3材料导电性质
材料的导电性和导热性
材料的导电性和导热性材料的导电性和导热性是研究材料特性和应用领域的重要方面。
导电性指的是材料在外加电场作用下,电荷的自由移动能力。
而导热性则是材料对热的传导能力。
这两种特性的理解和研究对于电子器件以及工程中的热管理都具有重要意义。
从微观结构的角度来看,材料的导电性和导热性主要与其晶体结构和电子结构有关。
在导电性方面,金属由于其特殊的价电子排布形式而具有良好的导电性能。
金属中的电子形成了形如“电子海”的结构,电子能够自由跃迁,使得金属能够在外加电场下形成电流。
相反,绝缘体中的电子排布方式导致电子无法在外加电场下自由移动,因此绝缘体具有较差的导电性能。
导热性与导电性类似,也与材料的晶体结构和电子结构有关。
晶体中原子的排布方式决定了材料的热传导路径。
对于金属材料而言,其晶体结构通常是紧密堆积的,原子之间形成了较密实的结构。
因此金属的导热性能高,原子之间的振动能够有效传递热能。
绝缘体的晶体结构则相对疏松,导热性能较差。
然而,并非所有的金属都具有相同的导电性和导热性能。
同一种金属材料的导电性和导热性还与其他因素有关,例如晶体缺陷、杂质等。
晶体缺陷会影响电子的传输路径和碰撞频率,从而影响导电性和导热性。
杂质的存在可能会改变材料的电子能级分布,从而导致导电性和导热性发生变化。
除了金属和绝缘体,还存在一类介于两者之间的材料,即半导体。
半导体的导电性在一定程度上介于金属和绝缘体之间。
半导体材料中的电子能级结构存在“禁带”,需要外界能量激发才能使电子跃迁到传导带。
在一些特定条件下,半导体通过掺杂等手段可以实现改变其导电性能,从而被广泛应用于电子器件中。
在工程应用方面,材料的导电性和导热性是重要的考虑因素。
例如,在电子器件的设计中,导电性决定了电子的传输效率,因此需要选择具有良好导电性能的材料。
而在热管理的领域,导热性是一个关键问题。
高功率电子器件的散热是一个重要的挑战,有效地提高热传导能力,可以提高电子器件的效率和寿命。
cf-3导电纤维化学成分
cf-3导电纤维化学成分
CF-3导电纤维的化学成分主要是碳纤维和聚合物材料。
碳纤维
是一种高强度、低密度的纤维材料,由碳原子构成,具有优异的导
电性能。
而聚合物材料则是用来增强纤维的柔韧性和耐用性,通常
是通过在碳纤维表面进行包覆或混合来实现。
这种复合材料的化学
成分可以根据具体的制备工艺和用途而有所不同,但总体上来说,
碳纤维和聚合物是CF-3导电纤维的主要化学成分。
在CF-3导电纤维中,碳纤维的化学成分主要是碳元素,其结晶
结构和晶格排列方式决定了其优异的导电性能。
而聚合物材料的化
学成分则可能包括聚酯、聚酰胺、聚酰亚胺等高分子化合物,这些
聚合物可以在碳纤维表面形成保护层,增强纤维的柔韧性和耐用性。
除了以上提到的化学成分外,CF-3导电纤维的制备过程中可能
还涉及一些其他物质,比如添加剂、表面处理剂等,这些物质也会
对最终纤维的性能产生影响。
总的来说,CF-3导电纤维的化学成分
是一个复杂的体系,需要综合考虑碳纤维、聚合物材料以及可能的
添加剂等多个方面的因素。
材料概论知识点总结
材料概论知识点总结材料概论知识点总结1.材料学纲要结合键离⼦键、共价键、⾦属键(化学键)、分⼦键和氢键1)⼏种结合键的区别?离⼦键是以正负离⼦间的相互作⽤⼒形成的结合。
离⼦键材料由两种以上的电负性相差很⼤的原⼦构成。
离⼦晶体的特性:(1)离⼦晶体是最密堆积的⾯⼼⽴⽅或六⽅密填结构,离⼦晶体的这种结构特征体现了离⼦键的各向同性。
(2)对可见光透明,吸收红外波长。
离⼦震动能级吸收。
共价键不易失去价电⼦的原⼦倾向于与邻近原⼦共有价电⼦、成为8电⼦稳定结构。
共价键以拉⼿结合。
⾦属键具有⽅向性,价电⼦位于共价键附近的⼏率⾼于其他处。
共价键形成的条件:原⼦具有相似的电负性、价电⼦之和为8。
共价键材料的特性:(1)⾼硬度、⾼熔点、导电性差、低膨胀系数,这体现了共价键是强化和键。
(2)性脆,延展性很差,这体现了共价键的⽅向性。
陶瓷和聚合物;或完全、或部分是共价键。
⾦属键⾦属原⼦失去价电⼦成为正离⼦、价电⼦成为⾃由电⼦,离⼦⾻架浸泡在电⼦的海洋。
本质:是离⼦、电⼦间的库仑相互作⽤。
特性:⽆⽅向性,不易被破坏。
使⾦属具有良好的延展性和导电性,是良好的导体。
分⼦键由分⼦之间的作⽤⼒(范德华⼒)⽽形成的,由于分⼦键很弱,故结合成的晶体具有低熔点、低沸点、低硬度、易压缩等特性。
氢键氢原⼦与电负性⼤的原⼦X以共价键结合,若与电负性⼤、半径⼩的原⼦Y(O F N等)接近,在X与Y之间以氢去为媒介,⽣成X-H...Y形式的⼀种特殊的分⼦间或分⼦内相互作⽤,成为氢键。
1)结合键对材料性能的影响。
⾦属材料⾦属材料的结合键主要是⾦属键。
⾦属特性:导电性、导热性好;正电阻温度系数;好的延展性;⾦属光泽等。
陶瓷材料陶瓷材料是包含⾦属和⾮⾦属元素的化合物,其结合键主要是离⼦键和共价键,⼤多数是离⼦键。
离⼦键赋予陶瓷相当⾼的稳定性,所以陶瓷材料通常具有极⾼的熔点和硬度,但同时陶瓷材料的脆性也很⼤。
⾼分⼦材料⾼分⼦材料的结合键是共价键、氢键和分⼦键。
3.4.3 物质的导电性zssk
我叫半导体,我有个哥哥叫导体,有个 弟弟叫绝缘体,我的导电能力就是介于导 体和绝缘体之间。我常见的材料有锗和硅。 我具有许多独特的导电性能,在电子技术 和无线电工程上有着广泛的应用,现在你 对我有所了解了吧,以后可别说不认识我。
计算机主板上集中 了几十万个半导体元件
北京中关村
电子产品基地—— 硅谷
身边科学
雷雨天气,手拿在雨伞柄上好还是拿在
雨伞杆上好?
