初中数学锐角三角函数的知识点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学锐角三角函数的知识点
一、选择题
1.如图,AB 是垂直于水平面的建筑物.为测量AB 的高度,小红从建筑物底端B 点出发,沿水平方向行走了52米到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC BC =.在点D 处放置测角仪,测角仪支架DE 高度为0.8米,在E 点处测得建筑物顶端A 点的仰角AEF ∠为27︒(点A ,B ,C ,D ,E 在同一平面内).斜坡CD 的坡度(或坡比)1:2.4i =,那么建筑物AB 的高度约为( )
(参考数据sin 270.45︒≈,cos270.89︒≈,tan 270.51︒≈)
A .65.8米
B .71.8米
C .73.8米
D .119.8米
【答案】B
【解析】
【分析】 过点E 作EM AB ⊥与点M ,根据斜坡CD 的坡度(或坡比)1:2.4i =可设CD x =,则2.4 CG x =,利用勾股定理求出x 的值,进而可得出CG 与DG 的长,故可得出EG 的长.由矩形的判定定理得出四边形EGBM 是矩形,故可得出EM BG =,BM EG =,再由锐角三角函数的定义求出AM 的长,进而可得出结论.
【详解】
解:过点E 作EM AB ⊥与点M ,延长ED 交BC 于G ,
∵斜坡CD 的坡度(或坡比)1:2.4i =,52BC CD ==米,
∴设DG x =,则 2.4 CG x =.
在Rt CDG ∆中,
∵222DG CG DC +=,即222
(2.4)52x x +=,解得20x =,
∴20DG =米,48CG =米,
∴200.820.8EG =+=米,5248100BG =+=米.
∵EM AB ⊥,AB BG ⊥,EG BG ⊥,
∴四边形EGBM 是矩形,
∴100EM BG ==米,20.8BM EG ==米.
在Rt AEM ∆中,
∵27AEM ︒∠=,
∴•tan 271000.5151AM EM ︒=≈⨯=米,
∴5120.871.8AB AM BM =+=+=米.
故选B .
【点睛】
本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
2.如图,4个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,己知菱形的一个内角为60°,A 、B 、C 都是格点,则tan ABC ∠=( )
A .3
B .36
C .3
D .3 【答案】A
【解析】
【分析】
直接利用菱形的对角线平分每组对角,结合锐角三角函数关系得出EF,的长,进而利用EC tan ABC BE
∠=
得出答案. 【详解】
解:连接DC ,交AB 于点E . 由题意可得:∠AFC=30°, DC ⊥AF,
设EC=x,则EF=x 3x tan 30︒
, ∴BF AF 2EF 23x === EC 3tan ABC BE 923x 3x 33=
===+∠,
故选:A
【点睛】
此题主要考查了菱形的性质以及解直角三角形,正确得出EF 的长是解题关键.
3.如图,在ABC ∆中,4AC =,60ABC ∠=︒,45C ∠=︒,AD BC ⊥,垂足为D ,ABC ∠的平分线交AD 于点E ,则AE 的长为( )
A .22
B .223
C .23
D .322
【答案】C
【解析】
【分析】
在Rt △ADC 中,利用等腰直角三角形的性质可求出AD 的长度,在Rt △ADB 中,由AD 的长度及∠ABD 的度数可求出BD 的长度,在Rt △EBD 中,由BD 的长度及∠EBD 的度数可求出DE 的长度,再利用AE=AD−DE 即可求出AE 的长度.
【详解】
∵AD ⊥BC
∴∠ADC=∠ADB=90︒
在Rt △ADC 中,AC=4,∠C=45︒
∴AD=CD=22在Rt △ADB 中,AD=22ABD=60︒
∴326. ∵BE 平分∠ABC ,
∴∠EBD=30°.
在Rt △EBD 中,BD=263
,∠EBD=30° ∴3223 ∴AE=AD −DE=22223=23 故选:C
【点睛】
本题考查了等腰直角三角形的性质,以及利用特殊角三角函数解直角三角形.
4.在课外实践中,小明为了测量江中信号塔A 离河边的距离AB ,采取了如下措施:如图在江边D 处,测得信号塔A 的俯角为40︒,若55DE =米,DE CE ⊥,36CE =米,CE 平行于AB ,BC 的坡度为1:0.75i =,坡长140BC =米,则AB 的长为( )(精确到0.1米,参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈)
A .78.6米
B .78.7米
C .78.8米
D .78.9米
【答案】C
【解析】
【分析】 如下图,先在Rt △CBF 中求得BF 、CF 的长,再利用Rt △ADG 求AG 的长,进而得到AB 的长度
【详解】
如下图,过点C 作AB 的垂线,交AB 延长线于点F ,延长DE 交AB 延长线于点G
∵BC 的坡度为1:0.75
∴设CF 为xm ,则BF 为0.75xm
∵BC=140m
∴在Rt △BCF 中,()2220.75140x x +=,解得:x=112
∴CF=112m ,BF=84m
∵DE ⊥CE ,CE ∥AB ,∴DG ⊥AB ,∴△ADG 是直角三角形
∵DE=55m ,CE=FG=36m
∴DG=167m ,BG=120m
设AB=ym
∵∠DAB=40°
∴tan40°=1670.84120
DG AG y ==+ 解得:y=78.8
故选:C