湖北省武汉市黄陂区2018-2019学年度上学期期末考试七年级数学试题
湖北省武汉市硚口区2018-2019学年七年级(上)期末数学试卷 含解析
2018-2019学年七年级(上)期末数学试卷一.选择题(共10小题)1.温度由﹣3℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃2.x=a是关于x的方程2a+3x=﹣5的解,则a的值是()A.﹣1 B.1 C.﹣5 D.53.下列各组式子中,是同类项的是()A.2xy2与﹣2x2y B.2xy与﹣2yxC.3x与x3D.4xy与4yz4.如图,公园里修建了曲折迂回的桥,这与修一座直的桥相比,不仅可以容纳更多的游人,而且延长了游客观光的时间,增加了游人的路程,用你所学的数学的知识能解释这一现象的是()A.经过一点有无数条直线B.两点确定一条直线C.两点之间,线段最短D.直线最短5.下列等式变形,正确的是()A.如果x=y,那么=B.如果ax=ay,那么x=yC.如果S=ab,那么a=D.如果x=y,那么|x﹣3|=|3﹣y|6.某商品进价200元,标价300元,打n折(十分之n)销售时利润率是5%,则n的值是()A.5 B.6 C.7 D.87.一个几何体由若干个相同的正方体组成,它从正面和上面看到的图形如图所示,则这个几何体中正方体的个数最少是()A.5 B.6 C.7 D.88.一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,每名一级技工比二级技工一天多粉刷10m2墙面,设每个房间需要粉刷的墙面面积为xm2,则下列的方程正确的是()A.B.C.+10 D.+109.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,则∠BOE 的度数为()A.360°﹣4αB.180°﹣4αC.αD.270°﹣3α10.如图,点A、B、C是直线l上的三个定点,点B是线段AC的三等分点,AB=BC+4m,其中m为大于0的常数,若点D是直线l上的一动点,M、N分别是AD、CD的中点,则MN与BC的数量关系是()A.MN=2BC B.MN=BC C.2MN=3BC D.不确定二.填空题(共6小题)11.2018年双十一天猫网交易额突破了4300000000元,将数4300000000写成4.3×10n的形式,则n=.12.如图,货轮O在航行过程中,发现灯塔A在它的南偏东60°的方向上.同时,在它的北偏东30°发现了客轮B.则∠AOB的度数为=.13.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.这个班有多少学生?设这个班有x名学生,则由题意可列方程.14.在直线l上取三个点A、B、C,线段AB的长为3cm,线段BC的长为4cm,则A、C两点的距离是.15.汽车以15米/秒的速度在一条笔直的公路上匀速行驶,开向寂静的山谷,司机按一下喇叭,2秒后听到回响,问按喇叭时汽车离山谷多远?已知空气中声音传播速度为340米/秒,设按喇叭时,汽车离山谷x米,根据题意列方程为.16.如图,一只蚂蚁要从正方体的一个顶点A沿表面爬行到顶点B,爬行的最短路线有条.三.解答题(共8小题)17.计算:(1)3×(﹣2)2+(﹣28)÷7;(2)(﹣125)÷(﹣5).18.先化简,再求值x+2(y2﹣x)﹣3(x﹣y2),其中x=2,y=﹣3.19.解方程:(1)x﹣3=x+1;(2)x﹣=2+.20.(1)如图1,已知四点A、B、C、D.①连接AB;②画直线BC;③画射线CD;④画点P,使PA+PB+PC+PD的值最小;(2)如图2,将一副三角板如图摆放在一起,则∠ACB的度数为,射线OA、OB、OC组成的所有小于平角的角的和为.21.如表为某篮球比赛过程中部分球队的积分榜(篮球比赛没有平局).(1)观察积分榜,请直接写出球队胜一场积分,负一场积分;(2)根据积分规则,请求出E队已经进行了的11场比赛中胜、负各多少场?(3)若此次篮球比赛共17轮(每个球队各有17场比赛),D队希望最终积分达到30分,你认为有可能实现吗?请说明理由.22.一套仪器由一个A部件和三个B部件构成,用1m3钢材可以做40个A部件或240个B 部件.(1)现要用6m3钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,恰好配成这种仪器多少套?(2)设某公司租赁这批仪器x小时,有两种付费方式.方式一:当0<x<10时,每套仪器收取租金50元;当x>10时,超时部分这批仪器整体按每小时300元收费;方式二:当0<x<15时,每套仪器收取租金60元,当x>15时,超时部分这批仪器整体按每小时200元收费.请你替公司谋划一下,当x满足,选方式一节省费用一些;当x满足,选方式二节省费用一些.23.∠AOB与它的补角的差正好等于∠AOB的一半(1)求∠AOB的度数;(2)如图1,过点O作射线OC,使∠AOC=4∠BOC,OD是∠BOC的平分线,求∠AOD的度数;(3)如图2,射线OM与OB重合,射线ON在∠AOB外部,且∠MON=40°,现将∠MON 绕O顺时针旋转n°,0<n<50,若在此过程中,OP平分∠AOM,OQ平分∠BON,试问的值是定值吗?若是,请求出来,若不是,请说明理由.24.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=,AC=,BE=;(2)当线段CE运动到点A在C、E之间时,求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以同样速度返回,同时点Q从A出发,以每秒1个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤16),求t为何值时,P、Q两点间的距离为1个单位长度.参考答案与试题解析一.选择题(共10小题)1.温度由﹣3℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃【分析】根据题意列出算式,计算即可求出值.【解答】解:根据题意得:﹣3+8=5,则温度由﹣3℃上升8℃是5℃,故选:A.2.x=a是关于x的方程2a+3x=﹣5的解,则a的值是()A.﹣1 B.1 C.﹣5 D.5【分析】把x=a代入方程,解关于a的一元一次方程即可.【解答】解:把x=a代入方程,得2a+3a=﹣5,所以5a=﹣5解得a=﹣1故选:A.3.下列各组式子中,是同类项的是()A.2xy2与﹣2x2y B.2xy与﹣2yxC.3x与x3D.4xy与4yz【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:A、所含字母指数不同,不是同类项,故选项错误;B、所含字母相同,并且相同字母的指数也相同,是同类项,故选项正确;C、所含字母指数不同,不是同类项,故选项错误;D、所含字母不尽相同,不是同类项,故选项错误.故选:B.4.如图,公园里修建了曲折迂回的桥,这与修一座直的桥相比,不仅可以容纳更多的游人,而且延长了游客观光的时间,增加了游人的路程,用你所学的数学的知识能解释这一现象的是()A.经过一点有无数条直线B.两点确定一条直线C.两点之间,线段最短D.直线最短【分析】利用两点之间线段最短进而分析得出答案.【解答】解:这样做增加了游人在桥上行走的路程,理由:利用两点之间线段最短,可得出曲折迂回的九曲桥增加了游人在桥上行走的路程.故选:C.5.下列等式变形,正确的是()A.如果x=y,那么=B.如果ax=ay,那么x=yC.如果S=ab,那么a=D.如果x=y,那么|x﹣3|=|3﹣y|【分析】根据等式的基本性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.即可解决.【解答】解:A、a=0时,两边都除以a2,无意义,故A错误;B、a=0时,两边都除以a,无意义,故B错误;C、b=0时,两边都除以b,无意义,故C错误;D、如果x=y,那么x﹣3=y﹣3,所以|x﹣3|=|3﹣y|,故D正确;故选:D.6.某商品进价200元,标价300元,打n折(十分之n)销售时利润率是5%,则n的值是()A.5 B.6 C.7 D.8【分析】根据题目中的等量关系是利润率=利润÷成本,根据这个等量关系列方程求解.【解答】解:商品是按标价的n折销售的,根据题意列方程得:(300×0.1n﹣200)÷200=0.05,解得:n=7.则此商品是按标价的7折销售的.故选:C.7.一个几何体由若干个相同的正方体组成,它从正面和上面看到的图形如图所示,则这个几何体中正方体的个数最少是()A.5 B.6 C.7 D.8【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边上层最多有2个,右边下层最多有2个.所以图中的小正方体最多8块,最少有6块.故选:B.8.一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,每名一级技工比二级技工一天多粉刷10m2墙面,设每个房间需要粉刷的墙面面积为xm2,则下列的方程正确的是()A.B.C.+10 D.+10【分析】设每个房间需要粉刷的墙面面积为xm2,根据“每名一级技工比二级技工一天多粉刷10m2墙面”,列方程即可.【解答】解:设每个房间需要粉刷的墙面面积为xm2,根据题意,得=+10.故选:D.9.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,则∠BOE 的度数为()A.360°﹣4αB.180°﹣4αC.αD.270°﹣3α【分析】设∠DOE=x,则∠BOD=4x、∠BOE=3x,根据角之间的等量关系求出∠AOD、∠COD、∠COE的大小,然后解得x即可.【解答】解:设∠DOE=x,则∠BOD=4x,∵∠BOD=∠BOE+∠EOD,∴∠BOE=3x,∴∠AOD=180°﹣∠BOD=180°﹣4x.∵OC平分∠AOD,∴∠COD=∠AOD=(180°﹣4x)=90°﹣2x.∵∠COE=∠COD+∠DOE=90°﹣2x+x=90°﹣x,由题意有90°﹣x=α,解得x=90°﹣α,则∠BOE=270°﹣3α,故选:D.10.如图,点A、B、C是直线l上的三个定点,点B是线段AC的三等分点,AB=BC+4m,其中m为大于0的常数,若点D是直线l上的一动点,M、N分别是AD、CD的中点,则MN与BC的数量关系是()A.MN=2BC B.MN=BC C.2MN=3BC D.不确定【分析】可用特殊值法,设坐标轴上的点A为0,C为12m,求出B的值,得出BC的长度,设D为x,则M为,N为,即可求出MN的长度为6m,可算出MN与BC的关系.【解答】解:设坐标轴上的点A为0,C为12m,∵AB=BC+4m,∴B为8m,∴BC=4m,设D为x,则M为,N为,∴MN为6m,∴2MN=3BC,故选:C.二.填空题(共6小题)11.2018年双十一天猫网交易额突破了4300000000元,将数4300000000写成4.3×10n的形式,则n=9 .【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4300000000=4.3×109.故答案为:912.如图,货轮O在航行过程中,发现灯塔A在它的南偏东60°的方向上.同时,在它的北偏东30°发现了客轮B.则∠AOB的度数为=90°.【分析】首先根据方向角的定义作出图形,根据图形即可求解.【解答】解:∠AOB=180°﹣60°﹣30°=90°.故答案为:90°.13.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.这个班有多少学生?设这个班有x名学生,则由题意可列方程3x+20=4x﹣25 .【分析】等量关系:书本数=每人分3本,则剩余20本=每人分4本,则还缺25本.【解答】解:根据题意,得:3x+20=4x﹣25.14.在直线l上取三个点A、B、C,线段AB的长为3cm,线段BC的长为4cm,则A、C两点的距离是7cm或1cm.【分析】讨论:当点C在AB的延长线上时,计算BC+AB得到AC的长;当点C在AB的反向延长线上时,计算BC﹣AB得到AC的长.【解答】解:当点C在AB的延长线上时,AC=BC+AB=4+3=7(cm);当点C在AB的反向延长线上时,AC=BC﹣AB=4﹣3=1(cm),即A、C两点的距离是7cm或1cm.故答案为7cm或1cm.15.汽车以15米/秒的速度在一条笔直的公路上匀速行驶,开向寂静的山谷,司机按一下喇叭,2秒后听到回响,问按喇叭时汽车离山谷多远?已知空气中声音传播速度为340米/秒,设按喇叭时,汽车离山谷x米,根据题意列方程为2x﹣2×15=340×2 .【分析】设这时汽车离山谷x米,根据司机按喇叭时,汽车离山谷的距离的2倍减去汽车行驶的路程等于声音传播的距离,列出方程,求解即可.【解答】解:设按喇叭时,汽车离山谷x米,根据题意列方程为 2x﹣2×15=340×2.故答案为:2x﹣2×15=340×2.16.如图,一只蚂蚁要从正方体的一个顶点A沿表面爬行到顶点B,爬行的最短路线有 6 条.【分析】根据线段的性质:两点之间线段最短,把正方体展开,直接连接A、B两点可得最短路线.【解答】解:如果要爬行到顶点B,有三种情况:若蚂蚁爬行时经过面AD,可将这个正方体展开,在展开图上连接AB,与棱a(或b)交于点D1(或D2),小蚂蚁线段AD1→D1B(或AD2→D2B)爬行,路线最短;类似地,蚂蚁经过面AC和AE爬行到顶点B,也分别有两条最短路线,因此,蚂蚁爬行的最短践线有6条.故答案为:6.三.解答题(共8小题)17.计算:(1)3×(﹣2)2+(﹣28)÷7;(2)(﹣125)÷(﹣5).【分析】(1)根据有理数的乘方、有理数的乘除法和加法可以解答本题;(2)根据乘法分配律可以解答本题.【解答】解:(1)3×(﹣2)2+(﹣28)÷7=3×4+(﹣4)=12+(﹣4)=8;(2)(﹣125)÷(﹣5)=(﹣125﹣)×(﹣)=25+=25.18.先化简,再求值x+2(y2﹣x)﹣3(x﹣y2),其中x=2,y=﹣3.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x+y2﹣2x﹣x+y2=﹣3x+y2,当x=2,y=﹣3时,原式=(﹣3)2﹣3×2=9﹣6=3.19.解方程:(1)x﹣3=x+1;(2)x﹣=2+.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项得:x﹣x=1+3,合并得:﹣x=4,系数化为1得:x=﹣8;(2)去分母得:4x﹣(x﹣1)=2×4+2(x﹣3),去括号得:4x﹣x+1=8+2x﹣6,移项得:4x﹣x﹣2x=8﹣6﹣1,合并得:x=1.20.(1)如图1,已知四点A、B、C、D.①连接AB;②画直线BC;③画射线CD;④画点P,使PA+PB+PC+PD的值最小;(2)如图2,将一副三角板如图摆放在一起,则∠ACB的度数为135°,射线OA、OB、OC组成的所有小于平角的角的和为150°.【分析】(1)根据语句画图:①连接AB;②画直线BC;③画射线CD;④AC和BD相交于点即为P;(2)根据一副三角板的摆放即可求解.【解答】解:(1)如图,①线段AB即为所求的图形;②直线BC即为所求作的图形;③射线CD即为所求作的图形;④连接AC和BD相交于点P,点P即为所求作的点;(2)观察图形可知:∠ACB=∠ACO+∠OCB=45°+90°=135°;射线OA、OB、OC组成的所有小于平角的角的和为150°.故答案为135°、150°.21.如表为某篮球比赛过程中部分球队的积分榜(篮球比赛没有平局).(1)观察积分榜,请直接写出球队胜一场积 2 分,负一场积 1 分;(2)根据积分规则,请求出E队已经进行了的11场比赛中胜、负各多少场?(3)若此次篮球比赛共17轮(每个球队各有17场比赛),D队希望最终积分达到30分,你认为有可能实现吗?请说明理由.【分析】(1)观察积分榜由C球队和D球队即可求解;(2)设设E队胜x场,则负(11﹣x)场,根据等量关系:E队积分是13分列出方程求解即可;(3)设后6场胜x场,根据等量关系:D队积分是30分列出方程求解即可.【解答】解:(1)观察积分榜,球队胜一场积2分,负一场积1分.故答案为:2,1;(2)设E队胜x场,则负(11﹣x)场,可得2x+11﹣x=13,解得x=2.∴E队胜2场,负9场;(3)不可能实现,理由如下:∵D队前11场得17分,∴设后6场胜x场,∴2x+6﹣x=30﹣17,∴x=7>6,∴不可能实现.22.一套仪器由一个A部件和三个B部件构成,用1m3钢材可以做40个A部件或240个B 部件.(1)现要用6m3钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,恰好配成这种仪器多少套?(2)设某公司租赁这批仪器x小时,有两种付费方式.方式一:当0<x<10时,每套仪器收取租金50元;当x>10时,超时部分这批仪器整体按每小时300元收费;方式二:当0<x<15时,每套仪器收取租金60元,当x>15时,超时部分这批仪器整体按每小时200元收费.请你替公司谋划一下,当x满足,选方式一节省费用一些;当x满足,选方式二节省费用一些.【分析】(1)设应用ym3钢材做A部件,则应用(6﹣y)m3钢材做B部件,根据一个A 部件和三个B部件刚好配成套,列方程求解;(2)根据费用相等,列出方程求出x,进一步即可求解.【解答】解:(1)设应用ym3钢材做A部件,用(6﹣y)m3钢材做B部件,则可配成这种仪器40y套,则3×40y=240(6﹣y)解得:y=4,6﹣y=2,40y=160.答:应用4m3做A部件,用2m3做B部件,恰好配成160套这种仪器(2)依题意有:50×160+300(x﹣10)=60×160+200(x﹣15),解得x=16,故0<x<16,选方式一节省费用一些;x>16,选方式二节省费用一些.23.∠AOB与它的补角的差正好等于∠AOB的一半(1)求∠AOB的度数;(2)如图1,过点O作射线OC,使∠AOC=4∠BOC,OD是∠BOC的平分线,求∠AOD的度数;(3)如图2,射线OM与OB重合,射线ON在∠AOB外部,且∠MON=40°,现将∠MON 绕O顺时针旋转n°,0<n<50,若在此过程中,OP平分∠AOM,OQ平分∠BON,试问的值是定值吗?若是,请求出来,若不是,请说明理由.【分析】(1)设∠AOB=x°,根据题意列方程即可得到结论;(2)①当OC在∠AOB的内部时,②当OC在∠AOB外部时,根据角的和差和角平分线的定义即可得到结论;(3)根据角的和差和角平分线的定义即可得到结论.【解答】解:(1)设∠AOB=x°,依题意得:x﹣(180﹣x)=x∴x=120答:∠AOB的度数是120°(2)①当OC在∠AOB的内部时,∠AOD=∠AOC+∠COD设∠BOC=y°,则∠AOC=4y°,∴y+4y=120,y=24,∴∠AOC=96°,∠BOC=24°,∴OD平分∠BOC,∴∠COD=∠BOC=12°,∴∠AOD=96°+12°=108°,②当OC在∠AOB外部时,同理可求∠AOD=140°,∴∠AOD的度数为108°或140°;(3)∵∠MON绕O顺时针旋转n°,∴∠AOM=(120+n)°∵OP平分∠AOM,∴∠AOP=()°∵OQ平分∠BON,∴∠MOQ=∠BOQ=()°,∴∠POQ=120+40+n﹣∠AOP﹣∠MOQ,=160+n﹣﹣=160+n﹣=80°,∴∠AOP﹣∠BOQ=﹣=40°,∴==.24.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=16 ,AC= 6 ,BE= 2 ;(2)当线段CE运动到点A在C、E之间时,求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以同样速度返回,同时点Q从A出发,以每秒1个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤16),求t为何值时,P、Q两点间的距离为1个单位长度.【分析】(1)由数轴上A、B两点对应的数分别是﹣4、12,可得AB的长;由CE=8,CF =1,可得EF的长,由点F是AE的中点,可得AF的长,从而AC可由AF减CF求得;用AB的长减去2倍的EF的长即为BE的长;(2)设AF=FE=x,则CF=8﹣x,用含x的式子表示出BE,即可得出答案;(3)分①当0<t≤6时;②当6<t≤12时,两种情况讨论计算即可得解.【解答】(1)∵数轴上A、B两点对应的数分别是﹣4、12,∴AB=16;∵CE=8,CF=1,∴EF=7∵点F是AE的中点.∴AF=EF=7∴AC=AF﹣CF=7﹣1=6BE=AB﹣AE=16﹣7×2=2故答案为:16,6,2;(2)∵点F是AE的中点∴AF=EF设AF=FE=x,∴CF=8﹣x∴BE=16﹣2x=2(8﹣x)∴BE=2CF(3)①当0<t≤6时,P对应数:﹣6+3t,Q对应数﹣4+tPQ=|﹣4+t﹣(﹣6+3t)|=|﹣2t+2|依题意得:|﹣2t+2|=1解得:t=或②当6<t≤12时,P对应数12﹣3(t﹣6)=30﹣3t,Q对应数﹣4+t PQ=|30﹣3t﹣(﹣4+t)|=|﹣4t+34|依题意得:|﹣4t+34|=1解得:t=或∴t为秒,秒,秒,秒时,两点距离是1.。
2018-2019学年度七年级上期末数学试题