电路探秘之物质的导电性
展开想象 的翅膀
如果你是一位电工, 在工作中采取哪些措施, 确保生命安全?
1、连接电路的导线是铜丝外加塑料皮, 铜丝属于 导体 ,塑料属于 绝缘体 。
2、导体容易导电的原因是( C ) A、因为导体都是固体 B、因为导体中含有电荷 C、因为导体中含有能自由移动的电荷 D、因为导体通了电
你知道是什么物质具有如此 大的魔力吗? 运用了它的什么性质?
导电性
身边科学
空中的高压铁塔为 何不会往下导电?
地下的电缆为何不 会向地导电?
身边科学
2、公路上行驶的油罐车(运送汽油的车)由于受到 颠簸,汽油和油罐之间不断摩擦起电容易引起火花, 为避免火花引起爆炸,往往在车的底部或后部挂一根 铁链拖在地上,这根拖地的铁链有什么作用? 因为铁链是导体,大地也是导体,铁链能把油 罐因摩擦起电所带的电荷及时导走,便不能 发生火花放电,因而避免了因火花放电引起油 罐车爆炸
物体根据 导电能力 可分为:
容易导电的物体叫导体。
不容易导电的物体叫绝缘体。
绝缘体在任何情况下总是不导电的吗?
实验:
导体和绝缘体并不是绝对的,有些绝缘体 在条件改变时会变成导体。
人造卫星电路的接触点表面一般为什么 都镀上金?
防止导体的表面被氧化或腐蚀后,导电 能力会下降,甚至不容易导电成为绝缘体。
2-3_金属材料的导电性
系电速义 数阻度: 。合来降
金获低
,取电
降高阻
低温率
电度随
阻稳温
率定度
温性上
温度对金属导电性的影响
热振动及格波图象
思考:温度如何影响非晶 态合金的导电性?
• 原子振动通过原子结合力传播, 形成格波,又叫声子(phonon)
• 温度升高,原子振动加剧。声子 数量增多(可以定量计算)
•声子的存在减小导电电子自由 程,使电阻率升高
?传导电子始终处于晶体的周期性势场中运动?晶体中原子的周期排列使得晶格势场具有周期性相邻中心之间的平均相邻中心之间的平均相邻中心之间的平均相邻中心之间的平均距离就是平均自由程距离就是平均自由程距离就是平均自由程距离就是平均自由程导电电子的运动环境类似于运动员的跨栏运动栏间距栏高度的变化栏间距栏高度的变化栏间距栏高度的变化栏间距栏高度的变化栏的绝对高度栏的绝对高度不是所有离子实都干扰导电电子的运动固体材料中周期性晶格势场固体材料中周期性晶格势场固体材料中周期性晶格势场固体材料中周期性晶格势场的不规则点构成传导电子移的不规则点构成传导电子移的不规则点构成传导电子移的不规则点构成传导电子移动的障碍是碰撞中心或者动的障碍是碰撞中心或者动的障碍是碰撞中心或者动的障碍是碰撞中心或者散射中心散射中心散射中心散射中心固体材料中的晶格势场固体材料中的晶格势场一维晶体中离子实的库仑势场的变化曲线源于固体材料中的离子实与电子之间的库仑作用势能源于固体材料中的离子实与电子之间的库仑作用势能单个离子实的库仑势场在一个方向上随位置的变化曲线晶体中离子实的周期排列产生周期性晶格库仑势场金属导电性金属导电性与晶体缺陷的关系与晶体缺陷的关系零维缺陷三维缺陷理想晶体结构一维缺陷二维缺陷晶体缺陷局部破坏晶格势场晶体缺陷局部破坏晶格势场晶体缺陷局部破坏晶格势场晶体缺陷局部破坏晶格势场周期性对传导电子的运动周期性对传导电子的运动周期性对传导电子的运动周期性对传导电子的运动产生阻碍作用导致晶态金产生阻碍作用导致晶态金产生阻碍作用导致晶态金产生阻碍作用导致晶态金属的导电性降低属的导电性降低属的导电性降低属的导电性降低fe中加入少量ag导电性如何变
金属的导电性与热导性
金属的导电性与热导性金属作为一种重要的材料,具有优异的导电性和热导性,广泛应用于电子、能源、建筑等领域。
本文将介绍金属的导电性与热导性的原理和特点,并探讨其应用。
一、导电性原理和特点1.1 导电性原理金属的导电性是由其晶体结构和电子结构决定的。
金属晶体由正离子核和自由电子云组成,自由电子能在晶体中自由运动,形成电子气。
当外加电场作用于金属中时,电子气会在导电体内形成电流,从而实现电能的传导。
1.2 导电性特点金属的导电性具有以下特点:首先,金属的导电性较好,能够传导电流,并且电阻较低。
这是因为金属中存在大量自由电子,电子之间的相互作用较弱,电子能够自由运动,形成连续的电流。
其次,金属的导电性具有良好的稳定性。
金属导体在通电时不易发生电子散射、热扩散等现象,能够稳定地传导电流。
最后,金属的导电性随着温度的升高而略有下降。
这是由于温度升高会导致金属晶格振动增大,影响了电子的自由运动。
二、热导性原理和特点2.1 热导性原理金属的热导性是由其分子及电子的传导贡献决定的。
金属中的自由电子能够在外加温度梯度作用下传递热能,实现热量的导热。
2.2 热导性特点金属的热导性具有以下特点:首先,金属的热导性较好,能够迅速传递热量。
金属中的自由电子具有高速度,能够迅速传递热能,使热量快速传导。
其次,金属的热导性具有较高的热传导率。
热传导率是衡量物质导热能力的重要指标,金属的热传导率较高,能够迅速传递热量。
最后,金属的热导性受到材料的晶格结构和温度的影响。
晶格结构的不完整、缺陷会影响金属的热导性能力,而温度的升高会影响金属颗粒振动,从而影响热量的传导。
三、导电性与热导性的应用3.1 电子领域金属的导电性使其成为电子器件制造中重要的材料。
电子器件中的导线、电极通常采用金属材料,以实现电流的传导和电能的转换。
此外,金属材料在集成电路、电子元件等领域也有广泛的应用。
3.2 能源领域金属的导电性和热导性在能源领域具有重要应用。
4-3物质的导电性
阅读资料
锗、硅、硒、砷化镓及许多金属氧化物和金属硫化物等 物体,它们的导电能力介于导体和绝缘体之间,叫做半导体。 半导体具有一些特殊性质。如利用半导体的电阻率与温度的 关系可制成自动控制用的热敏元件(热敏电阻);利用它的 光敏特性可制成自动控制用的光敏元件,像光电池、光电管 和光敏电阻等。
半导体还有一个最重要的性质,如果在纯净的半导体物 质中适当地掺入微量杂质测其导电能力将会成百万倍地增加。 利用这一特性可制造各种不同用途的半导体器件,如半导体 二极管、三极管等。
导体的电阻小,导电能力强。 绝缘体的电阻大,导电能力弱。
小结
导 体 容易导电 原因 存在自由电荷
(金属导电:靠自由电子) 都 有 电 荷
绝缘体 不容易导电 原因 无自由电荷
1、下列物体都属于导体的是---------------------( C )
A、大地、橡胶
B、纯水、碳棒
C、人体、金属 D、油、水溶液
(如:塑料、玻璃、橡胶、陶瓷、干木头、 油、干燥的空气等)
注意:纯净的水不导电,普通水是能导电的。
玻璃在常温下是绝缘体,那么在 加热到发红时能否导电?
