线性代数行列式计算方法总结共17页

合集下载

计算行列式的方法总结PPT

计算行列式的方法总结PPT

THANK YOU
感谢聆听
性质
行列式具有以下基本性质
行列式转置不变
行列式的值与其转置行列式的值相 等。
行列式按行(列)展开
行列式的值等于其任意一行(列)元 素与其对应代数余子式的乘积之和。
行列式的倍数性质
行列式中某一行(列)的所有元素 都乘以一个常数k,则行列式的值也 乘以k。
行列式的消元性质
若行列式中两行(列)成比例,则 行列式的值为0。
例题3
利用数学归纳法计算分块矩阵的行列式。对于具有某种递推关系的分块矩阵,可以利用数 学归纳法进行证明和计算。通过假设当n=k时结论成立,进而证明当n=k+1时结论也成 立,从而得出对于任意正整数n结论都成立的结论。
06
特殊类型行列式的计算方法
箭型行列式的计算
箭型行列式的定义
箭型行列式是一种具有特殊形状的行列式,其主对角线上方的元素构成了一个箭头形状。
计算方法
对于 n 阶箭型行列式,可以先将其化为上三角或下三角行列式,然后直接计算对角线元素的乘积。具体步骤包括 :利用行列式的性质,将第 1 列的 -1 倍加到其他列上,从而将箭型行列式化为上三角或下三角行列式;计算对 角线元素的乘积。
两三角型行列式的计算
两三角型行列式的定义
两三角型行列式是指行列式的上半部分和下半部分分别呈现三角形形状的行列式。
80%
典型方法
拉普拉斯展开定理,将高阶行列 式按某一行(列)展开为低阶行 列式的和。
典型例题解析
例题1
利用数学归纳法计算范德蒙德 行列式。
例题2
计算含有特定元素的行列式, 如含有三角函数、指数函数等 。
例题3
利用归纳法证明某些特殊类型 的行列式具有特定的性质,如 对称性、反对称性等。

线性代数行列式计算总结

线性代数行列式计算总结

线性代数行列式计算总结线性代数中的行列式是一种非常重要的数学工具,它在矩阵理论、线性方程组的解法、线性空间与线性变换以及特征值与特征向量的计算中都起到至关重要的作用。

行列式的计算方法有很多,下面我将总结一下常见的行列式计算方法。

首先,我们先来定义什么是一个行列式。

行列式是一个标量,它是一个n阶方阵所带的一个数值特征。

对于一个n阶方阵A,它的行列式表示为,A,或者det(A),它的计算方法如下所示。

1.二阶行列式的计算方法对于一个二阶方阵A=,a11a12a21a2它的行列式计算方法是:,A,=a11*a22-a12*a212.三阶行列式的计算方法对于一个三阶方阵A=,a11a12a13a21a22a2a31a32a3它的行列式计算方法是:,A,=a11*a22*a33+a12*a23*a31+a13*a21*a32-a13*a22*a31-a12*a21*a33-a11*a23*a323.高阶行列式的计算方法对于一个高阶方阵A,可以通过对其中一行或一列进行展开来计算行列式。

展开的方式有很多种,常用的有代数余子式展开和化简为三角行列式展开两种。

3.1代数余子式展开对于一个n阶方阵A,选择一行或一列展开,计算每个元素的代数余子式,然后按照正负交替的方式相乘相加得到行列式的值。

具体步骤如下:- 选择第i行展开,行列式的值为,A, = ai1*C_1i + ai2*C_2i+ ... + ain*C_ni- 其中,C_ij是元素a_ij的代数余子式,计算方法是去掉第i行和第j列剩余元素构成的(n-1)阶子阵的行列式。

3.2三角行列式展开对于一个n阶方阵A,通过初等变换将方阵化为上三角形或下三角形,然后计算对角线的乘积得到行列式的值。

除了以上两种展开的方法,还可以通过矩阵的特征值和特征向量计算行列式的值。

具体步骤是:-计算矩阵A的特征值λ_1,λ_2,...,λ_n-计算矩阵A的特征向量v_1,v_2,...,v_n-行列式的值等于特征值的乘积:,A,=λ_1*λ_2*...*λ_n行列式的计算方法还有很多,比如拉普拉斯展开、按行或按列展开等。

行列式计算方法小结

行列式计算方法小结

行列式计算方法小结行列式是线性代数中的一个重要概念,它为矩阵提供了一种重要的性质。

在计算行列式时,有几种常见的方法可以使用,包括拉普拉斯展开、三角形展开和直接计算等。

本文将对这几种方法进行详细介绍和比较。

一、拉普拉斯展开法拉普拉斯展开法是求解行列式的一种常用方法。

它利用行列式的定义,将行列式按照其中一行或一列展开,转化为更小的行列式的求解问题。

具体步骤如下:1.选择一个行或列,记为第i行(列);2.将第i行(列)展开为n个代数余子式的乘积,并计算每个代数余子式的数值;3.将每个代数余子式乘以对应的元素,并根据正负法则进行求和。

例如,对于一个3阶的行列式A=abdegh通过拉普拉斯展开法,我们可以选择第一行展开:det(A) = aM11 - bM12 + cM13其中,M11,M12和M13分别表示代数余子式,具体计算方法为:M11=eM22-fM23M12=dM21-fM23M13=dM21-eM22代数余子式计算完成后,再将它们代入到展开式中计算即可。

拉普拉斯展开法的优点是思路清晰,易于理解和操作,适用于2阶及以上的行列式。

但当阶数较高时,计算量较大,效率较低。

二、三角形展开法三角形展开法是另一种常用的行列式计算方法。

它通过将行列式中的元素进行重新排列,使得计算过程更加规整,从而简化计算。

具体步骤如下:1.首先确定一个元素,例如第一行第一列的元素a;2.从第一行第一列开始,按照三角形的形状依次向右下方展开,依次得到包围a的三个三角形;3.将三个三角形的元素进行乘积运算,并根据正负法则求和;4.将得到的结果乘以a。

例如,对于3阶行列式A=abdegh我们可以选择第一行第一列的元素a进行三角形展开:det(A) = a(ei - fh) - b(di - fg) + c(dh - eg)通过三角形展开法,我们将行列式按照三角形的形状展开并进行计算,最后得到结果。

