一次函数,二次函数,反比例函数性质总结

合集下载

二次函数性质

二次函数性质

二次函数性质一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b;则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k;即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b …… ① 和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一阶函数的表达式。

五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。

初中数学所有函数的知识点总结

初中数学所有函数的知识点总结

课题§3. 5 正比例函数、反比例函数、一次函数和二次函数教学目标1、掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质2、会用待定系数法确定函数的解析式教学重点掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质教学难点掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质教学方法讲练结合法教学过程(I)知识要点(见下表:)注:二次函数))((44)2(222n x m x a ab ac a b x a c bx ax y --=-++=++=(0≠a ) 对称轴abx 2-=,顶点)442(2a b ac a b --, 抛物线与x 轴交点坐标)0()0(,,,n m (II )例题讲解例1、求满足下列条件的二次函数的解析式: (1)抛物线过点A (1,1),B (2,2),C (4,2-) (2)抛物线的顶点为P (1,5)且过点Q (3,3)(3)抛物线对称轴是2=x ,它在x 轴上截出的线段AB 长为22,且抛物线过点(1,7)。

解:(1)设)0(2≠++=a c bx ax y ,将A 、B 、C 三点坐标分别代入,可得方程组为⎪⎩⎪⎨⎧-==-=⎪⎩⎪⎨⎧-=++=++=++24124162241c b a c b a c b a c b a 解得 242-+-=∴x x y (2)设二次函数为5)1(2--=x a y ,将Q 点坐标代入,即35)13(2=--a ,得2=a ,故3425)1(222--=--=x x x y(3)∵抛物线对称轴为2=x ;∴抛物线与x 轴的两个交点A 、B 应关于2-=x 对称; ∴由题设条件可得两个交点坐标分别为)0222()022(,、,+--B A∴可设函数解析式为:a x a x x a y 2)2()22)(22(2-+=-+++=,将(1,7)代入方程可得1=a∴所求二次函数为242++=x x y ,例2:二次函数的图像过点(0,8),)51(--,,(4,0) (1)求函数图像的顶点坐标、对称轴、最值及单调区间 (2)当x 取何值时,①y≥0,②y<0解:(1)依题意可设函数的解析式为:)0(2≠++=a c bx ax y将三点坐标分别代入,可得方程组为:⎪⎩⎪⎨⎧=++-=+--=041658c b a c b a c 解得⎪⎩⎪⎨⎧-=-=-=821c b a9)1(8222--=--=∴x x x y∴函数图像的顶点为(1,9-),对称轴为1=x又∵01>=a , ∴函数有最小值,且9m in -=y ,无最大值 函数的增区间为[1,+∞),减区间为]1(,-∞(2)由2408202-≤≥≥--≥x x x x y 或,解得可得 由4208202<<-<--<x x x y ,解得可得例3:求函数]11[1)(2,,-∈+-=x x x x f 的最值及相应的x 值 解由43)21(122+-=+-=x x xy ,知函数的图像开口向上,对称轴为21=x∴依题设条件可得)(x f 在]211[,-上是减函数,在]121[,上是增函数。

初中一次函数-二次函数-反比例函数-圆知识整合

初中一次函数-二次函数-反比例函数-圆知识整合

一次函数(y=kx+b)1.当x=0时,b为一次函数图像与y轴交点的纵坐标,该点的坐标为(0, b)。

[1]2.当b=0时,一次函数变为正比例函数。

当然正比例函数为特殊的一次函数。

[1]3.对于正比例函数,y除以x的商是一定数(x≠0)。

对于反比例函数,x与y的积是一定数。

4.在两个一次函数表达式中:•当两个一次函数表达式中的k相同,b也相同时,则这两个一次函数的图像重合;•当两个一次函数表达式中的k相同,b不相同时,则这两个一次函数的图像平行;•当两个一次函数表达式中的k不相同,b也不相同时,则这两个一次函数的图像相交;•当两个一次函数表达式中的k不相同,b相同时,则这两个一次函数图像交于y轴上的同一点(0,b);•当两个一次函数表达式中的k互为负倒数时,则这两个一次函数图像互相垂直。

[1]5.直线y=kx+b的图象和性质与k、b的关系如下表所示:k>0,b>0经过第一、二、三象限k>0,b<0经过第一、三、四象限k>0,b=0经过第一、三象限【k>0时,图象从左到右上升,y随x的增大而增大】k<0b>0经过第一、二、四象限k<0,b<0经过第二、三、四象限K<0,b=0经过第二、四象限【k<0图象从左到右下降,y随x的增大而减小】一. 定义型例1.已知函数是一次函数,求其解析式。

