最新南通市中考数学试卷及解析
南通数学中考试题及答案
南通数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 3.14D. 0.33333...答案:B2. 一个等腰三角形的底边长为6,高为4,那么它的周长是多少?A. 16B. 18C. 20D. 22答案:C3. 如果一个二次函数的图像开口向上,且顶点坐标为(1, -2),那么这个函数的解析式可能是?A. y = (x - 1)^2 - 2B. y = -(x - 1)^2 - 2C. y = (x + 1)^2 - 2D. y = -(x + 1)^2 - 2答案:B4. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B5. 一个数列的前三项为1, 2, 4,那么第四项可能是?A. 6B. 7C. 8D. 16答案:D6. 一个长方体的长、宽、高分别为3, 4, 5,那么它的体积是多少?A. 60B. 48C. 36D. 24答案:A7. 一个直角三角形的两个直角边长分别为3和4,那么它的斜边长是多少?A. 5B. 6C. 7D. 8答案:A8. 一个函数y = 2x + 3的图象经过点(-1, 1),那么这个函数的斜率是多少?A. 2B. 3C. 4D. 5答案:A9. 一个扇形的圆心角为60°,半径为4,那么它的面积是多少?A. 4πB. 8πC. 6πD. 12π答案:A10. 一个数列的前三项为2, 4, 8,那么第四项可能是?A. 10B. 12C. 16D. 32答案:D二、填空题(每题4分,共20分)11. 一个圆的直径为10,那么它的周长是______。
答案:20π12. 一个等差数列的前三项为2, 5, 8,那么它的公差是______。
答案:313. 一个函数y = kx + b的图象经过点(2, 6)和(3, 9),那么k和b的值分别是______和______。
答案:3和314. 一个长方体的长、宽、高分别为2, 3, 4,那么它的表面积是______。
最新江苏省南通市中考数学全真试题附解析
江苏省南通市中考数学全真试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知⊙O 1和⊙O 2相切,两圆的圆心距为9cm ,⊙1O 的半径为4cm ,则⊙O 2的半径为( ) A .5cmB .13cmC .9 cm 或13cmD .5cm 或13cm2.圆的切线( )A .垂直于半径B .平行于半径C .垂直于经过切点的半径D .以上都不对3.己如图,已知正方形ABCD 的边长为2,如果将线段 BD 绕着点B 旋转后,点D 落在 CB 的延长线上的 D ′处,那么可知等于tan BAD '∠等于( ) A .1B .2C .22D .224.二次函数2(1)2y x =-+的最小值是( )A .2-B .2C .1-D .15.已知矩形的面积为24,则它的长y 所宽x 之间的关系用图象大致可以表示为( )6.下列命题中,是真命题的为( ) A .四边相等的四边形是正方形 B .正方形的四边相等C .对角线垂直的平行四边形是正方形D .对角线相等的平行四边形是正方形7.将一个有40个数据的样本经统计分成6组,若某一组的频率为0.15,则该组的频数为 ( ) A .6B .0.9C .6D .1 8.用反证法证明2”时,最恰当的假设是( ) A 2B 2C 2D 29.在①正三角形;②平行四边形;③长方形;④等腰三角形中既是轴对称图形又是中心对称图形的是()A.①②④B.③C.③④D.②④10.用四舍五入法对60340取近似数,保留两个有效数字,结果为()A.6.03×104B.6.0×104 C.6×104D.6.0×103二、填空题11.如图,在菱形ABCD,AB=BD=2,则AC= .12.如果菱形的周长为24 cm,一条较短的对角线长是6 cm,那么两相邻内角分别为、.13.若关于x的不等式30x a-≤有且只有3 个正整数解,那么整数a的最大值是 .14.不等式组253(2)123x xx x++⎧⎪-⎨<⎪⎩≤的整数解有个.15.有三个连续自然数,中间一个是x,则它们的积是 .16.某市在端年节准备举行划龙舟大赛,预计15个队共330人参加.已知每个队一条船,每条船上人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.设每条船上划桨的有x人,那么可列出一元一次方程为.17.三个连续奇数,若中间一个是n,则其余两个分别是 , 这三个数的和是.18.多项式211 2a a-+的各项系数分别是;它是次项式. 19.填一填:(1) (-5) ×0.2= ;(2) (-8)× (-0.25)= ;(3) (132-)×(27-)= ;(4)0.1×(-0. 01) = ;(5) ( -59 )×0.01 ×0= ;(6)(-2)×( )=12 -;(7)(-1)×( )=15;(8) (13-)×( )=1.三、解答题20.如图,它是实物与其三种视图,在三种视图中缺少一些线(包括实线和虚线),请将它们补齐,让其成为一个完整的三种视图.21.如图,已知双曲线xky =(x >0)及直线y =k 相交于点P ,过P 点作PA 0垂直x 轴,垂足为A 0,x 轴上的点A 0、A 1、A 2、…、A n 的横坐标是连续的整数,过点A 1、A 2、…、A n 分别作x 轴的垂线,与双曲线xky =(x >0)及交直线y =k 分别交于点B 1、B 2、…B n ,C 1、C 2、…C n . (1)求A 0点坐标; (2)求1111B A B C 及2222B A B C 的值; (3)试猜想nn nn B A B C 的值(直接写答案)22.如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:(1)第n 个图形铺设地面所用瓷砖的总块数为 (用含n 的代数式表示); (2)上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n 的值; (3)是否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明.23. 请你先将分式2211x x x x x ---+化简. 再选取一个使原式有意义,而你又喜爱的数代入求值.24.已知a m =2,a n =3,求下列各式的值:(1)a m+n ;(2)a 2m+3n .25.如图所示,△ABC ≌△ADE ,试说明BE=CD 的理由.26.某运输公司经营货物托运,有火车和汽车两种运输方式,主要参考数据如下:(1)本市某货主要托运一批粮食到A 市,选择汽车运输的费用比选择火车费用多1100元,求本市与A 市之间的路程是多少千米.运输工具 途中平均速度(千米/时) 运费(元/千米) 装卸费用(元) 火车 100 15 2000 汽车8020900n=1n=2n=3(2)如果B市与本市之间的路程为S千米,货主要托运鲜蔬菜,由于蔬菜会失水或腐烂,运输过程中的损耗平均为200元/时,又知道火车与汽车在路上需临时停车耽误的时间分别为2小时和3.1小时, 且选择汽车与火车运输的总费用相同,求B市与本市之间的路程S是多少千米.27.一个角的补角比它的余角的2倍还大18°,求这个角.28.我国国民经济保持良好发展势头,国内生产总值持续较快增长,下图是1998年~2002年国内生产总值统计图:根据图中信息,解答下列问题:(1)1999年国内生产总值是;(2)已知2002年国内生产总值比2000年增加l2956亿元,2001年比2000年增加6491亿元,求2002年国内生产总值比2001年增长的百分率(结果保留2个有效数字);(3)在(2)的条件下,将统计图改为折线统计图;(4)本题哪幅统计图可以较好地反映我国国内生产总值持续较快增长?29.梁兴购买了3万元的5年期债券,5年后,扣除20%的利息税,共得到本息和为33600元,请问这种债券的年利率是多少?30.在下图所提供的汇率表中,汇 (钞 )卖价一栏表示银行卖出 100 外币元的人民币价格;钞买价一栏表示银行买入 100 外币元的人民币价格.(1)求银行卖a 美元的人民币价格. 若银行买入1550 美元,需人民币多少元?(2)求银行买入 b 欧元现钞的人民币价格. 若用1250 欧元向银行兑换人民币,可得到人民币多少元?(3)若用 c美元向银行兑换欧元,可得到多少欧元?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.B4.B5.D6.B7.C8.C9.B10.B二、填空题23 12.60°,l20°13.1114. 4 15.3x x -16.15(x+2)=33017.(2n -),(.2n +);3n18.1,12-,1;2,319.(1)-1 (2)2 (3)1 (4)-0. 001 (5)0 (6)14 (7)15- (8)-3三、解答题 20.21.(1)点A 0坐标为(1,0) ;(2)11111=B A B C ,22222=B A B C ;(3) n B A B C n n n n =.22.解:(1)652++n n ;(2)256506n n ++=,解得1220,25n n ==-(舍)(3)不存在.由2(1)(56)(1)n n n n n n +=++-+,解得3332n ±= 因为n 不为正整数,所以不存在黑白瓷砖数相等的情形.22x -(代入0,1x ≠-的数都可以) 24.(1)6,(2)10825.略26.(1)设本市与A 市之间的路程是x 千米,则15x+2000=20x+900-1100 解得x=440 答:本市与A 市之间的路程是440千米. (2)由题意列方程:200(2)152000200( 3.1)2090010080s ss s +++=+++ 解这个方程,得s=160答:B 市与本市之间的路程为160千米.27.18°28.(1)82067亿元 (2)6.7% (3)略 (4)折线统计图29.3%30.(1) 8.2896a 元,12733.405 元;(2)9.O438b 元,11304.75元 (3)8.2151821519.148891488c c=欧元.。
