弹簧 质量 阻尼系统的建模与控制系统设计
控制系统中的系统建模与分析
控制系统中的系统建模与分析在控制系统中,建模分析是十分重要的一环。
通过对系统进行精细的建模,可以实现对系统的深刻理解,为控制系统的设计提供支持和依据。
本文将介绍控制系统中的系统建模与分析,帮助读者更好地理解和应用控制系统。
一、控制系统简介控制系统是一个涉及工程、数学、物理、计算机等多个学科的复杂系统,它的作用是在符合一定性能指标的前提下,使系统达到一定的预定目标。
常见的控制系统包括飞行器控制系统、汽车自动驾驶系统、机器人控制系统等。
二、系统建模1. 建模方式在控制系统中,系统建模有两种主要方式:基于物理方程(物理建模)和基于实验数据(数据建模)。
物理建模是通过物理学、力学、电学等学科,建立控制对象的系统模型,包括状态空间模型、传递函数模型等。
物理建模效果较好,其模型能够准确地反映控制对象的物理特性。
但是物理建模需要精通相关物理学原理和数学知识,建模难度较大。
数据建模是通过采集已知控制对象的实验数据,利用机器学习等方法,建立控制对象的模型。
数据建模对专业知识的要求相对较低,但是数据采集和处理需要耗费时间和精力,并且在建立模型中可能存在误差。
2. 建模过程系统建模的目的是利用数学模型描述和分析实际系统,从而实现对系统的控制。
建模过程可以分为以下几步:(1)收集系统信息:了解控制对象的系统结构、工作原理、性能指标等相关信息。
(2)选择建模方法:选择合适的建模方法,根据具体情况进行物理建模或数据建模。
(3)建立模型:针对控制对象的工作原理和性能指标,建立相应的数学模型。
(4)验证模型:对建立的模型进行测试和验证,检验其准确性和可靠性。
(5)优化模型:根据验证结果对模型进行调整和优化,实现对模型的完善和精细化。
三、系统分析1. 稳定性分析稳定性是控制系统中最基本的性质之一。
稳定性分析可分为稳定性判据和稳定性分析两方面。
稳定性判据是建立在数学理论基础上,针对控制系统建立一系列的稳定性判定定理,如Routh-Hurwitz准则、Nyquist准则等,根据这些判据来判断控制系统的稳定性。
matlab中不同质量弹簧阻尼系数输出力
标题: matlab中不同质量弹簧阻尼系数输出力分析1. 简介弹簧阻尼系统是一种常见的物理系统,它由弹簧和阻尼器组成,用于控制物体的振动和运动。
在实际工程中,弹簧阻尼系统的设计和分析对于系统的稳定性和性能至关重要。
本文将通过在matlab中对不同质量下弹簧阻尼系数对输出力的影响进行分析,探讨其对系统的影响。
2. 弹簧阻尼系统的基本原理弹簧阻尼系统是由弹簧和阻尼器组成,它们分别用于控制物体的弹簧振动和减震。
其中,弹簧的刚度系数和阻尼器的阻尼系数是两个关键参数。
在弹簧阻尼系统中,当外力作用在物体上时,系统将产生振动,而输出力将取决于系统的参数以及外力的大小和频率。
3. 不同质量下的弹簧阻尼系统建模在matlab中,我们可以通过建立弹簧阻尼系统的数学模型来模拟系统的运行。
为了分析不同质量下弹簧阻尼系数对输出力的影响,我们可以对弹簧阻尼系统进行建模,然后通过模拟不同质量下的系统运行来获取输出力的数据。
4. 弹簧阻尼系统模型的建立在matlab中,我们可以通过建立弹簧-质量-阻尼系统的数学模型来模拟系统的运行。
假设系统的质量为m,弹簧的刚度系数为k,阻尼器的阻尼系数为c,外力为f(t),系统的振动方程可以表示为:\[m\ddot{x} + c\dot{x} + kx = f(t)\]其中,\(x\)为物体的位移,\(\dot{x}\)为物体的速度,\(\ddot{x}\)为物体的加速度。
这个方程描述了外力作用下系统的振动过程。
5. 不同质量下系统运行的模拟在matlab中,我们可以通过对系统振动方程进行数值求解来模拟系统的运行。
我们可以分别设定不同的质量,然后通过求解系统的振动方程来获取输出力随时间的变化。
我们还可以改变弹簧的刚度系数和阻尼器的阻尼系数,来分析它们对系统输出力的影响。
6. 数据分析与结果展示通过在matlab中对不同质量下的弹簧阻尼系数对输出力进行模拟,我们可以得到系统输出力随时间的变化曲线。
基于SIMULINK的二阶_三阶系统建模与仿真
(3)
根据微分方程 (3) ,并给该方程的各参数赋值 ,建立该
弹性系统的仿真模型如图 2 所示 。
对该弹性系统模型进行仿真 ,仿真时间长度为 10 秒 ,仿真结果如图 3 所示 ,该结果反映了上述弹性阻尼
·20 ·
系统在图 2 所示参数条件下质量块位移随时间变化的 情况 。
在输入一定的情况下 ,我们可以通过调节系统参 数得到最佳输出结果 ,通过对系统各参数的调节 ,得出 不同参数条件下仿真结果 ,对这些仿真结果进行比较 , 可以方便的反映在该系统中各参数变化对输出结果影 响的大小 ,从而真实反映该弹性系统的特性 ,方便确定 各参数的重要性 。
在实际实验中 ,我们可以依据仿真结果方便的对 各系统参数进行比较和选取 ,在该弹性系统的仿真过 程中 ,如果系统参数变化小 ,但对输出结果影响大 ,则 该参数的所要求的精度较高 ,反之则该参数的所要求 的精度较底 ,这些对我们实际实验中各系统参数的选 取具有重要的指导意义 。