玻璃
导体和绝缘体 不是 _绝__对___的。
绝缘体
导体
半导体:导电能力介于导体与绝缘 体之间的物质(如:硅和锗)
计算机主板上集中了几十万个半导体元件
4、导体容易导电的原因是( C )
A、导体都是固体
B、导体中含有电荷
C、导体中含有能自由移动的电荷
D、导体通了电
5、连接电路的导线是铜丝外加塑料皮, 铜丝属于 导体 ,塑料属于 绝缘体。 6、导体对于电流的 阻碍 作用,叫做导体的 电阻。
7、一段金属丝的电阻为20000Ω= 20 kΩ= 0.02MΩ
材料化学课后题答案第三章
第三章 材料的性能 1.用固体能带理论说明什么是导体,半导体,绝缘体? 答:固体的导电性能由其能带结构决定。
对一价金属(如Na ),价带是未满带,故能导电。
对二价金属(如Mg ),价带是满带,但禁带宽度为零,价带与较高的空带相交叠,满带中的电子能占据空带,因而也能导电。
绝缘体和半导体的能带结构相似,价带为满带,价带与空带间存在禁带。
禁带宽度较小时(0.1—3eV )呈现半导体性质,禁带宽度较大(>5eV )则为绝缘体。
答案或者是: 满带:充满电子的能带 空带:部分充满或全空的能带 价带:价电子填充的能带 禁带:导带及满带之间的空隙 (其中,空带和价带是 导带) 导体:价带未满,或价带全满但禁带宽度为零,此时,电子能够很容易的实现价带与导带之间的跃迁。
半导体:价带全满,禁带宽度在0.1-3eV 之间,此时,电子可以通过吸收能量而实现跃迁。
绝缘体:价带全满,禁带宽度大于5eV ,此时,电子很难通过吸收能量而实现跃迁 2、 有一根长为5 m ,直径为3mm 的铝线,已知铝的弹性模量为70Gpa ,求在200N 的拉力作用下,此线的总长度。
= 5.002 m 3.试解释为何铝材不易生锈,而铁则较易生锈? 答:锈蚀机理不同,前者为化学腐蚀,后者为电化学腐蚀铝是一种较活泼的金属,但因为在空气中能很快生成致密的氧化铝薄膜,所以在空气中是非常稳定的。
铁与空气中的水蒸气,酸性气体接触,与自身的氧化物之间形成了腐蚀电池,遭到了电化学腐蚀,所以容易生锈。
4.为什么碱式滴定管不采用玻璃活塞?答:因为普通的无机玻璃主要含二氧化硅,二氧化硅是一种酸性的氧化物,在碱液中将会被溶解或侵蚀,其反应为:SiO2+2NaOH →Na2SiO3+H2O5.何种结构的材料具有高硬度?如何提高金属材料的硬度?答:由共价键结合的材料具有很高的硬度,这是因为共价键的强度较高。
无机非金属材料由离子键和共价键构成,这两种键的强度均较高,所以一般都有较高硬度,特别是当含有价态较高而半径较小的离子时,所形成的离子键强度较0/F A σ= (H E σε=00()/l l lε=-()/l l l ε=-高(因静电引力较大),故材料的硬度较高。
铜的有关知识点总结
铜的有关知识点总结一、铜的基本性质1. 导电性铜是一种优良的导电材料,其电导率为56×10^6S/m,是铝的1.5倍,金的1.2倍。
因此,在电工领域,铜被广泛用于制造电线、电缆等导电设备。
2. 导热性铜具有很高的导热性,热传导系数为401W/(m·K),是钢铁的3倍。
因此,铜被广泛用于制造散热器、换热器等高效的散热设备。
3. 耐腐蚀性铜具有较高的耐腐蚀性,能够抵抗大多数化学介质的侵蚀。
由于这一特性,铜被广泛用于化工领域,制造化工设备、管道等。
4. 可塑性铜是一种具有很高可塑性的金属,可以轻而易举地加工成各种形状。
这一特性使得铜被广泛用于金属加工、制造各种零件、器具等。
二、铜的用途1. 电工领域由于铜具有良好的导电性和导热性,因此被广泛用于制造电线、电缆、输电设备等。
铜线材、铜排等产品在电力系统中占据着重要地位。
2. 建筑领域铜具有良好的耐腐蚀性和美观性,因此被广泛用于建筑装饰、屋顶、立柱等。
铜材料还被用于制造水管、散热器等。
3. 化工领域铜具有良好的耐腐蚀性和导热性,因此被广泛用于化工设备、反应器、换热器等。
此外,铜也被用于制造化工阀门、管道等。
4. 机械制造领域由于铜具有良好的耐腐蚀性和可塑性,因此被广泛用于制造机械零件、轴承、齿轮等。
铜合金具有高强度和高硬度,因此也被广泛用于制造高强度零件。
5. 其他领域铜还被用于制造货币、工艺品、乐器等。
由于其良好的导电性和导热性,铜还被用于制造电子元器件、导热器件等。
三、铜的生产工艺1. 铜矿的开采铜矿是从地下或地表开采得到的含铜矿石,其主要含铜矿物有硫化铜矿、氧化铜矿、辉石矿等。
铜矿的开采通常包括采矿、选矿、破碎、磨矿等过程。
2. 冶炼工艺铜的冶炼工艺主要包括熔炼、精炼和铸造等过程。
首先,将铜矿石熔炼得到粗铜,然后通过精炼得到高纯度的铜,最后进行铸造得到铜锭或铜制品。
3. 铜材的加工铜材的加工工艺包括锻造、轧制、挤压、拉拔等过程。
通过这些加工过程,可以将铜加工成各种形状的材料,用于不同的领域。
材料的导电性和导电材料
材料的导电性和导电材料材料的导电性是指物质对电流的导电能力,而导电材料则是能够有效传递电流的物质。
在现代科技发展的背景下,导电性和导电材料在电子技术、能源科学以及材料科学领域具有重要的应用和研究价值。
本文将从材料的导电性机制以及常见的导电材料两个方面展开讨论。
一、材料的导电性机制材料的导电性主要是由材料内部的电荷输运机制决定的。
根据材料内部电荷的输运方式不同,导电性可分为金属导电和半导体导电两种类型。
1. 金属导电金属导电主要是由于金属材料中自由电子的存在。