解:由一次函数定义知,,,故一次函数的解析式为y=-6x+3。

注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。

如本例中应保证m-3≠0。

二. 点斜型例2. 已知一次函数y=kx-3的图像过点(2,-1),求这个函数的解析式。

解: 一次函数的图像过点(2, -1),,即k=1。

故这个一次函数的解析式为y=x-3。

变式问法:已知一次函数y=kx-3,当x=2时,y=-1,求这个函数的解析式。

三. 两点型例3.已知某个一次函数的图像与x 轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。

反比例函数一次函数二次函数性质及图像

反比例函数一次函数二次函数性质及图像

反比例函数1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

2、性质:1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。

定义域为x≠0;值域为y≠0。

3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K|5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么A B两点关于原点对称。

7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则n^2+4k·m≥(不小于)0。

8.反比例函数y=k/x的渐近线:x轴与y轴。

9.反比例函数关于正比例函数y=x,y=-x 轴对称,并且关于原点中心对称.10.反比例上一点m 向x 、y 分别做垂线,交于q 、w ,则矩形mwqo (o 为原点)的面积为|k|值相等的反比例函数重合,k 值不相等的反比例函数永不相交。

12.|k|越大,反比例函数的图象离坐标轴的距离越远。

13.反比例函数图象是中心对称图形,对称中心是原点一次函数(一)函数1、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

比较不同类型函数的单调性

比较不同类型函数的单调性

比较不同类型函数的单调性在数学中,函数的单调性是一个重要的性质,它可以帮助我们了解函数在不同区间上的变化规律。

接下来,我们将比较不同类型函数的单调性,包括一次函数、二次函数、指数函数、对数函数和反比例函数。

1.一次函数:一次函数的一般形式为y = kx + b,其中k 和 b 为常数,且k≠0。

一次函数的单调性取决于k 的正负。

当k >0 时,函数在R 上为增函数;当k <0 时,函数在R 上为减函数。

2.二次函数:二次函数的一般形式为y = ax²+ bx + c(a≠0)。

二次函数的单调性取决于 a 的正负。

当 a >0 时,函数在R 上开口向上,对称轴为x = -b/2a,此时函数在对称轴两侧分别为增函数和减函数;当 a <0 时,函数在R 上开口向下,对称轴同样为x = -b/2a,此时函数在对称轴两侧分别为减函数和增函数。

3.指数函数:指数函数的一般形式为y = a^x(a >0,且a≠1)。

当a >1 时,函数在R 上为增函数;当0 < a <1 时,函数在R 上为减函数。

4. 对数函数:对数函数的一般形式为y = log_a(x)(a >0,且a≠1)。

当 a >1 时,函数在(0, +∞) 上为增函数;当0 < a <1 时,函数在(0, +∞) 上为减函数。

5.反比例函数:反比例函数的一般形式为y = k/x(k 为常数,且k≠0)。

反比例函数在第一象限和第三象限为增函数,在第二象限和第四象限为减函数。

综上所述,不同类型函数的单调性具有不同的特点。

了解这些性质有助于我们在实际问题中更好地分析和解决相关问题。

在后续的学习中,我们还将探讨更多类型的函数及其性质,以丰富我们的数学知识体系。

一次函数 二次函数反比例函数必记知识点

一次函数 二次函数反比例函数必记知识点

一次函数二次函数反比例函数必记知识点1. 一次函数的解析式.正比例函数解析式.反比例函数解析式.2.一次函数的图象是一条. 正比例函数图象是一条经过点的. 反比例函数的图象是.3.确定以上函数的解析式通常用.这种方法首先要设出他们的.对于确定一次函数的解析式需条件, 确定正比例或反比例函数的解析式需条件, 确定二次函数的解析式需条件.4.画一次函数的图象通常取与的交点,他们的坐标是. 画正比例函数的图象通常取。

5. 一次函数的增减性取决于解析式中的,当时,y随x的增大而增大, 当时,y随x的增大而减小. 反比例函数的增减性取决于解析式中的,当时,在每个象限内,y随x的增大而增大, 当时, 在每个象限内y随x的增大而减小.6. 二次函数的解析式共有3种,其一般式是. 其顶点式是,其中顶点坐标为,对称轴是直线。