3 三阶系统仿真
如图 4 所示的直流电力拖动系统是一个典型的三 阶系统 ,首先对该系统进行模型化 ,即建立该系统的数 学模型 ,得到三阶系统的常系数微分方程如下 :
面积 。通过几何方式求得实测线段与设计轮廓的焦点
后 ,可有几何方式求出封闭图形的面积 。同样 ,在设计
断面轮廓较为复杂时 ,要考虑的边界条件非常多 ,面积
计算容易产生错误 。而采用积分方式计算 ,不论断面
轮廓多么复杂 ,均能得到非常准确的结果 。
积分计算方式 :如图 2 所示 ,首先作一虚拟的能包
容设计断面轮廓和实测断面轮廓的最小矩形 ,左下角
我们在需要构造自己的模块时只需要将自己的功 能代码放在适当的位置 ,定义模块的输入输出端口的 数目和类型即可 ,这样便很方便地实现了对该数据文 件的调用 。
弹簧阻尼系统微分方程_范文模板及概述说明
弹簧阻尼系统微分方程范文模板及概述说明1. 引言1.1 概述本文旨在探讨弹簧阻尼系统微分方程及其相关特性与参数的影响因素。
弹簧阻尼系统广泛应用于机械工程、建筑结构和其他领域中,对于系统的动力学行为有着重要影响。
因此,深入研究弹簧阻尼系统的微分方程以及其参数的影响对于工程设计和优化具有重要意义。
1.2 文章结构本文共分为五个部分。
首先是引言部分,介绍了文章的背景和目的。
第二部分将详细介绍弹簧阻尼系统微分方程,包括系统简介、微分方程概念解析以及建模方法。
第三部分将探讨主要特性与参数的影响因素,具体涉及阻尼系数、弹性系数和质量对系统行为的影响。
第四部分将进行数值模拟与仿真结果的分析,包括实验设计、数据收集方法、仿真模型构建与参数设置以及数值模拟结果与分析。
最后一部分是结论部分,总结了研究成果,并展望了进一步研究的方向。
1.3 目的本文的目的是探究弹簧阻尼系统微分方程及其相关特性与参数的影响因素。
通过深入研究和分析,旨在揭示弹簧阻尼系统在不同参数设置下的动力学行为,并为工程设计和优化提供参考依据。
通过数值模拟与仿真结果的分析,将验证理论推导与实际计算的一致性,并对系统行为进行进一步解释和讨论。
希望本文的研究成果能够为相关领域的学者和工程师提供有益的参考和启示,促进弹簧阻尼系统在实际应用中发挥更大作用。
2. 弹簧阻尼系统微分方程:2.1 弹簧阻尼系统简介:弹簧阻尼系统是一种常见的机械振动系统,广泛应用于工程实践中。
该系统由一个质点、弹簧和阻尼器组成,质点可以在一个方向上自由运动。
弹簧提供恢复力,而阻尼器则通过消耗能量来减少系统的振荡幅度。
弹簧阻尼系统可以建模为一个二阶线性微分方程。
2.2 微分方程概念解析:微分方程描述了物理量随时间变化的关系。
对于弹簧阻尼系统,其可表示为二阶线性微分方程形式。
设质点位移为y(t),则其满足以下形式的微分方程:m*y''(t) + c*y'(t) + k*y(t) = F(t)其中,m是质量,c是阻尼系数,k是弹性系数,F(t)是外部作用力。
三自由度弹簧质量系统的建模及性能分析
o f t h r e e d e g r e e s . Us e Ne wt o f s f i r s t l a w o f t h e t h e o r e t i c a l t o a n a l y z e t h e o b j e c t b y f o r c e ,d r a wn tt e m c h a r t
对 于一 个 给定 的机 械 系 统 , 分 析其 性 能 及 其 响 应 并进 行控 制是 控制 理论研 究 和动力学 研究 的重要 内容 。控制 理论 的 目标是 了解基 本控制 原理并 以数
象。 以第一牛 顿定律 为理 论基础 分析 了物 体 的受 力 , 从 控 制 的 角度 绘 制 了 系统 的模 拟 结 构 图 , 反应 了系 统全 部独 立 变量的 变化及 其相 互 间的关 系 , 揭 示 了 系 统 的 内部 特 征 , 并 分 析 判 断 了 系统 既 能 控 又 能 观 , 进
弹簧-质量-阻尼系统的建模及控制系统设计说明书
分数: ___________任课教师签字:___________华北电力大学研究生结课作业学年学期:第一学年第一学期课程名称:线性系统理论学生姓名:学号:提交时间:2014.11.27目录1 研究背景及意义 (3)2 弹簧-质量-阻尼模型 (3)2.1 系统的建立 (3)2.1.1 系统传递函数的计算 (5)2.2 系统的能控能观性分析 (7)2.2.1 系统能控性分析 (8)2.2.2 系统能观性分析 (9)2.3 系统的稳定性分析 (10)2.3.1 反馈控制理论中的稳定性分析方法 (10)2.3.2 利用Matlab分析系统稳定性 (10)2.3.3 Simulink仿真结果 (12)2.4 系统的极点配置 (15)2.4.1 状态反馈法 (15)2.4.2 输出反馈法 (16)2.4.2 系统极点配置 (16)2.5系统的状态观测器 (18)2.6 利用离散的方法研究系统的特性 (20)2.6.1 离散化定义和方法 (20)2.6.2 零阶保持器 (21)2.6.3 一阶保持器 (24)2.6.4 双线性变换法 (26)3.总结 (28)4.参考文献 (28)弹簧-质量-阻尼系统的建模与控制系统设计1 研究背景及意义弹簧、阻尼器、质量块是组成机械系统的理想元件。