2023年江苏省南通市中考数学试卷(含答案解析)035217
2023年江苏省南通市中考数学试卷试卷考试总分:142 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. (−3)×(−16)的结果是( )A.12B.2C.−12D.−22. 2017年人口普查显示,河南某市户籍人口约为2536000人,则该市户籍人口数据用科学记数法可表示为( )A.2.536×104人B.2.536×105人C.2.536×106人D.2.536×107人3. 将一包卷筒卫生纸按如图所示的方式摆放在水平桌面上,它的左视图是( )A.B.C.(−3)×(−)16122−12−2201725360002.536×1042.536×1052.536×1062.536×107D.4. 无理数2√11−3在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间5. 如图,已知直线m//n ,将含30∘角的直角三角板ABC 按如图方式放置,若∠1=40∘,则∠2的度数为( )A.10∘B.20∘C.30∘D.40∘6. 知−a +2b +8=0,则代数式2a −4b +10的值为( )A.26B.16C.2D.−67. 如图,从山顶望地面C ,D 两点,测得它们的俯角分别是45∘和30∘,已知CD =100米,点C 位于BD 上,则山高AB 等于( )2−311−−√23344556m//n 30∘ABC ∠1=40∘∠210∘20∘30∘40∘−a +2b +802a −4b +1026162−6C D 45∘30∘CD =100C BD ABA.100米B.50√3米C.50√2米D.50(√3+1)米8. 如图,四边形ABCD 中,AB =AD,AC =5,∠DAB =∠DCB =90∘,则四边形ABCD 的面积为()A.15B.12.5C.14.5D.179. 边长都为4的正方形ABCD 和正三角形EFG 如图放置,AB 与EF 在一条直线上,点A 与点F 重合.现将△EFG 沿AB 方向以每秒1个单位的速度匀速运动,当点F 与B 重合时停止.在这个运动过程中,正方形ABCD 和△EFG 重叠部分的面积S 与运动时间t 的函数图象大致是( )100503–√502–√50(+1)3–√ABCD AB =AD,AC =5,∠DAB =∠DCB =ABCD 1512.514.5174ABCD EFG AB EF A F △EFG AB 1F B ABCD △EFG S tA. B. C. D.10. 方程组{x +y =102x +y =16的解是( )A.{x =6y =4B.{x =5y =6C.{x =3y =6D.{x =2y =8二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 ){x+y =102x+y =16{x =6y =4{x =5y =6{x =3y =6{x =2y =811. 计算√27−√13=________. 12. 分解因式:m 2−2m =________. 13.如图,正方形ABCD 中,点F 在边AB 上,且AF:FB =1:2,AC 与DF 交于点N .(1)当AB =4时,AN =________;(2)S △ANF :S 四边形CNFB =________.(S 表示面积) 14. 在某一电路中,保持电压不变,电流I (安)与电阻R (欧)成反比例函数关系,其图象如图,则这一电路的电压为________伏. 15. 如图,A ,B ,C 是⊙O 上的点,若∠AOB =100∘,则∠ACB =________.16. 有以下几组数据①3、4、5②17、15、8③10、6、14④12、5、13 ⑤300、160、340,⑥0.3,0.4,0.5.其中可以构成勾股数有________.17. 方程组{y =3x −1,y =x +3的解是________;直线y =3x −1与直线y =x +3的交点是________.18. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=________.−=27−−√13−−√−2m m 2ABCD F AB AF :FB =1:2AC DF N(1)AB =4AN =(2):=S △ANF S 四边形CNFBS I R A B C ⊙O ∠AOB =100∘∠ACB =3451715810614125133001603400.30.40.5{y =3x−1,y =x+3y =3x−1y =x+36∠1+∠2+∠3=三、 解答题 (本题共计 8 小题 ,每题 11 分 ,共计88分 )19. 解方程组:(1){2x −5y =−21,4x +3y =23; (2){3y +5=x,5y −1=x. 20. 6月26日是“国际禁毒日”,某中学组织七、八年级全体学生开展了“禁毒知识”网上竞赛活动.为了解竞赛情况,从两个年级各随机抽取了10名同学的成绩(满分为10,收集数据为:七年级90,95,95,80,90,80,85,90,85,100;八年级85,85,95,80,95,90,90,90,100,90.整理数据:分析数据:平均数中位数众数方差七年级89b 9039八年级c 90d 30根据以上信息回答下列问题:(1)请直接写出表格中a ,b ,c ,d 的值;(2)通过数据分析,你认为哪个年级的成绩比较好?请说明理由;(3)该校七、八年级共有600人,本次竞赛成绩不低于90分的为“优秀”.估计这两个年级共有多少名学生达到“优秀”? 21. 如图1,已知AB =AC ,AB ⊥AC. 直线m 经过点A ,过点B 作BD ⊥m 于D , CE ⊥m 于E .我们把这种常见图形称为“K”字图.(1)悟空同学对图1进行一番探究后,得出结论:DE =BD +CE ,现请你替悟空同学完成证明过程;(2)悟空同学进一步对类似图形进行探究,在图2中,若AB =AC ,∠BAC =∠BDA =∠AEC ,则结论DE =BD +CE 还成立吗?如果成立,请证明之.(1){2x−5y =−21,4x+3y =23;(2){3y+5=x,5y−1=x.626101090959580908085908510085859580959090901009089b 9039c 90d 30(1)a b c d(2)(3)600901AB =AC AB ⊥AC.m A B BD ⊥m D CE ⊥m E K(1)1DE =BD+CE(2)2AB =AC ∠BAC =∠DE =BD+CE22. 如图,在边长为1的正方形ABCD 的顶点A 处有一点P ,点P 按照顺时针方向在正方形ABCD 的四个顶点动,每掷1次骰子,前进掷出的数字的长度.例如:骰子掷出来的数字是3时,点P 移动到点D 处;骰子掷出来的数字是6时,点P 移动到点C 处.另外,掷2次骰子时,第2次从第1次的停止点处开始移动.(1)掷1次骰子后,求点P 移动到点B 处的概率;(2)掷2次骰子后,求点P 移动到点C 处的概率. 23. 如图,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AB 与CD 的延长线交于点A ,过点O 作OE//BD 交BC 于点F ,交AB 的延长线于点E .(1)求证:∠E =∠C ;(2)若⊙O 的半径为3,cosA =45,求EF 的长. 24. 某药店销售A ,B 两种口罩,每个A 种口罩比B 种进价多0.5元,用240元购进A 种口罩与用180元购进B 种口罩的数量相同.(1)求A ,B 两种口罩每个的进价;(2)药店计划购进A ,B 两种口罩共1000个,其中A 种口罩的进货量不多于300个,且B 种口罩进货量不超过A 种口罩进货量的3倍.设购进A 种口罩m 个,A 口罩每个售价3元,B 口罩每个售价2元,药店售完1000个口罩获得的利润为W 元,求药店获得利润W 最大时的进货方案. 25. 如图,在△ABC 中,∠C =90∘,AC =6cm ,BC =8cm ,D 、E 分别是AC 、AB 的中点,连接DE .点P 从点D 出发,沿DE 方向匀速运动,速度为1cm/s ;同时,点Q 从点B 出发,沿BA 方向匀速运动,速度为2cm/s ,当点P 停止运动时,点Q 也停止运动.连接PQ ,设运动时间为t(0<t <4)s .解答下列问题:(1)当t 为何值时,以点E 、P 、Q 为顶点的三角形与△ADE 相似?(2)当t 为何值时,△EPQ 为等腰三角形?(直接写出答案即可);(3)当点Q 在B 、E 之间运动时,是否存在某一时刻t ,使得PQ 分四边形BCDE 所成的两部分的面积之比为S △PQE ∼S 五边形PQBCD =1:29?若存在,求出此时t 的值以及点E 到PQ 的距离h ;若不存在,请说明理由.1ABCD A P P ABCD 13P D 6P C 221(1)1P B(2)2P C CD ⊙O B ⊙O BC BD B AB CD A O OE//BD BC F AB E(1)∠E =∠C(2)⊙O 3cosA =45EF A B A B 0.5240A 180B(1)A B(2)A B 1000A 300B A 3A m A 3B 21000W W△ABC ∠C =90∘AC =6cm BC =8cm D E AC AB DE P D DE 1cm/s Q B BA 2cm/s P Q PQ t(0<t <4)s t E P Q △ADEt △EPQQ B E t PQ BCDE ∼=1:29S △PQE S 五边形PQBCD t E PQ h26. 如图,已知抛物线y =−x 2+bx +c 经过点A(−3,0),C(0,3),交x 轴于另一点B ,其顶点为D .(1)求抛物线的解析式;(2)点P 为抛物线上一点,直线CP 交x 轴于点E ,若△CAE 与△OCD 相似,求P 点坐标;(3)如果点F 在y 轴上,点M 在直线AC 上,那么在抛物线上是否存在点N ,使得以C ,F ,M ,N 为顶点的四边形是菱形?