第4章 平面机构的力分析
孙桓《机械原理》笔记和课后习题(含考研真题)详解(平面机构的力分析)【圣才出品】
第4章平面机构的力分析4.1 复习笔记一、机构力分析的任务、目的和方法1.作用在机械上的力根据力对机械运动影响的不同,可分为两大类。
(1)驱动力①定义驱动机械运动的力称为驱动力。
②特点驱动力与其作用点的速度方向相同或成锐角,其所作的功为正功,称为驱动功或输入功。
(2)阻抗力①定义阻止机械运动的力称为阻抗力。
②特点阻抗力与其作用点的速度方向相反或成钝角,其所作的功为负功,称为阻抗功。
③分类a.有效阻抗力机械在生产过程中为了改变工作物的外形、位置或状态而受到的阻力,即工作阻力。
克服这类阻力所完成的功称为有效功或输出功。
b.有害阻抗力机械在运转过程中所受到的非生产阻力。
克服这类阻力所作的功称为损失功。
2.机构力分析的任务和目的(1)确定运动副中的反力运动副反力是指运动副两元素接触处彼此作用的正压力和摩擦力的合力。
(2)确定机械上的平衡力或平衡力偶平衡力是指机械在已知外力的作用下,为了使该机构能按给定的运动规律运动,必须加于机械上的未知外力。
3.机构力分析的方法对于不同的研究对象,适用的方法不同。
(1)低速机械惯性力可以忽略不计,只需要对机械作静力分析。
(2)高速及重型机械①惯性力不可以忽略,需对机械作动态静力分析。
②设计新机械时,由于各构件尺寸、材料、质量及转动惯量未知,因此其动态静力分析方法如下:a.对机构作静力分析及静强度计算,初步确定各构件尺寸;b.对机构进行动态静力分析及强度计算,并据此对各构件尺寸作必要修正;c.重复上述分析及计算过程,直到获得可以接受的设计为止。
二、构件惯性力的确定构件惯性力的确定有一般力学法和质量代换法。
1.一般力学方法如图4-1-1(a)所示为曲柄滑块机构,借此说明不同运动形式构件所产生的惯性力。
(1)作平面复合运动的构件惯性力系有两种简化方式。
①简化为一个加在质心S i上的惯性力F I2和一个惯性力偶矩M I2,即F I2=-m2a S2,M I2=-J S2α2②简化为一个大小等于F I2,而作用线偏离质心S2一定距离l h2的总惯性力F I2′,而l h2=M I2/F I2F′I2对质心S2之矩的方向应与α2的方向相反。
机械原理 第四章
C B M1 1 A 2
R32
3 D
1
4
由机构的运动情况连
杆2 受拉力。
2)当计及摩擦时,作用力应切于摩擦圆。
f0r
C B 2 M1 1 A
转动副B处:w21为顺时针方向
FR12切于摩擦圆上方。
运动副中摩擦力的确定(5/8)
(2)总反力方向的确定 1)根据力的平衡条件,确定不计摩擦 时总反力的方向; 2)计摩擦时的总反力应与摩擦圆相切; 3)总反力FR21 对轴心之矩的方向必与轴 颈1相对轴承2的相对角速度的方向相反。
运动副总反力判定准则
1、由力平衡条件,初步确定总反力方向(受 拉或压) 2、对于转动副有:FR21恒切于摩擦圆
3、对于转动副有:Mf 的方向与ω 12相反 对于移动副有:∠R21V12=(90°+φ)
例1:如图所示为一四杆机构。曲柄1为主动件,在力矩
M1的作用下沿w1方向转动,试求转动副 B及 C中作用力
的方向线的位置。 解: 1)在不计摩擦时,各转动副中的作用力应通过轴颈中心
构件 2为二力杆此二力
n
b)求使滑块沿斜面等速下滑所需水平力F’
根据平衡条件:G + F’R21 + F’ = 0
大小:√ 方向:
α+φ G
√
? √
? √
作图
得:
F’=Gtg(α-φ)
α F21 F’ 1 v α G 2 F’R21 α-φ n G
n FN
F’R21
φ
F’
若α>φ,则F’为阻力; 若α<φ,则F’方向相反,为驱动力
机械原理第2、3、4、6章课后答案西北工业大学(第七版)
第二章 机构的结构分析题2-11 图a 所示为一简易冲床的初拟设计方案。
设计者的思路是:动力由齿轮1输入,使轴A 连续回转;而固装在轴A 上的凸轮2与杠杆3组成的凸轮机构使冲头4上下运动,以达到冲压的目的。
试绘出其机构运动简图(各尺寸由图上量取),分析是否能实现设计意图,并提出修改方案。
解:1)取比例尺,绘制机构运动简图。
(图2-11a)2)要分析是否能实现设计意图,首先要计算机构的自由度。