三角形展开法的优点是计算规整,清晰明了,可以简化计算过程。

行列式计算方法归纳总结

行列式计算方法归纳总结

2.行列式的计算方法2.1 定义法在引进行列式的定义之前,,为了更加容易的理解行列式的定义,首先介绍排列和逆序的概念.(1) n级排列:由1,2.3…n组成的一个有序数组称为一个n级排列.(2) 在一个排列中,如果一对数的前后位置与大小顺序相反,即:前面的数大于后面的数,那么它们就称为一个逆序,一个排列中逆序的总数称为这个排列的逆序数. (3) 逆序数为偶数的排列称为偶排列,逆序数为奇数的排列称为奇排列.在做好这些工作之后,来引入行列式的定义:定义:n 阶行列式aaaaa a a a a a a a a a a a nnn n n nn n321333323122322211131211 <I>等于所有取自不同行不同列的n 个元素的乘积.ja j a j a j a nn332211的代数和,这里jj j j n,,,,321为1,2,3,……,n 的一个排列,每一项<Ⅱ>都按下列规则带有符号,当jj j j n,,,321是偶排列时, <Ⅱ>带有正号,当jj j j n,,,,321是奇排列时,<Ⅱ> 带有负号.例2.1证明1112131415212223242531324142515200000000a a a a a a a a a a D a a a a a a ==. 分析 观察行列式我们会发现有许多零,故直接用定义法.证明 由行列式的定义知除去符号差别外行列式一般项可表示为1212n j j nj a a a则12512125()12(1)n j j j n j j nj j j j D a a a τ=-∑. (3)其中115,,,j j j 为1,2,3,4,5的任意排列,在D 中位于后三行后三列的元素为零,而在前两行前两列中,取不同行不同列的元素只有四个,就是说(3)式中每一项至少有一个来自后三行后三列. 故D =0.注意 此方法适用于阶数较低的行列式或行列式中零的个数较多.2.2递推法无论是初等数学,还是高等数学,递推公式都有着非常广泛的运用。

线性代数技巧行列式的计算方法

线性代数技巧行列式的计算方法

1.利用行列式定义直接计算 例1 计算行列式001002001000000n D n n=-解 D n 中不为零的项用一般形式表示为112211!n n n nn a a a a n ---=.该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2)2n n --,故 (1)(2)2(1)!.n n n D n --=-2.利用行列式的性质计算例2 一个n 阶行列式n ijD a =的元素满足,,1,2,,,ij ji a a i j n =-=则称D n 为反对称行列式,证明:奇数阶反对称行列式为零.证明:由i j j i a a =-知i i ii a a =-,即 0,1,2,,ii a i n ==故行列式D n 可表示为1213112232132331230000n n n nnnnaa a a a a D a a a a a a -=-----由行列式的性质A A '=1213112232132331230000n n nn nnn a a a a a a D a a a a a a -----=- 12131122321323312300(1)0n n n n nnna a a a a a a a a a a a -=------ (1)n n D =-当n 为奇数时,得D n =-D n ,因而得D n = 0.3.化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。

因此化三角形是行列式计算中的一个重要方法。

例 3 计算n 阶行列式a b b b b a b b D bb a bbbba=解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,n 列都加到第1列上,行列式不变,得(1)(1)(1)(1)a n b b bb a n b a b b D a n b b a b a n bb b a+-+-=+-+-11[(1)]11b b b a b b a n b b a b bba=+-100[(1)]000b b b a b a n b a b a b-=+---1[(1)]()n a n b a b -=+--4.降阶法降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。

行列式的计算技巧与方法总结(修改版)

行列式的计算技巧与方法总结(修改版)