在金属中,金属原子的电子外层的原子轨道部分被“束缚”关住,形成价带;而电子外层的自由电子则呈现出一种“流动”状态,构成导体的导带。
当电场作用于金属材料时,自由电子在电场力的驱动下开始运动,形成电流。
2. 半导体导电半导体导电则是因为半导体材料的导带结构与金属不同。
在半导体中,导带与价带之间存在能带隙,即能量差。
当外部施加电场或接受能量激发时,电子可以突破能带间的能量差,从价带跃迁到导带,形成载流子,进而导致电流的传递。
二、常见的导电材料1. 金属材料金属材料是最常见的导电材料之一,具有良好的导电性能。
铜、银、铝等金属都属于优良导体,被广泛应用于电线、电路等电子元件的制造。
金属的导电性能好,是由于金属结构中自由电子的存在。
2. 半导体材料半导体材料导电性能介于导体和绝缘体之间。
硅和锗是最常见的半导体材料,具有广泛的应用前景。
半导体材料的导电性可以通过控制材料的掺杂来改变。
P型半导体和N型半导体的结合可以形成PN结,通过施加电场或外界激发,控制电子在导带和价带之间的跃迁,实现对电流的控制。
3. 导电聚合物近年来,导电聚合物也成为研究热点。
导电聚合物是一种特殊的有机材料,具有高导电性和可塑性,可以制备成薄膜、纤维等形式。
常见的导电聚合物有聚对苯二甲酸乙二酯(PEDOT)和聚噻吩(PTh)等。
导电聚合物被广泛应用于柔性电子、聚合物太阳能电池等领域。
除了以上提到的常见导电材料外,还存在着许多特殊的导电材料,如碳纳米管、石墨烯等。
3金属的导电性能
晶格畸变↑ 电子波散射
电阻↑ 强度和硬度↑ 内应力↑
冷变形度小于10%时,电阻略有增大;
冷变形度超过10%时,电阻有明显增大。
b. 合金
冷变形使电阻增大。
5. 热处理(退火)——利用加热的方法来改变金属 材料的组织结构的方法称。
①金属材料冷变形后 电阻↑ 内应力↑ 硬度↑ 塑性↓ 导电性 ↓ 称冷加工硬化,简称“冷作硬化”
试验表明,只要样品处于超导态,它始终保持内部 的磁场为零,外部磁力线统统排斥之外,超导体是一个 理想的抗磁体,并且超导体内的磁感应强度B为0。这种 完全抗磁性的基本特征也称为迈斯纳效应。
T=Tc
正常态
超导体
正常态磁场的分布
超导态磁场的分布
名词解释: 超导体——具有超导电性的物质称为; 超导态——把超导体以零电阻为特征的物质状态称为; 正常态——超导体有电阻时的状态称为; Tc —— 把处于正常态的超导体转变为零电阻的超导体
所对应的温度称为临界温度。 Hc—— 使超导体的超导态受到破坏而转变为正常态所
需的磁场强度称为临界磁场强度; Ic—— 当通过超导体的电流达到一定数值时,所产生
的磁场也可以使超导态受到破坏,这时的电流称 为临界电流。
目前已发现有27种化学元素和数千种合金、化合 物具有超导电性。
不是超导体
一价金属银、铜、金(良导体) 铁磁体及反磁性金属铁、钴、镍
b. 正离子在本身的 位置上做激烈的 热振动;
b) 加电场 图 自由电子的定向移动
-e(质量为m的电荷)
看后面动态图
c. 质量为m的自由电子在电场力 f = -eE 的作用
下沿外力方向以运动速度 v 的形式加速运动;
正离子
+
培训_第三章材料的电学性能
离子在晶格点附近不断的热振动,偏离了晶格格
点,这种偏离引起晶格对电子的散射,称为晶格 实散际射金。属内部还存在着缺陷和杂质,产生的静态
点阵畸变和热振动引起的动态点阵畸变,对电子
波造成散射而形成电阻。 而对于一个纯的理想的完整晶体,0K时,电子波
的传播不受阻碍,形成无阻传播,电阻为零,导
致所谓的超导现象。
为自由电子,同时在价带中形成空穴,这样就使 半导体具有一些导电能力。
绝缘体:
禁带宽度大。在室温下,几乎没有价电子能 跃迁到导带中去,故基本无自由电子和空穴,所 以绝缘体几乎没有导电能力。
三、影响金属导电性的因素
晶体点阵的不完整性是引起电子散射的原因,而电阻来
源于晶体对自由运动电子的散射,因此电阻具有 组织结构敏感性,温度、形变(应力)、合金
18
同自由电子理论一样,也认为金属中的价电子 是公有化和能量是量子化的,所不同的是,它 认为金属中由离子所造成的势场不是均匀的, 而是呈周期性变化的,能带理论就是研究金属 中的价电子在周期势场作用下的能量分布问题
的电。子在周期势场中运动,随着位置的变化, 它的能量也呈周期变化,即接近正离子时势能 降低,离开时势能增高。这样价电子在金属中 的运动就不能看成是完全自由的。
原因:由于高压作用,导致原子间距发生变化(变小),使
金属内部的电子结构、费米能和能带结构发生变化,从而影 响导电性。
能带结构和导电机理:由于周期场的影响,使得价电子在
金属中以不同能量状态分布的能带发生分裂,也就是说,
有些能态是电子不能取值的。 由右图可以看到:
禁带宽窄取决于周期 势场的变化幅度,变 化越大,则禁带越宽。
当 线规-K律1<连K 续<K变1时化,;曲线按抛物 当增K=K1时,只要波数稍微
第三章 材料的电学性能——材料物理性能课件PPT
v eEl / vme
j nev ne(eEl / vme ) (ne2l / vme )E
E
其中,电导率为: ne2l / vme = ne2t me
从金属的经典电子理论导出了欧姆定律的微分形 式,而且得到了电导率的表达式。
从电导率表达式知:电导率与自由电子的数量成 正比,与电子的平均自由程成正比。
22
