微分方程的稳定性模型

合集下载

数学建模实验报告

数学建模实验报告

湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。

实验二 优化模型........................................................................ 错误!未定义书签。

实验三 微分方程模型................................................................ 错误!未定义书签。

实验四 稳定性模型.................................................................... 错误!未定义书签。

实验五 差分方程模型................................................................ 错误!未定义书签。

实验六 离散模型........................................................................ 错误!未定义书签。

实验七 数据处理........................................................................ 错误!未定义书签。

实验八 回归分析模型................................................................ 错误!未定义书签。

实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。

实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。

微分方程模型中的稳定性与解的存在性证明

微分方程模型中的稳定性与解的存在性证明

微分方程模型中的稳定性与解的存在性证明微分方程是数学中的重要分支之一,它描述了自然界中众多现象的变化规律。

在微分方程的研究中,稳定性与解的存在性证明是两个基本问题。

本文将从这两个方面展开讨论微分方程模型的特性。

稳定性是指系统在一定条件下的长期行为是否趋于稳定。

在微分方程模型中,稳定性分为局部稳定性和全局稳定性。

局部稳定性指的是系统在某一点附近的行为是否稳定,而全局稳定性则是指系统在整个定义域内的行为是否稳定。

稳定性的判断可以通过线性化的方法来进行。

线性化是将非线性微分方程在某一点附近进行线性逼近,从而获得系统的线性化方程。

通过对线性化方程的特征值进行分析,可以判断原方程在该点附近的稳定性。

解的存在性证明是指是否存在满足微分方程的解。

在微分方程模型中,解的存在性通常需要借助一些数学工具和定理来证明。

其中最常用的方法是皮卡-林德洛夫定理和柯西-利普希茨定理。

皮卡-林德洛夫定理是解的存在性证明中的重要定理之一。

它指出,如果微分方程的右端函数在某个矩形区域内满足利普希茨条件,那么在该区域内存在唯一的解。

利普希茨条件是指右端函数的偏导数存在且有界。

柯西-利普希茨定理则是解的存在性证明中的另一个重要定理。

它指出,如果微分方程的右端函数在某个区域内满足利普希茨条件,那么在该区域内存在唯一的解,并且解的存在范围可以延伸到整个定义域。

除了皮卡-林德洛夫定理和柯西-利普希茨定理,还有一些其他的定理和方法可以用于解的存在性证明。

比如,格朗沃尔不等式、逐步逼近法和拟凸函数法等。

总之,微分方程模型中的稳定性与解的存在性证明是微分方程研究中的重要问题。

通过线性化和定理的运用,可以对微分方程的稳定性进行判断和证明。

而解的存在性证明则需要借助一些数学工具和定理来进行推导。

这些方法和定理为我们研究微分方程提供了有力的工具和理论支持。

微分方程的平衡点及稳定性分析

微分方程的平衡点及稳定性分析
, () 4
者 可 以不 一致 , 比如 说 , 线性 近 似方 程 的平衡 点 为 中心 时 , 用其 它 的方 法来判 断( ) 要 4 式平 衡 点 的稳
12 判 定 平 衡 点 稳 定 性 的 方 法 .
① 间接法 : 定义3 的方法称为间接法。 ②直接法 : 不求方程式( 的解 ) 1 ) 0的方法 , 称
为直接法。 方法: 在 将 ) 。 处作泰勒展开, 只取一
次项 , 有微 分方 程 ( ) 近似 为 1可
变化规律 , 预测它的未来形态时 , 要建立对象 的动 态模 型 , 常 要用到 微分方 程模 型 。 通 而稳 定性 模 型 的对象仍是动态过程 ,而建模 的目的是研究时间 充分 长 以后 过程 的变 化趋 势— — 平衡 状 态是 否 稳 定。 稳定性模型不求解微分方程 , 而是用微分方程
) ) () 1
①羞 0 0则称 ), < 。 为方程(和(的稳定的 1 3 ) ) 平
衡点。
o 则称 为方 程() 3的不稳 定 的平 , 1和() 衡点。
定义2 代数方程 ) 的实根 。 : = 0 称为微分方
程() 1的平衡 点 。 定 义 3从 某 领 域 的任 意 值 出发 , 方 程 ( ) : 使 1
。 o 作 泰勒 展 开 , ,) y处 只取 一 次项 , (在 P 。 。 得 4 ) 0 ,) Y
的线 性近 似方 程 为 :
贝 ) 却 r0 则根据定理 1x O I => , , 是不稳定的平衡 =
点 . I 一rO 是稳定的平衡点。 厂) <,
分 析 : 平衡 点 的稳 定性 来 看 , 从 随着 时 间 的推 移 , 口的增 长在 人 处 趋于 稳定 , 也就 是人 口达

微分方程模型介绍

微分方程模型介绍

微分方程模型介绍在研究实际问题时,常常会联系到某些变量的变化率或导数,这样所得到变量之间的关系式就是微分方模型。

微分方程模型反映的是变量之间的间接关系,因此,要得到直接关系,就得求微分方程。

求解微分方程有三种方法:1)求解析解;2)求数值解(近似解);3)定性理论方法。

建立微分方程模型的方法:1)利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律等来建立微分方程模型。

2)微元分析法利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律3)模拟近似法在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。

下面我们以生态学模型为例介绍微分方程模型的建立过程: 一. 单种群模型1. 马尔萨斯(Malthus)模型假定只有一个种群,()N t 表示t 时刻生物总数,r 表示出生率,0t 表示初始时刻,则生物总数增长的数学模型为()()()00d ,d (1)t t N t rN t t N t N =⎧=⎪⎨⎪=⎩不难得到其解为()0()0r t t N t N e-=.2. 密度制约模型由马尔萨斯模型知,种群总数将以几何级数增长,显然与实际不符,因为种群密度增大时,由于食物有限,生物将产生竞争,或因为传染病不再按照增长率r 增长,因而有必要修改,在(1)式右端增加一项竞争项。

