迈克尔逊干涉仪的调节与使用
迈克尔逊干涉仪的调整与使用概要

实验40 迈克尔逊干涉仪的调整与使用教学目标实验内容教学方法教学过程设计 一.讨论1.何谓等倾干涉?图1是迈克尔逊干涉仪的光路原理图。
调整迈克尔逊干涉仪,使之产生的干涉现象可以等效为M 1和M 2′之间的空气薄膜产生的薄膜干涉。
当镜M 1⊥M 2,即M 1∥M 2′(图2)时,由扩展光源S 射出的任一束光,经薄膜上下表面反射形成的相干光束①和光束②的光程差为2cos 22cos nd r d i δ=== (空气薄膜折射率n=1)①可见,薄膜厚度d 一定时,光程差δ由入射角i 决定。
显然干涉条纹是等i (等倾角)的轨迹,即由干涉产生的条纹与一定的倾角对应,这种干涉称为等倾干涉。
图1 迈克尔逊干涉仪2′P图2 等倾干涉2、如何利用等倾干涉现象测量光波长?等倾干涉条纹的亮暗应满足下面条件:亮条纹 λ=⋅=δk i d c o s2 (k=0、1、2…) 暗条纹 2)12(c o s 2λ+=⋅=δk i d 可见,空气薄层厚度d 一定时,入射角i 越小,即越靠近中心,圆环条纹的级数k 越高(这与牛顿环正好相反),在中心处,i =0,级次最高。
若这时,中心处刚好是亮斑,则有λ==δc k d 2 由此式可得λ⋅∆=∆)()(2c k d可见,移动M1镜改变空气薄膜的厚度d ,中心亮斑的级次k c 也会改变。
而且当中心亮斑变化一个级次(Δk c =±1),即每冒出或吞没一个亮条纹,就意味着空气薄层厚度改变了(λ/2),也就是M 1镜移动了(λ/2)的距离。
显然,当中心亮斑变化了N 个级次( Δk c =±N ),即冒出或吞没了N 个亮条纹,则有2λ=∆Nd 所以,我们只要测出M 1镜移动的距离Δd (可从仪器读出),并数出冒出或吞没干涉条纹的个数N ,就可以通过上式计算出光源的波长λ。
二.预习检查提问问题1、 请问迈克尔逊光路图中,P1和P2个起什么作用?为什么光束①和②相遇时会产生干涉?2、 M1、M2镜背后的三个螺钉作用是什么?3、 实验如何测量M1镜移动的距离?该仪器能读准到几位有效数字?4、 在P.56图5-40-3中,光束①和光束②之间的光程差与什么因数有关?(5-40-1)式中的n 是什么?等于多少?5、 什么叫“等倾干涉”?干涉产生的明暗条纹应满足什么条件?6、 实验是根据什么物理现象和什么测量公式测量激光波长的?7、 你有没有分析过,等倾干涉的同心圆环条纹与牛顿环的同心圆环条纹有什么异同? 三.课后思考题1. 迈克尔逊干涉仪中的P 1和P 2各起什么作用?用钠光或激光做光源时,没有补偿板P2能否产生干涉条纹?用白光做光源呢?提示:从Na光、He—Ne激光和白光的单色性好坏来分析,当光程差较大时,它们产生的干涉条纹会不会重叠?2.在迈克尔逊干涉仪的一臂中,垂直插入折射率为1.45的透明薄膜,此时视场中观察到15个条纹移动,若所用照明光波长为500nm,求该薄膜的厚度。
迈克耳孙干涉仪的调整与使用技巧

迈克耳孙干涉仪的调整与使用技巧迈克耳孙干涉仪(Michelson interferometer)是一种常用的光学仪器,广泛应用于光学测量、干涉实验等领域。
正确的调整和使用迈克耳孙干涉仪对于获得准确的实验结果至关重要。
本文将介绍迈克耳孙干涉仪的调整方法以及使用技巧,帮助读者更好地理解和应用这一仪器。
1. 干涉仪的基本原理迈克耳孙干涉仪是利用光的干涉原理进行测量的仪器。
它由两束光线沿不同路径传播后再次叠加产生干涉,通过观察干涉图案的变化可以获得有关样品或光源的信息。
2. 调整干涉仪的步骤(1)准备工作在调整迈克耳孙干涉仪之前,首先要确保仪器和光源的完好和稳定。
检查干涉仪的光学元件是否清洁,光源是否稳定,确保能够获得高质量的干涉图案。
(2)调整光路通过调整迈克耳孙干涉仪的光路,使得两束光相干,达到干涉的条件。
具体步骤如下:- a. 调整分束镜迈克耳孙干涉仪的分束镜是将光分成两束的关键元件。
调整分束镜的位置和角度,使得两束光线的光程差尽量为零。
- b. 调整反射镜调整迈克耳孙干涉仪的反射镜位置和角度,使得两束光线重新叠加时能够产生明亮的干涉条纹。
通过微调反射镜的位置和角度,使得干涉图案更加清晰和明亮。
(3)干涉图案的观察与调整在调整好光路之后,需要观察干涉图案,并进行调整以获得最佳的观察效果。
根据实验需求,通过微调分束镜和反射镜的位置和角度,调整干涉图案的大小、亮度和清晰度。
3. 干涉仪的使用技巧(1)保持稳定在使用迈克耳孙干涉仪进行实验时,保持仪器和光源的稳定非常关键。
避免干涉仪受到外界震动或温度变化的干扰,以确保实验的准确性和可重复性。
(2)校正光程差干涉仪的光程差是影响干涉图案的重要因素。
在实验中,根据需要可以通过微调分束镜或者引入补偿片等方法,校正光程差以获得所需的干涉效果。
(3)避免散射和干涉损失在进行干涉实验时,需要注意避免光线的散射和干涉损失。
合理调整干涉仪的参数,选择合适的光源和滤波器,减少或者消除散射光和多次反射干涉,确保实验结果的准确性。
大学物理实验实验12迈克尔逊干涉仪的调整与使用

3.调整方法
1、确定M1镜的位置。 2、均匀转松M1、 M2后的三个螺丝。 3、旋松M2的两个拉簧螺丝。 4、移动光源,使光源上的十字叉丝在视场的中心位置
7、调整零点。 8、转到手轮可以改变干涉条纹的间距和清晰度。
5.测单色光的波长
使M1沿光轴移动△d,将使 圆心处相干光束的光程差改 变,则将观察到条纹涌出(或 陷入),由此可用来测定光波 波长。若测知有N个环纹由中 心涌出(或陷入),则表明 M1改变的距离△d为 △d=N· λ/2 则波长λ为: λ=2△d/N
注意事项:
( 1 )实验过程中,不允许触摸仪器中所 有的光学面。
(2)平面反光镜M 1、M 2背后的三个螺 钉 以及 两个微动拉簧 螺丝要 十分爱护 , 只能轻微旋动,切勿用力旋转螺钉,
以免拧滑丝扣或把反射镜压坏。
注意事项:
(3)不要直视激光,以免损伤眼睛!
(4)镜后螺丝及拉簧一定要轻拧,且不可拧的过紧! (5)不要调节活动反射镜后
不可直视!
思考题
实验仪器
1、迈克尔逊干涉仪; 2、氦-氖多光速激光器; 3、白炽灯
实 验 仪器介绍:
分光板
M1活动反光镜
补偿板
读数窗口
M2固定反 光镜
手轮 鼓轮
水平拉簧 垂直拉簧
标尺
主尺读数
实验原理
实验原理
点光源产生的非定域干涉条纹的形成
从光学角度看,E处的干涉图样和
M 1M 2
2d cos
实验内容
1.仪器调节
目测使激光头水平且大致和M2等高,细调激光头
位置使扩展光束均匀照满反射镜。
调节固定反射镜后的方位螺丝,使透过滤光片看到 的两排对应光点一一重合 装上观察屏,观察条纹的涌出和淹没。
迈克尔逊干涉仪的调节和使用