其两根式是,其中与x轴交点坐标表示为。

7.二次函数y=ax2+bx+c的图象是.它的基本特征是:有,其坐标可表示为;有轴,其解析式为.有方向,由来决定. 二次函数的图象与y轴的交点坐标为( , ).与x轴的交点决定于一元二次方程的,当时,有个交点, 当时,有个交点, 当时,有个交点.所以画图时要体现以上特征.7.二次函数y=ax2+bx+c的值恒大于0的条件为.二次函数y=ax2+bx+c的值恒小于0的条件为.8. 反比例函数的图象关于对称,它与x,y轴永无交点,原因是.判断一点是否在反比例函数的图象上的方法. 9. 二次函数的最值是其顶点的. 当时,它有最值.在x= 时, 最值为. 当时,它有最值.在x= 时, 最值为.10.两个量成正比例关系,则它们的是一个.设y与x成正比例关系,则有关系式. 两个量反成比例关系,则它们的是一个.设y与x成反比例关系,则有关系式.11.设二次函数y=ax2+bx+c与x轴有交点A(x1 , ),B(x2, ),则x1, x2是一元二次方程ax2+bx+c=0的.其中A,B两点关于轴是一对,且x1+ x2= . 两交点AB的距离可表示为.14.在下列坐标系内画出符合要求的一次函数的草图.k>0,b=0 k>0,b>0 k>0,b<0k<0,b=0 k<0,b>0 k<0,b<015.在下列坐标系内画出符合要求的反比例函数的草图.==三角形k>0 k<016.在下列坐标系内画出符合要求的二次函数的草图.y=ax2(a>0) y=ax2(a<0) y=x2与y=-x2 22222y=a(x-h)2(a<0,h>0) y=a(x-h)2(a<0,h<0) y=a(x-h)2+k (y>0)。

正反比例函数和一次函数二次函数知识点汇总

正反比例函数和一次函数二次函数知识点汇总

正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。

特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。

这时,y 叫做x 的正比例函数。

2、一次函数的图像所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线一次函数(1) 一次函数的性质:y=kx +b(k 、b 为常数,k ≠0)当k >0时,y 的值随x 的值增大而增大;当k <0时,y 的值随x 值的增大而减小.⑷.直线y=kx +b(k 、b 为常数,k ≠0)时在坐标平面内的位置与k 在的关系.①直线经过第一、二、三象限(直线不经过第四象限); ②直线经过第一、三、四象限(直线不经过第二象限); ③直线经过第一、二、四象限(直线不经过第三象限); ④直线经过第二、三、四象限(直线不经过第一象限正比例函数4、正比例函数的性质一般地,正比例函数kx y =有下列性质:(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大; (2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小。

反比例函数(1)反比例函数 如果xky =(k 是常数,k ≠0),那么y 叫做x 的反比例函数. (2)反比例函数的图象反比例函数的图象是双曲线. (3)反比例函数的性质①当k >0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y 随x 的增大而减小. ②当k <0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y 随x 的增大而增大. ③反比例函数图象关于直线y =±x 对称,关于原点对称. (4)k 的两种求法①若点(x 0,y 0)在双曲线xky =上,则k =x 0y 0. ②k 的几何意义: 若双曲线x k y =上任一点A (x ,y ),AB ⊥x 轴于B ,则S △AOB ||||2121y x AB OB ⋅=⨯= .||21k =(5)正比例函数和反比例函数的交点问题 若正比例函数y =k 1x (k 1≠0),反比例函数)0(22=/=k x ky ,则当k 1k 2<0时,两函数图象无交点;当k 1k 2>0时,两函数图象有两个交点,坐标分别为).,(),,(21122112k k k kk k k k --由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的一元二次函数. 2.二次函数2ax y =的性质(1)抛物线2ax y =)(0≠a 的顶点是原点,对称轴是y 轴.(2)函数2ax y =的图像与a 的符号关系:①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点 3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,. 5.抛物线c bx ax y ++=2的三要素:开口方向、对称轴、顶点.①a 决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 越小,抛物线的开口越大,a 越大,抛物线的开口越小。

一次函数,反比例函数,二次函数图形性质(精华总结)

一次函数,反比例函数,二次函数图形性质(精华总结)

初中函数集锦文献编辑-周俞江一. 一次函数:形如y=kx +b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数.如32+=x y ,32+-=x y 等等都是一次函数。

也可以理解成未知数x 的最高次方为1的函数. 1.画出下列函数图形(列表画图)1.62+=x y2.64-=x y3.62+-=x y4.64--=x y从上面的图像可以看得出来,所有一次函数都是直线,由于两点确定一条直线,画图时只需要找两个点(0,y )和点(x ,0)即可。

其中点(0,y )中的y 实际上是b . 2.用“两点作图法”画出下列函数图形1.62+=x y2.64-=x y3.62+-=x y4.64--=x y总结,通过”列表画图”,“两点作图”可以看出一次函数性质如下: 增减性:当 k>0时,y 随x 的增大而增大(从左到右上坡); 当k<0时,y 随x 的增大而减小(从左到右下坡). 函数图形与y 轴交于负半轴还是正半轴就取决于b kx y +=中的b当b >0时,函数图像与y 轴正半轴相交; 当b <0时,函数图像与y 轴负半轴相交.3.用上面总结的方法(一次函数性质)画下列函数图形1.62+=x y2.62-=x y3.62+-=x y4.62--=x y正比例函数:在一次函数b kx y +=中,当b=0时,kx y =,称y 是x 的正比例函数. 所以说正比例函数是一种特殊的一次函数.由于正比例函数是特殊的一次函数,所以 它也满足一次函数的性质:增减性:当 k>0时,y 随x 的增大而增大(从左到右上坡); 当k<0时,y 随x 的增大而减小(从左到右下坡). 由于在这里b=0,当0=x 时,0=y 时,所以正比例函数过原点。