..行列式的若干计算技巧与方法内容摘要1. 行列式的性质2.行列式计算的几种常见技巧和方法2.1 定义法2.2 利用行列式的性质2.3 降阶法2.4 升阶法(加边法)2.5 数学归纳法2.6 递推法3. 行列式计算的几种特殊技巧和方法3.1 拆行(列)法3.2 构造法3.3 特征值法4. 几类特殊行列式的计算技巧和方法4.1 三角形行列式4.2 “爪”字型行列式4.3 “么”字型行列式4.4 “两线”型行列式4.5 “三对角”型行列式4.6 范德蒙德行列式5. 行列式的计算方法的综合运用5.1 降阶法和递推法5.2 逐行相加减和套用范德蒙德行列式5.3 构造法和套用范德蒙德行列式1.2 行列式的性质性质1 行列互换,行列式不变.即nna a a a a a a a a a a a a a a a a a n2n1n22212n12111nnn2n12n 22211n 1211= .性质2 一个数乘行列式的一行(或列),等于用这个数乘此行列式.即=nn n2n1in i2i1n11211k k k a a a a a a a a ak nna a a a a a a a an2n1in i2i1n 11211. 性质3 如果行列式的某一行(或列)是两组数的和,那么该行列式就等于两个行列式的和,且这两个行列式除去该行(或列)以外的各行(或列)全与原来行列式的对应的行(或列)一样.即11121111211112111221212121212.n n n n nn n n n nnn n nnn n nna a a a a a a a abc b c b c b b b c c c a a a a a a a a a +++=+ 性质4 如果行列式中有两行(或列)对应元素相同或成比例,那么行列式为零.即k a a a ka ka ka a a a a a a nn n n in i i in i i n=21212111211nnn n in i i in i i n a a a a a a a a a a a a 21212111211=0. 性质5 把一行的倍数加到另一行,行列式不变.即=+++nn n n kn k k kn in k i k i n a a a a a a ca a ca a ca a a a a2121221111211nnn n kn k k in i i n a a a a a a a a a a a a 21212111211. 性质6 对换行列式中两行的位置,行列式反号.即nnn n kn k k in i i n a a a a a a a a a a a a21212111211=-nnn n in i i kn k k n a a a a a a a a a a a a 21212111211.性质7 行列式一行(或列)元素全为零,则行列式为零.即00000nn1-n n,n2n1n 11-n ,11211=a a a a a a a a.2、行列式的几种常见计算技巧和方法 2.1 定义法适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性.例1 计算行列式004003002001000.解析:这是一个四级行列式,在展开式中应该有244=!项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有41322314a a a a ,而()64321=τ,所以此项取正号.故004003002001000=()()241413223144321=-a a a a τ.2.2 利用行列式的性质即把已知行列式通过行列式的性质化为上三角形或下三角形.该方法适用于低阶行列式. 2.2.1 化三角形法上、下三角形行列式的形式及其值分别如下:nn n nna a a a a a a a a a a a a2211nn 333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 例2 计算行列式nn n n b a a a a a b a a a a ++=+21211211n 111D .解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形.解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得121n 11210000D 0n n na a ab b b b b +==.2.2.2 连加法这类行列式的特征是行列式某行(或列)加上其余各行(或列)后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计算.这类计算行列式的方法称为连加法.例3 计算行列式mx x x x m x x x x mx D n n n n ---=212121.解: mx x mxx m x m xx x mxn ni in ni in ni i-----=∑∑∑===212121n Dmx x x m x x x m x n n nn i i --⎪⎭⎫ ⎝⎛-=∑=2221111m m x x m x nn i i --⎪⎭⎫ ⎝⎛-=∑=0000121()⎪⎭⎫⎝⎛--=∑=-m x m n i i n 11. 2.2.3 滚动消去法当行列式每两行的值比较接近时,可采用让邻行中的某一行减或者加上另一行的若干倍,这种方法叫滚动消去法.例4 计算行列式()2122123123122121321D n ≥-------=n n n n n n n n nn.解:从最后一行开始每行减去上一行,有1111111111111111321D n ---------=n n 1111120022200021321----=n n111100011000011132122+-=-n n n ()()21211-++-=n n n .2.2.4 逐行相加减对于有些行列式,虽然前n 行的和全相同,但却为零.用连加法明显不行,这是我们可以尝试用逐行相加减的方法.例5 计算行列式111110000000000000D 32211n na a a a a a a ----=. 解:将第一列加到第二列,新的第二列加到第三列,以此类推,得:13210000000000000000D 321+----=n na a a a n()()()()()n n n a a a n a a a n 21n 21n 2211111+-=+--=+.2.3 降阶法将高阶行列式化为低阶行列式再求解. 2.3.1 按某一行(或列)展开例6 解行列式1221n 1000000000100001D a a a a a xx x x n n n-----=.解:按最后一行展开,得n n n n n a x a x a x a D ++++=---12211 .2.3.2 按拉普拉斯公式展开拉普拉斯定理如下:设在行列式D 中任意选定了()1-n k 1k ≤≤个行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式D.即n n 2211A M A M A M D +++= ,其中i A 是子式i M 对应的代数余子式.即nn nn nn nn nnB A BC A ∙=0, nn nn nnnn nn B A B C A ∙=0.例7 解行列式γβββββγββββγλbbbaa a a n =D .解:从第三行开始,每行都减去上一行;再从第三列开始,每列都加到第二列,得βγβγγββββγλ---=0000D n b aa aa()()βγβγββββγλ---+-=0000021n b aa aa n ()()βγβγβγλ--∙-+-=000021n ba n ()()[]()21n 2-----+=n ab n βγβλλγ.2.4 升阶法就是把n 阶行列式增加一行一列变成n+1阶行列式,再通过性质化简算出结果,这种计算行列式的方法叫做升阶法或加边法.升阶法的最大特点就是要找每行或每列相同的因子,那么升阶之后,就可以利用行列式的性质把绝大多数元素化为0,这样就达到简化计算的效果.其中,添加行与列的方式一般有五种:首行首列,首行末列,末行首列,末行末列以及一般行列的位置.例8 解行列式D=0111110111110111110111110.解:使行列式D 变成1+n 阶行列式,即111010110110101110011111D =.再将第一行的()1-倍加到其他各行,得:D=1101001001010001111111--------. 从第二列开始,每列乘以()1-加到第一列,得:100100000100000101111)1n D ------=( ()()1n 11n --=+.2.5数学归纳法有些行列式,可通过计算低阶行列式的值发现其规律,然后提出假设,再利用数学归纳法去证明.对于高阶行列式的证明问题,数学归纳法是常用的方法.例9 计算行列式βββββcos 211cos 200000cos 210001cos 210001cos=n D .解:用数学归纳法证明. 当1=n 时,βcos 1=D . 当2=n 时,ββββ2cos 1cos 2cos 211cos 22=-==D .猜想,βn D n cos =.由上可知,当1=n ,2=n 时,结论成立.假设当k n =时,结论成立.即:βk D k cos =.现证当1+=k n 时,结论也成立.当1+=k n 时,βββββcos 211cos 200000cos 210001cos 210001cos 1=+k D .将1+k D 按最后一行展开,得()βββββcos 2000cos 21001cos 21001cos cos 21D 111k ∙-=++++k k()10cos 21001cos 2101cos 11 βββkk ++-+1cos 2--=k k D D β.因为βk D k cos =,()()βββββββsin sin cos cos cos 1cos 1k k k k D k +=-=-=-,所以1+k D 1cos 2--=k k D D βββββββsin sin cos cos cos cos 2k k k --= ββββsin sin cos cos k k -= ()β1cos +=k .这就证明了当1+=k n 时也成立,从而由数学归纳法可知,对一切的自然数,结论都成立. 即:βn D n cos =. 2.6 递推法技巧分析:若n 阶行列式D 满足关系式021=++--n n n cD bD aD .则作特征方程02=++c bx ax .① 若0≠∆,则特征方程有两个不等根,则1211--+=n n n Bx Ax D . ② 若0=∆,则特征方程有重根21x x =,则()11-+=n n x nB A D .在①②中, A ,B 均为待定系数,可令2,1==n n 求出.例10 计算行列式94000005940000000594000005940000059D n =.解:按第一列展开,得21209---=n n n D D D .即020921=+---n n n D D D .作特征方程02092=+-x x .解得5,421==x x .则1154--∙+∙=n n n B A D .当1=n 时,B A +=9; 当2=n 时,B A 5461+=. 解得25,16=-=B A ,所以1145++-=n n n D .3、行列式的几种特殊计算技巧和方法 3.1 拆行(列)法 3.1.1 概念及计算方法拆行(列)法(或称分裂行列式法),就是将所给的行列式拆成两个或若干个行列式之和,然后再求行列式的值.