AFM-原子力显微镜PPT课件
合集下载
原子力显微镜原理及操作流程讲义(PPT 42页)
![原子力显微镜原理及操作流程讲义(PPT 42页)](https://img.taocdn.com/s3/m/9627e90a02768e9951e738a6.png)
4.1 激光系统
激光器是光反馈通路的信号源。由于 悬臂尖端的空间有限性,就对照射器上的光 束宽度提出了一定要求:足够细、单色性好、 发散程度弱;同时也要求光源的稳定性高, 可持续运行时间久,工作寿命长。 而激光正 是能够很好地满足上述条件的光源。
4.2 微悬臂系统
微悬臂是探测样品的直接工具,它的属 性直接关系到仪器的精度和使用范围。 微悬 臂必须有足够高的力反应能力,这就要求悬 臂必须容易弯曲,也易于复位,具有合适的 弹性系数,使得零点几个纳(nN)甚至更小的 力的变化都可以被探测到;同时也要求悬臂 有足够高的时间分辨能力,因而要求悬臂的 共振频率应该足够高,可以追随表面高低起 伏的变化。
5.4三种模式的比较
1、接触模式(Contact Mode): 优点:扫描速度快,是唯一能够获得“原子分
辨率”图像的AFM垂直方向上有明显变化的质硬样 品,有时更适于用Contact Mode扫描成像。
缺点:横向力影响图像质量在空气中,因为样 品表面吸附液层的毛细作用使针尖与样品之间的粘 着力很大,横向力与粘着力的合力导致图像空间分 辨率降低,而且针尖挂擦样品会损坏软质样品(如 生物样品,聚合体等)。
2.AFM简介
原子力显微镜(Atomic Force Microscope , AFM),是一种可用来研究包括绝缘体在内的固体 材料表面结构的分析仪器。它通过检测待测样品表 面和一个微型力敏感元件之间的极微弱的原子间相 互作用力来研究物质的表面结构及性质。将一对微 弱力极端敏感的微悬臂一端固定,另一端的微小针 尖接近样品,这时它将与其相互作用,作用力将使 得微悬臂发生形变或运动状态发生变化。扫描样品 时,利用传感器检测这些变化,就可获得作用力分 布信息,从而以纳米级分辨率获得表面结构信息。
原子力显微镜培训课件-新版.ppt
![原子力显微镜培训课件-新版.ppt](https://img.taocdn.com/s3/m/404fa62e804d2b160b4ec0dd.png)
烟草花叶病毒扫描图
最新文档
AFM的缺点
受样品因素限制较大(不可避免) 针尖易磨钝&受污染(磨损无法修复;污染
清洗困难) 针尖—样品间作用力较小
最新文档
最新文档
最新文档
敲击模式的优越性:
敲击模式尽管没有接触模式的分辨率高,但 是敲击模式在一定程度上减小样品对针尖 的粘滞现象,因为针尖与样品表面接触时, 利用其振幅来克服针尖-样品间的粘附力。 并且由于敲击模式作用力是垂直的,表面 材料受横向摩擦力和剪切力的影响都比较 小,减小扫描过程中针尖对样品的损坏。 所以对于较软以及粘附性较大的样品,尽 量选用敲击模式。
1985年,IBM公司的Binning和Stanford大 学的Quate研发出了原子力显微镜(AFM), 弥补了STM的不足
最新文档
最新文档
最新文档
原理
最新文档
原 子 间 范 德 华 力
图1、原子与原子之间的交互作用力因为彼 此之间的距离的不同而有所不同,其之间 的能量表示也会不同。
最新文档
硬件架构: 在原子力显微镜(Atomic Force Microscopy,AFM) 的系统中,可分成三个部分:力检测部分、位置检
测部分、反馈系统。
最新文档
力检测部分: 在原子力显微镜(AFM)的系统中,所要
检测的力是原子与原子之间的范德华力。所以在 本系统中是使用微小悬臂(cantilever)来检测 原子之间力的变化量。这微小悬臂有一定的规格, 例如:长度、宽度、弹性系数以及针尖的形状, 而这些规格的选择是依照样品的特性,以及操作 模式的不同,而选择不同类型的探针。
最新文档
最新文档
原子力显微镜的应用 AFM可以满足多种不同样品的要求,用于多
扫描隧道显微镜与原子力显微镜原理及应用介绍 ppt课件
![扫描隧道显微镜与原子力显微镜原理及应用介绍 ppt课件](https://img.taocdn.com/s3/m/382ae58b4693daef5ef73dfd.png)
ppt课件
9
4.STM的应用
“看见”了以前所看不到的东西 STM具有惊人的分辨本领,水平分辨率小于0.1纳米,垂直分辨率小于0.001纳米。 一般来讲,物体在固态下原子之间的距离在零点一到零点几个纳米之间。在扫 描隧道显微镜下,导电物质表面的原子、分子状态清晰可见。
ppt课件
10
4.STM的应用
在分子水平上构造电子学器件 一般情况下金属和半导体材料具有正的电导,即流过材料的电流随着所施加的电压的 增大而增加。但在单分子尺度下,由于量子能级与量子隧穿的作用会出现新的物理现 象──负微分电导。中国科技大学的科学家仔细研究了基于C60分子的负微分电导现象。 他们利用STM针尖将吸附在有机分子层表面的C60分子“捡起”,然后再把C60移到另 一个C60分子上方。这时,在针尖与衬底上的C60分子之间加上电压并检测电流,他 们获得了稳定的具有负微分电导效应的量子隧穿结构。这项工作通过对单分子操纵构 筑了一种人工分子器件结构。这类分子器件一旦转化为产品,将可广泛的用于快速开 关、震荡器和锁频电路等方面,这可以极大地提高电子元件的集成度和速度。
1990年,IBM公司的科学家展 示了一项令世人震惊的成果, 他们在金属镍表面用35个惰性 气体原子组成“IBM”三个英文 字母。
世界首例STM原子ppt课操件纵