(第7题图)(第3题图)(第5题图) 2018-2019学年度第一学期期末教学质量检测七年级 数学 A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.2x =,则x 是( )A 、2B 、2-C 、12D 、2或2- 2.下列方程是一元一次方程的是( )A .2x +3y =1B .2210y y --= C .1323x x-= D .3223x x -=- 3.如图,直线m 外有一点O ,A 是m 上一点,当点A 在m 上运动时,有( ) A 、αβ∠>∠ B 、αβ∠=∠C 、αβ∠<∠D 、αβ∠>∠、αβ∠=∠、αβ∠<∠都有可能4.如果线段AB =6 cm ,BC =4 cm ,且线段A 、B 、C 在同一直线上,那么A 、C 间的距离是( ) A .10 cm B .2 cmC .10 cm 或2 cmD .无法确定5.如图所示的几何体从上面看到的形状图是( )6.为了准确反映某车队10名司机1月份耗去的汽油费用,且便于比较,那么选用最合适、最直观的统计图是( )A .统计表B .条形统计图C .扇形统计图D .折线统计图 7.如图,点A ,B ,C 都在直线a 上,下列说法错误的是( ).A .点A 在射线BC 上B .点C 在直线AB 上 C .点A 在线段BC 上D .点C 在射线AB 上CAB8.从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形,则m ,n 的值分别为( )A .4,3B .3,3C .3,4D .4,49.如果设正方形纸的边长为acm ,所折无盖长方体形盒子的高为h cm ,用a 与h 来表示这个无盖长方体形盒子的容积是( )A 、2()a h h -⋅ B 、2(2)a h h -⋅ C 、2()a h h +⋅ D 、2(+2)a h h ⋅10.若| a |=3,| b |=5,a 与b 异号,则| a —b |的值为( )A 、2B 、-2C 、8D 、2或8第Ⅱ卷(非选择题,共70分)二、填空题 (本大题共4个小题,每小题4分,共16分)11.苹果的单价是a 元/千克,香蕉的单价b 元/千克,买2千克苹果,3千克斤香蕉共 需 元12. 小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据是8时,输出的数据是13.用一个平面去截一个三棱柱,截面可能是 形状. 14.写出一个解为12的一元一次方程 . 三、解答题(本大题共6个小题,共54分) 15. (本小题满分12分,每题6分) (1)计算11111111112324398109-+-+-+⋅⋅⋅+-+-(第17题)(2)计算22222()2(1)22,m n mn m n mn +----其中3, 3.m n =-=16.(本小题满分6分)下面是小明的计算过程,请仔细阅读,计算:13(15)(3) 6.32-÷--⨯解:原式25(15)()66=-÷-⨯…第一步(15)(25)=-÷- …第二步 3.5=- …第三步并解答下列问题.(1)解答过程是否有错?(2)若有在第几步?(3)错误原因是什么?17.(本小题满分8分)正方体是由六个平面图形围成的立体图形,设想沿着正方体的一些棱将它剪开,就可以把正方体剪成一个平面图形,但同一个正方体,按不同的方式展开所得的平面展开图是不一样的,下面的图形是由6个大小一样的正方形,拼接而成的,请问这些图形中哪些可以折成正方体?(第19题图)18.(本小题满分8分)已知一条射线OA ,若从点O 再引两条射线OB 和OC ,使∠AOB =600,∠BOC =200,求∠AOC 的度数.19. (本小题满分10分) 七(3)班语文老师对本班学生的课外阅读情况做了调查,并请数学老师作了如图的统计图.(1)哪种类型书籍最受欢迎?(2)哪两种类型书籍受欢迎的程度差不多?(3)图中扇形的大小分别代表什么?(4)图中各个百分比如何得到?所有百分比之和是多少?,OB=3OA,点M以20.(本小题满分1 0分)如图,已知A,B两点在数轴上,点A表示的数为10每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是.(2)经过几秒,点M、点N分别到原点O的距离相等?(第20题)(第24题图)(第25题图)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)21.班主任老师的想法:七年级我班50名同学,想参加元旦长跑活动的同学就举手,当举手的人数和没有举手的人数之差是一个奇数时,全班就不参加;如果是偶数,全班就参加元旦长跑活动. 请思考:老师的想法 (填“参加”或“不参加”) . 22.若1与12x--互为相反数,则(3x +2)2019的值等于 . 23.下列说法错误的是 (只填序号).①有理数分为正数和负数;②所有的有理数都能用数轴上的点表示;③符号不同的两个数互为相反数;④两数相加,和一定大于任何一个加数;⑤两数相减,差一定小于被减数.24.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80° 继续航行,此时的航行方向为25.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号,其序号为a ×23+b ×22+c ×21+d ×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是序号① . ②. ③. ④.二、解答题 (本大题共3个小题,共30分)26.(本小题满分8分) 据说夏禹治水时,在黄河支流洛水中浮现出一只大乌龟,背上有一个很奇怪的图形,古人认为是一种祥瑞,预示着洪水将被夏禹王彻底制服.后人称之为"洛书",即现在的三阶幻方.三阶幻方,具有一个十分“漂亮”的性质:每一横行、每一竖列和对角线上的三个数的和都相等.不信,我们来验证一下.(第27题图)(第26题图) 一般地,一个n 行n 列的正方形方格中,每一横行、每一竖列和对角线上的数字和都相等,这样的数字方阵称为n 阶幻方.4 9 2 35 7 816洛书三阶幻方请将-2,-1,0,1,2,3,4,5,6填入到3×3的方格中,使得每行、每列、斜对角的三个数之和相等.想一想:这9个数与原来9个数有什么关系?这9个数可以由原来9个数怎么变过来?27.(本小题满分10分)为了了解家长关注孩子成长方面的状况,学校开展了针对学生家长的“您最关心孩子哪方面成长”的主题调查,调查设置了“健康安全”“日常学习”“习惯养成”“情感品质”四个项目,并随机抽取甲,乙两个班共100位学生家长进行调查,根据调查结果,绘制了如下不完整的条形统计图. (1) 补全条形统计图;(2)若全校共有3600位家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?28.(本小题满分12分)某超市元月1日搞促销活动,购物不超过200元不给优惠;超过200元,而不超过500元优惠10%;超过500元的,其中500元按9折优惠,超过部分按8折优惠,某人两次购物分别用了134元和466元.问:(1)此人两次购物时的物品不打折分别值多少钱?(2)在这次活动中他节省了多少钱?(3)若此人将这两次购买的物品合起来一次性购买是不是更合算?说明你的理由.。
2018-2019学年七年级数学上册第一学期期末试卷及答案含有详细解析
2018~2019学年七年级数学上册第一学期期末试卷一、选择题1、若( )﹣(﹣2)=3,则括号内的数是( )A .﹣1B .1C .5D .﹣5 2、下列所有数中,最大的数是( )A .—4B .0C .—1D .3 3、若|m -3|+(n +2) 2=0,则m +2n 的值为( ).A .-4B .- 1C .0D .4 4、雨滴滴下来形成雨丝属于下列哪个选项的实际应用( )A .点动成线B .线动成面C .面动成体D .以上都不对 5、下列各组数中,互为相反数的是( )A .3与B .(﹣1)2与1C .﹣14与(﹣1)2D .2与|﹣2|6、的倒数是( )A .3B .C .-D .﹣3 7、下图中哪个图形经过折叠后可以围成一个棱柱( )A .B .C .D .8、代数式a 2﹣b1的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 的平方与b 的差的倒数 C .a 的平方与b 的倒数的差 D .a 与b 的差的平方的倒数 9、如图所示的立体图形是由几个小正方体组成的一个几何体,这个几何体从上面看到的形状图是( )……○…………○……A.B.C.D.10、下列各组代数式中,是同类项的共有()(1)32与23(2)﹣5mn与(3)﹣2m2n3与3n3m2(4)3x2y3与3x3y2A.1 组B.2 组C.3 组D.4 组二、填空题11、地球上陆地的面积约为149000000平方千米,把数据149000000用科学记数法表示为。
12、小明今年m岁,5年前小明_____岁。
13、中,底数是_____,指数是_____。
14、一个正方体的六个面上分别标有1、2、3、4、5、6,根据图中从各个方向看到的数字,解答下面的问题:“?”处的数字是_____。
三、计算15、计算:(1)(﹣32)﹣(﹣27)﹣(﹣72)﹣87 (2)16、求代数式的值(1)6x+2x2﹣3x+x2+1,其中 x=﹣5;(2)2(a2b+ab2)﹣2(a2b﹣1)﹣2ab2﹣2,其中 a=﹣2,b=2。
2018-2019学年度第一学期七年级期末数学试卷及答案
2018-2019第一学期七年级数学期末试卷及答案姓名__________ 分数______一、选择题(每小题3分,共30分) 1.一个数的相反数是2,这个数是( ) A .12 B .12- C .2 D .-2 2.如果四个有理数的积是负数,那么其中负因数有( )个 A .3 B .1 C .0或2 D .1或33.火星和地球的距离约为34 000 000千米,用科学记数法表示34 000 000的结果是( ) A .0. 34×108 B .3. 4×106 C .34×106 D .3. 4×107 4.关于x 的方程3x + 2m + 1 = x -3m -2的解为x = 0,则m 的值为( ) A .35-B .15-C .15D .255.某种商品每件的进价为190元,按标价的九折销售时,利润率为15. 2%。
设这种商品的标价为每件x 元,依题意列方程正确的是( )A .1900.91900.152x -=⨯B .0.91900.152x =⨯C .0.91901900.152x -=⨯D .0.1521900.9x =⨯6.足球比赛计分规则是:胜一场得3分,平一场得1分,负一场得0分。
今年武汉黄鹤楼队经过26轮激战,以42分获“中超”联赛第五名,其中负6场,那么胜场数为( ) A .9 B .10 C .11 D .127.下图是一个由6个相同的小立方体组成的几何体,从上面看得到的平面图形是( )A .B .C .D . 8.下面等式成立的是( )A .83. 5°= 83°50′B .37°12′36″=37. 48°C .24°24′24″= 24. 44°D .41. 25°= 41°15′9.某校为了解360名七年级学生体重情况,从中抽取了60名学生进行检测。
湖北省武汉市黄陂区2018-2019学年度上学期期末考试七年级数学试题(word版无答案)
2018年春部分学校期末调研考试七年级数学试卷一、选择题(每小题3分,共30分)1.某年,四个国家的服务出口额比上年的增长率如下: 这一年服务出口额增长率最低的是( )A .美国B .中国C .英国D .意大利2. -2的倒数为( )A .12B .-12C .-2D .23.下列运算正确的是( )A .3x 2-2x 2=x 2B .2m -3m =-1C .a 2b -ab 2=0D .3a +2a =5a 24.如图,把一个蛋糕分成n 等份,要使每份中的角度是40°,则n 的值为( )A .5B .6C .8D .95.将式子(-20)+(+3)-(-5)-(+7)省略括号和加号后变形正确的是( )A .20-3+5-7B .-20-3+5+7C .-20+3+5-7D .-20-3+5-76.下列图形中,不是正方体展开图的是( )A .B .C .D .D C BAD C B D CD7.已知等式3x =2y +1,则下列变形不一定...成立的是( ) A .3x -2y =1B .3x -m =2y +1-mC .3mx =2my +1D .x =23y +138.某人工作一年的报酬是年终给他一件衣服和10枚银币,但他干满8个月就决定不再继续干了,结账时,老板给了他一件衣服和2枚银币.设这件衣服值x 枚银币,依题意列方程为( )A .12(x +2)=x +10B .8(x +2)=x +10C .210128x x ++=D .210812x x ++=9.观察下面的三行数:-2,4,-8,16,-32,64,…,a n ,…; 0,6,-6,18,-30,66,…,b n ,…; -3,3,-9,15,-33,63,…,c n ,…;根据以上规律,若某一列三个数分别为a n ,b n ,c n ,则a n ,b n ,c n 之间满足的数量关系正确..的是( ) A . a n =b n +c n +1 B .2a n +1=b n +c n C .2a n -3=b n +c nD . a n -1=b n -c n10.如图,把一长方形纸片ABCD 的一角沿AE 折叠,点D 的对应点D '落在∠BAC 内部.若∠CAE =∠BAD '=α,则∠DAE 的度数为( )A .2αB .90°-3αC .30°+2αD .45°-2α 二、填空题(每小题3分,共18分)11.化简(计算)-(+3)=______,│-2│=_____,28°56′+8°24′=_______. 12.写出一个系数为-2,次数为3次的单项式为_______.D 'EDC BA13.代数式3a -2与6-a 互为相反数,则a 的值为_________.14.如图,货轮O 在航行过程中,发现灯塔A 在它的南偏西50°的方向上,若客轮B 所处的位置与货轮O 的连线OB 恰好平分∠AOM , 则客轮B 相对货轮O 的方位是_________(填方位角).15.如果一个数的实际值为m ,测量值为n ,我们把│m -n │称为绝对误差,把m n m-称为相对误差.例如,某个零件的实际长度为10cm ,测量得9.8cm ,那么测量的绝对误差为0.2cm ,相对误差为0.02.若某个零件测量所产生的相对误差为0.05,则该零件的测量值与实际值的比nm=_____ 16.已知A ,B ,C ,D 四个点在直线l 上依次排列,C 为AD 的中点,BC -AB =16AD ,则AD BC的值为____.三、解答题(共8小题,共72分) 17.计算(每小题4分,共8分).(1)3×(-2)+(-10)+5 (2)(23-16)×│-6│+12×(-4)218.解方程(每小题4分,共8分). (1)2(x +1)=6 (2)312x +-1=53x -19.(本题8分)先化简,再求值:-3x 2y +[4xy -2(3xy -2x 2y )+xy ],其中x =-3,y =2.ON MB A南西东北20.(本题8分)如图,己知平面内有A,B,C,D四点,请按要求完成下列问题.(1)连接AB,作射线CD,交AB于点E,射线EF平分∠CEB;(2)在(1)的条件下,若∠AEC=100°,求∠CEF的补角的度数.21.(本题8分)已知线段AB,反向延长线段AB到C,使BC=52AB,D为BC的中点,E为BD的中点.(1)①补全图形;②若AB=4,则AE=__________(直接写出结果).(2)若AE=2,求AC的长.DCB A22.(本题10分)某商店销售A ,B 两种商品,每件A 商品的售价比B 商品少10元.购买5件A 商品比购买3件B 商品多10元.设每件A 商品的售价为x 元. (1)每件B 商品的售价为_______元(用含x 的式子表示); (2)求A ,B 商品每件的售价各多少元?(3)元旦期间,该商店决定对A ,B 两种商品进行促销活动,具体办法是:方案一:购买A 商品超出15件后,超出部分五折销售,不超出部分不享受任何折扣;B 商品无论多少一律九折.方案二:无论买多少,A ,B 商品一律八折.若小红打算到该商店购买m 件A 商品和20件B 商品,选择哪种方案购买更实惠(两种优惠方案不能同时享受)?BA23.(本题10分)已知∠AOB =100°,∠COD =40°,OE ,OF 分别平分∠A 0D ,∠BO D . (1)如图1,当OA ,OC 重合时,求∠EOF 的度数;(2)若将∠COD 的从图1的位置绕点O 顺时针旋转,旋转角∠AOC =α,且0°<α<90°.①如图2,试判断∠BOF 与∠COE 之间满足的数量关系并说明理由.②在∠COD 旋转过程中,请直接写出∠BOE ,∠COF ,∠AOC 之间的数量关系.备用图图2图1ABOABC D EFOOFEDBA (C )24.(本题12分)数轴上A,B,C三点对应的数a,b,c满足(a+40)2+│b+10│=0,B为线段AC的中点.(1)直接写出A,B,C对应的数a,b,c的值.(2)如图1,点D表示的数为10,点P,Q分别从A,D同时出发匀速相向运动,点P的速度为6个单位每秒,点Q的速度为1个单位每秒.当点P运动到C后迅速以原速返回到A又折返向C 点运动;点Q运动至B点后停止运动,同时P点也停止运动.求在此运动过程中P,Q两点相遇点在数轴上对应的数.(3)如图2,M,N为A,C之间两点(点M在N左边,且它们不与A,C重合),E,F分别为AN,CM的中点,求AC MNEF的值.图1图2。
湖北省武汉市黄陂区2018-2019学年七年级(上)期末考试数学试卷 含解析
2018-2019学年七年级(上)期末数学试卷一.选择题(共10小题)1.某年,四个国家的服务出口额比上年的增长率如下:美国中国英国意大利﹣3.4% 2.8% ﹣1.3% 5.0%这一年服务出口额增长率最低的是()A.美国B.中国C.英国D.意大利2.﹣2的倒数为()A.B.C.﹣2 D.23.下列运算正确的是()A.3x2﹣2x2=x2B.2m﹣3m=﹣1 C.a2b﹣ab2=0 D.3a+2a=5a2 4.如图,把一个蛋糕分成n等份,要使每份中的角度是40°,则n的值为()A.5 B.6 C.8 D.95.将式子(﹣20)+(+3)﹣(﹣5)﹣(+7)省略括号和加号后变形正确的是()A.20﹣3+5﹣7 B.﹣20﹣3+5+7 C.﹣20+3+5﹣7 D.﹣20﹣3+5﹣7 6.下列图形中,不是正方体展开图的是()A.B.C.D.7.已知等式3x=2y+1,则下列变形不一定成立的是()A.3x﹣2y=1 B.3x﹣m=2y+1﹣mC.3mx=2my+1 D.x=y+8.某人工作一年的报酬是年终给他一件衣服和10枚银币,但他干满8个月就决定不再继续干了,结账时,老板给了他一件衣服和2枚银币.设这件衣服值x枚银币,依题意列方程为()A.12(x+2)=x+10 B.8(x+2)=x+10C.D.9.观察下面的三行数:﹣2,4,﹣8,16,﹣32,64,…,a n,…;0,6,﹣6,18,﹣30,66,…,b n,…;﹣3,3,﹣9,15,﹣33,63,…,c n,…;根据以上规律,若某一列三个数分别为a n,b n,c n,则a n,b n,c n之间满足的数量关系正确的是()A.a n=b n+c n+1 B.2a n+1=b n+c nC.2a n﹣3=b n+c n D.a n﹣1=b n﹣c n10.如图,把一长方形纸片ABCD的一角沿AE折叠,点D的对应点D'落在∠BAC内部.若∠CAE=∠BAD'=α,则∠DAE的度数为()A.2αB.90°﹣3αC.30°+D.45°﹣二.填空题(共6小题)11.化简(计算)﹣(+3)=,|﹣2|=,28°56′+8°24′=.12.请写出一个系数是﹣2,次数是3的单项式..13.代数式3a﹣2与6﹣a互为相反数,则a的值为.14.如图,货轮O在航行过程中,发现灯塔A在它的南偏西50°的方向上,若客轮B所处的位置与货轮O的连线OB恰好平分∠AOM,则客轮B相对货轮O的方位是(填方位角).15.如果一个数的实际值为m,测量值为n,我们把|m﹣n|称为绝对误差,把称为相对误差.例如,某个零件的实际长度为10cm,测量得9.8cm,那么测量的绝对误差为0.2cm,相对误差为0.02.若某个零件测量所产生的相对误差为0.05,则该零件的测量值与实际值的比=16.已知A,B,C,D四个点在直线l上依次排列,C为AD的中点,BC﹣AB=AD,则的值为.三.解答题(共8小题)17.计算.(1)3×(﹣2)+(﹣10)+5(2)(﹣)×|﹣6|+×(﹣4)218.解方程.(1)2(x+1)=6(2)﹣1=19.先化简,再求值:﹣3x2y+[4xy﹣2(3xy﹣2x2y)+xy],其中x=﹣3,y=2.20.如图,已知平面内有A,B,C,D四点,请按要求完成下列问题.(1)连接AB,作射线CD,交AB于点E,射线EF平分∠CEB;(2)在(1)的条件下,若∠AEC=100°,求∠CEF的补角的度数.21.已知线段AB,反向延长线段AB到C,使BC=AB,D为BC的中点,E为BD的中点.(1)①补全图形;②若AB=4,则AE=(直接写出结果).(2)若AE=2,求AC的长.22.某商店销售A,B两种商品,每件A商品的售价比B商品少10元.购买5件A商品比购买3件B商品多10元.设每件A商品的售价为x元.(1)每件B商品的售价为元(用含x的式子表示);(2)求A,B商品每件的售价各多少元?(3)元旦期间,该商店决定对A,B两种商品进行促销活动,具体办法是:方案一:购买A商品超出15件后,超出部分五折销售,不超出部分不享受任何折扣;B 商品无论多少一律九折.方案二:无论买多少,A,B商品一律八折.若小红打算到该商店购买m件A商品和20件B商品,选择哪种方案购买更实惠(两种优惠方案不能同时享受)?23.已知∠AOB=100°,∠COD=40°,OE,OF分别平分∠AOD,∠BOD.(1)如图1,当OA,OC重合时,求∠EOF的度数;(2)若将∠COD的从图1的位置绕点O顺时针旋转,旋转角∠AOC=α,且0°<α<90°.①如图2,试判断∠BOF与∠COE之间满足的数量关系并说明理由.②在∠COD旋转过程中,请直接写出∠BOE,∠COF,∠AOC之间的数量关系.24.数轴上A,B,C三点对应的数a,b,c满足(a+40)2+|b+10|=0,B为线段AC的中点.