干衣物的品质。
此外,热泵烘干机还具有可调节的烘干速度和湿度控制能力,适应性强,可以满足不同衣物的烘干要求。
2 风机风道设计的基本原则2.1 风机选择与性能匹配风机的选择对于热泵烘干机的性能至关重要。
10HP热泵干燥机设计(任务书)
干球温度:60℃相对湿度:70%
压缩机功率:10HP
制冷剂:R22
主要内容:
热泵干燥机的设计主要是单级压缩热泵循环中蒸发器和冷凝器的设计:
1、查阅资料,要求查阅相关资料,中文文献25篇以上,英文文献5篇以上,了解冷除湿机工作原理,写文献综述,并作循环热力计算:
学生通过本课题的设计可以综合大学4年所学知识的运用能力,特别是工程热力学、传热学、流体力学、制冷、热泵技术及相关专业课程的知识应用,同时有要有一定创新能力。本毕业设计资料比较欠缺,所设计要求学生进行设计计算、总装图和零部件图纸的设计,通过本毕业课题的设计有利于学生工作尽快适应工作岗位的要求设计。
主要设计参数:
4、蒸发器、冷凝器的设计计算;
5、图纸设计,重点在总图和各换热器的设计图纸上。
二、毕业设计(论文)图纸内容及张数
设计部分:10HP热泵干燥机的设计
内容:1、零部件图纸(折1#图纸6张以上)
2、完成干燥机的设计说明书;
3、完成干燥机的设计;
三、实验内容及要求
四、其他
五、参考文献
1.制冷技术及其应用;
2.制冷原理与设备;
3.工程热力学;
4.传热学;
5.流体力学;
六、毕业设计(论文)进程安排
起讫日期
设计(论文)各阶段工作内容
备注
12.12.1-12.1.1
文献综述、英文资料翻译
12.1.1-1.12
开题报告
13.2.20-3.20
系统的设计计算
13.3.21-5.31
图纸设计
13. 6.1-
写论文,准备答辩
毕业设计(论文)任务书
课题名称
10HP热泵干燥机的设计
中小型干衣机设计
中小型干衣机设计1 绪论随着社会的发展人们的生活水平的提高,各种家用电器逐渐进入各个家庭。
由于地方和地区的不同,各个地方的气候也不同,例如:南方的回南天,这种天气使衣物不容易干燥而且时间久了还可能滋生细菌。
然而怎么解决这个问题成为了各个家庭的烦恼,所以干衣机就进入了人们的视野。
为解决衣物干燥问题,国内外家电企业已经相继开发了各种型式的干衣机,其中最主要的电加热式干衣机,其中基本原理为通过电加热的方式,把环境空气加热到适当的温度(40~80摄氏度)的干热空气,使干热空气在风机吹送下流过衣物表面,带走衣物内蒸发出的水分,实现衣物的快速干燥。
家用干衣机在日本及西方发达国家也已经比较普及。
据介绍,在日本就有70%以上的家庭干衣机是和洗衣机配套使用的在中国,尤其是在气候潮湿的南方地区,如同其它家电和工业设备一样,随着人们生活水平的提高,也逐步产生了社会需求。
现有干衣机的类型按照不同的分类原则,现有干衣机可以分为不同的类别按照烘干所使用的能源可以分为燃气式、电热丝加热式、PTC自限温元件加热式。
其中,燃气式干衣机在我国不多见,在欧美却很流行,这主要是与这些国家的住宅配置、能源供给形式有关。
早期的蒸汽加热或电加热干衣机的干衣效果和质量随环境条件的变化而波动较大,时有未干透就停机或干燥过头而损坏衣物及浪费能源的现象产生。
随着自动化控制技术的发展,上述缺陷有所改善。
90年代初,国外开始将PTC自限温发热元件用于家用干衣机领域,并设计定型成目前的旋转式干燥桶结构。
PTC发热材料升温较迅速且无明火,与控制技术结合使用,提高了干衣机的安全性;另外,用涡轮式或贯流式风机代替了原来的轴流式风机,降低了风机的功耗和噪声。
