初一数学下册练习题

合集下载

七年级数学下册《一元一次不等式》练习题附答案(苏科版)

七年级数学下册《一元一次不等式》练习题附答案(苏科版)

七年级数学下册《一元一次不等式》练习题附答案(苏科版)班级:___________姓名:___________考号:___________一、选择题1.数学表达式:①﹣5<7;②3y ﹣6>0;③a=6;④x ﹣2x ;⑤a ≠2;⑥7y ﹣6>5y+2中,是不等式的有( )A.2个B.3个C.4个D.5个2.语句“x 的18与x 的和不超过5”可以表示为( )A.18x+x ≤5B.18x+x ≥5 C.≤5 D.18x+x=53.如果a >b ,则下列不等式中不正确的是( )A.a+2>b+2B.a ﹣2>b ﹣2C.﹣2a >﹣2bD.0.5a>0.5b4.下列各数中,不是不等式2﹣3x >5的解的是( )A.﹣2B.﹣3C.﹣1D.1.355.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是( )A.⎩⎨⎧x -1<3x +1<3B.⎩⎨⎧x -1<3x +1>3C.⎩⎨⎧x -1>3x +1>3D.⎩⎨⎧x -1>3x +1<3 6.若不等式组无解,则m 的取值范围是( )A.m >2B.m <2C.m ≥2D.m ≤27.不等式23>7+5x 的正整数解的个数是( )A.1个B.无数个C.3个D.4个8.甲、乙两人从相距24km 的A ,B 两地沿着同一条公路相向而行,已知甲的速度是乙的速度的两倍,若要保证在2h 以内相遇,则甲的速度应( )A.小于8km/hB.大于8km/hC.小于4km/hD.大于4km/h9.某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( )A.60B.70C.80D.9010.学校举办“创建文明城”演讲比赛,张老师拿出90元钱全部购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本15元,乙种笔记本每本5元,且乙种笔记本的数量是甲种笔记本的整数倍,则购买笔记本的方案有( )A.2种B.3种C.4种D.5种二、填空题11.如果a >0,b >0,那么ab 0. 12.写出一个解集为x >1的一元一次不等式:_________.13.不等式3x+1>7的解集为_______.14.不等式14x+5>2-x 的负整数解是 .15.某试卷共有30道题,每道题选对得10分,选错了或者不选扣5分,至少要选 对 道题,其得分才能不少于80分.16.圣诞节班主任老师购买了一批贺卡准备送给学生,若每人三张,那么还余59张,若每人5张,那么最后一个学生分到贺卡,但不足四张,班主任购买的贺卡共 张.三、解答题17.解不等式:2(2x -3)<5(x -1).18.解不等式:13(2x-1)-12(3x+4)≤1.19.解不等式组:20.解不等式组:.21.不等式13(x -m)>3-m 的解为x >1,求m 的值.22.定义新运算:对于任意实数a ,b ,都有a ¤b=a(a -b)+1,等式右边是通常的加法、减法及乘法运算,比如:2¤5=2x(2-5)+1=2x(-3)+1=-6+1=-5.(1)求(-2)¤3的值;(2)若3¤x 的值小于13,求x 的取值范围,并在如图所示的数轴上表示出来.23.解不等式x 3<1-x -36,并求出它的非负整数解.24.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知购买较为合算;(2)当x>20时①该客户按方案一购买,需付款元;(用含x的式子表示)②该客户按方案二购买,需付款元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?25.某商场的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表:(1)问A,B两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于A品牌,商家决定采购B品牌的件数比A品牌件数的3 2倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B品牌运动服?参考答案1.C2.A3.C4.C5.B6.D7.C8.B9.C10.A.11.答案为:>. 12.答案为:x ﹣1>013.答案为:x >2.14.答案为:-1,-2.15.答案为:16.16.答案为:3117.解:x >-1;18.解:x ≥﹣4.19.解:解①得x <3解②得x >﹣1所以不等式组的解集为﹣1<x <3.20.解:﹣1<x ≤2.21.解:∵13(x -m)>3-m∴x -m >9-3m解得x>9-2m.又∵不等式13(x-m)>3-m的解为x>1∴9-2m=1解得m=4.22.解:(1)11.(2)x>-1数轴表示如图所示:23.解:去分母,得2x<6-(x-3).去括号,得2x<6-x+3移项,得x+2x<6+3.合并同类项,得3x<9.两边都除以3,得x<3.∴非负整数解为0,1,2.24.解:(1)方案一;(2)(40x+3200);(36x+3600).若按方案一购买更省钱,则有40x+3200<36x+3600.解得x<100.即当买的领带数少于100时,方案一付费较少.若按方案二购买更省钱,则有40x+3200>36x+3600.解得x>100.即当买的领带数超过100时,方案二付费较少;若40x+3200=36x+3600,解得x=100.即当买100条领带时,两种方案付费一样.25.解:(1)设A,B两种品牌运动服的进货单价各是x元和y元,根据题意可得:,解得:答:A,B两种品牌运动服的进货单价各是240元和180元;(2)设购进A品牌运动服m件,购进B品牌运动服(32m+5)件则240m+180(32m+5)≤21300,解得:m ≤40 经检验,不等式的解符合题意 ∴32m+5≤32×40+5=65答:最多能购进65件B 品牌运动服.。