❖ 容易想象温度越高,x2越大振幅愈大,振动愈激烈,因而对 周期场扰动愈甚,电子愈容易被散射,故有:散射几率p与x2 成正比,可得出:R∝ρ∝p∝x2∝T。即电阻R与绝对温度T 成正比。这样就解决了经典电子理论长期得不到定量解释的 困难。
一、电阻和导电的基本概念 ❖ 电阻率
❖ 电导率
电阻率和电导率都与材料的尺寸无关,而只决定于它 们的性质,因此是物质的本征参数,可用来作为表征 材料导电性的尺度。
根据材料导电性能好坏,可把材料分为:
❖ 导体 : ρ<10-5Ω•m
❖ 半导体 : 10-3Ω•m < ρ< 109Ω•m
❖ 绝缘体 : ρ> 109Ω•m ❖ 不同材料的导电能力相差很大,这是由它们的结构
作为太阳能电池的半导体对其导电性能的要求更高,以追求 尽可能高的太阳能利用效率。
电学性能包括:导电性能、超导电性、介电性、铁 电性、热电性、接触电性、磁电性、光电性。
本章主要讨论材料产生电学性能的机理,影响材料 电学性能的因素,测量材料各类电学性能参数的方法 以及不同电学性能材料的应用等。
3.1 金属的导电性
第三章 材料的电学性能
在许多情况下,材料的导电性能比材料的力学性能还要重要。
导电材料、电阻材料、电热材料、半导体材料、超导材料和 绝缘材料都是以材料的导电性能为基础。
3-3 固体导电机理简介
nq2 2 w( )E 2m v
3-3 固体导电机理简介
第 三 章 稳 恒 电 流
一、金属导电性的经典微观解释 1、金属经典电子论 1)金属可视为晶格点阵上的原子实(微振动)与 自由电子(热运动)之集合。金属中有大量的自由 电子,自由电子的运动与理想气体中分子的运动相 同,每个电子的运动服从牛顿力学,与晶格上的正 离子(原子实)碰撞时交换能量,大量自由电子的运 动服从经典的统计规律即麦克斯韦——玻尔兹曼分 布率 2)金属中的自由电子,在电场作用下将作定向运动, 形成金属中的电流
2
3-3 固体导电机理简介
二、欧姆定律的解释 由气体分子运动论可知,平均自由时间 ,平均 第 速率 v ,和平均自由程 三者之间的关系 三 章 v
Байду номын сангаас
稳 得 恒 电 流
q n m v
2
式中各量均与 E 无关,故 j 正比于 E ,解释了欧姆
定律
3-3 固体导电机理简介
第 三 章 稳 恒 电 流
二、欧姆定律的解释 根据经典热力学理论,电子热运动, 与温度无 关 8 kT v vf (v) dv v2 0 m 所以
v T
因而
1 T
即 T ,表明:随温度增 大,电阻增大,与以前定性 地一致
3-3 固体导电机理简介
第 三 章 稳 恒 电 流
3-3 固体导电机理简介
材料中的电子结构与导电性分析
材料中的电子结构与导电性分析导电性是指材料对电流的导电能力,它与材料的电子结构密切相关。
材料中的电子结构是指材料中电子分布的状态和能级情况。
在这篇文章中,我们将探讨材料中的电子结构与导电性之间的关系,并分析导电性的原因。
材料中的电子结构决定导电性的主要因素之一是能带结构。
根据量子力学的原理和固体物理学的理论,材料中的电子可以在能带中自由运动。
能带可以理解为电子的能量区域,被禁止带称为禁带,能量低的为价带,能量高的为导带。
当电子填充满了价带时,材料是绝缘体,没有自由电子可导电。
而当导带部分被电子填充后,就会形成导电现象,称为导体。
导电材料往往具有部分填充的导带,允许电子在材料中自由移动。
但并非所有材料都是导体,也并非所有导体都具有相同的导电性。
除了能带结构以外,材料的晶体结构和杂质的存在也会影响导电性。
晶体结构因为不同的结构具有不同的电子能带结构,从而导致不同的导电行为。
例如,金属往往具有紧密排列的晶体结构,其电子能带结构中存在能带重叠,从而形成能量连续的电子态,使电子可以轻易地在金属中自由移动,因此金属具有良好的导电性。
另一个影响导电性的因素是材料中的杂质。
杂质可以分为载流子杂质和点缺陷杂质。
载流子杂质是指在晶格中替代原子位置的杂质,如氧、硼等。
这些杂质可以为材料提供额外的电子或空穴,从而增加导电性。
点缺陷杂质是指晶格中缺失了原子的位置,例如空位缺陷和杂质原子束缚电子等。
这些缺陷也能够影响材料的电子结构和导电性。
在导电性分析方面,有几种常用的方法可以进行电子结构和导电性的研究。
一种常用的方法是能带计算。
借助计算科学和量子力学的方法,可以模拟材料的能带结构和电子运动行为,从而预测和分析导电性。
另一个常用的方法是电子能谱分析。
电子能谱分析可以通过测量材料中电子能级在不同能量和动量的分布情况来研究材料的导电性。
总之,材料中的电子结构与导电性之间存在密切的关系。
能带结构、晶体结构和杂质等因素都会影响导电性的产生和性质。
srtio3 熔点
srtio3 熔点SrTiO3是一种重要的功能性陶瓷材料,具有广泛的应用前景。
它是一种具有钙钛矿结构的无机化合物,由锶、钛和氧组成,化学式为SrTiO3。
SrTiO3是一种具有光电、光学、导电、超导等多种性质的材料。
其中,它的电学性质是受到广泛关注的一个方面,尤其是研究其电阻率随温度变化的规律,可以揭示其材料的基本特性。
SrTiO3的熔点是多少?SrTiO3的熔点是2080℃。
它的熔点相对较高,说明它在高温下可以保持稳定性和耐高温性能。
这也使得它的制备工艺相对较为复杂,需要高温的条件和严格的操作要求。
然而,由于它在高温下可以保持稳定性,同时具有多种材料特性,使得它具有广泛的应用前景。