尽管此机构有4个活动件,但齿轮1和凸轮2是固装在轴A 上,只能作为一个活动件,故 3=n 3=l p 1=h p01423323=-⨯-⨯=--=h l p p n F原动件数不等于自由度数,此简易冲床不能运动,即不能实现设计意图。
分析:因构件3、4与机架5和运动副B 、C 、D 组成不能运动的刚性桁架。
故需增加构件的自由度。
3)提出修改方案:可以在机构的适当位置增加一个活动构件和一个低副,或用一个高副来代替一个低副。
(1) 在构件3、4之间加一连杆及一个转动副(图2-11b)。
(2) 在构件3、4之间加一滑块及一个移动副(图2-11c)。
(3) 在构件3、4之间加一滚子(局部自由度)及一个平面高副(图2-11d)。
11(c)题2-11(d)5364(a)5325215436426(b)321讨论:增加机构自由度的方法一般是在适当位置上添加一个构件(相当于增加3个自由度)和1个低副(相当于引入2个约束),如图2-1(b )(c )所示,这样就相当于给机构增加了一个自由度。
用一个高副代替一个低副也可以增加机构自由度,如图2-1(d )所示。
题2-12 图a 所示为一小型压力机。
图上,齿轮1与偏心轮1’为同一构件,绕固定轴心O 连续转动。
在齿轮5上开有凸轮轮凹槽,摆杆4上的滚子6嵌在凹槽中,从而使摆杆4绕C 轴上下摆动。
同时,又通过偏心轮1’、连杆2、滑杆3使C 轴上下移动。
最后通过在摆杆4的叉槽中的滑块7和铰链G 使冲头8实现冲压运动。
平面机构的力分析
平面机构的力分析平面机构被广泛应用于机械工程中,其主要功能是将输入力或运动转化为需要的输出力或运动。
在进行力学设计时,了解和分析平面机构的力分布是非常重要的,本文将对平面机构的力分析进行详细介绍。
首先,平面机构可以通过静力学方法进行力分析。
静力学是研究物体静止或平衡的力学学科,可以用来分析静态平面机构中各个零件的力。
在进行平面机构的力分析时,一般需要考虑以下几个方面:1.合力和力矩:平面机构中各个零件受到的力可以相互作用,产生合力和合力矩。
合力是所有力的矢量和,而合力矩是所有力矩的矢量和。
通过计算合力和合力矩,可以判断机构是否平衡,以及零件上的受力情况。
2.内力:内力是作用在零件内部的力,由于平均剪应力和平均正应力引起。
在平面机构中,内力可以通过应力分析和静力平衡方程求解。
通过分析内力,可以判断零件的强度和稳定性。
3.杆件受力:平面机构中的杆件是承受力的主要部分,因此对于杆件的受力进行分析是非常重要的。
通常,可以通过静力平衡方程和力矩平衡方程来计算杆件上的受力。
根据受力情况,可以选择合适的杆件材料和尺寸。
4.关节受力:平面机构中的关节是连接零件的部分,受到的力会传递到相邻的零件上。
通过分析关节受力,可以确定关节的强度和稳定性,并进行合理的设计。
在进行平面机构的力分析时,可以使用手动计算方法或计算机辅助设计软件。
手动计算方法需要进行力学方程的推导和计算,需要较高的数学和力学知识。
计算机辅助设计软件可以通过输入机构的几何参数和力参数,自动进行力分析和力矩分析,快速得到各个零件的受力情况。
总之,平面机构的力分析是机械设计中的重要内容,可以通过静力学方法进行。
在进行力分析时,需要考虑合力和力矩、内力、杆件受力和关节受力等因素。
通过合理的力分析,可以为机构的设计提供有用的参考和指导。
机械原理复习题(第3、4、5、8章)
第3章平面机构的运动分析第4章平面机构的力分析第5章机械的效率和自锁第8章平面连杆机构及其设计一、填空题:α=,则传动角γ=___________度,传动角越大,1、铰链四杆机构的压力角040传动效率越___________。
2、下图为一对心曲柄滑块机构,若以滑块3为机架,则该机构转化为机构;若以构件2为机架,则该机构转化为机构。
3、移动副的自锁条件是;转动副的自锁条件是。
4、曲柄摇杆机构中,当和共线时出现死点位置。
:5、曲柄摇杆机构中,只有取为主动件时,才有可能出现死点位置。
处于死点位置时,机构的传动角γ=__________度。
6、平行四边形机构的极位夹角θ=,它的行程速比系数K=。
7、曲柄滑块机构中,若增大曲柄长度,则滑块行程将。
8、如下图所示铰链四杆机构,70mm,150mm,110mm,90mm====。