迈克尔逊干涉仪的调节和使用迈克尔逊干涉仪是光学实验中一种重要的仪器,它的原理是基于干涉现象来测量长度、速度、折射率等物理量。
因此,正确地调节和使用迈克尔逊干涉仪对于实验结果的准确性和可靠性至关重要。
一、调节步骤1、粗调:首先调整干涉仪的粗调旋钮,使干涉条纹大致对称。
2、细调:然后调整干涉仪的细调旋钮,使干涉条纹更加清晰、对称。
具体步骤如下:(1)将光源对准干涉仪的入射缝,调整干涉仪的三个脚螺旋,使干涉条纹出现在视野中。
(2)调节干涉仪的粗调旋钮,使干涉条纹大致对称。
(3)调节干涉仪的细调旋钮,使干涉条纹更加清晰、对称。
可以通过观察干涉条纹的移动方向和距离来判断调节是否正确。
(4)重复以上步骤,直到干涉条纹完全对称、清晰。
二、使用注意事项1、保持干涉仪的清洁,避免灰尘和污垢进入干涉仪内部。
2、在调节过程中,要轻拿轻放,避免损坏干涉仪的精密部件。
3、在使用过程中,要避免过度调节粗调旋钮和细调旋钮,以免损坏干涉仪的调节机构。
4、在记录实验数据时,要保证记录的准确性和完整性。
5、在实验结束后,要将干涉仪恢复到初始状态,以便下一次使用。
正确地调节和使用迈克尔逊干涉仪需要耐心和细心。
只有掌握了正确的调节方法,才能更好地发挥其作用,提高实验的准确性和可靠性。
迈克尔逊干涉仪法测定玻璃折射率迈克尔逊干涉仪是一种精密的光学仪器,其原理基于干涉现象,能够用于测量微小的长度变化和折射率。
本文将介绍如何使用迈克尔逊干涉仪法测定玻璃的折射率。
一、实验原理折射率是光学材料的一个重要参数,它反映了光在材料中传播速度的改变。
迈克尔逊干涉仪法利用干涉现象来测量折射率。
当光线通过不同介质时,其速度和波长都会发生变化,这就导致了光程差的产生。
通过测量光程差,我们可以计算出介质的折射率。
二、实验步骤1、准备实验器材:迈克尔逊干涉仪、单色光源(如激光)、测量尺、待测玻璃片。
2、将单色光源通过分束器分为两束相干光束,一束直接照射到参考镜,另一束经过待测玻璃片后照射到测量镜。
迈克尔逊干涉仪调整和使用

2)在迈克尔逊干涉仪的一臂中,垂直插入折射率为1.45的透明薄膜,此时视场中观察到15个条纹移动,若所用照明光波长为500nm,求该薄膜的厚度。
提示:垂直插入折射率n=1.45的透明薄膜后,光程差改变: ,这个改变与移动的条纹以及波长关系: , ,所以: 。
3)为什么M1和M2没有严格垂直时,眼睛移动干涉条纹会“冒出”或“缩入”?
(2)
即 (3)
(2) 增大时,程差 每改变一个波长 所需的 的变化值减小,即两亮环(或两暗环)之间的间隔变小。看上去条纹变细变密。反之 减小,条纹变粗变稀。
四、实验步骤:
1.仪器的调节
(1)使He-Ne激光束大致垂直于M1,即调节He-Ne激光器高低左右位置,使反射回来的光束按原路返回。
(2)装上观察屏E,可看到分别由M1和M2反射至屏的两排光点,每排四个光点,中间两个比较亮,旁边两个比较暗。调节M1和M2背面的三个螺钉,使两排光点一一重合,这时M1与M2大致互相垂直。
3.迈克耳逊干涉仪是精密的光学仪器,必须小心爱护。G1,G2,M1,M2的表面不能用手触摸,不能任意擦揩,表面不清洁时应请指导老师处理。实验操作前,对各个螺丝的作用及调节方法,一定要弄清楚,然后才能动手操作。调节时动作一定要轻缓。
4.测量调节中,有时会出现“空转”现象,即转动微调鼓轮而干涉图像不变的情况,这是由于微调鼓轮和粗调手轮没有同步,没有带动反射镜M2(动镜)移动所致。此时,将粗调手轮转动一下,再向同一方向转动微调鼓轮即可。
迈克尔逊干涉仪的调节和使用实验报告

迈克尔逊干涉仪的调节和使用实验报告一、仪器调节1.调整镜面平行度:首先放置迈克尔逊干涉仪的光源,然后用手将光源移动,调整反射平面镜的角度,使光线在迈克尔逊干涉仪的整个光路中都能自由传播。
2.调整分束镜:使用一张透明的玻璃片将光线分束,再观察平行光束通过分束镜后是否能刚好落在平面镜的表面上,如果不能,则需要调整分束镜的位置,直到两束光线都能够平行而且刚好敲在平面镜上。
3.调整反射镜:迈克尔逊干涉仪中的反射镜有一个活动镜面,需要调整其位置,使两束光线在平面镜上反射时能够准确地再次合成一束光线,从而形成干涉现象。
4.调整干涉条纹:最后,可以在观察屏幕上是否能够清晰地看到干涉条纹,在实验过程中可以适当调整光源的位置或者调整反射镜的倾斜角度,以获得更好的干涉效果。
二、实验使用1.实验准备:首先设置好迈克尔逊干涉仪,并确保调节好仪器,使光线能够正常穿过仪器。
2.实验操作:将待测光源置于迈克尔逊干涉仪的一个光路中,调整干涉仪中的反射镜位置,使干涉条纹清晰。
然后,改变待测光源的位置,测量干涉条纹的移动量,利用已知的反射器间距和探测器移动的距离,可以计算得到光的速度。
3.数据处理:使用测得的数据和已知的仪器参数,进行计算和分析。
根据测得的干涉条纹移动量和已知的反射器间距,利用干涉仪的原理和公式,计算得到光的速度。
5.讨论和结论:根据实验结果,对实验中的不确定因素进行讨论,并得出结论。
如果实验结果与理论值一致,说明测量方法正确并且仪器使用正常;如果存在差异,可以分析差异的原因,并进一步完善实验方法或改善仪器使用的条件。
总之,迈克尔逊干涉仪是一种常见的用于测量干涉现象的仪器,通过调节和使用可以进行光速测量、薄膜厚度测量等实验。
在进行实验操作时,需要注意仪器的准确调节和数据的准确处理,以确保实验结果的可靠性。
迈克尔逊干涉仪的调节与使用