按照外形分为柜式和滚筒式,柜式机容量较大,可将衣服悬挂在烘箱内进行干燥;滚筒式体积比柜式机小,也可使用支架与洗衣机组合在一起使用。
按照与洗衣机的关系可分为洗衣干衣一体式、与洗衣机上下分立式、独立式(立柜式、嵌入式)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热泵式干衣机设计1 热泵式干衣机的设计分析1.1 热泵式干衣机工作原理热泵与电加热、PTC加热等能量转换方式不同,是一种能量转移装置。
具体来说就是以消耗部分能源为代价,从低位热源中吸取热量,然后将消耗的能源与吸取的热量一起传递给高位热源,实现加热的目的,可见这种工作方式比现有干衣机要节约能源。
如图1所示。
图1中热泵由压缩机、冷凝器、节流阀、蒸发器四个主要部分构成,内部充以适宜的循环工质。
基本工作过程为:低温低压的工质饱和蒸气从蒸发器出来,进入压缩机;压缩机消耗少量电能,把低压工质蒸气压缩为高压高温过热蒸气,进入冷凝器;工质在冷凝器中凝结,同时把工质内部积蓄的热量传给被加热空气,工质自身变为高压中温饱和液;之后进入节流阀,通过节流阀后变为低压低温湿蒸气,进入蒸发器;在蒸发器中吸收干衣箱排风或环境大气、地下水、海水、河水、湖水等低温热源处的热量,工质变为低压低温饱和蒸气,又进入压缩机开始下一个循环。
如此持续运行,实现热量由低温热源向被加热空气的连续高效泵送。
1.2 热泵式干衣机的结构与原理热泵式干衣机的结构和原理示意如图2所示,热泵式干衣机由热泵系统、干衣箱、循环风系统构成。
热泵系统又由热泵压缩机、冷凝器、节流阀、蒸发器四个主要部分及循环工质、干燥过滤器等辅助部件构成;干衣箱由上下导流板、衣物架、衣物、箱壁、新风调节进出口、新风净化装置(可不加)、箱门等构成;循环风系统由循环风机、风道构成。
整套装置通过密封循环风道,将热泵与干衣箱有机地结合为一个紧凑高效的干燥系统。
图2中热泵式干衣机的基本工作过程为:热泵冷凝器加热循环空气,产生40-80℃左右的干燥空气,在循环风机推动下进入干衣箱;在干衣箱中,干燥空气流过湿衣物表面,与湿衣物间进行热湿交换,吸收其中的水分,变为20-40℃左右的低温潮湿空气,排出干衣箱,进入热泵蒸发器;在热泵蒸发器中,低温潮湿空气被冷却至露点温度以下,析出从湿衣物中吸收的水分,变为0℃左右的冷冻干燥空气,进入热泵冷凝器;在热泵冷凝器中,冷冻干燥空气又被加热为40-80℃左右的中温干燥空气,通过循环风机提高压力后再进入干衣箱,开始下一个循环。
如此循环运行,实现衣物的连续高效干燥。
1.3热泵式干衣机的优点从以上工作过程分析可见,利用热泵型干衣机进行干燥可以克服现有干衣机的缺陷,实现节能、适应性广及与环境友好的目的。
①热泵是能量转移装置,与现有干衣机相比能够节约能源。
按保守估计,以热泵系统能效比仅为2.5计,要提供2359kJ的汽化潜热,只需要耗费943.6kJ的电能。
如假设风机、漏热、旋转运动部件等因素所导致的耗电量与原有干衣机相同,则最大耗电量为3985kJ,实现节能26.2%。
如对这些因素进行适当优化,则节能效果更为明显。
②由于流经冷凝器的空气的绝对含湿量d很小,热泵系统在比较低的冷凝温度下即可降低空气的相对湿度,提高空气的吸湿能力,从而有利于扩大干衣机适用衣料的范围。
③无须设置排风管,也不会将热湿空气排至室内,不会影响室内装修及室内空气环境。
1.4热泵式干衣机的类型及研发现状鉴于以上原因,国内外许多科研人员都曾研究、试制过热泵型干衣机。
有多种类型的热泵型干衣机,下面分别予以简要介绍。
第一类是蒸汽压缩式热泵干衣机,这种类型的干衣机利用蒸汽压缩式制冷系统中的蒸发器对来自衣物的潮湿空气进行降温除湿,冷凝器用来对空气进行等湿升温,加热后的空气再去对衣物进行干燥。