11
4.STM的应用
单分子化学反应已经成为现实 单原子、单分子操纵在化学上是一个极具诱惑力且具有潜在应用 “选键化学”,可 以对分子内的化学键进行选择性的加工。 一个直观的例子是由Park等人完成的,他们将碘代苯分子吸附在Cu单晶表面的原子台 阶处,再利用STM针尖将碘原子从分子中剥离出来,然后用STM针尖将两个苯活性基 团结合到一起形成一个联苯分子,完成了一个完整的化学反应过程。
原子力显微镜课件PPT
![原子力显微镜课件PPT](https://img.taocdn.com/s3/m/0d14f701ad51f01dc381f14e.png)
物理吸附
亲水
疏水
2021/3/10
22
2. 毛细力及其对AFM测量的影响
Fa2Rh/r
在R = 50~100 nm,相对湿度在40~80% 时,毛细力大约在几十nN数量级。
3. 液体中针尖-试件间的相互作用力
探针和试件都浸入液体内进行测量 时,可以完全消除毛细现象,因此可不受 毛细力的干扰,使测量时的作用力大大减 小,而且可以:
z
1
ki kc
h
故在恒力测量模式时,测出的试件廓形高低, 大于 真实的高低,即测量结果在垂直方向有放大作用, 造成测量廓形的误差
3)在AFM测量时, 针尖的预置力越大,纵向测量结果的放大作用也越大,即纵 向畸变也增大。为减小测量误差,应尽量采用小的针尖预置力。
4) AFM测量结果的纵向放大量(畸变)和微悬臂的刚度有关。在采用等间隙 测量模式时,从式中可看,采用刚度kc较低的微悬臂较为有利,可以减小纵 向测量误差。但如采用恒力测量模式时,为减小纵向测量误差, 应采用刚度较 高的微悬臂,这和采用等间隙测量模式时正好相矛盾。因此可知,微悬臂刚 度的选择和AFM的测量模式有关。
2021/3/10
27
3. 探针尖曲率半径对测量结果的影响
使 用 商 品 的 Si3N4 四 棱 锥 探 针 尖 检 测所获得的聚酰亚胺薄膜AFM图像
使用ZnO晶须作探针尖检测,所获 的聚酰亚胺薄膜AFM图像
3)AFM测量时利用的相互作用力 在接触测量时,检测的是它们间的相互排斥力; 在非接触测量时,检测的是它们间的相互吸引力
4)针尖-试件间其他作用力及其应用于各种扫描力显微镜
针尖-试件间相互作用的磁力,可制成检测材料磁性能的磁力显微镜(MFM); 针尖-试件间相互作用的静电力,可制成检测材料表面电场电势的静电力显微镜 (EFM); 探针-试件接触滑行时的摩擦力,可制成研究材料摩擦磨损行为的摩擦力显微镜 (FFM);
扫描探针显微技术之二——原子力显微镜(AFM)技术ppt课件
![扫描探针显微技术之二——原子力显微镜(AFM)技术ppt课件](https://img.taocdn.com/s3/m/a35d8344cfc789eb172dc8ce.png)
Atomic force microscopy (AFM)
Lateral Force Microscopy (LFM)
Magnetic Force Microscopy (MFM)
Electrostatic Force Microscopy (EFM)
Chemical Force Microscopy (C学检测部分 反馈电子系统 计算机控制系统
10
工作模式
接触模式 (contact mode) 非接触模式 (non-contact mode) 轻敲模式 (tapping / intermittent contact mode)
van der Waals force curve
Near Field Scanning Optical Microscopy
(NSOM)
3
基本原理
1986,IBM,葛·宾尼(G. Binnig)发明了原子力 显微镜(Atomic Force Microscope ,AFM)——新一代 表面观测仪器.
原理:利用原子之间的范德华力(Van Der Waals
52
原子力显微镜 Atomic Force Microscopy
1
主要内容
发展历史 基本原理 应用
2
扫描探针显微镜SPM
SPM是指在STM基础上发展起来的一大类显微镜, 通过探测极小探针与表面之间的物理作用量如光、 电、磁、力等的大小而获得表面信息。
scanning tunneling Microscopy (STM, 1982)
11
工作模式-接触模式
d <0.03nm
van der Waals force curve
针尖始终向样品接触并简单地在表面上移动,针 尖—样品间的相互作用力是互相接触原于的电子间 存在的库仑排斥力,其大小通常为10-8 —10-11N。
Lateral Force Microscopy (LFM)
Magnetic Force Microscopy (MFM)
Electrostatic Force Microscopy (EFM)
Chemical Force Microscopy (C学检测部分 反馈电子系统 计算机控制系统
10
工作模式
接触模式 (contact mode) 非接触模式 (non-contact mode) 轻敲模式 (tapping / intermittent contact mode)
van der Waals force curve
Near Field Scanning Optical Microscopy
(NSOM)
3
基本原理
1986,IBM,葛·宾尼(G. Binnig)发明了原子力 显微镜(Atomic Force Microscope ,AFM)——新一代 表面观测仪器.