拆行(列)法有两种情况,一是行列式中有某行(列)是两项之和,可直接利用性质拆项;二是所给行列式中行(列)没有两项之和,这时需保持行列式之值不变,使其化为两项和. 3.1.2 例题解析例11 计算行列式nn n n a a a a a a a a --------=-1110000011000110001D 133221.解:把第一列的元素看成两项的和进行拆列,得nn n n a a a a a a a a --+-+--+-+--=-11010000001100001010001D 133221.1101000001100010000110001000001100011000113322113322nn n nnn a a a a a a a a a a a a a a a -------+-------=--上面第一个行列式的值为1,所以nn n n a a a a a a a ------=-1101000010011D 13321111--=n D a .这个式子在对于任何()2≥n n 都成立,因此有111--=n n D a D()()n n n a a a a a a D a a 2112112211111---+++-==--=()∏∑==-+=ij j ii a 1n111.3.2 构造法3.2.1 概念及计算方法有些行列式通过直接求解比较麻烦,这时可同时构造一个容易求解的行列式,从而求出原行列式的值. 3.2.2 例题解析例12 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是范德蒙德行列式,但可以考虑构造1+n 阶的范德蒙德行列式来间接求出n D 的值.构造1+n 阶的范德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x的系数为()()n n n n n n D D A -=-=+++11,1.又根据范德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .3.3 特征值法 3.3.1 概念及计算方法设n λλλ ,,21是n 级矩阵A 的全部特征值,则有公式 n A λλλ 21=.故只要能求出矩阵A 的全部特征值,那么就可以计算出A 的行列式. 3.3.2 例题解析例13 若n λλλ ,,21是n 级矩阵A 的全部特征值,证明:A 可逆当且仅当它的特征值全不为零.证明:因为n A λλλ 21=,则A 可逆()n i i n 2,1000A 21=≠⇔≠⇔≠⇔λλλλ.即A 可逆当且仅当它的特征值全不为零.4、几类特殊的行列式的巧妙计算技巧和方法 4.1 三角形行列式4.1.1 概念形如nn n n n a a a a a a a a a a 333223221131211,nnn n n a a a a a a a a a a321333231222111这样的行列式,形状像个三角形,故称为“三角形”行列式. 4.1.2 计算方法 由行列式的定义可知,nn nn n n n a a a a a a a a a a a a a2211333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 4.2 “爪”字型行列式 4.2.1 概念形如nn na c a c a cb b b a2211210,n nn c a c a c a a b b b2211012,nnn b b b a a c a c a c 211122,121122a b b b c a c a c a nn n这样的行列式,形状像个“爪”字,故称它们为“爪”字型行列式. 4.2.2 计算方法利用对角线消去行列式中的“横线”或“竖线”,均可把行列式化成“三角形”行列式.此方法可归纳为:“爪”字对角消竖横. 4.2.3 例题解析例14 计算行列式na a a a 111111321,其中.,2,1,0n i a i=≠分析:这是一个典型的“爪”字型行列式,计算时可将行列式的第.),3,2(n i i =列元素乘以ia 1-后都加到第一列上,原行列式可化为三角形行列式.解:na a a a 111111321nni ia a a a a 00011113221∑=-=⎪⎪⎭⎫⎝⎛-=∑=ni i n aa a a a 21321. 4.3 “么”字型行列式 4.3.1 概念形如n n n b b b a a c a c a c 211122,n nna b c a b c a b c a222111,n n nc a c a c a a b b b 2211012,0111222a cb ac b a c b a nn n ,121122c a c a b a b c a b n n n,nn na c a c a cb b b a221121,0121122a b b b c a c a c a nnn,nnn b a b c b a b a c a c 12211201这样的行列式,形状像个“么”字,因此常称它们为“么”字型行列式. 4.3.2 计算方法利用“么”字的一个撇消去另一个撇,就可以把行列式化为三角形行列式.此方法可以归纳为:“么”字两撇相互消.注意:消第一撇的方向是沿着“么”的方向,从后向前,利用n a 消去n c ,然后再用1-n a 消去1-n c ,依次类推. 4.3.3 例题解析例15 计算1+n 阶行列式nn n b b b D 1111111111----=-+ .解:从最后一行开始后一行加到前一行(即消去第一撇),得nnn ni ini in b b b bb D 11111111-+--+-=-==+∑∑()()()⎪⎭⎫ ⎝⎛+--∙-=∑=+ni i nn n b 121111()()⎪⎭⎫ ⎝⎛+--=∑=+ni i n n b 12311.4.4 “两线”型行列式 4.4.1 概念形如nnn a b b b a b a0000000012211-这样的行列式叫做“两线型”行列式. 4.4.2 计算方法对于这样的行列式,可通过直接展开法求解. 4.4.3 例题解析例16 求行列式nnn n a b b b a b a00000000D 12211-=. 解:按第一列展开,得()12211122110001000-+-+-+=n n n nn n b b a b b a b b a a D()n n n b b b a a a 211211+-+=.4.5 “三对角”型行列式 4.5.1 概念形如ba ab ba ab b a abb a ab b a +++++10000000000100000100000这样的行列式,叫做“三对角型”行列式. 4.5.2 计算方法对于这样的行列式,可直接展开得到两项递推关系式,然后变形进行两次递推或利用数学归纳法证明. 4.5.3 例题解析例17 求行列式ba ab ba ab b a abb a ab b a n +++++=1000000000000100000100000D.解:按第一列展开,得()ba ab ba b a ab b a abb a ab D b a n n +++++-+=-100000010000100000D 1()21---+=n n abD D b a .变形,得()211D ----=-n n n n aD D b aD .由于2221,b ab a D b a D ++=+=, 从而利用上述递推公式得()211D ----=-n n n n aD D b aD ()()n n n n b aD D b aD D b =-==-=---122322 .故()nn n n n n n n n n b ab b a D a b b aD a b aD D ++++==++=+=------12211121 n n n n b ab b a a ++++=--11 .4.6 Vandermonde 行列式 4.6.1 概念形如113121122322213211111----n nn n n nna a a a a a a a a a a a这样的行列式,成为n 级的范德蒙德行列式. 4.6.2 计算方法通过数学归纳法证明,可得()∏≤<≤-----=11113121122322213211111i j j i n nn n n nna a a a a a a a a a a a a a. 4.6.3 例题解析例18 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是范德蒙德行列式,但可以考虑构造1+n 阶的范德蒙德行列式来间接求出n D 的值.构造1+n 阶的范德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x的系数为()()n n n n n n D D A -=-=+++11,1.又根据范德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x的系数为()()∏≤<≤-+-ni j j in x xx x x 121 ,故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .5、行列式的计算方法的综合运用有些行列式如果只使用一种计算方法不易计算,这时就需要结合多种计算方法,使计算简便易行.下面就列举几种行列式计算方法的综合应用. 5.1 降阶法和递推法例19 计算行列式2100012000002100012100012D=n .分析:乍一看该行列式,并没有什么规律.但仔细观察便会发现,按第一行展开便可得到1-n阶的形式.解:将行列式按第一行展开,得212D ---=n n n D D . 即211D ----=-n n n n D D D .∴12312211=-=-==-=----D D D D D D n n n n . ∴()()111111---++++==+=n n n n D D D()121+=+-=n n .5.2 逐行相加减和套用范德蒙德行列式 例20 计算行列式43423332232213124243232221214321sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1sin 1sin 1sin 11111D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++++++++++=解:从第一行开始,依次用上一行的()1-倍加到下一行,进行逐行相加,得43332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin 1111ϕϕϕϕϕϕϕϕϕϕϕϕ=D .再由范德蒙德行列式,得()∏≤<≤-==4143332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1111i j j i D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ.5.3 构造法和套用范德蒙德行列式例21 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是范德蒙德行列式,但可以考虑构造1+n 阶的范德蒙德行列式来间接求出n D 的值.构造1+n 阶的范德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x的系数为()()n n n n n n D D A -=-=+++11,1.又根据范德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有:()()∏≤<≤-+++=ni j j in n x xx x x D 121 .。