若以a b c da杆为机架可获得机构,若以b杆为机架可获得机构。
9、如图所示铰链四杆机构中,若机构以AB杆为机架时,为机构;以CD 杆为机架时,为机构;以AD杆为机架时,为机构。
~10、在平面四杆机构中,和为反映机构传力性能的重要指标。
11、在曲柄摇杆机构中,如果将杆作为机架,则与机架相连的两杆都可以作运动,即得到双曲柄机构。
12、在摆动导杆机构中,若以曲柄为原动件,该机构的压力角为,其传动角为。
13、相对瞬心与绝对瞬心的相同点是,不同点是;在由N个构件组成的机构中,有个相对瞬心,有个绝对瞬心。
/二、判断题:1、对于铰链四杆机构,当机构运动时,传动角是不变的。
()2、在四杆机构中,若有曲柄存在,则曲柄必为最短杆。
()3、平面四杆机构的行程速度变化系数K 1,且K值越大,从动件急回越明显。
()4、曲柄摇杆机构中,若以摇杆为原动件,则当摇杆与连杆共线时,机构处于死点位置。
()5、曲柄的极位夹角θ越大,机构的急回特性也越显著。
()6、在实际生产中,机构的“死点”位置对工作都是不利的,处处都要考虑克服。
2653编号机械原理习题集分析
机械原理习题集新疆大学机械设计教研室目录第1章绪论 3第2章机械的结构分析 4第3章平面机构的运动分析 6第4章平面机构的力分析 9第5章机械的效率和自锁 11第6章机械的平衡 12第7章机械的运转及其速度波动的调节 13第8章平面连杆机构及其设计 15第9章凸轮机构及其设计 17第10章齿轮机构及其设计 19 第11章轮系及其设计 21第12章其他常用机构 23第一章绪论复习思考题1、试述构件和零件的区别与联系?2、何谓机架、原动件和从动件?第2章机械的结构分析复习思考题1、两构件构成运动副的特征是什么?2、如何区别平面及空间运动副?3、何谓自由度和约束?4、转动副与移动副的运动特点有何区别与联系?5、何谓复合铰链?计算机构自由度时应如何处理?6、机构具有确定运动的条件是什么?7、什么是虚约束?习题1、画出图示平面机构的运动简图,并计算其自由度。
(a)(b) (c)2、一简易冲床的初拟设计方案如图。
设计者的思路是:动力由齿轮1输入,使轴A连续回转;而固装在轴A上的凸轮2与杠杆3组成的凸轮机构将使冲头4上下运动以达到冲压的目的。
试绘出其机构运动简图,分析其运动是否确定,并提出修改措施。
3、计算图示平面机构的自由度;机构中的原动件用圆弧箭头表示。
(a) (b) (c)(d) (e) (f)第3章平面机构的运动分析复习思考题1、已知作平面相对运动两构件上两个重合点的相对速度12A A V 及12B B V 的方向,它们的相对瞬心P 12在何处?2、当两构件组成滑动兼滚动的高副时,其速度瞬心在何处?3、如何考虑机构中不组成运动副的两构件的速度瞬心?4、利用速度瞬心,在机构运动分析中可以求哪些运动参数?5、在平面机构运动分析中,哥氏加速度大小及方向如何确定?习题1、试求出下列机构中的所有速度瞬心。
(a) (b)(c) (d)2、图示的凸轮机构中,凸轮的角速度ω1=10s-1,R=50mm,l A0=20mm,试求当φ=0°、45°及90°时,构件2的速度v。
机械原理第四章 力分析
FN21/2
G
FN21/2
式中, fv为 当量摩擦系数 fv = f / sinθ
若为半圆柱面接触: FN21= k G,(k = 1~π/2)
摩擦力计算的通式:
Ff21 = f FN21 = fvG
其中, fv 称为当量摩擦系数, 其取值为:
G
平面接触: fv = f ; 槽面接触: fv = f /sinθ ; 半圆柱面接触: fv = k f ,(k = 1~π/2)。
说明 引入当量摩擦系数之后, 使不同接触形状的移动副中 摩擦力的计算和比较大为简化。因而这也是工程中简化处理问题
的一种重要方法。
(2)总反力方向的确定
运动副中的法向反力与摩擦力 的合力FR21 称为运动副中的总反力, 总反力与法向力之间的夹角φ, 称 为摩擦角,即
φ = arctan f
FR21
FN21
机械原理
第四章 平面机构的力分析
§4-1 概述 §4-2 运动副中总反力的确定 §4-3 不考虑摩擦时平面机构的动态静力分析 §4-4 机械的效率和自锁 §4-5 考虑摩擦时机构的受力分析
§4-1 概述
一、作用在机械上的力