原理:利用原子之间的范德华力(Van Der Waals
52
原子力显微镜 Atomic Force Microscopy
1
主要内容
发展历史 基本原理 应用
2
扫描探针显微镜SPM
SPM是指在STM基础上发展起来的一大类显微镜, 通过探测极小探针与表面之间的物理作用量如光、 电、磁、力等的大小而获得表面信息。
scanning tunneling Microscopy (STM, 1982)
11
工作模式-接触模式
d <0.03nm
van der Waals force curve
针尖始终向样品接触并简单地在表面上移动,针 尖—样品间的相互作用力是互相接触原于的电子间 存在的库仑排斥力,其大小通常为10-8 —10-11N。
扫描隧道显微镜和原子力显微镜课件 STM与AFM
![扫描隧道显微镜和原子力显微镜课件 STM与AFM](https://img.taocdn.com/s3/m/367a9dd6b9f3f90f76c61b78.png)
STM存在的问题
在Vb 和I保持不变的扫描过程中,如果功函数随样 品表面位置而异,也同样会引起探针与样品表面间距 S 的 变 化 , 因 而 也 引 起 控 制 针 尖 高 度 的 电 压 Vz 的变 化。如样品表面原子种类不同,或样品表面吸附有原 子、分子时,由于不同种类的原子或分子团等具有不 同的电子态密度和功函数,此时STM给出的等电子态 密度轮廓不再对应于样品表面原子的起伏,而是表面 原子起伏与不同原子和各自态密度组合后的综合效 果。STM不能区分这两个因素。 利用表面功函数,偏置电压与隧道电流之间的关 系,可以得到表面电子态和化学特性的有关信息。
Potential barrier
0 V ( x) V0
for | x | d/2 for | x | d/2
Schroedinger’s equation of motion
d 2u ( x ) 2m 2 V0 E u ( x ) 0 2 dx
Electron (mass m, energy E) has finite probability of ‘tunneling’ through
原理
量子力学:
认为金属中的自由电子还具有波动性,这种 电子波φ1 向金属边界传播,在遇到表面位垒 时,部分反射为φR ,部分透过为φT 。这样, 即使金属温度不是很高,仍有部分电子穿透金 属表面位垒,形成金属表面上的电子云。这种 效应称为隧道效应。
Theory I: Quantum Barrier
P ( E ) e 2 kd
k 2 m (V0 E ) / 2
Theory II: Tunneling Current
insulator
metal 1
AFM-原子力显微镜PPT课件
![AFM-原子力显微镜PPT课件](https://img.taocdn.com/s3/m/901fc9840912a21615792930.png)
1.只限于直接观测导体或半导体的表面结构; 2.非导电材料须在其表面覆盖一层导电膜; 3.当表面存在非单一电子态时,STM得到的是表
面形貌和表面电子性质的综合结果。
6
7
AFM发展概况
• 1981年,Binnig G和Rohrer提出扫描隧道显微镜 (STM)原理.并因此而获得1986年诺贝尔物理奖。 STM的分辨能力达原子级,可以用来确定导电物 质固体表面的原子结构和性质。
10
11
AFM的组成
12
13
AFM成像原理
原子力显微镜是一种通过研究样品表
面力同距离关系而获得样品表面形貌信 息的显微术。它不使用STM的金属探针, 而使用一个尖端附有探针的极灵敏的弹 簧壁来作为敏感元件,称之为微悬臂。
将微悬臂的一端固定(对微弱力极敏
感),另一端有一微小的针尖,针尖与 样品表面轻轻接触。针尖尖端原子与样 品表面的原子间存在极其微弱的排斥力。 随后可通过以下两种工作模式中的任何 一种得到表面形貌有关的信息,然后经 过计算机采集、处理,最后成像。
为了准确反应出针尖相对于样品表面微弱的力的变化, Cantilever和针尖的制备是十分关键的,是决定AFM灵 敏 度 的 核 心 , 因 此 AFM 仪 器 的 发 展 过 程 实 际 上 是 Cantilever的不断改进的过程。
Cantilever通常要满足以下条件:(1)较低的力的弹 性系数;(2)高的力学共振频率;(3)高的横向刚性; (4)尽可能短的悬臂长度;(5)Cantilever需要配有 镜面或者电极,使得能通过光学或者隧道电流方法检测其 动态位移;(6)带有一个尽可能尖锐的针尖。
32
33
34
35
36
37
➢ 可实时地观测表面的三维立体图像,这种实时观测的性能 可用于表面扩散等物理化学过程的监视、检测。
面形貌和表面电子性质的综合结果。
6
7
AFM发展概况
• 1981年,Binnig G和Rohrer提出扫描隧道显微镜 (STM)原理.并因此而获得1986年诺贝尔物理奖。 STM的分辨能力达原子级,可以用来确定导电物 质固体表面的原子结构和性质。
10
11
AFM的组成
12
13
AFM成像原理
原子力显微镜是一种通过研究样品表
面力同距离关系而获得样品表面形貌信 息的显微术。它不使用STM的金属探针, 而使用一个尖端附有探针的极灵敏的弹 簧壁来作为敏感元件,称之为微悬臂。
将微悬臂的一端固定(对微弱力极敏
感),另一端有一微小的针尖,针尖与 样品表面轻轻接触。针尖尖端原子与样 品表面的原子间存在极其微弱的排斥力。 随后可通过以下两种工作模式中的任何 一种得到表面形貌有关的信息,然后经 过计算机采集、处理,最后成像。
为了准确反应出针尖相对于样品表面微弱的力的变化, Cantilever和针尖的制备是十分关键的,是决定AFM灵 敏 度 的 核 心 , 因 此 AFM 仪 器 的 发 展 过 程 实 际 上 是 Cantilever的不断改进的过程。
Cantilever通常要满足以下条件:(1)较低的力的弹 性系数;(2)高的力学共振频率;(3)高的横向刚性; (4)尽可能短的悬臂长度;(5)Cantilever需要配有 镜面或者电极,使得能通过光学或者隧道电流方法检测其 动态位移;(6)带有一个尽可能尖锐的针尖。
32
33
34
35
36
37
➢ 可实时地观测表面的三维立体图像,这种实时观测的性能 可用于表面扩散等物理化学过程的监视、检测。
原子力显微镜简介PPT课件
![原子力显微镜简介PPT课件](https://img.taocdn.com/s3/m/94efdbda6c85ec3a86c2c5b3.png)
2.磁力显微镜(Magnetic Force microscopy,MFM)
3.静电力显微镜(Eelectrostatic Force microscopy,EFM)
4.化学力显微镜(Chemical Force microscopy,CFM)