数学初一下册题

数学初一下册题

数学初一下册题数学初一下册题一、整数运算整数运算是初一下册数学的基础内容之一。

通过整数运算的练习,可以帮助学生熟练掌握整数的加减乘除法。

1. 整数加法:题目一:计算 (-5) + 7 = ?解题思路:在数轴上,从原点向左移动5个单位,然后向右移动7个单位,得到的最终位置是2。

故答案是2。

题目二:计算 (-9) + 3 = ?解题思路:在数轴上,从原点向左移动9个单位,然后向右移动3个单位,得到的最终位置是6。

故答案是6。

2. 整数减法:题目一:计算 10 - (-3) = ?解题思路:减去一个负数相当于加上一个正数,所以相当于计算 10 + 3 = 13。

故答案是13。

题目二:计算 (-4) - 6 = ?解题思路:减法可以转化为加法,即计算 (-4) + (-6) = -10。

故答案是-10。

3. 整数乘法:题目一:计算 (-2) × (-5) = ?解题思路:两个负数相乘,结果为正数,即 2 × 5 = 10。

所以答案是10。

题目二:计算 3 × (-8) = ?解题思路:一个正数乘以一个负数,结果为负数,即 3 × (-8) = -24。

所以答案是-24。

4. 整数除法:题目一:计算 (-21) ÷ 7 = ?解题思路:一个负数除以一个正数,结果为负数,即 (-21) ÷ 7 = -3。

所以答案是-3。

题目二:计算 45 ÷ (-5) = ?解题思路:一个正数除以一个负数,结果为负数,即 45 ÷ (-5) = -9。

所以答案是-9。

二、代数方程初一下册还学习了一些简单的代数方程,这是数学学习中的重要概念,通过练习代数方程,可以提高学生的逻辑思维能力。

1. 一元一次方程:题目一:解方程 2x + 3 = 9。

解题思路:将方程中的常数项移到等号右边,得到 2x = 9 - 3,化简后可得 x = 3。

所以方程的解是 x = 3。

北师大数学七年级下册练习题

北师大数学七年级下册练习题

七年级下练习题题班级 姓名一、选择题(每小题3分,共30分)1.下列计算正确是( )A .a 23nB .a 2n •3nC .(a 4)26D .()5÷3=()22.已知,3,5=-=+xy y x 则=+22y x ( )A. 19B. a a 62+ C . 25 D.19-3.纳米是一种长度单位,1纳米=10﹣9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( )A .3.5×104米B .3.5×10﹣4米C .3.5×10﹣5米D .3.5×10﹣9米4.(x ﹣1)(23)的计算结果是( )A .2x 2﹣3B .2x 2﹣x ﹣3C .2x 2﹣3D .x 2﹣2x ﹣35.如图,点E 在延长线上,下列条件中不能判定∥的是( )A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠∠180°6.下列乘法中,不能运用平方差公式进行运算的是( )A .()(x ﹣a )B .()(m ﹣b )C .(﹣x ﹣b )(x ﹣b )D .()(﹣a ﹣b ) 7.等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边为( )A .7B .7或5C .5D .38.若(x ﹣a )(x ﹣5)的展开式中不含有x 的一次项,则a 的值为( ) A . 0 B . 5 C . ﹣5 D . 5或﹣59.下列说法中正确的个数有( )(1)在同一平面内,不相交的两条直线必平行;(2)同旁内角互补;(3)相等的角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;(5)经过直线外一点,有且只有一条直线及已知直线平行.A .2个B .3个C .4个D .5个10.如图,△中,∠α°,延长到D ,∠及∠的平分线相交于点A 1,∠A 1及∠A 1的平分线相交于点A 2,依此类推,∠﹣1及∠﹣1的平分线相交于点,则∠的度数为( ) A .B .C .D .二、填空题(每小题4分,共20分)11.计算:(﹣23z 2)2= .12.如图,直线、、相交于一点,∠1=50°,∠2=64°,则∠ 度.13.将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2= .14.如果多项式x 2+82是一个完全平方式,则k 的值是 .15.46(310)(510)⨯⨯⨯= ;5x 3·x 4=三、计算及求值(共50分) 题号1 2 3 4 5 6 7 8 9 10 答案16.计算及求值(每小题5分,共20分)(1)(﹣)﹣2﹣(﹣2016)0+()11×(﹣)12;(2)(3x﹣2)2+(﹣3)(﹣x﹣3);(3)(9x4y3﹣6x232)÷(﹣3);(4)先化简,再求值[(2)2﹣y(4x)﹣8]÷(﹣2x).其中2,﹣1.四、解答题(共30分)17、用简便方法计算(每小题5分,共10分)(1)9992(2)2016×2018-2017218.(6分)已知:a﹣4,﹣1,求:()2和a2﹣62的值.19.(本题满分7分)已知:如图所示,∠∠,和分别平分∠和∠,∠∠.求证:∥.证明:∵和分别平分∠和∠(已知)∴∠∠,∠∠().又∵∠∠(已知),∴∠=∠(等量代换).又∵∠∠(已知),∴∠=∠(等量代换),∴∥.20.(本题满分7分)如图,已知∥,∠B=40°,是∠的平分线,⊥,求∠的度数.B卷(50分)五、填空题(4分,共20分)21.已知:32,95,33m﹣21= .22.若(x﹣2)(x2)的积中不含x的二次项和一次项,则..23.若a2﹣31=0,则= .24.已知等腰△中一腰上的高及另一腰的夹角为30°,则△的底角度数为度.25.已知△的面积为1,把它的各边延长一倍得△A1B1C1;再△A1B1C1的各边延长两倍得△A2B2C2;在△A2B2C2的各边延长三倍得△A3B3C3,△A3B3C3的面积为.六、解答题(每小题10分,共30分)26.(1)已知△三边长是a、b、c,化简代数式:﹣﹣﹣﹣﹣c﹣﹣a﹣;(2)已知x2+3x﹣1=0,求:x3+5x2+52015的值.27.先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+48的最小值.解:y2+482+44+4=(2)2+4∵(2)2≥0∴(2)2+4≥4∴y2+48的最小值是4.(1)求代数式m24的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设(m),请问:当x取何值时,花园的面积最大?最大面积是多少?28.如图(1),在△中,∠90°,⊥,垂足为D.平分∠,交于点E,交于点F.(1)求证:;(2)若,,△、△、△的面积分别为S△、S△、S△,且S△24,则S△﹣S△;(3)将图(1)中的△沿向右平移到△A′D′E′的位置,使点E′落在边上,其它条件不变,如图(2)所示,试猜想:′及有怎样的数量关系?并证明你的结论.2015-2016学年四川省成都七年级(下)期中数学试卷参考答案及试题解析一、选择题(每小题3分,共30分)1.下列计算正确是()A.a23n B.a2n•3n C.(a4)26 D.()5÷3=()2【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方及积的乘方.【分析】根据整式的除法,合并同类项的方法,以及同底数幂的乘法和幂的乘方及积的乘方的运算方法逐一判断即可.【解答】解:∵a2≠a3n,∴选项A不正确;∵a2n•3n,∴选项B正确;∵(a4)28,∴选项C不正确;∵()5÷34y2,∴选项D不正确.故选:B.2.下列各组长度的三条线段能组成三角形的是()A.1,2,3 B.1,1,2 C.1,2,2 D.1,3,5【考点】三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【解答】解:根据三角形任意两边的和大于第三边,A、1+2=3,不能组成三角形,故错误,B、1+1=2,不能组成三角形,故错误,C、1+2=3>2,2﹣2=0<1,能够组成三角形,故正确,D、1+3=4<5,5﹣3=2>1,不能组成三角形,故错误,故选C.3.纳米是一种长度单位,1纳米=10﹣9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为()A.3.5×104米B.3.5×10﹣4米C.3.5×10﹣5米D.3.5×10﹣9米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,及较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:35000纳米=35000×10﹣9米=3.5×10﹣5米.故选:C.4.(x﹣1)(23)的计算结果是()A.2x2﹣3 B.2x2﹣x﹣3 C.2x2﹣3 D.x2﹣2x﹣3【考点】多项式乘多项式.【分析】根据多项式乘以多项式的法则,可表示为()(),计算即可.【解答】解:(x﹣1)(23),=2x2﹣23x﹣3,=2x2﹣3.故选:A.5.如图,点E在延长线上,下列条件中不能判定∥的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠∠180°【考点】平行线的判定.【分析】根据平行线的判定方法直接判定.【解答】解:选项B中,∵∠3=∠4,∴∥(内错角相等,两直线平行),所以正确;选项C中,∵∠5=∠B,∴∥(内错角相等,两直线平行),所以正确;选项D中,∵∠∠180°,∴∥(同旁内角互补,两直线平行),所以正确;而选项A中,∠1及∠2是直线、被所截形成的内错角,因为∠1=∠2,所以应是∥,故A错误.故选A.6.下列乘法中,不能运用平方差公式进行运算的是()A.()(x﹣a)B.()(m﹣b)C.(﹣x﹣b)(x﹣b)D.()(﹣a﹣b)【考点】平方差公式.【分析】根据平方差公式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数解答.【解答】解:A、B、C、符合平方差公式的特点,故能运用平方差公式进行运算;D,两项都互为相反数,故不能运用平方差公式进行运算.故选D.7.等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边为()A.7 B.7或5 C.5 D.3【考点】等腰三角形的性质;三角形三边关系.【分析】分3长的边是腰和底边两种情况,分别利用三角形的周长,等腰三角形的性质和三角形的三边关系进行讨论即可求解.【解答】解:当长是3的边是底边时,三边为3,5,5,等腰三角形成立;当长是3的边是腰时,底边长是13﹣3﹣3=7,而3+3<7,不满足三角形的三边关系.故底边长是3.故选D.8.如图,下列条件不能证明△≌△的是()A.,B.∠∠D,∠∠C.,∠∠D D.,【考点】全等三角形的判定.【分析】利用全等三角形的判定方法:、、、、分别进行分析即可.【解答】解:A、,再加公共边可利用判定△≌△,故此选项不合题意;B、∠∠D,∠∠再加公共边可利用判定△≌△,故此选项不合题意;C、,∠∠D再加对顶角∠∠可利用判定△≌△,可得,,进而可得,再加公共边可利用判定△≌△,故此选项不合题意;D、,不能判定△≌△,故此选项不合题意;故选:D.9.下列说法中正确的个数有()(1)在同一平面内,不相交的两条直线必平行;(2)同旁内角互补;(3)相等的角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;(5)经过直线外一点,有且只有一条直线及已知直线平行.A.2个B.3个C.4个D.5个【考点】平行线的性质;余角和补角;对顶角、邻补角.【分析】(1)根据平行线的定义解答;(2)根据平行线的性质解答;(3)根据对顶角的定义解答;(4)根据点到直线的距离的定义解答;(5)根据平行公理解答.【解答】解:(1)符合平行线的定义,故本选项正确;(2)应为“两直线平行,同旁内角互补”,故本选项错误;(3)相等的角是指度数相等的角,未必为对顶角,故本选项错误;(4)应为“从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离”股本选项错误;(5)这是平行公理,故本选项正确;故选A.10.如图,△中,∠α°,延长到D,∠及∠的平分线相交于点A1,∠A1及∠A1的平分线相交于点A2,依此类推,∠﹣1及∠﹣1的平分线相交于点,则∠的度数为()A.B.C.D.【考点】三角形内角和定理;三角形的外角性质.【分析】由∠A1∠A1+∠A1,∠∠∠A,而A1B、A1C分别平分∠和∠,得到∠2∠A1,∠2∠A1,于是有∠2∠A1,同理可得∠A1=2∠A2,即∠22∠A2,因此找出规律.【解答】解:∵A1B、A1C分别平分∠和∠,∴∠2∠A1,∠2∠A1,而∠A1∠A1+∠A1,∠∠∠A,∴∠2∠A1=α,∴∠A1=α°,同理可得∠A1=2∠A2,即∠22∠A2=α°,∴∠A2=α°,∴∠2n∠,∴∠α°•()()°.故选C.二、填空题(每小题3分,共15分)11.计算:(﹣23z2)2= 4x2y6z4.【考点】幂的乘方及积的乘方.【分析】根据积的乘方,即可解答.【解答】解:(﹣23z2)2=4x2y6z4,故答案为:4x2y6z4.12.如图,直线、、相交于一点,∠1=50°,∠2=64°,则∠74 度.【考点】对顶角、邻补角.【分析】根据平角意义求得∠,再根据对顶角求得结论.【解答】解:∵∠1=50°,∠2=64°,∴∠180°﹣∠1﹣∠2=74°∴∠∠74°,故答案为:74.13.将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2= 90°.【考点】平行线的性质.【分析】过点B作∥,根据矩形的性质可得∥∥,再根据两直线平行,内错角相等可得∠1=∠3,∠2=∠4,然后求出∠1+∠2=∠,从而得证.【解答】证明:如图,过点B作∥,∵四边形是矩形纸片,∴∥,∴∥∥,∴∠1=∠3,∠2=∠4,∴∠1+∠2=∠3+∠4=∠90°,即∠1+∠2=90°.故答案为:90°.14.如果多项式x2+8是一个完全平方式,则k的值是16 .【考点】完全平方式.【分析】根据完全平方公式的乘积二倍项和已知平方项先确定出另一个数是4,平方即可.【解答】解:∵82×4•x,∴42=16.15.如图,△中,、分别平分∠和∠,过点F作∥交于点D,交于点E,那么下列结论:①△和△都是等腰三角形;②∠∠;③△的周长等于及的和;④.其中正确的是①③.(填序号,错选、漏选不得分)【考点】等腰三角形的判定;平行线的性质.【分析】由平行线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质.【解答】解:①∵∥,∴∠∠,∠∠,∵是∠的平分线,是∠的平分线,∴∠∠,∠∠,∵∠∠,∠∠,∴△,△都是等腰三角形.∴①正确;②∵△不是等腰三角形,∴②∠∠,是错误的;③∵△,△都是等腰三角形.∴,,即有,∴△的周长.∴③正确,共2个正确的;④∵△不是等腰三角形,∴∠≠∠,∴∠≠∠,∴是错误的;故答案为:①③.三、计算及求值(每小题24分,共24分)16.计算及求值(1)(﹣)﹣2﹣(﹣2016)0+()11×(﹣)12;(2)(3x﹣2)2+(﹣3)(﹣x﹣3);(3)(9x4y3﹣6x232)÷(﹣3);(4)先化简,再求值[(2)2﹣y(4x)﹣8]÷(﹣2x).其中2,﹣1.【考点】整式的混合运算—化简求值;零指数幂;负整数指数幂.【分析】(1)=(﹣4)2=16,对于()11×(﹣)12;先将(﹣)12化为,再拆项变成,利用积的乘方的逆运算进行计算;(2)利用完全平方差公式和平方差公式计算,注意(﹣3)(﹣x﹣3)=(﹣3)(﹣3﹣x)=9﹣x2;(3)多项式除以单项式,把多项式的每一项都及单项式相除,最后相加即可;(4)先化简,按运算顺序,再代入求值.【解答】解:(1)(﹣)﹣2﹣(﹣2016)0+()11×(﹣)12,=16﹣1+(×)11×,,=16.5;(2)(3x﹣2)2+(﹣3)(﹣x﹣3),=9x2﹣124+9﹣x2,=8x2﹣1213;(3)(9x4y3﹣6x232)÷(﹣3),=9x4y3÷(﹣3)﹣6x2y÷(﹣3)+32÷(﹣3),=﹣3x3y2+2x﹣y;(4)先化简,再求值[(2)2﹣y(4x)﹣8]÷(﹣2x).其中2,﹣1.原式=[4x2+42﹣y2﹣4﹣8]÷(﹣2x),=(4x2﹣8)÷(﹣2x),=﹣24y.当2,﹣1时,原式=﹣2×2+4×(﹣1)=﹣4﹣4=﹣8.四、解答题(共31分)17.解关于x的方程:(2)2﹣(x﹣2)(2)=6.【考点】平方差公式;完全平方公式;解一元一次方程.【分析】先转化为一般式方程,然后解关于x的一元一次方程.【解答】解:(2)2﹣(x﹣2)(2)=6,x2+44﹣x2+4=6,46﹣8,﹣.18.已知:a﹣4,﹣1,求:()2和a2﹣62的值.【考点】完全平方公式.【分析】依据完全平方公式对代数式进行变形,然后整体代入进行求解即可.【解答】解:()2=(a﹣b)2+442+4×(﹣1)=16﹣4=12.a2﹣62=(a﹣b)2﹣416+4=20.19.如图,已知点A、F、E、C在同一直线上,∥,∠∠,.(1)从图中任找两对全等三角形,并用“≌”符号连接起来;(2)求证:.【考点】全等三角形的判定及性质.【分析】(1)本题有三对三角形全等,分别是△≌△,△≌△,△≌△(2)先根据利用等式的性质得:,由∥得内错角相等,则△≌△,得出结论.【解答】解:(1)△≌△,△≌△,(2)∵,∴,即,∵∥,∴∠∠,∵∠∠,∴△≌△(),∴.20.平面内的两条直线有相交和平行两种位置关系.(1)如图1,若∥,点P在、外部,则有∠∠,又因∠是△的外角,故∠∠∠D.得∠∠B﹣∠D.将点P移到、内部,如图2,以上结论是否成立?若成立,说明理由;若不成立,则∠、∠B、∠D之间有何数量关系?请证明你的结论;(2)在如图2中,将直线绕点B逆时针方向旋转一定角度交直线于点Q,如图3,则∠、∠B、∠D、∠之间有何数量关系?(不需证明);(3)根据(2)的结论求如图4中∠∠∠∠∠E的度数.【考点】平行线的性质;三角形内角和定理;三角形的外角性质.【分析】(1)延长交于点E,根据∥得出∠∠,再由三角形外角的性质即可得出结论;(2)连接并延长,由三角形外角的性质得出∠∠∠,∠∠∠,由此可得出结论;(3)由(2)的结论得:∠∠∠E.∠∠∠D.再根据∠∠∠180°即可得出结论.【解答】解:(1)不成立,结论是∠∠∠D.延长交于点E,∵∥,∴∠∠,又∵∠∠∠D,∴∠∠∠D;(2)结论:∠∠∠∠D.连接并延长,∵∠是△的外角,∠是△的外角,∴∠∠∠,∠∠∠,∴∠∠∠∠∠∠,即∠∠∠∠D;(3)由(2)的结论得:∠∠∠E.∠∠∠D.又∵∠∠∠180°∴∠∠∠∠∠180°.(或由(2)的结论得:∠∠∠∠E且∠∠,∴∠∠∠∠∠180°.五、填空题(4分,共20分)21.已知:32,95,33m﹣21= .【考点】同底数幂的除法;同底数幂的乘法;幂的乘方及积的乘方.【分析】逆运用同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加以及幂的乘方,底数不变指数相乘进行计算即可得解.【解答】解:33m﹣21=33m÷32n×31,=(3m)3÷(32)n×3,=23÷9n×3,=8÷9×3,=.故答案为:.22.若(x﹣2)(x2)的积中不含x的二次项和一次项,则 2 . 4 .【考点】多项式乘多项式.【分析】本题需先根据已知条件求出(x﹣2)及(x2)的积,再根据积中不出现一次项和二次项这个条件,即可求出a、b的值.【解答】解:(x﹣2)(x2)32﹣2x2﹣2﹣2b∵积中不含x的二次项和一次项,∴a﹣2=0,b﹣20,解得2,4.故答案为:2,4.23.若a2﹣31=0,则= 7 .【考点】完全平方公式.【分析】将配方为完全平方式,再通分,然后将a2﹣31=0变形为a2+1=﹣3a,再代入完全平方式求值.【解答】解:∵=(a22﹣2)=()2﹣2=()2﹣2①;又∵a2﹣31=0,于是a2+1=3a②,将②代入①得,原式=()2﹣2=9﹣2=7.故答案为7.24.已知等腰△中一腰上的高及另一腰的夹角为30°,则△的底角度数为30或60 度.【考点】等腰三角形的性质.【分析】等腰三角形一腰上的高及另一腰的夹角为30°,但没有明确此等腰三角形是锐角三角形还是钝角三角形,因此,有两种情况,需分类讨论.【解答】解:当等腰三角形为锐角三角形时,如图1,由已知可知,∠30°,又∵⊥,∴∠90°,∴∠60°,∴∠∠60°.当等腰三角形为钝角三角形时,如图2,由已知可知,∠30°,又∵⊥,∴∠60°,∴∠∠30°.故答案为:30或60.25.已知△的面积为1,把它的各边延长一倍得△A1B1C1;再△A1B1C1的各边延长两倍得△A2B2C2;在△A2B2C2的各边延长三倍得△A3B3C3,△A3B3C3的面积为4921 .【考点】三角形的面积.【分析】先根据根据等底的三角形高的比等于面积比求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.【解答】解:△及△A11底相等(1B),高为1:2(1=2),故面积比为1:2,∵△面积为1,∴S△A1B12.同理可得,S△C1B12,S△12,∴S△A1B1C1△C1B1△1△A1B1△2+2+2+1=7;如图,连接A2C1,根据A2B1=2A1B1,得到:A1B1:A2A1=1:3,因而若过点B1,A2作△A1B1C1及△A1A2C1的A1C1边上的高,则高线的比是1:3,因而面积的比是1:3,则△A2B1C1的面积是△A1B1C1的面积的2倍,则△A2B1C1的面积是14,同理可以得到△A2B2C1的面积是△A2B1C1面积的2倍,是28,则△A2B2B1的面积是42,同理△B2C2C1和△A2C2A1的面积都是42,△A2B2C2的面积是7×19=133,同理△A3B3C3的面积是7×19×37=4921,故答案为:4921.六、解答题(每小题10分,共30分)26.(1)已知△三边长是a、b、c,化简代数式:﹣﹣﹣﹣﹣c﹣﹣a﹣;(2)已知x2+3x﹣1=0,求:x3+5x2+52015的值.【考点】因式分解的应用;整式的加减;三角形三边关系.【分析】(1)根据三角形的三边关系即三角形的两边之和大于第三边,两边之差小于第三边,去掉绝对值,再根据整式加减的法则即可得出答案.(2)先据x2+3x﹣1=0,得出x2+31,再将x3+5x2+52015化简为含有x2+3x的代数式,然后整体代入即可求出所求的结果.【解答】解:(1)∵a、b、c是△三边的长,∴﹣﹣﹣﹣﹣c﹣﹣a﹣﹣c﹣(c﹣)﹣(﹣)+(﹣)﹣c﹣﹣﹣c﹣a﹣=2a﹣2c;(2)∵x2+3x﹣1=0,∴x2+31,∴x3+5x2+52015,(x2+3x)+2x2+52015=2x2+62015=2(x2+3x)+2015=2+2015=2017.27.先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+48的最小值.解:y2+482+44+4=(2)2+4∵(2)2≥0∴(2)2+4≥4∴y2+48的最小值是4.(1)求代数式m24的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设(m),请问:当x取何值时,花园的面积最大?最大面积是多少?【考点】配方法的应用;非负数的性质:偶次方.【分析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值;(3)根据题意列出关系式,配方后根据完全平方式恒大于等于0,即可求出最大值以及x的值即可.【解答】解:(1)m24=()2+,∵()2≥0,∴()2+≥,则m24的最小值是;(2)4﹣x2+2﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5;(3)由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∵﹣2x2+20﹣2(x﹣5)2+50∵﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴﹣2x2+20x的最大值是50,此时5,则当5m时,花园的面积最大,最大面积是50m2.28.如图(1),在△中,∠90°,⊥,垂足为D.平分∠,交于点E,交于点F.(1)求证:;(2)若,,△、△、△的面积分别为S△、S△、S△,且S△24,则S△﹣S△ 2 ;(3)将图(1)中的△沿向右平移到△A′D′E′的位置,使点E′落在边上,其它条件不变,如图(2)所示,试猜想:′及有怎样的数量关系?并证明你的结论.【考点】全等三角形的判定及性质;三角形的面积;角平分线的性质;等腰三角形的判定及性质.【分析】(1)求出∠∠,∠∠,根据三角形外角性质得出∠∠,即可得出答案;(2)求出△和△的面积,再相减即可求出答案;(3)过F作⊥于H,求出,证△′≌△,推出′,都减去′即可.【解答】(1)证明:如图(1),∵在△中,∠90°,⊥,∴∠∠90°,∴∠∠90°,∠∠90°,∴∠∠B,∵平分∠,∴∠∠,∴∠∠∠∠,∴∠∠,∴.(2)解:∵S△24,,,∴S△△△×24=6①,S△△△×24=8②,∴②﹣①得:S△﹣S△8﹣6=2,故答案为:2.(3)′,证明:如图(2),过F作⊥于H,∵⊥,∴∥,∴∠′=∠,∵△沿平移到△A′D′E′,∴′E′,′′,∴四边形′E′是平行四边形,∴′∥,∵∠90°,∴∠′=∠90°=∠,∵平分∠,∠90°,⊥,∴,∵,∴,在△′和△中∴△′≌△(),∴′,∴′﹣′﹣E′F,即′.2017年2月17日。

七年级最新数学下册单元测试题初一数学章节练习题带图文答案解析100篇第八章3实际问题与二元一次方程组

七年级最新数学下册单元测试题初一数学章节练习题带图文答案解析100篇第八章3实际问题与二元一次方程组

第八章8.3实际问题与二元一次方程组同步练习实际问题与二元一次方程组1同步练习(答题时间:20分钟)1. 成渝路内江至成都全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇。

相遇时,小汽车比小客车多行驶20千米。

设小汽车和客车的平均速度分别为x千米/时和y千米/时,则下列方程组正确的是()A. B.C. D.**2. 一种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角,若设小瓶单价为x角,大瓶为y角,可列方程为()A.39832x yy x+=⎧⎨-=⎩B.39832x yy x+=⎧⎨+=⎩C.29834x yy x+=⎧⎨-=⎩D.39824x yx y-=⎧⎨+=⎩**3. 如下图所示,高速公路上,一辆长为4米,速度为110千米/时的轿车准备超越一辆长12米,速度为100千米/时的卡车,则轿车从开始追击到超越卡车,需要花费的时间大约是多少秒(保留整数)?*4. 甲乙两个施工队在六安(六盘水·安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离。

若设甲队每天铺设x米,乙队每天铺设y米。

(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?*5. 根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高__________cm,放入一个大球水面升高__________cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?*6. 某人要在规定的时间内由甲地赶往乙地,如果他以每小时50千米的速度行驶,就会迟到24分钟,如果他以每小时75千米的速度行驶,则可提前24分钟到达乙地,求甲、乙两地间的距离。

*7. 现有两种酒精溶液,甲种酒精溶液的酒精与水的比是3∶7,乙种酒精溶液的酒精与水的比是4∶1,今要得到酒精与水的比为3∶2的酒精溶液50kg,问甲、乙两种酒精溶液各取多少?**8. 甲、乙、丙三队要完成A、B两项工程,B工程的工作量比A工程的工作量多25%,甲、乙、丙三队单独完成A工程所需的时间分别为20天、24天、30天,为了共同完成这两项工程,先派甲队做A工程,乙、丙二队做B工程;经过几天后,又调丙队与甲队共同完成A工程。

人教数学七年级下全册同步练习-初中数学七年级下册全册同步练习题(含答案,共119页)

人教数学七年级下全册同步练习-初中数学七年级下册全册同步练习题(含答案,共119页)