()()()d (1)(2)d N t N t rN t tK=-其中K 为最大容纳量,可以看出当()N t K =时,种群的规模不再增大。

这个模型就是著名的Logistic 模型,可以给出如下解释:由于资源最多仅能维持K 个个体,故每个个体平均需要的资源为总资源的1K,在t 时刻个体共消耗了总资源的()N t K此时资源剩余()1N t K-,因此Logistic 模型表明:种群规模的相对增长率与当时所剩余的资源份量成正比,这种种群密度对种群规模增长的抑制作用。

微分方程在经济模型中的应用

微分方程在经济模型中的应用

微分方程在经济模型中的应用引言:微分方程是数学中的一种重要工具,它描述了变化率与变量之间的关系。

在经济学中,微分方程被广泛应用于各种经济模型的建立和分析中。

本文将探讨微分方程在经济模型中的应用,并介绍其中的一些经典案例。

一、经济增长模型中的微分方程经济增长是一个国家或地区经济长期发展的过程,而微分方程能够帮助我们理解和预测经济增长的规律。

一个经典的经济增长模型是索洛模型,它描述了资本积累和技术进步对经济增长的影响。

该模型可以用如下的微分方程表示:dK/dt = sY - δK其中,K表示资本积累,Y表示产出,s表示储蓄率,δ表示资本耗损率。

该方程描述了资本积累的变化率与产出、储蓄率和资本耗损率之间的关系。

通过求解这个微分方程,我们可以得到资本积累随时间的变化情况,从而分析经济增长的趋势和速度。

二、消费函数模型中的微分方程消费函数是描述个人或家庭消费行为的数学模型。

在经济学中,消费函数通常被表示为一个微分方程。

一个经典的消费函数模型是凯恩斯消费函数,它描述了个人消费与收入之间的关系。

该模型可以用如下的微分方程表示:dy/dt = c - bY其中,Y表示个人收入,c表示消费的固定部分,b表示边际消费倾向。

该方程描述了个人收入的变化率与消费、收入和边际消费倾向之间的关系。

通过求解这个微分方程,我们可以得到个人收入随时间的变化情况,从而分析个人消费的趋势和规律。

三、货币供应模型中的微分方程货币供应是一个国家或地区货币总量的变化情况,而微分方程可以帮助我们建立货币供应模型并进行分析。

一个经典的货币供应模型是弗里德曼-斯图尔特模型,它描述了货币供应与货币基础、货币乘数和其他因素之间的关系。

该模型可以用如下的微分方程表示:dM/dt = m(dB/dt)其中,M表示货币供应,B表示货币基础,m表示货币乘数。

该方程描述了货币供应的变化率与货币基础的变化率和货币乘数之间的关系。

通过求解这个微分方程,我们可以得到货币供应随时间的变化情况,从而分析货币政策的效果和稳定性。

微分方程的稳定性模型_图文_图文

微分方程的稳定性模型_图文_图文
甲乙两种群的相互依存有三种形式
1) 甲可以独自生存,乙不能独自生存;甲 乙一起生存时相互提供食物、促进增长。
2) 甲乙均可以独自生存;甲乙一起生存 时相互提供食物、促进增长。
3) 甲乙均不能独自生存;甲乙一起生存 时相互提供食物、促进增长。
模型 假设
• 甲可以独自生存,数量变化服从Logistic规律 ; 甲乙一起生存时乙为甲提供食物、促进增长 。 • 乙不能独自生存;甲乙一起生存时甲为乙 提供食物、促进增长;乙的增长又受到本身 的阻滞作用 (服从Logistic规律)。
假设
• 解释(预测)双方军备竞赛的结局 1)由于相互不信任,一方军备越大,另一 方军备增加越快;
2)由于经济实力限制,一方军备越大,对 自己军备增长的制约越大;
3)由于相互敌视或领土争端,每一方都存
在增加军备的潜力。
进一步 假设
1)2)的作用为线性;3)的作用为常数
建模 x(t)~甲方军备数量, y(t)~乙方军备数量
r1=1, N1=20, 1=0.1, w=0.2, r2=0.5, 2=0.18
相轨线趋向极限环 结构稳定
实质上,我们并不需求解上面的微分方程以得到x(t) 的动态变化过程,只希望知道渔场的稳定鱼量和保 持稳定的条件,即时间 t 足够长以后渔场鱼量 x(t) 的趋向,并由此确定最大持续产量。为此可以直接 求上面常微分方程的平衡点并分析其稳定性。
不求x(t), 判断x0稳定性的方法——直接法
由于
讨论方程(1)的稳定性时,可用
对于消耗甲的资源而言
,乙(相对于N2)是甲(相
对于N1)的1 倍。
对甲增长的阻滞 作用,乙小于甲 乙的竞争力弱
2>1 甲的竞争力强
甲达到最大容量,乙灭绝

微分方程的经典模型

微分方程的经典模型

模型分析
问题中并未出现“变化率”、“导数”这样的关键词,但要寻找的是体重 (记为W)关于时间t的函数。如果我们把体重W看作是时间t的连续可微函数, 我们就能找到一个含有的
dW 微分方程。 dt
模型假设
W0 ; 1.W ( t ) 表示 t 时刻某人的体重,并设一天开始时人的体重为 2. W ( t ) 关于 t 连续而且充分光滑;
模型建立
游击作战模型的形式:

(t) f (x, y) x (t) g(x, y) y x(0) x , y(0) y 0 0
, 由假设2、3,甲乙双方的战斗减员率分别为
f(x ,y ) c x y
g (x ,y )dxy
结合以上两表达式,并代入 c、d 的值,可得游击作战的数学模型
或被歼灭)的一方为败。因此,如果 K K0 ,则乙的兵力减少到
甲方兵力降为“零”,从而乙方获胜。同理可知, K0
K0 胜。而当
a