由它们组成的弹簧-质量-阻尼系统是最常见的机械振动系统,在生活中具有相当广泛的用途,缓冲器就是其中的一种。
缓冲装置是吸收和耗散过程产生能量的主要部件,其吸收耗散能量的能力大小直接关系到系统的安全与稳定。
缓冲器在生活中处处可见,例如我们的汽车减震装置和用来消耗碰撞能量的缓冲器,其缓冲系统的性能直接影响着汽车的稳定与驾驶员安全;另外,天宫一号在太空实现交会对接时缓冲系统的稳定与否直接影响着交会对接的成功。
因此,对弹簧-质量-阻尼系统的研究有着非常深的现实意义。
2 弹簧-质量-阻尼模型数学模型是定量地描述系统的动态特性,揭示系统的结构、参数与动态特性之间关系的数学表达式。
第2章连续控制系统的数学模型
第2章连续控制系统的数学模型2.1 控制系统数学模型的概念控制理论分析、设计控制系统的第一步是建立实际系统的数学模型。
所谓数学模型就是根据系统运动过程的物理、化学等规律,所写出的描述系统运动规律、特性、输出与输入关系的数学表达式。
建立描述控制系统的数学模型,是控制理论分析与设计的基础。
一个系统,无论它是机械的、电气的、热力的、液压的、还是化工的,都可以用微分方程加以描述。
对这些微分方程求解,就可以获得系统在输入作用下的响应(即系统的输出)。
对数学模型的要求是,既要能准确地反映系统的动态本质,又便于系统的分析和计算工作。
2.1.1 数学模型的类型数学模型是对系统运动规律的定量描述,表现为各种形式的数学表达式,从而具有不同的类型。
下面介绍几种主要类型。
1. 静态模型与动态模型根据数学模型的功能不同,数学模型具有不同的类型。
描述系统静态(工作状态不变或慢变过程)特性的模型,称为静态数学模型。
静态数学模型一般是以代数方程表示的,数学表达式中的变量不依赖于时间,是输入输出之间的稳态关系。
描述系统动态或瞬态特性的模型,称为动态数学模型。
动态数学模型中的变量依赖于时间,一般是微分方程等形式。
静态数学模型可以看成是动态数学模型的特殊情况。
2. 输入输出描述模型与内部描述模型描述系统输出与输入之间关系的数学模型称为输入输出描述模型,如微分方程、传递函数、频率特性等数学模型。
而状态空间模型描述了系统内部状态和系统输入、输出之间的关系,所以称为内部描述模型。
内部描述模型不仅描述了系统输入输出之间的关系,而且描述了系统内部信息传递关系,所以比输入输出模型更深入地揭示了系统的动态特性。
3. 连续时间模型与离散时间模型根据数学模型所描述的系统中的信号是否存在离散信号,数学模型分为连续时间模型和离散时间模型,简称连续模型和离散模型。
连续数学模型有微分方程、传递函数、状态空间表达式等。
离散数学模型有差分方程、Z传递函数、离散状态空间表达式等。
理论力学中的弹簧和阻尼器如何建模?
理论力学中的弹簧和阻尼器如何建模?在理论力学的领域中,弹簧和阻尼器是非常重要的元素,它们在各种物理系统的建模和分析中起着关键作用。
理解如何对弹簧和阻尼器进行准确建模,对于研究物体的运动、力学行为以及系统的稳定性等方面具有重要意义。
首先,让我们来谈谈弹簧。
弹簧是一种能够储存和释放弹性势能的元件。
在建模弹簧时,我们通常使用胡克定律,其表达式为 F = kx ,其中 F 是弹簧施加的力,k 是弹簧的劲度系数,x 是弹簧的伸长或压缩量。
这里的负号表示弹簧施加的力总是朝着恢复其原始长度的方向。
当考虑一个简单的弹簧连接两个物体的情况时,我们可以根据胡克定律来计算弹簧对物体施加的力。
例如,在一个水平方向上的弹簧系统中,如果弹簧的一端固定,另一端连接一个质量为 m 的物体,并且物体从平衡位置移动了 x 的距离,那么弹簧施加在物体上的力就是 kx 。
这个力将影响物体的运动状态。
在建模弹簧时,还需要考虑弹簧的质量。
在一些简单的模型中,我们可以忽略弹簧的质量,将其视为无质量的理想弹簧。
但在更精确的模型中,弹簧的质量可能会对系统的动态特性产生影响。
此时,我们需要使用更复杂的方法来考虑弹簧质量的分布和其对系统的作用。
接下来,我们再看看阻尼器。
阻尼器是一种能够消耗能量的元件,它的作用是减缓物体的运动。
阻尼器施加的力通常与物体的速度成正比,其表达式为 F = cv ,其中 c 是阻尼系数,v 是物体的速度。
阻尼器在实际系统中非常常见,比如汽车的减震器、机械系统中的摩擦阻尼等。
在建模阻尼器时,我们需要根据具体的情况确定阻尼系数 c 的值。
阻尼系数越大,阻尼器对物体运动的抑制作用就越强。
在一个包含弹簧和阻尼器的系统中,例如一个质量弹簧阻尼器系统,物体的运动方程可以通过牛顿第二定律来建立。
假设质量为 m 的物体连接在弹簧和阻尼器上,弹簧的劲度系数为 k ,阻尼系数为 c ,物体的位移为 x ,速度为 v ,则根据牛顿第二定律 F = ma ,我们可以得到:ma = kx cv这是一个二阶常系数线性微分方程,通过求解这个方程,我们可以得到物体的位移、速度和加速度随时间的变化规律,从而了解系统的动态行为。