第五章 相交线与平行线1相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角. 3.对顶角的重要性质是_________________.4.如图,直线AB 、CD 相交于O 点,∠AOE =90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角; ∠2和∠3互为_______角;∠1和∠3互为______角; ∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE -∠______=______°-______°=______°; ∠4=∠______-∠1=______°-______°=______°. 5.如图,直线AB 与CD 相交于O 点,且∠COE =90°,则(1)与∠BOD 互补的角有________________________; (2)与∠BOD 互余的角有________________________; (3)与∠EOA 互余的角有________________________; (4)若∠BOD =42°17′,则∠AOD =__________; ∠EOD =______;∠AOE =______. 二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC (B)∠BOC 和∠AOF (C)∠AOF (D)∠BOE 和∠AOF 8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ). (A)30° (B)45° (C)60°(D)135°9.如图所示,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角.( ) 11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角.( ) 12.有一条公共边的两个角是邻补角.( ) 13.如果两个角是邻补角,那么它们一定互为补角.( ) 14.对顶角的角平分线在同一直线上.( ) 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角.( )综合、运用、诊断一、解答题16.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直. ( ) 11.一条直线的垂线只能画一条. ( ) 12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直. ( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短. ( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离. ( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离. ( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB . ( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α (B)180°-α(C)α2190+︒ (D)2α-90°18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为P A =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ). (A)3cm (B)小于3cm (C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n (C)n ≤AC ≤m (D)n <AC <m 20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm的点的个数是( ). (A)0 (B)1 (C)2 (D)3 21.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC于点E ,能表示点到直线(或线段)的距离的线段有( ). (A)3条 (B)4条 (C)7条 (D)8条 三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG 平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图2所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图3所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图4所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).图2 图3 图4(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD ⊥DA ,DA ⊥AB ,∠1=∠2.试确定射线DF 与AE 的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______. (3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义) 又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质) 即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( ) ∴∠2=∠______.(等量代换) ∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______. (3)证明过程:证明:∵∠1=∠2,( )∴a ∥______.(________,________)① ∵∠3+∠4=180°,( )∴c ∥______.(________,________)② 由①、②,因为a ∥______,c ∥______, ∴a ______c .(________,________)5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________)6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,∠B =50°.求∠D 的度数.分析:可利用∠DCE 作为中间量过渡. 解法1:∵AB ∥CD ,∠B =50°,( )∴∠DCE =∠_______=_______°. (____________,______) 又∵AD ∥BC ,( )∴∠D =∠______=_______°.(____________,____________)想一想:如果以∠A 作为中间量,如何求解? 解法2:∵AD ∥BC ,∠B =50°,( )∴∠A +∠B =______.(____________,____________)即∠A =______-______=______°-______°=______°. ∵DC ∥AB ,( )∴∠D +∠A =______.(_____________,_____________) 即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( ) ∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行) ∴∠3=∠______.(两直线平行,内错角相等) ∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( )∴∠APC =∠2+∠3=∠1+∠4=90°.( ) 总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E 是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( )二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?第六章 实数6.1平方根学习要求1. 理解算术平方根和平方根的含义。

【3套试题】人教版七年级数学下册 期末小专题练习 六 数据收集与整理(含答案)

【3套试题】人教版七年级数学下册 期末小专题练习 六 数据收集与整理(含答案)

人教版七年级数学下册期末小专题练习六数据收集与整理(含答案)一、选择题:1.某住宅小区六月份中1日至6日每天用水量变化情况如图所示,那么这6天的平均用水量是()A.30吨B.31吨C.32吨D.33吨2.在100个数据中,用适当的方法,抽取50个作为样本进行统计,频数分布表中55~58这一组数据的频率是0.12,那么估计这100个数据中,落在55~58之间的约有()A.120个B.60个C.12个D.6个3.随着全球经济危机的到来,我国纺织品行业的出口受到严重影响,下图是甲、乙纺织厂的出口和内销情况.从图中可看出出口量较多的是()A.甲B.乙C.两厂一样多D.不能确定4.下列调查中,调查方式的选取不合适的是()A.为了了解全班同学的睡眠状况,采用普查的方式B.对“天宫二号”空间实验室零部件的检查,采用抽样调查的方式C.为了解一批 LED 节能灯的使用寿命,采用抽样调查的方式D.为了解全市初中生每天完成作业所需的时间,采取抽样调查的方式5.为纪念中国人民抗战战争的胜利,9月3日被确定为抗日战争胜利纪念日,某校为了了解学生对“抗日战争”的知晓情况,从全校6 000名学生中,随机抽取了120名学生进行调查,在这次调查中()A.6 000名学生是总体B.所抽取的每名学生对“抗日战争”的知晓情况是总体的一个样本C.120名是样本容量D.所抽取的120名学生对“抗日战争”的知晓情况是总体的一个样本6.为了了解某市七年级8000人的身高情况,从中抽取800名学生的身高进行统计,下列说法不正确的是()A.8000人的身高情况是总体B.每个学生的身高是个体C.800名学生身高情况是一个样本D.样本容量为8000人7.下列调查方式合适的是()A.为了了解电视机的使用寿命,采用普查的方式B.为了了解全国中学生的视力状况,采用普查的方式C.对载人航天器“神舟十一号”零部件的检查,采用抽样调查的方式D.为了了解人们保护水资源的意识,采用抽样调查的方式8.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A.B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()x k b 1 A.18户B.20户C.22户D.24户9.某校图书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知甲类书有30本,则丙类书的本数是( )A.90 B.144 C.200 D.8010.为了估计池塘里有多少条鱼,先从湖里捕捞100条鱼记上标记,然后放回池塘去,经过一段时间,待有标记的鱼完全混合后,第二次再捕捞200条鱼,发现有5条鱼有标记,那么你估计池塘里大约有()鱼.A.1000条B.4000条C.3000条D.2000条二、填空题:11.已知数据有100个,最大值为141,最小值为60,取组距为10,则可分成组.12.某自然保护区的工作人员,欲估算该自然保护区栖息的某种鸟类的数量.他们首先随机捕捉了500只这种鸟,做了标记之后将其放回,经过一段时间之后,他们又从该保护区随机捕捉该种鸟300只,发现其中20只有之前做的标记,则该保护区有这种鸟类大约______只.13.今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是.14.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为.三 、解答题:15.知识改变命运,科技繁荣祖国”.我国中小学每年都要举办一届科技比赛.下图为我市某校2010年参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图:(1)该校参加机器人、建模比赛的人数分别是 人和 人(2)该校参加科技比赛的总人数是 人,电子百拼所在扇形的圆心角的度数是 _____°,并把条形统计图补充完整;(3)从全市中小学参加科技比赛选手中随机抽取80人,其中有32人获奖. 今年我市中小学参加科技比赛人数共有2485人,请你估算今年参加科技比赛的获奖人数约是多少人?电子百拼建模机器人 航模 25%25%某校2010年航模比赛 参赛人数扇形统计图16.初一学生小丽、小杰为了了解本校初二学生每周上网时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中4名学生每周上网的时间;小杰从全体初二学生名单中随机抽取了40名学生,调查他们每周上网的时间.你认为哪位学生抽取的样本具有代表性?说说你的理由.17.指出下列调查中的总体、个体、样本和样本容量.(1)从一批冰箱中抽取100台,调查冰箱的使用寿命.(2)从学校七年级学生中抽取10名学生调查学校七年级学生每周用于体育锻炼的时间.18.我省教育厅下发了《在全省中小学幼儿园广泛深入开展节约教育》的通知,通知中要求各学校全面持续开展“光盘行动”.某市教育局督导检查组为了调查学生对“节约教育”内容的了解程度(程度分为:“A—了解很多”,“B—了解较多”,“C—了解较少”,“D—不了解”),对本市一所中学的学生进行了抽样调查,我们将这次调查的结果绘制成以下两幅统计图.根据以上信息,解答下列问题:(1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该中学共有1 800名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?参考答案1.C.2.C.3.D4.C ;5.D.6.D ;7.D8.D9.D. 10.D. 11.答案为:9. 12.答案为:7500 13.答案为:6000. 14.答案为:286;15.答案为:(1)4 6 (2)24 120 ;(3)2485×8032=994 16.小杰抽取的样本具有代表性.理由如下:小杰选取的样本具有代表性和随机性,而且选取的样本足够大;小丽选取的样本比较特殊,不具有随机性而且选取的样本小.(内容符合题意即可) 17.解:(1)总体是:这批冰箱的使用寿命;个体是:每台冰箱的使用寿命; 样本是:抽取的100台冰箱的使用寿命;样本容量是:100; (2)总体是:七年级学生每周用于体育锻炼的时间;个体是:每个七年级学生每周用于体育锻炼的时间;样本容量是:10. 18.解:(1)抽样调查的学生人数为36÷30%=120(名).(2)B 的人数:120×45%=54(名),C 的百分比:24120×100%=20%, D 的百分比:6120×100%=5%,图略. (3)对“节约教育”内容“了解较多”的学生人数为:1 800×45%=810(名).人教版七年级数学下册第十章数据的收集、整理与描述复习测试题七年级数学下册第十章数据的收集、整理与描述复习测试题(含答案)一、选择题1.一次考试某题得分情况如表所示,若已知该题满分是4分,则表中x的值为( )A.15%B.10%C.40%D.30%2.下列调查中,最适合采用全面调查(普查)方式的是( )A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级(3)班学生肺活量情况的调查3.下面调查方式中,合适的是( )A.调查你所在班级同学的身高,采用抽样调查方式B.调查湘江的水质情况,采用抽样调查的方式C.调查CCTV-5《NBA总决赛》栏目在我市的收视率,采用普查的方式D.要了解全市初中学生的业余爱好,采用普查的方式4.为了解某市参加中考的45 000名学生的身高情况,抽查了其中1 500名学生的身高进行统计分析.下面叙述正确的是( )A.45 000名学生是总体B.抽查的1 500名学生的身高是总体的一个样本C.每名学生是总体的一个个体D.以上调查是全面调查5.某校七年级共720名学生参加数学测试,随机抽取50名学生的成绩进行统计,其中15名学生的成绩达到优秀,估计计该校七年级学生在这次数学测试中,达到优秀的学生人数约有()A.140人B.144人C.210人D.216人6.某单位有职工100名,按他们的年龄分成8组,在40~42(岁)组内有职工32名,那么这个小组的频率是()A.0.12B.0.38C.0.32D.327.某班有64位同学,在一次数学检测中,分数只能取整数,统计其成绩绘制成频数直方图,如图所示,从左到右的小长方形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.12B.24C.16D.88.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则5月份通话次数中,通话时间不超过15分钟的所占百分比是()A.10%B.40%C.50%D.90%9.某校为开展第二课堂,组织调查了本校300名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,根据统计图判断下列说法,其中正确的一项是()A.在调查的学生中最喜爱篮球的人数是50人B.喜欢羽毛球在统计图中所对应的圆心角是144°C.其他所占的百分比是20%D.喜欢球类运动的占50%10.体育老师对八年级(2)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数据绘制成如图所示的折线统计图.由图可知,最喜欢篮球的学生的频率是()A.16%B.24%C.30%D.40%二、填空题1.在描述数据时一般可以作______ 图、______ 图、______ 图、______ 图等.2.某校为了解学生喜爱的体育活动项目,随机抽查了100名学生,让每人选一项自已喜欢的项目,并制成如图所示的扇形统计图如果该校有810名学生,则喜爱跳绳的学生约有______ 人3.调查某种家用电器的使用寿命,合适的调查方法是______ .4.为了估计鱼池里有多少条鱼,先捕上100条作上记号,然后放回到鱼池里,过一段时间,待有记号的鱼完全混合鱼群后,再捕上200条鱼,发现其中带记号的鱼20条,则可判断鱼池里大约有______ 条鱼.5.已知全班有40位学生,他们有的步行,有的骑车,还有的乘车来上学,根据以下已知信息完成统计表:三、解答题1.老王的鱼塘里年初养了某种鱼2000条,到年底捕捞出售,为了估计鱼的总产量,从鱼塘里捕捞了三次,得到如下表的数据:若老王放养这种鱼的成活率是95%,则:(1)鱼塘里这种鱼平均每条重约多少千克;(2)鱼塘里这种鱼的总产量多少千克?2.微信是现代生活进行信息交流的重要工具,为了调查我们身边人使用微信的时间,随机抽取200人,其中有90%的人使用微信,在使用微信的人群中每天使用微信时间在一小时以内的有60人,其余每天使用微信时间在一小时以上.若将年龄小于40岁称为青年人,将年龄不小于40岁称为中年人,那么使用微信的人中75%是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,那么经常使用微信的人中是青年人.(1)根据以上信息,完成下表:(2)已知福建省人口数量约为4000万,试估计福建人有多少万年轻人经常使用微信?3.2019年我市体卫站对某校九年级学生体育测试情况进行调研,从该校360名九年级学生中抽取了部分学生的成绩(成绩分为A、B、C三个层次)进行分析,绘制了频数分布表(如下),请根据图表信息解答下列问题:(1)补全频数分布表;(2)如果成绩为A等级的同学属于优秀,请你估计该校九年级约有多少人达到优秀水平?4.某校七年级开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现,学校随机抽查了部分学生在这次活动中做家务的时间,并绘制了如下的频数分布表和频数分布直方图.请根据图表中提供的信息,解答下列问题:(1)这次活动中抽查的学生有人,表中a=,b=,m=,并补全频数分布直方图;(2)若该校七年级有700名学生,请估计这所学校七年级学生一周做家务时间不足2小时而又不低于1小时的大约有多少人?5.某区在实施居民用水管理前,随机调查了部分家庭(单位:户)去年的月均用水量(单位:t),并将调查数据进行整理,绘制出如下不完整的统计图表:请解答以下问题:(I)把上面的频数分布表和频数分布直方图补充完整;(Ⅱ)若该小区有2000户家庭,根据此次随机抽查的数据估计,该小区月均用水量不低于20t的家庭有多少户?(Ⅲ)为了鼓励节约用水,要确定一个月均用水量的标准,超出该标准的部分按1.5倍价格收费,若要使68%的家庭水费支出不受影响,那么,你觉得家庭月均用水量应定为多少?参考答案一.选择题1.D.2.D.3.B.4.B.5.D.6.C.7.B.8.D.9.B.10.D.二.填空题1.频数分布直方频率分布直方扇形统计折线统计2.2433.抽样调查4.20005.填表如下:三.解答题1.解:(1)鱼的平均重量为:=1.84千克.答:鱼塘里这种鱼平均每条的质量约1.84千克;(2)鱼的总重量为2000×95%×1.84=3496千克.答:鱼塘里这种鱼的总质量估计是3496千克.2.解:(1)青年人使用微信的人数为180×75%=135人,其中经常使用微信的人数为120×=80,则中年人中经常使用微信的人数为120﹣80=40人,∴青年人中不经常使用微信的人数为135﹣80=55,∵经常使用微信的人数为90+30=120人,∴不经常使用微信的人数为180﹣120=60,∴中年人中不经常使用微信的人数为60﹣55=5,补全表格如下:(2)估计福建人经常使用微信的年轻人数为4000×=1600(万).3.解:(1)∵C小组的频数为10,频率为0.10,∴抽查的总人数为10÷0.1=100人,∴B小组的频数为100×0.5=50人,A小组的频率为1﹣0.1﹣0.5=0.4,故统计图和统计表为:(2)该校九年级达到优秀的有360×0.4=144人.4.解:(1)总人数=3÷6%=50(人),a=50×30%=15,b=50﹣3﹣15﹣20﹣2=10,m=1﹣6%﹣30%﹣40%﹣4%=20%.故答案为:50,15,10,20%;(2)700×70%=490(人),∴该校七年级有700名学生,请估计这所学校七年级学生一周做家务时间不足2小时而又不低于1小时的大约有490人5.解:(Ⅰ)∵被调查的总数量为6÷12%=50(户),∴10≤x<15的频数为50×32%=16(户)、20≤x<25的频率为4÷50=0.08=8%,补全图形如下:(Ⅱ)估计该小区月均用水量不低于20t的家庭有2000×(8%+4%)=240户;(Ⅲ)∵前三个分组的频率之和为12%+24%+32%=68%,∴家庭月均用水量应定为15t.人教版七年级数学下册第十章数据的收集、整理与描述单元检测试题(解析版)人教版七年级数学下册第十章数据的收集、整理与描述单元测试题学校:__________ 班级:__________ 姓名:__________考号:__________一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 某同学想了解寿春路与阜阳路交叉路口分钟内各个方向通行的车辆数量,他应采取的收集数据方法为()A.查阅资料B.实验C.问卷调查D.观察2. 下列调查中,适合采用全面调查(普查)方式的是()A.对长江水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某类烟花爆竹燃放安全情况的调查D.对神舟飞船的零部件的质量情况的调查3. 下列调查中,适宜采用普查的是()A.调查我县初三学生每天体育锻炼的时间B.调查全校学生每月花费的零花钱C.调查初三班某次数学考试成绩D.调查初三学生参加这次月考的心理状态4. 某纺织厂从万件同类产品中随机抽取了件进行质检,发现其中有件不合格,那么估计该厂这万件产品中合格品约为()A.万件B.万件C.件D.件5. 下列调查方式合适的是()A.了解炮弹的杀伤力,采用普查的方式B.了解全国中学生的视力状况,采用普查的方式C.了解一批罐头产品的质量,采用抽样调查的方式D.对载人航天器“神舟七号”零部件的检查,采用抽样调查的方式6. 某市有名初一学生参加期末考试,为了了解这些学生的数学成绩,从中抽取名学生的数学成绩进行统计分析.在这个问题中,下列说法:①这名初一学生的数学成绩的全体是总体;②每个初一学生是个体;③名初一学生是总体的一个样本;④样本容量是.其中说法正确的是()A.个B.个C.个D.个7. 某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为,若已知中学生被抽到的人数为人,则应抽取的样本容量等于()A. B. C. D.8. 为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞条鱼,如果在这条鱼中有条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.条B.条C.条D.条9. 实验中学九年级进行了一次数学测试,参加考试人数共人,为了了解这次数学成绩,下列所抽取的样本中较合理的是()A.抽取前:名同学的数学成绩B.抽取各班学号为的倍数的同学的数学成绩C.抽取、两班同学的数学成绩D.抽取后名同学的数学成绩10. 某校七班的同学进行了一次安全知识测试,测试成绩进行整理后分成四个组,并绘制如图所示的频数直方图,则第二组的频数是()A. B. C. D.二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 一个样本的个数据分别落在个小组内,其中第组有个数,那么第组的频率为________.12. 一个容量为的样本最大值是,最小值是,取组距为,则可分成________组.13. 为了更好的刻画数据的总体的规律,我们还可以在得到的频数分布直方图上________,________,得到________图.14. 一组数据的最大值为,最小值为,在绘制频数分布直方图时要求组据为,则组数为________.15. 某校对去年毕业的名学生的毕业去向进行跟踪调查,并绘制出扇形统计图(如图所示),则该校去年毕业生在家待业人数有________人.16. 某校为了了解八年级学生的体能情况,随机选取一部分学生测试一分钟仰卧起坐次数,并绘制了如图所示的直方图,学生仰卧起坐次数在之间的频率是________.该店决定本周进货时,多进一些尺码为厘米的鞋,影响鞋店决策的统计量是________ 18. 下图是根据某中学为地震灾区玉树捐款的情况而制作的统计图,已知该校在校学生人,请根据统计图计算该校共捐款________元.19. 今年月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图和图是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是________.20. 某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为个等级:、、、,并将统计结果绘制成两幅不完整的统计图.该年级共有人,估计该年级足球测试成绩为等的人数为________人.三、解答题(本题共计6 小题共计60分,)()计算各种果树面积占总面积的百分比;(2)计算各种果树对应的圆心角度数;(3)制作扇形统计图.(1)活动小组共有学生多少人?(2)制作标本数在个及以上的人数占小组总人数的百分比是多少?(3)根据统计表制作一个形象的统计图.23. 吸烟有害健康:为配合“禁烟”运动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如图所示统计图:同学们一共随机调查了________人;请你把条形统计图补充完整;如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是多少?假定该社区有万人,请估计该地区支持“警示戒烟”这种方式的大约有多少人?24. 某校七年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,解答下列问题:(1)接受这次调查的家长人数为多少人?(2)表示“无所谓”的家长人数为多少人?(3)在扇形统计图中,求“不赞同”的家长部分所对应扇形的圆心角大小.25. 如图所示的是一位同学设计的一幅象形统计图,不过这位同学太粗心了,应该给出的题目及一些说明性文字都忘了写,你能看出这幅图是要反应什么内容吗?能把图形中缺少的文字补上吗?(能补上三项文字性的说明即可)26. 下面三幅统计图,反映了某市两个化肥厂三个方面的情况,请看图回答问题.(1)从折线统计图中可以看出,哪个厂的产值增长得快?(2)从条形统计图中可以看出,哪个厂的工人人数多,哪个厂的技术人员多?(3)从扇形统计图中可以看出,哪个厂的外销产品占产品销售总数的百分比大?(4)综合上面的分析,你认为哪个厂的生产搞得好,为什么?参考答案与试题解析七年级数学下册第十章数据的收集、整理与描述单元检测试题一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】D【解析】根据收集数据的基本方法有观察、统计、调查、实验、查阅文献资料或因特网查询等分析判断即可.【解答】解:想了解寿春路与阜阳路交叉路口分钟内各个方向通行的车辆数量,他应采取的收集数据方法为观察,故选:.2.【答案】D【解析】根据适合普查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强,进而判断即可.【解答】解:、适合抽样调查,因为普查的难度较大,故此选项错误;、适合抽样调查,因为调查的破坏性较大,故此选项错误;、适合抽样调查,因为调查的破坏性较大,故此选项错误;、适合全面调查,因为神舟飞船零部件要求极高,不能出现任何问题,故此选项正确.故选:.3.【答案】C【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:,对全国中学生每天体育锻炼的时间的调查不必全面调查,大概知道因为普查工作量大,适合抽样调查;,调查全校学生每月花费的零花钱,适合抽样调查;,调查初三班某次数学考试成绩,适合普查;,调查初三学生参加这次月考的心理状态,适合抽样调查.故选:.4.【答案】A【解析】由于件中进行质检,发现其中有件不合格,那么合格率可以计算出来,然后利用样本的不合格率估计总体的不合格率,就可以计算出万件中的不合格品产品数,进而求得合格品数.【解答】解:∵件中进行质检,发现其中有件不合格,∴合格率为,∴万件同类产品中合格品约为万件.故选.5.【答案】C【解析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:、了解炮弹的杀伤力,有破坏性,故得用抽查方式,故本选项错误;、了解全国中学生的视力状况,工作量大,得用抽查方式,故本选项错误;、了解一批罐头产品的质量,工作量大,得用抽查方式,故本选项正确;、对载人航天器“神舟七号”零部件的检查十分重要,故进行普查检查,故本选项错误.故选.6.【答案】C【解析】根据总体、个体、样本、样本容量的定义即可判断.【解答】解:①这名初一学生的数学成绩的全体是总体正确;②每个初一学生的期末数学成绩是个体,故命题错误;③名初一学生的期末数学成绩是总体的一个样本,故命题错误;④样本容量是,正确.故选.7.【答案】D【解析】根据分层抽样方法,设抽到的大、中、小学生人数分别为、、,由抽到的中学生人数可得,继而可得样本容量.【解答】解:设抽到的大、中、小学生人数分别为、、,由可得,∴应抽取的样本容量等于(人),故选:.8.【答案】C【解析】首先求出有记号的条鱼在条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比。