若存在,请求出菱形的周长;若不存在,请说明理由.y −+bx+c x 2A(−3,0)C(0,3)x B D P CP x E △CAE △OCD PF y M AC N C F M N参考答案与试题解析2023年江苏省南通市中考数学试卷试卷一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】A【考点】有理数的乘法有理数的乘除混合运算【解析】根据有理数的乘法法则计算可得.【解答】(−3)×(−16)=+(3×16)=12,2.【答案】C【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】2536000人=2.536×106人,3.【答案】B【考点】简单几何体的三视图【解析】根据三视图的定义分析即可解答.【解答】解:一个几何体的正投影,也叫做视图,从左面得到的视图叫做左视图..∵该几何体是一个空心圆柱,∴该几何体外侧圆柱的左视图是一个矩形,内部空心圆柱是虚线矩形,故B正确.故选B.4.【答案】B【考点】估算无理数的大小【解析】首先得出2√11的取值范围进而得出答案.【解答】∵2√11=√44,∴6<√44<7,∴无理数2√11−3在3和4之间.5.【答案】B【考点】平行线的性质【解析】根据平行线的性质即可得到结论.【解答】解:∵直线m//n,∴∠2+∠ABC+∠1+∠BAC=180∘.∵∠ABC=30∘,∠BAC=90∘,∠1=40∘,∴∠2=180∘−30∘−90∘−40∘=20∘.故选B.6.【答案】A【考点】列代数式求值【解析】由已知得出a−2b=8,代入原式=2(a−2b)+10计算可得.【解答】∵−a+2b+8=0,∴a−2b=8,则原式=2(a−2b)+10=2×8+10=16+10=26,7.【答案】D【考点】解直角三角形的应用-仰角俯角问题【解析】直角△ABC与直角△ABD有公共边AB,若设AB=x,则在直角△ABC与直角△ABD就满足解直角三角形的条件,可以用x表示出BC与BD的长,根据BD−BC=CD,即可列方程求解.【解答】解:设AB=x,在Rt△ACB中,∠ACB=45∘,∴BC=AB=x.在Rt△ABD中,∠D=30∘,∴tanD=ABBD=√33,∴BD =ABtan30∘=√3x.∵BD −BC =CD ,∴√3x −x =100,解得x =50(√3+1),故山高AB 等于50(√3+1)米.故选D .8.【答案】B【考点】解直角三角形直角三角形的性质【解析】【解答】解:∵AB =AD ,∠DAB =∠DCB =90∘,∴四边形ABCD 是正方形,设正方形边长为a ,∴AB 2+BC 2=AC 2⇒2a 2=25,∴a 2=252,∴四边形面积=a 2=252=12.5.故选B.9.【答案】C【考点】动点问题函数的图象【解析】根据题意和函数图象可以写出各段对应的函数解析式,从而可以判断哪个选项中的图象符合题意,本题得以解决.【解答】解:由题知AF的长度为t.当0≤t≤2时,阴影部分为三角形,且随着t的增加,三角形的高也在增加,则S与t是二次函数关系,有最小值(0,0),开口向上;当2<t≤4时,阴影部分为三角形加梯形,且随着t的增加,且三角形的面积不变,梯形的高在增加,上底的长度在减少,则S与t是二次函数关系,开口向下,综上可得,选项C符合题意.故选C.10.【答案】A【考点】加减消元法解二元一次方程组【解析】此题暂无解析【解答】解:{x+y=10①2x+y=16②,②−①得,x=6,把x=6代入①得,6+y=10,解得y=4,∴{x=6y=4,故选A.二、填空题(本题共计 8 小题,每题 3 分,共计24分)11.【答案】83√3【考点】二次根式的减法【解析】先进行二次根式的化简,然后合并.【解答】解:原式=3√3−√33=83√3.故答案为:83√3.12.【答案】m(m−2)【考点】因式分解-提公因式法【解析】直接把公因式m提出来即可.【解答】m2−2m=m(m−2).13.【答案】√21:11【考点】勾股定理相似三角形的判定与性质正方形的性质【解析】..【解答】解:(1)在正方形ABCD中,AB=CD,AB//CD,∠B=90∘,∵AF:FB=1:2,∴AF:AB=1:3,∴AF:CD=1:3.∵AB//CD,∴△ANF∼△CND,∴ANCN=AFCD,∴CN=3AN.∵AB=4,∠B=90∘,√42+42=4√2,∴AC=∴AN=11+3AC=√2.故答案为:√2.(2)由(1)可得AN:AC=1:4,AF:AB=13.过点N作NE⊥AB,如图,可得∠NEA=∠B=90∘,∴NE//CB,∴△NEA∼△CBA,∴ANAC=NECB=AEAB=14,∴NE=14BC.S△ANF=12AF⋅NE=12×14BC×13AB=124BC⋅AB,S△ABC=12BC⋅AB,∴S四边形CNFB=S△ABC−S△ANF=1124BC⋅AB,124BC⋅AB1124BC⋅AB=1:11.∴S△ANF:S四边形CNFB=故答案为:1:11.14.【答案】10【考点】反比例函数的应用【解析】根据反比例函数的概念,电压不变时电流I(安)与电阻R(欧)的乘积为定值,利用图象可知电压为10伏.【解答】解:∵I=UR∴把点(2,5)代入函数解析式可知U=10V,故答案为:10.15.【答案】50∘【考点】圆周角定理【解析】直接根据圆周角定理即可得出结论.【解答】解:∵A ,B ,C 是⊙O 上的点,∠AOB =100∘,∴∠ACB =12∠AOB =50∘.故答案为:50∘.16.【答案】①②④⑤【考点】勾股数【解析】勾股数的定义:满足a 2+b 2=c 2的三个正整数,称为勾股数,根据定义即可求解.【解答】解:①32+42=52,符合勾股数的定义;②82+152=289=172,符合勾股数的定义;③102+62≠142,不符合勾股数的定义;④52+122=169=132,符合勾股数的定义;⑤3002+1602=115600=3402,符合勾股数的定义;⑥0.3,0.4,0.5不是正整数,不符合勾股数的定义.所以,可以构成勾股数有①②④⑤.故答案为①②④⑤.17.【答案】{x =2,y =5,(2,5)【考点】一次函数与二元一次方程(组)一次函数图象上点的坐标特征一次函数的图象【解析】此题暂无解析【解答】解:对原方程组使用加减消元法,两式相减得2x−4=0,解得x=2,带入原方程得y=5.所以方程组的解为{x=2,y=5,所以直线y=3x−1与直线y=x+3的交点为(2,5).故答案为:{x=2,y=5;(2,5).18.【答案】135∘【考点】全等三角形的性质与判定【解析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:如图:观察图形可知:△ABC≅△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90∘,∴∠1+∠3=90∘.∵∠2=45∘,∴∠1+∠2+∠3=∠1+∠3+∠2=90∘+45∘=135∘.故答案为:135∘.三、解答题(本题共计 8 小题,每题 11 分,共计88分)19.【答案】解:(1){2x−5y=−21①,4x+3y=23②,②−①×2得:13y=65,即y=5,把y=5代入②得:x=2,则方程组的解为{x=2,y=5.(2)方程组整理,得{−x+3y=−5①,−x+5y=1②,②−①,得2y=6,解得y=3,把y=3代入①,得x=14.故原方程组的解为{x=14,y=3.【考点】加减消元法解二元一次方程组【解析】(1)方程组利用加减消元法求出解即可.(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1){2x−5y=−21①,4x+3y=23②,②−①×2得:13y=65,即y=5,把y=5代入②得:x=2,则方程组的解为{x=2,y=5.(2)方程组整理,得{−x+3y=−5①,−x+5y=1②,②−①,得2y=6,解得y=3,把y=3代入①,得x=14.故原方程组的解为{x=14,y=3.20.【答案】解:(1)观察八年级95分的有2人,故a=2;七年级的中位数为90+902=90,故b=90;八年级的平均数为:112[85+85+95+80+95+90+90+90+100+90]=90,故c=90;八年级中90分的最多,故d=90.(2)七、八年级学生成绩的中位数和众数相同,但八年级的平均成绩比七年级高,且从方差看,八年级学生成绩更整齐,综上,八年级的学生成绩好.(3)由题知,两个年级20人中,共有13人成绩不低于90分.所以600×1320=390(人),所以估计该校七、八年级这次竞赛达到优秀的有390人.【考点】中位数众数方差用样本估计总体【解析】(1)根据提供数据确定八年级95分的人数,利用众数中位数及平均数分别确定其他未知数的值即可;(2)利用平均数、众数及方差确定哪个年级的成绩好即可;(3)用样本的平均数估计总体的平均数即可.【解答】解:(1)观察八年级95分的有2人,故a=2;七年级的中位数为90+902=90,故b=90;八年级的平均数为:112[85+85+95+80+95+90+90+90+100+90]=90,故c=90;八年级中90分的最多,故d=90.(2)七、八年级学生成绩的中位数和众数相同,但八年级的平均成绩比七年级高,且从方差看,八年级学生成绩更整齐,综上,八年级的学生成绩好.(3)由题知,两个年级20人中,共有13人成绩不低于90分.所以600×1320=390(人),所以估计该校七、八年级这次竞赛达到优秀的有390人.21.【答案】(1)证明:在△ABD和△CAE中,{∠ABD=∠EAC,∠BDA=∠AEC,AB=AC,∴△ABD≅△CAE(AAS),∴BD=AE,AD=CE,∴DE=AE+DA=BD+CE.(2)解:成立.理由如下:∵∠BAC+∠BAD+∠EAC=180∘,∠ADB+∠BAD+∠ABD=180∘,∠BAC=∠BDA,∴∠ABD=∠EAC,在△ABD和△CAE中,{∠ABD=∠EAC,∠BDA=∠AEC,AB=AC,∴△ABD≅△CAE(AAS),∴BD=AE,AD=CE,∴ DE=AE+DA=BD+CE.