5.力调置显微镜(Force modulation microscopy,FMM)
2021
6
AFM探针的针尖
1、探针系统
探针组件是AFM的关键部分。 由微悬臂和微悬臂末端的针尖组成。
随着精细加工技术的发展,人们 已经能制造出各种形状和特殊要求 的针尖。
微悬臂是由Si或Si3N4经光刻技术 加工而成的.微悬臂的背面镀有一 层金属以达到镜面反射。
2021
7
2、扫描系统
AFM对样品扫描的精确控制是靠扫描器来实现的。 扫描器中装有压电转换器,压电装置在X,Y,Z三个 方向上精确控制样品或探针位置。
显微镜在常压下甚至在液体环境下都可以良好工作。 这样可以用来研究生物宏观分子,甚至活的生物组 织。
2021
14
AFM的缺点
扫描范围较小(10nm到100μm),成像范围 小,容易将局部的、特殊的结果当作整体的结果 而分析,以及使实验结果缺乏重现性。
由于分辨率很高,使得在样品制备过程中产生 的或者是从背景噪音中产生的极小赝像都能够被 检测、观察到,产生赝像。
轻敲模式:
用处于共振状态、上下振荡的微悬臂探 针对样品表面进行扫描,样品表面起伏使微 悬臂探针的振幅产生相应变化,从而得到样 品的表面形貌。
该模式下,针尖对样品进行“敲击”, 两者间只有瞬间接触,能有效克服接触模式 下针尖引起的相互损伤,适合于柔软或吸附 样品的检测。
相位移模式:
原子力显微镜AFM精品PPT课件
![原子力显微镜AFM精品PPT课件](https://img.taocdn.com/s3/m/48d5e6fff7ec4afe04a1dfc0.png)
➢ 两种测量模式
(1)等高测量模式: 探针以不变高度在试件表面扫描,隧 道电流随试件表面起伏而变化,从而 得到试件表面形貌信息。
(2)恒电流测量模式:
探针在试件表面扫描,使用反馈电 路驱动探针,使探针与试件表面之 间距离(隧道间隙)不变。此时探 针移动直接描绘了试件表面形貌。 此种测量模式隧道电流对隧道间隙 的敏感性转移到反馈电路驱动电压 与位移之间的关系上,避免了非线 性,提高了测量精度和测量范围。
F pair 排斥部分
d 吸引部分
原子 原子
原子 排斥力
原子
吸引力
原子间的作用力
19
20
AFM实物照片
扫描探针 磁盘图像
21
正是因为AFM工作时不需要探测隧 道电流,所以它可以用于分辨包括绝缘体 在内的各种材料表面上的单个原子,其应 用范围无疑比STM更加广阔。但从分辨 率来看,AFM要比STM略微低一些。
发展历史 工作原理
应
用
基本原理 仪器构成 工作模式
8
扫描隧道显微测量(STM)
➢ 扫描隧道显微镜1981年由在IBM瑞士苏黎世实验室工作
的G.Binning
和
H.Rohrer
发明,可用于观察物体
A
级的表
面形貌。被列为20世纪80年度世界十大科技成果之一,
1986年因此获诺贝尔物理学奖。
G.Binning
◆ 在达到纳米层次后,决非几何上的“相似缩小”, 而出现一系列新现象和规律。量子效应、波动特性、 微观涨落等不可忽略,甚至成为主导因素。
◆ 纳米技术研究的主要内容
➢纳米级精度和表面形貌测量及表面层物理、化学性能 检测; ➢纳米级加工; ➢纳米材料; ➢纳米级传感与控制技术; ➢微型与超微型机械。
原子力显微镜PPT演示课件
![原子力显微镜PPT演示课件](https://img.taocdn.com/s3/m/8e310562bb68a98270fefa33.png)
原子力显微镜
生科院
Page 2
显微镜的分类
光学显微镜
显 微 镜
暗视野显微镜 实体显微镜 荧光显微镜 偏光显微镜 位相显微镜 倒置式显微镜 微分干涉显微镜 摄影显微镜
透射式电子显微镜
电子显微镜
扫描式电子显微镜
Page 3
扫描隧道显微镜、原子力显微镜
原子力显微镜
Page 4
原子力显微镜
原子力显微镜(Atomic Force Microscope )简称
原子力显微镜技术在生物学领域的应用有赖于样品制备方法和 适合针尖-样品相互作用的缓冲液的研究。原子力显微镜现已 成为一种获得样品表面结构的高分辨率图像的有力工具。而更 为吸引人的是其观察生化反应过程级生物分子构象变化的能力, 因此,原子力显微镜在生物学领域中的应用前景毋庸置疑。而 对于原子力显微镜技术本身,以下几个方面的进展将更加有利 于它在生物学中的应用。大多数生物反应过程相当快速,原子 力显微镜时间分辨率的提高有助于这些过程的观察。生命科学 研究有其自身特点,需设计出适合生物学研究的原子力显微镜。 高分辨率是原子力显微镜的优势。其分辨率在理论上能达到原 子水平,但目前还没有实现,如何做出更细的针尖将有助于其 分辨率的进一步提高。
原子力显微镜可以作为一种力传感器来研究 分子间的相互作用。这是由于原子力显微镜理论 上能够感应10-14nm的作用力,能感应0.01nm的 位移,而接触面积可小到10n㎡.
Page 21
原子力显微镜 在研究物质超微结构中的应用
应用原子力显微镜(AFM)可以直接观察到表面缺陷、 表面重构、表面吸附体的形态和位置、以及有表面吸附体 引起的表面重构等。原子力显微镜(AFM)可以观察许多不 同材料的原子级平坦结构,例如,可以用原子力显微镜 (AFM)对DL-亮氨酸晶体进行研究,可观察到表面晶体分 子的有序排列,其晶格间距与X射线衍射数据相符。另外 原子力显微镜(AFM)还成功地用于观察吸附在基底上的有 机分子和生物样品,如,三梨酸、DNA和蛋白质的表面。
生科院
Page 2
显微镜的分类
光学显微镜
显 微 镜
暗视野显微镜 实体显微镜 荧光显微镜 偏光显微镜 位相显微镜 倒置式显微镜 微分干涉显微镜 摄影显微镜
透射式电子显微镜
电子显微镜
扫描式电子显微镜
Page 3
扫描隧道显微镜、原子力显微镜
原子力显微镜
Page 4
原子力显微镜
原子力显微镜(Atomic Force Microscope )简称
原子力显微镜技术在生物学领域的应用有赖于样品制备方法和 适合针尖-样品相互作用的缓冲液的研究。原子力显微镜现已 成为一种获得样品表面结构的高分辨率图像的有力工具。而更 为吸引人的是其观察生化反应过程级生物分子构象变化的能力, 因此,原子力显微镜在生物学领域中的应用前景毋庸置疑。而 对于原子力显微镜技术本身,以下几个方面的进展将更加有利 于它在生物学中的应用。大多数生物反应过程相当快速,原子 力显微镜时间分辨率的提高有助于这些过程的观察。生命科学 研究有其自身特点,需设计出适合生物学研究的原子力显微镜。 高分辨率是原子力显微镜的优势。其分辨率在理论上能达到原 子水平,但目前还没有实现,如何做出更细的针尖将有助于其 分辨率的进一步提高。
原子力显微镜可以作为一种力传感器来研究 分子间的相互作用。这是由于原子力显微镜理论 上能够感应10-14nm的作用力,能感应0.01nm的 位移,而接触面积可小到10n㎡.