对惯量-阻尼-弹簧运动进行动力学分析
对惯量-阻尼-弹簧运动进行动力学分析当前各个学科相互渗透、相互融合已经成为发展的必然趋势。
物理作为一门自然基础学科也不是孤立存在,越来越多地融入了控制理论进行分析。
许多物理现象,例如在椭圆轨道运行的人造卫星,小车上的柔杆运动,都可以简化为惯量-阻尼-弹簧系统运动。
本文针对惯量-阻尼-弹簧运动进行动力学分析,并利用PID控制方法研究其特性。
受外加扭矩的惯量-阻尼-弹簧系统的模型如图1所示,其弹簧劲度为k,阻尼系数为d,外加扭矩为TC,转子的转动惯量分别为:J1和J2,转角分别为:θ1和θ2。
1运动建模由图1所示,列出该系统的动力学方程为:J1¨θ1+d(θ1-θ2)+k(θ1-θ2)=TCJ2¨θ2+d(θ1-θ2)+k(θ1-θ2)=0(1)当转动惯量J1=1,J2=0.1时,该系统的传递函数为:根据式1,选取状态参数如下:xT=[θ2θ2θ1θ1];式1,可以用矩阵3来表示,其中TC≡u。
为了便于对该系统分析,假设弹簧劲度为k的变化范围:0.09≤k≤0.4,选取k=0.091;阻尼系数为d的变化范围:选取d=0.036。
矩阵(3)变为矩阵(4)。
2系统稳定性分析系统能在实际中应用的首要条件是系统要稳定。
分析系统稳定性是经典控制理论的重要部分。
经典控制理论对与判定一个定常线性系统是否稳定提供了多种方法。
本文主要应用Nyquist稳定判据和Bode图判据两种方法来对系统进行分析。
2.1利用稳定判据分析系统稳定性2.1.1Nyquist判据由于一般系统的开环系统多为最小相位系统,P=0,故只要看开环Nyquist轨迹是否包围点(-1,j0),若不包围,系统就稳定。
37弹簧质量阻尼器系统建模与频率特性分析
37弹簧质量阻尼器系统建模与频率特性分析在工程中,弹簧质量阻尼器系统是一种常见的机械系统,广泛应用于减震、减振和隔振等方面。
弹簧质量阻尼器系统由弹簧、质量和阻尼器组成,其中弹簧用于提供系统的弹性支撑,质量用于惯性作用,阻尼器用于消散系统的振动能量。
建立弹簧质量阻尼器系统的数学模型并进行频率特性分析对于系统的设计和性能评估至关重要。
1.弹簧质量阻尼器系统建模弹簧质量阻尼器系统可以用简谐振动模型来描述。
假设系统由质量m、弹簧刚度k和阻尼系数c组成,其受到外力F(t)作用。
系统的运动方程可以写成如下形式:m*x''(t)+c*x'(t)+k*x(t)=F(t)其中,x(t)为系统的位移,x'(t)为系统的速度,x''(t)为系统的加速度。
频率特性分析是对弹簧质量阻尼器系统在不同频率下的响应进行研究。
在频率特性分析中,通常会研究系统的振幅-频率曲线和相位-频率曲线。
首先,通过对系统的运动方程进行拉普拉斯变换,可以得到系统的传递函数:H(s) = X(s) / F(s) = 1 / (ms^2 + cs + k)其中,s为复频域变量。
利用传递函数可以计算系统在不同频率下的振幅和相位。
根据传递函数的模和幅角,可以画出系统的振幅-频率曲线和相位-频率曲线。
3.频率特性分析实例假设一个简单的弹簧质量阻尼器系统由质量m=1kg、弹簧刚度k=10N/m、阻尼系数c=1N·s/m组成,外力F(t)为正弦函数。
通过对系统进行频率特性分析,可以得到系统在不同频率下的响应。
对于该系统,可以计算其传递函数为:H(s)=1/(s^2+s+10)通过传递函数可以计算系统在不同频率下的振幅和相位,并绘制出振幅-频率曲线和相位-频率曲线。
通过频率特性分析,可以得到系统的共振频率、共振幅值、相位延迟等重要参数,从而对系统的性能进行评估和优化。
总之,对弹簧质量阻尼器系统进行建模和频率特性分析是非常重要且必要的。
弹簧-质量-阻尼实验指导书
弹簧-质量-阻尼实验指导书(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--质量-弹簧-阻尼系统实验教学指导书北京理工大学机械与车辆学院实验一:单自由度系统数学建模及仿真 1 实验目的(1)熟悉单自由度质量-弹簧-阻尼系统并进行数学建模; (2)了解MATLAB 软件编程,学习编写系统的仿真代码; (3)进行单自由度系统的仿真动态响应分析。
2 实验原理单自由度质量-弹簧-阻尼系统,如上图所示。
由一个质量为m 的滑块、一个刚度系数为k 的弹簧和一个阻尼系数为c 的阻尼器组成。
系统输入:作用在滑块上的力f (t )。
系统输出:滑块的位移x (t )。
建立力学平衡方程:m x c x kx f •••++=变化为二阶系统标准形式:22f x x x mζωω•••++=其中:ω是固有频率,ζ是阻尼比。