(完整版)初一数学下册练习题

(完整版)初一数学下册练习题

图 3AC21a初一数学下册练习题一、选择题(每小题3分,满分24分) 1、如图,下列推理正确的是( )A . ∵ ∠1=∠2,∴ AD ∥BCB . ∵ ∠3=∠4,∴ AB ∥CDC . ∵ ∠3=∠5,∴ AB ∥DCD . ∵ ∠3=∠5,∴ AD ∥BC2、如果两条直线被第三条直线所截,那么必定有 ( )A 、内错角相等B 、同位角相等C 、同旁内角互补D 、以上都不对3、如果点P (5,y )在第四象限,则y 的取值范围是( ) A .y <0 B .y >0 C .y ≤0 D .y ≥04、已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( )A .13cmB .6cmC .5cmD .4cm 5、已知a<b,则下列式子正确的是( )A.a+5>b+5B.3a>3b;C.-5a>-5bD.3a >3b 6、某多边形的外角和等于内角和的一半,那么这个多边形是( ) A 、五边形 B 、六边形 C 、七边形 D 、八边形 7、下列图形中,不能镶嵌成平面图案的是( )A. 正三角形B. 正四边形C. 正五边形D. 正六边形8、某商场对顾客实行如下优惠方式:⑴一次性购买金额不超过1万元,不予优惠; ⑵一次性购买金额超过1万元,超过部分9折优惠,某人第一次在该商场付款8000元,第二次又在该商场付款19000元,如果他一次性购买的话可以节省( )。

A 、600元 B 、800元 C 、1000元 D 、2700元 二、填空题(每小题3分,满分21分) 9、“如果n 是整数,那么2n 是偶数”其中题设是 ,结论是 ,这是 命题(填真或假).10、如图2,∠ACD=1550,∠B=350,则∠A= 度。

11、如图3,直线AB 、CD 相交于点O ,∠1=∠2.则∠1的对顶角是_____ ,∠4的邻补角是______.∠2的补角是_________.12、如图,直线a ∥b,点B 在直线b 上,且A B ⊥BC ,∠1=55°,则∠2的度数为______。

