初中数学锐角三角函数的知识点

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学锐角三角函数的知识点

一、选择题

1.如图,AB 是垂直于水平面的建筑物.为测量AB 的高度,小红从建筑物底端B 点出发,沿水平方向行走了52米到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC BC =.在点D 处放置测角仪,测角仪支架DE 高度为0.8米,在E 点处测得建筑物顶端A 点的仰角AEF ∠为27︒(点A ,B ,C ,D ,E 在同一平面内).斜坡CD 的坡度(或坡比)1:2.4i =,那么建筑物AB 的高度约为( )

(参考数据sin 270.45︒≈,cos270.89︒≈,tan 270.51︒≈)

A .65.8米

B .71.8米

C .73.8米

D .119.8米

【答案】B

【解析】

【分析】 过点E 作EM AB ⊥与点M ,根据斜坡CD 的坡度(或坡比)1:2.4i =可设CD x =,则2.4 CG x =,利用勾股定理求出x 的值,进而可得出CG 与DG 的长,故可得出EG 的长.由矩形的判定定理得出四边形EGBM 是矩形,故可得出EM BG =,BM EG =,再由锐角三角函数的定义求出AM 的长,进而可得出结论.

【详解】

解:过点E 作EM AB ⊥与点M ,延长ED 交BC 于G ,

∵斜坡CD 的坡度(或坡比)1:2.4i =,52BC CD ==米,

∴设DG x =,则 2.4 CG x =.

在Rt CDG ∆中,

∵222DG CG DC +=,即222

(2.4)52x x +=,解得20x =,

∴20DG =米,48CG =米,

∴200.820.8EG =+=米,5248100BG =+=米.

∵EM AB ⊥,AB BG ⊥,EG BG ⊥,

∴四边形EGBM 是矩形,

∴100EM BG ==米,20.8BM EG ==米.

在Rt AEM ∆中,

∵27AEM ︒∠=,

∴•tan 271000.5151AM EM ︒=≈⨯=米,

∴5120.871.8AB AM BM =+=+=米.

故选B .

【点睛】

本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.

2.如图,4个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,己知菱形的一个内角为60°,A 、B 、C 都是格点,则tan ABC ∠=( )

A .3

B .36

C .3

D .3 【答案】A

【解析】

【分析】

直接利用菱形的对角线平分每组对角,结合锐角三角函数关系得出EF,的长,进而利用EC tan ABC BE

∠=

得出答案. 【详解】

解:连接DC ,交AB 于点E . 由题意可得:∠AFC=30°, DC ⊥AF,

设EC=x,则EF=x 3x tan 30︒

, ∴BF AF 2EF 23x === EC 3tan ABC BE 923x 3x 33=

===+∠,

故选:A

【点睛】

此题主要考查了菱形的性质以及解直角三角形,正确得出EF 的长是解题关键.

3.如图,在ABC ∆中,4AC =,60ABC ∠=︒,45C ∠=︒,AD BC ⊥,垂足为D ,ABC ∠的平分线交AD 于点E ,则AE 的长为( )

A .22

B .223

C .23

D .322

【答案】C

【解析】

【分析】

在Rt △ADC 中,利用等腰直角三角形的性质可求出AD 的长度,在Rt △ADB 中,由AD 的长度及∠ABD 的度数可求出BD 的长度,在Rt △EBD 中,由BD 的长度及∠EBD 的度数可求出DE 的长度,再利用AE=AD−DE 即可求出AE 的长度.

【详解】

∵AD ⊥BC

∴∠ADC=∠ADB=90︒

在Rt △ADC 中,AC=4,∠C=45︒

∴AD=CD=22在Rt △ADB 中,AD=22ABD=60︒

∴326. ∵BE 平分∠ABC ,

∴∠EBD=30°.

在Rt △EBD 中,BD=263

,∠EBD=30° ∴3223 ∴AE=AD −DE=22223=23 故选:C

【点睛】

本题考查了等腰直角三角形的性质,以及利用特殊角三角函数解直角三角形.

4.在课外实践中,小明为了测量江中信号塔A 离河边的距离AB ,采取了如下措施:如图在江边D 处,测得信号塔A 的俯角为40︒,若55DE =米,DE CE ⊥,36CE =米,CE 平行于AB ,BC 的坡度为1:0.75i =,坡长140BC =米,则AB 的长为( )(精确到0.1米,参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈)

A .78.6米

B .78.7米

C .78.8米

D .78.9米

【答案】C

【解析】

【分析】 如下图,先在Rt △CBF 中求得BF 、CF 的长,再利用Rt △ADG 求AG 的长,进而得到AB 的长度

【详解】

如下图,过点C 作AB 的垂线,交AB 延长线于点F ,延长DE 交AB 延长线于点G

∵BC 的坡度为1:0.75

∴设CF 为xm ,则BF 为0.75xm

∵BC=140m

∴在Rt △BCF 中,()2220.75140x x +=,解得:x=112

∴CF=112m ,BF=84m

∵DE ⊥CE ,CE ∥AB ,∴DG ⊥AB ,∴△ADG 是直角三角形

∵DE=55m ,CE=FG=36m

∴DG=167m ,BG=120m

设AB=ym

∵∠DAB=40°

∴tan40°=1670.84120

DG AG y ==+ 解得:y=78.8

故选:C

相关文档
最新文档