迈克尔逊干涉仪的调节和使用一.实验原理迈克尔逊干涉仪是一个分振幅法的双光束干涉仪,其光路如右图所示,它由反光镜M1,M2、分束镜P1和补偿板P2组成。
其中M1是一个固定反射镜,反射镜M2可以沿光轴前后移动,他们分别放置在两个相互垂直臂中,分束镜和补偿板与两个反射镜均成45°且相互平行,分束镜P1的一个面镀有半透半反膜,它能将入射光等强度的分为两束;补偿板是一个与分束镜厚度和折射率完全相同的玻璃板。
迈克尔逊干涉仪结构如下图所示,镜M1、M2的背面各有三个螺丝,调节M1、M2镜面的倾斜度,M1的下端还附有两个互相垂直的微动拉簧螺丝,用以精确的调整M1的倾斜度。
M2镜所在的导轨拖板由精密丝杠带动,可沿着导轨前后移动。
M2镜的位置由三个读数尺所读出的数值的和来确定,主尺、粗调手轮和微调手轮。
如图所示,躲光束激光器提供的每条光纤的输出端是一个短焦距凸透镜,经其汇聚后的激光束,可以认为是一个很好的点光源S发出的球面光波。
S1’为S经M1以及G1反射后所成的像,S2’为S经G1以及M2反射后所成的像。
S2’和S1’为两相干光源。
发出的球面波在其相遇的空间处处相干。
为非定域干涉,在相遇处都能产生干涉条纹。
空间任一点P的干涉明暗由S2’和S1’到该点的光程差Δ=r2-r1决定,其中r2和r1分别为S2’和S1’到P点的光程。
P点的光强分布的极大和极小的条件是:Δ=kλ(k=0,1,2…)为亮条纹Δ=(2k+1)λ(k=0,1,2…)为暗条纹2.He-Ne激光波长的测定当M1’与M2平行时,将观察屏放在与S2’,S1’连线相垂直的位置上,可看到一组同心干涉圆条纹,如图所示。
设M1’与M2之间的距离为d,S2‘和S1‘之间的距离为2d,S2’和S1‘在屏上任一点P的光程差为Δ=2dcosφφ为S2’到P点的光线与M2法线的夹角。
当改变d,光程差也相应发生改变,这时在干涉条纹中心会出现“冒进”和“缩进”的现象,当d增加λ/2,相应的光程差增加λ,这样就会“冒出”一个条纹;当d减少λ/2,相应的光程差减少λ,这样就会“缩进”一个条纹;因此,根据“冒出”和“缩进”条纹的个数可以确定d的该变量,它可以用来进行长度测量,其精度是波长量级,当“冒出”或“缩进”了N个条纹,d的改变两δd为:Δd=Nλ/2二.实验内容1.调节干涉仪,观察非定域干涉(1)水平调节,调节干涉仪底角螺丝,使仪器导轨水平,然后用锁圈锁住。
实验八迈克尔逊干涉仪的调节和使用

实验八迈克尔逊干涉仪的调节和使用迈克尔逊干涉仪是一种典型的用分振幅法产生双光束以实现干涉的精密光学仪器.通过调整该干涉仪,可以产生等倾条纹,也可以产生等厚条纹和非定域条纹,还可以用来研究普通光源的时间相干性.相干光源的获取除用激光外,在实验室中一般是将普通钠光源采用分振幅法使其在空间经不同路径会合后产生干涉.·实验目的1.了解迈克尔逊干涉仪的结构及特点、学会调节和使用方法;2.调出面光源的等倾条纹,观察其特点,掌握条纹随动臂的变化规律;测量钠D双线的平均波长及波长差,加深对时间相干性的理解;3.调出点光源非定域条纹,并测量激光源的波长;了解观察复色白光的零级等厚条纹和面光源的等厚干涉条纹.(选做)·实验仪器迈克尔逊干涉仪,钠灯,毛玻璃屏,扩束镜,孔屏,激光光源等.图8-1为迈克尔逊干涉仪实物图.图8-2是迈克尔逊干涉仪的光路示意图,图中M1和M2是在相互垂直的两臂上放置的两个平面反射镜,其中M2是固定的;M1由精密丝杆控制,可沿臂轴前、后移动,移动的距离由刻度转盘(粗读和细读两组刻度盘组合而成)读出,仪器前方粗动手轮最小分格为10-2mm,右侧微动手轮的最小分格为10-4mm,可估读至10-5mm.在两臂轴线相交处,有一与两轴成45°角的平行平面玻璃板G1,它的后表面上镀有半透(半反射)的银膜,以便将入射光分成振幅接近相等的反射光1和透射光2,故G1又称为分光板.G2也是平行平面玻璃板,与G1平行放置,厚度和折射率均与G1相同.由于它补偿了光线1和2因穿越G1次数不同而产生的光程差,故称为补偿板.从扩展光源S射来的光在G1处分成两部分,反射光1经G1反射后向着M1前进,透射光2透过G1向着M2前进,这两束光分别在M1、M2上反射后逆着各自的入射方向返回,最后都达到E处.因为这两束光是相干光,因而在E处的观察者就能够看到干涉条纹.由M 2反射回来的光在分光板G 1的第二面上反射时,如同平面镜反射一样,使M 2在M 1附近形成M 2的虚像M 2′,因而光在迈克尔逊干涉仪中自M 1和M 2的反射相当于自M 1和M 2′的反射.由此可见,在迈克尔逊干涉仪中所产生的干涉与空气薄膜所产生的干涉是等效的.当M 1和M 2′平行时(此时M 2和M 1严格互相垂直),将观察到环形的等倾干涉条纹.一般情况下,M 2和M 1形成一空气劈尖,因此将观察到近似平行的干涉条纹(等厚干涉条纹).图8-1 实物照片 图8-2迈克尔逊干涉仪光路图·实验原理一、单色光波长的测定用波长为λ的单色光照明时,迈克尔逊干涉仪所产生的环形等倾干涉圆条纹的位置取决于相干光束间的光程差,而由M 1和M 2反射的两列相干光波的光程差为:(8-1)i d cos 2=Δ其中i 为反射光1在平面镜M 2上的入射角.对于第k 条纹,则有λj i d j =cos 2 (8-2)当M 1和M 2′ 的间距逐渐增大时,对任一级干涉条纹,例如d j 级,必定是以减少的值来满足(8-2)式的,故该干涉条纹间距向变大(值变小)的方向移动,即向外扩展.这时,观察者将看到条纹好像从中心向外“涌出”,且每当间距增加j i cos j i j i cos d 2/λ时,就有一个条纹涌出.反之,当间距由大逐渐变小时,最靠近中心的条纹将一个一个地“陷入”中心,且每向中心陷入一个条纹,间距d 的改变必为d2/λ.因此,当 M 1镜移动时,若有N 个条纹陷入中心,则表明M 1相对于M 2移近了2λNd =Δ (8-3)反之,若有N 个条纹从中心涌出来时,则表明M 1相对于M 2移远了同样的距离.如果精确地测出M 2移动的距离d Δ,则可由(8-3)式计算出入射光波的波长. 二、测量钠光的双线波长差钠光D 线两条谱线的波长分别为0.5891=λnm 和6.5892=λnm ,移动M 1,当光程差满足两列光波1和2的光程差恰为1λ的整数倍,而同时又为2λ的半整数倍,即:2211)21(λλ+=j j (8-4)这时1λ光波生成亮环的地方,恰好是2λ光波生成暗环的地方.如果两列光波的强度相等,则在此处干涉条纹的视见度应为零(即条纹消失).那么干涉场中相邻的2次视见度为零时,光程差的变化应为:21)1(λλ+==Δj j L (j 为较大整数) (8-5)由此得LjΔ==−21221λλλλλ (8-6)于是LLΔ=Δ=−=Δ22121λλλλλλ (8-7)式中为1λ、2λ的平均波长.对于视场中心来说,设M 1镜在相继2次视见度为零时移动距离为,则光程差的变化d ΔL Δ应等于2,所以d ΔdΔ=Δ22λλ (8-8)对钠光λ=589.3 nm ,如果测出在相继2次视见度最小时,M 1镜移动的距离Δd ,就可以由(8-8)式求得钠光D 双线的波长差.三、点光源的非定域干涉图8-3 点光源非定域干涉激光器发出的光,经短焦距凸透镜L会聚于S点.S点可看做一点光源,经G1(G1未画)、M1、M2′的反射,也等效于沿轴向分布的2个虚光源S1′、S2′所产生的干涉.因S1′、S2′发出的球面波在相遇空间处处相干,所以观察屏E放在不同位置上,则可看到不同形状的干涉条纹,故称为非定域干涉.当E垂直于轴线时(见图8-3),屏上出现同心圆形条纹,光程差的改变依赖倾角和膜厚两个因素,在圆环中心处,光程差最大,条纹级次最高,中心环的变化规律与等倾条纹计算公式(8-3)式相同,此处不再赘述.·实验内容与步骤一、等倾干涉现象的观察及钠光D双线平均波长的测定1.点燃钠光灯,使之经过装有叉丝的毛玻璃屏照射分光板G1,且叉丝与分光板G1、平面镜M2等高共轴.转动粗调手轮,使M2镜距分光板G1的中心与M1镜距分光板G1的中心大致相等.2. 眼睛透过G1直视M1镜,可看到3个叉丝像.细心调节M1镜后面的 3 个调节螺钉,使两个叉丝像重合,如果难以重合,可略微调节一下M2镜后的3个螺钉.当两个叉丝像完全重合时,将看到有明暗相间的干涉环,再细调平面镜后的螺钉,使条纹成圆形.若干涉环模糊,可轻轻转动前方粗调手轮,使M1镜移动一下位置,干涉环就会出现.3.再仔细调节M2镜的2个拉簧螺丝,直到把干涉环中心调到视场中央,并且使干涉环中心随观察者的眼睛左右、上下移动而移动,但干涉环不发生“涌出”或“陷入”现象,这时观察到的干涉条纹才是严格的等倾干涉.4.测钠光D双线的平均波长λ.先调仪器零点,方法是:将微调手轮沿某一方向(如顺时针方向)旋至零,同时注意观察读数窗刻度轮旋转方向;保持刻度轮旋向不变,转动粗调手轮,让读数窗口基准线对准某一刻度,使读数窗中的刻度轮与微调手轮的刻度轮相互配合.5.始终沿原调零方向,细心转动微调手轮,观察并记录每“涌出”或“陷入”50个干涉环时,M1镜位置,连续记录6次.6.用逐差法求出钠光D双线的平均波长,并与标准值进行比较.二、测定钠光D双线的波长差1.以钠光为光源调出等倾干涉条纹.2.用粗调手轮移动M1镜,使视场中心的视见度最小,记录M1镜的位置;沿原方向继续移动M1镜,使视场中心的视见度由最小到最大直至又为最小,再记录M1镜位置.3.实际实验中因为视见度模糊区很宽,难以准确测得,故可利用拓展量程法去减小单次测量的随机误差.读出连续共6个视见度最小时M1镜的位置差,求出这5个间隔的平均值为Δd,代入(8-8)式计算D双线的波长差.三、选做内容1.点光源非定域干涉现象观察方法步骤仿照等倾条纹自拟.2.观察等厚干涉和白光干涉条纹在等倾干涉基础上,移动M1镜,使干涉环由细密变粗疏,直到整个视场条纹变成等轴双曲线形状时,说明M2与M2′接近重合.细心调节水平式垂直拉簧螺丝,使M1与M2′有一很小夹角,视场中便出现等厚干涉条纹,观察和记录条纹的形状、特点.用白炽灯照明毛玻璃(钠光灯不熄灭),缓慢地旋转微动手轮,M1与M2′达到“零光程”时,在M1与M2′的交线附近就会出现彩色条纹.此时可挡住钠光,再极小心地旋转微调手轮找到中央条纹,记录观察到的条纹形状和颜色分布.·实验数据测量1.钠黄光平均波长测量数据表条纹计数n10 50 100 150 200 250 动镜位置d1 (mm)条纹计数n2300 350 400 450 500 550 动镜位置d2 (mm)Δd=| d2- d1| (mm)2.钠黄双线波长差测量数据记录表条纹消失次数 1 2 3 4 5 6 动镜位置d (mm)·实验注意事项1.迈克尔逊干涉仪系精密光学仪器,使用时应注意防尘、防震;不能触摸光学元件光学表面;不要对着仪器说话、咳嗽等;测量时动作要轻、要缓,尽量使身体部位离开实验台面,以防震动.2.实验前和实验中调节旋转手轮时,应密切关注M1的位置,不能顶靠前端的仪器主体,以免挤压损伤仪器.3.测量时微动手轮要保持单方向转动,不要中途反转,以免引起回程误差. ·历史渊源与应用前景迈克尔逊干涉仪是1881年由美国物理学家迈克尔逊和莫雷为研究“以太”漂移而设计制造的精密光学仪器.历史上,迈克尔逊-莫雷实验结果否定了“以太”的存在,为爱因斯坦建立狭义相对论奠定了基础.迈克尔逊和莫雷因在这方面的杰出成就获得了1883年诺贝尔物理学奖.光谱线精细结构的研究和用光波标定标准米尺等实验都首先在这台干涉仪上完成.迈克尔逊干涉仪是历史上最著名的经典干涉仪,其基本原理已经被推广到许多方面,以它为基础研制成各种形式的精密仪器,广泛地应用于计量技术和科学研究中.20世纪60年代激光出现以后,良好的光源拓展了它的应用领域.用它不仅可以观察光的等厚、等倾干涉现象,精密地测定光波波长、微小长度、光源的相干长度等,还可以测量气体、液体的折射率.·与中学物理的衔接见实验七牛顿环干涉·自主学习因为分振幅薄膜干涉一般难以将二束相干光的光路分开,使真正的光学测量无法实现.本实验的构思亮点:首次将相干光引向两条相互垂直的光路通过,为待测物加入一侧光路去改变光程差创造了良好条件,是高精度不接触无损检测的经典仪器模型.操作难点:叉丝像重合的判断;等倾条纹视场的消除,白光等厚条纹的获得.1.实验中毛玻璃起什么作用?为什么观察钠光等倾干涉条纹时要用通过毛玻璃的光束照明?2.光源毛玻璃屏上的叉丝经M1M2成的像为什么是3个?3.干涉仪中的G1G2各起什么作用?用激光源照明时,没有G2能否产生干涉条纹?4.观察钠灯的等倾干涉现象时,上下左右动眼睛,发现已没有泡冒出或陷进去,且圆心在视野中央,但改变M1、M2之间的距离时,发现圆环的中心偏离视野中心,试分析原因?5.用钠光做光源时,干涉条纹为什么会出现视见度为零的现象?6.当M1、M2之间的距离增大时,可观察到中心条纹“陷入”还是“冒出”?7.已知什么量?哪个是待测量?如何控制变量?关注仪器的分度值及单位,按要求处理实验数据,完成实验报告.8.本实验还有哪些操作难点?针对操作难点,摸索并掌握正确的调节的方法.·实验探究与设计1.调节钠光的干涉条纹时,如确认两个叉丝像已重合,但条纹并未出现,试分析可能产生的原因,写出解决方案.2.尝试设计测量透明薄膜厚度或折射率的实验方案,并完成实验.。
迈克尔逊干涉仪的调整和使用