ω=2c m ζω== 欠阻尼(ζ<1)情况下,输入f (t )和非零初始状态的响应:()()sin()))]t t x t t d e ζωττζωττ+∞--=•-=-+-+⎰欠阻尼(ζ<1)情况下,输入f(t)=f0*cos(ω0*t) 和非零初始状态的的响应:02230022222002222222()cos(arctan())2f[(0)]cos()[()(2)]sin(ttx t tx ekeζωζωζωωωωωζωωωωζωω-•-=--++-++)输出振幅和输入振幅的比值:A=3 动力学仿真根据数学模型,使用龙格库塔方法ODE45求解,任意输入下响应结果。
仿真代码见附件4 实验固有频率和阻尼实验(1)将实验台设置为单自由度质量-弹簧-阻尼系统。
(2)关闭电控箱开关。
点击setup菜单,选择Control Algorithm,设置选择Continuous Time Control,Ts=,然后OK。
(3)点击Command菜单,选择Trajectory,选取step,进入set-up,选取Open Loop Step设置(0)counts, dwell time=3000ms,(1)rep, 然后OK。
弹簧-质量-阻尼系统的建模与控制系统设计
分数: ___________任课教师签字:___________ 华北电力大学研究生结课作业学年学期:第一学年第一学期课程名称:线性系统理论学生姓名:学号:提交时目录弹簧-质量-阻尼系统的建模与控制系统设计1 研究背景及意义弹簧、阻尼器、质量块是组成机械系统的理想元件。
由它们组成的弹簧-质量-阻尼系统是最常见的机械振动系统,在生活中具有相当广泛的用途,缓冲器就是其中的一种。
缓冲装置是吸收和耗散过程产生能量的主要部件,其吸收耗散能量的能力大小直接关系到系统的安全与稳定。
缓冲器在生活中处处可见,例如我们的汽车减震装置和用来消耗碰撞能量的缓冲器,其缓冲系统的性能直接影响着汽车的稳定与驾驶员安全;另外,天宫一号在太空实现交会对接时缓冲系统的稳定与否直接影响着交会对接的成功。
因此,对弹簧-质量-阻尼系统的研究有着非常深的现实意义。
2 弹簧-质量-阻尼模型数学模型是定量地描述系统的动态特性,揭示系统的结构、参数与动态特性之间关系的数学表达式。
其中,微分方程是基本的数学模型,不论是机械的、液压的、电气的或热力学的系统等都可以用微分方程来描述。
微分方程的解就是系统在输入作用下的输出响应。
所以,建立数学模型是研究系统、预测其动态响应的前提。
通常情况下,列写机械振动系统的微分方程都是应用力学中的牛顿定律、质量守恒定律等。
弹簧-质量-阻尼系统是最常见的机械振动系统。
机械系统如图所示,图2-1弹簧-质量-阻尼系统机械结构简图其中、表示小车的质量,表示缓冲器的粘滞摩擦系数,表示弹簧的弹性系数,表示小车所受的外力,是系统的输入即,表示小车的位移,是系统的输出,即,i=1,2。
设缓冲器的摩擦力与活塞的速度成正比,其中,,,,,。
系统的建立由图,根据牛顿第二定律,分别分析两个小车的受力情况,建立系统的动力学模型如下:对有:对有:联立得到:对:对:令,,,,,;,得出状态空间表达式:所以,状态空间表达式为:+由此可以得出已知:,,,,,代入数据得:系统传递函数的计算在Matlab中,函数ss2tf给出了状态空间模型所描述系统的传递函数,其一般形式是[num,den]=ss2tf(A,B,C,D,iu),其中iu是输入值。
弹簧质量阻尼系统的建模与控制系统设计
弹簧质量阻尼系统的建模与控制系统设计对于弹簧质量阻尼系统的建模,我们可以采用牛顿第二定律来描述其运动状态:$$m\ddot{x}+b\dot{x}+kx=F$$其中,$m$是质量,$\ddot{x}$是加速度,$b$是阻尼系数,$\dot{x}$是速度,$k$是弹簧系数,$x$是位移,$F$是外力。
这个方程描述了质量受到弹簧力、阻尼力和外力的合力时的运动状态。
在实际应用中,通常外力可以忽略不计或者可以进行补偿处理。
为了进一步进行控制系统设计,我们可以将建模方程进行转换,转换成状态空间形式:$$\dot{x} = Ax + Bu$$$$y=Cx+Du$$其中,$x$是状态向量,包含位置和速度信息;$u$是输入向量,即控制器的输出;$y$是输出向量,即系统的状态信息。
$A$、$B$、$C$和$D$是矩阵。
通过选取合适的状态变量和引入控制器后,可以使得转移矩阵、输入矩阵、输出矩阵和直通矩阵达到所需的性能指标。
针对弹簧质量阻尼系统,我们可以设计不同类型的控制器来实现不同的控制目标。
常见的控制器有比例控制器、积分控制器和微分控制器,以及它们的组合,即PID控制器。
其中,比例控制器能够实现快速的响应速度,但可能会造成稳态误差;积分控制器能够消除稳态误差,但会引入超调;微分控制器能够提高稳定性和抑制振荡,但容易引入噪声。
在实际控制系统设计中,我们可以根据系统性质和控制目标的不同,选择合适的控制器类型和参数。
一般情况下,通过系统建模和参数估计,可以利用控制理论和分析工具进行开环和闭环的系统性能分析和调节,从而实现系统的精确控制和稳定性。
总结起来,弹簧质量阻尼系统的建模和控制系统设计是一项重要的工程任务。
通过建立系统的动力学方程和状态空间模型,我们可以对其进行控制系统设计和分析。