(1)直接写出A,B,C对应的数a,b,c的值.(2)如图1,点D表示的数为10,点P,Q分别从A,D同时出发匀速相向运动,点P 的速度为6个单位/秒,点Q的速度为1个单位/秒.当点P运动到C后迅速以原速返回到A又折返向C点运动;点Q运动至B点后停止运动,同时P点也停止运动.求在此运动过程中P,Q两点相遇点在数轴上对应的数.(3)如图2,M,N为A,C之间两点(点M在N左边,且它们不与A,C重合),E,F分别为AN,CM的中点,求的值.参考答案与试题解析一.选择题(共10小题)1.某年,四个国家的服务出口额比上年的增长率如下:美国中国英国意大利﹣3.4% 2.8% ﹣1.3% 5.0%这一年服务出口额增长率最低的是()A.美国B.中国C.英国D.意大利【分析】比较各国出口额比上年的增长率得结论.【解答】解:因为﹣3.4%<﹣1.3%<2.8%<5.0%,所以增长率最低的国家是美国.故选:A.2.﹣2的倒数为()A.B.C.﹣2 D.2【分析】乘积是1的两数互为倒数.【解答】解:﹣2的倒数是﹣.故选:B.3.下列运算正确的是()A.3x2﹣2x2=x2B.2m﹣3m=﹣1 C.a2b﹣ab2=0 D.3a+2a=5a2【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变分别进行计算即可.【解答】解:A、3x2﹣2x2=x2,故原题计算正确;B、2m﹣3m=﹣m,故原题计算错误;C、a2b和ab2不是同类项,不能合并,故此选项错误;D、3a+2a=5a,故原题计算错误;故选:A.4.如图,把一个蛋糕分成n等份,要使每份中的角度是40°,则n的值为()A.5 B.6 C.8 D.9【分析】根据周角等于360度除以每份的度数即可求出n的值.【解答】解:根据题意,得n=360°÷40°=9.故选:D.5.将式子(﹣20)+(+3)﹣(﹣5)﹣(+7)省略括号和加号后变形正确的是()A.20﹣3+5﹣7 B.﹣20﹣3+5+7 C.﹣20+3+5﹣7 D.﹣20﹣3+5﹣7 【分析】先把加减法统一成加法,再省略括号和加号.【解答】解:(﹣20)+(+3)﹣(﹣5)﹣(+7)=﹣20+3+5﹣7.故选:C.6.下列图形中,不是正方体展开图的是()A.B.C.D.【分析】根据正方体展开图的11种形式对各小题分析判断即可得解.【解答】解:A、C、D可组成正方体;B不能组成正方体.故选:B.7.已知等式3x=2y+1,则下列变形不一定成立的是()A.3x﹣2y=1 B.3x﹣m=2y+1﹣mC.3mx=2my+1 D.x=y+【分析】利用等式的性质对每个式子进行变形即可找出答案.【解答】解:A、等式3x=2y+1移项,得3x﹣2y=1,等式仍然成立;故本选项不符合题意;B、等式3x=2y+1的两边同时减去m,得3x﹣m=2y+1﹣m,该等式仍然成立;故本选项不符合题意;C、等式3x=2y+1的两边同时乘以m,得3mx=2my+m,该等式不成立;故本选项符合题意;D、等式3x=2y+1的两边同时除以3,得x=y+,该等式仍然成立;故本选项不符合题意;故选:C.8.某人工作一年的报酬是年终给他一件衣服和10枚银币,但他干满8个月就决定不再继续干了,结账时,老板给了他一件衣服和2枚银币.设这件衣服值x枚银币,依题意列方程为()A.12(x+2)=x+10 B.8(x+2)=x+10C.D.【分析】设这件衣服值x枚银币,根据每个月的薪水相同,即可得出关于x的一元一次方程,此题得解.【解答】解:设这件衣服值x枚银币,依题意,得:=.故选:D.9.观察下面的三行数:﹣2,4,﹣8,16,﹣32,64,…,a n,…;0,6,﹣6,18,﹣30,66,…,b n,…;﹣3,3,﹣9,15,﹣33,63,…,c n,…;根据以上规律,若某一列三个数分别为a n,b n,c n,则a n,b n,c n之间满足的数量关系正确的是()A.a n=b n+c n+1 B.2a n+1=b n+c nC.2a n﹣3=b n+c n D.a n﹣1=b n﹣c n【分析】根据题目中的数字,可以发现数字的变化特点,从而可以写出a n,b n,c n,从而可以得到a n,b n,c n之间满足的数量关系.【解答】解:由题目中的数字可知,a n=(﹣2)n+1,b n=(﹣2)n+1+2,c n=(﹣2)n+1﹣1,则2a n+1=b n+c n,故选:B.10.如图,把一长方形纸片ABCD的一角沿AE折叠,点D的对应点D'落在∠BAC内部.若∠CAE=∠BAD'=α,则∠DAE的度数为()A.2αB.90°﹣3αC.30°+D.45°﹣【分析】由矩形的性质和折叠的性质即可得出答案.【解答】解:∵四边形ABCD是矩形,∴∠BAD=90°,由折叠的性质得:∠DAE=∠D'AE=(90°﹣∠BAD')=45°﹣;故选:D.二.填空题(共6小题)11.化简(计算)﹣(+3)=﹣3 ,|﹣2|= 2 ,28°56′+8°24′=37°20′.【分析】根据绝对值的意义,度分秒的换算:1度=60分,即1°=60′,1分=60秒,1′=60″.即可求解.【解答】解:﹣(+3)=﹣3,|﹣2|=2,28°56′+8°24′=36°80′=37°20′.故答案为﹣3、2、37°20′.12.请写出一个系数是﹣2,次数是3的单项式.﹣2a3.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是﹣2,次数是3的单项式.【解答】解:系数是﹣2,次数是3的单项式有:﹣2a3.(答案不唯一)故答案为:﹣2a3.13.代数式3a﹣2与6﹣a互为相反数,则a的值为﹣2 .【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【解答】解:因为代数式3a﹣2与6﹣a互为相反数,所以3a﹣2+6﹣a=0,解得:a=﹣2,故答案为:﹣2.14.如图,货轮O在航行过程中,发现灯塔A在它的南偏西50°的方向上,若客轮B所处的位置与货轮O的连线OB恰好平分∠AOM,则客轮B相对货轮O的方位是北偏西65°(填方位角).【分析】由∠AON=50°知∠AOM=130°,再由OB平分∠AOM知∠BOM=∠AOM=65°,继而根据方位角概念即可得出答案.【解答】解:∵∠AON=50°,∴∠AOM=180°﹣∠AON=130°,∵OB平分∠AOM,∴∠BOM=∠AOM=65°,∴客轮B相对货轮O的方位是北偏西65°,故答案为:北偏西65°.15.如果一个数的实际值为m,测量值为n,我们把|m﹣n|称为绝对误差,把称为相对误差.例如,某个零件的实际长度为10cm,测量得9.8cm,那么测量的绝对误差为0.2cm,相对误差为0.02.若某个零件测量所产生的相对误差为0.05,则该零件的测量值与实际值的比=0.95或1.05【分析】由相对误差的定义得出=0.05,再根据绝对值的化简法则及分式的除法运算法则计算即可.【解答】解:∵相对误差为0.05∴=0.05∴=0.05或=﹣0.05∴1﹣=0.05或1﹣=﹣0.05∴=0.95或1.05故答案为:0.95或1.05.16.已知A,B,C,D四个点在直线l上依次排列,C为AD的中点,BC﹣AB=AD,则的值为 3 .【分析】在一条直线或线段上的线段的加减运算和倍数运算,首先明确线段间的相互关系,最好结合几何图形,再根据题意计算即可.【解答】解:∵C为AD的中点,∴AC=AD,即AB+BC=AD,∴2AB+2BC=AD,又∵BC﹣AB=AD,∴6BC﹣6AB=AD.∴2AB+2BC=6BC﹣6AB,即BC=2AB,∴AD=6AB,∴=3,故答案为:3.三.解答题(共8小题)17.计算.(1)3×(﹣2)+(﹣10)+5(2)(﹣)×|﹣6|+×(﹣4)2【分析】(1)先算乘法,后算加法;同级运算,应按从左到右的顺序进行计算;(2)先算乘方,再算乘法,最后算加减;如果有括号和绝对值,要先做括号和绝对值内的运算.注意乘法分配律的运用.【解答】解:(1)3×(﹣2)+(﹣10)+5=﹣6﹣10+5=﹣11;(2)(﹣)×|﹣6|+×(﹣4)2=(﹣)×6+×16=4﹣1+8=11.18.解方程.(1)2(x+1)=6(2)﹣1=【分析】(1)根据一元一次方程的解法即可求出答案;(2)根据一元一次方程的解法即可求出答案.【解答】解:(1)∵2(x+1)=6,∴2x+2=6,∴x=2;(2)∵﹣1=,∴3(3x+1)﹣6=2(x﹣5),∴9x+3﹣6=2x﹣10,∴9x﹣3=2x﹣10,∴9x﹣2x=3﹣10,∴7x=﹣7,∴x=﹣1;19.先化简,再求值:﹣3x2y+[4xy﹣2(3xy﹣2x2y)+xy],其中x=﹣3,y=2.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=﹣3x2y+4xy﹣6xy+4x2y+xy=x2y﹣xy,当x=﹣3,y=2时,原式=18+6=24.20.如图,已知平面内有A,B,C,D四点,请按要求完成下列问题.(1)连接AB,作射线CD,交AB于点E,射线EF平分∠CEB;(2)在(1)的条件下,若∠AEC=100°,求∠CEF的补角的度数.【分析】(1)根据直线、射线、线段的特点以及线段的延长线,角平分线的定义回答即可.(2)根据补角的定义,角平分线的定义解答即可.【解答】解:(1)如图所示:(2)∵∠AEC=100°,射线EF平分∠CEB,∴∠CEF==,∴∠CEF的补角的度数为:180°﹣40°=140°.21.已知线段AB,反向延长线段AB到C,使BC=AB,D为BC的中点,E为BD的中点.(1)①补全图形;②若AB=4,则AE=(直接写出结果).(2)若AE=2,求AC的长.【分析】(1)由尺规作图画出符合题意的图,线段的中点,线段的和差倍分计算出AE 的长为;(2)由线段的中点,线段的和差倍分,方程计算出AC的长为8.【解答】解:(1)依题意得:①如图所示:②∵AB=4,BC=AB,∴BC=10,又∵D为BC的中点,∴DB===5,又∵E为BD的中点,∴BE===,又∵AE=AB﹣BE,∴AE=4﹣=,故答案为;(2)设BE=x,则BD=2x,BC=4x,∵BC=AB,∴4x=,解得:x=,又∵AD=DE﹣AE∴AD=﹣2=,又∵AC=AD+CD,∴AC=2×+=8,22.某商店销售A,B两种商品,每件A商品的售价比B商品少10元.购买5件A商品比购买3件B商品多10元.设每件A商品的售价为x元.(1)每件B商品的售价为(x+10)元(用含x的式子表示);(2)求A,B商品每件的售价各多少元?(3)元旦期间,该商店决定对A,B两种商品进行促销活动,具体办法是:方案一:购买A商品超出15件后,超出部分五折销售,不超出部分不享受任何折扣;B 商品无论多少一律九折.方案二:无论买多少,A,B商品一律八折.若小红打算到该商店购买m件A商品和20件B商品,选择哪种方案购买更实惠(两种优惠方案不能同时享受)?【分析】(1)根据每件A商品的售价比B商品少10元,可得答案;(2)根据购买5件A商品比购买3件B商品多10元,列方程求解即可;(3)先分m≤15和m>15,表示出两种购买方案所需要的费用,可得当m≤15时,应该按方案二购买,选择方案二购买更实惠;当m>15时,分别列不等式和方程,得出m的值即可作出判断.【解答】解:(1)每件B商品的售价为(x+10)元;故答案为:(x+10);(2)根据题意得,5x=3(x+10)+10,解得x=20,∴x+10=30;答:A,B商品每件的售价分别为20元,30元;(3)当m≤15时,方案一:20m+30×20×90%=20m+540;当m>15时,方案一:15×20+(m﹣15)×20×50%+30×20×90%=10m+690;方案二:(20m+30×20)×80%=16m+480,当m≤15时,20m+540>16m+480∴应该按方案二购买,选择方案二购买更实惠;当m>15时,10m+690>16m+480时,解得m<35;10m+690<16m+480时,解得m>35;10m+690=16m+480时,解得m=35,∴当m<35时,按方案二购买;当m=35时,两种方案都一样;当m>35时,按方案一购买.23.已知∠AOB=100°,∠COD=40°,OE,OF分别平分∠AOD,∠BOD.(1)如图1,当OA,OC重合时,求∠EOF的度数;(2)若将∠COD的从图1的位置绕点O顺时针旋转,旋转角∠AOC=α,且0°<α<90°.①如图2,试判断∠BOF与∠COE之间满足的数量关系并说明理由.②在∠COD旋转过程中,请直接写出∠BOE,∠COF,∠AOC之间的数量关系.【分析】(1)由题意得出∠AOD=∠COD=40°,∠BOD=∠AOB+∠COD=140°,由角平分线定义得出∠EOD=∠AOD=20°,∠DOF=∠BOD=70°,即可得出答案;(2)①由角平分线定义得出∠EOD=∠AOE=∠AOD=20°+α,∠BOF=∠BOD=70°+α,求出∠COE=∠AOE﹣∠AOC=20°﹣α,即可得出答案;②由①得∠EOD=∠AOE=20°+α,∠DOF=∠BOF=70°+α,当∠AOC<40°时,求出∠COF=∠DOF﹣∠COD=30°+α,∠BOE=∠BOD﹣∠EOD=∠AOB+∠COD+α﹣∠EOD=120°+α,即可得出答案;当40°<∠AOC<90°时,求出∠COF=∠DOF+∠DOC=150°﹣α,∠BOE=∠BOD﹣∠DOE=120°+,即可得出答案.【解答】解:(1)∵OA,OC重合,∴∠AOD=∠COD=40°,∠BOD=∠AOB+∠COD=100°+40°=140°,∵OE平分∠AOD,OF平分∠BOD,∴∠EOD=∠AOD=×40°=20°,∠DOF=∠BOD=×140°=70°,∴∠EOF=∠DOF﹣∠EOD=70°﹣20°=50°;(2)①∠BOF+∠COE=90°;理由如下:∵OE平分∠AOD,OF平分∠BOD,∴∠EOD=∠AOE=∠AOD=(40°+α)=20°+α,∠BOF=∠BOD=(∠AOB+∠COD+α)=(100°+40°+α)=70°+α,∴∠COE=∠AOE﹣∠AOC=20°+α﹣α=20°﹣α,∴∠BOF+∠COE=70°+α+20°﹣α=90°;②由①得:∠EOD=∠AOE=20°+α,∠DOF=∠BOF=70°+α,当∠AOC<40°时,如图2所示:∠COF=∠DOF﹣∠COD=70°+α﹣40°=30°+α,∠BOE=∠BOD﹣∠EOD=∠AOB+∠COD+α﹣∠EOD=100°+40°+α﹣(20°+α)=120°+α,∴∠BOE+∠COF﹣∠AOC=120°+α+30°+α﹣α=150°,当40°<∠AOC<90°时,如图3所示:∠COF=∠DOF+∠DOC=(360°﹣140°﹣α)+40°=150°﹣α,∠BOE=∠BOD﹣∠DOE=140°+α﹣(20°+α)=120°+,∴∠COF+∠AOC﹣∠BOE=150°﹣+α﹣(120°+)=30°;综上所述,∠BOE,∠COF,∠AOC之间的数量关系为∠BOE+∠COF﹣∠AOC=150°或∠COF+∠AOC﹣∠BOE=30°.24.数轴上A,B,C三点对应的数a,b,c满足(a+40)2+|b+10|=0,B为线段AC的中点.(1)直接写出A,B,C对应的数a,b,c的值.(2)如图1,点D表示的数为10,点P,Q分别从A,D同时出发匀速相向运动,点P 的速度为6个单位/秒,点Q的速度为1个单位/秒.当点P运动到C后迅速以原速返回到A又折返向C点运动;点Q运动至B点后停止运动,同时P点也停止运动.求在此运动过程中P,Q两点相遇点在数轴上对应的数.(3)如图2,M,N为A,C之间两点(点M在N左边,且它们不与A,C重合),E,F分别为AN,CM的中点,求的值.【分析】(1)根据(a+40)2+|b+10|=0,可求出a、b的值,B为线段AC的中点.进而可求出c的值;(2)分两种情况进行解答,一种是在A、D之间首次相遇,二是点P到C后返回追及Q 相遇,设运动时间,根据相遇、追及问题数量关系列方程求出时间,进而求出相应时所对应的数;(3)根据线段的中点的意义,用中点线段EF表示AC后即可得出答案.【解答】解:(1)∵(a+40)2+|b+10|=0,∴a=﹣40,b=﹣10,∵B为线段AC的中点,∴=﹣10,∴c=20,即:a=﹣40,b=﹣10,c=20;(2)如图1,设运动的时间为t秒,①当P与Q第一次相遇时,有6t+t=10﹣(﹣40),解得,t=,此时相遇点对应的数为10﹣=;②当点P到C返回追上点Q时,有6t﹣60=t+10,解得,t=14,此时相遇点对应的数为10﹣14=﹣4,答:在此运动过程中P,Q两点相遇点在数轴上对应的数为﹣4或;(3)如图2,∵E,F分别为AN,CM的中点,∴AN=2EN,CM=2MF,∴AC=2EN+2MF﹣MN∴====2,。
人教版七年级上册数学期末试题及答案(2018-2019学年)
人教版七年级上册数学期末试题及答案(2018-2019学年)一、选择题1. 如果 \(a^3 = -8\),那么实数 \(a\) 等于:A. \(-2\)B. \(2\)C. \(0\)D. \(3\){答案:A}2. 下列各数中是无理数的是:A. \(3\sqrt{2}\)B. \(\sqrt{9}\)C. \(0.333...\)D. \(2\sqrt{5}\){答案:A, D}3. 已知 \(a = 5\) 和 \(b = 12\),则 \(a^2 + b^2\) 等于:A. \(119\)B. \(121\)C. \(125\)D. \(132\){答案:B}4. 下列各数中是等差数列的是:A. \(2, 5, 8, 11, ...\)B. \(1, 3, 5, 7, ...\)C. \(2, 4, 8, 16, ...\)D. \(1, 1, 1, 1, ...\){答案:B}5. 如果 \(a:b = 2:3\),那么 \(a+b : b\) 等于:A. \(5:3\)B. \(2:3\)C. \(6:5\)D. \(8:7\){答案:A}二、填空题1. \(3^0 = _______){答案:1}2. 一个数的平方根叫做它的______。
{答案:算术平方根}3. 若 \(a:b = 4:5\),那么 \(a+b : b = _______)。
{答案:9}三、解答题1. 解方程 \(2x-5=3x+1\)。
{答案:x = -6}2. 已知 \(a=6\) 和 \(b=8\),求 \(a^2+b^2\)。
{答案:100}3. 计算 \(7+8\times(-2)\)。
{答案:-3}4. 判断 \(2^3 = 8\) 是否成立。
{答案:成立}5. 解不等式 \(3x-7>2x+1\)。
{答案:x>8}四、应用题1. 小明的身高是1.6米,小华的身高是1.5米,小明比小华高多少?{答案:0.1米}2. 一个长方形的长是10厘米,宽是5厘米,求它的面积和周长。
2018-2019学年度第一学期七年级数学上册期末教学质量检测(有答案解析)