1.画出下列正比例函数图形下列图形同样可以用列表画图法,麻烦;用两点作图法点(0,y )和点(x ,0)可得图形。

1.x y 3= 2.x y 4= 3.x y 2-= 4.x y 4-=2.用函数性质作图:(按增减性作图)以后都用函数性质作图,(快速,简单) 1.x y 3= 2.x y 4=3.x y 2-=4.x y 4-=一次函数图象及性质总结: 正比例函数k>0k<0一次函数图形画法:所有的函数图形刚开始都是通过描点列表法来画的,但是很多函数画图时都有规律可寻. 所以画图就有了专门的套路.为了画得快速,画得简约,以后画图都按套路进行。

一次函数反比例函数及二次函数课件

一次函数反比例函数及二次函数课件
2.求解与二次函数有关的不等式问题,可借助二次函数的 图象特征,分析不等关系成立的条件.
考点 2 含参数问题的讨论 师生互动 考向 1 区间固定对称轴动型 [例 1]已知函数 f(x)=x2+2ax+2,求 f(x)在[-5,5]上的最 大值与最小值. 解:f(x)=x2+2ax+2=(x+a)2+2-a2,x∈[-5,5],对称 轴为直线 x=-a. (1)当-a<-5,即 a>5 时,函数 f(x)在[-5,5]上单调递 增,如图 2-8-2(1), ∴f(x)max=f(5)=52+2a×5+2=27+10a,
根据图象知,A 选项 b=0 不对 ; B 选项,若 g(x)成立,则 a>0,b>0,- 2ba<0,此时 f(x)图 象不对;
C 选项,若 g(x)成立,则 a<0,b>0,- b >0,此时 f(x)图 2a
象不对;
D 选项显然是正确的,故选 D. 答案:D
2. 设 abc >0,二次函数 f(x) =ax2 +bx +c 的图象可能是 ()
∴f(10)-f(t)=12-t,即 t2-17t+72=0.
解得 t=8(舍去)或 t=9.∴t=9. 综上所述,存在常数 t=15-2 17或 t=8 或 t=9 满足条件.
【考法全练】 2.(多选题)一般地,若函数 f(x)的定义域为[a,b],值域为[ka, kb],则称[a,b]为 f(x)的“k 倍跟随区间”;特别地,若函数 f(x) 的定义域为[a,b],值域也为[a,b],则称[a,b]为 f(x)的“跟随
(2)二次函数在给定区间[m,n]上的最值求解,常见的有以 下四种情况:
①对称轴与区间
③定轴动区间,即对称轴是确定的,区间[m,n]不确定;

高中数学:一次函数、二次函数、指数函数知识点汇总【必考点】

高中数学:一次函数、二次函数、指数函数知识点汇总【必考点】

一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。

反比例函数一次函数二次函数性质及图像

反比例函数一次函数二次函数性质及图像
工程设计和优化
在工程学中,反比例函数、一次函数和二次函数可以用来描 述各种工程问题的数学模型,如结构优化、路径规划等。利 用这些函数的性质和图像,可以进行工程设计和优化,提高 工程质量和效率。
感谢您的观看
THANKS
顶点
二次函数的顶点坐标为 $left(frac{b}{2a}, c frac{b^2}{4a}right)$。
04
图像特征
01
02
03
04
形状
二次函数的图像是一条抛物线 。
位置
根据 $a$、$b$、$c$ 的取值 ,抛物线的位置会有所不同。
与坐标轴的交点
令 $y = 0$ 可求得与 $x$ 轴 的交点,令 $x = 0$ 可求得
05
函数图像比较
图像的平移与伸缩
平移
函数图像在平面直角坐标系中的位置可以通过平移来改变。对于一次函数和二次函数,图像可以沿x轴或y轴进 行平移,而对于反比例函数,图像可以沿原点进行平移。
伸缩
函数图像的形状可以通过伸缩来改变。对于一次函数,图像的伸缩表现为斜率的改变;对于二次函数,图像的 伸缩表现为开口大小或方向的改变;对于反比例函数,图像的伸缩表现为离原点的远近。
单调性
反比例函数
反比例函数的单调性取决于其定义域。在每个象限内,反比例函数都是单调的,但在整个 定义域内不是单调的。
一次函数
一次函数的单调性取决于其斜率。当斜率大于0时,函数在整个定义域内单调递增;当斜 率小于0时,函数在整个定义域内单调递减。
二次函数
二次函数的单调性取决于其二次项系数的正负和对称轴的位置。当二次项系数为正时,函 数在对称轴左侧单调递减,在对称轴右侧单调递增;当二次项系数为负时,函数在对称轴 左侧单调递增,在对称轴右侧单调递减。