有重力、摩擦力、惯性力等,根据对机械运动的影响,分为两类: (1)驱动力 驱动机械运动的力。 与其作用点的速度方向相同或者成锐角; 其功为正功, 称为驱动功 或输入功。
放松:M′=Gd2tan(α φv)/2
三、转动副中摩擦力的确定
G
1 径向轴颈中的摩擦 1)摩擦力矩的确定
转动副中摩擦力Ff21对轴颈的摩
擦力矩为 Mf = Ff21r = fv G r
轴颈2 对轴颈1 的作用力也用
ω12
Md O
平面机构的力分析重点(zl)
牛顿-欧拉法
基于牛顿第二定律和刚体 动力学原理,分析机构中 各构件的运动和受力情况。
虚功原理法
利用虚功原理,通过分析 机构中各构件的虚位移和 作用力,计算出机构的动 态性能。
拉格朗日方程法
基于拉格朗日方程,建立 机构的运动学和动力学方 程,用于分析机构的运动 和受力情况。
动力学分析的应用实例
机械手动力学分析
应用于各种机 械系统中,如传动系统、控 制系统、输送系统等。
02
在传动系统中,平面机 构可以用于实现动力的 传递和变速。
03
在控制系统中,平面机 构可以用于实现精确的 位置控制和速度控制。
04
在输送系统中,平面机 构可以用于实现物料的 输送和分拣。
02 力分析的基本原理
在分析机构受力情况时,应注意机构的运动状态,如静止、匀速运 动或加速运动等,以便更准确地计算受力情况。
04 平面机构的运动学分析
运动学分析的基本方法
01
02
03
解析法
通过建立机构的运动学方 程,利用代数和解析几何 的方法求解机构的位置、 速度和加速度。
图解法
利用机构运动学图解,通 过几何关系求解机构的位 置、速度和加速度。
约束条件的考虑
01
在运动学分析中要充分考虑机构的约束条件,避免出现不合理
的运动情况。
误差分析和精度要求
02
根据实际应用需求,对运动学分析的误差进行分析,以满足精
度要求。
动态特性的考虑
03
在运动学分析中要考虑机构的动态特性,如惯性、阻尼等,以
更准确地描述机构运动。
05 平面机构的动力学分析
动力学分析的基本方法
通过力分析,可以确定机构在运 动过程中各构件的受力情况,从 而评估机构的运动性能和稳定性。
平面机构的力分析
G
1)FR21偏斜于法向反力一摩擦角φ ;
2) FR21偏斜旳方向应与相对速度v12旳方向相反。
(2)槽面接触旳移动副
G FN 21 FN 21 0 22
FN 21 2
G
sin(90 ) sin 2
FN 21
G
sin
F
F 2 N 21 f
G
f G
f
f 21
2
sin
sin
θ
FN21 2
举例: 例4-1 斜面机构
正行程:F= G tan(α +φ) 反行程:F ′ = G tan(α - φ)
例4-2 螺旋机构 拧紧:M = Gd2tan(α +φv)/2 放松:M′=Gd2tan(α -φv)/2
2. 转动副中摩擦力旳拟定
(1)摩擦力矩旳拟定
转动副中摩擦力Ff21对轴颈旳摩 擦力矩为
t Mf
其总反力方向旳拟定为: 1)总反力FR21旳方向与 法向反力偏斜一摩擦角;
2)偏斜方向应与构件1相对
构件2旳相对速度v12旳方向相反。
n
Ff21
2
FR21
φn FN21
ω12
1
V12 t
§4-5 考虑摩擦时机构旳受力分析
例 铰链四杆机构考虑摩擦时旳受力分析 例 曲柄滑块机构考虑摩擦时旳受力分析 小结 在考虑摩擦时进行机构力旳分析,关键是拟定运动副 中总反力旳方向, 而且一般都先从二力构件作kf
fV 当量摩擦系数
k 1~ 2
摩擦力计算旳通式:
Ff21 = f FN21 = fvG
平面接触: fv = f ; 槽面接触: fv = f /sinθ ; 半圆柱面接触: fv = k f ,(k = 1~π/2)。
机械原理-平面机构的力分析
传动条件
曲柄摇杆机构、齿轮传动机构
存储条件
转动机构、滑动机构
力的基本概念
1 力的作用点
力作用的位置或接触点。
2 力的方向
力作用的方向或施力线。
3 力的大小
力作用的大小或强弱。
平面机构的受力分析
1
受力分析
2
根据力的分解结果,分析各构件的受力情况。
3
力的分解
将力分解为平行于连接构件的分力和垂直于 连接构件的分力。
交叉槽的弯曲影响
交叉槽是指曲柄和滑块之间存在的交叉形状,它会导致机构的弯曲失效和运 动不稳定。
非正交曲柄机构的分析