(人教版)初一数学下册实数测试题及答案解析

(人教版)初一数学下册实数测试题及答案解析

一、选择题1.已知: []x 表示不超过x 的最大整数,例: ][3.93, 1.82⎡⎤=-=-⎣⎦,令关于k 的函数()][1k 44k k f +⎡⎤=-⎢⎥⎣⎦ (k 是正整数),例:()][313344f +⎡⎤=-⎢⎥⎣⎦=1,则下列结论错误..的是( ) A .()10f = B .()()4f k f k += C .()()1f k f k +≥ D .()0f k =或12.设[x]表示最接近x 的整数(x≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( ) A .132B .146C .161D .6663.若实数p ,q ,m ,n 在数轴上的对应点的位置如图所示,且满足0p q m n +++=,则绝对值最小的数是( )A .pB .qC .mD .n4.如图,A 、B 、C 、D 是数轴上的四个点,其中最适合表示10的点是( )A .点AB .点BC .点CD .点D5.将尺寸如图的4块完全相同的长方形薄木块(厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个方框内.已知小木块的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .2192+B .194+C .2194+D .192+6.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n7.现定义一种新运算“*”,规定a *b =ab +a -b ,如1*3=1×3+1-3,则(-2*5)*6等于( ) A .120B .125C .-120D .-1258.下列说法中,正确的个数是( ).(1)64-的立方根是4-;(2)49的算术平方根是7±;(3)2的立方根为32;(4)7是7的平方根.A .1B .2C .3D .49.如图,数轴上,A B 两点表示的数分别为1,2--,点B 关于点A 的对称点为点C ,则点C 所表示的数是( )A .12B 21C .22D 2210.已知f(1)=2 (取12⨯的末位数字),f(2)=6 (取2?3的末位数字),f(3)=2 (取34⨯的末位数字),…, 则()()()()f 1f 2f 3f 2021++++的值为( )A .4036B .4038C .4042D .4044二、填空题11.在数轴上,点M ,N 分别表示数m ,n ,则点M ,N 之间的距离为|m ﹣n |. (1)若数轴上的点M ,N 分别对应的数为222M ,N 间的距离为 ___,MN 中点表示的数是 ___.(2)已知点A ,B ,C ,D 在数轴上分别表示数a ,b ,c ,d ,且|a ﹣c |=|b ﹣c |=23|d ﹣a |=1(a ≠b ),则线段BD 的长度为 ___.12.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____. 13.观察下列各式: 225-85425⨯25225-253310-27103910⨯3103310-31021n n n -+_____.14.对于任意有理数a ,b ,规定一种新的运算a ⊙b =a (a +b )﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____15.a ※b 是新规定的这样一种运算法则:a ※b=a+2b ,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x ,则x 的值是_____.16.若[x ]表示不超过x 的最大整数.如[π]=3,[4]=4,[﹣2.4]=﹣3.则下列结论: ①[﹣x ]=﹣[x ];②若[x ]=n ,则x 的取值范围是n ≤x <n +1; ③x =﹣2.75是方程4x ﹣[x ]+5=0的一个解; ④当﹣1<x <1时,[1+x ]+[1﹣x ]的值为1或2. 其中正确的结论有 ___(写出所有正确结论的序号).17.定义一种新运算a b ※,其规则是:当a b >时,2a b a b =-※,当a b =时,a b a b =+※,当a b <时,2a b b a =-※,若()21x -=※,则x =____________.18.如图,半径为1的圆与数轴的一个公共点与原点重合,若圆在数轴上做无滑动的来回滚动,规定圆向右滚动的周数记为正数,向左滚动周数记为负数,依次滚动的情况如下(单位:周):﹣3,﹣1,+2,﹣1,+3,+2,则圆与数轴的公共点到原点的距离最远时,该点所表示的数是_______.19.已知M 是满足不等式27a -<<的所有整数的和,N 是52的整数部分,则M N +的平方根为__________.20.对任意两个实数a ,b 定义新运算:a ⊕b=()()a a b b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是先做括号内的,那么(5⊕2)⊕3=___.三、解答题21.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B 类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C 类,例如3,6,9等.(1)2020属于 类(填A ,B 或C );(2)①从A 类数中任取两个数,则它们的和属于 类(填A ,B 或C ); ②从A 、B 类数中任取一数,则它们的和属于 类(填A ,B 或C );③从A 类数中任意取出8个数,从B 类数中任意取出9个数,从C 类数中任意取出10个数,把它们都加起来,则最后的结果属于 类(填A ,B 或C );(3)从A 类数中任意取出m 个数,从B 类数中任意取出n 个数,把它们都加起来,若最后的结果属于C 类,则下列关于m ,n 的叙述中正确的是 (填序号). ①2m n +属于C 类;②m n -属于A 类;③m ,n 属于同一类.22.如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此得到了一种能在数轴上画出无理数对应点的方法. (1)图2中A 、B 两点表示的数分别为___________,____________;(2)请你参照上面的方法:①把图3中51⨯的长方形进行剪裁,并拼成一个大正方形.在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长a =___________.(注:小正方形边长都为1,拼接不重叠也无空隙)②在①的基础上,参照图2的画法,在数轴上分别用点M 、N 表示数a 以及3a -.(图中标出必要线段的长)23.观察下列各式:21131222-=⨯;21241333-=⨯;21351444-=⨯;……根据上面的等式所反映的规律, (1)填空:21150-=______;2112019-=______; (2)计算:2222111111112342019⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭24.对于实数a ,我们规定:用符号⎡⎤⎣⎦a a ⎡⎣a 为a 的根整数,例如:93⎡=⎣,10⎡⎣=3.(1)仿照以上方法计算:4⎡⎣=______;26⎡⎤⎣⎦=_____.(2)若1x ⎡=⎣,写出满足题意的x 的整数值______.如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次103⎡=⎣→3⎡⎣=1,这时候结果为1.(3)对100连续求根整数,____次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____. 25.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B 类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C 类,例如3,6,9等.(1)2020属于 类(填A ,B 或C );(2)①从A 类数中任取两个数,则它们的和属于 类(填A ,B 或C ); ②从A 、B 类数中任取一数,则它们的和属于 类(填A ,B 或C );③从A 类数中任意取出8个数,从B 类数中任意取出9个数,从C 类数中任意取出10个数,把它们都加起来,则最后的结果属于 类(填A ,B 或C );(3)从A 类数中任意取出m 个数,从B 类数中任意取出n 个数,把它们都加起来,若最后的结果属于C 类,则下列关于m ,n 的叙述中正确的是 (填序号).①2m n +属于C 类;②m n -属于A 类;③m ,n 属于同一类.26.阅读下面的文字,解答问题:是无理数,而无理数是无限不循环小数,的小数部分我们不可能全部写出来,而121.请解答下列问题:_______,小数部分是_________;(2)的小数部分为a b ,求a b +(3)已知:100x y +=+,其中x 是整数,且01y <<,求24x y -的平方根. 27.观察下列各式: (x -1)(x+1)=x 2-1 (x -1)(x 2+x+1)=x 3-1 (x -1)(x 3+x 2+x+1)=x 4-1 ……(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=__________________.(2)你能否由此归纳出一般性规律(x -1)(x n +x n -1+x n -2+…+x+1)=____________.(3)根据以上规律求1+3+32+…+349+350的结果. 28.阅读下面的文字,解答问题的小数部分我们不可能全部11,将这个数减去其整数部分,差就是小数部分.23, ∴22)请解答:(1整数部分是 ,小数部分是 .(2a b ,求|a ﹣b(3)已知:x +y ,其中x 是整数,且0<y <1,求x ﹣y 的相反数. 29.探究与应用: 观察下列各式: 1+3= 2 1+3+5= 2 1+3+5+7= 2 1+3+5+7+9= 2 ……问题:(1)在横线上填上适当的数; (2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示)30.我们知道,任意一个正整数x 都可以进行这样的分解:x m n =⨯(m ,n 是正整数,且m n ≤),在x 的所有这种分解中,如果m ,n 两因数之差的绝对值最小,我们就称m n ⨯是x 的最佳分解,并规定:()=nf x m.例如:18可分解成118⨯,29⨯或36⨯,因为1819263->->-,所以36⨯是18的最佳分解,所以()311862f == (1)填空:()6f = ;()16=f ;(2)一个两位正整数t (10t a b =+,19a b ≤≤≤,a ,b 为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求()f t 的最大值; (3)填空:①()22357f ⨯⨯⨯= ;②()42357f ⨯⨯⨯= ;【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据新定义的运算逐项进行计算即可做出判断. 【详解】A. ()f 1=][11144+⎡⎤-⎢⎥⎣⎦=0-0=0,故A 选项正确,不符合题意; B. ()f k 4+=][k 41k 444+++⎡⎤-⎢⎥⎣⎦=][k 1k 1144+⎡⎤+-+⎢⎥⎣⎦=][k 1k 44+⎡⎤-⎢⎥⎣⎦,()f k =][k 1k 44+⎡⎤-⎢⎥⎣⎦, 所以()()f k 4f k +=,故B 选项正确,不符合题意;C. ()f k 1+=k 11k 1k 2k 14444+++++⎡⎤⎡⎤⎡⎤⎡⎤-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,()f k = ][k 1k 44+⎡⎤-⎢⎥⎣⎦, 当k=3时,()f 31+=323144++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=0,()f 3= ][31344+⎡⎤-⎢⎥⎣⎦=1, 此时()()f k 1f k +<,故C 选项错误,符合题意; D.设n 为正整数,当k=4n 时,()f k =4n 14n 44+⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+1时,()f k =4n 24n 144++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0,当k=4n+2时,()f k =4n 34n 244++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+3时,()f k =4n 44n 344++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n+1-n=1, 所以()f k 0=或1,故D 选项正确,不符合题意, 故选C. 【点睛】本题考查了新定义运算,明确运算的法则,运用分类讨论思想是解题的关键.2.B解析:B 【详解】分析:先计算出1.52,2.52,3.52,4.52,5.52,即可得出中有2个1,4个2,6个3,8个4,10个5,6个6,从而可得出答案. 详解:1.52=2.25,可得出有2个1; }2.52=6.25,可得出有4个2; 3.52=12.25,可得出有6个3; 4.52=20.25,可得出有8个4; 5.52=30.25,可得出有10个5; 则剩余6个数全为6.故=1×2+2×4+3×6+4×8+5×10+6×6=146. 故选B.点睛本题考查了估算无理数的大小.3.C解析:C 【分析】根据0p q m n +++=,并结合数轴可知原点在q 和m 之间,且离m 点最近,即可求解. 【详解】解:∵0p q m n +++= 结合数轴可得:()-=p q m n ++, 即原点在q 和m 之间,且离m 点最近, ∴绝对值最小的数是m , 故选:C . 【点睛】本题考查实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.4.D解析:D 【分析】根据<4即可得到答案.【详解】∵9<10<16,∴<4,∴的点是点D,故选:D.【点睛】此题考查利用数轴表示实数,实数的大小比较,正确比较实数是解题的关键.5.C解析:C【分析】设木块的长为x,结合图形知阴影部分的边长为x-2,根据其面积为19得出(x-2)2=19,利用平方根的定义求出符合题意的x的值,由AD=2x可得答案.【详解】解:设木块的长为x,根据题意,知:(x-2)2=19,则2x-=∴2x=(舍去)x=22则24==,BC x故选:C.【点睛】本题主要考查算术平方根,解题的关键是结合图形得出木块长、宽与阴影部分面积间的关系.6.B解析:B【分析】根据n+p=0可以得到n和p互为相反数,原点在线段PN的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n和p互为相反数,∴原点在线段PN的中点处,∴绝对值最大的一个是Q点对应的q.故选B.【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.7.D解析:D【详解】根据题目中的运算方法a *b =ab +a -b ,可得(-2*5)*6=(-2×5-2-5)*6=-17*6=-17×6+(-17)-6=-125.故选D .点睛:本题主要考查了新定义运算,根据题目所给的规律(或运算方法),利用有理数的混合法则计算正确是解题关键.8.C解析:C 【详解】4-,故(1)对;根据算术平方根的性质,可知49的算术平方根是7,故(2)错; 根据立方根的意义,可知23)对;7的平方根.故(4)对; 故选C.9.D解析:D 【分析】设点C 的坐标是x ,根据题意列得12x=-,求解即可. 【详解】解:∵点A 是B ,C 的中点. ∴设点C 的坐标是x ,1=-,则2x =-∴点C 表示的数是2-.故选:D. 【点睛】此题考查数轴上两点的中点的计算公式:两点的中点所表示的数等于两点所表示的数的平均数,正确掌握计算公式是解题的关键.10.C解析:C 【分析】先计算部分数的乘积,观察运算结果,发相规律,每运算5次后结果重复出现,求出f(1)+f(2)+f(3)+f(4)+f(5)和,再求2021次运算重复的次数,用除数5,商和余数表示2021=5×404+1,说明重复404次和f(2021)=2的结果,(f(1)+f(2)+f(3)+f(4)+f(5))×10+2计算结果即可. 【详解】解:f(1)=2, f(2)=6,f(3)=2,f(4)=0,f(5)=0,f(6)=2,f(7)=6,f(8)=2,f(9)=0,f(10)=0,f(11)=2,每5次运算一循环,f(1)+f(2)+f(3)+f(4)+f(5)=2+6+2+0+0=10, 2021=5×404+1,()()()()f 1f 2f 3f 2021++++=10×404+2=4040+2=4042.故选:C . 【点睛】本题考查新定义运算,读懂题目的含义与要求,掌握运算的方法,观察部分运算结果,从中找出规律,用规律解决问题是解题关键.二、填空题 11.2 【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c|=|b ﹣c|与a≠解析:2 【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c |=|b ﹣c |与a ≠b 推出C 为AB 的中点,然后根据题意分类讨论求解即可. 【详解】解:(1)由题意,M ,N 间的距离为(222==; ∵2MN =, ∴112MN =, 由题意知,在数轴上,M 点在N 点右侧, ∴MN 的中点表示的数为1;(2)∵1a c b c -=-=且ab ,∴数轴上点A 、B 与点C 不重合,且到点C 的距离相等,都为1, ∴点C 为AB 的中点,2AB =, ∵213d a -=, ∴32d a -=, 即:数轴上点A 和点D 的距离为32,讨论如下:1>若点A位于点B左边:①若点D在点A左边,如图所示:此时,37222 BD AD AB=+=+=;②若点D在点A右边,如图所示:此时,31222 BD AB AD=-=-=;2>若点A位于点B右边:①若点D在点A左边,如图所示:此时,31222 BD AB AD=-=-=;②若点D在点A右边,如图所示:此时,37222 BD AD AB=+=+=;综上,线段BD的长度为12或72,故答案为:2;21;12或72.【点睛】本题考查数轴上两点间的距离,以及与线段中点相关的计算问题,理解数轴上点的特征以及两点间的距离表示方法,灵活根据题意分类讨论是解题关键.12.20﹣.【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为等式右边的解析:20﹣208000= 401401.【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为1,2,3,,第二个数的规律为:分子为1,2,3,,分母为222112,215,3110,+=+=+=等式右边的规律为:分子为3331,2,3,,分母为222112,215,3110,+=+=+= 归纳类推得:第n 个等式为32211n n n n n -=++(n 为正整数) 当20n =时,这个等式为322202020201201-=++,即20800020401401-= 故答案为:20800020401401-=. 【点睛】 本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键. 13.n .【分析】根据已知等式,可以得出规律,猜想出第n 个等式,写出推导过程即可.【详解】解:=n .故答案为:n .【点睛】此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关解析: 【分析】根据已知等式,可以得出规律,猜想出第n 个等式,写出推导过程即可.【详解】故答案为: 【点睛】 此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关键. 14.-9【分析】直接利用已知运算法则计算得出答案.【详解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,解析:-9【分析】直接利用已知运算法则计算得出答案.【详解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可.15.4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.16.②④【分析】根据若表示不超过的最大整数,①取验证;②根据定义分析;③直接将代入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x=2.5时,[﹣2.5]=﹣3,﹣[2.5]解析:②④【分析】根据若[]x 表示不超过x 的最大整数,①取 2.5x 验证;②根据定义分析;③直接将 2.75-代入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x =2.5时,[﹣2.5]=﹣3,﹣[2.5]=﹣2,∴此时[﹣x ]与﹣[x ]两者不相等,故①不符合题意;②若[x ]=n ,∵[x ]表示不超过x 的最大整数,∴x 的取值范围是n ≤x <n +1,故②符合题意;③将x =﹣2.75代入4x ﹣[x ]+5,得:4×(﹣2.75)﹣(﹣3)+5=﹣3≠0,故③不符合题意;④当﹣1<x <1时,若﹣1<x <0,[1+x ]+[1﹣x ]=0+1=1,若x =0,[1+x ]+[1﹣x ]=1+1=2,若0<x <1,[1+x ]+[1﹣x ]=1+0=1;故④符合题意;故答案为:②④.【点睛】本题主要考查取整函数的定义,是一个新定义类型的题,解题关键是准确理解定义求解. 17.或﹣5【分析】根据新定义运算法则,分情况讨论求解即可.【详解】解:当x >﹣2时,则有,解得:,成立;当x=﹣2时,则有,解得:x=3,矛盾,舍去;当x <﹣2时,则有,解得:x=﹣5,成立 解析:12-或﹣5 【分析】根据新定义运算法则,分情况讨论求解即可.【详解】解:当x >﹣2时,则有()22(2)1x x -=--=※,解得:12x =-,成立;当x =﹣2时,则有()2(2)1x x -=+-=※,解得:x =3,矛盾,舍去;当x <﹣2时,则有()22(2)1x x -=⨯--=※,解得:x =﹣5,成立,综上,x =12-或﹣5, 故答案为:12-或﹣5.【点睛】本题考查新定义下的实数运算、解一元一次方程,理解新定义运算法则,运用分类讨论思想正确列出方程是解答的关键.18.﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4解析:﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4(周),滚动第3次,所对应的周数为0﹣3﹣1+2=﹣2(周),滚动第4次,所对应的周数为0﹣3﹣1+2﹣1=﹣3(周),滚动第5次,所对应的周数为0﹣3﹣1+2﹣1+3=0(周),滚动第6次,所对应的周数为0﹣3﹣1+2﹣1+3+2=2(周),所以圆与数轴的公共点到原点的距离最远是﹣4周,即该点所表示的数是﹣8π,故答案为:﹣8π.【点睛】题目主要考察数轴上的点及圆的滚动周长问题,确定相应滚动周数是解题关键.19.±3【分析】先通过估算确定M、N的值,再求M+N的平方根.【详解】解:∵,∴,∵,∴,∵,∴,∴a的整数值为:-1,0,1,2,M=-1+0+1+2=2,∵,∴,N=7解析:±3【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵< ∴221, ∵∴23<,∵a <∴23a -<<,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2, ∵∴78<,N=7,M+N=9,9的平方根是±3;故答案为:±3.【点睛】本题考查了算术平方根的估算,用“夹逼法”估算算术平方根是解题关键.20.【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】(⊕2)⊕3=⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关 解析:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】2)⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.三、解答题21.(1)A;(2)①B;②C;③B;(3)①③.【分析】÷,结合计算结果即可进行判断;(1)计算20203(2)①从A类数中任取两个数进行计算,即可求解;②从A、B两类数中任取两个数进行计算,即可求解;③根据题意,从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,再除以3,即可得到答案;(3)根据m,n的余数之和,举例,观察即可判断.【详解】解:(1)根据题意,÷=,∵202036731∴2020被3除余数为1,属于A类;故答案为:A.(2)①从A类数中任取两个数,如:(1+4)÷3=1…2,(4+7)÷3=3…2,……∴两个A类数的和被3除余数为2,则它们的和属于B类;②从A、B类数中任取一数,与①同理,如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,……∴从A、B类数中任取一数,则它们的和属于C类;③从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,则⨯+⨯+=,8192026÷=,∴26382∴余数为2,属于B类;故答案为:①B;②C;③B.(3)从A类数中任意取出m个数,从B类数中任意取出n个数,余数之和为:m×1+n×2=m+2n,∵最后的结果属于C类,∴m+2n能被3整除,即m+2n属于C类,①正确;②若m=1,n=1,则|m-n|=0,不属于B类,②错误;③观察可发现若m+2n属于C类,m,n必须是同一类,③正确;综上,①③正确.故答案为:①③.【点睛】本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答. 22.(1)2-,2;(2)①图见解析,5;②见解析【分析】(1)根据图1得到小正方形的对角线长,即可得出数轴上点A 和点B 表示的数(2)根据长方形的面积得正方形的面积,即可得到正方形的边长,再画出图象即可; (3)从原点开始画一个长是2,高是1的长方形,对角线长即是a ,再用圆规以这个长度画弧,交数轴于点M ,再把这个长方形向左平移3个单位,用同样的方法得到点N .【详解】(1)由图1知,小正方形的对角线长是2,∴图2中点A 表示的数是2-,点B 表示的数是2,故答案是:2-,2;(2)①长方形的面积是5,拼成的正方形的面积也应该是5,∴正方形的边长是5,如图所示:故答案是:5;②如图所示:【点睛】本题考查无理数的表示方法,解题的关键是理解题意,模仿题目中给出的解题方法进行求解.23.(1)49515050⨯;2018202020192019⨯;(2)10102019. 【分析】(1)根据已知数据得出规律,2111111n n n ⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,进而求出即可; (2)利用规律拆分,再进一步交错约分得出答案即可.【详解】解:(1)21150-=49515050⨯; 2112019-=2018202020192019⨯; (2)2222111111112342019⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=1324352018202022334420192019⨯⨯⨯⨯⨯⨯⨯⨯…… =1202022019⨯ =10102019. 【点睛】此题主要考查了实数运算中的规律探索,根据已知运算得出数字之间的变化规律是解决问题的关键.24.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1(2)根据定义可知x <4,可得满足题意的x 的整数值;(3)根据定义对120进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【详解】解:(1)∵22=4, 62=36,52=25,∴56,∴,,故答案为2,5;(2)∵12=1,22=4,且=1,∴x=1,2,3,故答案为1,2,3;(3)第一次:,第二次:,第三次:,故答案为3;(4)最大的正整数是255,理由是:∵,,,∴对255只需进行3次操作后变为1,∵,,,,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.【点睛】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力.25.(1)A;(2)①B;②C;③B;(3)①③.【分析】÷,结合计算结果即可进行判断;(1)计算20203(2)①从A类数中任取两个数进行计算,即可求解;②从A、B两类数中任取两个数进行计算,即可求解;③根据题意,从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,再除以3,即可得到答案;(3)根据m,n的余数之和,举例,观察即可判断.【详解】解:(1)根据题意,÷=,∵202036731∴2020被3除余数为1,属于A类;故答案为:A.(2)①从A类数中任取两个数,如:(1+4)÷3=1…2,(4+7)÷3=3…2,……∴两个A类数的和被3除余数为2,则它们的和属于B类;②从A、B类数中任取一数,与①同理,如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,……∴从A、B类数中任取一数,则它们的和属于C类;③从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,则⨯+⨯+=,8192026÷=,∴26382∴余数为2,属于B类;故答案为:①B;②C;③B.(3)从A类数中任意取出m个数,从B类数中任意取出n个数,余数之和为:m×1+n×2=m+2n,∵最后的结果属于C类,∴m+2n能被3整除,即m+2n属于C类,①正确;②若m=1,n=1,则|m-n|=0,不属于B类,②错误;③观察可发现若m+2n属于C类,m,n必须是同一类,③正确;综上,①③正确.故答案为:①③.【点睛】本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答.26.(1) 4;(2)1;(2) ±12.【分析】(1(2a、b的值,再代入求出即可;(3的范围,求出x、y的值,再代入求出即可.【详解】解:(1)∵45,∴4,故答案为4;(2)∵2<3,∴-2,∵34,∴b=3,∴;(3)∵100<110<121,∴1011,∴110<111,∵,其中x是整数,且0<y<1,∴x=110,,∴+10=144,的平方根是±12.【点睛】键.27.(1)x7-1;(2)x n+1-1;(3)51312-.【分析】(1)仿照已知等式写出答案即可;(2)先归纳总结出规律,然后按规律解答即可;(3)先利用得出规律的变形,然后利用规律解答即可.【详解】解:(1)根据题意得:(x-1)(x6+x5+x4+x3+x2+x+1)=x7-1;(2)根据题意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;(3)原式=12×(3-1)(1+3+32+···+349+350)=12×(x50+1-1)=51312-故答案为:(1)x7-1;(2)x n+1-1;(3)51312-.【点睛】本题考查了平方差公式以及规律型问题,弄清题意、发现数字的变化规律是解答本题的关键.28.(1)7;(2)5;(3)【分析】(1(2)分别确定出a、b的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y的值,进而求出y的值,即可求出所求.【详解】解:(1)∵78,∴7.故答案为:7.(2)∵34,∴3a,∵23,∴b=2∴=5(3)∵23∴11<12,∵,其中x是整数,且0﹤y<1,∴x=11,y=,∴x-y==【点睛】本题考查的是无理数的小数部分和整数部分及其运算.估算无理数的整数部分是解题关键.29.(1)2、3、4、5;(2)第n个等式为1+3+5+7+…+(2n+1)=n2;(3)﹣1.008016×106.【分析】(1) 根据从1开始连续n各奇数的和等于奇数的个数的平方即可得到.(2) 根据规律写出即可.(3) 先提取符号,再用规律解题.【详解】解:(1)1+3=221+3+5=321+3+5+7=421+3+5+7+9=52……故答案为:2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=2(1)n +(3)原式=﹣(1+3+5+7+9+ (2019)=﹣10102=﹣1.0201×106.【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可.30.(1)23,1;(2)两位正整数为39,28,17,()f t 的最大值为47;(3)①2021;②2021【分析】(1)仿照样例进行计算即可;(2)由题设可以看出交换前原数的十位上数字为a ,个位上数字为b ,则原数可以表示为10a+b ,交换后十位上数字为b ,个位上数字为a ,则交换后数字可以表示为10b+a ,根据“交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54”确定出a 与b 的关系式,进而求出所有的两位数,然后求解确定出()f t 的最大值即可;(3)根据样例分解计算即可.【详解】解:(1)61623=⨯=⨯,∵6132->-,∴()263f =; 161162844=⨯=⨯=⨯∵1618244->->-,∴()161f =, 故答案为:23;1; (2)由题意可得:交换后的数减去交换前的数的差为:10109()54b a a b b a +--=-=,∴6b a -=,∵19a b ≤≤≤,∴93b a ==,或82b a ==,或71b a ==,,∴t 为39,28,17;∵39=1×39=3×13,∴()33913f =; 28=1×28=2×14=4×7,∴()28f =47; 17=1×17,∴()11717f =; ∴()f t 的最大值47. (3)①∵223572021⨯⨯⨯=⨯∴()220235721f ⨯⨯⨯=; ②423574042⨯⨯⨯=⨯∴()4402023574221f ⨯⨯⨯==; 故答案为:2021;2021 【点睛】本题主要考查了有理数的运算,理解最佳分解的定义,并将其转化为有理数的运算是解题的关键.。