初中数学函数知识点总结6篇

初中数学函数知识点总结6篇

初中数学函数知识点总结初中数学函数知识点总结6篇总结是在某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而得出教训和一些规律性认识的一种书面材料,它可以帮助我们有寻找学习和工作中的规律,让我们抽出时间写写总结吧。

那么总结有什么格式呢?以下是小编整理的初中数学函数知识点总结,仅供参考,大家一起来看看吧。

初中数学函数知识点总结1课题3.5正比例函数、反比例函数、一次函数和二次函数教学目标1、掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质2、会用待定系数法确定函数的解析式教学重点掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质教学难点掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质教学方法讲练结合法教学过程(I)知识要点(见下表:)第三章第29页函数名称解析式图像正比例函数ykx(k0)0x反比例函数一次函数ykxb(k0)0x二次函数yax2bxc(a0)y0xy0xky (k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0图像过点(0,0)及(1,k)的直线双曲线,x轴、y轴是它的渐近线与直线ykx平行且过点(0,b)的直线抛物线定义域RxxR且xoyyR且yoRR4acb2a0时,y,4aR 值域R4acb2a0时,y,4aba0时,在-,上为增2a函数,在,-单调性k0时,在,0,k0时为增函数0,上为减函数k0时,为增函数b上为减函数2ak0时为减函数k0时,在,0,k0时,为减函数0,上为增函数ba0时,在-,上为减2a函数,在,-b上为增函数2a奇偶性奇函数奇函数b=0时奇函数b=0时偶函数a0且x-ymin最值无无无b时,2a24acb4ab时,2a24acb4aa0且x-ymax第三章第30页b24acb2注:二次函数yaxbxca(x (a0))a(xm)(xn)2a4abb4acb2对称轴x,顶点(,)2a2a4a2抛物线与x轴交点坐标(m,0),(n,0)(II)例题讲解例1、求满足下列条件的二次函数的解析式:(1)抛物线过点A (1,1),B(2,2),C(4,2)(2)抛物线的顶点为P(1,5)且过点Q(3,3)(3)抛物线对称轴是x2,它在x轴上截出的线段AB长为2且抛物线过点(1,7)。

1265编号一次函数、反比例函数、二次函数知识点归纳总结

1265编号一次函数、反比例函数、二次函数知识点归纳总结

二次函数知识点详解(最新原创助记口诀)知识点一、平面直角坐标系1,平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当时,(a ,b )和(b ,a )是两个不同点的坐标。

b a ≠知识点二、不同位置的点的坐标的特征1、各象限内点的坐标的特征点P(x,y)在第一象限0,0>>⇔y x 点P(x,y)在第二象限0,0><⇔y x 点P(x,y)在第三象限0,0<<⇔y x 点P(x,y)在第四象限0,0<>⇔y x 2、坐标轴上的点的特征点P(x,y)在x 轴上,x 为任意实数0=⇔y 点P(x,y)在y 轴上,y 为任意实数0=⇔x 点P(x,y)既在x 轴上,又在y 轴上x ,y 同时为零,即点P 坐标为(0,0)⇔3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上x 与y 相等⇔点P(x,y)在第二、四象限夹角平分线上x 与y 互为相反数⇔4、和坐标轴平行的直线上点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

5、关于x轴、y轴或远点对称的点的坐标的特征⇔点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数⇔点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数⇔点P与点p’关于原点对称横、纵坐标均互为相反数6、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于y(2)点P(x,y)到y轴的距离等于x(3)点P(x,y)到原点的距离等于22yx+知识点三、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一次函数反比例函数二次函数图像及性质