时,甲方获
时,双方战平。
2 2 bx ay 0 甲方获胜的充要条件为 0 0
代入a 、b 的表达式,进一步可得甲方获胜的充要条件为
2 2 r p x r p y x x 0 y y 0
模型建立 根据假设得到一般的战争模型
x ( t) f( x ,y ) x u ( t) y ( t) g ( x ,y ) y v ( t) x ( 0 )x , y ( 0 )y 0 0
正规作战模型
模型假设
1.不考虑增援,并忽略非战斗减员;
得:
其解为:
i(t) i0e
k0t
模型分析与解释
这个结果与传染病初期比较吻合,但它表明病人人数将按指数规律 无限增加,显然与实际不符

数学建模微分方程模型

数学建模微分方程模型

我国是世界第一人口大国,地球上每九 个人中就有二个中国人,在20世纪的一段 时间内我国人口的增长速度过快,如下表:
年 1908 1933 4.7 1953 6.0 1964 7.2 1982 10.3 1990 11.3 2000 12.95
人口(亿)3.0
有效地控制人口的增长,不仅是使我国全面进 入小康社会、到21世纪中叶建成富强民主文明的社 会主义国家的需要,而且对于全人类社会的美好理 想来说,也是我们义不容辞的责任。
1.人口模型
问题的提出 假设和定义 模型的建立 分析和求解 结论和讨论

1 问题的提出
人口问题是当今世界上最令人关注的问题之一, 一些发展中国家的人口出生率过高,越来越威胁着 人类的正常生活,有些发达国家的自然增长率趋于 零,甚至变为负数,造成劳动力紧缺,也是不容忽 视的问题。另外,在科学技术和生产力飞速发展的 推动下,世界人口以空前的规模增长,统计数据显 示:
模型的缺点
缺点:当t→∞时,I(t) → n,这表示所有的人最
终都将成为病人,这一点与实际情况不 符合
原因:这是由假设〔1)所导致,没有考虑病人可
以治愈及病人病发身亡的情况。 思考题:考虑有病人病发身亡的情况,再对模型 进行修改。
模型三 有些传染病(如痢疾)愈后免疫力很低,还有可能再
次被传染而成为病人。 模型假设: (1)健康者和病人在总人数中所占的比例分别为s(t)、i(t), 则: s(t)+i(t)=1 (2)一个病人在单位时间内传染的人数与当时健康人数成 正比,比例系数为k (3)病人每天治愈的人数与病人总数成正比,比例系数为 μ(称日治愈率),病人治愈后成为仍可被感染的健康者, 称1/ μ为传染病的平均传染期(如病人数保持10人,每 天治愈2人, μ =1/5,则每位病人平均生病时间为 1/ μ =5天)。

常见的微分方程模型

常见的微分方程模型

常见的微分方程模型微分方程是数学的一个重要分支,广泛应用于自然科学和工程领域。

它描述了物理现象、社会问题和自然现象的变化规律,能够帮助我们理解和预测各种现象的发展趋势。

下面将介绍一些常见的微分方程模型。

1. 一阶线性微分方程一阶线性微分方程是最简单且常见的微分方程之一。

它可以描述许多实际问题,比如放射性衰变、人口模型等。

一阶线性微分方程的一般形式可以写为dy/dt = f(t) * y + g(t),其中f(t)和g(t)是已知函数,y是未知函数。

2. 指数衰减模型指数衰减模型是描述某种变化过程的常见微分方程。

它可以用来描述放射性物质的衰变、人口增长的趋势等。

指数衰减模型的一般形式是dy/dt = -ky,其中k是常数。

这个方程表示y的变化速率与y本身成比例,且反向。

3. 扩散方程扩散方程是描述物质或能量传递过程的微分方程。

它可以用来研究热传导、扩散现象等。

扩散方程的一般形式是∂u/∂t = D ∇²u,其中u是未知函数,D是扩散系数,∇²是Laplace算子。

这个方程表示u 的变化率与u的二阶导数成正比。

4. 多体问题多体问题是描述多个物体之间相互作用的微分方程模型。

它可以用来研究天体运动、分子碰撞等问题。

多体问题的方程通常包括牛顿第二定律和对应的初始条件,如F = ma和相关的速度、位置初值条件。

5. 随机微分方程随机微分方程是考虑了随机因素的微分方程模型。

它可以用来研究金融市场的波动、生态系统的不确定性等。

随机微分方程的方程形式通常会引入一个随机项,如dy/dt = f(t, y) dt + g(t, y) dW,其中dW是布朗运动,表示随机项。

以上介绍的是一些常见的微分方程模型,它们在理论和实际应用中都具有重要的地位。

通过研究这些模型,我们可以深入理解各种现象背后的数学规律,并且为实际问题提供解决方案。

微分方程模型不仅有助于推动数学的发展,还在科学研究、工程设计和技术创新等领域中发挥着重要作用。

微分方程在生态学模型中的应用

微分方程在生态学模型中的应用

微分方程在生态学模型中的应用微分方程是数学中的一种重要工具,可以描述系统的变化规律及其动力学特性。

在生态学研究中,微分方程经常被应用于构建生态系统模型和分析生物群落的动态变化。

本文将介绍微分方程在生态学模型中的应用,包括种群动态模型、食物链模型和生态系统稳定性的研究。

一、种群动态模型种群动态是生态学中一个重要的研究领域,可以通过微分方程来描述和分析。

常见的种群动态模型包括Logistic模型、Lotka-Volterra模型等。

以Logistic模型为例,它描述了一个种群在资源有限的情况下的增长规律。

假设种群的增长率与种群数量及资源供应有关,可以得到微分方程:dN/dt = rN(1-N/K),其中N表示种群数量,t表示时间,r表示种群的增长率,K表示资源的容纳量。