行列式计算方法总结

行列式计算方法总结

行列式计算方法总结行列式是线性代数中的一个重要概念,它在数学和物理等领域都有着广泛的应用。

在实际运用中,我们常常需要对行列式进行计算,因此掌握行列式的计算方法是非常重要的。

本文将对行列式的计算方法进行总结,希望能够帮助大家更好地理解和掌握行列式的相关知识。

1. 二阶行列式的计算方法。

对于二阶行列式,计算方法非常简单。

设。

\[D=\begin{vmatrix} a & b \\ c & d \end{vmatrix}\]则行列式D的计算公式为。

\[D=ad-bc\]2. 三阶行列式的计算方法。

对于三阶行列式,计算稍显复杂,但我们可以利用代数余子式的方法来进行计算。

设。

\[D=\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}\]则行列式D的计算公式为。

\[D=aei+bfg+cdh-ceg-bdi-afh\]3. n阶行列式的计算方法。

对于n阶行列式,我们可以利用拉普拉斯展开等方法进行计算。

拉普拉斯展开是一种递归的方法,通过不断地将n阶行列式化为n-1阶行列式的形式来进行计算。

在实际运用中,我们可以根据具体情况选择合适的方法来进行计算,以提高计算的效率。

4. 行列式的性质。

行列式具有许多重要的性质,例如行列式与它的转置行列式相等、行列式中某一行(列)乘以一个数k,等于这个数与该行列式的乘积等等。

这些性质在行列式的计算过程中起着重要的作用,可以帮助我们简化计算,提高计算的效率。

5. 行列式的应用。

行列式在数学和物理等领域有着广泛的应用,例如在线性方程组的求解、矩阵的求逆、向量的叉乘等方面都有着重要的作用。

掌握行列式的计算方法不仅可以帮助我们更好地理解线性代数的相关知识,还可以为我们在实际问题中的求解提供有力的工具。

总结。

行列式是线性代数中的重要内容,掌握行列式的计算方法对于我们更好地理解和运用线性代数知识具有重要意义。

线性代数技巧行列式的计算方法

线性代数技巧行列式的计算方法

计算n 阶行列式的若干方法举例n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。

下面介绍几种常用的方法,并举例说明。

1.利用行列式定义直接计算 例1 计算行列式00100201000000n D n n =-解 D n 中不为零的项用一般形式表示为112211!n n n nn a a a a n ---=.该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2)2n n --,故 (1)(2)2(1)!.n n n D n --=-2.利用行列式的性质计算例2 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由ijji aa =-知ii ii a a =-,即0,1,2,,ii a i n ==故行列式D n 可表示为1213112232132331230000n n n n nnna a a a a a D a a a a a a -=-----由行列式的性质A A '=1213112232132331230000n n n n nnn a a a a a a D a a a a a a -----=-12131122321323312300(1)00n n n n nnna a a a a a a a a a a a -=------(1)n n D =-当n 为奇数时,得D n =-D n ,因而得D n = 0.3.化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。

因此化三角形是行列式计算中的一个重要方法。

例3 计算n 阶行列式a b b b ba b b Dbb a b bbba=解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,n 列都加到第1列上,行列式不变,得(1)(1)(1)(1)a n b b b b a n b ab b D a n bb a b a n bb b a+-+-=+-+-11[(1)]11b b b a b b a n b b a b b ba=+-100[(1)]000b b b a b a n b a b a b-=+---1[(1)]()n a n b a b -=+--4.降阶法降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。

线性代数技巧行列式的计算方法

线性代数技巧行列式的计算方法

计算n 阶行列式的若干方法举例n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。

下面介绍几种常用的方法,并举例说明。

1.利用行列式定义直接计算 例1 计算行列式001002001000000n D n n =-解 D n 中不为零的项用一般形式表示为112211!n n n nn a a a a n ---=.该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2)2n n --,故 (1)(2)2(1)!.n n n D n --=-2.利用行列式的性质计算例2 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由ijji aa =-知ii ii a a =-,即0,1,2,,ii a i n ==故行列式D n 可表示为1213112232132331230000n n n n nnna a a a a a D a a a a a a -=-----由行列式的性质A A '=1213112232132331230000n n n nnnn a a a a a a D a a a a a a -----=-12131122321323312300(1)0n n n n nnna a a a a a a a a a a a -=------(1)n n D =-当n 为奇数时,得D n =-D n ,因而得D n = 0.3.化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。

因此化三角形是行列式计算中的一个重要方法。

例3 计算n 阶行列式a b b b ba b b D bb a b bbba=解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,n 列都加到第1列上,行列式不变,得(1)(1)(1)(1)a n b b b b a n b a bb D a n bb a b a n bb b a+-+-=+-+-11[(1)]11b b b a b b a n b b a b b ba=+-100[(1)]000b b b a b a n b a b a b-=+---1[(1)]()n a n b a b -=+--4.降阶法降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。