SrTiO3的导电性质是什么?SrTiO3作为一种化合物材料,其导电性质受到研究者广泛关注。
实验表明,SrTiO3具有良好的绝缘性质,它的电阻率通常在10^8-10^14 Ω·cm之间。
但是,如果受到一定的外加光或电场激励,或者掺杂一定的杂质浓度,它的电阻率就会显著下降。
掺杂杂质可以被认为是在SrTiO3中形成导电空穴的单电子能级。
在这些条件下,SrTiO3具有一定的导电性质,可以用作光电器件、传感器、催化剂等材料。
SrTiO3的应用前景是什么?SrTiO3具有良好的光电、光学、导电、超导等多种材料特性,拥有广泛的应用前景。
具体应用领域包括:光电器件:SrTiO3具有光电效应,它可以被用于太阳能电池、光电探测器、光电安全开关等光学器件。
传感器:SrTiO3具有一定的敏感性和选择性,它可以被应用于气体传感器、光学传感器等各种传感器。
催化剂:SrTiO3具有一定的表面活性和特异性,它可以被应用于分解水和空气中污染物、光催化降解有害有机化合物等领域。
总之,SrTiO3是一种功能性陶瓷材料,具有多种材料特性和广泛的应用前景。
尽管其制备工艺相对较为复杂,但仍受到了广泛的研究关注,相信未来还会有更多的科研人员投入到它的实际应用探究中。
3 物质的导电能力
第三节物质的导电性1.导体: 导电的物质。
常见的导体有:所有、、、、等。
2.绝缘体: 导电的物质。
常见的绝缘体有: 、、、油、干燥的空气、纯水等。
家庭电路中的导线都是用塑料、橡胶等绝缘材料做外套的原因是。
3.纯水接入电路,观察到电灯,说明纯水是。
当溶入食盐或其他物质时,观察到电灯,可见普通的水是能的。
4.玻璃通常是绝缘体,但当玻璃接入电路并烧红时,观察到电灯。
可见烧红的玻璃变成了。
如果导体的表面被氧化或腐蚀,会使导电能力下降,甚至不容易导电。
[结论] 导体和绝缘体绝对的,当条件发生变化时,导体与绝缘体会相互。
5. :导电能力介于导体和绝缘体之间的一类物质。
常见的半导体材料有和。
半导体在工业中有广泛的应用,“硅谷”意指基地。
6.金属导电的微观解释金属导体内部的原子核位置相对固定,但核外的电子能,能从一个地方到另一个地方。
而非金属中,几乎不存在能的电子。
[结论] 可见金属导电的原因是,绝缘体不导电的原因是。
7.电阻不同的材料导电能力有强有弱,为了比较各种材料的导电能力的强弱,引入。
电阻是导体对电流的作用。
电阻越大,导体对电流的阻碍作用越,导电能力越。
绝缘体的电阻非常,导电能力非常弱。
电阻可用字母表示。
单位: ,简称,符号用Ω。
关系:1MΩ= kΩ,1kΩ= Ω。
8.下列物质中,①铁制钢笔;②橡皮;③铅笔芯;④棉衣;⑤人体的尿液;⑥玻璃杯;⑦电视机外壳;⑧干燥的空气。
属于导体的是,属于绝缘体的是。
9.金属导体和绝缘体的区别在于 ( )A.金属导体中有电子,绝缘体中没有电子B.金属导体中的电子能自由移动,绝缘体中没有电子C.金属导体中有自由电子,绝缘体中没有自由电子D.金属导体中没有自由电子,绝缘体中有自由电子10.导体对电流阻碍作用的用电阻表示,导体的电阻越大,表示导体对电流的,电阻用字母表示。
11.完成下列换算。
5兆欧= 千欧 0.5千欧= 欧 30欧=千欧= 兆欧12.在通常情况下,下列各物质全部属于导体的是( )A. 食盐水、锗、玻璃B.汞、碳棒、人体C. 纯水、铜、食盐D.铁丝、硅、大地13.电线芯通常是用铜丝做成的,是因为,容易;外套是用塑料橡胶做的,因为它们是,能够防止。
三元材料总结
在自然界中,锂元素是最轻的金属,它的原子量为6.94g/mol,ρ=0.53g/cm-3,电化学当量最小,为0.26 g·Ah-1,标准电极电位最负,为-3.045 V,锂元素的这些特点决定了它是一种具有很高比能量的材料。
层状的Co02,其理论容量为274 mAh/g,实际容量在140~155 mAh/g。
其优点为:工作电压高,充放电电压平稳,适合大电流放电,比能量高,循环性能好。
缺点是:实际比容量仅为理论容量的50%左右,钴的利用率低,抗过充电性能差,在较高充电电压下比容量迅速降低。
另外,再加上钴资源匮乏,价格高的因素,因此,在很大程度上减少了钻系锂离子电池的使用范围,尤其是在电动汽车和大型储备电源方面受到限制。
镍钴锰三元复合正极材料研究工作中面临的问题和不足(1)合成工艺不成熟,工艺复杂。
由于世界各国对于复合正极材料的研究最近几年才开始,且材料中的Ni2+极难氧化成Ni3+,锰离子也存在多种氧化价态,因而合成层状结构的正极材料较为困难,尚未研究出最佳的合成工艺。
由于大量掺入过渡金属元素等因素,复合正极材料的合成工艺相对复杂,需经过长时间的煅烧,并且大多只能在氧气气氛中,温度高于900℃的条件下合成出具有优异电化学性能的复合正极材料,这对于该材料的工业化生产带来了很大的局限性。
(2)忽略了镍钴锰三元复合正极材料合成过程中前驱体的研究。
由于目前合成复合正极材料均需煅烧,而国内外普遍采用直接市售的、Ni-H电池及陶瓷行业专用的镍化物、钴化物和锰化物作为煅烧原料进行合成,仅考虑原料的化学组成,而未注意到煅烧前驱体的种类和相关性能对复合正极材料的结构和电化学性能产生的巨大影响。
目前开发高性能、低成本的新型锂离子电池正极材料的研究思路主要有:(1)充分综合钴酸锂良好的循环性能、镍酸锂的高比容量和锰酸锂的高安全性及低成本等特点,利用分子水平混合、掺杂、包覆和表面修饰等方法合成镍钴锰等多元素协同的复合嵌锂氧化物;(2)高安全性、价廉、绿色环保型橄榄石结构的LiMPO4 (M=Fe、Mn、V等)的改性和应用;(3)通过对传统的钴酸锂、镍酸锂和锰酸锂等正极材料进行改性、掺杂或修饰,以改善其理化指标和电化学性能。