通过求解这个微分方程,可以得到种群数量随时间变化的函数关系,进而预测和分析种群的演变趋势和稳定状态。

二、食物链模型生态系统中的食物链反映了物种之间的相互作用和能量传递关系。

微分方程能够描述不同物种之间的捕食和被捕食关系,从而构建食物链模型并研究生物群落的稳定性。

Lotka-Volterra模型是一个常见的食物链模型,它描述了掠食者和被捕食者之间的相互作用。

该模型可以表示为一组耦合的微分方程:dN1/dt = r1*N1 - a1*N1*N2dN2/dt = -r2*N2 + a2*N1*N2其中N1和N2分别表示掠食者和被捕食者的数量,r1和r2表示各自的增长率,a1和a2表示捕食者对被捕食者的捕食率。

通过求解这组微分方程,可以得到掠食者和被捕食者数量随时间的变化规律,以及不同参数条件下的稳定状态和相空间分析。

三、生态系统稳定性研究生态系统的稳定性是生态学中一个重要的研究课题。

微分方程可用于分析不同物种之间的相互作用和自然环境的影响对生态系统稳定性的影响。

生态系统稳定性分析的方法之一是稳定性分析。

通过线性化处理微分方程模型,并分析方程的特征根和本征值,可以判断系统的稳定性。

数学建模 微分方程模型讲解

数学建模 微分方程模型讲解

量在初始阶段的增长情况比较相符。
(2)由(3—19)式推得,t=0 时显然 x=0,这一结果自然与
事实不符。产生这一错误结果的原因在于我们假设产品是自然推
销的,然而,在最初产品还没卖出之时,按照自然推销的方式,
便不可能进行任何推销。事实上,厂家在产品销售之初,往往是
通过广告、宣传等各种方式来推销其产品的。
? 1. 新产品推销模型 ? 一种新产品问世,经营者自然要关心产
品的卖出情况。下面我们根据两种不同 的假设建立两种推销速度的模型。
模型 A 假设产品是以自然推销的方式卖出,换句话说,被卖出的产品
实际上起着宣传的作用, 吸引着未来购买的消费者。 设产品总数与时刻 t 的关
系为 x(t), 再假设每一产品在单位时间内平均吸引 k 个顾客,则 x(t) 满足微
样,从根本上解决了模型 A 的不足。 由(3—20)式易看出, dx ? 0 ,即 x(t) 是关于时刻 t 的单调增
dt
加函数,实际情况自然如此,产品的卖出量不可能越卖越少。另外,
对(3—20)式两端求导,得
d 2x dt 2
?
k(M
?
2 x)
dx dt
故令 d 2x
dt 2
?
0 ,得到 x(t0 ) ?
Nm N0
)e? n
易看出,当t→? 时,当N(t) →Nm。这个模型称为Logistic 模型,其结果 经过计算发现与实际情况比较吻合。上面所画的是 Logistic 模型的的图形。
你也可从这个图形中,观察到微分方程解的某些性态。
捕鱼问题
在鱼场中捕鱼,捕的鱼越多,所获得的经济效益越大。但捕捞的鱼过多,
根据上面的假设,我们建立模型
dS ? P ? A(t) ? ??1 ? S (t) ?? ? ? S(t )

微分方程模型

微分方程模型

房室具有以下特征:它由考察对象均匀分 布而成,房室中考察对象的数量或浓度(密 度)的变化率与外部环境有关,这种关系被 称为“交换”且交换满足着总量守衡。在本 节中,我们将用房室系统的方法来研究药物 在体内的分布。在下一节中,我们将用多房 室系统的方法来研究另一问题。
单房室系统
交换 环境
内部
均匀分布
,i(t)单 s0 增。但在i(t)增加的同时,伴随地有s(t)单减。当 s(t)减少到小于等于 时, i(t)开始减小,直 至此疾病在该地区消失。
(2)如果
则: s(t ) s
r (t )
1
o
e

di ,则开始时 dt 0
五.稳定性问题
在研究许多实际问题时,人们最为关心的也许并 非系统与时间有关的变化状态,而是系统最终的发展 趋势。例如,在研究某频危种群时,虽然我们也想了 解它当前或今后的数量,但我们更为关心的却是它最 终是否会绝灭,用什么办法可以拯救这一种群,使之 免于绝种等等问题。要解决这类问题,需要用到微分 方程或微分方程组的稳定性理论。在下两节,我们将 研究几个与稳定性有关的问题。
容器损失的水量为:
[ R ( R r ) ]dh
2 2
由质量守恒
[ R ( R r ) ]dh sv(t )dt
2 2
其中
v(t ) 0.6 2gh(t)
从而建立方程:
0.6s 2 gh dh 2 2 dt [R (R r) ]
解得
0.6s 2 gh 14 R T dh 2 2 R [R (R r) ] 9s 2 g
微分方程 模型
• 微分方程建模
对于某种现象或提出的问题,通过建立微分方程 来解释或解决.通常可分为两大类:

微分方程定性与稳定性分析解析

微分方程定性与稳定性分析解析

微分方程定性与稳定性分析解析微分方程是描述自然界中变化规律的重要数学工具,在各个学科领域中都有广泛的应用。

微分方程的定性与稳定性分析是研究微分方程解行为的一种方法,通过分析解的性质和稳定性来了解方程的整体行为。

本文将介绍微分方程定性与稳定性分析的基本概念和方法,并通过具体的例子来阐述其应用。

一、微分方程定性分析微分方程定性分析是指通过对微分方程解的性质进行分析,得到关于解的定性描述。

在定性分析中,我们主要关注解的长期行为和整体趋势,而不是具体的解析形式。

1. 平衡解与稳定性在微分方程中,平衡解是指满足方程右端为零的解。

对于一阶微分方程dy/dx = f(x),平衡解即为使得f(x) = 0的x值。

平衡解的稳定性是指当初始条件接近平衡解时,解的行为是否趋于平衡解。

2. 等式右端的符号分析对于微分方程dy/dx = f(x),我们可以通过分析f(x)的符号来推断解的行为。

当f(x) > 0时,解呈现上升趋势;当f(x) < 0时,解呈现下降趋势;当f(x) = 0时,解为平衡解。

3. 相图分析相图是描述微分方程解的图形,横轴表示自变量x,纵轴表示因变量y。

在相图中,曲线表示解的轨迹,平衡解表示曲线与纵轴的交点。

通过绘制相图,我们可以直观地了解解的行为和稳定性。

二、微分方程稳定性分析微分方程稳定性分析是指通过分析微分方程解的稳定性来了解方程的整体行为。

稳定性分析可以分为局部稳定性和全局稳定性两个方面。

1. 局部稳定性局部稳定性是指当初始条件接近某个平衡解时,解的行为是否趋于该平衡解。

局部稳定性可以通过线性化的方法来分析,即将微分方程在平衡解附近进行泰勒展开,并分析展开式的特征根。

2. 全局稳定性全局稳定性是指当初始条件在整个定义域内变化时,解的行为是否趋于某个平衡解。

全局稳定性的分析较为复杂,通常需要借助于Lyapunov函数或者Poincaré-Bendixson定理等方法。

三、定性与稳定性分析的应用微分方程的定性与稳定性分析在各个学科领域中都有广泛的应用。

2.微分方程模型

2.微分方程模型

牛顿冷却(加热)定律:将温度为T的物体 放入处于常温 m 的介质中时,T的变化速率 正比于T与周围介质的温度差.
分析:假设房间足够大,放入温度较低或较 高的物体时,室内温度基本不受影响,即室温 分布均衡,保持为m,采用牛顿冷却定律是一个 相当好的近似.
建立模型:设物体在冷却过程中的温度为 T(t),t≥0,
“T的变化速率正比于T与周围介质的温度差”
翻译为
dT 与T m成正比 dt
数学语言
建立微分方程
dT k (T m ), dt T (0) 60.
其中参数k >0,m=18. 求得一般解为
ln(T-m)=-k t+c,

T m ce
kt
, t 0,
1 16 代入条件,求得c=42 , ln , 最后得 k 3 21 1 16 ln t T(t)=18+42 e 3 21 , t ≥0.
1 16 结果 :T(10)=18+42 3 ln 21 10 =34.97℃, e
该物体温度降至30℃ 需要13.82分钟.
例2、车间空气的清洁
问题:已知一个车间体积为V立方米,其中有一 台机器每分钟能产生r立方米的二氧化碳(CO2),为 清洁车间里的空气,降低空气中的CO2含量,用一台 风量为K立方米/分钟的鼓风机通入含CO2为m%的新鲜 空气来降低车间里的空气的CO2含量。假定通入的新 鲜空气能与原空气迅速地均匀混合,并以相同的风量 排出车间。又设鼓风机开始工作时车间空气中含x0% 的CO2.问经过t时刻后,车间空气中含百分之几的CO2? 最多能把车间空气中CO2的百分比降到多少?
30000 60 24 365
这些铀约重