根据实际需求和控制目标,选择合适的控制器类型和参数,并进行系统性能分析和优化。
这样可以实现弹簧质量阻尼系统的精确控制和稳定性。
37-弹簧-质量-阻尼器系统建模与频率特性分析
学号:0121214660127微机原理及接口技术课程设计题目弹簧-质量-阻尼器系统建模与频率分析学院自动化学院专业电气工程及其自动化班级电气1206姓名黄思琪指导教师李浩2015 年 1 月14 日课程设计任务书学生姓名: 黄思琪 专业班级: 电气1206 指导教师: 李浩 工作单位: 自动化学院 题 目: 弹簧-质量-阻尼器系统建模与仿真 初始条件:已知机械系统如图。
x要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)(1) 推导传递函数)(/)(s X s Y ,)(/)(s P s X ,(2) 给定m N k m N k m s N b g m /5,/8,/6.0,2.0212==•==,以p 为输入)(t u (3) 用Matlab 画出开环系统的波特图和奈奎斯特图,并用奈奎斯特判据分析系统的稳定性。
(4) 求出开环系统的截止频率、相角裕度和幅值裕度。
(5) 对上述任务写出完整的课程设计说明书,说明书中必须进行原理分析,写清楚分析计算的过程及其比较分析的结果,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处标准书写。
时间安排:指导教师签名:年月日系主任(或责任教师)签名:年月日目录1设计任务及要求分析 (1)1.1 初始条件 (1)1.2 要求完成的任务 (1)1.3 任务分析 (2)2 系统分析及传递函数求解 (2)2.1 系统受力分析 (2)2.2 传递函数求解 (3)2.3 系统开环传递函数的求解 (3)3 用MATLAB对系统作开环频域分析 (4)3.1开环系统波特图 (4)3.2 开环系统奈奎斯特图及稳定性判断 (6)4 系统开环频率特性各项指标的计算 (8)总结 (11)参考文献 (12)本科生课程设计成绩评定表弹簧-质量-阻尼器系统建模与频率特性分析1设计任务及要求分析1.1初始条件已知机械系统如图。
x图1.1 机械系统图1.2要求完成的任务(1) 推导传递函数)(/)(s X s Y ,)(/)(s P s X ,(2) 给定m N k m N k m s N b g m /5,/8,/6.0,2.0212==•==,以p 为输入)(t u (3) 用Matlab 画出开环系统的波特图和奈奎斯特图,并用奈奎斯特判据分析系统的稳定性。
弹簧质量阻尼系统参数辨识
弹簧质量阻尼系统是一种常见的工程系统,广泛应用于航空航天、机械工程等领域。
该系统由弹簧、质量块和阻尼器组成,能够实现能量的储存、转换和耗散。
在实际应用中,弹簧质量阻尼系统的性能参数对系统的动态特性有着重要影响。
因此,参数辨识是优化系统性能的关键之一。
弹簧质量阻尼系统通常可以表示为一个二阶常微分方程,其数学模型为:$\ddot{x}(t) + 2\zeta\omega\dot{x}(t) + \omega^{2}x(t) = 2\zeta\omega^{3}Cx(t) + m\omega^{3}f(t)$,其中$x(t)$表示位移,$\dot{x}(t)$表示速度,$\zeta$表示阻尼比,$\omega$表示系统的固有频率,C表示阻尼系数,$m$表示质量块的质量,$f(t)$表示外部激励。
参数辨识是指通过测量系统输出,利用测量数据与理论模型的误差来估计系统的参数。
常用的参数估计方法包括最小二乘法、卡尔曼滤波等。
在弹簧质量阻尼系统的参数辨识中,需要根据系统的动态特性选择合适的参数估计方法,并建立相应的估计模型。
为了进行参数辨识,需要先采集系统的动态响应数据。
通常可以采用传感器、示波器等设备对系统的位移、速度、加速度等输出信号进行测量。
在实际应用中,由于系统受到各种干扰因素的影响,测量数据可能存在误差和噪声。
因此,需要对测量数据进行预处理和去噪处理,以提高参数估计的准确性和可靠性。
在参数估计过程中,需要注意估计模型的精度和稳定性。
为了提高模型的精度,可以采用高精度的测量设备和方法,并选择合适的参数估计方法。
同时,需要考虑到系统的非线性、时变性等因素,对模型进行动态修正和优化。
经过参数辨识后,可以得到系统的性能参数,如阻尼比、固有频率等。
这些参数对系统的动态特性有着重要影响,可以通过优化这些参数来提高系统的性能和稳定性。
在实际应用中,可以根据系统的具体需求和约束条件,对参数进行合理调整和优化,以达到最佳的系统性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数: ___________任课教师签字:___________华北电力大学研究生结课作业学年学期:第一学年第一学期课程名称:线性系统理论学生姓名:学号:提交时间:目录弹簧-质量-阻尼系统的建模与控制系统设计1 研究背景及意义弹簧、阻尼器、质量块是组成机械系统的理想元件。