2018-2019学年度第一学期期末教学质量检测七年级数学试卷一、选择题(每题3分,共36分)1.(3分)﹣的相反数是( )A.B.﹣C.2D.﹣22.(3分)据统计,2017年双十一当天,天猫成交额1682亿,1682亿用科学记数法可表示为( )A.16.82×1010B.0.1682×1012C.1.682×1011D.1.682×10123.(3分)如图,把下列图形折成一个正方体的盒子,折好后与“礼”相对的字是( )A.雅B.教C.集D.团4.(3分)已知a x b2与ab y的和是a x b y,则(x﹣y)y等于( )A.2B.1C.﹣2D.﹣15.(3分)下列各式正确的是( )A.19a2b﹣9ab2=10a2b B.3x+3y=6xyC.16y2﹣7y2=9D.2x﹣5x=﹣3x6.(3分)某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是( )A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行7.(3分)如图,C是AB的中点,D是BC的中点,下列等式不正确的是( )A.CD=AD﹣BC B.CD=AC﹣DB C.CD=AB D.CD=AB﹣DB8.(3分)下列解方程步骤正确的是( )A.由2x+4=3x+1,得2x﹣3x=1+4B.由7(x﹣1)=3(x+3),得7x﹣1=3x+3C.由0.2x﹣0.3=2﹣1.3x,得2x﹣3=2﹣13xD.由,得2x﹣2﹣x﹣2=129.(3分)如图,AB∥CD,直线EF分别与直线AB,CD相交于点G,H,已知∠3=50°,GM平分∠HGB交直线CD于点M,则∠1等于( )A.60°B.80°C.50°D.130°10.(3分)在雅礼社团年会上,各个社团大放光彩,其中话剧社52人,舞蹈社38人要外出表演,现根据演出需要,从舞蹈社中抽调了部分同学参加话剧社,使话剧社的人数恰好是舞蹈社的人数的3倍.设从舞蹈队中抽调了x人参加话剧社,可得正确的方程是( )A.3(52﹣x)=38+x B.52+x=3(38﹣x)C.52﹣3x=38+x D.52﹣x=3(38﹣x)11.(3分)如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为( )A.45°B.55°C.65°D.75°12.(3分)如图,都是由边长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(7)个图形由( )个正方形叠成.A.86B.87C.85D.84二、填空题(每题3分,共18分)13.(3分)一个角的补角比这个角的余角的2倍大18°,则这个角的度数为 .14.(3分)若a的相反数是﹣3,b的绝对值是4,且|b|=﹣b,则a﹣b= .15.(3分)已知代数式x﹣3y﹣1的值为3,则代数式5+6y﹣2x的值为 .16.(3分)如果线段AB=5cm,BC=4cm,且A、B、C三点在同一条直线上,则AC= .17.(3分)如图,直线a∥b,直角三角形ABC的直角顶点C在直线b上,∠1=20°,∠2=2∠A,则∠A= .18.(3分)按照下列程序计算输出值为2018时,输入的x值为 .三、解答题(本大题有8个小题,共66分)19.(8分)计算:(1)(﹣+﹣)×(﹣12)(2)﹣|﹣5|×(﹣12)﹣4÷(﹣)2.20.(8分)解方程:(1)2x+3=12﹣3(x﹣3)(2)21.(6分)先化简,再求值,x2﹣3(2x2﹣4y)+2(x2﹣y),其中|x+2|+(5y﹣1)2=022.(8分)如图,在△ABC中,GD⊥AC于点D,∠AFE=∠ABC,∠1+∠2=180°,∠AEF=65°,求∠1的度数.解:∠AFE=∠ABC(已知)∴ (同位角相等,两直线平行)∴∠1=∠ (两直线平行,内错角相等)∠1+∠2=180°(已知)∴ (等量代换)∴EB∥DG ∴∠GDE=∠BEA GD⊥AC(已知)∴ (垂直的定义)∴∠BEA=90°(等量代换)∠AEF=65°(已知)∴∠1=∠ ﹣∠ =90°﹣65°=25°(等式的性质)23.(8分)如图:∠BCA=64°,CE平分∠ACB,CD平分∠ECB,DF∥BC交CE于点F,求∠CDF和∠DCF的度数.24.(8分)中雅七年级(1)班想买一些运动器材供班上同学阳光体育课件使用,班主任安排班长去商店买篮球和排球,下面是班长与售货员的对话:班长:阿姨,您好!售货员:同学,你好,想买点什么?(1)根据这段对话,你能算出篮球和排球的单价各是多少吗?(2)六一儿童节店里搞活动有两种套餐,1、套装打折:五个篮球和五个排球为一套装,套装打八折:2、满减活动:999减100,1999减200;两种活动不重复参与,学校打算买15个篮球,13个排球作为奖品,请问如何安排更划算?25.(10分)“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A 的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是 ;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C 就是M、N的幸福中心,则C所表示的数可以是 (填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?26.(10分)已知AM∥CN,点B为平面内一点,AB⊥BC于B(1)如图1,直接写出∠A和∠C之间的数量关系;(3)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠ABF=2∠ABE,求∠EBC的度数.参考答案与试题解析一、选择题(每题3分,共36分)1.(3分)﹣的相反数是( )A.B.﹣C.2D.﹣2【分析】根据相反数的定义:只有符号不同的两个数叫相反数即可求解.【解答】解:根据概念得:﹣的相反数是.故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)据统计,2017年双十一当天,天猫成交额1682亿,1682亿用科学记数法可表示为( )A.16.82×1010B.0.1682×1012C.1.682×1011D.1.682×1012【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:1682亿=1.682×1011.故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(3分)如图,把下列图形折成一个正方体的盒子,折好后与“礼”相对的字是( )A.雅B.教C.集D.团【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“礼”与面“集”相对,面“雅”与面“教”相对,面“育”与面“团”相对.故选:C.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)已知a x b2与ab y的和是a x b y,则(x﹣y)y等于( )A.2B.1C.﹣2D.﹣1【分析】根据同类项的定义即可求出答案.【解答】解:由题意可知:a x b2与ab y是同类项,∴x=1,y=2,∴原式=(﹣1)2=1,故选:B.【点评】本题考查同类项的概念,解题的关键是熟练运用同类型的概念,本题属于基础题型.5.(3分)下列各式正确的是( )A.19a2b﹣9ab2=10a2b B.3x+3y=6xyC.16y2﹣7y2=9D.2x﹣5x=﹣3x【分析】根据合并同类项的法则进行计算即可.【解答】解:A、19a2b﹣9ab2,不能合并,故错误;B、3x+3y,不能合并,故错误;C、16y2﹣7y2=9y2,故错误;D、2x﹣5x=﹣3x,故正确;故选:D.【点评】本题考查了合并同类项,掌握合并同类项的法则是解题的关键.6.(3分)某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是( )A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行【分析】根据两点之间,线段最短进行解答.【解答】解:某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:A.【点评】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.7.(3分)如图,C是AB的中点,D是BC的中点,下列等式不正确的是( )A.CD=AD﹣BC B.CD=AC﹣DB C.CD=AB D.CD=AB﹣DB【分析】根据线段中点的定义可判断.【解答】解:∵C是AB的中点,D是BC的中点∴AC=BC=AB,CD=BD=BC∵CD=AD﹣AC∴CD=AD﹣BC故A正确∵CD=BC﹣DB∴CD=AC﹣DB故B正确∵AC=BC=AB,CD=BD=BC∴CD=AB故C错误∵CD=BC﹣DB∴CD=AB﹣DB故D正确故选:C.【点评】本题考查了两点之间的距离,熟练掌握线段中点的定义是本题的关键.8.(3分)下列解方程步骤正确的是( )A.由2x+4=3x+1,得2x﹣3x=1+4B.由7(x﹣1)=3(x+3),得7x﹣1=3x+3C.由0.2x﹣0.3=2﹣1.3x,得2x﹣3=2﹣13xD.由,得2x﹣2﹣x﹣2=12【分析】根据解一元一次方程的基本步骤逐一判断即可得.【解答】解:A、由2x+4=3x+1,得2x﹣3x=1﹣4,此选项错误;B、由7(x﹣1)=3(x+3),得7x﹣7=3x+9,此选项错误;C、由0.2x﹣0.3=2﹣1.3x,得2x﹣3=20﹣13x,此选项错误;D、由,得2x﹣2﹣x﹣2=12,此选项正确;故选:D.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤.9.(3分)如图,AB∥CD,直线EF分别与直线AB,CD相交于点G,H,已知∠3=50°,GM平分∠HGB交直线CD于点M,则∠1等于( )A.60°B.80°C.50°D.130°【分析】根据平行线的性质与∠3=50°,求得∠BGM=50°,由GM平分∠HGB交直线CD 于点M,得出∠BGF的度数,再根据邻补角的性质求得∠1的度数.【解答】解:∵AB∥CD,∴∠BGM=∠3=50°,∵GM平分∠HGB,∴∠BGF=100°,∴∠1=180°﹣100°=80°.故选:B.【点评】本题主要考查了平行线的性质,两直线平行,内错角相等;以及角平分线的定义.10.(3分)在雅礼社团年会上,各个社团大放光彩,其中话剧社52人,舞蹈社38人要外出表演,现根据演出需要,从舞蹈社中抽调了部分同学参加话剧社,使话剧社的人数恰好是舞蹈社的人数的3倍.设从舞蹈队中抽调了x人参加话剧社,可得正确的方程是( )A.3(52﹣x)=38+x B.52+x=3(38﹣x)C.52﹣3x=38+x D.52﹣x=3(38﹣x)【分析】设从舞蹈队中抽调了x人参加话剧社,由抽调后话剧社的人数恰好是舞蹈社的人数的3倍,即可得出关于x的一元一次方程,此题得解.【解答】解:设从舞蹈队中抽调了x人参加话剧社,根据题意得:52+x=3(38﹣x).故选:B.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.11.(3分)如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为( )A.45°B.55°C.65°D.75°【分析】先根据补角的定义求出∠CDE的度数,再由平行线的性质求出∠C的度数,根据余角的定义即可得出结论.【解答】解:∵∠1=155°,∴∠CDE=180°﹣155°=25°.∵DE∥BC,∴∠C=∠CDE=25°.∵∠A=90°,∴∠B=90°﹣25°=65°.故选:C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.12.(3分)如图,都是由边长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(7)个图形由( )个正方形叠成.A.86B.87C.85D.84【分析】根据图形的变换规律,可知第n个图形中的正方体的个数为1+3+6+…+,据此可得第(7)个图形中正方体的个数.【解答】解:由图可得:第(1)个图形中正方体的个数为1;第(2)个图形中正方体的个数为4=1+3;第(3)个图形中正方体的个数为10=1+3+6;第(4)个图形中正方体的个数为20=1+3+6+10;故第n个图形中的正方体的个数为1+3+6+…+,第(7)个图形中正方体的个数为1+3+6+10+15+21+28=84.故选:D.【点评】本题主要考查了图形变化类问题以及正方体,解决问题的关键是依据图形得到变换规律.解题时注意:第n个图形中的正方体的个数为1+3+6+…+.二、填空题(每题3分,共18分)13.(3分)一个角的补角比这个角的余角的2倍大18°,则这个角的度数为 18° .【分析】设这个角的度数为x,根据余角和补角的定义、结合题意列出方程,解方程即可.【解答】解:设这个角的度数为x,由题意得,180°﹣x=2(90°﹣x)+18°,解得,x=18°,故答案为:18°.【点评】本题考查的是余角和补角,如果两个角的和等于90°,就说这两个角互为余角;如果两个角的和等于180°,就说这两个角互为补角.14.(3分)若a的相反数是﹣3,b的绝对值是4,且|b|=﹣b,则a﹣b= 7 .【分析】利用相反数,绝对值的代数意义求出a与b的值,代入原式计算即可求出值.【解答】解:根据题意得:a=3,b=﹣4,则原式=3﹣(﹣4)=3+4=7,故答案为:7【点评】此题考查了有理数的减法,以及相反数,绝对值,熟练掌握各自的性质是解本题的关键.15.(3分)已知代数式x﹣3y﹣1的值为3,则代数式5+6y﹣2x的值为 ﹣3 .【分析】首先求出x﹣3y的值是多少,然后把它代入5+6y﹣2x,求出算式的值为多少即可.【解答】解:∵x﹣3y﹣1=3,∴x﹣3y=4,∴5+6y﹣2x=5﹣2(x﹣3y)=5﹣2×4=5﹣8=﹣3故答案为:﹣3.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.16.(3分)如果线段AB=5cm,BC=4cm,且A、B、C三点在同一条直线上,则AC= 1cm 或9cm .【分析】分类讨论:C在线段AB上,C在线段AB的延长线上,根据线段的和差,可得答案.【解答】解:当C在线段AB上时,由线段的和差,得AC=AB﹣BC=5﹣4=1(cm);当C在线段AB的延长线上时,由线段的和差,得AC=AB+BC=5+4=9(cm),故答案为:1cm或9cm.【点评】本题考查了两点间的距离,分类讨论是解题关键,以防漏掉.17.(3分)如图,直线a∥b,直角三角形ABC的直角顶点C在直线b上,∠1=20°,∠2=2∠A,则∠A= 35° .【分析】根据平角等于180°列式计算得到∠3,根据两直线平行,同位角相等可得∠3=∠2,进而得到∠A的度数.【解答】解:∵∠1=20°,∠ACB=90°,∴∠3=90°﹣∠1=70°,∵直线a∥b,∴∠2=∠3=70°,又∵∠2=2∠A,∴∠A=35°,故答案是:35°.【点评】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.18.(3分)按照下列程序计算输出值为2018时,输入的x值为 202 .【分析】利用计算程序得到2(5x﹣1)=2018,然后解关于x的方程即可.【解答】解:根据题意得2(5x﹣1)=2018,5x﹣1=1009,所以x=202.故答案为202.【点评】本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.也考查了一元一次方程的应用,三、解答题(本大题有8个小题,共66分)19.(8分)计算:(1)(﹣+﹣)×(﹣12)(2)﹣|﹣5|×(﹣12)﹣4÷(﹣)2.【分析】(1)运用乘法的分配律计算可得;(2)根据有理数的混合运算顺序和法则计算可得.【解答】解:(1)原式=(﹣)×(﹣12)+×(﹣12)+(﹣)×(﹣12)=2﹣9+5=﹣2;(2)原式=﹣5×(﹣1)﹣4×4=5﹣16=﹣11.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和法则.20.(8分)解方程:(1)2x+3=12﹣3(x﹣3)(2)【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x+3=12﹣3x+9,移项合并得:5x=18,解得:x=3.6;(2)去分母得:9x﹣6=24﹣8x+4,移项合并得:17x=34,解得:x=2.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(6分)先化简,再求值,x2﹣3(2x2﹣4y)+2(x2﹣y),其中|x+2|+(5y﹣1)2=0【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=x2﹣6x2+12y+2x2﹣2y=﹣3x2+10y,∵|x+2|+(5y﹣1)2=0,∴x=﹣2,y=,则原式=﹣12+2=﹣10.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.22.(8分)如图,在△ABC中,GD⊥AC于点D,∠AFE=∠ABC,∠1+∠2=180°,∠AEF=65°,求∠1的度数.解:∠AFE=∠ABC(已知)∴ EF∥BC (同位角相等,两直线平行)∴∠1=∠ EBC (两直线平行,内错角相等)∠1+∠2=180°(已知)∴ ∠EBC+∠2=180° (等量代换)∴EB∥DG 同旁内角互补,两直线平行 ∴∠GDE=∠BEA 两直线平行,同位角相等 GD⊥AC(已知)∴ ∠GDE=90° (垂直的定义)∴∠BEA=90°(等量代换)∠AEF=65°(已知)∴∠1=∠ BEA ﹣∠ AEF =90°﹣65°=25°(等式的性质)【分析】根据平行线的性质和判定可填空.【解答】解:∠AFE=∠ABC(已知)∴EF∥BC(同位角相等,两直线平行)∴∠1=∠EBC(两直线平行,内错角相等)∠1+∠2=180°(已知)∴∠EBC+∠2=180°(等量代换)∴EB∥DG (同旁内角互补,两直线平行)∴∠GDE=∠BEA (两直线平行,同位角相等)GD⊥AC(已知)∴∠GDE=90°(垂直的定义)∴∠BEA=90°(等量代换)∠AEF=65°(已知)∴∠1=∠BEA﹣∠AEF=90°﹣65°=25°(等式的性质)故答案为:EF∥BC,∠EBC,∠EBC+∠2=180°,同旁内角互补,两直线平行,两直线平行,同位角相等,∠GDE,∠BEA,∠AEF.【点评】本题考查了平行线的判定和性质,灵活运用平行线的性质和判定解决问题是本题的关键.23.(8分)如图:∠BCA=64°,CE平分∠ACB,CD平分∠ECB,DF∥BC交CE于点F,求∠CDF和∠DCF的度数.【分析】根据角平分线的定义可求∠BCF的度数,再根据角平分线的定义可求∠BCD和∠DCF的度数,再根据平行线的性质可求∠CDF的度数.【解答】解:∵∠BCA=64°,CE平分∠ACB,∴∠BCF=32°,∵CD平分∠ECB,∴∠BCD=∠DCF=32°,∵DF∥BC,∴∠CDF=∠BCD=32°.【点评】考查了角平分线的定义,平行线的性质,关键是熟悉两直线平行,内错角相等的知识点.24.(8分)中雅七年级(1)班想买一些运动器材供班上同学阳光体育课件使用,班主任安排班长去商店买篮球和排球,下面是班长与售货员的对话:班长:阿姨,您好!售货员:同学,你好,想买点什么?(1)根据这段对话,你能算出篮球和排球的单价各是多少吗?(2)六一儿童节店里搞活动有两种套餐,1、套装打折:五个篮球和五个排球为一套装,套装打八折:2、满减活动:999减100,1999减200;两种活动不重复参与,学校打算买15个篮球,13个排球作为奖品,请问如何安排更划算?【分析】(1)设篮球的单价为x元/个,排球的单价为y元/个,根据每个排球比每个篮球便宜30元及570元购买3个篮球和5个排球,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)分别求出按套装打折购买及按满减活动购买所需费用,比较后即可得出结论.【解答】解:(1)设篮球的单价为x元/个,排球的单价为y元/个,根据题意得:,解得:.答:篮球的单价为90元/个,排球的单价为60元/个.(2)按套装打折购买需付费用为:10×(90+60)×0.8+5×90+3×60=1830(元),按满减活动购买需付费用为:15×90+13×60﹣200=1930(元).∵1830<1930,∴按套装打折购买更划算.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)分别求出按套装打折购买及按满减活动购买所需费用.25.(10分)“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A 的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是 ﹣4或2 ;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C 就是M、N的幸福中心,则C所表示的数可以是 ﹣2或﹣1或0或1或2或3或4 (填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?【分析】(1)根据幸福点的定义即可求解;(2)根据幸福中心的定义即可求解;(3)分两种情况列式:①P在B的右边;②P在A的左边讨论;可以得出结论.【解答】解:(1)A的幸福点C所表示的数应该是﹣1﹣3=﹣4或﹣1+3=2;(2)4﹣(﹣2)=6,故C所表示的数可以是﹣2或﹣1或0或1或2或3或4;(3)设经过x秒时,电子蚂蚁是A和B的幸福中心,依题意有①8﹣2x﹣4+(8﹣2x+1)=6,解得x=1.75;②4﹣(8﹣2x)+[﹣1﹣(8﹣2x)]=6,解得x=4.75.故当经过1.75秒或4.75秒时,电子蚂蚁是A和B的幸福中心.【点评】本题考查了数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间×速度,认真理解新定义.26.(10分)已知AM∥CN,点B为平面内一点,AB⊥BC于B(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠ABF=2∠ABE,求∠EBC的度数.【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB ⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【解答】解:(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点评】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.。
湖北省武汉市黄陂区部分学校2018-2019年七年级(上) 10月月考数学考试试卷 (解析版)