1 自由度分析
根据曲柄滑块机构的结构,确定其自由度以及运动学约束。
2 力分析
通过力的平衡分析,确定机构各处的力大小和方向。
3 运动模拟
使用模拟软件或物理实验,验证机构设计的正确性和稳定性。
摆线和椭圆曲柄机构的分析
摆线曲柄机构
利用摆线曲线的特性,实现更平稳的运动传动。
椭圆曲柄机构
利用椭圆曲线的特性,实现更精确的运动传动。
内嵌框架的应用
机构设计
通过内嵌框架的布局,实现机构零 件的紧凑排列和高效传动。
机器人技术
内嵌框架在机器人领域的应用,提 高了机器人的稳定性和工作效率。
汽车工程
通过内嵌框架的结构布局,实现汽 车发动机和悬挂系统的高性能和节 能效果。
力的平衡
通过分析和计算,判断平面机构是否处于力 的平衡状态。
计算机构的自由度
自由度是指机构中独立变量的个数,它决定了机构的运动和约束情况。
平面机构的结构形式
齿轮传动
通过齿轮的啮合来实现转动传动功 能。
机械原理 第四章 平面机构的力分析
FN 21 FN 21dq
1
0
设: FN 21 g(G)
FN 21 FN 21dq g(G) dq kG
0
0
(k ≈1~1.57)
Ff 21 fFN 21 kfG
q
2
FN21
G
令kf fv Ff 21 fvG
4)标准式
不论两运动副元素的几何形状如何,两元素间产生的滑动摩 擦力均可用通式:
❖拧紧——螺母在力矩M作用下逆着G力等速向上运动,相当于在滑块2上加
一水平力F,使滑块2沿着斜面等速向上滑动。
F G tg( ) M F d2 d2 G tg( )
22
❖ 放 松 —— 螺 母
G/2
G/2
顺着G力的方向等
1
速向下运动,相 当于滑块 2 沿着
2
G
F G
斜面等速向下滑。
i 1
2)代换前后构件的质心位置不变;
静
❖以原构件的质心为坐标原点时,应满足: 代
n
mi xi
i 1 n
0
mi
i 1
yi
0
3)代换前后构件对质心的转动惯量不变。
换
动 代 换
n
mi
x
2 i
y i2
Js
i 1
动代换:
用集中在通过构件质心S B
的直线上的B、K 两点的代换
S
b
c
C
质量mB 和 mK 来代换作平面
F G tg( )
M F d2 d2 G tg( ) 22
时,M ' 0 阻力矩(与运动方向相 反)
当 时,M ' 0
时,M ' 0 驱动力(与运动方向相 同)
机械原理简答题总结
第一章绪论基本概念1.机械:机器和机构的总称。
2.机构:用来传递与变化运动和力的可动装置。
3.机器:根据某种使用要求设计的执行机械运动的装置,可用来变换或传递能量、物料和信息。
第二章机构的结构分析1.何谓构件?构件与零件有何区别?试举例说明其区别。
构件是由一个或多个小零件刚性联接的独立运动单元体,它是机构组成的基本要素;而零件则是独立的制造单元,所有机器均由零件构成。
2.何谓运动副和运动副元素?运动副是如何进行分类的?由直接接触形成的可动联接为运动副;其接触表面称作运动副元素;运动副根据接触特性分为高副与低副;按照相对运动形式,可分为移动副、转动副、齿轮副、凸轮副和螺旋副;此外,依据引入的约束数目对它们进行分类。
I级副-V级副3.何谓高副?何谓低副?在平面机构中高副和低副一般各带入几个约束?齿轮副的约束数目应如何确定?点线接触为高副,面面接触为低副;各带入1个和2个约束;若两齿轮(条)固定则引入一个约束,不固定引入2个约束。
4.何谓运动链?运动链与机构有何联系和区别?通过运动副的联接而构成的可相对运动的系统;机构是具有固定构件的运动链。
5.何谓机构的自由度?在计算平面机构的自由度时,应注意哪些问题?机构具有确定运动是所必须给定的独立运动参数的数目,亦及必须给定的独立的广义坐标的数目,称为机构的自由度。
注意复合铰链(包含机架),去除局部自由度(某些构件产生的局部运动并不影响其他构件的运动),去除虚约束(在机构中,有些运动副带入的约束对机构的运动只起重复约束作用)。
6.既然虚约束对于机构的运动实际上不起约束作用,那么在实际机构中为什么又常常存在虚约束?虚约束是指对机构运动起不到实际约束作用的约束。
虚约束可以改善构件的受力情况,提高机构的刚度和强度,有于保证机械顺利通过某些特殊位置。
(尽量减少虚约束)7.机构具有确定运动的条件是什么?机构具有确定运动的条件是其原动件数目等于机构自由度的数目。