(完整版)行列式的计算方法总结

(完整版)行列式的计算方法总结

行列式的计算方法总结:1. 利用行列式性质把行列式化为上、下三角形行列式.2. 行列式按一行(一列)展开,或按多行(多列)展开(Laplace 定理). 几个特别的行列式:B A BC A BC A ==0021,B A BA D DB Amn )1(0021-==,其中B A ,分别是n m ,阶的方阵. 例子: nn abab ab b a b abaD 22=,利用Laplace 定理,按第1,+n n 行展开,除2级子式ab ba 外其余由第1,+n n 行所得的2级子式均为零. 故222222112)()1(--+++++-=-=n n n n n n n D b a D ab b a D ,此为递推公式,应用可得n n n n b a D b a D b a D )()()(224222222222-==-=-=-- .3. 箭头形行列式或者可以化为箭头形的行列式.例:nn n n n n n a x x a a x x a a x x a a a a x x a a a a x a a a a x a a a a x ------=0001133112211321321321321321 -----(倍加到其余各行第一行的1-) 100101010011)(3332221111-------⋅-=∏=nn n n i i i a x a a x a a x a a x x a x --------(每一列提出相应的公因子i i a x -) 1001000010)(33322221111nn n ni ii i n i i i a x a a x a a x a a x a a x x a x ----+-⋅-=∑∏== --------(将第n ,,3,2 列加到第一列)其它的例子:特点是除了主对角线,其余位置上的元素各行或各列都相同.n x a aa a a x a a a a a x a a a aa x a ++++ 321,nn n n a x a a a a a x a a a a a x a a a a a x ++++ 321321321321. 4. 逐行逐列相减法.行列式特点是每相邻两行(列)之间有许多元素相同.用逐行(列)相减可以化出零. 5. 升阶法(或加边法, 添加一行一列,利于计算,但同时保持行列式不变).例子:nn n n nnn n nn n n nn b a b a b a a b a b a b a a b a b a b a a b b b b a b a b a b a b a b a b a b a b a ++++-++++-++++----=++++++++++++10101010000011112122212212111121212221212111∑∑∑∑∑∑======+--+=---+--+=------=ni in i i i ni in ni i n i i i ni in n b b a na b b b b b a na a a ab b b 1112111121211110100000101111111010100111011101∑∑∑∑∑∑∑=≠======-+++=-++=nj nji i j i j ni i ni i ni i i ni i ni i a a b b a b a n b a 1111111)(1)1)(1(.例子:nnx a aaaa x a a a a a x a a a a a x a a a a a x a aaaa x a a a a a x a aa a a x a ++++=++++0001321321).1(00000000000010100010001000111213211321∑∑==+=+=----=ni in nni inx a x x x x x x x a a a a x a x x x x a a a a6. 利用范德蒙德行列式.计算行列式: n nn n nn nn n n nnx x x x x x x x x x x x x x x x D321223222122322213211111----=解: 令: nnnn nn n nn n n n nn n n ny x x x y x x x y x x x y x x x y x x x D211112112222212222212111111--------=,这是一个1+n 级范德蒙德行列式. 一方面,由范德蒙德行列式得)())(()(2111n ni j j ix y x y x y x xD ---⋅-=∏≤<≤ .可看做是关于y 的一个n 次多项式.另一方面,将1D 按最后一列展开,可得一个关于y 的多项式01111p y p y p y p D n n n n ++++=-- ,其中1-n y 的系数1-n p 与所求行列式D 的关系为1--=n p D .由)())(()(2111n ni j j ix y x y x y x xD ---⋅-=∏≤<≤ 来计算1-n y的系数1-n p 得:∑∏=≤<≤-⋅--=ni i ni j j in x x xp 111)(,故有∑∏=≤<≤-⋅-=-=ni i ni j j in x x xp D 111)(其它的例子:=+-+++-++-++------n n n n n n n n n n n n n n n n n n nn n n nb b a b a b a a b b a b a b a a b b a b a b a a 111121211111212222222122111121211111……每一行提公因子n i a ,nn n n n n n n n n n n n n nn n n a b a b a b a b a ba b a b a b a b a b a ba b a a a )()()()(1)()()()(1)()()()(1111112111122122222221111121111121++-++++++--+=).(1121∏≤<≤+-=n i j j j ii nn n n a b a b a a a7.利用数学归纳法证明行列式.(对行列式的级数归纳)证明当βα≠时,,1000001000100011βαβαβααββαβααββααββα--=+++++=++n n n D证明时,将n D 按第一行(或第一列)展开得21)(---+=n n n D D D αββα,利用归纳假设可得. 8. 利用递推公式.例子: 计算行列式,10000010001000βααββαβααββααββα+++++=n D 解: 按第一行展开得: 21)(---+=n n n D D D αββα,将此式化为:(1) )(211----=-n n n n D D D D αβα或 (2) )(211----=-n n n n D D D D βαβ 利用递推公式(1)得:n n n n n n n n D D D D D D D D βαβαβαβα=-==-=-=-------)()()(122322211 ,即n n n D D βα+=-1. (3)利用递推公式(2)得:n n n n n n n n D D D D D D D D αβαβαβαβ=-==-=-=-------)()()(122322211 ,即n n n D D αβ+=-1. (4)由(3)(4) 解得: ,,)1(,11⎪⎩⎪⎨⎧=+≠--=++βααβαβαβαn n n n n D其它的例子nn acb a ac b a c b a D00000000000=,按第一行展开可得21---=n n n bcD aD D ,此时令,,bc a ==+αββα则21)(---+=n n n D D D αββα,变形为211)(----=-n n n n D D D D αβα,此为递推公式.利用刚才的例子可求得结果. 这里,,bc a ==+αββα即βα,是方程02=+-bc ax x 的两个根.9. 分拆法.将行列式的其中一行或者一列拆成两个数的和,将行列式分解成两个容易求的行列式的和.例子:accccb ac c c bb ac c bbbac b b b b c a c accccb ac c c bb ac c bbbacb b b b a D n-+==210000V V acccb ac c b b a c b b b a b b b b c a accccb ac c c b b a c c b b b a c b b b b c +=-+=1V : 除第一行外,其余各行加上第一行的1-倍,所得行列式按第一列展开,2V 按第一列展开.11)(0000000--=----------=n b a c ba b c b c bc ba b c b c b b b a b c ba b b b b c V12)(--=n D c a V , 故11)()(---+-=n n n D c a b a c D ,由c b ,的对称性质,亦可得11)()(---+-=n n n D b a c a b D ,这两个式子中削去1-n D ,可得结论,bc c a b b a c D nn n ----=)()(.注: (1) 同一个行列式,可有多种计算方法.要利用行列式自身元素的特点,选择合适的计算方法. (2) 以上的各种方法并不是互相独立的,计算一个行列式时,有时需要综合运用以上方法,。

线性代数行列式计算方法总结

线性代数行列式计算方法总结

线性代数行列式计算方法总结线性代数是数学的一个分支,研究向量空间与线性映射的代数理论。

行列式是线性代数中重要的概念之一,用于判断线性方程组的解的存在与唯一性,以及计算线性变换的特征值与特征向量等。

本文将介绍线性代数中行列式的计算方法,并总结为以下几种常见的方法。

方法一:定义法行列式的定义是一个很重要的概念,也是计算行列式的基础。

对于一个n阶方阵A,它的行列式表示为|A|或det(A),定义为n个行向量或列向量所组成的n维向量空间的基向量所构成的平行多面体的有向体积。

根据这个定义,我们可以通过构造平行多面体来计算行列式的值,方法即是代数余子式展开法。

方法二:对角线法则对角线法则是计算2阶或3阶方阵行列式的简易方法。

对于2阶方阵A,其行列式的值等于主对角线上元素的乘积减去副对角线上元素的乘积;对于3阶方阵A,其行列式的值等于主对角线上元素的乘积与副对角线上元素的乘积之差。

此方法适用于小规模方阵的计算。

方法三:按行展开法按行展开法是计算n阶方阵行列式的一种常用方法。

对于一个n阶方阵A,选择其中一行(通常选择第一行)展开,即将该行中的元素与所在行和列上排列的剩余元素分别构成n-1阶的方阵,然后将其乘以对应元素的代数余子式,最后再按正负号相间相加得到行列式的值。

按行展开法在计算大规模方阵的行列式时,不仅简化了计算过程,还可以通过递归的方式实现。

方法四:按列展开法按列展开法与按行展开法类似,只是选择展开的对象变为一列。

选择第j列展开,则将该列中的元素与所在行和列上排列的剩余元素分别构成n-1阶的方阵,然后将其乘以对应元素的代数余子式,最后再按正负号相间相加得到行列式的值。

方法五:性质法行列式具有一系列的性质,可以根据这些性质来简化行列式的计算过程。

这些性质包括行列对换,相同行列的元素倍加,行列式放缩等。

利用这些性质,我们可以通过对行列式进行简单的变换,使其更容易计算,例如将行列式转化为上三角形矩阵,然后直接求解主对角线上元素的乘积即可。

线性代数-行列式(完整版)

线性代数-行列式(完整版)

a11a22 a12a21
数a( ij i, j 1,2)称为它的元素。
今后对任何行列式,横 排称为行, 竖排称为列 ,
aij中i称为行标, j称为列标, aij 表示第i行第j列元素, 左上角到右下角表示主对角线,
4
右上角到左下角表示次对角线, 例1
5 1 3 2
5 2 (1) 3 13
a21 a22 a31 a32
可以用对角线法则来记忆如下.
8
主对角线法
a11
a12
a13 a23 a11a22a33 a12a23a31 a13a21a32 a33 a13a22a31 a12a21a33 a11a23a32
a21 a22 a31 a32
9
例4 计算三阶行列式
定理1.1:任一排列经过一个对换后奇偶性改变。
证明:
19

对换在相邻两数间发生,即
设排列 …jk… (1) 经j,k对换变成 …kj… (2) 此时,排列(1)、(2)中j,k与其他数是否构成逆序的情形未 发生变化;而j与k两数构成逆序的情形有变化: 若(1)中jk构成逆序,则(2)中不构成逆序(逆序数减少1) 若(1)中jk不构成逆序,则(2)中构成逆序(逆序数增加1)
n!个) 称为一个n级排列(总数为 . 如:由1,2,3可组成的三级排列有3!=6个: 123 132 213 231 312 321 注意:上述排列中只有第一个为自然顺序(小大),其 他则或多或少地破坏了自然顺序(元素大小与位置相
反)——构成逆序.
15
(2)排列的逆序数

定义: 在一个n 级排列i1i2…in中,若某两数的前 后位置与大小顺序相反,即is>it(t>s),则称这两数构 成一个逆序.排列中逆序的总数,称为它的逆序数, 记为N (i1i2…in).