微分方程模型求解及稳定性分析

微分方程模型求解及稳定性分析

微分方程模型求解及稳定性分析微分方程模型、求解及稳定性分析是数学中的重要内容。

微分方程是描述自然界中各种变化规律的数学工具,广泛应用于物理、化学、生物等领域。

求解微分方程可以通过解析方法、数值方法等途径得到方程的解析解或数值解。

稳定性分析是对微分方程解的性质进行研究,确定系统的稳定性和不稳定性。

求解微分方程是求出微分方程的解析解或数值解的过程。

对于一些简单的微分方程,可以通过直接积分或分离变量等方法进行求解。

对于复杂的微分方程,可以使用级数展开、变量代换等方法进行求解。

在现代数学中,还发展了许多数值方法,如Euler法、Runge-Kutta法等,可以通过计算机编程实现对微分方程的数值求解。

稳定性分析是对微分方程解的性质进行研究,确定系统的稳定性和不稳定性。

稳定性分析常常涉及到研究微分方程解的局部性质和全局性质。

对于线性微分方程,可以通过线性稳定性理论来研究解的稳定性。

对于非线性微分方程,可以通过Lyapunov稳定性理论、中心流形理论等方法进行研究。

稳定性分析的目标是确定微分方程解的长期行为。

对于线性微分方程,如果解在初始条件微扰下不发散或收敛到稳定值,那么解是稳定的。

对于非线性微分方程,稳定性分析的难度要大于线性情况,常常需要利用数值计算和图形分析方法来研究解的稳定性。

在数学中,微分方程模型、求解及稳定性分析是一个相互关联的过程。

通过建立微分方程模型、求解微分方程以及确定解的稳定性,可以揭示物理、化学、生物等实际问题的规律和性质。

同时,求解微分方程和稳定性分析的方法和技巧也是数学研究中的重要内容,为数学家研究更一般的微分方程和非线性动力系统提供了基础。

总之,微分方程模型、求解及稳定性分析是数学中的重要内容。

通过建立微分方程模型、求解微分方程和确定解的稳定性,可以揭示实际问题的规律和性质。

求解微分方程和稳定性分析的方法和技巧也是数学研究中的重要内容,为数学家研究更一般的微分方程和非线性动力系统提供了基础。

微分方程模型

微分方程模型
人口将按指数规律无 限增长!
r0
r0
x(t ) x0
x(t ) 0
人口将始终保持不变! 人口将按指数规律减少直 至绝灭!
2 T ln r
人口倍增时间
Malthus模型预测美国人口
Malthus模型预测美国人口
Malthus模型预测的优缺点
优点 缺点 原因 短期预报比较 准确 不适合中长期预报 预报时假设人口增长率 r 为常数。没有考虑环 境对人口增长的制约作用。
机动
目录
上页
下页
返回
结束
医学(流行病,传染病问题)模型,经济(商业销 售,财富分布,资本主义经济周期性危机)模 型,战争(正规战,游击战)模型等。 下面,我们给出如何利用方程知识建立 数学模型的几种方法。
机动
目录
上页
下页
返回
结束
1.利用题目本身给出的或隐含的等量 关系建立微分方程模型。这就需要我们仔 细分析题目,明确题意,找出其中的等量关 系,建立数学模型。 2.从一些已知的基本定律或基本公式出 发建立微分方程模型.我们要熟悉一些常用 的基本定律,基本公式.例如力学中的牛顿第 二运动定律,电学中的基尔霍夫定律等.从 这些知识出发我们可以建立相应的微分方 程模型。
到t t时刻, 除去死亡的人外 , 活着的都变成了
r dr1 , r dr dr1 区间内的人, t t时刻年龄在
即p(r dr 1 , t dt) dr.这里dr 1 dt.
而在这段时间內死去的 人数为 r , t pr , t drdt, 它们之间的关系为 : pr , t dr pr dr 1 , t dt dr r , t p r , t drdt r , t pr , t drdt

微分方程数学模型应用举例

微分方程数学模型应用举例

微分方程数学模型应用举例
1. 生物学模型:微分方程可以用于描述生物系统中的各种动态过程。

例如,Lotka-Volterra模型是一种描述捕食者和被捕食者之间相互作用的微分方程模型,可以用于研究食物链中物种的数量和相互关系。

2. 经济学模型:微分方程可以用于描述经济系统中的各种变化和趋势。

例如,Solow增长模型是一种描述经济增长和资本积累的微分方程模型,可以用于分析国家经济发展的长期趋势。

3. 物理学模型:微分方程可以用于描述物理系统中的各种动态过程。

例如,带有阻尼和驱动力的简谐振动可以用二阶线性常微分方程来描述,可以用于研究机械系统中的振动现象。

4. 化学反应动力学模型:微分方程可以用于描述化学反应中物质浓度随时间变化的关系。

例如,化学反应速率方程可以用一阶或二阶线性微分方程来描述,可以用于研究化学反应速率的变化规律。

5. 环境科学模型:微分方程可以用于描述环境系统中的各种变化和相互作用。

例如,Black-Scholes模型是一种描述金融市场中期权价格变化的微分方程模型,可以用于分析金融市场的波动和风险。

6. 工程科学模型:微分方程可以用于描述工程系统中的各种动态过程。

例如,控制系统中的传递函数可以用微分方程表示,可以用于研究系统的稳定性和响应特性。

这些只是微分方程在数学模型中的一些应用举例,实际上微分方程在各个学科领域中都有广泛的应用。

几种重要的微分方程应用模型

几种重要的微分方程应用模型
该模型由一组微分方程组成,描述了两种物种的数量变化和相互竞争的关 系。
生态竞争模型的解可以表现出多种动态行为,如周期振荡和混沌运动等, 取决于物种之间的竞争参数。
斐波那契序列模型
01
斐波那契序列是一个经典的数学序列,每个数字是前两个数字 的和。
02
斐波那契序列模型可以用于描述许多自然现象,如植物生长、
模型等。
02 线性微分方程模型
线性微分方程的解法
分离变量法
通过将方程中的未知函数和其导数分 离到等式的两边,从而将微分方程转 化为代数方程。
变量代换法
通过引入新的变量来简化微分方程, 例如使用积分因子或积分因子法。
参数法
当微分方程中包含参数时,可以通过 令参数等于某个特定的值来求解微分 方程。
幂级数法
拉普拉斯变换法
将高阶微分方程转化为代数方 程,适用于初值问题和具有特
定边界条件的问题。
阻尼振动模型
1 2
线性阻尼
阻尼力与速度成正比,导致振动逐渐减小并趋于 静止。
非线性阻尼
阻尼力与速度的幂函数相关,如速度的二次方、 三次方等,导致振动表现出不同的非线性行为。
3
阻尼振动应用
描述机械系统、电磁振荡器等物理系统的振动现 象,用于预测系统的稳定性和动态响应。
热传导方程的一般形式为:$frac{partial u}{partial t} = alpha nabla^2 u$,其中 $u$ 表示温度分布,$alpha$ 是热扩散系数,$nabla^2$ 表示拉普拉斯算子。
波动方程模型
01
波动方程是描述波动现象的偏微分方程,如声波、光波和水 波等。
02
它的一般形式为:$frac{partial^2 u}{partial t^2} = c^2 nabla^2 u$,其中 $u$ 表示波动场,$c$ 是波速。

微分方程3——稳定性分析

微分方程3——稳定性分析

使得离散自治系统
x1 f1 ( x1 , x2 ,..., xn ) 0
x
2
f 2 ( x1 , x2 ,...,
xn ) 0
......
xn f n ( x1 , x2 ,..., xn ) 0
成立的点x0=(x10, x20, ... ,xn0)称为其平衡点。
如果 lim x(n) x0,则称其为稳定平衡点,否则称为 n
,
N2 (1 2 1 1 2
)
,
P4(0,0)
仅当1, 2 < 1或1, 2 > 1时,P3才有意义
x1 (t)
r1x11
x1 N1
1
x2 N2
x2 (t)
r2 x2 1 2
x1 N1
x2 N2
模型分析
平衡点及其稳定性