初一下册数学练习题及答案

初一下册数学练习题及答案

初一下册数学练习题及答案一、选择题1. 已知a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 等边三角形B. 直角三角形C. 等腰三角形D. 不规则三角形答案:B2. 下列哪个数是无理数?A. πB. 0.33333...C. √2D. 1答案:A二、填空题1. 如果一个数的平方根是2,那么这个数是______。

答案:42. 一个数的立方根是3,那么这个数是______。

答案:27三、计算题1. 计算下列各题,并写出计算过程。

(1) (-3)^2答案:(-3)^2 = 9(2) √(16) + √(4)答案:√(16) + √(4) = 4 + 2 = 6四、解答题1. 已知一个长方体的长、宽、高分别为a、b、c,求证:长方体的体积是abc。

证明:长方体的体积V=长×宽×高,即V=a×b×c,所以长方体的体积是abc。

2. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

解:根据勾股定理,斜边c的长度为c = √(a^2 + b^2) = √(3^2 + 4^2) = √(9 + 16) = √25 = 5。

五、应用题1. 某工厂生产一批零件,每个零件的成本为5元,如果工厂计划生产x个零件,那么总成本是多少元?答案:总成本为5x元。

2. 一个水池的长是15米,宽是10米,求水池的面积。

答案:水池的面积为长×宽=15×10=150平方米。

通过这些练习题,同学们可以巩固初一数学的基本概念和计算方法,提高解题能力。

希望同学们能够认真完成这些练习,并对照答案检查自己的解题过程。

初一数学下册时间练习题

初一数学下册时间练习题

初一数学下册时间练习题一、选择题1. 计算下列时间差,正确的是:A. 3小时30分 - 1小时20分 = 2小时10分B. 3小时30分 - 1小时20分 = 2小时50分C. 3小时30分 - 1小时20分 = 1小时10分D. 3小时30分 - 1小时20分 = 2小时40分2. 将下列时间转换为分钟,正确的是:A. 1小时15分 = 75分钟B. 1小时15分 = 70分钟C. 1小时15分 = 85分钟D. 1小时15分 = 80分钟3. 计算下列时间的总和,正确的是:A. 2小时 + 45分 = 2小时45分B. 2小时 + 45分 = 3小时45分C. 2小时 + 45分 = 2小时15分D. 2小时 + 45分 = 3小时15分二、填空题4. 如果小明早上7点起床,晚上10点睡觉,那么他一天睡____小时。

5. 一节课通常持续40分钟,如果上午有4节课,那么上午上课的总时间是____分钟。

6. 从下午3点到晚上7点,总共经过了____小时。

三、计算题7. 小华从家到学校需要30分钟,如果他早上7:20出发,那么他到达学校的时间是____。

8. 如果一部电影时长为120分钟,开始播放的时间是下午2点,那么电影结束的时间是____。

9. 小明计划在周末完成作业,他计划周六用2小时,周日用3小时。

如果周六他从下午2点开始,周日他从上午10点开始,那么他完成作业的总时间是____小时。

四、应用题10. 一个工程项目原计划用时90天完成,但由于技术改进,实际用时缩短了10天。

请问实际完成项目用了多少天?11. 一个工厂原计划每天生产100个零件,但由于机器故障,第一天只生产了80个零件,第二天生产了120个零件。

请问两天的平均每天生产零件数是多少?12. 小红计划在暑假期间阅读一本300页的书,她计划每天阅读30页。

如果她从7月1日开始阅读,那么她将在几月几日读完这本书?。

初一下册数学题及答案

初一下册数学题及答案

初一下册数学题及答案一、填空:(1)若x<5,则|x-5|=______,若|x+2|=1,则x=______(2)如果|a+2|+(b+1)2=0,那么(1/a)+b=_______(3)保留三个有效数字的近似值数是_______(4)在代数式a2、a2+1、(a+1)2、a2+|a|中,一定则表示正数的就是______(5)(-32)的底数是____,幂是____,结果是____(6)一个三位数,十位数字就是a,个位数字比十位数字的2倍大3,百位数字就是十位数字的一半,用代数则表示这个三位数就是_____二、选择题:三、表达式:(1)若代数式2y2+3y+7的值为8,求代数式4y2+6y+9的值(2)先行证明当x=-2时,代数式x3+1 的值与代数式(x+1)(x2-x+1) 的值成正比四、(2)当x=-2时ax3+bx-7的值就是5,求当x =2 时,ax3+bx-17的值五、选作题:用方便快捷方法表示以下各数的末位数字就是几:答案:一、(1)5-x,-1或-3(2)4.08×(3)a2+1(4)3 , 32, -9(5)五四 1/3(6)3 , 5(7)17五、初一数学第五章单元测试a一、填空题(每行2分后)班级______姓名______学号____1、已知直线a与b相交,且∠1=70°,则∠2=__°,∠3=__°,∠4=___°.2、∠a=50°,∠b=20°,∠c=30°,则∠1=____°.3、已知,一个三角形的一个外角为70°,此三角形为___三角形.4、如果三角形中存有两个角成正比,其中一个角的外角为°,则这个三角形各内角为____________. (第2题)5、直角三角形两锐角平分线相交所成的钝角为_____.6、未知三角形的二边为2cm,5cm,周长为偶数,则第三边为____cm.7、δabc中,ae为cb边上的高,af为δabc (第7题)的角平分线,∠b=80°,∠c=30°,则∠eaf=____°.8、δabc中,∠acb=rtδ,cd⊥ab于d,则∠1=___,∠2=____,互余的角有___对.若ac=2cm,cb=3cm,则δabc的面积=_____cm2. (第8题)9、ab//cd,则∠1+∠2+∠3=____.10、长、宽、高分别是4,5,6的长方体内一点p,到各个面的距离和是___.二、选择题(每题3分后) (第9题)1、下列长度的三条线段能组成三角形的是―――――――――――――()a.3cm,7cm,10cm b.5cm,4cm,8cmc.5cm,9cm,3cm d.3cm,6cm,10cm2、δabc中,若与∠c相连的一个外角为°,∠a=40°,则∠b为―――――()a.30° b.50° c.60° d.70°3、锐角三角形为,最小角的值域范围就是―――――――――――――()a.0°<α<90° b.60°<α<°c.60°<α<90° d.60°≤α<90°4、若三角形的三边a、b、c、均为正整数,且a≥b≥c,a=2,则符合这些条件的三角形有()a.1个 b.2个 c.3个 d.4个5、已知,∠2=62°,∠3=°,则∠1与∠4的大小关系是――――――――――――()a.∠1>∠4 b.∠1=∠4 c.∠1<∠4 d.无法确认6、在长方体中,既与一个面平行,又与另一个面垂直的棱条数是()a.1 b.4 c.8 d12.7、下列说法正确的是――――――――――()a.邻补角的平分线互相横向b.垂直于同一直线的两条直线互相平行c.从直线外一点至这条直线的垂线段叫做的边直线的距离d.三角形的角平分线是一条射线.三、答疑题1、ab//cd,∠a=°,∠c=75°,∠1∶∠2=5∶7,求∠b的度数。

人教版初一数学下册常考试题(详细解析)

人教版初一数学下册常考试题(详细解析)