【考点】全等三角形的性质与判定【解析】【解答】(1)证明:在△ABD和△CAE中,{∠ABD=∠EAC,∠BDA=∠AEC,AB=AC,∴△ABD≅△CAE(AAS),∴BD=AE,AD=CE,∴DE=AE+DA=BD+CE.(2)解:成立.理由如下:∵∠BAC+∠BAD+∠EAC=180∘,∠ADB+∠BAD+∠ABD=180∘,∠BAC=∠BDA,∴∠ABD=∠EAC,在△ABD和△CAE中,{∠ABD=∠EAC,∠BDA=∠AEC,AB=AC,∴△ABD≅△CAE(AAS),∴BD=AE,AD=CE,∴ DE=AE+DA=BD+CE.22.【答案】解:(1)第1次骰子,掷出的数点P移动后的位置如下 .掷出的数点P移动后的位置1B2C3D4A5=4+1B6=4+2C共有6种等可能的结果,点P移动到点B处的有2种,故掷1次骰子后,点P移动到点B处的概率为26=13 .(2)设第1次骰子掷出来的数字为a,第2次骰子掷出来的数字为b,由题意画树状图如下.共有36种等可能的结果,当a+b的值为2,6,10时,点P移动到点C处,这些结果共有9种,故掷2次骰子后,点P移动到点C处的概率为P=936=14 .【考点】概率公式列表法与树状图法【解析】此题暂无解析【解答】解:(1)第1次骰子,掷出的数点P移动后的位置如下 .掷出的数点P移动后的位置1B2C3D4A5=4+1B6=4+2C共有6种等可能的结果,点P移动到点B处的有2种,故掷1次骰子后,点P移动到点B处的概率为26=13 .(2)设第1次骰子掷出来的数字为a,第2次骰子掷出来的数字为b,由题意画树状图如下.共有36种等可能的结果,当a+b的值为2,6,10时,点P移动到点C处,这些结果共有9种,故掷2次骰子后,点P移动到点C处的概率为P=936=14 .23.【答案】(1)证明:如图,连接OB,∵CD为⊙O的直径,∴∠CBD=∠CBO+∠OBD=90∘,∵AE是⊙O的切线,∴∠ABO=∠ABD+∠OBD=90∘,∴∠ABD=∠CBO,∵OB=OC,∴∠C=∠CBO,∵OE//BD,∴∠E=∠ABD,∴∠E=∠C.(2)解:在Rt△OBA 中,cosA=45,OB=3,∴AB=4,AO=5,∴AD=2,∵BD//OE,∴ABBE=ADOD,即4BE=23,解得BE=6,∵OE//BD,设FB =x ,则EF =2x,∵EB 2=EF 2+BF 2,即62=(2x)2+x 2,解得x =6√55(负值舍去),∴EF =12√55.【考点】切线的性质圆周角定理锐角三角函数的定义勾股定理平行线分线段成比例【解析】此题暂无解析【解答】(1)证明:如图,连接OB ,∵CD 为⊙O 的直径,∴∠CBD =∠CBO +∠OBD =90∘,∵AE 是⊙O 的切线,∴∠ABO =∠ABD +∠OBD =90∘,∴∠ABD =∠CBO ,∵OB =OC ,∴ ∠C =∠CBO ,∵OE//BD ,∴∠E =∠ABD ,∴∠E =∠C .(2)解:在Rt △OBA 中,cosA =45,OB =3,∴AB =4,AO =5,∴AD =2,∵BD//OE ,∴ABBE =ADOD ,即4BE =23,解得BE =6,∵OE//BD ,设FB =x ,则EF =2x,∵EB 2=EF 2+BF 2,即62=(2x)2+x 2,解得x =6√55(负值舍去),∴EF =12√55.24.【答案】解:(1)设A 种口罩每个的进价x 元,则B 种口罩每个的进价(x −0.5)元,根据题意,得240x =180x −0.5,解得x =2,经检验,x =2是原方程的解并且符合题意.∴B 种口罩每个的进价2−0.5=1.5 (元),故A 种口罩每个的进价2元,则B 种口罩每个的进价1.5元.(2)依题意得, 1000−m ≤3m ,解得m ≥250,∵m ≤300,∴m 的取值范围为250≤x ≤300.依题意,得W =(3−2)m+(2−1.5)(1000−m)=0.5m+500,W 随m 的增大而增大,∴当m =300时,W 取最大值;∴药店购进A 种口罩300个,B 种口罩700个时,获得利润最大.【考点】分式方程的应用一元一次不等式的实际应用一次函数的应用【解析】(1)设A 口罩每个的进价x 元,则B 口罩每个的进价(x −0.5)元,根据“用240元购进A 种口罩与用180元购进B 种口罩的数量相同”列分式方程解答即可;(2)根据题意得出W 与m 的函数关系式,再根据一次函数的性质讨论解答即可.【解答】解:(1)设A 种口罩每个的进价x 元,则B 种口罩每个的进价(x −0.5)元,根据题意,得240x =180x −0.5,解得x =2,经检验,x =2是原方程的解并且符合题意.∴B 种口罩每个的进价2−0.5=1.5 (元),故A 种口罩每个的进价2元,则B 种口罩每个的进价1.5元.(2)依题意得, 1000−m ≤3m ,解得m≥250,∵m≤300,∴m的取值范围为250≤x≤300.依题意,得W=(3−2)m+(2−1.5)(1000−m)=0.5m+500,W随m的增大而增大,∴当m=300时,W取最大值;∴药店购进A种口罩300个,B种口罩700个时,获得利润最大.25.【答案】解:(1)如图1中,在Rt△ABC中,AC=6,BC=8√62+82=10.∴AB=∵D、E分别是AC、AB的中点.AD=DC=3,AE=EB=5,DE//BC且DE=12BC=4,①PQ⊥AB时,∵∠PQB=∠ADE=90∘,∠AED=∠PEQ,∴△PQE∽△ADE,PEAE=QEDE,由题意得:PE=4−t,QE=2t−5,即4−t5=2t−54,解得t=4114;②如图2中,当PQ⊥DE时,△PQE∽△DAE,∴PEED=QEAE,∴4−t4=2t−55,∴t=4013,∴当t为4114s或4013s时,以点E、P、Q为顶点的三角形与△ADE相似.(2)如图3中,当点Q在线段BE上时,由EP=EQ,可得4−t=5−2t,t=1.如图4中,当点Q 在线段AE 上时,由EQ =EP ,可得4−t =2t −5,解得t =3.如图5中,当点Q 在线段AE 上时,由EQ =QP ,可得 12(4−t):(2t −5)=4:5,解得t =207.如图6中,当点Q 在线段AE 上时,由PQ =EP ,可得 12(2t −5):(4−t)=4:5,解得t =196.综上所述,t =1或3或 207或 196秒时,△PQE是等腰三角形.(3)假设存在时刻t ,使S △PQE :S 五边形PQBCD =1:29,则此时S △PQE =130S 梯形DCBE ,∴35t 2−3910t +6=130×18,即2t 2−13t +18=0,解得t 1=2,t 2=92(舍去).当t =2时,PM =35×(4−2)=65,ME =45×(4−2)=85,EQ =5−2×2=1,MQ =ME +EQ =85+1=135,∴PQ =√PM 2+MQ 2=√(65)2+(135)2=√2055.∵12PQ ⋅h =35,∴h =65⋅5√205=6√205205.∴此时t 的值为2s ,h =6√205205.【考点】相似三角形综合题【解析】(1)如图①所示,当PQ ⊥AB 时,△PQE 是直角三角形.解决问题的要点是将△PQE 的三边长PE 、QE 、PQ 用时间t 表示,这需要利用相似三角形(△PQE ∽△ACB)比例线段关系(或三角函数);(2)分三种情形讨论,如图3中,当点Q在线段BE上时,EP=EQ;如图4中,当点Q在线段AE上时,EQ=EP;如图5中,当点Q在线段AE上时,EQ=QP;如图6中,当点Q在线段AE上时,PQ=EP.分别列出方程即可解决问题.(3)本问要点是根据题意,列出一元二次方程并求解.假设存在时刻t,使S△PQE:S五边形PQBCD=1:29,则此时S△PQE=130S梯形DCBE,由此可列出一元二次方程,解方程即求得时刻t;点E到PQ的距离h利用△PQE的面积公式得到.【解答】解:(1)如图1中,在Rt△ABC中,AC=6,BC=8√62+82=10.∴AB=∵D、E分别是AC、AB的中点.AD=DC=3,AE=EB=5,DE//BC且DE=12BC=4,①PQ⊥AB时,∵∠PQB=∠ADE=90∘,∠AED=∠PEQ,∴△PQE∽△ADE,PEAE=QEDE,由题意得:PE=4−t,QE=2t−5,即4−t5=2t−54,解得t=4114;②如图2中,当PQ⊥DE时,△PQE∽△DAE,∴PEED=QEAE,∴4−t4=2t−55,∴t=4013,∴当t为4114s或4013s时,以点E、P、Q为顶点的三角形与△ADE相似.(2)如图3中,当点Q在线段BE上时,由EP=EQ,可得4−t=5−2t,t=1.如图4中,当点Q在线段AE上时,由EQ=EP,可得4−t=2t−5,解得t=3.如图5中,当点Q在线段AE上时,由EQ=QP,可得12(4−t):(2t−5)=4:5,解得t=207.如图6中,当点Q 在线段AE 上时,由PQ =EP ,可得 12(2t −5):(4−t)=4:5,解得t =196.综上所述,t =1或3或 207或 196秒时,△PQE是等腰三角形.(3)假设存在时刻t ,使S △PQE :S 五边形PQBCD =1:29,则此时S △PQE =130S 梯形DCBE ,∴35t 2−3910t +6=130×18,即2t 2−13t +18=0,解得t 1=2,t 2=92(舍去).当t =2时,PM =35×(4−2)=65,ME =45×(4−2)=85,EQ =5−2×2=1,MQ =ME +EQ =85+1=135,∴PQ =√PM 2+MQ 2=√(65)2+(135)2=√2055.∵12PQ ⋅h =35,∴h =65⋅5√205=6√205205.∴此时t 的值为2s ,h =6√205205.26.【答案】∵抛物线y =−x 2+bx +c 经过点A(−3,0),C(0,3),∴{−9−3b +c =0c =3 ,解得{b =−2c =3 .故此抛物线解析式为:y =−x 2−2x +3;∵y =−x 2−2x +3=−(x +1)2+4,∴顶点D(−1,4).∵A(−3,0),C(0,3),D(−1,4),∴AC =3√2,OA =OC =3,CD =√2,∠OCD =∠CAE =135∘,∴点E 只能在A 点左边.