中心极限定理的发展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中心极限定理的创立和发展
1141010113 万帅
关键词:中心极限定理,创立,严格证明,新的发展,三阶段。
引言:这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。
中心极限定理,是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。
“中心极限定理”这一名称的来源有两种说法。波利亚认为这个定理十分重要,在概率论中具有中心地位,所以他加上了“中心”这一名称,于1920年引入这一术语。另一种说法是,现代法国概率论学派认为极限定理描述了分布函数中心的情况,而不是尾部的情况。
历史上有不少数学家对中心极限定理的研究做出了贡献。中心极限定理的发展主要分为三个阶段。
创立阶段:1733-----1853年
人们通常认为,法国数学家隶莫弗在1733年首次证明了,二项发布近似正态分布。然而,当时正态发布的概念,隶莫弗并不知道自己本质上证明了“中心极限定理”
法国数学家拉普拉斯写了很多论文,想推广棣莫弗的工作。他意识到需要一种新的数学技巧,并在1785年成功地发明了这个技巧:特征函数的简单形式和反演公式。拉普拉斯把他的两个主要研究方向结合起来得到了这个方法-----母函数和积分的监禁展开。通过把母函数中的t换成it e ,就得到了特征函数。然而,直到1810年他才发表了特征函数与反演公示的一般理论,并证明了中心极限定理。他之所以推迟到1810年,有一种解释是,从1786年开始,他就专注于《天体力学》的写作,这本书1805年才完成。1810年,拉普拉斯证明了中心极限定理,先是服从均匀发布的连续随机变量的情形,接着是服从任意分布的随机变量。拉普拉斯的证明显然对独立有界的随机变量和成立,证明过程使用了现在所谓的特征函数,或傅里叶变换,即itXEe(t为实数)。在1812年,他先后考虑了对称的、离散的均匀分布,对称的连续分布,任意分布情形。最后,拉普拉斯在他的名著《概率的分析理论》中对任意的p证明了如下中心极限定理:【1】
泊松完善和推广了拉普拉斯关于中心极限定理的证明。在所有考虑的情况里,都假设随机变量是独立的。泊松证明了服从相同分布的随机变量的情况,还推广到服从不同分布的随机变量的情况。1824年,泊松证明了连续随机变量的中心极限定理,并给出了三个反例,其中包括服从柯西分布的随机变量和,这时中心极限定理不成立。受当时传统的影响,泊松没有明确阐明中心极限定理成立的条件。但是,从他的证明和例子中,可以看到,他假设每个变量的方差都是有界的,且不等于零。其他数学家也做了这方面工作,比如贝塞尔和柯西。拉普拉斯等人给出证明的前提假设是,和的分布是有限的,因此所有的矩都存在。他们把结果推广到无限情形,但没有给出证明,并隐含假定了矩的存在。以现在的观点来看,只要沿着拉普拉斯的方向继续下去,法国数学家们是可以给出中心极限定理的严格证明的,比如柯西,他知道特征函数和稳定率。
从当时环境来看,大约1870年代,概率学家还处于心理上的劣势,苦于自己的研究领
域被其他数学家视为一门数学科学,他们的同行不能理解,为什么标准的数学术语还不够,为什么古老的概念被重新命名为“随机变量”和“期望”。而且,概率书里充满了非数学的概念:骰子、赌场、甲乙等人。另外,从下面博雷尔的一段话,也可以反观那时一些概率学家对中心极限定理的具体看法。博雷尔是继庞加莱之后法国的领袖概率学家,他曾在1924年和1950年表达了这样的观点:通过拉普拉斯理论获得的结果,似乎对维持它们所需的分析而作出的努力没有什么意义.....它可能能证明某些定理,但是不会有什么价值,因为,事实上人们无法证明假设是否满足。
可以说,法国数学家的大部分研究被同代人所忽略,直到20世纪才被重新发现
严格证明阶段:1887---1910
俄国数学家切比雪夫受到布拉什曼的影响,对概率论产生了兴趣,后来接替布尼亚可夫斯基在圣彼得堡大学讲授概率论。1866年切比雪夫发表了《论平均数》,讨论了作为大数定律极限值的平均数问题。1884年,他的学生马尔可夫对矩方法所涉及的切比雪夫不等式给出了证明之后,切比雪夫于1887年发表了《概率论中的两个定理》,开始对随机变量和收敛到正态分布的条件即中心极限定理进行讨论,给出一般随机变量的切比雪夫定理。这个定理的叙述是不完全正确,而且切比雪夫用“矩法”给出的证明也不完善,他只证明了随机变量的各阶原点矩的极限是标准正态随机变量的相应的原点矩,并未进而说明随机变量的分布函数确实以标准正态分布函数为极限。不完善之处首先被马尔可夫注意到。马尔可夫在
《的解》一文中,对切比雪夫提出的命题给出了精确的陈述与证明,文中所使用的改进后的矩方法后来被人成为“切比雪夫---马尔可夫矩方法”。[2] 1900年前后,马尔可夫的校友李雅普诺夫引入了特征函数来考察中心极限定理,从而避免了矩方法要求高阶矩存在的苛刻条件,并为之一定理进一步精确化准备了条件。1901年李雅普诺夫把马尔可夫定理的条件大为减弱,并证明了李雅普诺夫定理。这个定理要求随机变量必须是独立的,但是不必有相同的分布,还要求随机变量(加绝对值)具有某阶的矩,矩的增长速度受李雅普诺夫条件的限制。李雅普诺夫在证明中利用了特征函数。从此之后,特征函数成为研究极限定理的强有力的工具
新的发展:1919年以后
【1】拉普拉斯.《概率的分析理论》【M】1995年版.人民教育出版社。
马尔可夫.《概率演算》[M]1993年版.机械工业出版社。