Page 21
原子力显微镜 在研究物质超微结构中的应用
应用原子力显微镜(AFM)可以直接观察到表面缺陷、 表面重构、表面吸附体的形态和位置、以及有表面吸附体 引起的表面重构等。原子力显微镜(AFM)可以观察许多不 同材料的原子级平坦结构,例如,可以用原子力显微镜 (AFM)对DL-亮氨酸晶体进行研究,可观察到表面晶体分 子的有序排列,其晶格间距与X射线衍射数据相符。另外 原子力显微镜(AFM)还成功地用于观察吸附在基底上的有 机分子和生物样品,如,三梨酸、DNA和蛋白质的表面。
第五章原子力显微镜ppt课件
![第五章原子力显微镜ppt课件](https://img.taocdn.com/s3/m/8ae74f7c42323968011ca300a6c30c225901f00e.png)
包括:光反射法、光干涉法、隧道电流法、电容 检测法等。目前AFM系统中常用的是激光反射检 测系统,它具有简便灵敏的特点。激光反射检测 系统由探针、激光发生器和光检测器组成.
2 探针 ❖ 探针是AFM检测系统的关键部分.它由悬臂和
悬臂末端的针尖组成.随着精细加工技术的发展, 人们已经能制造出各种形状和特殊要求的探针。 悬臂是由Si或Si3N4经光刻技术加工而成的.悬臂 的背面镀有一层金属以达到镜面反射。在接触式 AFM中V形悬臂是常见的一种类型(如图3.2所 示).
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
❖ 它的优点是具有低的垂直反 射机械力阻和高的侧向扭曲 机械力阻.悬臂的弹性系数 一般低于固体原于的弹性系 数, 悬臂的弹性常数与形状、 大小和材料有关.厚而短的 悬臂具有硬度大和振动频率 高的特点.
四、 原子力显微镜工作环境 病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程
原子力显微镜受工作环境限制较少,它可以在超高真空、气 相、液相和电化学的环境下操作。 (1)真空环境:最早的扫描隧道显微镜(STM)研究是在超高真空下进 行操作的。后来,随着AFM的出现,人们开始使用真空AFM研 究固体表面.真空AFM避免了大气中杂质和水膜的干扰,但其 操作较复杂。 (2)气相环境:在气相环境中,AFM操作比较容易,它是广泛采用 的一种工作环境.因AFM操作不受样品导电性的限制,它可以 在空气中研究任何固体表面,气相环境中AFM多受样品表面水 膜干扰。 (3)液相环境:在液相环境中.AFM是把探针和样品放在液池中工 作,它可以在液相中研究样品的形貌.液相中AFM消除了针尖 和样品之间的毛细现象,因此减少了针尖对样品的总作用 力.液相AFM的应用十分广阔,它包括生物体系、腐蚀或任一 液固界面的研究. (4)电化学环境:正如超高真空系统一样,电化学系统为AFM提供 了另一种控制环境.电化学AFM是在原有AFM基础上添加了电 解池、双恒电位仪和相应的应用软件.电化学AFM可以现场研 究电极的性质.包括化学和电化学过程诱导的吸附、腐蚀以及 有机和生物分子在电极表面的沉积和形态变化等。
2 探针 ❖ 探针是AFM检测系统的关键部分.它由悬臂和
悬臂末端的针尖组成.随着精细加工技术的发展, 人们已经能制造出各种形状和特殊要求的探针。 悬臂是由Si或Si3N4经光刻技术加工而成的.悬臂 的背面镀有一层金属以达到镜面反射。在接触式 AFM中V形悬臂是常见的一种类型(如图3.2所 示).
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
❖ 它的优点是具有低的垂直反 射机械力阻和高的侧向扭曲 机械力阻.悬臂的弹性系数 一般低于固体原于的弹性系 数, 悬臂的弹性常数与形状、 大小和材料有关.厚而短的 悬臂具有硬度大和振动频率 高的特点.
四、 原子力显微镜工作环境 病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程
原子力显微镜受工作环境限制较少,它可以在超高真空、气 相、液相和电化学的环境下操作。 (1)真空环境:最早的扫描隧道显微镜(STM)研究是在超高真空下进 行操作的。后来,随着AFM的出现,人们开始使用真空AFM研 究固体表面.真空AFM避免了大气中杂质和水膜的干扰,但其 操作较复杂。 (2)气相环境:在气相环境中,AFM操作比较容易,它是广泛采用 的一种工作环境.因AFM操作不受样品导电性的限制,它可以 在空气中研究任何固体表面,气相环境中AFM多受样品表面水 膜干扰。 (3)液相环境:在液相环境中.AFM是把探针和样品放在液池中工 作,它可以在液相中研究样品的形貌.液相中AFM消除了针尖 和样品之间的毛细现象,因此减少了针尖对样品的总作用 力.液相AFM的应用十分广阔,它包括生物体系、腐蚀或任一 液固界面的研究. (4)电化学环境:正如超高真空系统一样,电化学系统为AFM提供 了另一种控制环境.电化学AFM是在原有AFM基础上添加了电 解池、双恒电位仪和相应的应用软件.电化学AFM可以现场研 究电极的性质.包括化学和电化学过程诱导的吸附、腐蚀以及 有机和生物分子在电极表面的沉积和形态变化等。
原子力显微镜下课件
![原子力显微镜下课件](https://img.taocdn.com/s3/m/816a92259b89680202d825b0.png)
原子力显微镜下
2AFM技术在生物学研究中的应用
• 普通的电子显微镜对于生物膜的形成、发展、材料的表面特征和 腐蚀形貌等不能很好表征。
原子力显微镜下
AFM技术在生物学研究中的优点
• 1.AFM不仅能在分子级水平上观察试样,而且能量化材料的表面 特征信息.