一次函数反比例函数二次函数图像及性质

02
反比例函数图像及性质
反比例函数定义与表达式
定义
反比例函数是一种特殊的函数, 其自变量和因变量的乘积为常数 ,且该常数不为零。
表达式
一般地,反比例函数可以表示为 y = k/x (k ≠ 0) 的形式,其中 k 是比例系数。
反比例函数图像特征
图像位置
反比例函数的图像分布在两个象 限内,当 k > 0 时,图像位于第 一、三象限;当 k < 0 时,图像
一次函数反比例函 数二次函数图像及 性质
汇报人:XXX 2024-01-28
目录
• 一次函数图像及性质 • 反比例函数图像及性质 • 二次函数图像及性质 • 函数图像变换规律探讨 • 函数性质应用举例
01
一次函数图像及性质
一次函数定义与表达式
定义
一次函数是函数中的一种,一般形如$y=kx+b$($k,b$是常数,$k≠0$), 其中$x$是自变量,$y$是因变量。
表达式
一次函数的标准形式为$y=kx+b$,其中$k$是斜率,表示$x$每增加一个单位 ,$y$增加$k$个单位;$b$是截距,表示当$x=0$时,$y$的值。
一次函数图像特征
1 2 3
直线形状
一次函数的图像是一条直线。
斜率决定倾斜程度
当$k>0$时,直线从左下方向右上方倾斜;当 $k<0$时,直线从左上方向右下方倾斜;当 $k=0$时,直线与$x$轴平行。
二次函数
图像沿x轴或y轴平移,开 口方向和宽度不变,顶点 位置发生变化。
伸缩变换规律
一次函数
01
通过改变斜率的大小,可以实现图像在x轴或y轴方向上的伸缩
变换。
反比例函数

一次函数反比例函数二次函数

一次函数反比例函数二次函数

函数函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数函数有三种表示形式:(1)列表法(2)图像法(3)解析式法一、一次函数与正比例函数:◆公式:y=kx+b (k,b为常数,且k≠0)当b =0时,y=kx+b 即为y=kx,所以正比例函数,是一次函数的特例.◆一次函数与正比例函数的图形与性质图像:正比例函数:经过原点的一条直线正比例函数(y=kx)一次函数(y=kx+b )性质:正比例函数:y=kx (k≠0)当k>0时, 经过一、三象限,即随着x的增大(或减小)y也增大(或减小);当k<0时, 经过二、四象限,即随着x的增大(或减小)y反而减小(或增大)。

一次函数:当k>0时,经过一、三象限,y随x的增大(或减小)而增大(或减小);当k<0时,经过二、四象限,y随x的增大(或减小)而减小(或增大). 二、反比例函数◆公式:(k为常数,k≠0)◆反比例函数的图像与性质反比例函数k的符号k>0 k<0图像性质①x的取值范围0x≠y的取值范围0y≠②当k>0时,图像在一、三①x的取值范围0x≠y的取值范围0y≠②当k<0时,图像在二、四象限,y随x的增大而增大三、二次函数◆ 公式:y=+bx+c(a,b,c 是常数a ≠0)二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。

◆ 抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。

◆ 二次函数解析式二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点(1)一般一般式:)0,,(2≠++=a c b a c bx ax y 是常数,(2)两根当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。

初中数学函数知识点和常见题型总结

初中数学函数知识点和常见题型总结

函数知识点及常见题型总结函数在初中数学中考中分值大约有20~25分,一次函数、二次函数和反比例函数都会考查,其中一次函数和反比例函数分值共约占其中的50%,二次函数约占另一半。

函数的题型以下归纳总结了11种,当然这并不包括所有可能出现的情况,仅仅只是较为常见的。

函数有时是以下题型组合起来构成的较为复杂的题型,因此,我们必须掌握住以下题型才能寻求突破。

换句话说,我们掌握住以下题型,复杂的题型分解开来,我们也能各个突破,最终解决掉。

一、核心知识点总结1、函数的表达式1)一次函数:y=kx+b(,k b 是常数,0k ≠) 2)反比例函数:函数xky =(k 是常数,0k ≠)叫做反比例函数。

注意:0x ≠ 3)二次函数:)0,,(2≠++=a c b a c bx ax y 是常数,, 2、点的坐标与函数的关系1)点的坐标用(),a b 表示,横坐标在前,纵坐标在后,中间有“,”分开。

平面内点的坐标是有序实数对,当b a ≠时,(),a b 和(),b a 是两个不同点的坐标。

2)点的坐标:从点向x 轴和y 轴引垂线,横纵坐标的绝对值对应相对应线段的长度。

3)若某一点在某一函数图像上,则该点的坐标可代入函数的表达式中,要将函数图像上的点与坐标一一联系起来。

3、函数的图像 1)一次函数一次函数by=的=的图像是经过点(0,b)的直线;正比例函数kxy+kx图像是经过原点(0,0)的直线。

2)反比例函数3)二次函数4、函数图像的平移① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:③平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位二、常见题型:1、求函数的表达式常见求函数表达式的方法是待定系数法,假设出函数解析式,将函数上的点的坐标代入函数,求出未知系数。

一次函数,二次函数,反比例函数性质总结

一次函数,二次函数,反比例函数性质总结

一次函数、二次函数、反比例函数性质总结1.一次函数一次函数一次函数)0(¹+=k b kx y ,当0=x 时,得到的y 的值也即b 叫做图象与坐标轴的纵截距,当0=y 时,得到的x 的值,叫做图象与坐标轴的横截距。