- -.新人教版初一数学(下)数学常考试题一、选择题(共30小题)1.(常考指数:106)如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠AED′=40°,则∠EFB 等于()A. 70°B.65°C.80°D.35°考点:翻折变换(折叠问题).专题:数形结合.分析:根据平角的知识可求出∠DED′的度数,再由折叠的性质可得出∠D′EF=∠DEF=∠DED′,从而根据平行线的性质可得出∠EFB的度数.解答:解:∵∠AED′=40°,∴∠DED′=180°﹣40°=140°,又由折叠的性质可得,∠D′EF=∠DEF=∠DED′,∴∠DEF=70°,又∵AD∥BC,∴∠EFB=70°.故选:A.点评:此题考查了翻折变换的知识,解答本题的关键是根据折叠的性质得出∠D′EF=∠DEF=∠DED′,难度一般.2.(常考指数:69)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A. 30°B.25°C.20°D.15°考点:平行线的性质.分析:本题主要利用两直线平行,同位角相等作答.解答:解:根据题意可知,两直线平行,同位角相等,∴∠1=∠3∵∠3+∠2=45°,∴∠1+∠2=45°∵∠1=20°,∴∠2=25°.故选:B.点评:本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.3.(常考指数:79)如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)考点:坐标确定位置.分析:根据已知两点的坐标确定符合条件的平面直角坐标系,然后确定其它点的坐标.解答:解:由棋子“车”的坐标为(﹣2,3)、棋子“马”的坐标为(1,3)可知,平面直角坐标系的原点为底边正中间的点,以底边为x轴,向右为正方向,以左右正中间的线为y轴,向上为正方向;根据得出的坐标系可知,棋子“炮”的坐标为(3,2).故选:A.点评:此题考查了点的坐标解决实际问题的能力和阅读理解能力,解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.4.(常考指数:94)不等式组的解集在数轴上表示为()A.B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围.解答:解:不等式组由①得,x>1,由②得,x≥2,故不等式组的解集为:x≥2,在数轴上可表示为:故选:A.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x是否取得到,若取得到则x在该点是实心的.反之x在该点是空心的.5.(常考指数:71)在平面直角坐标系中,点P(﹣1,2)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:应先判断出所求点P的横坐标、纵坐标的符号,进而判断其所在的象限.解答:解:∵点P(﹣1,2)的横坐标﹣1<0,纵坐标2>0,∴点P在第二象限.故选:B.点评:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.(常考指数:72)下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.考点:平行线的判定与性质.分析:根据平行线的性质求解即可求得答案,注意掌握排除法在选择题中的应用.解答:解:A、∵AB∥CD,∴∠1+∠2=180°,故A选项错误;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B选项正确;C、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2;故C选项错误;D、若梯形ABCD是等腰梯形,可得∠1=∠2,故D选项错误.故选:B.点评:此题主要考查了平行线的判定,关键是掌握平行线的判定定理.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.此题难度不大,注意掌握数形结合思想的应用.7.(常考指数:88)4的算术平方根是()A.±2 B.±C.D.2考点:算术平方根.专题:计算题.分析:本题是求4的算术平方根,应看哪个正数的平方等于4,由此即可解决问题.解答:解:∵=2,∴4的算术平方根是2.故选:D.点评:此题主要考查了算术平方根的运算.一个数的算术平方根应该是非负数.8.(常考指数:90)如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A.B.C.D.考点:一元一次不等式的应用;在数轴上表示不等式的解集.分析:根据图形就可以得到重物A,与砝码的关系,得到重物A的范围.解答:解:由图中左边的天平可得m>1,由右边的天平可得m<2,即1<m<2,在数轴上表示为:故选:A.点评:此题考查了不等式的解集在数轴上的表示方法,在数轴上表示解集时,注意空心圆圈和失信圆点的区别.还要注意确定不等式组解集的规律:大小小大中间跑.9.(常考指数:73)如果a与﹣2互为倒数,那么a是()A.﹣2 B.﹣C.D.2考点:倒数.分析:根据乘积是1的两个数叫做互为倒数解答.解答:解:∵a与﹣2互为倒数,∴a 是﹣.故选:B.点评:本题考查了倒数的定义,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.是基础题,熟记概念是解题的关键.10.(常考指数:108)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A. 32°B.58°C.68°D.60°考点:平行线的性质;余角和补角.专题:计算题.分析:本题主要利用两直线平行,同位角相等及余角的定义作答.解答:解:根据题意可知,∠2=∠3,∵∠1+∠2=90°,∴∠2=90°﹣∠1=58°.故选:B.点评:主要考查了平行线的性质和互余的两个角的性质.互为余角的两角的和为90°.解此题的关键是能准确的从图中找出这两个角之间的数量关系,从而计算出结果.11.(常考指数:72)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短考点:三角形的稳定性.分析:根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.解答:解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.点评:本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.12.(常考指数:89)如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°考点:平行线的判定.分析:在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.解答:解:A、∠1与∠3是l1与l2形成的内错角,由∠1=∠3由能判断直线l1∥l2,故A选项不符合题意;B、∠2与∠3不是l1与l2形成的角,由∠2=∠3不能判断直线l1∥l2,故B选项符合题意;C、∠4与∠5是l1与l2形成的同位角,由∠4=∠5能判断直线l1∥l2,故D选项不符合题意;D、∠2与∠4是l1与l2形成的同旁内角,由∠2+∠4=180°能判断直线l1∥l2,故C选项不符合题意.故选:B.点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两条被截直线平行.13.(常考指数:66)在平面直角坐标系中,若点P(x﹣2,x)在第二象限,则x的取值范围为()A. 0<x<2 B.x<2 C.x>0 D.x>2考点:点的坐标.分析:根据第二象限内的点的坐标特征,列出不等式组,通过解不等式组解题.解答:解:∵点P(x﹣2,x)在第二象限,∴,解得0<x<2,∴x的取值范围为0<x<2,故选:A.点评:坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求x的取值范围.14.(常考指数:70)解集在数轴上表示为如图所示的不等式组是()A.B.C.D.考点:在数轴上表示不等式的解集.分析:由数轴可以看出不等式的解集在﹣3到2之间,且不能取到﹣3,能取到2,即﹣3<x≤2.解答:解:根据数轴得到不等式的解集是:﹣3<x≤2.A、不等式组的解集是x≥2,故A选项错误;B、不等式组的解集是x<﹣3,故B选项错误;C、不等式组无解,故C选项错误.D、不等式组的解集是﹣3<x≤2,故D选项正确.故选:D.点评:在数轴上表示不等式组解集时,实心圆点表示“≥”或“≤”,空心圆圈表示“>”或“<”.15.(常考指数:74)不等式2x﹣6>0的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集.专题:图表型.分析:不等式2x﹣6>0的解集是x>3,>应向右画,且不包括3时,应用圈表示,不能用实心的原点表示3这一点,据此可求得不等式的解以及解集再数轴上的表示.解答:解:将不等式2x﹣6>0移项,可得:2x>6,将其系数化1,可得:x>3;∵不包括3时,应用圈表示,不能用实心的原点表示3这一点答案.故选:A.二、填空题(共30小题)16.(常考指数:53)在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有40 个.考点:坐标与图形性质;正方形的性质.专题:规律型.分析:可以发现第n个正方形的整数点有4n个点,故第10个有40个整数点.解答:解:第一个正方形有4×1=4个整数点;第2个正方形有4×2=8个整数点;第3个正方形有4×3=12个整数点;…∴第10个正方形有4×10=40个整数点.故答案为:40.点评:此题考查点的坐标规律、正方形各边相等的性质,解决本题的关键是观察分析,得到规律,这是中考的常见题型.17.(常考指数:81)点P(﹣2,3)关于x轴的对称点的坐标是(﹣2,﹣3).考点:关于x轴、y轴对称的点的坐标.分析:两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.解答:解:点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为:(﹣2,﹣3).点评:本题考查关于x轴对称的点的坐标的特点,可记住要点或画图得到.18.(常考指数:70)把命题“等角的补角相等”改写成“如果…那么…”的形式是如果两个角是等角的补角,那么它们相等.考点:命题与定理.分析:命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.解答:解:题设为:两个角是等角的补角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么它们相等.故答案为:如果两个角是等角的补角,那么它们相等.点评:本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.19.(常考指数:87)如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由(3n+1)个基础图形组成.考点:规律型:图形的变化类.专题:规律型.分析:观察图形很容易看出每加一个图案就增加三个基础图形,以此类推,便可求出结果.解答:解:第一个图案基础图形的个数:3+1=4;第二个图案基础图形的个数:3×2+1=7;第三个图案基础图形的个数:3×3+1=10;…∴第n个图案基础图形的个数就应该为:(3n+1).故答案为:(3n+1).点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.20.(常考指数:62)线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标是(1,2).考点:坐标与图形变化-平移.分析:由于线段CD是由线段AB平移得到的,而点A(﹣1,4)的对应点为C(4,7),比较它们的坐标发现横坐标增加5,纵坐标增加3,利用此规律即可求出点B(﹣4,﹣1)的对应点D的坐标.解答:解:∵线段CD是由线段AB平移得到的,而点A(﹣1,4)的对应点为C(4,7),∴由A平移到C点的横坐标增加5,纵坐标增加3,则点B(﹣4,﹣1)的对应点D的坐标为(1,2).故答案为:(1,2).点评:本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.21.(常考指数:86)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3= 20 °.考点:平行线的性质;三角形的外角性质.专题:计算题.分析:本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.解答:解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.点评:本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.22.(常考指数:70)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C= 120 °.考点:平行线的性质;角平分线的定义;对顶角、邻补角.专题:计算题.分析:本题主要利用邻补角互补,平行线性质及角平分线的性质进行做题.解答:解:∵∠CDE=150°,∴∠CDB=180﹣∠CDE=30°,又∵AB∥CD,∴∠ABD=∠CDB=30°;∵BE平分∠ABC,∴∠ABC=60°,∴∠C=180°﹣60°=120°.故答案为:120.点评:本题主要考查了平行线的性质,两直线平行,内错角相等,同旁内角互补.23.(常考指数:101)把命题“对顶角相等”写成“如果…,那么…”的形式为:如果两个角是对顶角,那么这两个角相等.考点:命题与定理.分析:先找到命题的题设和结论,再写成“如果…,那么…”的形式.解答:解:∵原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,∴命题“对顶角相等”写成“如果…,那么…”的形式为:“如果两个角是对顶角,那么这两个角相等”.故答案为:两个角是对顶角;这两个角相等.点评:本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.24.(常考指数:107)的算术平方根是 2 .考点:算术平方根.分析:首先根据算术平方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.解答:解:∵=4,∴的算术平方根是=2.故答案为:2.点评:此题主要考查了算术平方根的定义,注意要首先计算=4.25.(常考指数:65)如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是连接直线外一点与直线上所有点的连线中,垂线段最短.考点:垂线段最短.专题:应用题.分析:过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.解答:解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.点评:本题是垂线段最短在实际生活中的应用,体现了数学的实际运用价值.26.(常考指数:91)4的算术平方根是 2 .考点:算术平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:∵22=4,∴4算术平方根为2.故答案为:2.点评:此题主要考查了算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.27.(常考指数:54)关于x的不等式3x﹣2a≤﹣2的解集如图所示,则a的值是﹣.考点:解一元一次不等式组.分析:解出不等式的解,用含有字母a的代数式表示,根据数轴可以看出x≤﹣1,所以可以求出a的值.解答:解:解不等式得:x≤.观察数轴知其解集为:x≤﹣1,∴=﹣1,∴a=﹣.故答案为:﹣.点评:解答此类题,要懂得等量转换,注意数轴中的解集部分的端点是实心还是空心.28.(常考指数:180)16的平方根是±4 .考点:平方根.专题:计算题.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.29.(常考指数:77)4的平方根是±2 .考点:平方根.专题:计算题.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.30.(常考指数:68)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第15个图形需要黑色棋子的个数是255 .考点:规律型:图形的变化类.专题:压轴题;规律型.分析:观察发现,每一条边上的黑色棋子的个数是这个多边形的边数减去1,又顶点处的黑色棋子被两条边公用,根据此规律列式计算即可.解答:解:第1个图形棋子个数是:(3﹣1)×3﹣3=(3﹣2)×3=3,第2个图形棋子个数是:(4﹣1)×4﹣4=(4﹣2)×4=8,第3个图形棋子个数是:(5﹣1)×5﹣5=(5﹣2)×5=15,第4个图形棋子个数是:(6﹣1)×6﹣6=(6﹣2)×6=24,…按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n2﹣2n.第15个图形棋子个数是:(17﹣1)×17﹣17=(17﹣2)×17=255.故答案为:255.点评:本题主要是对图形的变化规律的考查,观察出图形的边数与每一条边上的黑色棋子的个数是解题的关键.三、解答题(共40小题)31.(常考指数:56)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.考点:二元一次方程组的应用;一元一次不等式组的应用.专题:应用题.分析:(1)找出等量关系列出方程组再求解即可.本题的等量关系为“1辆甲型汽车和2辆乙型汽车共需费用2500元”和“租用2辆甲型汽车和1辆乙型汽车共需费用2450元”.(2)得等量关系是“将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨同一种型号汽车每辆且同一种型号汽车每辆租车费用相同”.解答:解:(1)设租用一辆甲型汽车的费用是x元,租用一辆乙型汽车的费用是y元.由题意得,;解得:,答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.(2)设租用甲型汽车z辆,租用乙型汽车(6﹣z)辆.由题意得,解得2≤z≤4,由题意知,z为整数,∴z=2或z=3或z=4,∴共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲型汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆.方案一的费用是800×2+850×4=5000(元);方案二的费用是800×3+850×3=4950(元);方案三的费用是800×4+850×2=4900(元);∵5000>4950>4900;∴最低运费是方案三的费用:4900元;答:共有三种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.点评:解题关键是要读懂题目的意思,找出(1)合适的等量关系:1辆甲型汽车和2辆乙型汽车共需费用2500元”和“租用2辆甲型汽车和1辆乙型汽车共需费用2450元”.(2)根据租车费用不超过5000元列出方程组,再求解.32.(常考指数:49)某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文件衫和5本相册.(1)求每件文化衫和每本相册的价格分别为多少元?(2)有几种购买文化衫和相册的方案?哪种方案用于购买老师纪念品的资金更充足?考点:二元一次方程组的应用;一元一次不等式组的应用.专题:方案型.分析:(1)通过理解题意可知本题存在两个等量关系,即每件文化衫比每本相册贵9元,用200元恰好可以买到2件文件衫和5本相册.根据这两个等量关系可列出方程组.(2)本题存在两个不等量关系,即设购买文化衫t件,购买相册(50﹣t)本,则1800﹣300≤35t+26(50﹣t)≤1800﹣270,根据t为正整数,解出不等式再进行比较即可.解答:解:(1)设每件文化衫和每本相册的价格分别为x元和y元,则,解得.答:每件文化衫和每本相册的价格分别为35元和26元.(2)设购买文化衫t件,购买相册(50﹣t)本,则:1800﹣300≤35t+26(50﹣t)≤1800﹣270,解得≤t≤,∵t为正整数,∴t=23,24,25,即有三种方案:第一种方案:购买文化衫23件,相册27本,此时余下资金293元;第二种方案:购买文化衫24件,相册26本,此时余下资金284元;第三种方案:购文化衫25件,相册25本,此时余下资金275元.∴第一种方案用于购买教师纪念品的资金更充足.答:有3种购买文化衫和相册的方案,当购买文化衫23件,相册27本时,用于购买老师纪念品的资金更充足.点评:此类问题属于综合性的题目,问题(1)在解决时只需认真分析题意,找出本题存在的两个等量关系,即每件文化衫比每本相册费9元,用200元恰好可以买到2件文件衫和5本相册.根据这两个等量关系可列出方程组.问题(2)需利用不等式解决,另外要注意,同实际相联系的题目,需考虑字母的实际意义,从而确定具体的取值.再进行比较即可知道哪个方案用于购买老师纪念品的资金更充足.33.(常考指数:45)某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)7 5每台日产量(个)100 60(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?考点:一元一次不等式的应用.专题:方案型.分析:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6﹣x)台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数≤34万元.就可以得到关于x的不等式,就可以求出x的范围.(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数≤380件.根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案.解答:解:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6﹣x)台.依题意,得7x+5×(6﹣x)≤34.解这个不等式,得x≤2,即x可取0,1,2三个值.∴该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台.方案二:购买甲种机器1台,购买乙种机器5台.方案三:购买甲种机器2台,购买乙种机器4台.(2)根据题意,100x+60(6﹣x)≥380,解之,可得:x≥,由上题解得:x≤2,即≤x≤2,∴x可取1,2两个值,即有以下两种购买方案:方案二购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元;方案三购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元.∴为了节约资金应选择方案二.故应选择方案二.点评:解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案是解决本题的关键.34.(常考指数:42)某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?考点:一元一次不等式的应用;一次函数的应用.专题:压轴题.分析:(1)0.5×甲种鱼的尾数+0.8×乙种鱼的尾数=3600;(2)0.5×甲种鱼的尾数+0.8×乙种鱼的尾数≤4200;(3)关系式为:甲种鱼的尾数×0.9+乙种鱼的尾数×95%≥6000×93%.解答:解:(1)设购买甲种鱼苗x尾,则购买乙种鱼苗(6000﹣x)尾.由题意得:0.5x+0.8(6000﹣x)=3600,解方程,可得:x=4000,∴乙种鱼苗:6000﹣x=2000,答:甲种鱼苗买4000尾,乙种鱼苗买2000尾;(2)由题意得:0.5x+0.8(6000﹣x)≤4200,解不等式,得:x≥2000,即购买甲种鱼苗应不少于2000尾,∵甲、乙两种鱼苗共6000尾,∴乙不超过4000尾;答:购买甲种鱼苗应不少于2000尾,购买乙种鱼苗不超过4000尾;。

七年级下册数学二元一次方程组的实际运用练习题 含答案

七年级下册数学二元一次方程组的实际运用练习题 含答案

再探实际问题与二元一次方程组(一)学习要求:能对所研究的问题抽象出基本的数量关系,通过列二元一次方程组解实际问题,培养分析问题和解决问题的能力. 一、填空题:1.若载重3吨的卡车有x 辆,载重5吨的卡车比它多4辆,它们一共运货y 吨,用含x 的式子表示y 为______.2.小强有x 张10分邮票,y 张50分邮票,则小强这两种邮票的总面值为______. 3.已知两数和为25,两数差为15,则这两个数为______.4.一个长方形周长是44cm ,长比宽的3倍少10cm ,则这个长方形的面积是______. 二、选择题:5.用4700张纸装订成两种挂历500本,其中甲种每本7张纸,乙种每本13张纸.若甲种挂历有x 本,乙种挂历有y 本,则下面所列方程组正确的是( ).(A)⎩⎨⎧=+=+.4700713,500y x y x(B)⎩⎨⎧=+=+.4700137,500y x y x(C)⎩⎨⎧=-=+.4700713,500y x y x(D)⎩⎨⎧=-=+.4700137,500y x y x6.甲、乙两数和为42,甲数的3倍等于乙数的4倍,求甲、乙两数.设甲数为x ,乙数为y ,则下列方程组正确的是( ).(A)⎩⎨⎧⋅==+y x y x 34,42(B)⎩⎨⎧⋅==+y x y x 43,42(C)⎩⎨⎧==+.43,4234y x y x(D)⎩⎨⎧==+.34,4243y x y x三、列方程组解应用题:7.某单位组织了200人到甲、乙两地旅游,到甲地的人数是到乙地的人数的2倍少10人.到两地参加旅游的人数各是多少?8.一种口服液有大小盒两种包装,3大盒4小盒共108瓶;2大盒3小盒共76瓶,大盒、小盒每盒各装多少瓶?.9.某车间工人举行茶话会,如果每桌12人,还有一桌空着,如果每桌10人,则还差两个桌子,此车间共有工人多少名?(二)综合运用诊断一、填空题:10.式子y =kx +b ,当x =2时,y =11;当x =-2时,y =-17;则k =______,b =______.11.在公式2021at t v s +=中,当t =1时,s =13;当t =2时,s =42.则v 0=______,a =______,并且当t =3时,s =______. 二、选择题:12.出境旅游者问某童:你有几个兄弟、几个姐妹,答:“有几个兄弟就有几个姐妹。

初一数学下册综合算式专项练习题含有括号的多项式运算

初一数学下册综合算式专项练习题含有括号的多项式运算

初一数学下册综合算式专项练习题含有括号的多项式运算在初中数学的学习过程中,我们不可避免地会接触到各种各样的数学题目,其中包括多项式运算。

多项式运算的一个重要知识点就是含有括号的多项式运算。

本文将通过综合算式专项练习题的方式来详细介绍和解析含有括号的多项式运算。

练习题一:计算下列各式的值:1. (3x - 2y) + (4y + x)2. (2a + b) - (a + 3b)3. (4 - x) + (x - 3)4. (5x + 7) - (2x - 1)解答:1. 将每个括号内的项按照同类项进行合并,得到:3x - 2y + 4y + x。

合并同类项,得到:4x + 2y。

2. 将每个括号内的项按照同类项进行合并,得到:2a + b - a - 3b。

合并同类项,得到:a - 2b。

3. 将每个括号内的项按照同类项进行合并,得到:4 - x + x - 3。

合并同类项,得到:4 - 3。

4. 将每个括号内的项按照同类项进行合并,得到:5x + 7 - 2x + 1。

合并同类项,得到:3x + 8。

练习题二:计算下列各式的值:1. (2x + 3) - (x - 4)2. (3a - 2b) + (4b + 5a)3. (5 - 2x) - (3x + 1)4. (6y + 2z) - (y + 3z)解答:1. 将每个括号内的项按照同类项进行合并,得到:2x + 3 - x + 4。

合并同类项,得到:x + 7。

2. 将每个括号内的项按照同类项进行合并,得到:3a - 2b + 4b + 5a。

合并同类项,得到:8a + 2b。

3. 将每个括号内的项按照同类项进行合并,得到:5 - 2x - 3x - 1。

合并同类项,得到:5 - 5x - 1。

4. 将每个括号内的项按照同类项进行合并,得到:6y + 2z - y - 3z。

合并同类项,得到:5y - z。

通过以上综合算式专项练习题,我们可以熟悉含有括号的多项式运算的步骤与方法。

初一数学下册试题及答案

初一数学下册试题及答案

初一数学下册试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 6D. -6答案:A3. 计算下列算式:2x - 3 = 7,x的值是:A. 5B. 2C. 10D. 3答案:A4. 一个等腰三角形的两个底角相等,如果一个底角是50°,那么顶角的度数是:A. 80°B. 50°C. 100°D. 30°答案:A5. 一个数的平方是36,这个数是:A. 6B. ±6C. 36D. ±36答案:B6. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 0答案:C7. 下列哪个选项是不等式?A. 3x + 4 = 7B. 2x - 5 > 0C. 6x = 12D. 7x - 3答案:B8. 一个数的立方是-8,那么这个数是:A. -2B. 2C. -8D. 8答案:A9. 计算下列算式:(-3)^2,结果是:A. -9B. 9C. -6D. 6答案:B10. 下列哪个选项是二次方程?A. 2x + 3 = 0B. x^2 - 4x + 4 = 0C. 3x - 7D. 5x^3 + 2x^2 - 6 = 0答案:B二、填空题(每题4分,共20分)11. 一个数的平方根是3,那么这个数是______。