当不满足此条件时,若原动件少于自由度,机构运动将不确定;反之,若原动件多于自由度,则可能导致机构最薄弱环节的破坏。
机械原理课后习题答案部分
第二章2-1 何谓构件?何谓运动副及运动副元素?运动副是如何进行分类的?答:参考教材5~7页。
2-2 机构运动简图有何用处?它能表示出原机构哪些方面的特征?答:机构运动简图可以表示机构的组成和运动传递情况,可进行运动分析,也可用来进行动力分析。
2-3 机构具有确定运动的条件是什么?当机构的原动件数少于或多于机构的自由度时,机构的运动将发生什么情况?答:参考教材12~13页。
2-5 在计算平面机构的自由度时,应注意哪些事项?答:参考教材15~17页。
2-6 在图2-22所示的机构中,在铰链C、B、D处,被连接的两构件上连接点的轨迹都是重合的,那么能说该机构有三个虚约束吗?为什么?答:不能,因为在铰链C、B、D中任何一处,被连接的两构件上连接点的轨迹重合是由于其他两处的作用,所以只能算一处。
2-7 何谓机构的组成原理?何谓基本杆组?它具有什么特性?如何确定基本杆组的级别及机构的级别? 答:参考教材18~19页。
2-8 为何要对平面高副机构进行“高副低代"?“高副低代”应满足的条件是什么?答:参考教材20~21页。
2-11 如图所示为一简易冲床的初拟设计方案。
设计者的思路是:动力由齿轮1输入,使轴 A连续回转;而固装在轴A上的凸轮2与杠杆3组成的凸轮机构将使冲头上下运动以达到冲压目的。
试绘出其机构运动简图,分析其是否能实现设计意图?并提出修改方案。
解:1)取比例尺绘制机构运动简图。
2)分析其是否可实现设计意图。
F=3n-( 2P l +P h –p’ )-F’=3×3-(2×4+1-0)-0=0此简易冲床不能运动,无法实现设计意图。
3)修改方案。
为了使此机构运动,应增加一个自由度。
办法是:增加一个活动构件,一个低副。
修改方案很多,现提供两种。
※2-13图示为一新型偏心轮滑阎式真空泵。
其偏心轮1绕固定轴心A转动,与外环2固连在一起的滑阀3在可绕固定轴心C转动的圆柱4中滑动。
第4章不考虑摩擦时平面机构的力分析
第4章不考虑摩擦时平面机构的力分析题4-2在图示的凸轮机构中,已知各构件的尺寸、生产阻力F r的大小及方向以及凸轮和推杆上的总惯性力F I1′和F I2′,试以图解法求各个运动副中的反力和需要施加在凸轮轴上的平衡力偶矩M b。
(注:已知各力的大小自己确定,要求列出力的矢量方程,并作图求解未F´题4-2图知力)解:题4-4在图示的四杆机构中,已知ω1=20s-1,l AB=140mm,l BC=400mm,l CD=400mm,l AD=600mm,构件2和3的重量分别为G2=47N,G3=56N,对其形心的转动惯量为J S2=0.286kg.m2,J S3=0.505kg.m2,构件1的质量略去不计,试求需要加在构件1上的平衡力以及各个运动副中的反力。
解:4D题4-4图第5章 摩擦与效率题5-1图a)所示的导轨副为由拖板1和导轨2组成的复合移动副,拖板的运动方向垂直于纸面;图b)所示为由转轴1和轴承2组成的复合转动副,绕轴线OO 转动。
现已知各个运动副的尺寸,并设G 为外加总载荷,各接触面之间的摩擦系数均为f 。
试分别求导轨副的当量摩擦系数f V 和转动副的摩擦圆半径ρ。
解:1)求图a)所示的导轨副的当量摩擦系数f Va)Ob)题5-1图故f V =F/G =2)求图b)所示的导轨副的摩擦圆半径ρ故ρ=M f /G =题5-2图示为一锥面径向推力轴承,已知其几何尺寸如图所示,设轴1上承受有铅直总载荷G ,轴承中的滑动摩擦系数为f ,试求轴1上所受的摩擦力矩M f (分别以新轴端和跑合轴端来加以分析)。
提示:可以利用当量摩擦系数的概念直接引用平轴端轴承的公式求得。
解:若为新轴端轴承,则若为跑合轴端轴承,则题5-3图示为一曲柄滑块机构的三个位置,F 为作用在活塞上的力,转动副A 及B 上所画的虚线小圆为摩擦圆,试决定在此三个位置时作用在连杆AB 上的作用力的真实方向(各构件的重量及惯性力略去不计)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代换前后构件的质心位置不变;