的值,叫做图象与坐标轴的横截距。

(1)当0=b 时,一次函数的解析式变为)0(¹=k kx y ,也称为正比例函数,此函数图象恒过原点)0,0(O ,且横,纵截距都为0。

且0>k 时,函数图象过一、三象限,0>k 时,图象过二、四象限。

时,图象过二、四象限。

①0>k ②0<k(2)当0¹b 时,)0(¹+=k b kx y 的图象及性质为的图象及性质为①0,0>>b k 时,时, ② 0,0<>b k 时 图象过一二,三图象过一二,三 图象过一、三、四图象过一、三、四象限象限 象限象限③0,0><b k 时,时, ④ 0,0<<b k 时,时,图象过一、二、四图象过一、二、四 图象过二、三、四图象过二、三、四象限象限 象限象限yxxy yy OOOO xxyOOy xx2.二次函数二次函数 二次函数的一般形式为)0(2¹++=a c bx ax y ,且a 决定开口方向和大小,当0>a 时,抛物线开口向上,有最小值,值域为),44[2+¥-ab ac 当0<a ,抛物线开口向下,有最大值,值域为]44,(2ab ac --¥。

(1)当0,0==c b 时,函数的解析式变为)0(2¹=a ax y ,则,则 ①0>a 时 ②0<a 时(2)b a ,决定二次函数的对称轴和开口方向决定二次函数的对称轴和开口方向①当0,0,0=>>c b a 时 ②0,0,0=<>c b a 时③ 0,0,0=><c b a 时 ④ 0,0,0=<<c b a 时(3)c a ,决定开口方向和与y 轴的截距轴的截距①0,0,0=>>b c a 时 ②0,0,0=<>b c a 时yyOxxxxyyOOyOxxOyO③0,0,0=><b c a 时 ④0,0,0=<<b c a 时(3)对于一般的二次函数,c b a ,,共同来决定其函数图像和性质,故通常采用配方的方法共同来决定其函数图像和性质,故通常采用配方的方法)0(2¹++=a c bx ax yc a b a b x a b x a c x a bx a +-++=++=))2()2(()(2222c a b a b x a +-+=]4)2[(222=c ab a b x a +-+4)2(22=ab ac a b x a 44)2(22-++我们称ab x 2-=为二次函数的对称轴,坐标)44,2(2a b ac a b--为二次函数的顶点坐标,此时我们也称其解析式为二次函数的顶点式,并可设其解析式为)0()(2¹+-=a k h x a y 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数、二次函数、反比例函数性质总结
1.一次函数
一次函数)0(≠+=k b kx y ,当0=x 时,得到的y 的值也即b 叫做图象与坐标轴的纵截距,当0=y 时,得到的x 的值,叫做图象与坐标轴的横截距。

(1)当0=b 时,一次函数的解析式变为)0(≠=k kx y ,也称为正比例函数,此函数图象恒过原点)0,0(O ,且横,纵截距都为0。

且0>k 时,函数图象过一、三象限,0>k 时,图象过二、四象限。

② k (≠a )+∞(1)当0,0==c b 时,函数的解析式变为)0(2
≠=a ax y ,则 ①0>a 时 ②0<a 时
(2)b a ,决定二次函数的对称轴与开口方向
②0,0,0=<>c b a 时
③ 0,0,0=><c b a 时 ④ 0,0,0=<<c b a 时
(3)c a ,决定开口方向与与y 轴的截距
①0,0,0=>>b c a 时 ②a
③0,0,0=>b c a 时 ④0,0,0=<<b c a 时
y y
O
x
x y
O
O
y
y
O
x
x
x
x
y y O
O
x x
O
O
y
(3)对于一般的二次函数,c b a ,,共同来决定其函数图像与性质,故通常采用配方的方法 )0(2
≠++=a c bx ax y c a
b
a b x a b x a c x a b x a +-++=++
=))2()2(()(2222 c a b a b x a +-+=]4)2[(222=c a b a b x a +-+4)2(2
2 =a
b a
c a b x a 44)2(22-++ 我们称a
b
x 2-=为二次函数的对称轴,坐标)44,2(2a b ac a b --为二次函数的顶点坐标,此时我们也称其解析式为二次函数的顶点式,并可设其解析式为)0()(2
≠+-=a k h x a y 。

若知道二次函数与x 轴的两个交点坐标,可设其解析式为)0)()((21≠--=a x x x x a y 。

故二次函数的解析式有三种形式 一般式:)0(2
≠++=a c bx ax y
顶点式:)0()(2
≠+-=a k h x a y ,顶点坐标),(k x 两点式: )0)()((21≠--=a x x x x a y 3.反比例函数
反比例函数的一般形式为)0(≠=
k x
k
y ,当0>k 时,函数图象过一、三象限,当0<k 时,函数图象过二、四象限。