由它们组成的弹簧-质量-阻尼系统是最常见的机械振动系统,在生活中具有相当广泛的用途,缓冲器就是其中的一种。
缓冲装置是吸收和耗散过程产生能量的主要部件,其吸收耗散能量的能力大小直接关系到系统的安全与稳定。
缓冲器在生活中处处可见,例如我们的汽车减震装置和用来消耗碰撞能量的缓冲器,其缓冲系统的性能直接影响着汽车的稳定与驾驶员安全;另外,天宫一号在太空实现交会对接时缓冲系统的稳定与否直接影响着交会对接的成功。
因此,对弹簧-质量-阻尼系统的研究有着非常深的现实意义。
2 弹簧-质量-阻尼模型数学模型是定量地描述系统的动态特性,揭示系统的结构、参数与动态特性之间关系的数学表达式。
其中,微分方程是基本的数学模型,不论是机械的、液压的、电气的或热力学的系统等都可以用微分方程来描述。
微分方程的解就是系统在输入作用下的输出响应。
所以,建立数学模型是研究系统、预测其动态响应的前提。
通常情况下,列写机械振动系统的微分方程都是应用力学中的牛顿定律、质量守恒定律等。
弹簧-质量-阻尼系统是最常见的机械振动系统。
机械系统如图所示,图2-1弹簧-质量-阻尼系统机械结构简图其中、表示小车的质量,表示缓冲器的粘滞摩擦系数,表示弹簧的弹性系数,表示小车所受的外力,是系统的输入即,表示小车的位移,是系统的输出,即,i=1,2。
设缓冲器的摩擦力与活塞的速度成正比,其中,,,,,。
系统的建立由图,根据牛顿第二定律,分别分析两个小车的受力情况,建立系统的动力学模型如下:对有:对有:联立得到:对:对:令,,,,,;,得出状态空间表达式:所以,状态空间表达式为:+由此可以得出已知:,,,,,代入数据得:系统传递函数的计算在Matlab中,函数ss2tf给出了状态空间模型所描述系统的传递函数,其一般形式是[num,den]=ss2tf(A,B,C,D,iu),其中iu是输入值。
用Matlab将状态空间表达式表示为传递函数:在输入1单独作用的情况下A=[0 0 1 0;0 0 0 1; -400 300 -9 6;150 -200 3 ]; B=[0 0;0 0;1 0;0 ];C=[1 0 0 0;0 1 0 0];D=[0 0;0 0];[num,den]=ss2tf(A,B,C,D,1)运行程序,得到:num =den =+004 *在输入2单独作用的情况下:A=[0 0 1 0;0 0 0 1; -400 300 -9 6;150 -200 3 ]; B=[0 0;0 0;1 0;0 ];C=[1 0 0 0;0 1 0 0];D=[0 0;0 0];[num,den]=ss2tf(A,B,C,D,2)运行程序,得到:num =den =+004 *由此可知:位移对外力的传递函数是:位移对外力的传递函数是:位移对外力的传递函数是:位移对外力的传递函数是:系统的能控能观性分析在反馈控制理论中只讨论输入量对输出量的控制。
而这两个量的关系唯一地由系统的传递函数所确定。
一个稳定的系统,一定能控。
同时,系统的输出量本身就是我们想要控制的量,对于一个实际的系统来说,输出量当然是可以被观测到的,因此在反馈控制理论中没有必要设立能控和能观这两个概念。
然而在现代控制理论中,能控和能观是两个重要的基本概念。
我们把反映系统内部运动状态的状态向量作为被控量,而且它们不一定是实际上可观测到的物理量,至于输出量则是状态向量的线性组合,这就产生了从输入量到状态量的能控性问题和从输出量到状态量的能观测性问题。
在现代控制中,分析和设计一个控制系统,必须研究这个系统的能控性和能观性。
状态方程描述了输入U(t)引起状态X(t)的变化过程;输出方程则描述了由状态变化引起的输出Y(t)的变化。
能控性和能观性正是分别分析U(t)对状态X(t)的控制能力以及Y(t)对X(t)的反应能力。
系统能控性分析设线性定常系统的状态方程为式中 A——n×n矩阵B——n×r矩阵C——m×n矩阵D——m×r矩阵系统能控的充分必要条件为:能控判别阵的秩R()=n,用Matlab计算能控矩阵的秩,从而对该系统的能控性进行判别,程序为:A=[0 0 1 0;0 0 0 1; -400 300 -9 6;150 -200 3 ];B=[0 0;0 0;1 0;0 ];C=[1 0 0 0;0 1 0 0];D=[0 0;0 0];Qc=ctrb(A,B)R1=rank(Qc)运行程序,得到:R1 =4等于矩阵行数,由此可以判断,系统是完全能控的。
系统能观性分析设线性定常系统的状态方程为:式中 A——n×n矩阵B——n×r矩阵C——m×n矩阵D——m×r矩阵能观的充分必要条件为:能观判别阵的秩R()=n,下面,用Matlab计算能控矩阵的秩,从而对该系统的能控性进行判断:A=[0 0 1 0;0 0 0 1; -400 300 -9 6;150 -200 3 ];B=[0 0;0 0;1 0;0 ];C=[1 0 0 0;0 1 0 0];D=[0 0;0 0];Qo=obsv(A,C)R2=rank(Qo)运行程序,得到:R2 =4满秩,因此可以判断,该系统是完全能观的。
综上所述,这是一个既能控又能观的系统。