答案:912. 一个数的立方根是-2,那么这个数是______。

答案:-813. 一个数的倒数是1/2,那么这个数是______。

答案:214. 一个数的绝对值是7,那么这个数可以是______或______。

答案:7,-715. 一个等腰三角形的底角是30°,那么顶角的度数是______。

答案:120°三、解答题(每题10分,共50分)16. 解方程:3x - 5 = 10。

初一数学下册试题及答案

初一数学下册试题及答案

初一数学下册试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是负数?A. 3B. -5C. 0D. 8答案:B2. 绝对值等于5的数是:A. 5B. -5C. 5或-5D. 都不是答案:C3. 一个数的相反数是-3,这个数是:A. 3B. -3C. 0D. 6答案:A4. 计算下列哪个表达式的结果为正数?A. 2 - 3B. 3 + (-2)C. 4 × (-2)D. 5 ÷ (-1)答案:B5. 下列哪个分数是最简分数?B. 6/8C. 8/12D. 5/10答案:A6. 一个数的平方是9,这个数是:A. 3B. -3C. 3或-3D. 都不是答案:C7. 一个数的立方是-8,这个数是:A. 2B. -2D. -8答案:B8. 计算下列哪个表达式的结果为0?A. 7 - 7B. 5 + (-5)C. 3 × 0D. 2 ÷ 2答案:C9. 一个数的倒数是2,这个数是:A. 1/2B. 2C. -1/2D. -2答案:A10. 计算下列哪个表达式的结果为负数?A. 3 + 2B. 4 - 5C. 6 × 1D. 8 ÷ 2答案:B二、填空题(每题4分,共40分)11. 一个数的相反数是-7,这个数是______。

答案:712. 绝对值等于4的数是______。

答案:±413. 一个数的平方是16,这个数是______。

答案:±414. 一个数的立方是27,这个数是______。

答案:315. 一个数的倒数是1/3,这个数是______。

答案:316. 计算表达式 2 × (-3) + 4 的结果是______。

答案:-217. 计算表达式 5 - (-2) 的结果是______。

答案:718. 计算表达式 3 × 3 × 3 的结果是______。

答案:2719. 计算表达式 8 ÷ (-2) 的结果是______。

初一下册数学题50道

初一下册数学题50道

初一下册数学题50道1. 用加减法计算26+5-13=?2. 用乘法计算8×9=?3. 用除法计算36÷6=?4. 给下面的加式填上空缺的数字:7+?=125. 给下面的减式填上空缺的数字:15-?=76. 将下列分数化成小数:3/5=?7. 将下列小数化成分数:0.8=?8. 比较大小:0.5 、0.7、0.9,从小到大排列。

9. 比较大小:3/4、1/2、1/6,从大到小排列。

10. 比较大小:4.3、4.01、4.05、4.12,从小到大排列。

11. 用平面直角坐标系画出点(2, 4),并标明坐标轴。

12. 按照箭头所指的方向在坐标系上画出一条线段:(2, 3) 到 (5, 1) 。

13. 求出线段(2, 3) 到 (5, 1) 的长度。

14. 画出一个直角三角形,其中两条直角边分别为5cm和3cm,求斜边的长度。

15. 计算下列式子的值:8+(-6)=?16. 计算下列式子的值:-6+(-9)=?17. 计算下列式子的值:(-5)×(-4)=?18. 计算下列式子的值:(-3)÷3=?19. 计算下列式子的值:2×(-4)=-?20. 计算下列式子的值:1-(-8)=?21. 简化下列式子:3×x+4×x=?22. 简化下列式子:7y+(-2y)=?23. 将下列式子化为一个通分的分数:2/3+5/6=?24. 将下列式子化为最简分数:21/9=?25. 将下列式子用指数形式表示:2×2×2×2×2=?26. 将下列式子用指数形式表示:7×7×7=?27. 将下列式子用开方形式表示:9的平方根=?28. 将下列式子用开方形式表示:16的平方根=?29. 按照要求填写单元格:1 2 3 4 5 64 130. 按照要求填写单元格:1 2 3 431. 按照要求填写单元格:1 2 3 4 52 3 ? 5 ?32. 找出算式中的错别字并改正:4×8+3÷6=3633. 找出算式中的错别字并改正:2+2=6 ÷ 234. 找出算式中的错别字并改正:16÷4-2×2=235. 找出算式中的错别字并改正:(8-4)×(3-1)=436. 找出算式中的错别字并改正:34-24-8÷2=937. 找出下面哪个数不是奇数(A)7 (B)20 (C)11 (D)938. 找出下面哪个数是偶数(A)7 (B)20 (C)11 (D)939. 用数轴表示数-3到数5。

(完整版)初一数学下册实数试卷(含答案) (一)

(完整版)初一数学下册实数试卷(含答案)  (一)

一、选择题1.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,依此类推,则第⑦个图形中五角星的个数是( )A .98B .94C .90D .86 2.若29x =,|y |=7,且0x y ->,则x +y 的值为( )A .﹣4或10B .﹣4或﹣10C .4或10D .4或﹣103.数轴上表示1,2的对应点分別为A ,B ,点B 关于点A 的对称点为C ,则点C 所表示的数是( )A 21B .12C .22D 224.已知T 122119311242++,T 22211497123366++,T 32211134++21313()1212,⋯,T 22111(1)n n +++n 为正整数.设S n =T 1+T 2+T 3+⋯+T n ,则S 2021值是( ) A .202120212022B .202120222022C .120212021D .1202220215.以下11个命题:①负数没有平方根;②内错角相等;③同旁内角互补,两直线平行;④一个正数有两个立方根,它们互为相反数;⑤无限不循环小数是无理数;⑥数轴上的点与实数有一一对应关系;⑦过一点有且只有一条直线和已知直线垂直;⑧不相交的两条直线叫做平行线;⑨从直线外一点到这条直线的垂线段,叫做这点到直线的距离.⑩开方开不尽的数是无理数;⑪相等的两个角是对顶角;其中真命题的个数为( ) A .5B .6C .7D .86.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;164±,其中正确的个数有( ) A .0个B .1个C .2个D .3个7.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为()A.7个B.6个C.5个D.4个8.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,9.如图,数轴上的点E,F,M,N表示的实数分别为﹣2,2,x,y,下列四个式子中结果一定为负数是()A.x+y B.2+y C.x﹣2 D.2+x10.数轴上有O、A、B、C四点,各点位置与各点所表示的数如图所示.若数线上有一点D,D点所表示的数为d,且|d﹣5|=|d﹣c|,则关于D点的位置,下列叙述正确的是?()A.在A的左边B.介于O、B之间C.介于C、O之间D.介于A、C之间二、填空题11.将1,2,3,6按下列方式排列,若规定(,)m n表示第m排从左向右第n个数,则(20,9)表示的数的相反数是___12.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____.13.对于这样的等式:若(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,则﹣32a0+16a1﹣8a2+4a3﹣2a4+a5的值为_____.14.现定义一种新运算:对任意有理数a、b,都有a⊗b=a2﹣b,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.15.如图所示,数轴上点A表示的数是-1,0是原点以AO为边作正方形AOBC,以A为圆心、AB 线段长为半径画半圆交数轴于12P P 、两点,则点1P 表示的数是___________,点2P 表示的数是___________.16.若()2210a b -+=.则a b =______.17.313312+333123++33331234+++…,则3333123100++++=_______.18.1x -(y +1)2=0,则(x +y )3=_____. 19.31y -312x -xy的值是____. 20.规定:用符号[x ]表示一个不大于实数x 的最大整数,例如:[3.69]=3,3=2,[﹣2.56]=﹣3,[3=﹣2.按这个规定,[131]=_____.三、解答题21.三个自然数x 、y 、z 组成一个有序数组(),,x y z ,如果满足x y y z -=-,那么我们称数组(),,x y z 为“蹦蹦数组”.例如:数组()2,5,8中2558-=-,故()2,5,8是“蹦蹦数组”;数组()4,6,12中46612-≠-,故()4,6,12不是“蹦蹦数组”.(1)分别判断数组()437,307,177和()601,473,346是否为“蹦蹦数组”;(2)s 和t 均是三位数的自然数,其中s 的十位数字是3,个位数字是2,t 的百位数字是2,十位数字是5,且274s t -=.是否存在一个整数b ,使得数组(),,s b t 为“蹦蹦数组”.若存在,求出b 的值;若不存在,请说明理由;(3)有一个三位数的自然数,百位数字是1,十位数字是p ,个位数字是q ,若数组()1,,p q 为“蹦蹦数组”,且该三位数是7的倍数,求这个三位数.22.阅读材料,回答问题:(1)对于任意实数x ,符号[]x 表示“不超过x 的最大整数”,在数轴上,当x 是整数,[]x 就是x ,当x 不是整数时,[]x 是点x 左侧的第一个整数点,如[]33=,[]22-=-,[]2.52=,[]1.52-=-,则[]3.4=________,[]5.7-=________.(2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下: 里程范围 4公里以内(含4公里) 4-12公里以内(含12公里) 12-24公里以内(含24公里) 24公里以上 收费标准2元4公里/元6公里/元8公里/元①若从下沙江滨站到文海南路站的里程是3.07公里,车费________元,下沙江滨站到金沙湖站里程是7.93公里,车费________元,下沙江滨站到杭州火东站里程是19.17公里,车费________元;②若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)?23.对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“梦幻数”,将一个“梦幻数”任意两个数位上的数字对调后可以得到三个不同的新三数,把这三个新三位数的和与111的商记为K (n ),例如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213321132666++=,6661116÷=,所以()1236K =. (1)计算:()342K 和()658K ;(2)若x 是“梦幻数”,说明:()K x 等于x 的各数位上的数字之和;(3)若x ,y 都是“梦幻数”,且1000x y +=,猜想:()()K x K y +=________,并说明你猜想的正确性.24.数学中有很多的可逆的推理.如果10b n =,那么利用可逆推理,已知n 可求b 的运算,记为()b f n =,如210100=, 则42(100);1010000f ==,则4(10000)f =.①根据定义,填空:(10)f =_________,()310f =__________.②若有如下运算性质:()()(),()()n f mn f m f n f f n f m m⎛⎫=+=- ⎪⎝⎭. 根据运算性质填空,填空:若(2)0.3010f =,则(4)f =__________;(5)f =___________; ③下表中与数x 对应的()f x 有且只有两个是错误的,请直接找出错误并改正.25.观察下列各式,并用所得出的规律解决问题:(11.414≈14.14141.4,……0.1732 1.732≈17.32,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2 3.873 1.225≈≈_____≈______.(31=10=100=,…… 小数点的变化规律是_______________________.(4 2.154≈0.2154≈-,则y =______.26.11,将这个数减去其整数部分,差∵23223<<,即23<<,∴的整数部分为2,小数部分为)2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

则/ 1的对顶角是 ______ ,/ 4的邻补角是
图2 C D
12、如图,直线 a II b,点B 在直线b 上,
且AB 丄BC, /仁55°,则/ 2的度数为 __________
初一数学下册练习题
A 、内错角相等
B 、同位角相等
C 、同旁内角互补
D 、以上都不对
3、 如果点P ( 5,y )在第四象限,贝U y 的取值范围是(

A . y v 0
B . y > 0
C . y < 0
D . y > 0 4、 已知三角形的两边长分别为 4cm 和9cm,则下列长度的四条线段中能作为第三边的是 ( )
A. 13cm B . 6cm
C. 5cm
D. 4cm
5、已知a<b,则下列式子正确的是()
a b A.a+5>b+5
B.3a>3b;
C.-5a>-5b
D.
>-
3 3
6、某多边形的外角和等于内角和的一半, 那么这个多边形是(
)
A 、五边形
B 、六边形
C 、七边形
D 八边形
7、下列图形中 ,不能镶嵌成平面图案的是 ()
A.正三角形
B. 正四边形
C. 正五边形
D.
正六边形
8、 某商场对顾客实行如下优惠方式: ⑴一次性购买金额不超过 1万元,不予优惠; ⑵一次 性购买金额超过1万元,超过部分9折优惠,某人第一次在该商场付款 8000元,第二次又 在该商场付款19000元,如果他一次性购买的话可以节省( )。

A 、600 元
B 、800 元
C 、1000 元
D 、2700 元 二、填空题(每小题 3分,满分21分)
9、 “如果n 是整数,那么2n 是偶数”其中题设是 __________________________________ ,
结论是 ________________________ ,这是______ 命题(填真或假). 10、 如图 2,ZACD= 1550, ZB= 35°,则ZA= ___________ 度。

11、 如图3,直线 AB CD 相交于点 0,/ 1 = Z 2.
、选择题(每小题 3分,满分24分) 1、如图,下列推理正确的是(

A . • • / 1 = / 2,「. AD/ BC B. • ' / 3 =Z 4,「.
AB/ CD
C.
• ' / 3 =/ 5,「. AB// DC D. • ' / 3 =/ 5,「.
AD// BC
2、如果两条直线被第三条直线所截,那么必定有 KI V ---


--- X
・-ar 儿七
-.vv V - r vb- -
的补角是 2
b
17、解不等式(或不等式组)并在数轴上表示解集:
18、(8分)完成下列推理,并填写理由如图4,: / ACE=/ D (已知),
••• ____ // ___ (
•••/ ACE=Z FEC(已知),
• _____ // ___ (
/ AEC=Z BOC(已知),
5x 13(x 1)⑵
解不等式组1
3
—x 17 x
22
13、等腰三角形一边等于4,另一边等于8,则周长是______________ ;
x 9 x 1
14、若代数式1的值不小于代数式1的值,则X的取值范围是
2 3
15、2008年奥运火炬将在我省传递(传递路线为:昆明一丽
江一香格里拉),某校学生小明在我省地图上设定的临
沧市位置点的坐标为(-1 , 0),火炬传递起点昆明市位置
点的坐标为(1, 1).如图,请帮助小明确定出火炬传递
终点香格里拉位置点的坐标为______________________
三、解答题
16、解方程组:(每小题5分,共10分)
(1) y 1 x
2x 3y 5
3(x 1) y 5
5(y 1) 3(x 5)
(1) 2(x 5) 3(x 5)
ARID
(每小题5分,共10
)• 图4
)•
19、(8分)已知,如图 5,/ 1+Z 2=180°,/ 3=108°,则/ 4的度数是多少?
20、(9 分)如图 6, AB// CD / BAE=/ DCE=45,求/ E
图6
21、( 8 分)
如图,这是某市部分简图,请建立适当的平面直角坐标系,并分别写出各地的坐标。

体育 !■

市 *

宾 馆
文化
:宫
火车
-站
医 院
超 市
22. ( 10 分)
在某中学开展的“我为四川地震灾区献爱心”捐书活动中,校团委为了了解七年级同学的捐 书情况,用简单的随机抽样方法从七年级的 10个班中抽取50名同学,对这50名同学所捐
的书进行分类统计后,绘制了如下统计表:
种类
文学类 科普类 学辅类 体育类 其它 合计
_ // _ (
/ BFDF Z FOC= 180 ° // ( (已知), 图5
A
B
C D
图4
捐书情况频数分布直方图
(第22题图)
(2)若七年级共有475名同学,请你估计七年级同学的捐书总册数及学辅类书的册数.
23、(12 分)
开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.
(1) 求每支钢笔和每本笔记本的价格;
(2) 校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本
共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出
一、 选择题
1.A
2.D
3.A
4.B
5.C
6.B
7.C
8.B 二、 填空题
9. n 是整数;2n 是偶数;真 10.120 11.
/ 3 ;
/ 1 或/ 3;Z BOE 12.35 °
13.20 14.x
> -37 15.
(-1 , 4)
三、解答题
x 2
x 5
16. (1)
y 3
(2)
y 7
17. (1)x >25 (2)2 V x W 4
18.
ABC BCD 角平分线的定义 两直线平行,内错角相等 内
错角相等,两直线平行 19. / =72° 20. / E=90° 21. 略
22. 解:(1)如下图.
(2) Q 50名同学捐书平均数为 560 50 11.2,
475 11.2 5320,
140
5320 1330,
560
即可估计九年级同学的捐书为
5320册,学辅类书1330册.
23•解:(1)设每支钢笔x 元,每本笔记本y 元
解得:
答:每支钢笔3元,每本笔记本 5元 ⑵ 设买a 支钢笔,则买笔记本(48 —
a )本
3a 5(48 a) 200
依题意得:
'
7
48 a a
解得:20 a 24 所以,一共有5种方案.
即购买钢笔、笔记本的数量分别为:
依题意得:
x 3y 18 2x 5y 31
20 , 28; 21 , 27; 22 , 26; 23 , 25; 24 , 24.。

相关文档
最新文档