由于蒸汽压缩式制冷系统是一种非常成熟的技术,用于热泵工况时供热效率高,工作安全可靠,因而这种类型的干衣机得到了最为广泛的研究。
目前我国已有多项以蒸汽压缩制冷原理为基础的热泵型干衣机专利,这些专利主要介绍了干衣机的具体部件、结构等。
屈百达[2]应用分布参数控制理论建立了衣物温度控制模型,进行了干衣机内衣物温度分布控制参数研究。
在设计及应用研究方面,陈东等[3]确定了热泵型干衣机中的结构与工作参数,包括循环风参数、冷凝器、蒸发器、循环风道、干衣箱及其他辅助部件的工作参数与结构参数,为蒸汽压缩式热泵型干衣机的设计提供了很好的基础数据。
E. L. Schmidt等[4]、K. Klocker等[5]研制了可以用做干衣机的CO2超临界循环热泵干燥设备。
这种类型干衣机的系统压力高,对系统气密性要求高,与蒸汽压缩式相比效率较低、造价较高。
其优点在于工作介质环保,在对环保要求越来越严格的今天,其发展前景看好。
另外,由于家用干衣机对运行过程中的噪声要求比较严格,陆金铭等[6]设计制造了热泵干衣机实验台,并对其进行了噪声分析,主要包括热泵机组及其配管系统的模态和谐响应分析;张锐军等[7,8]也对该实验台的板架和配管系统进行了噪音分析及减震降噪措施的研究。
第二类是基于帕尔帖效应的热电热泵干衣机,罗清海等[9]研制了该种干衣机样机并针对不同工况进行了系统的实验测试。
其优点在于工作安静,但是效率仍低于蒸汽压缩式循环,且比后者更易受环境温度波动的影响。
上述两类系统中,一般不允许拆卸换热器进行常规清洗,因此J.E.Braun等[10]研制了基于逆布雷顿循环的空气循环热泵干衣机样机。
该类型干衣机的优点在于可以拆卸清洗换热器,工作介质环保,在有压缩空气的条件下使用方便。
但其效率虽高于电-热转换型干衣机,仍低于蒸汽压缩式。
1.5 结论主要针对热泵式干衣机的基本构成和原理展开讨论,并对热泵式干衣机的工作过程进行加深的了解和研究,确定热泵式干衣机的研究方向和条件。
2 热泵式干衣机设计中结构与参数的确定以热风进干衣箱温度为60℃,出干衣箱为30℃,出热泵蒸发器为0℃,湿衣物干燥能力平均每小时5㎏为例,说明热泵式干衣机结构与设计参数的确定方法。
2.1 循环风参数确定0℃时饱和湿空气的含湿量为:622x0.0006112/(0.101325-0.0006112)-3.80g水蒸汽/kg干空气。
加热到60℃时,含湿量不变。
1kg热风在流化床中由60℃降到30℃吸收的水分量约为:1.0x1.0x(60-30)/2350-13g水分/kg干空气。
此湿空气的相对湿度为:(13-4)/28-60%(28g水蒸汽/kg干空气是30℃时的饱和湿空气含湿量)。
吸收1kg水分所需的加热量为:1.833KJ。
设湿衣物中的平均含水率为60%,则每小时需除去水分:5x0.6-3kg循环空气需要的加热负荷为:3x4563x1000/3600-3803W2.2 热泵系统的结构与参数确定2.2.1热泵冷凝器冷凝器型式可采用翅片管式换热器(铜管,铝翅片),取冷凝器的平均传热系数为:30w/(m²·K), 空气与热泵循环工质的平均传热温差为:10℃时,则冷凝器的传热面积为:3803/(30x10)-13m²。
热泵蒸发器空气侧的平均温度为:(30+0)/2-15℃, 取蒸发器中空气与热泵工质的平均传热温差为:10℃, 则热泵工质的平均蒸发温度为:15-10-5℃。
热泵冷凝器空气侧的平均温度为:(60+0)/2-30℃, 取冷凝器中空气与热泵工质的平均传热温差也为:10℃, 则热泵工质的平均冷凝温度为:10+30-40℃。