①若△CAE ∽△DCO ,则CAAE =DCCO =√23,∴AE =9,∴OE =12,∴E(−12,0).∵C(0,3),∴y CE =14x +3.联立{y =−x 2−2x +3y CE =14x +3 ,解得{x 1=−94y 1=3916 ,{x 2=0y 2=3 (舍去),∴P(−94,3916);②若△CAE ∽△OCD ,则CAAE =OCCD =3√2,∴AE =2,∴OE =5,∴E(−5,0).∵C(0,3),∴y CE =35x +3.联立{y =−x 2−2x +3y CE =35x +3 ,解得{x 1=−135y 1=3625 ,{x 2=0y 2=3 (舍去),∴P(−135,3625).因此,P(−94,3916)或(−135,3625);在抛物线上存在点N ,使得以C ,F ,M ,N 为顶点的四边形是菱形.①若CF 为对角线,则CF 与NM 互相垂直平分时,四边形CNFM 为菱形,∵∠NCF =∠FCM =∠ACO =45∘,∴∠NCM =90∘,∴CN ⊥CM ,四边形CNFM 为正方形,∴N 点与顶点D 重合,∵D(−1,4),∴N(−1,4),CN =√2,∴菱形CNFM 的周长为4√2;②若CF 为菱形的一边,则MN//CF ,CM//FN ,NM =NF 时,四边形CNFM 为菱形.过F 作FH ⊥NM 于H ,设直线NM 交x 轴于G ,N(m,−m 2−2m+3),则M(m,m+3),G(m,0).∴NM =|m+3−(−m 2−2m+3)|=|m 2+3m|=NF ,∵CM//FN ,∠ACO =45∘,∴∠NFH =∠FNH =45∘,∴NF =√2FH ,又∵FH =OG =|m|,∴|m 2+3m|=√2|m|,∴m =−3−√2或m =−3+√2,∴NF =3√2+2,或NF =3√2−2,∴菱形周长为12√2+8或12√2−8因此,存在菱形,其周长为4√2或8+12√2或12√2−8.【考点】二次函数综合题【解析】(1)根据待定系数法可求抛物线的解析式;(2)分两种情况:①若△CAE ∽△DCO ;②若△CAE ∽△OCD ;进行讨论即可求解;(3)分两种情形:①若CF 为对角线,则CF 与NM 互相垂直平分时,四边形CNFM 为菱形;②若CF 为菱形的一边,则MN//CF ,CM//FN ,NM =NF 时,四边形CNFM 为菱形;进行讨论即可解决问题.【解答】∵抛物线y =−x 2+bx +c 经过点A(−3,0),C(0,3),∴{−9−3b +c =0c =3 ,解得{b =−2c =3 .故此抛物线解析式为:y =−x 2−2x +3;∵y =−x 2−2x +3=−(x +1)2+4,∴顶点D(−1,4).∵A(−3,0),C(0,3),D(−1,4),∴AC =3√2,OA =OC =3,CD =√2,∠OCD =∠CAE =135∘,∴点E 只能在A 点左边.①若△CAE ∽△DCO ,则CAAE =DCCO =√23,∴AE =9,∴OE =12,∴E(−12,0).∵C(0,3),∴y CE =14x +3.联立{y =−x 2−2x +3y CE =14x +3 ,解得{x 1=−94y 1=3916 ,{x 2=0y 2=3 (舍去),∴P(−94,3916);②若△CAE ∽△OCD ,则CAAE =OCCD =3√2,∴AE =2,∴OE =5,∴E(−5,0).∵C(0,3),∴y CE =35x +3.联立{y =−x 2−2x +3y CE =35x +3 ,解得{x 1=−135y 1=3625 ,{x 2=0y 2=3 (舍去),∴P(−135,3625).因此,P(−94,3916)或(−135,3625);在抛物线上存在点N ,使得以C ,F ,M ,N 为顶点的四边形是菱形.①若CF 为对角线,则CF 与NM 互相垂直平分时,四边形CNFM 为菱形,∵∠NCF =∠FCM =∠ACO =45∘,∴∠NCM =90∘,∴CN ⊥CM ,四边形CNFM 为正方形,∴N 点与顶点D 重合,∵D(−1,4),∴N(−1,4),CN =√2,∴菱形CNFM 的周长为4√2;②若CF 为菱形的一边,则MN//CF ,CM//FN ,NM =NF 时,四边形CNFM 为菱形.过F 作FH ⊥NM 于H ,设直线NM 交x 轴于G ,N(m,−m 2−2m+3),则M(m,m+3),G(m,0).∴NM =|m+3−(−m 2−2m+3)|=|m 2+3m|=NF ,∵CM//FN ,∠ACO =45∘,∴∠NFH =∠FNH =45∘,∴NF =√2FH ,又∵FH =OG =|m|,∴|m 2+3m|=√2|m|,∴m =−3−√2或m =−3+√2,∴NF =3√2+2,或NF =3√2−2,∴菱形周长为12√2+8或12√2−8因此,存在菱形,其周长为4√2或8+12√2或12√2−8.。
2023年江苏南通中考真题数学试卷(详解版)
123答案AA 选项:三棱柱的俯视图是三角形,故此选项符合题意;B 选项:圆柱体的俯视图是圆,故此选项不合题意;C 选项:四棱锥的俯视图是四边形(画有对角线),故此选项不合题意;D 选项:圆锥体的俯视图是圆(带圆心),故此选项不合题意.故选 A.4A.线段上B.线段上C.线段上D.线段上★★如图,数轴上,,,,五个点分别表示数,,,,,则表示数的点应在().C,而数轴上,,,,五个点分别表示数,,,,,表示数的点应在线段上.故选 C .5A.B.C.D.★★★如图,中,,顶点,分别在直线,上,若,,则的度数为().A 如图,2023年江苏南通中考真题第4题3分2023年江苏南通中考真题第5题3分,,,,,.故选 A .6A.B.C.D.★★★若,则的值为().D,,.故选 D .7★★★如图,从航拍无人机看一栋楼顶部的仰角为,看这栋楼底部的俯角为,无人机与楼的水平距离为,则这栋楼的高度为().2023年江苏南通中考真题第6题3分2023年江苏南通中考真题第7题3分A. B. C. D.B过点作,垂足为,在中,,,在中,,,,故选 B.8★★★2023年江苏南通中考真题第8题3分A.B.C.D.如图,四边形是矩形,分别以点,为圆心,线段,长为半径画弧,两弧相交于点,连接,,.若,,则的正切值为().C,,,,,四边形是矩形,,,,,,,设,则,,由勾股定理得:,,,.故选 C.9A.B.C.D.★★★★如图 1,中,,,.点从点出发沿折线运动到点停止,过点作,垂足为.设点运动的路径长为,的面积为,若与的对应关系如图 2所示,则的值为().B,,,,①当时,点在边上,如图所示,此时,,,,,,,,,,2023年江苏南通中考真题第9题3分当时,,,②当时,点在边上,如图所示,此时,,,,,,,,,当时,,,.故选 B .10A.B.C.D.★★★若实数,,满足,,则代数式的值可以是().D由题意可得,2023年江苏南通中考真题第10题3分解得:,则,,A ,B ,C 不符合题意,D 符合题意.故选 D .11★计算:.原式.故答案为:.12★★★分解因式:..13★★★2023年江苏南通中考真题第11题3分2023年江苏南通中考真题第12题3分2023年江苏南通中考真题第13题4分如图,中,,分别是,的中点,连接,则.,分别是,的中点,,又,,.故答案为:.14★★某型号汽车行驶时功率一定,行驶速度(单位:)与所受阻力(单位:)是反比例函数关系,其图象如图所示.若该型号汽车在某段公路上行驶时速度为,则所受阻力为.设功率为,由题可知,即,将,代入可得:,即反比例函数为:.当时,.胡答案为:.2023年江苏南通中考真题第14题4分15★★★如图,是⊙的直径,点,在⊙上,若,则度.如图,连接,,,,,.故答案为:.16★★★勾股数是指能成为直角三角形三条边长的三个正整数,世界上第一次给出勾股数公式的是中国古代数学著作《九章算术》.现有勾股数,,,其中,均小于,,,是大于的奇数,则 (用含的式子表示).,,是勾股数,其中,均小于,,,2023年江苏南通中考真题第15题4分2023年江苏南通中考真题第16题4分,是大于的奇数,.故答案为:.17★★已知一次函数,若对于范围内任意自变量的值,其对应的函数值都小于,则的取值范围是.一次函数,随的增大而增大,对于范围内任意自变量的值,其对应的函数值都小于,,解得.故答案为:.18★★★★如图,四边形的两条对角线,互相垂直,,,则的最小值是.2023年江苏南通中考真题第17题4分2023年江苏南通中考真题第18题4分设,的交点为,,,,的中点分别是,,,,连接,,,,,,,如图:,互相垂直,和为直角三角形,且,分别为斜边,,,,当为最小时,为最小,根据“两点之间线段最短”得:,当点在线段上时,为最小,最小值为线段的长,点,分别为,的中点,为的中位线,,,同理:,,,,,,,,四边形为平行四边形,,,,,四边形为矩形,在中,,,由勾股定理得:,的最小值为,的最小值为.故答案为:.19(1)(2)★★(1)(2)(1)(2)解方程组:①②.计算:.①②,②①得:,把代入①得:,解得:,故原方程组的解是:..20★★某校开展以“筑梦天宫、探秘苍穹”为主题的航天知识竞赛,赛后在七、八年级各随机抽取名学生的竞赛成绩,进行整理、分析,得出有关统计图表.抽取的学生竞赛成绩统计表年级平均数中位数众数方差七年级八年级2023年江苏南通中考真题第19题12分2023年江苏南通中考真题第20题10分(1)(2)(1)(2)(1)(2)注:设竞赛成绩为(分),规定:90为优秀;为良好;60为合格;为不合格.若该校八年级共有名学生参赛,估计优秀等次的约有人.你认为七、八年级中哪个年级学生的竞赛成绩更好些?请从两个方面说明理由.八年级成绩较好,理由见解析若该校八年级共有名学生参赛,估计优秀等次的约有(人).故答案为:.八年级成绩较好,理由如下:因为七、八年级的平均数相等,而八年级的众数和中位数大于七年级的众数和中位数,所以八年级得分高的人数较多,即八年级成绩较好(答案不唯一).21★★★如图,点,分别在,上,,,相交于点,.求证:.2023年江苏南通中考真题第21题10分(1)(2)(1)(2)(1)(2)小虎同学的证明过程如下:证明:,.,.……第一步又,,.