代换前后构件对质心轴的转动惯量不变。 即同时满足上述三个条件的质量代换 称为质量动代换。
2)质量动代换 如连杆BC的分布质量可用集中在B、K两点的 集中质量mB、mK来代换
m B + mK = m 2
m B b = mK k
mB B A 1 S1
b
B S2 m2 2 S2 m2
(2)总反力方向的确定 1)根据力的平衡条件, 确定不计摩擦时总反力 的方向; 2)计摩擦时的总反力应
与摩擦圆相切;
3)总反力FR21 对轴心之矩的方向必与轴颈1相对轴
承2的相对角速度的方向相反。
终切于摩擦圆,且与 Q 大小相等,方向相反
结论:只要轴颈相对轴承运动,轴承对轴颈的总反力FR21将始
(2 )轴端的摩擦
§4-2
构件惯性力的确定
B A 1 2
1.一般力学方法 以曲柄滑块机构为例 • 作平面复合运动的构件 FI2=-m2aS2 MI2=-JS2α2 可简化为总惯性力FI2’
B
′
3 C
A
′
1
S1 m14 JS1 ′ FI2 FI2 MI2 C
α2
B 2 lh2
lh2=MI2/FI2
B MS2(FI2)与方向与 α22 (aS2)方向相反。 3 ′
M′=P'.d2/2=Qd2tan(α -φv)/2
2.转动副中摩擦力的确定 (1)轴颈的摩擦 转动副中摩擦力Ff21对轴颈的摩擦力矩为Mf 轴颈2 对1 的作用力也用总反力FR21 来表示, 则 FR21 = - Q , Ff21=fvQ fv=(1~π/2)f 故 Mf = fv Q r =FR21ρ 式中 ρ = fv r , 具体轴颈其 ρ 为定值, 故可作摩擦圆, ρ 称为摩擦圆半径。
3n = 2pl
+ ph
结论:基本杆组都满足静定条件。
2.用图解法作机构的动态静力分析 分析步骤:
例 :
首先, 求出各构件的惯性力,并把它们视为外 力加于产生惯性力的机构上; 其次, 再根据静定条件将机构分解为若干个构 件组和 平衡力作用的构件; 最后, 按照由外力全部已知的构件组开始, 到平衡力作用的构件顺序依次建立
根据pρ=常数的规律知,在轴端中心部分的压强 非常大,极易压溃,故轴端常作成空心的。
G 1 M Mf
ω
dρ
ω
r
2
2r 2R
R
பைடு நூலகம்轴端接触面
ρ
3.平面高副中摩擦力的确定
平面高副两元素之间的相对运动通常是滚动兼滑动, 故有滚动摩擦力和滑动摩擦力;因滚动摩擦力一般 较小,机构力分析时通常只考虑滑动摩擦力。
平面高副:运动副反力沿高副两元素接触点的
公法线上,仅大小未知。
平面上一个活动构件可以列出3个力平衡方程式 一个低副的运动副反力有3个未知要素 一个高副的运动副反力有1个未知要素 设由n个构件和 pl个低副和ph个高副组成的构件 组,根据每个构件可列独立力平衡方程数等于 力的未知数,则得此构件组得静定条件为
平面接触: 槽面接触:
半圆柱面接触:
说明 :
fv = k f ,(k = 1~π/2)。
引入当量摩擦系数后, 使不同接触形状的移动副
中的摩擦力大小的计算大为简化。因而也是工程
中简化处理问题的一种重要方法。
2)总反力方向的确定 运动副中的法向反力与摩擦力的合力FR21 称为运动
副中的总反力,总反力与法向力之间的夹角φ,
称为摩擦角,
即φ = arctan f
总反力方向的确定方法:
1)FR21偏斜于法向反力
一摩擦角φ ;
2)其偏斜的方向应与
相对速度v12的方向相反。
例 斜面机构
正行程:P=Q tan(α +φ) 反行程:P'=Q tan(α - φ)
例 螺旋机构
拧紧:
放松:
M=P.d2/2=Qd2tan(α +φv)/2
I1
B B
S1 M S1 M I1 I1
aS1 aS1
2.质量代换法
是指设想把构件的质量按一定条件集中于构件上
某几个选定点上,用假想集中质量来代替的方法。
这样便只需求各集中质量的惯性力,而无需求惯
性力偶矩,而使构件惯性力的确定简化。 假想的集中质量称为代换质量; 代换质量所在的位置称为代换点。
1)质量代换的参数条件 代换前后构件的质量不变;
逐步推算
力平衡条件,并进行作图求解。
轴用以承受轴向力的部分称为轴端。当轴端 1在止
推轴承2上旋转时,接触面间也将产生摩擦力。 其摩擦力矩的大小确定如下:取环形微面积 ds = 2πρdρ
G 1 M Mf dρ
ω
r
ω
2
2r 2R