湖北省武汉市黄陂区部分学校2018-2019年七年级(上)10月月考数学考试试卷(解析版)2018-2019学年湖北省武汉市黄陂区部分学校七年级(上)月考数学试卷(10月份)一、选择题(本大题共10小题,共30.0分)1.下列各数:、0、、、、2014、,其中是负数的有A. 2个B. 3个C. 4个D. 5个【答案】A【解析】解:、是负数,故选:A.根据正数与负数的定义即可求出答案.本题考查正数与负数,解题的关键是正确理解正数与负数,本题属于基础题型.2.下列语句正确的是A. “米”表示向东走15米B. 表示没有温度C. 在一个正数前添上一个负号,它就成了负数D. 0 既是正数也是负数【答案】C【解析】解:A、“米”表示向东走15米,故错误;B、表示没有温度,故错误;C、在一个正数前添上一个负号,它就成了负数,故正确;D、0既不是正数也不是负数,故错误;故选:C.根据正负数的意义进行选择即可.本题考查了正数和负数,掌握正负数的意义、性质是解题的关键.3.下列各对数中,不是相反数的是A. 与B. 与C. 8与D. 与【答案】A【解析】解:,与相同,故A不是相反数,故选:A.根据只有符号不同的两个数互为相反数,可得一个数的相反数.1 / 11本题考查了相反数,在一个数的前面加上负号就是这个数的相反数,注意要先化简数,在判断.4.下列数轴的画法正确的是A. B. C. D.【答案】A【解析】解:A、正确;B、单位长度不统一,故错误;C、没有正方向,故错误;D、单位长度不统一,故错误.故选:A.数轴就是规定了原点、正方向、单位长度的直线数轴的这三个要素必须同时具备.数轴的三要素:原点、正方向、单位长度在画数轴时必须同时具备.5.绝对值大于3而不大于6的整数有A. 3个B. 4个C. 6个D. 多于6个【答案】C【解析】解:绝对值大于3而不大于6的整数有4,5,6,,,共6个.故选:C.先求出大于3而不大于6的所有正整数为4,5,6,再根据绝对值的性质找出负整数为,,所以共有6个.此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.已知,,且,则的值等于A. 5或B. 1或C. 5或1D. 或【答案】B【解析】解:,,,时,,则;时,,则.故选:B.先根据绝对值的性质,求出x、y的值,然后根据,进一步确定x、y的值,再代值求解即可.此题主要考查了绝对值的性质,能够根据已知条件正确的判断出x、y的值是解答此题的关键.7.下列几种说法中正确的是若,则湖北省武汉市黄陂区部分学校2018-2019年七年级(上)10月月考数学考试试卷(解析版)若,则若,则若,则.A. B. C. D.【答案】A【解析】解:若,则正确;若,则正确,若,则或,故本小题错误;若,则或,故本小题错误;综上所述,正确的是.故选:A.根据绝对值的性质对各小题分析判断即可得解.本题考查了绝对值的性质,是基础题,熟记性质是解题的关键.8.如图,A、B、C三点在数轴上所表示的数分别为a、b、c,根据图中各点位置,下列各式正确的是A. B. C.D.【答案】D【解析】解:从数轴可知:,,,,,,,,,,,只有选项D正确;选项A、B、C都错误,故选:D.根据数轴得出,求出,,,,,,再根据有理数的运算法则判断即可.本题考查了数轴和有理数的运算法则,能根据数轴得出是解此题的关键.9.若,则a的取值范围是A. B. C. D.【答案】A【解析】解:,,解得:.故选:A.根据时,,因此,则,即可求得a的取值范围.3 / 11此题考查绝对值问题,只要熟知绝对值的性质即可解答一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.10.下列图形都是由同样大小的五角星按一定的规律组成,其中第个图形一共有2个五角星,第个图形一共有8个五角星,第个图形一共有18个五角星,,则第个图形中五角星的个数为A. 84B. 90C. 94D. 98【答案】D【解析】解:第个图形一共有2个五角星,第个图形一共有:个五角星,第个图形一共有个五角星,第n个图形一共有:,,则第个图形一共有:个五角星;故选:D.先根据题意求找出其中的规律,即可求出第个图形中五角星的个数.本题考查了图形变化规律的问题,把五角星分成三部分进行考虑,并找出第n个图形五角星的个数的表达式是解题的关键.二、填空题(本大题共6小题,共18.0分)11.如果水位升高3m时,水位变化记作,那么水位下降3m时,水位变化记作______【答案】【解析】解:水位升高3m时,水位变化记作,水位下降3m时,水位变化记作.故答案为:.首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.湖北省武汉市黄陂区部分学校2018-2019年七年级(上)10月月考数学考试试卷(解析版)12.有几滴墨水滴在数轴上,根据图中标出的数值,推算墨迹盖住的整数有______个【答案】8【解析】解:在和之间的整数有,,,,共4个,在4和9之间的整数有5,6,7,8,共4个,,故答案为:8.分别求出在和之间的整数和在4和9之间的整数,再相加即可.本题考查了数轴和有理数的大小比较,能分别求出在和之间的整数和在4和9之间的整数是解此题的关键.13.若数轴上的点A所对应的有理数是,那么与点A相距4个单位长度的点所对应的有理数是______.【答案】或2【解析】解:在A点左边与A点相距4个单位长度的点所对应的有理数为;在A点右边与A点相距4个单位长度的点所对应的有理数为.故答案为:或2.此题注意考虑两种情况:当点在已知点A的左侧;当点在已知点A的右侧.此题考查了数轴的知识,解答本题容易出错的地方是忘记讨论,造成漏解,同学们一定要注意,这是常考的知识点.14.A、B、C三点在数轴上对应的数分别是2、、x,若相邻两点的距离相等,则______【答案】或8或【解析】解:数轴上、2间距离是:,当x在左侧时,,所以,当x在与2中间时,,当x在2的右边时,.故答案为:或8或.先算出2与间的距离,然后讨论x在的左边,在与2之间、在2的右边不同情况.本题考查了数轴上的点题目难度不大,需分类讨论.15.如果4个不等的偶数m,n,p,q满足,那么等于______.【答案】12【解析】解:,n,p,q是4个不等的偶数,、、、均为整数.,5 / 11可令,,,.解得:,,,..故答案为:12.根据题意可知、、、均为整数,然后将9分解因数即可求得答案.本题主要考查的是有理数的乘法,判断出、、、均为整数是解题的关键.16.已知,其中表示当时,代数式的值如,,,则______.【答案】2014【解析】解:,,故答案为:2014根据代数式求值即可求出答案.本题考查代数式求值,解题的关键是熟练根据题意找出运算规律,本题属于基础题型.三、计算题(本大题共4小题,共36.0分)17.计算:【答案】解:;.【解析】根据有理数的加减法可以解答本题;根据有理数的除法和加减法可以解答本题.湖北省武汉市黄陂区部分学校2018-2019年七年级(上)10月月考数学考试试卷(解析版)本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.18.已知a与2b互为倒数,与互为相反数,,求的值.【答案】解:根据题意得:,,,当时,原式;当时,原式.【解析】根据互为倒数两数之积为1,互为相反数两数之和为0,利用绝对值的代数意义分别求出各自的值,代入所求式子计算即可求出值.此题考查了有理数的混合运算,相反数,绝对值,以及倒数,熟练掌握各自的定义是解本题的关键.19.已知,,当,求的值.已知abc,求的值.【答案】解:,,当,,,此时;,,此时,则的值为7或1;当a,b,c三正时,原式;当a,b,c两正一负时,原式;当a,b,c一正两负时,原式;当a,b,c三负时,原式,综上,原式的值为0或.【解析】根据题意,利用绝对值的代数意义求出所求即可.此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.20.观察下面三行数:第一行:2,,8,,32,,;第二行:4,,10,,34,,;第三行:1,,4,,16,;第一行数的第8个数为______,第二行数的第8个数为______,第三行数的第8个数为______,第一行是否存在连续的三个数使得三个数的和是768?若存在求出这三个数,若不存在说明理由.是否存在一列数,使得这一列的三个数的和为1282?若存在求出这三个数,若不存在说明理由.【答案】【解析】解:,,8,,32,,;,,,,第行第8个数为:;7 / 11,,10,,34,,都比第一行对应数字大2,第行第8个数为:;,,4,,16,,第行是第一行的,第行第8个数为:;故答案为:不存在.设第一行其中连续的三个数分别为x,,4x,则,解得,不在第一行,不存在;存在.同一列的数符号相同,这三个数都是正数,这一列三个数的和为:,,,存在这样的一列,分别是521,514,256,使得其中的三个数的和为1282.根据第行已知数据都是2的乘方得到,再利用第偶数个系数为负数即可得出答案,进而利用第,行与第1行的大小关系得出即可;根据行数据关系分别表示出3个连续的数,进而求出它们的和;利用已知规律得出三行数据的规律进而得出方程求出即可.此题考查数字的变化规律,找出数字的变化规律,得出行之间的运算方法解决问题.四、解答题(本大题共4小题,共36.0分)21.将下列各数填在相应的集合里.,,,,1,,,0,,整数集合:;分数集合:;正数集合:;负数集合:.【答案】解:整数集合:1,;分数集合:;正数集合:;负数集合:.湖北省武汉市黄陂区部分学校2018-2019年七年级(上) 10月月考数学考试试卷 (解析版) 9 / 11【解析】根据形如: , ,0,4,5是整数,可得整数集合; 根据把物体平均分成若干份,其中的一份或几份是分数,可得分数集合; 根据大于零的数是正数,可得整数集合; 根据小于零的数是负数,可得负数集合.本题考查了有理数,大于零的数是正数,小于零的数是负数.22. 小王上周五在股市以收盘价每股25元买进某公司的股票1000股,在接下来的一周交易日内,他记下该股票每日收盘价比前一天的涨跌情况 单位:元 :星期二收盘时,该股票每股多少元?本周内,该股票收盘时的最高价、最低价分别是多少?已知买入股票与卖出股票均需支付成交金额的 的交易费,若小王在本周五以收盘价将全部股票卖出,他的收益情况如何? 【答案】解: 周二: 元 , 答:星期二收盘时,该股票每股 元;周一 元 ,周二 元 ,周三 元 ,周四 元 ,周五 元 , 答:该股票收盘时的最高价28元,最低价 元;元 答:小王在本周五以收盘价将全部股票卖出,他的收益1922元. 【解析】 根据有理数的加法,可得答案;根据有理数的加法,可得每天的价格,根据有理数的大小比较,可得答案; 根据股票卖出价减去买入价减去交费,可得答案. 本题考查了正数和负数,利用了有理数的加法运算.23. 有理数a 、b 在数轴上的对应点的位置如图所示,已知 , .用“ ”符号连接0,1, , , ,a ,b ; 化简.【答案】解:;, , ,,原式.【解析】根据数轴即可比较大小,然后再化简.本题考查了有理数大小的比较,数轴,涉及绝对值的性质,比较大小,整式化简求值.24.如图1,数轴上,O点与C点对应的数分别是0,单位:单位长度,将一根质地均匀的直尺AB放在数轴上在B的左边,若将直尺在数轴上水平移动,当A 点移动到B点的位置时,B点与C点重合,当B点移动到A点的位置时,A点与O 点重合.请直接写出直尺的长为______个单位长度;如图2,直尺AB在数轴上移动,有,求此时A点所对应的数;如图3,以OC为边搭一个横截面为长方形的不透明的篷子,将直尺放入篷内的数轴上的某处看不到直尺的任何部分,A在B的左边,将直尺AB沿数轴以4个单位长度秒的速度分别向左、右移动,直到完全看到直尺,所经历的时间分别为、,若秒,求直尺放入篷内时,A点所对应的数为多少?【答案】20【解析】解:直尺的长为20个长度单位当直尺AB在数轴上移动时,符合的情况如下所示:设BO为x:,所对应的数为设OA为x:,所对应的数为10综上所述,A在数轴上所对应的数分别为或10.设,如下图,根据题意,解得所以A点在蓬内所对应的数为38根据数轴上点的移动来计算相对点的位置,找到它们的数量关系来求解.湖北省武汉市黄陂区部分学校2018-2019年七年级(上)10月月考数学考试试卷(解析版)本题通过直尺两端相对固定的两个点在数轴上移动时和数轴上固定的点之间长度关系的变化来确定移动点的位置,根据已知条件来分析移动点的可能性是解题的关键.11 / 11。
2018-2019学年第一学期期末测试七年级数学试题及答案
2018—2019学年第一学期期末测试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分为120分。
考试用时100分钟。
考试结束后,只上交答题卡。
2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。
3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试题卷上。
24.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列算式:(1)(2)--;(2)2- ;(3) 3(2)-;(4)2(2)-.其中运算结果为正数的个数为(A )1 (B )2 (C )3 (D )4【 2.若a 与b 互为相反数,则a-b 等于(A )2a (B )-2a (C ) 0 (D )-2 3.下列变形符合等式基本性质的是(A )如果2a -b =7,那么b =7-2a (B )如果mk =nk ,那么m =n(C )如果-3x =5,那么x =5+3 (D )如果-13a =2,那么a =-64.下列去括号的过程(1)c b a c b a --=--)(; (2)c b a c b a ++=--)(; (3)c b a c b a +-=+-)(; (4)c b a c b a --=+-)(.其中运算结果错误的个数为(A )1 (B )2 (C )3 (D )4【 5.下列说法正确的是(A )1-x 是一次单项式 (B)单项式a 的系数和次数都是1 (C )单项式-π2x 2y 2的次数是6 (D)单项式24102x ⨯的系数是26.下列方程:(1)2x -1=x -7 ,(2)12x =13x -1 ,(3)2(x +5)=-4-x , (4)23x =x -2.其中解为x =-6的方程的个数为 (A )4 (B )3 (C )2 (D )1 7.把方程5.07.01.023.012.0-=--x x 的分母化为整数的方程是 (A )57203102-=--x x (B )5723102-=--x x (C )572312-=--x x (D )5720312-=--x x 8.森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物,28.3亿吨用科学记数法表示为(A ) 28.3×107(B ) 2.83×108(C )0.283×1010(D )2.83×1099.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是 (A )用两个钉子就可以把木条固定在墙上(B )利用圆规可以比较两条线段的大小关系 (C )把弯曲的公路改直,就能缩短路程(D )植树时,只要定出两棵树的位置,就能确定同一行树所在的直线10.一个两位数,个位数字为a ,十位数字为b ,把这个两位数的个位数字与十位数字 交换,得到一个新的两位数,则新两位数与原两位数的和为 (A )b a 99+(B )ab 2(C )ab ba +(D )b a 1111+ 11.已知表示有理数a 、b 的点在数轴上的位置如图所示:则下列结论正确的是(A )|a|<1<|b| (B )1<a<b (C )1<|a|<b (D ) -b<-a<-1 12.定义符号“*”表示的运算法则为a*b =ab +3a ,若(3*x)+(x*3)=-27,则x = (A )29-(B )29(C )4 (D )-4 第Ⅱ卷(非选择题)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.若把45.58°化成以度、分、秒的形式,则结果为.14.若xm-1y 3与2xy n 的和仍是单项式,则(m-n )2018的值等于______ .15. 若031)2(2=++-y x ,则y x -=. 16.某同学在计算10+2x 的值时,误将“+”看成了“﹣”,计算结果为20,那么10+2x 的值应为.17.如图,数轴上相邻刻度之间的距离是51,若BC=52,A 点在数轴上对应的数值是53-,则B 点在数轴上对应的数值是 .218.我们知道,钟表的时针与分针每隔一定的时间就会重合一次,请利用所学知识确定,时针与分针从上一次重合到下一次重合,间隔的时间是______ 小时.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(每小题分5分,本小题满分10分)计算: (1)11(0.5)06(7)( 4.75)42-+--+--(2)[(﹣5)2×]×(﹣2)3÷7.20.(每小题分5分,本小题满分10分)先化简,再求值: (1)3x 2-[5x-(6x-4)-2x 2],其中x=3(2)(8mn-3m 2)-5mn-2(3mn-2m 2),其中m=-1,n=2.21.(每小题分5分,本小题满分10分)解方程:(1)6322-41--=x x . (2)3125121103--=+x x . 22.(本小题满分8分)一个角的余角比这个角的补角的 13 还小10°,求这个角的度数.23.(本大题满分10分)列方程解应用题:A 车和B 车分别从甲,乙两地同时出发,沿同一路线相向匀速而行.出发后1.5小时两车相距75公里,之后再行驶2.5小时A 车到达乙地,而B 车还差40公里才能到达甲地.求甲地和乙地相距多少公里?24.(本小题满分12分)如图,∠AOB是直角,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)当∠AOC=40°,求出∠MON的大小,并写出解答过程理由;(2)当∠AOC=50°,求出∠MON的大小,并写出解答过程理由;(3)当锐角∠AOC=α时,求出∠MON的大小,并写出解答过程理由.2017—2018学年第一学期期末测试七年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分)二、填空题(本大题6个小题,每小题4分,共24分)13.45°34'48"; 14.1; 15.37; 16. 0 ; 17.0或54 ; 18.1112 . 三、解答题(本大题6个小题,共60分) 19.(每小题分5分,本小题满分10分)计算:解:(1)11(0.5)06(7)( 4.75)42-+--+-- =130.567.5444-+-+………………………………………………2分=13(0.57.5)(64)44--++………………………………………………4分=3.………………………………………………5分(2)[(﹣5)2×]×(﹣2)3÷7=[25×]×(﹣8)÷7……………………………………1分 =[﹣15+8]×(﹣8)÷7………………………………………………2分 =﹣7×(﹣8)÷7 (3)分=56÷7…………………………………………………………4分=8.…………………………………………………………5分20.(每小题分5分,本小题满分10分)先化简,再求值:解:(1)原式, ………………………3分当时,原式; ………………………5分 (2)原式,………………………3分当时,原式. ………………………5分21.(每小题分5分,本小题满分10分)解方程:解:(1)去分母得:, …………3分移项合并得:; …………5分(2)解:原方程可化为312253--=+x x . …………1分去分母,得)12(2)53(3--=+x x . …………2分去括号,得24159+-=+x x . …………3分移项,得215-49+=+x x . …………4分合并同类项,得1313-=x .系数化为1,得1-=x . …………5分22.(本小题满分8分)解:设这个角的度数为x °, …………1分根据题意,得90-x =13(180-x)-10, …………5分解得x =60. …………7分答:这个角的度数为60°. …………8分23.(本大题满分10分)解:设甲地和乙地相距x 公里,根据题意,列出方程752401.5 1.52.5x x --=+………………………………………5分 解方程,得4300360x x -=-………………………………………7分240x =………………………………………9分答:甲地和乙地相距240公里. ……………………………10分24.(本小题满分12分)解:(1)∠AOC =40°时, ∠MON =∠MOC -∠CON ………………………………………1分=12(∠BOC -∠AOC) ………………………………………3分=12∠AOB ………………………………………5分 =45°. ………………………………………6分 (2)当∠AOC =50°,∠MON =45°.理由同(1).………………………9分 (3)当∠AOC=α时,∠MON =45°. 理由同(1).………………………12分注意:评分标准仅做参考,只要学生作答正确,均可得分。
[首发]湖北省武汉市黄陂区2018-2019学年七年级上学期期末考试数学答案