2 迈克尔逊干涉仪的调整和使用仪器简介迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷发明的分振幅法双光束干涉仪,其主要特点是两相干光束分得很开,且它们的光程差可通过移动一个反射镜(本实验采用此方法)或在一光路中加入一种介质来方便地改变,利用它可以测量微小长度及其变化,随着应用的需要,迈克尔逊干涉仪有多种多样的形式。
迈克尔逊干涉仪的结构如图,一个机械台面5固定在较重的铸铁底座2上,底座上有三个调节螺丝钉1,用来调节台面的水平。
在台面上装有螺距为1毫米的精密丝杆6,丝杆的一端与齿轮系统12相连接,转动手轮13或微调鼓轮15,都可使丝杆转动,从而使卡在丝杠上的平面镜M 2沿着导轨7移动。
M 2镜的位置及移动的距离可从装在台面左侧的毫米标尺(未画出)、读数窗11及微调鼓轮15上读出。
手轮和微调鼓轮圆周均被分成100小格,微调鼓轮每转一周,手轮就转过1格;手轮每转过一周(由读数窗读出),M 2镜就平移1毫米。
由此可见,三个位置读数时,最小刻度有如下关系:毫米标尺(直线)∶手轮(读数窗)∶微调鼓轮(刻度圆周)=104∶102∶1根据有效数字的特点,在微调鼓轮圆周上还可估读一位,即以毫米为单位记录M 2镜的位置时,应保留到10-5。
M 1镜是固定在镜台上的,M 1 、M 2两镜的后面各有三个螺丝钉4,可改变镜面倾斜度(实验中只调节M 1镜后的螺丝),M 1镜台下面还有一个水平微调螺丝和一个垂直微调螺丝,其松紧使镜台产生一极小的形变,从而可以对M 1镜的倾斜度作更精细的调节,G 1和G 2分别为分光板和补偿板。
M 1 、M 2和G 1的内表面都镀了银(便于反射光线,其中G 1的内表面为半反射面)。
在操作及测量读数时要注意:(1)分光板G 1、补偿板G 2和平面镜M 1(M 2)均成45°角,且已固定在基座上,调节时动作要轻,不得强扳。
(2)分光板G 1、补偿板G 2、平面镜M 1和平面镜M 2均为精密光学元件,必须保持清洁,切忌6精密丝杆(附标尺)11 读数窗 12 13 15 14 16触摸或拆卸,也不要擦拭光学表面。
实验 迈克尔逊干涉仪的调节和使用