• 2.其破坏性较其它生物学常用技术(如电子显微 • 镜)要小得多 • 3.AFM能在多种环境(包括空气、液体和真空)中运作,生物分子可
原子力显微镜下
快速成像
AFM能对样品进行快速扫描成像。传统AFM在快速 扫描中会出现图像的拉伸,导致成像质量降低。经 测试,对400X400像素的图像,扫描速度最快可以 达到15行/秒。 对于AFM系统,同等清晰度下,扫描所得图像的分 辨率越低,扫描的速度越快。对于某些应用,可以 在大的视场中使用较低分辨率的快速扫描,观察样 品表面的变化,然后对于感兴趣的部分进行高分辨 率的慢速扫描。
原子力显微镜下
原子力显微镜下
• 本系统扫描多孔氧化铝所得图像如图所示.图像大小为400x400像 素。右边为标注后多孔氧化铝的AFM三维立体图像。由图中可以 看到,该多孔氧化铝样品的纳米孔径排列均匀有序,清晰有致。 这里采用的是慢速扫描模式,获得图像的时间约在2分钟左右
原子力显微镜下
2金属玻璃的扫描成像
原子力显微镜下
• 3在信息领域,可利用原子力显微镜的探针进行纳 米压痕,以实现高密度信息存储。利用探针在样 品表面以轻敲形成表面的压痕,完成写入信息过 程
• 4在制造领域,实现基于原子力显微镜的纳米刻蚀 研究。在量子计算机方面,基于原子力五星级的 操作技术可应用于离子阱、量子点操作的研究。
原子力显微镜下
在生理条件下直接成像,也可对活细胞进行实时动态观察
2AFM技术在生物学研究中的应用
• 普通的电子显微镜对于生物膜的形成、发展、材料的表面特征和 腐蚀形貌等不能很好表征。
原子力显微镜下
AFM技术在生物学研究中的优点
• 1.AFM不仅能在分子级水平上观察试样,而且能量化材料的表面 特征信息.
• 2.其破坏性较其它生物学常用技术(如电子显微 • 镜)要小得多 • 3.AFM能在多种环境(包括空气、液体和真空)中运作,生物分子可
原子力显微镜下
快速成像
AFM能对样品进行快速扫描成像。传统AFM在快速 扫描中会出现图像的拉伸,导致成像质量降低。经 测试,对400X400像素的图像,扫描速度最快可以 达到15行/秒。 对于AFM系统,同等清晰度下,扫描所得图像的分 辨率越低,扫描的速度越快。对于某些应用,可以 在大的视场中使用较低分辨率的快速扫描,观察样 品表面的变化,然后对于感兴趣的部分进行高分辨 率的慢速扫描。
原子力显微镜下
原子力显微镜下
• 本系统扫描多孔氧化铝所得图像如图所示.图像大小为400x400像 素。右边为标注后多孔氧化铝的AFM三维立体图像。由图中可以 看到,该多孔氧化铝样品的纳米孔径排列均匀有序,清晰有致。 这里采用的是慢速扫描模式,获得图像的时间约在2分钟左右
原子力显微镜下
2金属玻璃的扫描成像
原子力显微镜下
• 3在信息领域,可利用原子力显微镜的探针进行纳 米压痕,以实现高密度信息存储。利用探针在样 品表面以轻敲形成表面的压痕,完成写入信息过 程
• 4在制造领域,实现基于原子力显微镜的纳米刻蚀 研究。在量子计算机方面,基于原子力五星级的 操作技术可应用于离子阱、量子点操作的研究。
原子力显微镜下
在生理条件下直接成像,也可对活细胞进行实时动态观察
扫描电子显微镜(SEM)与原子力显微镜(AFM)只是课件
![扫描电子显微镜(SEM)与原子力显微镜(AFM)只是课件](https://img.taocdn.com/s3/m/495a98baaf45b307e87197cb.png)
AFM样品中纵向测量
AFM样品表面粗糙度测量
扫描电子显微镜(SEM)的应用
玻璃纤维
含油的砂岩
生物样品形貌
纳米结构材料形貌
材料表面形貌
原子力显微镜(AFM)的应用
用AFM针尖移动Si原子形成的IBM文字
云母的原子像 (接触模式)
DVD光盘表面 (接触模式)
DNA
霍乱菌
蓝蝴蝶翅膀
云母片上的 抗体分子
烟草花叶病毒
半结晶聚合物微结构
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
扫描电子显微镜(SEM)与原子力 显微镜(AFM)
SEM技术的图像,扫描范围较大,可达数mm× mm,具 有较大的景深,可达数微米。
AFM技术的最大扫描范围100μm× 100μm,景深仅为数 微米。
在较大扫描范围(μm或mm级),SEM的图像质量优于AFM;而在进 行小范围扫描时,尤其是nm级的扫描范围,AFM的图像明显优于SEM。
ห้องสมุดไป่ตู้
SEM图像
AFM图像
AFM技术可得到样品表面形貌结构的三维图像,并能测 量样品的三维信息,如左图,可准确地测出两个位置的高度 差。
由于AFM图像的纵向分辨率小于0. 01 nm,它能区分原子 级表面变化,可计算出样品表面的粗糙度,如右图,但是, 在原子级表面,SEM技术非常难检测样品表面细微的高度变 化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
11
AFM的组成
12
13
AFM成像原理
原子力显微镜是一种通过研究样品表
面力同距离关系而获得样品表面形貌信 息的显微术。它不使用STM的金属探针, 而使用一个尖端附有探针的极灵敏的弹 簧壁来作为敏感元件,称之为微悬臂。
将微悬臂的一端固定(对微弱力极敏
感),另一端有一微小的针尖,针尖与 样品表面轻轻接触。针尖尖端原子与样 品表面的原子间存在极其微弱的排斥力。 随后可通过以下两种工作模式中的任何 一种得到表面形貌有关的信息,然后经 过计算机采集、处理,最后成像。
原子力显微镜 Atomic Force Microscope (AFM)
1
透射电镜成像偏差原因
球差:孔径角不同造成折射能力不同 畸变:离轴距离的改变导致放大倍数的改变 慧形差:旁轴射线与非旁轴射线成像 场曲:磁场汇聚作用的差异 色差:电子初速度不完全相同 轴上色散:磁透镜非严格对称 衍射差:类似光学显微镜由透镜导致的