……第二步.……第三步小虎同学的证明过程中,第步出现错误.请写出正确的证明过程.二见解析小虎同学的证明过程中,第二步出现错误,故答案为:二.方法一:,,在和中,,,,在和中,,,.方法二:,,.22(1)(2)★★(1)(2)(1)(2)有同型号的,两把锁和同型号的,,三把钥匙,其中钥匙只能打开锁,钥匙只能打开锁,钥匙不能打开这两把锁.从三把钥匙中随机取出一把钥匙,取出钥匙的概率等于.从两把锁中随机取出一把锁,从三把钥匙中随机取出一把钥匙,求取出的钥匙恰好能打开取出的锁的概率.有同型号的,,三把钥匙,从三把钥匙中随机取出一把钥匙,取出钥匙的概率等于.故答案为:.画树状图如下:共有种等可能的结果,其中取出的钥匙恰好能打开取出的锁的结果有种,即、,取出的钥匙恰好能打开取出的锁的概率为.23★★★如图,等腰三角形的顶角,⊙和底边相切于点,并与两腰,分别相交于,两点,连接,.2023年江苏南通中考真题第22题10分2023年江苏南通中考真题第23题10分(1)(2)(1)(2)(1)(2)求证:四边形ODCE是菱形.若⊙的半径为,求图中阴影部分的面积.见解析连接,⊙和底边相切于点,,,,,,,和都是等边三角形,,,,四边形是菱形.连接交于点,四边形是菱形,,,,在中,,,,图中阴影部分的面积扇形的面积菱形的面积,图中阴影部分的面积为.24(1)(2)★★★(1)(2)答案(1)(2)解析为推进全民健身设施建设,某体育中心准备改扩建一块运动场地.现有甲、乙两个工程队参与施工,具体信息如下:信息一工程队每天施工面积(单位:)每天施工费用(单位:元)甲乙信息二甲工程队施工所需天数与乙工程队施工所需天数相等.求的值.该工程计划先由甲工程队单独施工若干天,再由乙工程队单独继续施工,两队共施工天,且完成的施工面积不少于.该段时间内体育中心至少需要支付多少施工费用?元根据题意得:,解得:,经检验,是所列方程的解,且符合题意.答:的值为.设甲工程队施工天,则乙工程队单独施工天,2023年江苏南通中考真题第24题12分根据题意得:,解得:,设该段时间内体育中心需要支付元施工费用,则,即,,随的增大而增大,当时,取得最小值,最小值.答:该段时间内体育中心至少需要支付元施工费用.25(1)(2)(3)★★★(1)(2)(3)(1)正方形中,点在边,上运动(不与正方形顶点重合).作射线,将射线绕点逆时针旋转,交射线于点.如图,点在边上,,则图中与线段相等的线段是.过点作,垂足为,连接,求的度数.在(2)的条件下,当点在边延长线上且时,求的值.或四边形是正方形,2023年江苏南通中考真题第25题13分(2),,,(全等),.故答案为:.当点在边上时,如图,过点作交于,延长交于点,,四边形是矩形,,,,,,,是等腰直角三角形,,,,,,,为等腰直角三角形,,;当点在边上时,如图,(3)过点作交于,延长交延长线于点,四边形是矩形,同理,,,为等腰直角三角形,,,综上所述:的度数为或.当点在边延长线上时,点在边上,设,则,,,,.26(1)(2)★★★定义:平面直角坐标系中,点,点,若,,其中为常数,且,则称点是点的“级变换点”.例如,点是点的“级变换点”.函数的图象上是否存在点的“级变换点”?若存在,求出的值;若不存在,说明理由.点与其“级变换点”B分别在直线,上,在,上分别取点,.若,求证:.2023年江苏南通中考真题第26题13分(3)(1)(2)(3)(1)(2)(3)关于的二次函数的图象上恰有两个点,这两个点的“级变换点”都在直线上,求的取值范围.见解析且存在,理由:由题意得,的“级变换点”为:,将代入反比例函数表达式得:,解得:.由题意得,点的坐标为:,由点的坐标知,点在直线上,同理可得,点在直线,则,,则,,则,即.设在二次函数上的点为点、,设点,则其“级变换点”坐标为:,将代入得:,则,即点在直线上,同理可得,点在直线上,即点、所在的直线为;由抛物线的表达式知,其和轴的交点为:、,其对称轴为,当时,抛物线和直线的大致图象如下:直线和抛物线均过点,则点个点为点,如上图,联立直线和抛物线的表达式得:设点的横坐标为,则,则,解得:,此外,直线和抛物线在故,即且;当时,当时,直线不可能和抛物线在故该情况不存在,综上,且.。
最新江苏省南通市中考数学综合检测试卷A卷附解析
江苏省南通市中考数学综合检测试卷A 卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知关于x 的一元二次方程x 2-2(R+r )x +d 2=0没有实数根,其中R 、r 分别为⊙O1、⊙O2的半径,d 为两圆的圆心距,则⊙O1与⊙O2的位置关系是( )A .外离B .相交C .外切D .内切2.从圆外一点向半径为1cm 的圆引两条切线,切线长为3cm ,它们所夹的锐角是( ) A .30o B .60o C .90oD .45o 3.某商店举办有奖销售活动,购物满100元者发对奖券一张.在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个.若某人购物刚好满100元,那么他中一等奖的概率是( )A .1001B .10001C .100001D .100001114.下面这几个车标中,是中心对称图形而不是轴对称图形的共有 ( )A .1B .2C .3D .45.据《武汉市2002年国民经济和社会发表统计公报》报告:武汉市2002年国内生产总值达l493亿元,比2001年增长11.8%,下列说法:①2001年国内生产总值为l493(1-11.8%)亿元; ②2001年国内生产总值为1493111.8%-亿元; ③2001年国内生产总值为1493111.8%+亿元; ④若按11.8%的年增长率计算,2004年的国内生产总值预计为1493(1+11.8%)2亿元. 其中正确的是 ( )A .③④B .②④C .①④D .①②③6.分式2221m m m m-+-约分后的结果是( ) A .1m m n -+ B .1(1)m m m --+ C .1m m - D .1(1)m m m -+ 7.若9x 2+kx+16是一个完全平方式,则k 的值等于( )A.12B.24C.-24D.±248.如图是某只股票从星期一至星期五的最高股价与最低股价的折线统计图,则这5天中最高股价与最低股价之差最大的一天是( )A .星期二B .星期三C .星期四D .星期五(第6题图)星期日最低股价 日最高股价股价(元)11.51110.5109.598.58五四三二一9.如果M 是3次多项式,N 是3次多项式,则M+N 一定是( )A .6次多项式B .次数不高于 3的整式C .3次多项式D .次数不低于 3的多项式10.用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .2(3)a b -B .23()a b -C .23a b -D .2(3)a b - 11.如图,AB=CD ,∠l=∠2,AO=3,则AC=( )A .3B .6C .9D .1212.如果两个数的积为零,那么这两个数( )A . 都为0B .至多有一个为 0C .不都为0D .至少有一个为0 13.某人第一次向南走 40 km ,第二次向北走30 km ,第三次向北走 40 km ,最后相当于这人( )A . 向南走110kmB . 向北走 50 kmC .向南走 30 kmD .向北走 30 km 二、填空题14.如图,这是一个正方体的展开图,则号码2代表的面所相对的面的号码是______.15.如图,是一个圆锥形零件经过轴的剖面图,按图中标明的数据,计算锥角α≈_______(精确到1°)16.不等式有下面这些基本性质:(1)如果a b >,b c >,那么a c ; (2)如果a b >,那么a c ± b c ±;(3)如果a b >,且0c <,那么ac bc ;(4)如果a b >,且0c >,那么ac bc ,a cb c. 17.如图所示:(1)如果∠3=∠5,那么 ∥ ;(2)如果∠2=∠4,那么 ∥ ;(3)如果∠1=∠D ,那么 ∥ ; (4)如果∠B+∠BCD= 180°,那么 ∥ ;(5)如果∠D+∠BCD= 180°,那么 ∥ ;18.观察图形:其中是轴对称图形的是 (填序号) .19.如图,三条直线AB 、CD 、EF 都相交于同一点0,若∠AOE=2∠AOC ,∠COF=32∠AOE .则 ∠DOE 的度数是 .20.下表记录的是中国、美国、印度、澳大利亚四个国家l996年的人口自然增长率. 国别中国 美国 印度 澳大利亚 人口自然增长率(‰) 10.4 6.0 18.6 6.7从统计图中获得人口自然增长率最高的国家是 ,最低的是 .21.在括号内填上适当的项:(1)a-( )=a-b-c, x+y-1=-( ) ,3[( )+x]=-6y+3x.(2) 2282x xy y -+= 2x +( )= 2x -( ).(3)22)12m mn n -+-=1-( ) (4) (-a+b+c)(a+b-c)=[b+( )][b-( )].22. 有理数中,是整数而不是负数的是 ,是负有理数而不是分数的是 .三、解答题23.在Rt △ABC 中,∠C =900,AB =13,BC =5,求A sin , A cos ,A tan .24.如图,在四边形ABCD 中,AB=8,BC=1,AD=32,∠DAB=30°,∠ABC=60°,求四边形ABCD 的面积.25.求证:等腰三角形两腰上的高相等.26.在□ABCD 中,AE ,AF 分别是BC ,CD 边上的高,AF 与BC 交于点G ,AE=2 cm ,AF=5 cm ,∠EAF=30°,求□ABCD 各内角的度数和AB ,AD 的长.27.试判断:三边长分别为222n n +,21n +、2221n n ++(n>O)的三角形是否是直角三角形?并说明理由.28.如图,,BC=CD ,AB=ED ,AF=FE ,画出所给图形绕点 0逆时针旋转 90°后的图形.29.在争创全国卫生城市的活动中,某市一“青年突击队”决定义务清运一堆重达 100 t 的垃圾. 开工后,附近居民主动参加义务劳动,使清运垃圾的速度比原计划提高一倍,结果提前 4h 完成任务. 问“青年突击队”原计划每小时清运多少吨垃圾?30.