实验迈克尔逊干涉仪的调节和使用迈克尔逊干涉仪是一种用于测量光波长或者光速的仪器。
它的原理是利用光的干涉现象,通过对干涉条纹的观察来确定光波长或光速。
在使用迈克尔逊干涉仪之前,需要对其进行调节和使用。
本文将介绍迈克尔逊干涉仪的调节和使用方法。
一、迈克尔逊干涉仪的构成迈克尔逊干涉仪由四个主要部分组成,包括光源、分束器、反射镜和接收屏。
其中,光源产生光线,分束器将光线分成两束,反射镜将光线反射并重新合并,接收屏上观察条纹以得到测量结果。
(一)调节分束器1、端口对准:将分束器的两个端口(输入端和输出端)对准迈克尔逊干涉仪的两个端口。
2、校正透镜:将透镜与分束器固定并利用透镜校正分束器的输出光斑。
3、调节分束比:通过微调分束器的输入端镜片的位置来调节分束比。
4、校准光路:检查光路是否正确,包括分束后光线是否平行、目标反射镜是否正对着分束器等等。
(二)调节反射镜1、调整反射镜位置:将反射镜置于正确的位置并垂直于光路。
2、确定反射面度数:通过原理图和求解器确定反射面的度数,比如60度。
3、调节反射镜倾斜度:利用半反射膜来调节反射镜的倾斜度,并通过角度计来检查反射镜是否平行于接收屏。
(三)调节光源1、选择光源:选择一款适合的光源。
2、调整灯丝位置:将灯丝调整到正确的位置,使其照亮整个系统。
3、调节灯丝亮度:通过增减电压来调节灯丝的亮度。
(四)调节接收屏1、确定焦距:通过调节接收屏的距离和位置,找出最合适的焦距。
2、校准位置:将接收屏和反射镜垂直,通过调节位置校准光路。
1、准备工作:确保所有部件都已经开始预热,光线已经稳定。
2、测量方法:打开光源,观察条纹的规律性,通过实验得到测量结果。
3、数据处理:将观察到的条纹照片拍摄下来,进行后续处理,包括调整对比度和亮度以及增加标尺等等。
四、注意事项1、留意温度:因为干涉仪精度较高,所以需要注意外部温度的影响。
2、留意光线:因为干涉仪只能使用单色光线,因此需要注意室内环境的影响。
迈克尔逊干涉仪的调整和使用汇总

迈克尔逊干涉仪的调整和使用迈克尔逊干涉仪是迈克尔逊(1852-1931年)在上世纪后期提出的,利用分振幅法产生双光束以实现干涉的一种仪器。
迈克尔逊与其合作者曾用此仪器进行了三项著名的实验,即测量光速、标定米尺及推断光谱线精细结构。
迈克尔逊运用它进行了大量的反复的实验,动摇了经典物理的以太说,为相对论的提出奠定了实验基础。
该仪器设计精巧,用途广泛,不少其它干涉仪均由此派生出来,是许多近代干涉仪的原型。
迈克尔逊也因发明干涉仪和光速的测量而获得1907年的诺贝尔物理学奖。
直至今日,迈克尔逊干涉仪仍被广泛地应用于长度精密计量和光学平面的质量检验(可精确到十分之一波长左右)及高分辨率的光谱分析中。
[一]实验目的1. 了解迈克尔逊干涉仪的原理并掌握调节方法。
2. 观察等倾干涉,等厚干涉的条纹,并能区别定域干涉和非定域干涉。
3. 测定He-Ne 激光的波长。
[二]实验仪器1. 迈克尔逊干涉仪的构造迈克尔逊干涉仪的构造如图33-1。
其主要由精密的机械传动系统和四片精细磨制的光学镜片组成。
1G 和2G 是两块几何形状、物理性能相同的平行平面玻璃。
其中1G 的第二面镀有半透明铬膜,称其为分光板,它可使入射光分成振幅(即光强)近似相等的一束透射光和一束反射光。
2G 起补偿光程作用,称其为补偿板。
1M 和2M 是两块表面镀铬加氧化硅保护膜的反射镜。
2M 是固定在仪器上的,称其为固定反射镜,1M 装在可由导轨前后移动的拖板上,称其为移动反射镜。
迈克尔逊干涉仪装置的特点是光源、反射镜、接收器(观察者)各处一方,分得很开,可以根据需要在光路中很方便的插入其它器件。
1M 和2M 镜架背后各有三个调节螺丝,可用来调节21M M 和的倾斜方位。
这三个调节螺丝在调整干涉仪前均应先均匀地拧几圈(因每次实验后为保证其不受应力影响而损坏反射镜都将调节螺丝拧松了),但不能过紧,以免减小调整范围。
同时也可通过调节水平拉簧螺丝与垂直拉簧螺丝使干涉图像作上下和左右移动。
迈克尔逊干涉仪的调整和使用

物理实验中心
干涉条纹
`
主尺
粗动手轮 读数窗口
微动手轮
3 3. 5 2 2 4 6
读数为
3 3 . 5 2 2 4 6 mm
迈克尔逊干涉仪的调节
1.转动粗动手轮,移动反射镜M1 位于大约45毫米到50毫米之间, 将反射镜M2背后的两个螺钉放松,两个拉簧调节螺丝旋至调节范围 中间,即不很松又不很紧。
2.将激光器放在干涉仪左侧,调节激光管垂直于导轨,激光束射 向分光板G1的中心部位,这时在毛玻璃观察屏上就会出现两排光点。 转动激光管聚焦调节轮,使毛玻璃观察屏上呈现最细小的光点。 3.调节M2镜背后的两个螺钉,使两排光点中最亮的两个重合,此 时两个反射镜M1和M2大致互相垂直。 4.将透镜放在激光器与干涉仪之间,使激光束通过透镜照射到分 光板上,这时在毛玻璃观察屏上就会出现干涉条纹。否则,重新进 行步骤2、3的调节。
3.为避免螺旋空转引入误差,在测量前必须调整 零点:使微动手轮和粗动手轮转动方向保持一致,将 微动手轮转至零刻线,并转动粗动手轮对齐读数窗口 中的某一刻度线。调整好零点后,应将微动手轮按调 整零点的方向转动,直到干涉条纹开始均匀变化时, 再沿同一方向转动微动手轮进行单向测量。 4.眼睛不能对着激光束直视。
5.在毛玻璃观察屏上出现干涉条纹的基础上,再仔细调节两个拉 簧螺丝,直到能看到位置适中、清晰的圆环状的干涉条纹。轻轻转 动粗动手轮和微动手轮,可观察到干涉圆环的“吞进”和“吐出”。
注意事项
1.迈克尔逊干涉仪是非常精密的光学仪器,操作 时不能急躁;绝对不许用手触摸各光学元件,也不许 用任何东西擦拭。 2.可在导轨上移动的反射镜M1背后的两个螺钉不 能动。
迈克尔逊干涉仪的调整和使用