16
AFM中的作用力
两个紧密排列的原子或 者分子之间的相互作 用可用LennardJones 势能来表示。
利用排斥力为敏感信号的接触式力显微镜(Contact AFM)
利用吸引力为敏感信号的非接触式力显微镜(Non-contact
AFM)。
17
力的传感元件称为Cantilever,力的变化均可以通过这个 Cantilever被检测。
表面的高分辨率图象; 3.使用环境宽松; 4.应用领域宽广; 5.价格相对来讲较低。
5
STM的缺陷
1.只限于直接观测导体或半导体的表面结构; 2.非导电材料须在其表面覆盖一层导电膜; 3.当表面存在非单一电子态时,STM得到的是表
面形貌和表面电子性质的综合结果。
6
7
AFM发展概况
• 1981年,Binnig G和Rohrer提出扫描隧道显微镜 (STM)原理.并因此而获得1986年诺贝尔物理奖。 STM的分辨能力达原子级,可以用来确定导电物 质固体表面的原子结构和性质。
22
薄膜的AFM成像
23
硅原子的阶梯图案,利用标准的硅单原子的台阶分布(高 度为0.31nm)进行1埃~1纳米范围内的AFM高度定标。 24
研究DNA结合蛋白质中的应用
25
电沉积方法制备ZnO纳米结构薄膜
(不仅具有疏水特性,还兼具导电性)
AFM image
SEM image
26
27
Photo of the Cicada Orni
为了准确反应出针尖相对于样品表面微弱的力的变化, Cantilever和针尖的制备是十分关键的,是决定AFM灵 敏 度 的 核 心 , 因 此 AFM 仪 器 的 发 展 过 程 实 际 上 是 Cantilever的不断改进的过程。
Cantilever通常要满足以下条件:(1)较低的力的弹 性系数;(2)高的力学共振频率;(3)高的横向刚性; (4)尽可能短的悬臂长度;(5)Cantilever需要配有 镜面或者电极,使得能通过光学或者隧道电流方法检测其 动态位移;(6)带有一个尽可能尖锐的针尖。
18
AFM的优缺点
原子级的高分辨率; 宽松的测试条件; 可以得到力学等众多信息。
➢ AFM观察的始终是样品的外部信息; ➢ 样品固定; ➢ 视野局限;
19
AFM的应用
✓AFM成像(形貌观察) ✓力学性能测试 ✓电、磁性能测试 ✓加工、操纵
20
云母表面结构AFM成像
21
石墨表面结构AFM成像
AFM像中,A和B位置是Байду номын сангаас乎等同的
2
透射电镜的不足
工作环境:必须要真空 样品:直径3mm,厚度几十nm,制样复杂 信号:不能对信号进行后处理 图像:无色彩
3
SEM的缺陷
分辨率:分辨率受电子束斑直径限制, 分辨率一般情 况只能到10nm
工作条件:必须在真空条件下测试 样品:样品需要导电
4
STM的优点
1.具有极高的分辨率; 2.得到的是实时的、真实的样品
➢ 可实时地观测表面的三维立体图像,这种实时观测的性能 可用于表面扩散等物理化学过程的监视、检测。
➢ 可在真空、大气、常温等不同环境下工作,甚至可以将样 品浸在水和其他溶液中,且不需要特别的制样技术。探测 过程中对样品无损伤。可以对导体、半导体、绝缘体等多 种样品成像,可用于各种表面膜的实时观测。
➢ 不需要高真空的必要工作条件,且体积小,成本低,性价 比高,远远低于一般的扫描电镜。
两种工作模式:恒高模式(保持样品与探针间的距离不变,
测量每一点作用力的大小)和恒力模式(保持样品和探针间作
用力不变,测量每一点高度的变化)。
14
• 检测微悬臂弯曲的方法:1-隧道电流法; 2-电容检测法;3-光学检测法(干涉法 和光束反射法)
• 选择检测方法的原则:检测方法本身对悬 臂产生的作用力应该小到可以忽略的程度。
• l986年,Binnig G在扫描隧道显微镜基础上进一 步提出了的原子力显微镜(AFM)。AFM可以测量 绝缘体表面形貌,达到接近原子分辨水平,还可 以测量表面原子间力,测量表面的弹性、塑性、 硬度、摩擦力等诸多性质。
8
原子力显微镜(AFM)
9
AFM的优点
➢ 具有原子级高分辨率,即可以分辨出单个原子,且放大倍 率连续可调(几百倍-上千倍);与传统的电子显微镜, 特别是与扫描电子显微镜相比,它具有非常高的横向分辨 率(0.1-0.2 nm)和纵向分辨率(0.01 nm)。
28
AFM image of the cicada wing
3D image
Cross section
29
PPV及CNPPV混合高分子薄膜表面相 分离的AFM影像
左图为薄膜表面形貌; 右图为摩擦力影像 30
31
电化学原子力显微镜
1、电化学原子力显微镜原理及其技术 (ECAFM)
15
光学检测法
能检测出微悬臂0.01nm幅度的弯曲
光束反射法-从激光器中发出的激 光聚焦在微悬臂背面,从其表面反 射。在进行样品扫描时,微悬臂弯 曲δz ,这一弯曲使反射的角度偏移 2δz / l , l为微悬臂的长度(通常为 100-200μm)。反射光束的偏移 可用一灵敏光电二极管检测出来。 干涉法―一个优点,即不要求微悬 臂具有特别平滑的高反射性表面 (对于使用细丝微悬臂的磁力显微 镜和静力显微镜特别重要,应为细 丝微悬臂不具有高反射性表面)。
11
AFM的组成
12
13
AFM成像原理
原子力显微镜是一种通过研究样品表
面力同距离关系而获得样品表面形貌信 息的显微术。它不使用STM的金属探针, 而使用一个尖端附有探针的极灵敏的弹 簧壁来作为敏感元件,称之为微悬臂。
将微悬臂的一端固定(对微弱力极敏