2018 年秋部分学校期末调研考试七年级数学参考答案及评分说明一、选择题(每小题 3 分,共 30 分)二、填空题(每小题 3 分,共 18 分)11. -3 ,2, 37 20'12. -2x 3 (答案不唯一) 13. -2 14. 北偏西 65°(西偏北 25°)15. 19 或 21 (0.95 或 1.05)16.3三、解答题(共 8 小题,共 72 分) 20 2017.(1)原式= -6 - 2(2)原式= 2 ⨯ 6 - 1⨯ 6+8 3 6 ………2 分= -8 ;= 4 -1+8=11 .......................................................... 4 分18.(1)化简,得: x +1 = 3 ;(2)去分母,得9x + 3 - 6 = 2x -10……2 分解 得 x = 2移项合并同类项,得7x = -7 化系数为 1,得 x = -1………4 分19. 原式== -3x 2 y + ⎡⎣4xy - 6xy + 4x 2y + xy ⎤⎦x 2y - xy…………4 分当 x = -3, y = 2时,原式= (-3)2⨯ 2 - (-3)⨯ 2 =18+6 = 24 ........................................................... 8 分20.(1)正确画图; ...................................................... 4 分(2)∵∠AEC =100°,则 ∠BEC =180°-∠AEC =80°,又 EF 平分∠BEC ,1∴∠CEF = 2∠BEC =40°, .................................... 7 分 ∴∠CEF 的补角的度数为 180°-40°=140° ......................... 8 分21.(1)①正确画图; ....................................................2 分②3 ; .........................................................4 分2(2) 设 AD =x.则 DE =2+x ,∵E 为 BD 中点,∴BD=2DE=4+2x,BE=DE=2+x,∴AB=4+x,又D 为BC 中点,∴BC=2BD=8+4x,CD=BD=4+2x ,................................................ 6 分∵BC =5 AB ,2∴8 + 4x =5 (4 +x) ,解得x =4 ,2 3∴AC=CD+AD=4+3x=8 .......................................... 8 分22. (1) (x+10) 2 分(2)依题可得:5x - 3(x+10)=10 , ..................................... 4 分解得,x=20,即每件A 的售价为20 元,每件B 的售价为x+10=30(元)............. 5分(3)当m≤15 时,方案一的总费用为:20m +20×0.9×30=20m +540(元),方案二的总售价为:20m×0.8+20×30×0.8=16m +480(元),即方案二更实惠............................................... 7分当m>15 时,若方案一与方案二一样优惠,则15⨯ 20+ (m -15)⨯ 20⨯ 0.5 + 20⨯ 30⨯ 0.9 =(20m + 20⨯ 30)⨯ 0.8解得m = 35 , ................................................................ 9 分即当m≤35时,方案二更实惠,当m >35 时,方案一更实惠.............. 10 分23.(1)依题意,∠AOD=40°,∠BOD=140°,∵OE 平分∠AOD,OF 平分∠BOD,∴∠EOD= 1 ∠AOD=20°,∠BOF= 1 ∠BOD=70°,2 2∴∠EOF=∠BOD -∠BOF-∠DOE=140°-70°-20°=50° ........................................ 3 分(2)①∠BOF+∠COE=90°,理由如下:.................................. 4 分∵OE 平分∠AOD,OF 平分∠BOD,∴∠EOD=∠AOE= 1 ∠AOD=20°+ α,∠BOF= 1 ∠BOD=70°+ α,2 2 2 2∴∠COE=∠AOE-∠AOC=20°+ α2-α=20°-α,2∴∠BOF+∠COE=90°................................................................................................ 7 分②∠BOE+∠COF-∠AOC =150°或∠COF+∠AOC -∠BOE =30°........................ 10 分24. (1) -40 , -10, 20; ........................................... 3 分(2) 依题知:D 点表示的数为 10,P 运动到 C 所需时间为(20+40)÷6=10 秒,Q 运动到 B 所需时间为(10+10)÷1=20 秒, .......................... 4 分设 Q 点运动的时间为 t 秒.①当 0<t ≤10 时,P 表示的数为-40 + 6t ,Q 表示的数为10 - t ,当 P ,Q 相遇时-40 + 6t =10 - t ,解得t = 50,7 即此时对应的数为:10 - t = 20, ................................. 6 分7②当 10<t ≤20 时,P 表示的数为20 - (6t - 60)=80 - 6t ,Q 表示的数为10 - t ,80 - 6t =10 - t ,解得t =14 ,即此时对应的数为:10 -14= - 4 ,综上所述,这个数为 20或-4 ......................................... 8 分7(3) 设 M 表示的数为 2m ,N 表示的数为 2n .∵E 为 AN 中点, ∴E 点表示的数为-20+n , ∵F 为 CM 中点,∴F 点表示的数为 10+m ......................................................................................... 9 分 ∴EF =(10+m )-(-20+n )=30-n +m ,AC -MN =60-2n +2m , .............................................................................................. 11 分即 AC - MN =60 - 2n + 2m = 2 .......................................................................................12 分DE30 - n + m。
2018-2019学年七年级(上)期末数学试题(解析版)
2018-2019学年七年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1. 如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A. B. C. D.【答案】B【解析】【分析】检测质量时,与标准质量偏差越小,合格的程度就越高.比较与标准质量的差的绝对值即可.【详解】|+0.6|=0.6,|-0.2|=0.2,|-0.5|=0.5,|+0.3|=0.3 ,而0.2<0.3<0.5<0.6 ,∴B球与标准质量偏差最小,故选B.【点睛】本题考查的是绝对值的应用,理解绝对值表示的意义是解决本题的关键.2. 用式子表示“a的2倍与b的差的平方”,正确的是()A. 2(a﹣b)2B. 2a﹣b2C. (a﹣2b)2D. (2a﹣b)2【答案】D【解析】【分析】根据代数式的表示方法,先求倍数,然后求差,再求平方.【详解】解:a的2倍为2a,与b的差的平方为(2a﹣b)2故选:D.【点睛】本题考查了列代数式的知识,列代数式的关键是正确理解题目中的关键词,比如本题中的倍、差、平方等,从而明确其中的运算关系,正确的列出代数式.3. 在下面四个几何体中,左视图、俯视图分别是长方形和圆的几何体是()A. B. C. D.【答案】A【解析】【分析】逐一判断出各几何体的左视图、俯视图即可求得答案.【详解】A 、圆柱的左视图是长方形,俯视图是圆,符合题意;B 、圆锥的的左视图是等腰三角形,俯视图是带有圆心的圆,不符合题意;C 、长方体的左视图是长方形,俯视图是长方形,不符合题意;D 、三棱柱的左视图是长方形,俯视图是三角形,不符合题意,故选A .【点睛】本题考查了简单几何体的三视图,熟练掌握常见几何体的三视图是解题的关键.4. 下列各式中运算正确的是( )A. 224a a a +=B. 4a 3a 1-=C. 2223a b 4ba a b -=-D. 2353a 2a 5a +=【答案】C【解析】【分析】根据合并同类项的法则逐一进行计算即可.【详解】A. 222a a 2a +=,故A 选项错误;B. 4a 3a a -=,故B 选项错误;C. 2223a b 4ba a b -=-,正确;D. 23a 与32a 不是同类项,不能合并,故D 选项错误,故选C .【点睛】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.5. 如图,能用∠1、∠ABC、∠B 三种方法表示同一个角的是( ) A. B. C.D.【答案】A【解析】【分析】根据角的表示法可以得到正确解答.【详解】解:B、C、D选项中,以B为顶点的角不只一个,所以不能用∠B表示某个角,所以三个选项都是错误的;A选项中,以B为顶点的只有一个角,并且∠B=∠ABC=∠1,所以A正确.故选A .【点睛】本题考查角的表示法,明确“过某个顶点的角不只一个时,不能单独用这个顶点表示角”是解题关键.6. 如图,经过刨平的木板上的A,B两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A. 两点之间,线段最短B. 两点确定一条直线C. 垂线段最短D. 在同一平面内,过一点有且只有一条直线与已知直线垂直【答案】B【解析】【分析】根据“经过两点有且只有一条直线”即可得出结论.【详解】解:∵经过两点有且只有一条直线,∴经过木板上的A、B两个点,只能弹出一条笔直的墨线.故选B.【点睛】本题考查了直线性质,牢记“经过两点有且只有一条直线”是解题的关键.7. 在下列式子中变形正确的是( )A. 如果a b =,那么a c b c +=-B. 如果a b =,那么a b 33=C. 如果a 63=,那么a 2=D. 如果a b c 0-+=,那么a b c =+【答案】B【解析】【分析】根据等式的性质逐个判断即可.【详解】A 、∵a=b ,∴a+c=b+c ,不是b-c ,故本选项不符合题意;B 、∵a=b ,∴两边都除以3得:a b 33=,故本选项符合题意; C 、∵a 63=,∴两边都乘以3得:a=18,故本选项不符合题意; D 、∵a-b+c=0,∴两边都加b-c 得:a=b-c ,故本选项不符合题意,故选B .【点睛】本题考查了等式的性质,能熟记等式的性质的内容是解此题的关键.8. 直线l 外一点P 与直线l 上两点的连线段长分别为3cm ,5cm ,则点P 到直线l 的距离是( )A. 不超过3cmB. 3cmC. 5cmD. 不少于5cm【答案】A【解析】【分析】根据直线外的点与直线上各点的连线垂线段最短,可得答案.【详解】解:直线外的点与直线上各点的连线垂线段最短,得点P 到直线l 的距离是小于或等于3,故选A .【点睛】本题考查了点到直线的距离,直线外的点与直线上各点的连线垂线段最短. 二、填空题(本大题共10小题,共30.0分)9. 元月份某天某市的最高气温是4℃,最低气温是-5℃,那么这天的温差(最高气温减最低气温)是______℃.【答案】9【解析】【分析】利用最高气温减最低气温,再根据减去一个数等于加上这个数的相反数计算即可.【详解】这天的温差为4-(-5)=4+5=9(℃),故答案为9【点睛】本题考查有理数的减法的应用,正确列出算式,熟练掌握有理数减法的运算法则是解题的关键. 10. 我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.【答案】4.4×109【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109, 故答案为4.4×109. 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11. 若3x =-是关于x 的一元一次方程250x m ++=的解,则m 的值为___________.【答案】1【解析】把x =−3代入方程得:−6+m +5=0,解得:m =1,故答案为1.12. 若|x -12|+(y +2)2=0,则(xy )2019的值为______. 【答案】-1【解析】【分析】根据非负数的性质列出算式,求出x 、y 的值,计算即可.【详解】∵|x-12|+(y+2)2=0, ∴x-12=0,y+2=0, ∴x=12,y=-2,∴(xy)2019=(-1)2019=-1,故答案为-1.【点睛】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13. 若a+b=2019,c+d=-5,则代数式(a-2c)-(2d-b)=______.【答案】2029【解析】【分析】根据去括号、添括号法则把原式变形,代入计算,得到答案.【详解】(a-2c)-(2d-b)=a-2c-2d+b=(a+b)-2(c+d)=2019+10=2029,故答案为2029.【点睛】本题考查的是整式的加减混合运算,掌握去括号、添括号法则是解题的关键.注意整体思想的应用.14. 一个正方体的平面展开图如图所示,将它折成正方体后“扬”字对面是______字.【答案】美【解析】【分析】注意正方体的空间图形,从相对面入手,分析及解答问题.【详解】对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,“扬”字对面是“美”字,故答案为美.【点睛】本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.15. 若∠A=45°30′,则∠A的补角等于_______________.【答案】134°30′【解析】试题分析:根据补角定义:如果两个角的和等于180°(平角),就说这两个角互为补角可得答案.解:∵∠A=45°30′,∴∠A的补角=180°﹣45°30′=179°60′﹣45°30′=134°30′,故答案为134°30′.考点:余角和补角;度分秒的换算.16. 如图,将一副直角三角板叠放在一起,使其直角顶点重合于点O,若∠DOC=26°,则∠AOB=______°.【答案】154【解析】【分析】先根据∠COB=∠DOB-∠DOC求出∠COB,再代入∠AOB=∠AOC+∠COB,即可求解.【详解】∵∠COB=∠DOB-∠DOC=90°-26°=64°,∴∠AOB=∠AOC+∠COB=90°+64°=154°,故答案是:154.【点睛】本题考查了角度的计算,弄清角的和差关系是解题的关键.17. 已知线段AB=6cm,C是线段AB的中点,E是直线AB上的一点,且CE=13AB,则线段AE=______cm.【答案】1或5【解析】【分析】由已知C是线段AB中点,AB=6,求得AC=3,进一步分类探讨:E在线段AC内;E在线段CB内;由此画图得出答案即可.【详解】∵C是线段AB的中点,AB=6cm,∴AC=12AB=3cm,CE=13AB=2cm,①如图,当E在线段AC上时,AE=AC-CE=3-2=1cm;②如图,E在线段CB上,AE=AC+CE=3+2=5cm,所以AE=1cm或5cm,故答案为1或5.【点睛】本题考查线段中点的意义,线段的和与差,分类探究是解决问题的关键.18. 某中学初三(6)班十几名同学毕业前和数学老师合影留念,一张彩色底片要0.6元,扩印一张相片0.5元,每人分一张,免费赠送老师一张(由学生出钱),每个学生交0.6元刚好,则相片上共有______人.【答案】12【解析】【分析】扩印费+0.5×照片上人数=0.6×学生数,把相关数值代入计算即可.【详解】设相片上共有x人,0.6+0.5x=0.6×(x-1),解得x=12,故答案为12.【点睛】本题考查一元一次方程的应用,弄清题意,得到所需总费用的等量关系是解决本题的关键.三、计算题(本大题共4小题,共32.0分)19. 计算:(1)14-(-12)+(-25)-17.(2)(12-13)÷(-16)-22×(-4).【答案】(1)-16;(2)15【解析】【分析】(1)根据有理数的加减法法则进行计算即可;(2)按顺序先计算括号内的减法、乘方,然后再按运算顺序进行计算即可. 【详解】(1)14-(-12)+(-25)-17=14+12+(-25)+(-17)=-16;(2)(12-13)÷(-16)-22×(-4)=16×(-6)-4×(-4)=(-1)+16=15.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20. 化简:(1)(5a-3b)-3(a-2b);(2)3x2-[7x-(4x-3)-2x2].【答案】(1)2a+3b;(2)5x2-3x-3【解析】【分析】(1)先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可;(2)先按照去括号法则去掉整式中的小括号,然后去中括号,最后合并整式中的同类项即可.【详解】(1)原式=5a-3b-3a+6b=2a+3b;(2)原式=3x2-[7x-4x+3-2x2]=3x2-7x+4x-3+2x2=5x2-3x-3.【点睛】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.21. 解方程:(1)2x+3=11-6x.(2)x24+-2x16-=1【答案】(1)x=1;(2)x=-4.【解析】【分析】(1)按移项、合并同类项、系数化为1的步骤进行求解即可得;(2)按去分母、去括号、移项、合并同类项、系数化为1的步骤进行求解即可得.【详解】(1)2x+6x=11-3,8x=8,x=1;(2)3(x+2)-2(2x-1)=12,3x+6-4x+2=12,3x-4x=12-6-2,-x=4,x=-4.【点睛】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.22. 先化简,再求值,2(3ab2-a3b)-3(2ab2-a3b),其中a=-12,b=4.【答案】a3b,1 2 -.【解析】【分析】根据乘法分配律,先去括号,再合并同类项进行化简,再代入求值. 【详解】解:原式=6ab2﹣2a3b﹣6ab2+3a3b=a3b,当a=12-,b=4时,原式=3142⎛⎫-⨯⎪⎝⎭=12-.故答案为1 2 -【点睛】本题考核知识点:整式化简求值.解题关键点:根据乘法分配律去括号,再合并同类项.四、解答题(本大题共6小题,共64.0分)23. 如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为H;(3)线段PH的长度是点P到______的距离,______是点C到直线OB的距离,线段PC、PH、OC这三条线段大小关系是______(用“<”号连接).【答案】(1)见解析;(2)见解析;(3)OA,PC的长度,PH<PC<OC.【解析】【分析】(1)利用三角板过点P画∠OPC=90°即可;(2)利用网格特点,过点P画∠PHO=90°即可;(3)利用点到直线的距离可以判断线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短即可确定线段PC、PH、OC的大小关系.【详解】(1)如图所示;(2)如图所示;(3) 线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短可知PH<PC<OC,故答案为OA,PC,PH<PC<OC.【点睛】本题主要考查了基本作图----作已知直线的垂线,另外还需利用点到直线的距离才可解决问题.24. 某小组计划做一批“中华结”,如果每人做6个,那么比计划多做了8个;如果每人做4个,那么比计划少做了42个.请你根据以上信息,提出一个用一元一次方程解决的问题,并写出解答过程.【答案】计划做多少个“中华结”?答案见解析.【解析】【分析】首先提出问题:这批“中华结”的个数是多少?设该批“中华结”的个数为x个,根据加工总个数=单人加工个数×人数,结合该小组人数不变找出关于x的一元一次方程,解之即可得出结论.【详解】这批“中华结”的个数是多少?设计划做“中华结”的个数为x个.根据题意,得:842 64x x+-=.解得:x=142.答:计划做“中华结”的个数为142个.【点睛】本题考查了一元一次方程应用.25. 阅读下面一段文字:问题:0.8⋅能用分数表示吗?探求:步骤①设x=0.8⋅,步骤②10x=10×0.8⋅,步骤③10x=8.8⋅,步骤④10x =8+0.8⋅,步骤⑤10x =8+x ,步骤⑥9x =8,步骤⑦x =89. 根据你对这段文字的理解,回答下列问题:(1)步骤①到步骤②的依据是______;(2)仿照上述探求过程,请你尝试把0.36⋅⋅表示成分数的形式.【答案】(1)等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立;(2)见解析,114x =. 【解析】【分析】(1)利用等式的基本性质得出答案;(2)利用已知设x=0.36⋅⋅,进而得出100x=36+x ,求出即可.【详解】(1)步骤①到步骤②,等式的两边同时乘10,依据的是等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立,故答案为等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立;(2)设x=0.36⋅⋅,100x=100×0.36⋅⋅,100x=36.36⋅⋅,100x=36+ 0.36⋅⋅,100x=36+x ,99x=36,解得:x=411. 【点睛】本题主要考查了等式的基本性质以及一元一次方程的应用,根据题意得出正确等量关系是解题关键.26. 如图,直线AB 、CD 、EF 相交于点O ,OG ⊥CD ,∠BOD =32°.(1)求∠AOG 的度数;(2)如果OC 是∠AOE 的平分线,那么OG 是∠AOF 的平分线吗?请说明理由.【答案】(1)∠AOG=58°;(2)OG是∠AOF的平分线,见解析.【解析】【分析】(1)根据对顶角的性质,可得∠AOC的度数,根据角的和差,可得答案;(2)根据角平分线的性质,可得∠AOC与∠COE的关系,根据对顶角的性质,可得∠DOF与∠COE的关系,根据等量代换,可得∠AOC与∠DOF的关系,根据余角的性质,可得答案.【详解】(1)由对顶角相等,得∠AOC=∠BOD=32°,由角的和差,得∠AOG=∠COG-∠AOC=90°-32°=58°;(2)如果OC是∠AOE的平分线,那么OG是∠AOF的平分线,理由如下:由OC是∠AOE的平分线,得∠COE=∠AOC=32°,由对顶角相等,得∠DOF=∠COE,等量代换,得∠DOF=∠AOC,∠AOC+∠AOG=∠COG=90°,∠DOF+∠FOG=∠DOG=90°,由等角的余角相等,得∠AOG=∠FOG,OG是∠AOF的平分线.