R
轴端接触面
ρ
设 ds 上的压强p为常数,
则其正压力 dFN = pds , G 摩擦力 dFf = M fdFN = f pds, 1 Mf 故其摩擦力矩 dMf为 : dMf = ρdFf Mf 为 2r 2总摩擦力矩 R Mf 2 =∫ρ f pds = 2π f ∫pρ2dρ = ρf pds
φ
n FN21
ω12
1
n
2
V12 t
§4-4
不考虑摩檫时机构的力分析
确定机械的平衡力
目的:确定运动副反力 1.机构组的静定条件:
在不考虑摩擦时,平面运动副中的反力的作用线、方 向及大小未知要素如下: 转动副:
运动副反力
通过转动副中心,
大小及方向未知;
移动副 :运动副反力沿导路法线方向, 作用点的位置及大小未知;
2)阻抗力阻止机械运动的力。
其特征:与其作用点的速度方向相反或成钝角 其功为负功,称为阻抗功 2)有害阻力(非生产阻力)其功称为损失功
1)有效阻力(工作阻力)其功称为有效功或输出功
2.机构力分析的任务、目的及方法 1)任务 确定运动副中的反力, 确定平衡力及平衡力矩
2)方法
静力分析与动态静力分析 图解法和解析法
第4章 平面机构的力分析
§4-1 §4-2 机构力分析的任务、目的和方法 构件惯性力的确定
§4-3
§4-4
运动副中摩檫力的确定
不考虑摩檫时机构的力分析
§4-1
机构力分析的任务、目的和方法
1.作用在机械上的力 1)驱动力 驱动机械运动的力。
其特征:与其作用点的速度方向相同或者成锐角
其功为正功,称为驱动功或输入功
k
K 3
c
mk C
m B b 2 + m K k 2= J S
2
在工程中,一般选定 代换点B的位置,则 k= JS
2
C S3
/(m2b)
优点:代换后构件惯性力及惯性力偶矩不改变 缺点:代换点及位置不能随意选择
mB= m2k/(b+k) mK= m2b/(b+k)
给工程计算带来不便
3)质量静代换 只满足前两个条件的质量代换称为静代换。 如连杆BC的分布质量可用 B、C两点集中质量mB、mC代换,则
式中 f 为 摩擦系数
FN21 的大小与摩擦面的几何形状有关:
1)平面接触:
FN21 = Q,
2)槽面接触: FN21= Q/ sinθ
3)半圆柱面接触:
FN21= k Q,(k = 1~π/2)
摩擦力计算的通式: Ff21 = 其中, f FN21 = fv Q fv 称为当量摩擦系数, fv = f ; fv = f /sinθ ; 其取值为:
1
aS2
S2 m2 JS2 3
2)作平面移动的构件
作变速移动时,则 FI3 =-m3aS3
a S3
a S3
3
3
C FI3 C
FI3
3)绕定轴转动的构件
若曲柄轴线不通过质心, 则 FI1=-m1aS1 MI1=-JS1α1
若其轴线通过质心,则
MI1=-JS1α1
A A
α 1 α 1 11
F F I1
ω
dρ
ω
r
R
轴端接触面
ρ
1)新轴端
对于新轴端和轴承,或很少相对运动
的轴端和轴承,各接触面压强处处相等,即
p=G/[π(R2-r2)]=常数,则:
Mf=2fG((R3-r3)/3(R2-r2)
2)跑合轴端 轴端经过一定时间工作后,称为跑
合轴端,此时接触面处的压强已不能再假定为处
处相等,而较符合实际的假设是接触面处处等磨 损, 既近似符合pρ=常数的规律,则: Mf = 2π ∫(pρ)ρdρ= fG(R+r)/2
mB + mc= m2
m B b = mC c mB=m2c/(b+c) mC=m2b/(b+c)
A B 1
mB
B S2 m2 2 C mC 3 S3 C
S1 S2
m2
优缺点:构件的惯性力偶会产生一定的误差,但 计算简便,一般工程是可接受的。
§4-3
运动副中摩檫力的确定
1.移动副中摩擦力的确定 1)摩擦力的确定 移动副中滑块在力F 的作用下右移时, 所受的摩擦力为: Ff21 = f FN21= f Q
t Mf FR21 Ff21
φ
平面高副中摩擦力的确定, 通常是将摩擦力和法向 反力合成一总反力来研究。
n
n FN21
ω12
1 2
V12 t
1)其总反力方向的确定为: 总反力FR21的方向与法向反力偏斜一摩擦角; 2)偏斜方向应与构件1相对构件2的相对速度v12 的方向相反
t Mf FR21 Ff21