某体育场的环形跑道长 400米,甲、乙二人在跑道上,练习长跑,甲平均每分钟跑250米,乙平均每分钟跑290米,现在两人同时从同一起跑线同向出发,起跑后经过多长时间两人才能第一次相遇?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.B3.B4.B5.A6.C7.D8.B9.B10.A11.BD13.D二、填空题14.515.46°16.(1)>;(2)>;(3)<;(4)>,>17.(1)AB ,CD ;(2)AD ,BC ;(3)A .B ,CD ;(4)AB ,CD ;(5)BC ,AD18.①②③④⑥19.90°20.印度;美国21.(4)c a -, c a -(1) b c +,1x y --+,2y - (2)282xy y -+, 282xy y - (3) 222m mn n -+ 22.正整数、零;负整数三、解答题23.135sin =A , 1312cos =A ,125tan =A . 24.延长AD ,BC 交于点E ,则∠E=90°,BE=4,,故CE=3,,∴S 四边形ABCD = S △ABE -S △CDE25.26.30°,150°,30°,l50°,AB=4 cm , AD=10cm27.是直角三角形,理由略28.如图:29.12. 5t30.设起跑后经过x 分钟两人第一次相遇,则甲跑过的路程是250x 米,乙跑过的路程为290x 米.根据题意,得290250400x x -=,解得10x =.答:起跑后经过10分钟两人第一次相遇.。
最新江苏省南通市中考数学测评考试试题附解析
江苏省南通市中考数学测评考试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,为了测量河两岸A 、B 两点的距离,在与AB 垂直的方向点C 处测得AC =a ,∠ACB =α,那么AB 等于( ) A .a ·sin αB .a ·tan αC .a ·cos αD .αtan a2.张华的哥哥在西宁工作,今年“五.一”期间,她想让哥哥买几本科技书带回家,于是发短信给哥哥,可一时记不清哥哥手机号码后三位数的顺序,只记得是0,2,8三个数字,则张华一次发短信成功的概率是( ) A .16B .13C .19D .123.二次函数y=ax 2+bx+c 的图象的对称轴位置 ( ) A .只与a 有关B .只与b 有关C .只与a, b 有关D .与 a , b ,c 都有关4.甲、乙、丙三个同学排成一排拍照,则甲排在中间的概率是( ) A .16B .14C .13D .125.在下列多项式的乘法中,可以用平方差公式计算的是( ) A .(1)(1)x x ++B .11()()22a b b a +- C .()()a b a b -+-D .22()()x y x y -+6.将一个正方形纸片依次按图①、图②方式对折,然后沿图③中的虚线裁剪,最后将图④的纸再展开铺平,所看到的图案是( )7.如图为某班学生上学方式统计图,从图中所提供的信息正确的是 ( )A .班共有学生50人B .该班乘车上学的学生人数超过半数C .该班骑车上学的人数不到全班人数的20%D .该班步行与其它方式上学的人数和超过半数 8.下列各组中的两项为同类项的是( ) A . 23a b 与223abB .2x y 与2x zC .2mnp 与2mnD .12pq 与qp 9.用四舍五入法对60340取近似数,保留两个有效数字,结果为( ) A .6.03×104B .6.0×104C .6×104D .6.0×103二、填空题10.人站在门缝往外看时,眼睛离门缝越近,看到的范围越大,这是因为 . 11.直线y=kx-4与y 轴相交所成的锐角的正切值为12,则k 的值为 . 12.一次函数21y x =-+的图象经过抛物线2+1(0)y x mx m =+≠的顶点,则 m= . 13.已知扇形面积为 12π㎝,半径为 8 cm ,则扇形的弧长是 . 14.命题“如果a>b ,b>c ,那么a >c”是 命题.15.某农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种甜玉米各用l0块试验田进行试验,得到这两个品种甜玉米每公顷产量的两组数据(如图所示).根据图中的信息,可知在试验田中, 种甜玉米的产量比较稳定.16.如图,∠3=∠ 时,AF ∥BE ,理由是 . ∠2=∠ 时,FC ∥DE ,理由是 .17.如图,已知函数y ax b =+和y kx =的图象交于点P ,则根据图象,可得关于y ax b y kx=+⎧⎨=⎩的二元一次方程组的的解是 .18.一个三角形中最多有 个内角是钝角,最多可有 个角是锐角.19.从1,2,3这三个数字中任取两个数字组成一个两位数,其中能被3整除的两位数的概率是 .20.计算:(2x + y )(2x - y )= ;(2a -1)2= _.21.大、小两个正方形放在桌上,它们共遮住了32 cm 2的面积,如果两正方形重叠部分面积为4 cm 2,小正方形面积为7 cm 2,则大正方形面积为 cm 2.三、解答题22.如图,在直角坐标系中,P 是第一象限的点,其坐标是(3,y ),且OP 与x 轴的正半轴的夹角α的正切值是43,求(1)y 的值;(2)角α的正弦值.23.如图,已知以O 为圆心的两个同心圆中,大圆的弦CD 交小圆于E 、F ,•OE 、OF 的延长线交大圆于A 、B ,求证:AC=BD .24.将抛物线y =12 x 2先向左平移p 个单位,再向上平移q 个单位,得到的抛物线经过点(-2,3),(-4,5),求p 、q 的值 P =2,q =3.25.某超市销售一种商品,每件商品的成本是20元.经统计销售情况发现,当这种商品的单价定为40元时,每天售出200件.在此基础上,假设这种商品的单价每降低1元,每天就会多售出20件.(1)用代数式表示,这种商品的单价为x 元(x<40)时,销售1件该商品的利润和每天销售该商品的数量;(2)当商品单价定为多少时,该超市每天销售这种商品获得的利润为4500元.26.已知等腰三角形△ABC 中,AB=AC ,AC 边上的中线BD 将它的周长分成9 cm 和8 cm 两部分,求腰长.27.如图是一个被等分成12个扇形的转盘.请在转盘上选出若干个扇形涂上斜线(涂上斜线表示阴影区域,其中有一个扇形已涂),使得自由转动这个转盘,当它停止转动时,指针落在阴影区域内的概率为41.28.一个锐角的余角是这个锐角的补角的14,求这个角的度数.29.填写下表,并观察代数式的值随 n 的变化而变化的情况:下(1)值?(2)当n为何值时,两个代数式的值相等?30.1公顷生长茂盛的树林每天大约可以吸收二氧化碳lt,成人每小时平均呼出二氧化碳38g,如果要吸收一万个人一天呼出的二氧化碳,那么至少需要多少公顷的树林?(结果保留2个有效数字)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.C4.C5.B6.D7.C8.D9.B二、填空题10.眼睛离门缝越近,张角就越大,视野就越开阔2±12.413.3π14.真15.乙16.F ;内错角相等,两直线平行;D ;同位角相等,两直线平行17.42x y =-⎧⎨=-⎩18. 1,319.3120. 224y x -,1442+-a a21.29三、解答题 22.(1)4;(2)54. 23.连结OC 、OD ,∵OC=OD ,OE=OF ,∴∠OCD=∠ODC ,∠OEF=∠OFE ,∴∠AOC=∠BOD ,•∴AC=BD .24.25.(1)x -20;200+(40-x )×20;(2)(x -20)(1000-20x )=4500,x =35.26.6cm 或163cm 27.28.60°29.(1)逐渐变小,0 (2)6 30.9.1 公顷。
南通九年级中考数学试卷【含答案】
南通九年级中考数学试卷【含答案】专业课原理概述部分一、选择题1. 下列哪个数是负数?()A. -5B. 3C. 0D. 72. 若 a > b,则下列哪个选项一定成立?()A. a c > b cB. a + c > b + cC. ac > bcD. a/b > b/a3. 下列哪个图形是平行四边形?()A. 矩形B. 梯形C. 正方形D. 圆形4. 下列哪个数是无理数?()A. √9B. √16C. √3D. √15. 下列哪个选项是代数式?()A. 2x + 3B. x = 5C. y 4 = 2D. 4 < 7二、判断题1. 任何数乘以0都等于0。
()2. 负数的平方是正数。
()3. 所有的偶数都是2的倍数。
()4. 两个负数相乘得到正数。
()5. 所有的正方形都是矩形。
()三、填空题1. 2的平方是______。
2. 若 a = 3,b = -2,则 a + b = ______。
3. 下列图形中,______是轴对称图形。
4. 若 3x + 5 = 14,则 x = ______。
5. 下列数中,______是素数。
四、简答题1. 解释什么是负数。
2. 解释什么是平行四边形。
3. 解释什么是无理数。
4. 解释什么是代数式。
5. 解释什么是因数分解。
五、应用题1. 小明有5个苹果,他吃掉了2个,还剩下几个苹果?2. 一个长方形的长是10cm,宽是5cm,求这个长方形的面积。
3. 若 2x 3 = 7,求 x 的值。
4. 一个数的平方是16,求这个数。
5. 列出所有的2的倍数,从1到10。
六、分析题1. 解释为什么负数的平方是正数。
2. 解释为什么所有的偶数都是2的倍数。
七、实践操作题1. 画出一个边长为5cm的正方形。
2. 画出一个半径为3cm的圆。
八、专业设计题1. 设计一个三角形,其中两个角分别是30度和60度,求第三个角的大小。
2. 设计一个长方形,长是宽的两倍,如果长方形的周长是24cm,求长方形的长和宽。
最新江苏省南通市中考数学真题试卷附解析