【点睛】本题考查了对顶角、邻补角,(1)利用了对顶角相等的性质,角的和差;(2)利用了对顶角相等的性质,角的和差,还利用了余角的性质:等角的余角相等.27. 为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水38m ,则应收水费:264(86)20⨯+⨯-=元.(1)若该户居民2月份用水312.5m ,则应收水费______元;(2)若该户居民3、4月份共用水315m (4月份用水量超过3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?【答案】(1)48;(2)三月份用水34m .四月份用水113m .【解析】【分析】(1)根据表中收费规则即可得到结果;(2)分两种情况:用水不超过36m 时与用水超过36m ,但不超过310m 时,再这两种情况下设三月份用水3m x ,根据表中收费规则分别列出方程即可得到结果.【详解】(1)应收水费()()264106812.51048⨯+⨯-+⨯-=元.(2)当三月份用水不超过36m 时,设三月份用水3m x ,则()226448151044x x +⨯+⨯+--= 解之得411x =<,符合题意.当三月份用水超过36m 时,但不超过310m 时,设三月份用水3m x ,则()()264626448151044x x ⨯+-+⨯+⨯+⨯--=解之得36x =<(舍去)所以三月份用水34m .四月份用水113m .28. 如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转.(1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE的旋转过程中,若∠AOE=7∠COD,试求∠AOE的大小.【答案】(1)130°;(2)∠AOD与∠COE的差不发生变化,为30°;(3)∠AOE=131.25°或175°.【解析】【分析】(1)求出∠COE的度数,即可求出答案;(2)分为两种情况,根据∠AOC=90°和∠DOE=60°求出即可;(3)根据∠AOE=7∠COD、∠DOE=60°、∠AOC=90°求出即可.【详解】(1)∵OC⊥AB,∴∠AOC=90°,∵OD在OA和OC之间,∠COD=20°,∠EOD=60°,∴∠COE=60°-20°=40°,∴∠AOE=90°+40°=130°,故答案为130°;(2)在△ODE旋转过程中,∠AOD与∠COE的差不发生变化,有两种情况:①如图1、∵∠AOD+∠COD=90°,∠COD+∠COE=60°,∴∠AOD-∠COE=90°-60°=30°,②如图2、∵∠AOD=∠AOC+∠COD=90°+∠COD,∠COE=∠DOE+∠DOC=60°+∠DOC,∴∠AOD-∠COE=(90°+∠COD)-(60°+∠COD)=30°,即△ODE在旋转过程中,∠AOD与∠COE的差不发生变化,为30°;(3)如图1、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°-∠COD=7∠COD,解得:∠COD=18.75°,∴∠AOE=7×18.75°=131.25°;如图2、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°+∠COD=7∠COD,∴∠COD=25°,∴∠AOE=7×25°=175°,即∠AOE=131.25°或175°.【点睛】本题考查了角的有关计算的应用,能根据题意求出各个角的度数是解此题的关键.注意分类思想的运用.。
2018-2019学年上学期七年级数学期末试卷及其答案
七年级数学试题1. -3的相反数是 .2.某型号的电脑标价为a 元.打8折后又降价100元出售.则实际售价可用代数式表示为 元. 3.比较大小:32-- ______ 43- (填“<”、“=”或“>”) 4. 观察下列单项式:2x ; 5x 2; 10x 3; 17x 4; 26x 5; ……;按此规律;第10个单项式是 .5.如图是一个数值转换机;若输入的a 值为3-;则输出的结果应为 .6. 如图;A 、B 、C 、D 四名同学的家在同一条直线上;已知C 同学家处在A 与B 两家的中点处;而D 同学的家又处于A 与C 两家的中点处;又知C 与B 两家相距3千米;则A 与D 两同学家相距 千米. 7.若28x y -=; 则62x y -+= .8.已知2(2)|2|0a b a +++=;则2a b -的值等于 . 9.如图;A 、O 、B 在同一条直线上;如果OA 的方向是北偏西2430';那么OB 的方向是东偏南.... 10.如图所示;要使图中平面展开图按虚线折叠成正方体后;相对面上两个数之积为12;则x y += .二.精心选一选(每小题有且只有一个正确答案;请将你认为正确的答案前的字母填入下表相应的空格内;每题3分;共24分)11. 甲、乙、丙三地的海拔高度分别为20m 、-15m 和-10m ;那么最高的地方比最低的地方高A.5mB.10mC.25mD.35m12.如图;从A 到B 有多条道路;人们会走中间的直路;而不会走其他(第9题)题O 西北 南A B东(第10题)yx432 (第6题)输入 (第5题) (第12题)AB的曲折的路;这是因为A .两点之间线段最短B .两条直线相交只有一个交点C .两点确定一条直线D .其他的路行不通13.几个同学在日历竖列上圈出了三个数;算出它们的和;其中错误的一个是 A. 28 B. 33 C. 45 D. 57 14.物理教科书中给出了几种物质的密度;符合科学记数法的是 A .水银13.6×103 kg/m 3 B .铁7.8×103 kg/m 3 C .金19.3×103 kg/m 3 D .煤油0.8×103 kg/m 315.《棋盘上的米粒》故事中;皇帝往棋盘的第1格中放1粒米;第2格中放2粒米;在第3格上加倍至4粒;…;依次类推;每一格均是前一格的双倍;那么他在第12格中所放的米粒数是A . 22粒 B. 24粒 C. 211粒 D. 212粒16.如图;把边长为2的正方形的局部进行图①~图④的变换;最后再通过图形变换形成图⑤;则图⑤的面积是A 、18B 、16C 、12D 、817.一张桌子上摆放着若干个碟子;从三个方向上看到的三种视图如下图所示;则这张 桌子上共有碟子为A. 17个B. 12个C. 8个D. 6个18. 小颖按如图所示的程序输入一个正数..x ;最后输出的结果为656;则满足条件的x 的不同值最多有A.2个B.3个C.4个D.5个⑤④ ③ ② ①俯视图主视图左视图三.计算小能手(本大题共32分)19.计算与化简(每小题8分;共16分)⑴计算:42232[1(3)]()(15)35-÷--+-⨯-⑵先化简;再求值:222363()3x x x x+-+;其中5x=-20.(本题8分)解方程:242 5()()333 x x-=+-21.(本题8分)化简与求值:⑴ 若3m =-;则代数式2113m +的值为 ;⑵ 若3m n +=-;则代数式2()13m n ++的值为 ; ⑶ 若534m n -=-;请你仿照以上求代数式值的方法求出2()4(2)2m n m n -+-+的值四.请你当老师 (本题8分)22.下面是马小哈同学做的一道题;请按照“要求”帮他改正。
武汉市2019学年度上学期期末考试七年级数学试卷
A.8
B.6
C.4
7.下面计算正确的是( )
D. m n
) D.无法确定
三、解答题(共 8 小题,共 72 分)
下列各题需要在答题卷指定位置写出文字说明、证明过程、演算步骤或画出图形,填空的位置不需
要写过程.
17.(本题 8 分)计算:
(1) 3-7-﹙-7﹚+﹙-6﹚;
(2)-23 ×2 1 +﹙- 3 ﹚ 2 ÷﹙- 1 ﹚ 3 ;
ba
-1
0
c1
22.(本题 10 分)已知含字母 m,n 的代数式是:3m2 2(n2 mn 3) 3(m2 2n2) 4(mn m 1) . (1)化简这个代数式. (2)小明取 m,n 互为倒数的一对数值代入化简的代数式中,恰好计算得代数式的值等于 0.那么 小明所取的字母 n 的值等于多少? (3)聪明的小智从化简的代数式中发现,只要字母 n 取一个固定的数,无论字母 m 取何数,代数 式的值恒为一个不变的数,那么小智所取的字母 n 的值是多少呢?
24.(本题 12 分)已知点 A , B 在数轴上表示的数分别为 a,b,且 a 6 (b 18)2 0(规定: 数轴上 A , B 两点之间的距离记为 AB ). (1)求 b a 的值. (2)数轴上是否存在点 C ,使得 CA 3CB ?若存在,请求出点 C 所表示的数;若不存在,请说
14.已知代数式x+2y的值是3,则代数式2x+4y+1的值是__________.
15. 若 a 与 b 互为相反数, c 与 d 互为倒数,则 2019a 2018b bcd =
.
16.在长方形 ABCD 内,将两张边长分别为 a 和 b(a>b)的正方形纸片按图 1、图 2 两种方式放
置(图 1、图 2 中两张正方形纸片均有部分重叠),长方形 ABCD 内未被这两张正方形纸片覆盖的
2018—2019学年度第一学期7年级数学期末试题(含答案)
2018—2019学年度第一学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果气温升高3℃时气温变化记作+3℃,那么气温下降3℃时气温变化记作A. -6℃B. -3℃C. 0℃ D .+3℃ 2.下列各组数中,互为相反数的是A .2和-2B .2和12C .2和12-D .12和-2 3.三个数a ,b ,c 在数轴上的位置如图所示,下列结论不正确的是A. a +b <0B. b +c <0C. b -a >0 D .c -a >0 4.下列说法正确的是A. 23xy -的系数是-2B. 2ab π-的系数是-1,次数是4(第3题图)C. 2x y +是多项式D.31x xy --的常数项是15.下列式子中,互为同类项的是A.2xy -与2y xB.2218x y 与229x y +C. a +b 与a -bD.32a b -与33ab 6.下列方程中是一元一次方程的是A.213x y -=B. 756(1)x x +=-C.21(1)12x x +-=D.12x x-= 7.关于x 的方程(3)10k x --=的解是x =﹣1,那么k 的值是A. k =2B. k =3C. k =-4 D .k =-28.永辉超市同时售出两台冷暖空调,每台均卖990元,按成本计算,其中一台盈利10%,另一台亏本10%,则永辉超市出售这两台空调会A.不赔不赚B.亏20元C.赚20元D.赚90元9.将一个直角三角板绕直角边旋转一周,则旋转后所得几何体是A. 三棱锥B.球C. 圆柱 D 圆锥 10.观察图形,下列说法正确的个数是(1)直线BA 和直线AB 是同一条直线(2)射线AC 和射线AD 是同一条射线(3)AB +BD >AD(4)三条直线两两相交时,一定有三个交点A.1个B. 2个C. 3个D. 4个11.如图,O 为我国南海某人造海岛,某商船在A 的位置,∠1=40°,下列说法正确的是A.商船在海岛的北偏西50°方向B.商船在海岛的北偏西140°方向C.商船在海岛的东偏南40°方向D.商船在海岛的南偏东40°方向 12.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中正确的是①90°-∠β; ②∠α-90°; ③180°-∠α; ④12(∠α﹣∠β). A. ①②③④ B. ①②③C. ①②④ D .①②(第10题图)(第11题图)第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.有理数-0.2的倒数是 .14.若一个有理数的绝对值是18,则这个数是 . 15.水星和太阳之间的距离约为57900000km ,这个数用科学记数法表示为 km .16.一个多项式加上-x 2-3x 得5x 2-4x -3,则这个多项式为 .17.李强在解方程5623x x -=时,他是这样做的:同桌张明对李强说:“你做错了,第一步应该去分母”,但李强认为自己没有做错.你认为李强做 (填“对”或“错”)了,他第一步变形的依据是 .18.一张桌子由一张桌面和四条桌腿拼装而成,若做一张桌面需要木材0.03m 3,做一条桌腿需要木材0.002m 3.现在做一批桌子恰好用去木材19m 3,求这批桌子有多少张?如果设这批桌子有x 张,那么根据题意,列得方程为 .19.某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每相邻两棵树的间隔相等.如果每隔4米栽1棵,则树苗缺21棵;如果每隔5米栽1棵,则树苗正好用完.则原有树苗 棵.20.如图,O 是线段AB 的中点,线段AB 上有一个点C 使得AC =8,CB =6,那么OC = .21.已知∠AOB =55°,∠BOC =25°,则∠AOC = .22.对于一组数:2,-4,8,-16,32,…;按它的排列规律,这组数的第2019个数是 .(第20题图)三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)()()1321372142-+÷-; (2)()()231212*********-÷--⨯+⨯-. 24.(1)解方程:2151234x x +--=-; (2如果一个月累计通话t 分钟时两种计费方式所付话费一样,那么通话时间t 等于多少分钟?(列方程解题)25.(1)x 为何值时,代数式().3102x --的值比代数式.105x x +-的值大3? (2)如图,已知B ,C 两点把线段AD 从左至右依次分成2∶4∶3三部分,M 是AD 的中点,BM =5,求线段MC 的长.26.已知代数式22321A x xy y =++-,2332B x xy x =-+-. (1)当x =-1,y =2时,求代数式32A B -的值;(2)若代数式32A B -的值与x 的取值无关,求y 的值.27.已知A 车的平均速度为60km /h ,B 车的平均速度为A 车的1.5倍,若两车同时从甲地驶向乙地,则B 车比A 车提前45分钟到达乙地. (1)求甲乙两地间的路程是多少km ?(2)若A 车从甲地、B 车从乙地分别以各自的平均速度同时相向而行,问经过多少时间两车之间的路程相距15km ?28.如图,已知OD 是∠AOB 的平分线,∠AOC =2∠BOC .(1)∠AOB =120°,求∠COD 的度数; (2)若∠COD =36°,则∠AOB = °;(直接写出结果,不需要写出解答过程)(3)求∠BOC 与∠COD 的有怎样的数量关系?并说明理由.(第28题图) (第25题图)2018—2019学年第一学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.–5;14.18或18-;15.75.7910⨯; 16.263x x--;17.对;合并同类项18.0.03x+0.002×4x=19;19.85;20. 1;21.80°或30°;22.20192.三、解答题:(共74分)23.解:(1)原式=……………………………1分==﹣14+18﹣4 ………………………………4分=0.………………………………………5分(2)原式=﹣9÷3﹣(6﹣8)+ ×(﹣)…………………8分=﹣3+2﹣………………………………………9分=213-. ………………………………………10分24.(1)解:去分母,得﹣4(2x+1)=24﹣3(5x﹣1)………………1分去括号,得﹣8x﹣4=24﹣15x+3 …………………2分移项,得﹣8x+15x=24+3+4 …………………3分合并同类项,得7x=31 …………………4分系数化为1,得x=……………………5分(2)解:根据题意,得30+0.1t=0.3t………………………9分解得 t =150 ……………………11分答:当t 等于150分钟时,两种方式所付话费是一样的. …12分25. 解:(1)由题意,得 3(1)130.20.5x x x -+-=-+ ……………………1分 去分母,得 15(1)2(1)x x x --=+-+……………………2分 去括号,得 ﹣15x +15=2x +2﹣x +3 ……………………3分移项,得 ﹣15x -2x +x =2+3-15 ……………………4分合并同类项,得 1610x -=- ………………………5分系数化为1,得 x =58……………………6分 (2)由题意设AB =2k ,BC =4k ,CD =3k ,则AD =9k , …………………………7分 ∵M 是AD 中点,∴AM =4.5k , …………………………9分 ∴BM =AM ﹣AB =2.5k =5, …………………………10分 ∴k =2, …………………………11分∴CM =DN ﹣CD =4.5k ﹣3k =1.5k =3.…………………………12分 26. 解:(1)3A ﹣2B =()232321x xy y ++-()23232x xy x --+- ……………1分 =6x 2+9xy +6y ﹣3﹣6x 2+2xy ﹣2x +3 ………………………5分=11xy +6y ﹣2x …………………………6分 当x =﹣1,y =2时,3A ﹣2B =11xy +6y ﹣2x=11×(﹣1)×2+6×2﹣2×(﹣1) ……………7分=﹣8; …………………………………8分(2)由(1)可知3A ﹣2B =11xy +6y ﹣2x =(11y ﹣2)x +2y ……………………10分若3A ﹣2B 的值与x 的取值无关,则11y ﹣2=0,…………12分 解得 211y = . ………………………………13分 27.(1)解:设甲乙两地间的路程是xkm ,则456060 1.560x x -=⨯ …………………………………3分 解得 x =135. …………………………………5分 答:甲乙两地间的路程是135 km ;…………………………………6分(2)解:设经过th 两车相距15km ,根据题意,需要分两种情况①当相遇前两车相距15km 时,60t +1.5×60t +15=135,…………………………………8分 解得t =; …………………………………9分 ②当相遇后两车相距15km 时,60t +1.5×60t ﹣15=135,………………………………11分 解得t =1. ………………………………12分 答:经过h 或1h 两车相距15km .………………………………13分28. 解:(1)∵∠AOB =120°,∠AOC =2∠BOC ,∴∠BOC =∠AOB =40°, ………………………………2分 ∵OD 平分∠AOB ,∴∠BOD =∠AOB =60°, ………………………………4分 ∴∠COD =60°﹣40°=20°;………………………………5分(2)∠AOB = 216 °;…………………7分(3)∠BOC =2∠COD ;…………………9分理由如下:∵∠AOC=2∠BOC,∴∠AOB=3∠BOC,……………………………10分∵OD平分∠AOB,∴∠BOD=∠AOB=∠BOC,……………………………12分∴∠COD=∠BOD﹣∠BOC………………………………13分=∠BOC﹣∠BOC=∠BOC,即∠BOC=2∠COD.…………………………………14分。
2018-2019学年七年级上期末教学 质量数学试题附答案