系统的稳定性分析反馈控制理论中的稳定性分析方法稳定性是一个系统可以被采用的最基本的条件,是系统的固有属性。
稳定系统的定义如下:设控制系统处于某一起始的平衡状态,在外力的作用下,它离开了平衡状态,当外作用消失后,如果经过足够长的时间它能够恢复到起始的平衡状态,则称这样的系统为稳定的系统,否则称为不稳定的系统。
由稳定性的定义可见,稳定性是系统去掉外力作用后自身的一种恢复能力,所以是系统的一种固有特性。
对于线性定常系统,它取决于系统本身的结构和参数,而与初始条件和外界作用无关。
线性定常系统稳定的充分必要条件是:闭环系统特征方程的所有特征根为负实数或具有负实部的共轭复数,即所有特征根位于复平面的左半平面。
只要有一个闭环特征根分布在右半平面上,系统就是不稳定的;如果没有右半平面的根,但有纯虚根,则系统是临界稳定的;在工程上,处于不稳定和临界稳定的线性定常系统是不能采用的[1]。
在古典控制系统中,我们判断系统的稳定性经常用劳斯-赫尔维茨代数判据、时域分析法、根轨迹法、频域分析法等方法,但那只针对低阶系统。
实际的工业生产中,经常会遇见一些特别复杂的系统。
这时古典控制理论中的方法就有点捉襟见肘了。
1892年俄国学者李雅普诺夫提出的稳定性理论是确定系统稳定性的更一般性理论,它采用了状态向量描述,不仅适用于单变量、线性、定常的系统,而且适用于多变量,非线性、时变的系统。
李雅普诺夫理论在建立一系列关于稳定性概念的基础上,提出了判断系统稳定性的两种方法:一种方法是利用线性系统微分方程的解来判断系统稳定性,称为李雅普诺夫第一法或间接法;另一种方法是首先利用经验和技巧来构造李雅普诺夫函数,进而利用李雅普诺夫函数来判断系统稳定性,称为李雅普诺夫第二法或直接法。
利用Matlab分析系统稳定性随着计算机技术的发展,在现代控制理论中,我们经常采用Matlab 判断系统的稳定性。
对于线性定常系统,典型的系统输入信号类型有脉冲、阶跃、斜坡、加速度、正弦信号。
系统的稳定性是对任何输入信号而言,即若一个系统是稳定的,则其在任何输入信号情况下对应的输出曲线是收敛的。
然而,阶跃信号包含了另外几种常见输入信号的特性,所以我们常通过观察系统的单位阶跃响应曲线判断判断系统的稳定性。
若系统的单位阶跃响应是收敛的,则系统一般是收敛的;否则,是发散的。
在Matlab中输入相应系统的状态空间表达式矩阵来求取系统的特征值:A=[0 0 1 0;0 0 0 1; -400 300 -9 6;150 -200 3 ];B=[0 0;0 0;1 0;0 ];C=[1 0 0 0;0 1 0 0];D=[0 0;0 0];运行程序,得到:ans =++-由此可以知道,经计算得出A阵的所有特征根均在复平面的左半平面,因此得出该系统是稳定的。
给系统加起阶跃信号:A=[0 0 1 0;0 0 0 1; -400 300 -9 6;150 -200 3 ];B=[0 0;0 0;1 0;0 ];C=[1 0 0 0;0 1 0 0];D=[0 0;0 0];step(A,B,C,D)00.0020.0040.0060.0080.01From: In(1)T o : O u t (1)024600.0020.0040.0060.0080.01T o : O u t (2)From: In(2)0246Step ResponseTime (sec)A m p l i t u d e图2-2 阶跃响应曲线由图可以看出,在阶跃响应下,系统在一定时间内收敛于某一固定值,因此可以判断系统是稳定的,但同时我们也可以看出,系统的调节时间比较长,如果想要减少调节时间,那么需要重新配置极点,对系统进行改进。
下面的章节将对系统进行极点的配置。
Simulink 仿真结果根据上述原理,用Matlab 中的Simulink 组件进行仿真。
根据状态空间表达式,搭建系统模型如下图所示:我们分别对只有输入1作用下和只有输入2作用下的系统使用Simulink进行仿真,让其与Matlab图像进行对比图2-3 Simulink模型图(1)仅有作用时,系统的输出如下图所示图2-4 u1作用时响应曲线图中,绿色为输出1的曲线,蓝色为输出2的曲线。
经分析:此曲线与对应Matlab曲线一致,系统稳定,但是超调量较大,调节时间较长。
(2)仅有作用,系统的输入如下所示:图2-5 u2作用时响应曲线图中,绿色为输出1的曲线,蓝色为输出2的曲线。
经分析:同样,此曲线与对应的Matlab曲线一致,系统稳定,但是超调量较大,调节时间较长。
在共同作用下,系统的输出如下图所示:图2-6 u1、u2同时作用时响应曲线图中绿色为输出1的曲线,蓝色为输出2的曲线。
经分析:此曲线与Matlab曲线一致,系统稳定,但是超调量较大,调节时间较长。
需要进行极点配置,使系统得到更好的性能。
系统的极点配置控制系统的性能主要取决于系统极点在根平面上的分布。
因此,在系统设计中,通常是根据对系统的品质要求,规定闭环极点应有的分布情况。
所谓的极点配置就是,就是通过选择反馈矩阵K,将闭环系统的极点恰好配置在根平面上所期望的位置,以获得所希望的动态性能。