105实验5-9 迈克尔逊干涉仪的调整和使用迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作为研究“以太”漂移而设计出的精密光学仪器,在近代物理学的发展中起过重要的作用。
迈克尔逊曾用迈克尔逊干涉仪进行了“以太漂移”实验、标定米尺及推断光谱线精细结构等三项著名的实验。
第一项实验否定了“以太”的存在,从而“催生”了爱因斯坦于1905年提出的狭义相对论;第二项实验实现了长度单位的标准化,对近代计量技术的发展作出了重要贡献;迈克尔逊研究了干涉条纹可见度随光程差变化的规律,并以此推断光谱线的精细结构,这是干涉分光技术的最早工作。
迈克尔逊干涉仪原理简明,构思巧妙,堪称精密光学仪器的典范。
近代干涉仪有许多都是从迈克尔逊干涉仪的基础上发展起来的,这些干涉仪可准确测定光波的波长、微小长度和透明介质的折射率等,在近代计量技术中得到了广泛应用。
由于迈克尔逊干涉仪的设计精巧,用途广泛,迈克尔逊曾于1907年获诺贝尔物理学奖。
【实验目的】1.了解迈克尔逊干涉仪的结构、原理和调节方法。
2.利用点光源产生的非定域干涉条纹测定He-Ne 激光的波长。
3.观察面光源产生的等倾、等厚干涉条纹,了解它们的形成条件及条纹特点。
【实验器材】WSM-100型迈克尔逊干涉仪、He-Ne 激光器、毛玻璃屏、扩束镜。
【实验原理】一、迈克尔逊干涉仪的原理及结构 1. 光路迈克尔逊干涉仪是一种分振幅双光束干涉仪,光路见图5-9-1。
从光源S 发出的一束光射到分束镜1G 上,1G 板后表面镀有半反射(银)膜,这个半反射膜将一束光分为两束,一束为反射光(1),另一束为透射光(2),当激光束以与1G 成45°角射向1G 时,被分为互相垂直的两束光,它们分别垂直射到反射镜1M 、2M 上,1M 、2M 相互垂直,则经反向后这两束光再回到1G 的半反射膜上,又重新会集成一束光。
由于反射光(1)和透射光(2)为两束相干光,因此,我们可在E 方向观察到干涉现象。
迈克尔逊干涉仪的调整和使用

【实验内容】
1. 调节干涉仪 1)先粗调底座上三只调平螺丝⑨,使仪器大致水平,并拧紧锁紧圈⑩,以保持座架稳定。 2)置光源于透镜前,调整光路,使光源、透镜光心、分光板中心、全反射镜 M1 的中心在一 直线上。 3)转动粗动手轮②使 M2 和 M1 与 G1 的距离大致相等, 并使 G1 镜面与 M2 的垂线 M2G2 成 45°角, G2 镜面与 G1 镜面平行 CG1 与 G2 镜出厂时巳调好,不要动) 。 4)打开光源,使其正常发光,然后细心调节 M1 后的三只螺丝,使屏⑫上由两个反射镜照射 形成的亮斑重合(注意:调节必须十分小心,动作要轻缓) ,一旦调到重合,放上透镜立即会 出现等倾干涉条纹, 此时再微调 M1 后的三只螺丝及粗动手轮②和微动手轮①,使条纹疏密适中, 亮暗分明,并尽扯使圆环落在视域中心处。 5)用眼睛观察干涉条纹,当眼睛上下移动时,若条纹“冒出”或“内缩” ,则应调节矶旁的 垂直弹簧螺丝;当眼睛左右移动时,若条纹“冒出”或“内缩” ,则应调节水平弹簧螺丝,直 到使眼睛移动时的条纹稳定为止。经过以上几步调节,干涉仪基本调好,此时应能看见稳定 的干涉条纹。 2. 测 He-Ne 激光波长λ 轻微调节粗动手轮,以减小 h(或增大 h),观察光圈的“内缩” (或“冒出")现象。然后确定
光源 S 出射的光线,经过透镜 L 射入 G1, 一部分经薄银层反射向 M2 传播,如图中的光线 2; 经 M2 反射后,再穿过 G1 向 E 处传播,如图中光线 2';另一部分穿过薄银层和玻璃片 G2,向 M1 传播,如图中的光线 l;经 M1 反射后,再穿过 G2,经薄银层反射,也向 E 处传播,如图中的光 线 1'。显然 1'和 2'是两条相干光线,在 E 处可以看到干涉条纹,玻璃片 G2 起补偿光程的作 用,由于光线 2 前后共通过玻璃片 G1 三次,而光线 1 只通过一次,有了玻璃片 G2,使光线 1 和光线 2 分别穿过等厚的玻璃三次, 从而避免了光线因所经路程不相等而引起的较大光程差, 因此称 G2 为补偿玻璃。 设想镀银层所形成的 M1 的虚像是 M1'因为虚像 M1'和实像 M1 相对于锁银层的位置是对称的, 所以虚像 M1'应在 M2 附近。 M1 的反射光线 1'可以看成是从 M1'处反射的。 如果 M2 和 M1 严格垂直, 那么 M1'与也就严格地平行。这样,在 M2 和 M1'两个平面之间就形成了“空气薄膜” ,与玻璃薄 膜的干涉情况完全相似。 设扩展光源中任一束光以入射角 i 射到薄膜表面上,在 上表面反射的一束光①和在下表面反射的一束光②为两束 平行的相干光,它们在无限远处相遇产生干涉,利用眼睛 观察,可以看到干涉图像。在图中,光线①和光线②两束 相干光间的光程差为。 ������ = 2������ℎ������������������������ ′ = 2ℎ ������2 − ������������������2 ������ 当介质的折射率 n 一定,且薄膜厚度一定时,光程差只决定于入射角 i 。随着入射角 i 的改变,光程差也要发生相应的变化。入射角相同的光线在薄膜上、下表面反射后,若用透 镜会聚光束,则将在透镜焦平面上发生干涉。干涉花纹将是一个以透镜光轴为圆心的一组明 暗相间的同心圆环,即等倾干涉。
实验六 迈克尔逊干涉仪的调节和使用

实验五迈克尔逊干涉仪的调节和使用一、实验目的1.了解迈克尔逊干涉仪的构造原理,掌握迈克尔逊干涉仪的调节方法;2.学会调节非定域干涉、等倾干涉、等厚干涉和白光干涉条纹,研究这几种干涉条纹形成的条件和条纹特点,变化规律及相互间的区别;3.学会用迈克尔逊干涉仪测定光波波长。
二、实验仪器迈克尔逊干涉仪、氦氖激光器、扩束透镜、毛玻璃等。
三、实验原理1.迈克尔逊干涉仪的原理图1是迈克尔逊干涉仪的光路示意图,图中M1和M2是在相互垂直的两臂上放置的两个平面反射镜,其中M1是固定的;M2由精密丝杆控制,可沿臂轴前、后移动,移动的距离由刻度转盘(由粗读和细读2组刻度盘组合而成)读出。
在两臂轴线相交处,有一与两轴成45°角的平行平面玻璃板p1,它的第二个平面上镀有半透(半反射)的银膜,以便将入射光分成振幅接近相等的反射光⑴和透射光⑵,故p1又称为分光板。
p2也是平行平面玻璃板,与p1平行放置,厚度和折射率均与p1相同。
由于它补偿了光线⑴和⑵因穿越p1次数不同而产生的光程差,故称为补偿板。
从扩展光源S射来的光在p1处分成两部分,反射光⑴经p1反射后向着M2前进,透射光⑵透过p1向着p1前进,这两束光分别在p2、p1上反射后逆着各自的入射方向返回,最后都达到E处。
因为这两束光是相干光,因而在E处的观察者就能够看到干涉条纹。
由M1反射回来的光波在分光板p1的第二面上反射时,如同平面镜反射一样,使M1在M2附近形成M1的虚像M1′,因而光在迈克尔逊干涉仪中自M2和M1的反图1 迈克尔逊干涉仪光路射相当于自M 2和M 1′的反射。
由此可见,在迈克尔逊干涉仪中所产生的干涉与空气薄膜所产生的干涉是等效的。
当M 2和M 1′平行时(此时M 1和M 2严格互相垂直),将观察到环形的等倾干涉条纹。
一般情况下,M 1和M 2形成一空气劈尖,因此将观察到近似平行的干涉条纹(等厚干涉条纹)。
2.单色光波长的测定用波长为λ的单色光照明时,迈克尔逊干涉仪所产生的环形等倾干涉圆条纹的位置取决于相干光束间的光程差,而由M 2和M 1反射的两列相干光波的光程差为•2cos d i ∆=(1)其中i 为反射光⑴在平面镜M 2上的入射角。
迈克尔逊干涉仪的调整与使用