2.2.2 热泵压缩机对电驱动热泵,当热泵循环工质的冷凝温度和蒸发温度为上述值时,热泵的制热性能系数可取为5, 则热泵压缩机的功率为:3805/5-761W。
压缩机型式可采用回转式空调压缩机(热泵式干衣机通过采用非共沸混合工质,在进排气压力、压缩机排气温度等方面可与空调工况相近,且回转式压缩机市场应用量大,价格、可靠性、维护等方面均占优势)。
2.2.3 热泵蒸发器热泵蒸发器的负荷为:3803-761-3042W。
蒸发器也采用翅片管式,取蒸发器的传热系数为:40W/(m²·K),空气与热泵循环工质的平均传热温差为:10℃, 则蒸发器的传热面积为:3042/(40x10)-7.6m²。
2.2.4 其它热泵循环工质且采用具有变温相变特性的非共沸混合工质。
工质优选的基本方法是使混合工质在相变中的变温特性与空气的温度变化相匹配,组元数以二元或三元为宜,具体配比可利用相关的物性计算软件确定。
2.3 热泵式干衣机精细设计中需进一步研究的问题上述热泵式干衣机设计中结构与参数的确定方法是以经验为主的较粗略确定方法,精细设计时应力求根据用户条件和要求进行各层次的量化、优化设计,包括部件结构及参数的最优化、干衣机整体结构与参数的最优化、干衣机运行与调控的最优化等。
部件的优化内容包括换热器(蒸发器、冷凝器)的管材及规格、管子排列、翅片厚、翅片间距、翅片形状等,压缩机与节流装置的参数计算、调节范围与方式,热泵循环工质的组成与配比优选,风道形状及导流板的形状、尺寸、材料,风机风量、压头、噪声,干衣箱气流组织、衣物间距、隔热材料、壁厚,不同衣物(衣料、尺寸、形状、含水率等)的最佳干燥工艺,衣物与空气间的热质传递强化,衣物干燥终点水分合理确定,空气在风道、衣物内的流动特性等。
干衣机的运行调控优化内容包括运行参数的测量和监控(循环空气的温度、湿度、速度、气流组织等),根据衣物干度和干燥进程适时调整加热量与风速等,调控策略与方式(变频调节、模糊控制等),干衣机起动时的辅助加热、间歇式干衣机干燥终点的鉴别与控制等。
2.4 结论依据GB/T 20292—2006《家用滚筒干衣机性能测试方法》对试验负载干燥后的最终含水率的规定,本试验衣物最终均烘干。
3.3 试验数据表2是对3种干衣方式能耗试验数据的总结。
表中干衣送风温度与干衣功率数据为干衣全过程的平均值。
从表2可以看出,热泵干衣消耗的电能最少,其次为电热高温,最差的是电热低温。
电热高温的干衣时间最短,低温干衣次之,热泵干衣最长,与低温干衣相差10min。
对于干衣送风温度,电热高温最高,其次是热泉干衣,最低为电热低温。
表2 3种干衣方式能耗试验数据3.4 单位除湿能耗根据实测数据,按照式(3)计算,整理出如图3所示的单位除湿能耗分布图。
由图可以看出,在开始阶段,3种干衣方式的单位除湿能耗均较低。
干衣过程进行大约80 min后,单位除湿能耗开始上升。
对于电热式干衣,单位除湿能耗的上升是由于在干衣后期,衣物中的水分减少,水分蒸发减缓,且电热功率并未改变的缘故;对于热泵式干衣机.由于在干衣后期,一方面衣物中水分的减少,另一方面热泵系统的制冷量大部分消耗在冷却空气上,而除去的水分较少,故单位除湿能耗开始上升。
图3 3种干衣方式单位除湿能耗对比根据单位除湿能耗分布图,计算3种干衣方式在整个干衣过程中的平均单位除湿能耗,见表4。
表4 干衣全过程平均单位除湿能耗 KW/(kg/h) 干衣方式电热高温电热低温热泵干衣平均单位除湿能耗 1.847 1.995 1.372根据热泵系统产生的热量与输人的总功率的比值,计算得到如图4所示的热泵制热能效比。