A
f x1 g x1
fx2 gx2
r1
1
2 x1 N1
更一般的,对线性离散自治系统
x ( n 1) Ax ( n ) b A x ( n ) A 1b
若A的所有特征值λ都有|λ|<1,那么A-1b是它稳定的平衡点。
对线性自治系统
x Ax b
若A的所有特征值λ都有λ<0, 那么A-1b是它稳定的平衡点。 反之,不是稳定平衡点。
2
微分方程的稳定性
1x2
N2
r2 2 x2
N1
r11x1
N2
r2
1
2 x1
N1
2x2 N2

p ( f x1 g x2 )
,pi
q det A
,
pi
i 1,2,3,4

平衡点 Pi 稳定条件: p > 0 且 q > 0

微分方程模型——数学建模真题解析

微分方程模型——数学建模真题解析
练习:如果例2中的桶是漏斗形的(倒圆锥)或球形 的,计算水深的变化规律。
练习题: 1、在一所大学,某个教师每天从图书馆借出一本 书,而图书馆每周收回所借图书的10%。2年后, 这个教师手中有大约多少本图书馆的书? 2、某学院的教育基金,最初投资P元,以后按利 率r的连续复利增长。另外,每年在基金开算的时 间,都要投入新的资本A/年求7年的累计资金数 量。 另外,如果每年在基金开算的时间,把其中20% 用于奖学金的发放,求7年后累计资金数量。 3、一场降雪开始于中午前的某个时刻,降雪量稳 定。某人从正午12点开始清扫人行道,他的铲雪 速度(m3/小时)和路面宽度都不变,到下午2点他 扫了1000米,到下午4点又清扫了500米。雪是什 么时间开始下的?另外,如果他在下午4点开始回 头清扫,什么时间回到开始清扫的地点?
2004C题 饮酒驾车 据报载,2003年全国道路交通事故死亡人数为 10.4372万,其中因饮酒驾车造成的占有相当的比例。 针对这种严重的道路交通情况,国家质量监督检验检 疫局2004年5月31日发布了新的《车辆驾驶人员血液、 呼气酒精含量阈值与检验》国家标准,新标准规定, 车辆驾驶人员血液中的酒精含量大于或等于20毫克/ 百毫升,小于80毫克/百毫升为饮酒驾车(原标准是 小于100毫克/百毫升),血液中的酒精含量大于或 等于80毫克/百毫升为醉酒驾车(原标准是大于或等 于100毫克/百毫升)。 大李在中午12点喝了一瓶啤酒,下午6点检查时符合 新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒, 为了保险起见他呆到凌晨2点才驾车回家,又一次遭 遇检查时却被定为饮酒驾车,这让他既懊恼又困惑, 为什么喝同样多的酒,两次检查结果会不一样呢?
微分方程基础
微分方程是含有函数及其导数的方程。 如果方程(组)只含有一个自变量(通常是时间t),则 称为常微分方程。否则称为偏微分方程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3)由于相互敌视或领土争端,每一方都存 在增加军备的潜力。
进一步 1)2)的作用为线性;3)的作用为常数 假设
建模
x(t)~甲方军备数量, y(t)~乙方军备数量
(t ) x ky g x (t ) lx y h y
, ~ 本方经济实力的制约;
k, l ~ 对方军备数量的刺激;
稳定性模型 的特点
• 对象仍是动态过程,而建模目的是研究时 间充分长以后过程的变化趋势 ——平衡状 态是否稳定。
• 不求解微分方程,而是用微分方程稳定性 理论研究平衡状态的稳定性。