迈克尔逊干涉仪是一种分振幅双光束干涉仪,1881年问 世以来,迈克尔逊曾用它完成了三个著名的实验:否定“以 太”的迈克尔逊—莫雷实验;光谱精细结构和利用光波波长 标定长度单位.迈克尔逊干涉仪结构简单、光路直观、精度 高,其调整和使用具有典型性.根据迈克尔逊干涉仪的基本 原理发展的各种精密仪器已广泛应用于生产和科研领域.
实验目的
1、了解迈克尔逊干涉仪的结构和使用方法。 2、观察等倾和等厚干涉现象。 3、学习用迈克尔逊干涉仪测激光的波长和钠
双线的波长差。
仪器结构
迈克尔逊干涉仪的光路
测激光波长
当M1⊥M2时,形成等倾同 心圆形条纹,圆心处有2d=kλ, 改变d,可见圆心条纹涌出或消 失。测出条纹在圆心处涌出或 消失的条纹数N及M1移动的距 离△d,即可求的波长
2d
N
等⊥M2,移动M1,测出相邻两次条纹 视间度为零时M1移动的距离△d, 钠双线的 波长差
2
2d
等厚直线条纹
M1 与 M 2'有一小角度时,产生平行于两镜交棱的等
厚直线条纹
实验内容和要求
1、测He-Ne激光的波长
记录干涉圆条纹涌出或消失50条时对应的d值, 连续记录12次,用逐差法求 d ;计算He-Ne 激光的波长,与理论值比较,计算相对不确定 度。
实验内容和要求
2. 测钠双线的波长差。
连续记录6次条纹视间度为零的d值,用逐差
法求 d ,计算钠双线的波长差。(已
知
0
5893A
)
3. 观察等厚干涉现象 移动M1使圆形条纹变粗、疏,微调M2方位, 观察等厚直线条纹。
迈克尔逊干涉仪的调整与使用.

干 涉 光 路 原 理 图
分光板把入射光分成两束强度几乎相等的光束(因此迈克 尔逊干涉仪是分振幅干涉),这两束光经过两个平面镜的 反射之后汇集到分光板后面发生干涉,形成干涉条纹(因 此迈克尔逊干涉仪是双光束干涉)。可动平面镜和固定平 面镜的虚像形成了一个薄的空气层,这两束光可以看成是 从该膜的上下底面上方反射回来的。这种干涉现象跟厚度
空气劈尖,则形成等厚干涉条纹------直条纹。 5、如果利用扩展白光源,则可以看到彩色条纹。
【实验内容】
一、调节迈克尔逊干涉仪
粗调:将迈克尔逊干涉仪三个底脚螺丝调平;两个平面 镜后面的调节螺钉松紧适当;镜座上的两个调节 螺钉松紧适当;转动粗调手轮,使两个平面镜到 分光板的距离大致相等。
细调:调节激光器使光束水平,并入射到分光板的中心 且使入射光与反射光基本重合,仔细耐心轻缓的调 节两个平面镜后面的螺钉,使两个平面镜反射到观 察屏上的发光最亮点严格重合,此时在观察屏上能 够看到很小范围的干涉条纹。说明迈克尔逊干涉仪 基本调好。
1、分析并说明迈克耳逊干涉仪中所看到的明暗相 间的同心圆环与牛顿环有何异同?
2、分纹时,如确实用激光已调节
好,改换钠光后,但条纹并未出现,试分析可 能的原因。
再见!
仔细调节镜座上的两个调节螺钉中的一个,使空气膜 变成有一微小夹角的空气劈尖,则可看到直条纹----定 域在薄膜附近的等厚干涉条纹。
三、白光干涉----彩色条纹的观察
换上扩展的白光光源照亮分光板。
自行设计实验步骤,观察彩色条纹。
为什么彩色干涉条纹只能出 现在接近于零的地方? 如何找到这一位置?
【思考与讨论】
二、观察非定域干涉图样并测量He—Ne激光的波长
在He—Ne激光器和分光板之间放上扩束透镜,使发散 的激光束均匀照亮分光板,则在观察屏上看到同心圆环 条纹———这就是点光源形成的非定域干涉条纹。如果 圆心不在屏的中心,应调整镜座上的两个调节螺钉。
迈克尔逊干涉仪的调节和使用(正式报告)

迈克尔逊干涉仪的调节和使用(正式报告)首先,调节迈克尔逊干涉仪的光源。
一般来说,我们可以使用激光作为光源,因为激光具有单色性和相干性,这有助于获得更清晰的干涉图案。
但是在实验过程中,也可以使用其他光源,只需确保光线的单色性。
接下来,调节迈克尔逊干涉仪的反射镜。
迈克尔逊干涉仪由两个反射镜组成,一个称为固定镜,另一个称为移动镜。
首先,将干涉仪的移动镜移到极端位置,以确保光线可以正常通过反射镜。
然后,在通过逐渐调节移动镜的位置,使得光线尽量垂直反射镜并回到入射方向。
然后,调节迈克尔逊干涉仪的分束镜。
分束镜是将一束光线分为两束的关键部分。
在调节分束镜时,我们需要将光线分成两束,并使其传播的路径相等。
要做到这一点,首先将一个探测器放在一个路径上,然后调整分束镜的位置,使得两束光线能够同时到达该探测器。
在进行实验之前,我们还需要调节探测器。
探测器主要用于检测通过干涉仪的光的干涉图案。
我们需要将探测器调整到最佳位置,以获得清晰的干涉条纹。
通常,探测器会发出一个高频声音,当干涉图案最清晰时,声音会最大。
因此,我们可以通过听觉判断探测器是否被正确调节。
最后,在进行实验时,我们需要注意避免干扰因素。
迈克尔逊干涉仪对环境的稳定性要求较高,应尽量避免振动、温度变化和空气流动等干扰因素。
此外,还需要保持实验室的洁净度,以防止灰尘等杂质影响干涉图案的清晰度。
在实验过程中,还可以通过调整迈克尔逊干涉仪的参数来观察不同的干涉效果。
例如,改变移动镜的位置可以改变干涉条纹的位置和宽度。
调整反射镜的角度也可以改变干涉图案的形状。
通过不断调整这些参数,我们可以得到更多有关光的干涉现象的信息。
综上所述,迈克尔逊干涉仪的调节和使用是实验中非常重要的一步。
通过正确地调节光源、反射镜、分束镜和探测器,以及注意避免干扰因素,我们可以获得准确且清晰的干涉图案,从而得到有关光的干涉现象的有价值的结果。
迈克尔逊干涉仪的调整与使用