不同材料导电性质比较分析
不同材料导电性质比较分析导电性是物质的重要性质之一,它决定了物质是否能够传导电流。
在现代科技中,许多应用都依赖于材料的导电性能,如电子器件、电池等。
同时,对于导电性能的研究也有助于我们更好地理解物质的电性质。
本文将对几种常见的材料的导电性质进行比较分析,包括金属材料、半导体材料和绝缘体材料。
首先,金属材料是一类导电性能非常好的材料。
它们具有高度可移动性的自由电子,这些电子可以在材料中自由运动。
金属材料的导电性能主要受到电子的自由度以及电子的浓度的影响。
一般来说,金属材料的导电性随着自由度的增加和浓度的增加而提高。
铜和铝是两种常见的金属材料,在工业和日常生活中广泛应用。
它们具有良好的导电性能和较低的电阻,可用于制造导线、电缆等导电设备。
其次,半导体材料是介于金属材料和绝缘体材料之间的一类材料。
它们具有介于导体和绝缘体之间的导电性能。
半导体材料的导电性主要由其禁带宽度决定。
禁带宽度是指半导体材料中能量带隙的宽度,即价带与导带之间的能量差。
对于常见的硅和锗材料来说,它们的禁带宽度较小,因此在室温下的导电性能相对较差。
然而,通过掺杂或外加电场的方法可以改变半导体材料的导电性能。
例如,添加五价元素砷或磷,可以使硅材料变为N型半导体,导电性能显著提高。
最后,绝缘体材料是导电性非常差的材料。
它们的导电性主要受到禁带宽度的影响。
绝缘体材料的禁带宽度较大,导致几乎没有自由电子可以在材料中进行导电。
举例来说,陶瓷、玻璃和塑料等材料都属于绝缘体材料,它们在常温下几乎不会导电。
这也是为什么绝缘体材料常用于电子设备的绝缘层,以避免导电性造成的电路短路和其他电路问题。
总结起来,不同材料具有不同的导电性质。
金属材料具有良好的导电性能,半导体材料的导电性能介于金属和绝缘体之间,而绝缘体材料则具有很差的导电性。
我们可以根据不同材料的导电性质来选择合适的材料用于不同的应用,从而实现最佳的性能和效果。
需要注意的是,在实际应用中,还有其他因素可能会影响材料的导电性能,如温度和湿度等。
不同材料的电阻率及导电性
不同材料的电阻率及导电性一、电阻率的定义电阻率(ρ)是描述材料导电性能好坏的物理量,它表示材料单位长度、单位横截面积时的电阻。
电阻率的单位是欧姆·米(Ω·m)。
二、电阻率与导电性的关系1.电阻率与电阻的关系:材料的电阻与其电阻率、长度和横截面积有关。
电阻 R 可以用公式R = ρ * (L/A) 表示,其中 R 是电阻,ρ 是电阻率,L 是长度,A 是横截面积。
2.电阻率与导体的材料有关:不同材料的电阻率不同,导体的导电性能也不同。
一般来说,电阻率越大,导体的导电性能越差;电阻率越小,导体的导电性能越好。
三、常见材料的电阻率及导电性1.金属:金属的电阻率较小,导电性能较好。
如铜(Cu)、铝(Al)、铁(Fe)等。
2.半导体:半导体的电阻率介于金属和非金属之间,导电性能较差。
如硅(Si)、锗(Ge)、砷化镓(GaAs)等。
3.绝缘体:绝缘体的电阻率很大,导电性能很差。
如空气、玻璃、橡胶等。
4.超导体:超导体的电阻率在超导状态下接近零,导电性能极好。
如氮化锂(LiNbO3)、钇钡氧化物(YBa2Cu3O7)等。
四、影响电阻率的因素1.温度:温度对材料的电阻率有较大影响。
一般来说,随着温度的升高,金属的电阻率增大;而半导体的电阻率随温度的升高而减小。
2.杂质:材料中的杂质会改变其电阻率。
对于半导体来说,掺入适当的杂质可以改变其导电性能。
3.应力:材料受到应力时,其电阻率会发生改变。
应力越大,电阻率越大。
五、电阻率的应用1.选择合适的导体材料:在电路设计中,根据需要选择电阻率较小的导体材料,可以减小电阻,提高电路的导电性能。
2.制造电子器件:半导体材料的电阻率可用于制造电子器件,如晶体管、集成电路等。
3.测量与检测:通过测量材料的电阻率,可以判断其导电性能的好坏,用于检测材料或设备的性能。
4.超导技术:超导体的电阻率极低,可用于超导电缆、磁悬浮列车等领域。
习题及方法:1.习题:一块铜线的电阻率为 1.68×10^-8 Ω·m,长度为 2 米,横截面积为 2×10^-7 平方米,求该铜线的电阻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属最小电导率 m i n C M o t t( e 2 /h ) n c 3 ~ 2 0 0 0 / c m
金属最大电阻率
m ax~500 cm
可以看到上述三种不同的 判断在量级上是一致的
莫特判据有一个重要的推论,即:绝缘体 和金属态之间在特定条件下可以相互转换
§3.2 导体电阻率
电阻率源于传导电子的散射,固体因缺陷、杂质、晶格振动、 库仑作用等,往往存在着多种散射机制
j niqivi
i
i表示第i种载流子
三、材料基本导电类型
电子导电(包括空穴导电、极化子导电)
离子导电(包括空位导电)
离子导电指输运电荷中的载流子是离子 具有离子电导解电质性溶的液固(如态K物C质l溶常液被)的称导为电固就体是电离解子质导电 这些物质或因其晶体中的点缺陷或因其特殊结构而为离子 提供快速迁移的通道,在某些温度下具有高的电导率(1~ 106西门子/厘米),故又称为快离子导体。