感),另一端有一微小的针尖,针尖与 样品表面轻轻接触。针尖尖端原子与样 品表面的原子间存在极其微弱的排斥力。 随后可通过以下两种工作模式中的任何 一种得到表面形貌有关的信息,然后经 过计算机采集、处理,最后成像。
原子力显微镜 Atomic Force Microscope (AFM)
1
透射电镜成像偏差原因
球差:孔径角不同造成折射能力不同 畸变:离轴距离的改变导致放大倍数的改变 慧形差:旁轴射线与非旁轴射线成像 场曲:磁场汇聚作用的差异 色差:电子初速度不完全相同 轴上色散:磁透镜非严格对称 衍射差:类似光学显微镜由透镜导致的
16
AFM中的作用力
两个紧密排列的原子或 者分子之间的相互作 用可用LennardJones 势能来表示。
利用排斥力为敏感信号的接触式力显微镜(Contact AFM)
利用吸引力为敏感信号的非接触式力显微镜(Non-contact
AFM)。
17
力的传感元件称为Cantilever,力的变化均可以通过这个 Cantilever被检测。
表面的高分辨率图象; 3.使用环境宽松; 4.应用领域宽广; 5.价格相对来讲较低。
5
STM的缺陷
1.只限于直接观测导体或半导体的表面结构; 2.非导电材料须在其表面覆盖一层导电膜; 3.当表面存在非单一电子态时,STM得到的是表
面形貌和表面电子性质的综合结果。
6
7
AFM发展概况
• 1981年,Binnig G和Rohrer提出扫描隧道显微镜 (STM)原理.并因此而获得1986年诺贝尔物理奖。 STM的分辨能力达原子级,可以用来确定导电物 质固体表面的原子结构和性质。
22
薄膜的AFM成像
23
硅原子的阶梯图案,利用标准的硅单原子的台阶分布(高 度为0.31nm)进行1埃~1纳米范围内的AFM高度定标。 24
研究DNA结合蛋白质中的应用
25
电沉积方法制备ZnO纳米结构薄膜
(不仅具有疏水特性,还兼具导电性)
AFM image
SEM image
26
27
Photo of the Cicada Orni
为了准确反应出针尖相对于样品表面微弱的力的变化, Cantilever和针尖的制备是十分关键的,是决定AFM灵 敏 度 的 核 心 , 因 此 AFM 仪 器 的 发 展 过 程 实 际 上 是 Cantilever的不断改进的过程。
Cantilever通常要满足以下条件:(1)较低的力的弹 性系数;(2)高的力学共振频率;(3)高的横向刚性; (4)尽可能短的悬臂长度;(5)Cantilever需要配有 镜面或者电极,使得能通过光学或者隧道电流方法检测其 动态位移;(6)带有一个尽可能尖锐的针尖。
18
AFM的优缺点
原子级的高分辨率; 宽松的测试条件; 可以得到力学等众多信息。
➢ AFM观察的始终是样品的外部信息; ➢ 样品固定; ➢ 视野局限;
19
AFM的应用
✓AFM成像(形貌观察) ✓力学性能测试 ✓电、磁性能测试 ✓加工、操纵
20
云母表面结构AFM成像
21
石墨表面结构AFM成像
AFM像中,A和B位置是Байду номын сангаас乎等同的
2
透射电镜的不足
工作环境:必须要真空 样品:直径3mm,厚度几十nm,制样复杂 信号:不能对信号进行后处理 图像:无色彩
3
SEM的缺陷
分辨率:分辨率受电子束斑直径限制, 分辨率一般情 况只能到10nm
工作条件:必须在真空条件下测试 样品:样品需要导电
4
STM的优点
1.具有极高的分辨率; 2.得到的是实时的、真实的样品
➢ 可实时地观测表面的三维立体图像,这种实时观测的性能 可用于表面扩散等物理化学过程的监视、检测。
➢ 可在真空、大气、常温等不同环境下工作,甚至可以将样 品浸在水和其他溶液中,且不需要特别的制样技术。探测 过程中对样品无损伤。可以对导体、半导体、绝缘体等多 种样品成像,可用于各种表面膜的实时观测。
➢ 不需要高真空的必要工作条件,且体积小,成本低,性价 比高,远远低于一般的扫描电镜。
两种工作模式:恒高模式(保持样品与探针间的距离不变,
测量每一点作用力的大小)和恒力模式(保持样品和探针间作
用力不变,测量每一点高度的变化)。
14
• 检测微悬臂弯曲的方法:1-隧道电流法; 2-电容检测法;3-光学检测法(干涉法 和光束反射法)
• 选择检测方法的原则:检测方法本身对悬 臂产生的作用力应该小到可以忽略的程度。
• l986年,Binnig G在扫描隧道显微镜基础上进一 步提出了的原子力显微镜(AFM)。AFM可以测量 绝缘体表面形貌,达到接近原子分辨水平,还可 以测量表面原子间力,测量表面的弹性、塑性、 硬度、摩擦力等诸多性质。
8
原子力显微镜(AFM)
9
AFM的优点
➢ 具有原子级高分辨率,即可以分辨出单个原子,且放大倍 率连续可调(几百倍-上千倍);与传统的电子显微镜, 特别是与扫描电子显微镜相比,它具有非常高的横向分辨 率(0.1-0.2 nm)和纵向分辨率(0.01 nm)。
28
AFM image of the cicada wing
3D image
Cross section
29
PPV及CNPPV混合高分子薄膜表面相 分离的AFM影像
左图为薄膜表面形貌; 右图为摩擦力影像 30
31
电化学原子力显微镜
1、电化学原子力显微镜原理及其技术 (ECAFM)
15
光学检测法
能检测出微悬臂0.01nm幅度的弯曲
光束反射法-从激光器中发出的激 光聚焦在微悬臂背面,从其表面反 射。在进行样品扫描时,微悬臂弯 曲δz ,这一弯曲使反射的角度偏移 2δz / l , l为微悬臂的长度(通常为 100-200μm)。反射光束的偏移 可用一灵敏光电二极管检测出来。 干涉法―一个优点,即不要求微悬 臂具有特别平滑的高反射性表面 (对于使用细丝微悬臂的磁力显微 镜和静力显微镜特别重要,应为细 丝微悬臂不具有高反射性表面)。