①0>k ②0<k
y
y O
x
x
一.选择题 1、如果在一次函数中,当自变量x 的取值范围就是-1<x <3时,函数y 的取值范
围就是-2<y <6,那么此函数解析式为( )A 、x y 2= B 、42+-=x y C 、x y 2=或42+-=x y D 、x y 2-=或42-=x y
2、无论m 为何实数,直线m x y 2+=与直线4+-=x y 的交点不可能在( ) A.第三象限 B.第四象限 C.第一象限 D.第二象限
3、已知一次函数k kx y -=,若y 随着x 的增大而减小,则该函数的图象经过( ) A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限
4、已知一次函数4)2(2-++=k x k y 的图象经过原点,则( ) A 、k=±2 B 、k=2 C 、k= -2 D 、无法确定
5、一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围就是( )A.0x > B.0x < C.2x > D.2x <
6、(2007福建福州)已知一次函数(1)y a x b =-+的图象如图1所示,那么
a 的取值范围就是( ) A.1a > B.1a < C.0a >
D.0a <
7、(2007上海市)如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( )
A 、0k >,0b >
B 、0k >,0b <
C 、0k <,0b >
D 、0k <,0b <
8、(2007陕西)如图2,一次函数图象经过点A ,且与正比例函数y x =-的 图象交于点B ,则该一次函数的表达式为( ) A.2y x =-+
B.2y x =+
C.2y x =-
D.2y x =--
9、(2007浙江湖州)将直线y =2x 向右平移2个单位所得的直线的解析式就是( ) A 、y =2x +2 B 、y =2x -2 C 、y =2(x -2) D 、y =2(x +2)
O
O
x
x
2
3 第5题图
y x
O
O
x
y A B
1- y x =-
2
图1
O
x y
10、(2007四川乐山)已知一次函数y kx b =+的图象如下图(6)所示,当1x <时,y 的取值范围就是( ) A.20y -<<
B.40y -<<
C.2y <-
D.4y <-
11、(2007浙江金华)一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数就是( ) A.0
B.1
C.2
D.3
12、〔2011•日照市〕在平面直角坐标系中,已知直线y =-
4
3
x +3与x 轴、y 轴分别交于A 、B 两点,点C (0,n )就是y 轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标就是( )
A 、(0,43)
B 、(0,3
4
) C 、(0,3) D 、(0,4)
13、 (2011•苏州市)如图,已知A 点坐标为(5,0),直线(0)y x b b =+>与y 轴交于点
B,连接AB,∠a =75°,则b 的值为( ) A.3 B.
53 C.4 D.53
14、 1+=mx y 与12-=x y 的
图象交于x 轴上一点,则m 为( )
A.2
B.2-
C.21
D.2
1
-
二、填空题
15、直线x y 2-=向上平移3个单位,再向左平移2个单位后的解析式为________、 16、 函数y=kx+2,经过点(1 , 3),则y=0时,x= 、
17、 一次函数62-=x y 的图象与x 轴的交点坐标就是____ __,与y 轴的交点坐标就是 __
18、 若一次函数的图象经过点(2,-1),且与直线y=2x+1平行,则其表达式为 、
三.解答题
19、已知某一次函数的图象经过点(0, -3),且与正比例函数y= 1
2 x 的图象相交
于点(2,a), 求 :(1)a 的值、
x y
O 3 2y x a =+ 1y kx b =+
第11题 图(6) 0 2 -4
x
y
(2)k 、b 的值、
(3)这两个函数图象与x 轴所围成的三角形面积。

20、如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点
A B ,,直线1l ,2l 交于点C . (1)求点D 的坐标; (2)求直线2l 的解析表达式; (3)求ADC △的面积;
(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直.

写出点P 的坐标. 21已知抛物线)0(2≠++=a c bx x y 与x 轴交于)0,1(-A 与)0,3(B 两点,交y 轴于点E 、 (1)求此抛物线的解析式、 (2)若直线1+=x y 与抛物线交于A 、D ,与y 轴交于点F ,连接DE ,,求△DEF 的面积、 22如图,已知抛物线与x 交于A(-1,0)、E(3,0)两点,与y 轴交于点B(0,3)。

(1) 求抛物线的解析式;
(2) 设抛物线顶点为D,求四边形AEDB 的面积;
(3) △AOB 与△DBE 就是否相似?如果相似,请给以证明;如果不相似,请说明理由。

【045】如图,已知直线112y x =
+与y 轴交于点A,与x 轴交于点D,抛物线21
2
y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

⑴求该抛物线的解析式;
⑵动点P 在轴上移动,当△PAE 就是直角三角形时,求点P 的坐标P 。

⑶在抛物线的对称轴上找一点M,使||AM MC -的值最大,求出点M 的坐标。

l 1
l 2
y
D O 3 B C A 32
-
(4,0)。

相关文档
最新文档