电流强度:单位时间内流过某一截面的电荷量
I
dq dt
eI
电流密度:单位时间内流过材料单位横截面的电量 电阻:物体对电流的阻碍特性
j dI ds
实验上其值由加在材料两端的电压与通过这段材料
电流的比值确定,即 R V
I
材料的电阻由材料本身的物理条件决定
RL S
电阻率:单位面积、单位长度材料的电阻值,单位Ω·cm
2、按固体的能带结构分类
导体
具有下列三种情况的能带 结构的固体均为导体
没有禁带存在,即空带底 和满带顶紧靠在一起,如 自由电子的情况
E (k )
有禁带存在,但 禁带下的能带未 被电子完全占据
空带
k
电子占据的能带和 能量较高的空带间 虽有禁带,但它们 之间有重迭
E(k)
空带
Eg 禁带
k
E (k )
空带
杂质、缺陷等散射 电子-声子相互作用
= 0 + p he em a g
电子-电子相互作用
磁散射
剩余电阻率
声子散射有 关的电阻率
磁散射有关 的电阻率
电子-电子相互作 用有关的电阻率
1、剩余电阻率 0
起因 导体中或多或少存在缺陷或结构不完整或含有杂质离子,这些缺 陷、结构不完整性和杂质将对传导电子产生散射,引起电阻。
k
绝缘体
E(k)
空带 禁带
价电子正好把价带填满,而上面的许可 带没有电子占据,在满带和空带之间存 在一禁带。
禁带宽度称为带隙,绝缘体的带隙通常 在几eV以上。在一般的温度下,电子不 可能获得足够的能量而从满带跃迁到空 带中,因此不具有导电性 。
k
半导体
E(k)
空带 禁带
半导体的能带和绝缘体相似,只是带隙 要小得多,通常在1eV左右。由于较小 的带隙,当有光照或升高温度时,价带 中的电子将被激发到空带中,使导带底 附近有少量电子,这些电子将参与导电; 同时价带中出现的空穴也将参与导电。
电导:物体对电流的导通特性,其值为电阻的倒数 电导率:表征材料导电能力 的物理量,其值为电阻率的倒数
1
相对电导率IACS%:(工程上)以20oC下,软纯铜的电导率 为标准,其他材料的电导率与之相比的百分数
Fe:17% Al:65%
迁移率:单位电场作用下载流子的漂移运动速度 v
E
反映了载流子在电场作用下运动的难易程度
载流子的基本类型
电子、空穴、正/负离子以及带电空位、极化子等
二、基本规律及关系式
1、欧姆定律:
积分形式
IV R
微分形式
j E
2、电导率与迁移率的关系: nq
n为单位体积的载流子数目,也称载流子密度
3、电流密度与载流子的漂移运动速度的关系:
jEnqv
4、有多种载流子参与导电时的电导率与电流密度
niqii i
k
利用半导体在温度升高、受光 照射等条件下的导电性能大大 增强的特性,可研制出诸如热 敏电阻、光敏电阻等器件。
空带
h
满带
3、按阻温系数分类
(T)
导体
d0 还 是d0?
dT
dT
绝缘体或 半导体
金属 绝缘体
Resistivity
0
Temperature
4、按电阻率分类
Mooij判据
固体电阻率变化范围
如在La2/3Ca1/3MnO3中,电子可在Mn3+与Mn4+之间以O2-作为 媒介转移,当Mn3+与Mn4+的数目比为2:1时,具有很好的导电 性。
四、导电性的分类 导电性是评价材料所具有的传导电流的性质
1、按物体室温下电阻率大小分类 绝缘体:室温情况下的电阻率一般在108cm以上 半导体:室温情况下的电阻率一般在10-5—108 cm范围 导体:室温情况下的电阻率一般在10-5cm以下
电子-离子混合导电 离子-电子混合导体是一种重要且具有明确使用价值的功
能陶瓷材料,可用于氧的分离和纯化以及各种涉氧反应,可 作为固体氧化物燃料电池的阴极材料等。
一般显示良好导电性的陶瓷材料,有电子导电参与。其中,未 填满的d轨道上的电子,其电子云在空间发生重叠形成能带, 在一定程度上公有化,从而具有导电性。
第三章 材料的导电性质
§3.1 基本概念及基本规律 §3.2 导体电阻率 §3.3 晶态半导体电阻率 §3.4 离子固体中的导电性 §3.5 强定域态材料中的导电性 §3.6 极化子有关的电阻率 §3.7 外场对材料导电性能的影响
§3.1 基本概念及基本规律
一、基本概念 电流:定向移动的电荷 电荷一般由载流子携带
最纯 金属
导电性最差
109cm 的绝缘体
1022cm
ne2
m
e2
n kF2
kFl
利用kF3 3 2n
以及kFl kFa 1
可估计出三维情况 下最小金属电导为
a是一与晶格常数 相近的微观尺度
2 0 0 c m 绝 缘 体
2 0 0 c m金 属
3D min
1 ቤተ መጻሕፍቲ ባይዱ
32
e2
1 利用 a 以及a
在多种散射机制存在下,总的散射几率是: PPi i
Pi代表第i 种机制单位时间内的散射几率
总散射驰豫时间 1 1/ P k 1
i1 i
意味着总电阻率是不同散 射机制引起的电阻率之和
由于 ne2
m
导体
故有m 1m k 1
ne2 ne2 i1 i
马西森(Matthiessen)定则
导体电阻率至少包含四个部分
e2 4.1k ~ 0.1nm
m ax~200 cm
大量的实验数据分析表明,对 电阻率大于80-100cm时,
d/dT0 不再保持,这和上面根据阻温系数给
出的经验判断在量级上是相一致的
5、莫特判据
nc为载流子的临界密 度, aH为局域电子中 心的特征轨道半径
nc 1/3aH~0.250.38
莫特系数 0.01-0.05