图23-2 等倾干涉光路图实验二十三 迈克尔逊干涉仪的调整与使用光的干涉现象是光的波动性的一种表现。
当一束光被分成两束,经过不同路径再相遇时,如果光程差小于该束光的相干长度,将会出现干涉现象。
迈克尔逊干涉仪是一种利用分割光波振幅的方法实现干涉的精密光学仪器。
自1881年问世以来,迈克尔逊曾用它完成了三个著名的实验:否定“以太”的迈克尔逊—莫雷实验,光谱精细结构和利用光波波长标定长度单位。
迈克尔逊干涉仪结构简单、光路直观、精度高,其调整和使用具有典型性。
根据迈克尔逊干涉仪的基本原理发展的各种精密仪器已广泛应用于生产和科研领域。
【实验目的】1.了解迈克尔逊干涉仪的结构原理和调节方法;2.观察非定域干涉、定域等倾干涉、等厚干涉及白光干涉现象; 3.测量光波波长,了解条纹可见度等概念的物理意义。
【实验原理】1.迈克尔逊干涉仪的结构原理迈克尔逊干涉仪的典型光路如图23-1所示。
图中Μ1和Μ2是两面平面反射镜,分别装在相互垂直的两臂上。
Μ1位置固定而Μ2可通过精密丝杆沿臂长方向移动;Μ2倾角固定而Μ1的倾角可通过背面螺丝调节。
G 1和G 2是两块完全相同的玻璃板,在G 1的后表面上镀有半透明的银膜,能使入射光分为振幅相等的反射光和透射光,称为分光板。
G 1和G 2与M 1和M 2成45℃角倾斜安装。
由光源发出的光束,通过分光板G 1分成反射光束1和透射光束2,分别射向M 2和M 1,并被反射回到G 1。
由于两束光是相干光,从而产生干涉。
干涉仪中G 2称为补偿板,是为了使光束2也同光束1一样地三次通过玻璃板,以保证两光束间的光程差不致过大(这对使用单色性不好的光源是必要的)。
由于G 1银膜的反射,使在M 2附近形成M 1的一个虚象M 1'。
因此,光束1图23-1 迈克尔逊于涉仪的典型光路和光束2的干涉等效于由M 2和M 1'之间空气薄膜产生的干涉。
2.等倾干涉(定域干涉) 如图2所示,波长为λ的光束y 经间隔为d 的上下两平面M 2和M 1'反射,反射后的光束分别为y 1和y 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 如果M1与M2偏离相互垂直的方向,这时就能观 察到等厚干涉条纹,即两镜之间为劈尖干涉。
等 厚 干 涉 条 纹
M2
M2
M2
M1 '
M2
M1 '
M2
M1 '
M1 '
M1 '
等 倾 干 涉 条 纹 等 厚 干 涉 条 纹
M2 M1 '
M2 M1 '
M2
与 M1 '
M1 ' M2
M1 ' M2
重合
M2 M1 '
【实验中需注意的问题】
• 迈克耳逊干涉仪是精密光学仪器,光学表 面不能用手触摸。调节时动作要轻缓。 • 为了消除螺距差(空程差),调节及测量 读数时,粗调手轮和微调鼓轮要向同一方 向转动,中途不得倒退。 • 区分镜面间距(d) 、光程差(2d)和光程差的变 化(2△d)三个概念,弄清楚它们之间的关系。
【实验原理】
迈克尔逊干涉仪的结构
பைடு நூலகம்
• 读数
主尺
粗动手轮读数窗口 微动手轮
最后读数为:33.52246mm
迈克耳逊干涉仪光路图
M2 M 1′ p S p
b1 L1 a b
G1
a1 a2 G2 b2 M1
F
A
L2 F
迈克尔逊干涉仪原理光路
• M1和M2是平面反射镜,分别装 在相互垂直的两臂上,M1固定, M2而可通过精密丝杆沿臂长的 方向移动。 • G1和G2是两块完全相同的玻璃 板,在G1的后表面上镀有半透明 的银膜,能使入射光分为振幅相 等的反射光和透射光。 • M1和M2与G1和G2成45°角倾斜 安装。G2称为补偿板,是为了使 光束2也同光束1一样地三次通 过玻璃板,以保证两光束间的光 程差不致过大。 M2
2、细调:
望远镜放下,用肉眼观察,调节反光镜M1(右手边)的调节螺丝, 让从两反光镜反射的“十”字像重合,这时应该能看见部分干涉条纹;
分别细调M1的两个调节螺丝,让左右方向和上下方向的干涉条纹 间距变大,直到出现完整的干涉圆环;
调节M1、M2四个螺丝及粗调手轮(大转轮),使干涉圆环圆心条 纹清楚且圆环大小合适。
• 用 d
【数据处理】 N 计算钠光的平均波长λ、用平
2
均误差法或不确定度(方和根公式: Δ A为平 均值的标准偏差;读数最小刻度为0.1μ m, Δ 仪 =0.05μ m, Δ B=?)求Δ d、再用上式求出Δλ 。 写出λ =λ ±Δλ标准式,并求与钠光的标准波 长589.3nm百分比误差。
3、微调: 一边观察等倾干涉条纹,一边轻微调节M1调节螺丝, 使眼睛上下、左右移动时中心条纹不发生涌出或陷入现 象为止。
4、测量:
调节细调手轮,观察条纹是如何随光程差变化的;
调节细调手轮,让中心条纹涌出(或陷入)50环,读 出M2移动的距离△d ,计算波长。(注意避免空程差)
原始记录表:
环数(0-300) 位置 (mm) △d =dn+1-dn (mm) … …
【思考题】
P163 1. 3.
下周预习内容
声速的测量(重点位相比较法)
M2 M1 '
M2 M1 '
M1 ' M2
M1 ' M2
等 倾 干 涉 条 纹 等 厚 干 涉 条 纹
【实验操作】
迈克耳逊干涉仪的调节
1、粗调: 光源与干涉仪45度分光板位置对中; 调节反光镜的调节螺丝,让反光镜架的两板架平行; 如果这时反光镜M1和M2明显不垂直,调节水平和垂直拉杆; 调节粗调手轮(大转轮),使得分光板的分光面到M1和M2的距离 大致相等(用尺子测量,约7.2-7.8cm),使光程差在钠光相干长度之内。
迈克尔逊干涉仪是一种利用分割光波 振幅实现干涉的精密光学仪器。其调 整和使用具有典型性。
粗调手轮
细调手轮 读数窗
【实验目的】
• 了解迈克尔逊干涉仪的结构和工作原理
• 掌握其调节方法 • 调节观察等倾干涉并测定钠光双线平均波 长 • 调节观察等厚干涉
【实验原理】
相干的条件:
1、光的频率相同。 2、光的传播方向相同。 3、在传播方向上有恒定的位相差。
M1
2 G1 S G2 1
M1
2 1
半透半反膜
E
• 由于G1的反射,使在M2附近形成M1的一个虚像M1′,因此 光束1 和光束2 的干涉等效于由M2和M1′之间空气薄膜产生 的干涉。 • 当调节M1使M1与M2相互精确地垂直,在屏幕上可观察到圆 形的等倾干涉条纹,即两镜之间为薄膜干涉。
等 倾 干 涉 条 纹
定域干涉 与 不定域干涉
*定域就是某个一定的区域.非定域就是空间任何区域. *两个单色相干点源在空间任意一点相遇,总有一确定的光 程差,从而产生一定的强度分布,并能观察到清晰的干涉条 纹,这种干涉称为不定域干涉. *在扩展光源的情况下,在空间任意一点,由光源上不同点 源出发的,到达该点并产生双光束干涉的两支相干光的光程 差不同,在光程差变化大于四分之一波长的区域观察不到干 涉条纹,小于四分之一波长的区域,尽管采用了扩展光源, 仍可观察到清晰干涉条纹.这种干涉称为定域干涉。可观察 到清晰干涉条纹的区域称为定域区.
M2
M2
M1 '
M2
与 M1 '
M2
M2
M1 '
重合
M1 '
M1 '
• 当条纹为等倾条纹时,移动M2 ,相当于改变M2 和M1′之间空气薄膜的厚度,此时干涉条纹会出现 条纹“陷入”或“涌出”的现象。 • “陷入”或“涌出”的条纹数与移动距离的关系:
N d 2
• 如果数出“陷入”或“涌出”的条纹数,由已知波 长λ就可计算出Δd,这就是测量微小距离的原理; • 反之,由读出的Δd 也可测定入射光的波长,这也 是测定单色光波长的一种方法。