2018-2019学年七年级(上)期末数学试卷一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作()A.+3m B.﹣3m C.+m D.﹣m2.下列说法正确的是()A.有最小的正数B.有最小的自然数C.有最大的有理数D.无最大的负整数3.下面说法正确的是()A.的系数是B.的系数是C.﹣5x2的系数是5 D.3x2的系数是34.原产量n吨,增产30%之后的产量应为()A.(1﹣30%)n吨B.(1+30%)n吨C.n+30%吨D.30%n吨5.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程t=,未知数系数化为1,得t=1D.方程﹣=1化成3x=66.下列四个生活、生产现象中,其中可用“两点之间,线段最短”来解释的现象有()①用两个钉子就可以把木条固定在墙上②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线③从A地到B地架设电线,总是尽可能沿着直线架设④把弯曲的公路改直,就能缩短路程.A.①②B.①③C.②④D.③④7.如图,将一副三角尺按不同位置摆放,摆放方式中∠α与∠β互余的是()A.B.C.D.8.若|2a|=﹣2a,则a一定是()A.正数B.负数C.正数或零D.负数或零9.一个多项式与x2﹣2x+1的和是3x﹣2,则这个多项式为()A.x2﹣5x+3 B.﹣x2+x﹣1 C.﹣x2+5x﹣3 D.x2﹣5x﹣1310.小华在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是y﹣=y﹣■,怎么办呢?小明想了想,便翻看了书后的答案,此方程的解是:y=﹣6,小华很快补好了这个常数,并迅速完成了作业.这个常数是()A.﹣4B.3C.﹣4D.411.若∠1=40.4°,∠2=40°4′,则∠1与∠2的关系是()A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.以上都不对12.如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()A.B.C.D.二、填空题:本大题共6小题,每小题3分,共18分,把答案写在题中横线上.13.的相反数是,绝对值是,倒数是.14.若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为.15.一个角的补角是这个角余角的3倍,则这个角是度.16.一艘船从甲码头到乙码头顺流行驶,用了2个小时,从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/时,则船在静水中的速度是千米/时.17.若(a+3)2+|b﹣2|=0,则(a+b)2011=.18.观察下列算式:12﹣02=1+0=1;22﹣12=2+1=3;32﹣22=3+2=5;42﹣32=4+3=7;52﹣42=5+4=9;…若字母n表示自然数,请你观察到的规律用含n式子表示出来:.三、解答题:本大题共7小题,共66分,解答应写出文字说明、证明过程或演算步骤.19.计算题:(1)6﹣(+3)﹣(﹣7)+(﹣2);(2)(﹣2)2﹣22﹣|﹣|×(﹣10)2;(3)(+﹣)÷(﹣);(4)﹣12012﹣[2﹣(1﹣×0.5)]×[32﹣(﹣2)2].20.先化简,再求值.x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.21.解方程:(1)x﹣4=2x+3﹣x;(2)y﹣=2﹣.22.一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?23.已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.24.如图,直线AB、CD交于O点,且∠BOC=80°,OE平分∠BOC,OF为OE的反向延长线.(1)求∠2和∠3的度数;(2)OF平分∠AOD吗?为什么?25.如图所示,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长.(2)若C为线段AB上任意一点,满足AC+CB=acm,其他条件不变,你能猜想出MN的长度吗?并说明理由.(3)若C在线段AB的延长线上,且满足AC﹣CB=bcm,M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由.参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作()A.+3m B.﹣3m C.+m D.﹣m【考点】正数和负数.【分析】根据正数和负数表示相反意义的量,可得答案.【解答】解:水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作﹣3m,故选:B.2.下列说法正确的是()A.有最小的正数B.有最小的自然数C.有最大的有理数D.无最大的负整数【考点】有理数.【分析】根据有理数的分类,利用排除法求解.【解答】解:既没有最大的也没有最小的正数,A错误;最小的自然数是0,B正确;有理数既没有最大也没有最小,C错误;最大的负整数是﹣1,D错误;故选B.3.下面说法正确的是()A.的系数是B.的系数是C.﹣5x2的系数是5 D.3x2的系数是3【考点】单项式.【分析】根据单项式系数的定义求解.【解答】解:A、的系数是π,故本选项错误;B、的系数是,故本选项错误;C、﹣5x2的系数是﹣5,故本选项错误;D、3x2的系数是3,故本选项正确.故选D.4.原产量n吨,增产30%之后的产量应为()A.(1﹣30%)n吨B.(1+30%)n吨C.n+30%吨D.30%n吨【考点】列代数式.【分析】原产量n吨,增产30%之后的产量为n+n×30%,再进行化简即可.【解答】解:由题意得,增产30%之后的产量为n+n×30%=n(1+30%)吨.故选B.5.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程t=,未知数系数化为1,得t=1D.方程﹣=1化成3x=6【考点】解一元一次方程.【分析】根据解一元一次方程的一般步骤对各选项进行逐一分析即可.【解答】解:A、方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,故本选项错误;B、方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,故本选项错误;C、方程t=,未知数系数化为1,得t=,故本选项错误;D、方程﹣=1化成3x=6,故本选项正确.故选D.6.下列四个生活、生产现象中,其中可用“两点之间,线段最短”来解释的现象有()①用两个钉子就可以把木条固定在墙上②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线③从A地到B地架设电线,总是尽可能沿着直线架设④把弯曲的公路改直,就能缩短路程.A.①②B.①③C.②④D.③④【考点】线段的性质:两点之间线段最短.【分析】分别利用直线的性质以及线段的性质分析得出答案.【解答】解:①用两个钉子就可以把木条固定在墙上,是两点确定一条之间,故此选项错误;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线,是两点确定一条之间,故此选项错误;③从A地到B地架设电线,总是尽可能沿着直线架设,是两点之间,线段最短,故此选项正确;④把弯曲的公路改直,就能缩短路程,是两点之间,线段最短,故此选项正确;故选:D.7.如图,将一副三角尺按不同位置摆放,摆放方式中∠α与∠β互余的是()A.B.C.D.【考点】余角和补角.【分析】根据图形,结合互余的定义判断即可.【解答】解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选C.8.若|2a|=﹣2a,则a一定是()A.正数B.负数C.正数或零D.负数或零【考点】绝对值.【分析】根据绝对值的定义,绝对值等于它的相反数的数是负数或零.【解答】解:∵2a的相反数是﹣2a,且|2a|=﹣2a,∴a一定是负数或零.故选D.9.一个多项式与x2﹣2x+1的和是3x﹣2,则这个多项式为()A.x2﹣5x+3 B.﹣x2+x﹣1 C.﹣x2+5x﹣3 D.x2﹣5x﹣13【考点】整式的加减.【分析】由题意可得被减式为3x﹣2,减式为x2﹣2x+1,根据差=被减式﹣减式可得出这个多项式.【解答】解:由题意得:这个多项式=3x﹣2﹣(x2﹣2x+1),=3x﹣2﹣x2+2x﹣1,=﹣x2+5x﹣3.故选C.10.小华在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是y﹣=y﹣■,怎么办呢?小明想了想,便翻看了书后的答案,此方程的解是:y=﹣6,小华很快补好了这个常数,并迅速完成了作业.这个常数是()A.﹣4B.3C.﹣4D.4【考点】一元一次方程的解.【分析】设这个常数为m,将y=﹣6代入被污染的方程,可得出m的值.【解答】解:设这个常数为m,则被污染的方程是y﹣=y﹣m,将y=﹣6代入可得:﹣6﹣=×(﹣6)﹣m,解得:m=4.故选D.11.若∠1=40.4°,∠2=40°4′,则∠1与∠2的关系是()A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.以上都不对【考点】角的大小比较;度分秒的换算.【分析】首先同一单位,利用1°=60′,把∠α=40.4°=40°24′,再进一步与∠β比较得出答案即可.【解答】解:∵∠1=40.4°=40°24′,∠2=40°4′,∴∠1>∠2.故选:B.12.如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()A.B.C.D.【考点】剪纸问题.【分析】此类问题只有动手操作一下,按照题意的顺序折叠,剪开,观察所得的图形,可得正确的选项.【解答】解:按照题意,动手操作一下,可知展开后所得的图形是选项B.故选B.二、填空题:本大题共6小题,每小题3分,共18分,把答案写在题中横线上.13.的相反数是,绝对值是,倒数是﹣.【考点】相反数;绝对值;倒数.【分析】根据相反数的定义,只有符号不同的两个数是互为相反数,的相反数是;根据绝对值的定义,一个数的绝对值等于表示这个数的点到原点的距离,的绝对值是根据倒数的定义,互为倒数的两数乘积为1,﹣×(﹣)=1.【解答】解:根据相反数、绝对值和倒数的定义得:的相反数是;的绝对值是;的倒数是﹣.14.若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为2.【考点】整式的加减—化简求值.【分析】由题意得2x2+3x=3,将6x2+9x﹣7变形为3(2x2+3x)﹣7可得出其值.【解答】解:由题意得:2x2+3x=36x2+9x﹣7=3(2x2+3x)﹣7=2.15.一个角的补角是这个角余角的3倍,则这个角是45度.【考点】余角和补角.【分析】设这个角为x,根据余角和补角的概念、结合题意列出方程,解方程即可.【解答】解:设这个角为x,由题意得,180°﹣x=3(90°﹣x),解得x=45°,则这个角是45°,故答案为:45.16.一艘船从甲码头到乙码头顺流行驶,用了2个小时,从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/时,则船在静水中的速度是27千米/时.【考点】一元一次方程的应用.【分析】设船在静水中的速度是x,则顺流时的速度为(x+3)km/h,逆流时的速度为(x﹣3)km/h,根据往返的路程相等,可得出方程,解出即可.【解答】解:设船在静水中的速度是x,则顺流时的速度为(x+3)km/h,逆流时的速度为(x﹣3)km/h,由题意得,2(x+3)=2.5(x﹣3),解得:x=27,即船在静水中的速度是27千米/时.故答案为:27.17.若(a+3)2+|b﹣2|=0,则(a+b)2011=﹣1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则(a+b)2011=﹣1.故答案是:﹣1.18.观察下列算式:12﹣02=1+0=1;22﹣12=2+1=3;32﹣22=3+2=5;42﹣32=4+3=7;52﹣42=5+4=9;…若字母n表示自然数,请你观察到的规律用含n式子表示出来:(n+1)2﹣n2=2n+1.【考点】规律型:数字的变化类.【分析】根据题意,分析可得:(0+1)2﹣02=1+2×0=1;(1+1)2﹣12=2×1+1=3;(1+2)2﹣22=2×2+1=5;…进而发现规律,用n表示可得答案.【解答】解:根据题意,分析可得:(0+1)2﹣02=1+2×0=1;(1+1)2﹣12=2×1+1=3;(1+2)2﹣22=2×2+1=5;…若字母n表示自然数,则有:n2﹣(n﹣1)2=2n﹣1;故答案为(n+1)2﹣n2=2n+1.三、解答题:本大题共7小题,共66分,解答应写出文字说明、证明过程或演算步骤.19.计算题:(1)6﹣(+3)﹣(﹣7)+(﹣2);(2)(﹣2)2﹣22﹣|﹣|×(﹣10)2;(3)(+﹣)÷(﹣);(4)﹣12012﹣[2﹣(1﹣×0.5)]×[32﹣(﹣2)2].【考点】有理数的混合运算.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=6﹣3+7﹣2=13﹣5=8;(2)原式=4﹣4﹣×100=4﹣4﹣25=﹣25;(3)原式=(+﹣)×(﹣60)=﹣45﹣35+50=﹣80+50=﹣30;(4)原式=﹣1﹣(2﹣1+)×5=﹣1﹣5﹣=﹣.20.先化简,再求值.x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=﹣2,y=时,原式=6.21.解方程:(1)x﹣4=2x+3﹣x;(2)y﹣=2﹣.【考点】解一元一次方程.【分析】根据一元一次方程的解法即可求出答案【解答】解:(1)x﹣8=4x+6﹣5xx﹣8=﹣x+62x=14x=7(2)6y﹣3(y﹣1)=12﹣(y+2)6y﹣3y+3=12﹣y﹣23y+3=10﹣y4y=7y=22.一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?【考点】一元一次方程的应用.【分析】设工作量为1,根据甲单独做需要10天完成,乙单独做需要15天完成,即可求出甲乙的效率;等量关系为:甲的工作量+乙的工作量=1,列出方程,再求解即可.【解答】解:设乙还需x天完成,由题意得4×(+)+=1,解得x=5.答:乙还需5天完成.23.已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.【考点】两点间的距离.【分析】由已知B,C两点把线段AD分成2:5:3三部分,所以设AB=2xcm,BC=5xcm,CD=3xcm,根据已知分别用x表示出AD,MD,从而得出BM,继而求出x,则求出CM和AD的长.【解答】解:设AB=2xcm,BC=5xcm,CD=3xcm所以AD=AB+BC+CD=10xcm因为M是AD的中点所以AM=MD=AD=5xcm所以BM=AM﹣AB=5x﹣2x=3xcm因为BM=6 cm,所以3x=6,x=2故CM=MD﹣CD=5x﹣3x=2x=2×2=4cm,AD=10x=10×2=20 cm.24.如图,直线AB、CD交于O点,且∠BOC=80°,OE平分∠BOC,OF为OE的反向延长线.(1)求∠2和∠3的度数;(2)OF平分∠AOD吗?为什么?【考点】对顶角、邻补角;角平分线的定义.【分析】(1)根据邻补角的定义,即可求得∠2的度数,根据角平分线的定义和平角的定义即可求得∠3的度数;(2)根据OF分∠AOD的两部分角的度数即可说明.【解答】解:(1)∵∠BOC+∠2=180°,∠BOC=80°,∴∠2=180°﹣80°=100°;∵OE是∠BOC的角平分线,∴∠1=40°.∵∠1+∠2+∠3=180°,∴∠3=180°﹣∠1﹣∠2=180°﹣40°﹣100°=40°.(2)∵∠2+∠3+∠AOF=180°,∴∠AOF=180°﹣∠2﹣∠3=180°﹣100°﹣40°=40°.∴∠AOF=∠3=40°,∴OF平分∠AOD.25.如图所示,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长.(2)若C为线段AB上任意一点,满足AC+CB=acm,其他条件不变,你能猜想出MN的长度吗?并说明理由.(3)若C在线段AB的延长线上,且满足AC﹣CB=bcm,M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由.【考点】两点间的距离.【分析】(1)根据线段中点的定义得到MC=AC=4cm,NC=BC=3cm,然后利用MN=MC+NC 进行计算;(2)根据线段中点的定义得到MC=AC,NC=BC,然后利用MN=MC+NC得到MN=acm;(3)先画图,再根据线段中点的定义得MC=AC,NC=BC,然后利用MN=MC﹣NC得到MN=bcm.【解答】解:(1)∵点M、N分别是AC、BC的中点,∴MC=AC=×8cm=4cm,NC=BC=×6cm=3cm,∴MN=MC+NC=4cm+3cm=7cm;(2)MN=acm.理由如下:∵点M、N分别是AC、BC的中点,∴MC=AC,NC=BC,∴MN=MC+NC=AC+BC=AB=acm;(3)解:如图,∵点M、N分别是AC、BC的中点,∴MC=AC,NC=BC,∴MN=MC﹣NC=AC﹣BC=(AC﹣BC)=bcm.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年春部分学校期末调研考试七年级数学试卷
一、选择题(每小题3分,共30分)
1.某年,四个国家的服务出口额比上年的增长率如下: 这一年服务
出口额增长率最低的是( )
A .美国
B .中国
C .英国
D .意大利
2.-2的倒数为( )
A .12
B .-12
C .-2
D .2
3.下列运算正确的是( )
A .3x 2-2x 2=x 2
B .2m -3m =-1
C .a 2b -ab 2=0
D .3a +2a =5a 2
4.如图,把一个蛋糕分成n 等份,要使每份中的角度是40°,则n 的值为( )
A .5
B .6
C .8
D .9
5.将式子(-20)+(+3)-(-5)-(+7)省略括号和加号后变形正确的是( )
A .20-3+5-7
B .-20-3+5+7
C .-20+3+5-7
D .-20-3+5-7
6.下列图形中,不是正方体展开图的是( )
A .
B .
C .
D .
7.已知等式3x =2
y +1,则下列变形不一定...
成立的是( ) D C B
A
D C B D C
D
A .3x -2y =1
B .3x -m =2y +1-m
C .3mx =2my +1
D .x =23y +1
3
8.某人工作一年的报酬是年终给他一件衣服和10枚银币,但他干满8个月就决定不再继续干了,结账时,老板给了他一件衣服和2枚银币.设这件衣服值x 枚银币,依题意列方程为( )
A .12(x +2)=x +10
B .8(x +2)=x +10
C .
210
128
x x ++=
D .
210
812
x x ++=
9.观察下面的三行数:
-2,4,-8,16,-32,64,…,a n ,…; 0,6,-6,18,-30,66,…,b n ,…; -3,3,-9,15,-33,63,…,c n ,…;
根据以上规律,若某一列三个数分别为a n ,b n ,c n ,则a n ,b n ,c n 之间满足的数量关系正确..
的是( ) A .a n =b n +c n +1 B .2a n +1=b n +c n C .2a n -3=b n +c n
D . a n -1=b n -c n
10.如图,把一长方形纸片ABCD 的一角沿AE 折叠,点D 的对应点D '落在∠BAC 内部.若∠CAE =∠BAD '=α,则∠DAE 的度数为( )
A .2α
B .90°-3α
C .30°+
2
α
D .45°-
2
α
二、填空题(每小题3分,共18分)
11.化简(计算)-(+3)=______,│-2│=_____,28°56′+8°24′=_______. 12.写出一个系数为-2,次数为3次的单项式为_______. 13.代数式3a -2与6-a 互为相反数,则a 的值为_________.
D '
E
D
C B
A
14.如图,货轮O 在航行过程中,发现灯塔A 在它的南偏西50°的方向上,若客轮B 所处的位置与货轮O 的连线OB 恰好平分∠AOM , 则客轮B 相对货轮O 的方位是_________(填方位角).
15.如果一个数的实际值为m ,测量值为n ,我们把│m -n │称为绝对误差,把m n m
-称为相对误差.例如,
某个零件的实际长度为10cm ,测量得9.8cm ,那么测量的绝对误差为0.2cm ,相对误差为0.02.若某个零件测量所产生的相对误差为0.05,则该零件的测量值与实际值的比
n
m
=_____ 16.已知A ,B ,C ,D 四个点在直线l 上依次排列,C 为AD 的中点,BC -AB =16AD ,则AD
BC
的值为____.
三、解答题(共8小题,共72分) 17.计算(每小题4分,共8分).
(1)3×(-2)+(-10)+5 (2)(23-16)×│-6│+1
2
×(-4)2
18.解方程(每小题4分,共8分). (1)2(x +1)=6(2)312x +-1=5
3
x -
19.(本题8分)先化简,再求值:
-3x 2y +[4xy -2(3xy -2x 2y )+xy ],其中x =-3,y =2.
O
N M
B A
南
西
东
北
20.(本题8分)如图,己知平面内有A,B,C,D四点,请按要求完成下列问题.
(1)连接AB,作射线CD,交AB于点E,射线EF平分∠CEB;
(2)在(1)的条件下,若∠AEC=100°,求∠CEF的补角的度数.
21.(本题8分)已知线段AB,反向延长线段AB到C,使BC=5
2
AB,D为BC的中点,E为BD的中点.
(1)①补全图形;
②若AB=4,则AE=__________(直接写出结果).
(2)若AE=2,求AC的长.
D
C
B A
B A
22.(本题10分)某商店销售A,B两种商品,每件A商品的售价比B商品少10元.购买5件A商品比购买3件B商品多10元.设每件A商品的售价为x元.
(1)每件B商品的售价为_______元(用含x的式子表示);
(2)求A,B商品每件的售价各多少元?
(3)元旦期间,该商店决定对A,B两种商品进行促销活动,具体办法是:
方案一:购买A商品超出15件后,超出部分五折销售,不超出部分不享受任何折扣;B商品无论多少一律九折.
方案二:无论买多少,A,B商品一律八折.
若小红打算到该商店购买m件A商品和20件B商品,选择哪种方案购买更实惠(两种优惠方案不能同时享受)?
23.(本题10分)已知∠AOB =100°,∠COD =40°,OE ,OF 分别平分∠A 0D ,∠BO D . (1)如图1,当OA ,OC 重合时,求∠EOF 的度数;
(2)若将∠COD 的从图1的位置绕点O 顺时针旋转,旋转角∠AOC =α,且0°<α<90°.
①如图2,试判断∠BOF 与∠COE 之间满足的数量关系并说明理由.
②在∠COD 旋转过程中,请直接写出∠BOE ,∠COF ,∠AOC 之间的数量关系.
24.(本题12分)数轴上A ,B ,C 三点对应的数a ,b ,c 满足(a +40)2+│b +10│=0,B 为线段AC 的中点. (1)直接写出A ,B ,C 对应的数a ,b ,c 的值.
备用图
图2
图1
A
B
O
A
B
C D E
F
O
O
F
E
D
B
A (C )
(2)如图1,点D表示的数为10,点P,Q分别从A,D同时出发匀速相向运动,点P的速度为6个单位每秒,点Q的速度为1个单位每秒.当点P运动到C后迅速以原速返回到A又折返向C点运动;点Q运动至B点后停止运动,同时P点也停止运动.求在此运动过程中P,Q两点相遇点在数轴上对应的数.
(3)如图2,M,N为A,C之间两点(点M在N左边,且它们不与A,C重合),E,F分别为AN,CM的中
点,求AC MN
EF
的值.
图1
图2。