线性代数专题:行列式计算

线性代数专题:行列式计算
2
β + α
β β = 1+ + + α α
β α =
n +1
β + α ⋅
n
−1 =
1
β −1 α
αn
β n +1 − α n +1 β −α
∴ Dn =
β n +1 − α n +1 , 当 β≠α β −α
Dn
(3)
当 β = α,从
= ( x + y ) Dk −1 − xy 0 0 = ( x + y ) Dk −1 − xyDk − 2 Dk −1 = x k −1 + x k − 2 y + D k − 2 = x k − 2 + x k −3 y +
= ( x + y )( x k −1 + x k − 2 y + − xy ( x k − 2 + x k −3 y + = x k + x k −1 y +
a x −a
a a x
a a a a x
Dn = − a − a x … −a −a −a
a = −a −a x a … x −a −a −a
a + −a … a x −a ②
−a −a
= − a( x − a) n −1 + ( x + a) Dn −1
①×(x + a) ②×(x – a)
( x + a ) Dn = a ( x + a ) n + ( x 2 − a 2 ) Dn −1 ( x − a ) Dn = − a ( x − a ) n + ( x 2 − a 2 ) Dn −1

行列式的计算技巧与方法总结

行列式的计算技巧与方法总结

行列式的计算技巧与方法总结行列式是线性代数中的重要概念,广泛应用于各个领域,如线性方程组的求解、线性变换的判断等。

在实际应用中,计算行列式是一个必不可少的环节。

本文将对行列式的计算技巧和方法进行总结,以便读者能够更加轻松地解决行列式相关问题。

一、行列式的定义行列式是一个数。

行列式的定义通常有多种不同的形式,其中最常见的是按照矩阵的形式定义的。

对于一个n阶方阵A=(a_ij),其行列式记作det(A),可以通过以下方式计算:det(A) = a_11 * C_11 + a_12 * C_12 + ... + (-1)^(n+1) * a_1n * C_1n其中,C_ij是指元素a_ij的代数余子式。

二、行列式的计算方法1.二阶行列式的计算对于2阶方阵A=(a_11,a_12;a_21,a_22),其行列式可以直接通过以下公式计算:det(A) = a_11 * a_22 - a_12 * a_212.三阶行列式的计算对于3阶方阵A=(a_11,a_12,a_13;a_21,a_22,a_23;a_31,a_32,a_33),可以通过Sarrus法则来计算行列式:det(A) = a_11*a_22*a_33 + a_12*a_23*a_31 + a_13*a_21*a_32 -a_13*a_22*a_31 - a_12*a_21*a_33 - a_11*a_23*a_323.高阶行列式的计算对于n(n>3)阶方阵A,一般采用高斯消元法将矩阵转化为上三角矩阵,然后再计算行列式的值。

具体操作如下:a)对第一列进行第二行、第三行、..、第n行的倍加,使得第一列除了第一个元素外的其他元素都为0。

b)接着在第二列中对第三行、第四行、..、第n行的倍加,使得第二列除了第二个元素外的其他元素都为0。

c)重复以上步骤,直到将矩阵转化为上三角矩阵。

d)上三角矩阵的行列式等于主对角线上的元素相乘。

4.行列式的性质行列式具有以下性质,可以在计算中灵活运用:a)行互换或列互换,行列式的值不变,其符号变为相反数。

线性代数行列式计算方法总结

线性代数行列式计算方法总结

线性代数行列式计算方法总结线性代数中,行列式是一个非常重要的概念。

它是一种用于表示线性变换、矩阵和线性方程组性质的数值指标。

在实际应用中,我们常常需要计算行列式的值。

下面将总结一些常用的行列式计算方法。

一、定义法行列式的定义法是最基本的计算方法。

对于一个n阶方阵A=[a[i][j]],其行列式表示为det(A),可以通过如下公式进行计算:det(A) = Σ[(-1)^perm] * a[1][p[1]] * a[2][p[2]] * ... *a[n][p[n]]其中,Σ表示求和,perm表示排列p[1]、p[2]、..、p[n]的所有可能情况。

公式中的(-1)^perm是一个符号因子,当一些排列具有奇数个逆序时,符号为负;当一些排列具有偶数个逆序时,符号为正。

这种方法简单直观,但对于大型的n阶矩阵计算复杂度较高。

因此,我们需要探索一些优化方法。

二、拉普拉斯展开法拉普拉斯展开法也是一种常用的行列式计算方法。

它基于行列式的定义法,并通过将行列式展开为一系列子行列式的和来计算。

对于一个n阶方阵A=[a[i][j]],其行列式表示为det(A),可以通过以下公式进行计算:det(A) = Σ[(-1)^(i+1)] * a[i][j] * det(A[i][j])其中,A[i][j]表示A删去第i行和第j列后的子矩阵。