6.1
6.2

捕鱼业的持续收获
军备竞赛
6.3
6.4
种群的相互竞争
种群的相互依存
6.5
种群的弱肉强食
6.1
背景
捕鱼业的持续收获
模型假设 • 有甲乙两个种群,它们独自生存
时数量变化均服从Logistic规律;
• 两种群在一起生存时,乙对甲增长的阻滞作 用与乙的数量成正比; 甲对乙有同样的作用。
x1 1 (t ) r1 x1 (1 ) x N1
x2 2 (t ) r2 x2 (1 ) x N2
x1 x2 x2 x1 1 (t ) r1 x1 2 (t ) r2 x2 模型 x 1 2 N N 1 N 1 N x 1 1 2 2 对于消耗甲的资源而 对甲增长的阻滞 1 1 作用,乙大于甲 言,乙(相对于N2)是甲 (相对于N1) 的 1 倍。 乙的竞争力强
建模
捕捞情况下 渔场鱼量满足
记 F ( x) f ( x) h( x)
x (t ) F ( x) rx(1 ) Ex x N
• 不需要求解x(t), 只需知道x(t)稳定的条件
实质上,我们并不需求解上面的微分方程以得到x(t) 的动态变化过程,只希望知道渔场的稳定鱼量和保 持稳定的条件,即时间 t 足够长以后渔场鱼量 x(t) 的趋向,并由此确定最大持续产量。为此可以直接 求上面常微分方程的平衡点并分析其稳定性。
(二阶)非线性 (自治)方程
1 (t ) f ( x1 , x2 ) x 的平衡点及其稳定性 2 (t ) g ( x1 , x2 ) x
f ( x1 , x2 ) 0 g ( x1 , x2 ) 0
的根
0 1
平衡点P0(x10, x20) ~ 代数方程
x ( t ) x , 若从P0某邻域的任一初值出发,都有 lim 1 t lim x2 (t ) x , 称P0是微分方程的稳定平衡点 t
6.3
种群的相互竞争
• 一个自然环境中有两个种群生存,它们之间的 关系:相互竞争;相互依存;弱肉强食。 • 当两个种群为争夺同一食物来源和生存空间相 互竞争时,常见的结局是,竞争力弱的灭绝, 竞争力强的达到环境容许的最大容量。 • 建立数学模型描述两个种群相互竞争的过程, 分析产生这种结局的条件。
一阶常微分方程的平衡点及其稳定性
dx x F ( x, t ) dt x dx F ( x) (1) dt
一阶微分非线性方程
一阶非线性(自治)方程
F(x)=0的根 x0 ~微分方程的平衡点 (或奇点 )。它也是 方程(1)的解. 设x(t)是方程的解,若从x0 某邻域的任一初值出发, 都有
长后趋向有限值)的条件 k, l ~ 对方军备数量的刺激; g, h ~ 本方军备竞赛的潜力。
(t ) x ky g x 模型 (t ) lx y h y
kl
1) 双方经济制约大于双方军备刺激时,军备竞赛 才会稳定,否则军备将无限扩张。 2) 若g=h=0, 则 x0=y0=0, 在 > kl 下 x(t), y(t)0,
在研究许多实际问题时,人们最为关心的 也许并非系统与时间有关的变化状态,而是系 统最终的发展趋势。例如,在研究某频危种群 时,虽然我们也想了解它当前或今后的数量, 但我们更为关心的却是它最终是否会绝灭,用 什么办法可以拯救这一种群,使之免于绝种等 等问题。要解决这类问题,需要用到微分方程 或微分方程组的稳定性理论。下面,我们将研 究几个与稳定性有关的问题。
lim y ( t ) y , 称P0是微分方程的稳定平衡点 0 t
a b 记系数矩阵 A c d
特征方程 det(A I ) 0 特征根
p q 0 p ( a d ) q det A
2
1, 2 ( p p 4q ) / 2
E r F ( x0 ) 0, F ( x1 ) 0
E~捕捞强度
x0稳定, x1不稳定
x0不稳定, x1稳定
r~固有增长率
x0 稳定, 可得到稳定产量
x1 稳定, 渔场干枯
在捕捞量稳定的条件下, 产量模型 图解法 控制捕捞强度使产量最大 F ( x) f ( x) h( x) y y=rx y=E*x x y=h(x)=Ex f ( x) rx(1 ) * P hm N P h h( x) Ex y=f(x)
g, h ~ 本方军备竞赛的潜力。 军备竞赛的结局 t 时的x(t),y(t)
常微分方程组的平衡点及其稳定性
(t ) ax by 线性常系数 x 的平衡点及其稳定性 微分方程组 y (t ) cx dy
ax by 0 平衡点P0(x0,y0)=(0,0) ~代数方程 的根 cx dy 0 若从P0某邻域的任一初值出发,都有 lim x(t ) x0 , t
x (t ) F ( x) rx(1 ) Ex x N E F ( x) 0 x0 N (1 ), x1 0 r分方程的两个特殊解。 F ( x0 ) E r, F ( x1 ) r E 稳定性判断
E r F ( x0 ) 0, F ( x1 ) 0
0 2
判断P0 (x10,x20) 稳定 性的方法——直接法 (1)的近似线性方程
问题 及 分析
• 在捕捞量稳定的条件下,如何控制捕捞 使产量最大或效益最佳。
• 如果使捕捞量等于自然增长量,渔场鱼 量将保持不变,则捕捞量稳定。
产量模型 假设
x(t) ~ 渔场鱼量
• 无捕捞时鱼的自然增长服从 Logistic规律 x (t ) f ( x) rx(1 x ) N r~固有增长率, N~最大鱼量 • 单位时间捕捞量与渔场鱼量成正比 h(x)=Ex, E~捕捞强度
p ( ) 0 q det A kl
平衡点(x0, y0)稳定的条件
p 0, q 0
kl
模型的定性解释
kh g l g h , y0 平衡点 x0 kl kl 双方军备稳定(时间充分 , ~ 本方经济实力的制约;
F ( x0 )(x x0 ) (2) x
F ( x0 ) t
易知 x0也是方程(2)的平衡点. (2)的通解为
x(t ) Ce
x0 ,
关于x0是否稳定有以下结论:
F ( x0 ) 0 x0稳定(对(2), (1))
F ( x0 ) 0 x0不稳定(对(2), (1))
lim x ( t ) x , 称x0是方程(1)的稳定平衡点 0 t
不求x(t), 判断x0稳定性的方法——直接法
由于
F ( x) F ( x0 )( x x0 ), 讨论方程(1)的稳定性时,可用
dx F ( x0 )( x x0 ) dt (2)
来代替.即
(1)的近似线性方程
稳定平衡点 x0 N (1 E / r )
捕捞 • 封闭式捕捞追求利润R(E)最大 过度 • 开放式捕捞只求利润R(E) > 0
令 E R( E ) T ( E ) S ( E ) pNE(1 ) cE =0 r
ER
r c (1 ) 2 pN
c Es r (1 ) pN
• 鱼销售价格p
• 单位捕捞强度费用c 收入 T = ph(x) = pEx 支出 S = cE
单位时间利润
R T S pEx cE
E R( E ) T ( E ) S ( E ) pNE(1 ) cE r r c r E ( 1 ) E* 求E使R(E)最大 R 2 pN 2 2 rN c 渔场 x N (1 E R ) N c hR (1 2 2 ) R 4 p N 2 2p 鱼量 r
平衡点 P0(0,0)稳定
平衡点 P0(0,0)不稳定
军备竞赛
平衡点 稳定性判断 系数 A l 矩阵
(t ) x ky g x 模型 (t ) lx y h y
kh g x0 , kl
k
l g h y0 kl
2
(t ) ax by 线性常系数 x 的平衡点及其稳定性 微分方程组 y (t ) cx dy
平衡点 P0(0,0) 特征根
1, 2 ( p p 4q ) / 2
2
微分方程一般解形式
c1e c2e
1t
2t
1,2为负数或有负实部
p>0且q>0
p<0或q<0
模型
x1 x2 1 (t ) r1 x1 x 1 N 1 N 1 2
x1 x2 2 (t ) r2 x2 x 1 2 N N 1 2
模型 t 时x (t ), x (t )的趋向 (平衡点及其稳定性) 1 2 分析
R(E)=0时的捕捞强度(临界强度) Es=2ER 临界强度下的渔场鱼量
相关文档
最新文档