公式中的Σ表示求和,从j=1到j=n进行累加。

拉普拉斯展开法的优点是可以通过递归地计算子矩阵的行列式来减少计算量,但其复杂度仍然为O(n!),对于大型矩阵仍然不够高效。

三、行变换法行变换法是一种常用的行列式计算方法,通过矩阵的初等行变换将矩阵转化为易于计算的上(下)三角形式,从而求得行列式的值。

对于一个n阶方阵A=[a[i][j]],其行列式表示为det(A),可以通过以下步骤进行计算:1.对A进行初等行变换,将其转化为上(下)三角形形式。

2.计算上(下)三角形矩阵对角线上的元素的乘积,即可得到行列式的值。

行列式计算方法小结.精选PPT

行列式计算方法小结.精选PPT
n阶 n1阶 2阶
此法灵活多变,易于操作,是最常用的手法。
*4. 递推公式法 (见附录1) *5、数学归纳法 (见附录2)
*6. 加边法(升阶)(见附录3)
二、特征
. 阶数不算高的数字行列式,可化为三角形行 列式或结合展开定理计算.
. 非零元素很少的行列式,可直接用定义或降阶法。
一些特殊行列式的计算(包括一些重要结果)
阶范德蒙行列式结论也下证对n倍则行的行开始逐行减去上一中从第在倍则行的行开始逐行减去上一中从第在1xnvn111100011111213231222113312211312xxxxxxxxxxxxxxxxxxxxxxxxvnnnnnnnnn?????????????????????????????????按第1列展开1213231222113312211312xxxxxxxxxxxxxxxxxxxxxxxxnnnnnnnn???????????????????????????????11312xxxxxxn???????2232232111nnxxxxxx???22322??????nnnnxxx?????根据归纳假设有
a b0 00
例 P.41 33题
0 a b 0 0 n阶
将第1行的(-1)倍分别加到第2行,第3行:从最后一列开始每列乘以x加到前一列,再按第一列展开。 化三角形行列式法
按第一列展开
0 0 0 a b 字母行列式适用。
利用高中有关数列的知识,求出行列式 。
a ac b b b 例 行用因列多为式 种 : 的方a对c为ii计法于何算计任值li方算何时1法下两,D小列个=l01结行数? 列码0式
i
i1
2
i1 i
,在一排列中要么构成逆序,要么不构成逆序.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1 计算四阶行列式
5 2 3 5
D=
2 1
5 0
1 3
2 5
2 3 5 4
解 利用行列式的性质,将 D 化为上三角行列式.
5 2
D=
1 2
2 5 0 3
3 1 3 5
5
1
2 5
r1
2r2
2 1
4
2
8 5 0 3
1 1 3 5
1 2 5
r2 r3
2r1 r1
4 r4 _ 2r1
1 8 1 1
1 8 1 1 1 8 1 1
c1 a1 0 L 0
Dn1 c2 0 a2 L 0 ,ai 0,i 1,2,L ,n
箭形
M M MO M
解:将第i+1(i=1,2,…,n)列的 c i ai
a 0
n i 1
bi ci ai
b1
cn 0 0 L an
倍加到第1列,得
b2 L bn
上三角行列式
0
Dn1
0
a1 0 L 0 0 a2 L 0
bL 0L a2 b O OO L0
b 0 M 0 an b n1
n b
1 i1 ai b
1
0
c1
ai
bci1
0
M
0
b
a1 b 0 M 0
bL
0L a2 b O
OO L0
b
0
M
0
an
b n1
n b
= (a1b)(a2b)L(anb)(1i1aib)
例6 计算n阶行列式
a a 1 0 0 L 1 a a 1 0 L
0 1 a a 1 L Dn M M M M
递推法
0 0 0 0L 0 0 0 0L
00 0 00 0 00 0 MM M 1 a a 1 01 a
解:按第一行展开,得D n a D n 1 (a 1 )D n 2 ,等号两端减D n 1,得 D n D n 1 a D n 1 D n 1 ( a 1 ) D n 2 ( a 1 ) ( D n 1 D n 2 )
M
M MO M
0
0 0 L an
=a1a2L
an(a0
n i1
bici ai
)
例3 计算n阶行列式 x a L a a xL a M MO M
加法
a aL x
解:这个行列式的特点是各列(行)的元素之和相等,故可将各行加到第 一行,提出公因子,再化为上三角行列式。
x aL a xL M MO a aL
逐行相减法
n2 n3 n4 L 0 1
n 1 n 2 n 3 L 1 0
将第n-1行的(-1)倍加至第n行,第n-2行的(-1)倍加至第n-1行,… ,第1行的(-1)倍加至第2行,有
0 1 2 L n-2 n 1
1 1 1 L 1 1 别加到前边1 的第1 1 L 1 1
Dn M M M O M M n-1列.
a r 1 ri x(n1)a x(n1)a L x(n1)a
a
a
xL
a
i 1,2,..., n
M
M
MO
M
x
a
aL
x
11L 1
x (n 1)a a x L
M MO a aL
a ri ar 1 Mi 2 ,..., n
x
11L 1
x(n1)a0 xa L 0 x(n1)a(xa)n1
M MO M
0
2
0
21 8
1 4
0 4
r2 r4
0 0
2 8
46 0
=2
44 0
1 8
2 3 r3 8r2 4 4 r4 19r2
0 19 3 6
0 19 3 6 0 19 3 6
1 8 1 1
1 8 1 1 1 8 1 1
20
0
1 0
2 12
3 20
r4
3r3
2
0 0
1 0
2 12
3 =8 0
例7 求下列行列式的值
1 200 0
3 400 0
分块三角形法
D= 1 2 2 1 5 3 410 2
5 6 8 4 14
21 5
1 2
1 解:5
C
3
4 所以,原行列式可化
34
8 4 14
56
为 D=D1 C
O D2 =D1 D2 =12
规律总结:当遇到如下形式的行列式时,
b bL b
b b M,b ai ,i 1,L , n. b an
解: 用加边法,即构造n+1阶行列式,使其按第一列(行)展开后,等 于原行列式
1b bL 0 a1 b L Dn 0 b a2 O M MO O 0bL b
b
1b
b
ri r1 1 a1 b
b 1 0
i2,L ,n1
b
MM
an
1 0
这是一个关于Dn Dn1的递推公式,反复使用递推公式,得,
D n D n 1 ( a 1 ) 2 ( D n 2 D n 3 ) L ( a 1 ) n 2 ( D 2 D 1 )
因为 D 21 aa a 1 a 2 a 1 ,D 1 a ,D 2 D 1 (a 1 )2
20 0
1 0
2 3
3 5
r3
r4
0 0 41 63
00 5 3 00 5 3
1 8 1 1 1 8 1 1
1 8 1 1
80
0
1 0
2 2
3 2
=16
0 0
1 0
2 1
3 1
r4
5r3
16
0 0
1 0
2 1
3 1
=128
005 3 005 3
000 8
a0 b1 b2 L bn
例2 计算下列行列式
0 0 L xa
小提示: 在求矩阵特征值时若特征多项式满足上述行列
式 特征,亦可以使用以简化运算。
例4 计算n阶行列式 D n a ij ,其中 aijij(i,j1 ,2,L,n)
解:由题意得
0 1 2 L n 2 n 1 1 0 1 L n3 n2
2 1 0 L n4 n3 Dn M M M O M M
a11 ... a1k
... ...
0
a11 ... a1k
ak1 ... akk
... ...
c11 ... c11 b11 ... b1t
ak1 ... akk
... ... ... ...
所以 Dn Dn1= (a1)n2(D2D1) = ( a 1) n
即 DnDn1(a1)n
从而 DnDn1(a1)n Dn2 (a 1)n1 (a 1)n L a (a 1)2 L (a 1)n1 (a 1)n
n 1
(a
1)2 (a 2a
1)n1
a
a=2
a2
总结:当行列式元素排列很有规律且维数与n有关是可以考虑递推法
1 1 1 L 1 1
将第n列分 1,2,…,
1 1 1 L 1 1
n 1 n n 1 L 0 2 2 L 0 0 2 L
= M M MO 0 0 0L 0 0 0L
2n 3 n 1 2 1 2 1 MM 2 1 0 1
= (-1)n1(n1)2n2
例5 计算n阶行列式 加边法
a1 b b L b a2 b L Dn b b a3 O M MO O
相关文档
最新文档