江苏省南通市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.一条信息可通过如图所示的网络线由A 点往各站点传递(同级别站点不能传递),则信息由 A 点到达d 3的所有不同途径中,其中按途径]233A a b c d →→→→到达的概率是( ) A .14B .15C .16D .182.如图,正方形ABCD 边长为3,以直线AB 为轴,将正方形旋转一周,所得圆柱的侧面积是( )A.36лB.18лC.12лD.9л3. 抛物线122+-=x x y ,则图象与x 轴交点为( ) A . 二个交点B . 一个交点C . 无交点D . 不能确定4.设7的小数部分为b ,那么(4+b )b 的值是( ) A .1 B .是一个有理数 C .3 D .无法确定 5.在平面直角坐标系中,下列各结论不成立的是( )A .平面内一点与两坐标轴的距离相等,则这点一定在某象限的角平分线上B .若点P (x ,y )坐标满足0xy=,则点P 一定不是原点 C 点P (a ,b )到x 轴的距离为b ,到y 轴的距离为a D .坐标(-3,4)的点和坐标(-3,-4)的点关于x 轴对称6.已知一组数据5,15,75,45,25,75,45,35,45,35,那么40是这一组数据的( ) A .平均数但不是中位数 B .平均数也是中位数 C .众数D .中位数但不是平均数7.已知线段AB ,在BA 的延长线上取一点C ,使CA=3AB ,则线段CA 与线段CB 之比为( ) A .3:4B .2:3C .3:5D .1:28.要清楚地表明病人的体温变化情况,应选用的统计图是( ) A .扇形统计图B .折线统计图C .条形统计图D .以上都可以9.下列各组代数式中,不是同类项的一组是( ) A .12-和0B .213ab c -和2cab C .2xy 和2x yD .3xy和xy - 10.计算222222113(22)(46)32a c b a b c +-+---的结果是( )A . 225106a b +B . 221106a b --C . 221106a b -+D . 225106a b -11. 在数①-32;②5. 8;③3178;④-0. 31;⑤0;⑥ 48;⑦2;⑧35-中,负分数的个数有( ) A .0 个B .1 个C .2 个D .3 个二、填空题12. 如图,在高为 2m ,坡角为 30°的楼梯上铺地毯,则地毯长度至少要 m .13. 请画出正四棱锥的俯视图.14.阳光下,高 8 m 的旗杆在地面的影长为l6m ,附近一棵小树的影长为 lO m ,则小树高为 m .15. 若y 与x 成正比例,x 与成反比例,则 y 与z 成 .16.一组数据35,35,36,36,37,38,38,38,39,40的极差是 . 17.已知一次函数y=kx+5的图象经过点(-l ,2),则k= . 18.如图,根据下列物体的三视图,在右边横线上填出几何体的名称:.19. 某商品的标价是 1375元,打 8 折(按标价的 80%)售出,仍可获利 10%,如果设该商品的进价是x 元,那么可列出方程 . 解答题20. 如图,在△ABC 中,AB 的垂直平分线交 AC 于 D ,如果AC= 7 cm ,BC=4 cm ,则△BDC 的周长为 cm .21.等边三角形ABC绕着它的中心,至少旋转度才能与其本身重合.22.6的平方根是 ,它的算术平方根是 .三、解答题23.已知,如图,⊙O1和⊙O2外切于点 P,AC是⊙O1的直径,延长 AP 交⊙O2于点 B,过点B作⊙O2的切线交 AC 的延长线于点D,求证:AD⊥BD.24.如图,以 0为圆心,方圆 8海里范围内有暗礁,某轮船行驶到距 0点正西 16海里的A处接到消息,则该船至少向东偏南多少度航行才不会触礁?25.已知抛物线y=3x2-2x- 53与直线y=2x有两个交点,如何平移直线y=2x,使得直线与抛物线只有一个交点.26.如图,已知二次函数y=ax2-4x+c的图像经过点A和点B.(1)求该二次函数的表达式;(2)点P(m,m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求m 的值及点Q 到x 轴的距离.27.已知:如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E . (1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.28.如图,△ACB 、△ECD 都是等腰直角三角形,且点C 在AD 上,AE 的延长线与BD 交于点F .请你在图中找出一对全等三角形,并写出证明它们全等的过程.O -1xy 3--1 A B29.如图,△ABC中,AC⊥BC,CE⊥AB于点E,AF平分∠CAB交CE于点F,过点F作FD∥BC交AB于点D,求证:AC=AD.30.说明:对于任何整数m,多项式9m都能被8整除.+)54(2-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.B4.C5.C6.B7.A8.B9.C10.C11.C二、填空题12.+13.(223)14.515.反比例16.517.318.直六棱柱19.x1.11375=⨯20.8.01121.12022.66三、解答题23.连结O1O2,则必过点 P,连结O2B,∵O1 A=O1 P,∴∠A=∠O1PA,同理∠O2PB=∠O2BP,又∵∠O1PA =∠O2PB,∴∠A=∠O2BP.∵BD 是⊙O2的切线,∴∠DBA+∠A=∠DBA+∠O2BP=90°,∴∠ADB= 90°,∴AD⊥BD.24.该船要不触礁,则航线至少与⊙O 相切,过A 作⊙O 的切线 AB ,再过0点作0C ⊥AB 于 C ,则OC=8,又AO=16,在 Rt △OAC 中,81sin 162OC A OA ===,∴∠A= 30°,即当该船至少向东偏南30°航行时,才不会触礁.25.y=2x+by=3x2-2x-53,Δ=0得b=-3,即向下平移3个单位; 26.(1)将x =-1,y =-1;x =3,y =-9分别代入y=ax 2-4x +c 得⎩⎨⎧+⨯-⨯=-+-⨯--⨯=-.3439,)1(4)1(122c a c a 解得 ⎩⎨⎧-==.6,1c a ∴二次函数的表达式为y=x 2-4x -6.(2)将(m ,m )代入y=x 2-4x -6,得m=m 2-4m -6, 解得121,6m m =-=.∵m >0,∴11-=m 不合题意,舍去.∴ m =6.∵点P 与点Q 关于对称轴2=x 对称,∴点Q 到x 轴的距离为6.27.(1)证明:在△A BC 中, AB =AC ,AD ⊥BC .∴ ∠BAD =∠DAC .∵ AN 是△ABC 外角∠CAM 的平分线,∴ MAE CAE ∠=∠. ∴ ∠DAE =∠DAC +∠CAE =⨯21180°=90°.又 ∵ AD ⊥BC ,CE ⊥AN ,∴ ADC CEA ∠=∠=90°,∴ 四边形ADCE 为矩形.(2)例如,当AD =12BC 时,四边形ADCE 是正方形. 证明:∵ AB =AC ,AD ⊥BC 于D .∴ DC =12BC .又 AD =12BC ,∴ DC =AD .由(1)四边形ADCE 为矩形,∴ 矩形ADCE 是正方形.28.△ACE ≌△BCD (SAS ).29.利用“ASA ”证△ACF ≌△ADF ,得AC=AD30.∵)252(81640169)54(222++=++=-+m m m m m ,∴9)54(2-+m 都能被8整除.。
2024年江苏省南通市部分学校中考数学一模试卷及答案解析
2024年江苏省南通市部分学校中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)下列结果中,是负数的是()A.﹣(﹣2)B.﹣|﹣1|C.3×2D.0×(﹣4)2.(3分)风能是一种清洁能源,我国风能储量很大,仅陆地上风能储量就有253000兆瓦,将数据253000用科学记数法表示为()A.25.3×104B.2.53×104C.2.53×105D.0.253×106 3.(3分)如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.4.(3分)下列各图中,可看作轴对称图形的是()A.B.C.D.5.(3分)如图,四边形ABCD的对角线AC,BD相交于点O,OA=OC,且AB∥CD,则添加下列一个条件能判定四边形ABCD是菱形的是()A.AC=BD B.∠ADB=∠CDB C.∠ABC=∠DCB D.AD=BC6.(3分)如图,直线l1∥l2,含有30°的直角三角板的一个顶点C落在l2上,直角边交l1于点D,连接BD,使得BD⊥l2,若∠1=72°,则∠2的度数是()A.48°B.58°C.42°D.18°7.(3分)我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而舂之,得米七斗.问故米几何?”意思为:50斗谷子能出30斗米,即出米率为.今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再舂成米,共得米7斗.问原来有米多少斗?如果设原来有米x 斗,向桶中加谷子y斗,那么可列方程组为()A.B.C.D.8.(3分)若关于x的不等式组有且只有3个整数解,则a的取值范围是()A.﹣1≤a<0B.﹣1<a≤0C.﹣4<a≤﹣3D.﹣4≤a<﹣3 9.(3分)如图,四边形ABCD是边长为2cm的正方形,点E,点F分别为边AD,CD中点,点O为正方形的中心,连接OE,OF,点P从点E出发沿E﹣O﹣F运动,同时点Q 从点B出发沿BC运动,两点运动速度均为1cm/s,当点P运动到点F时,两点同时停止运动,设运动时间为t s,连接BP,PQ,△BPQ的面积为S cm2,下列图象能正确反映出S与t的函数关系的是()A.B.C.D.10.(3分)已知实数a,b满足4a2+b=n,b2+2a=n,b≠2a.其中n为自然数,则n的最小值是()A.4B.5C.6D.7二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分.)11.(3分)代数式在实数范围内有意义,则x的取值范围是.12.(3分)因式分解:2x﹣8x3=.13.(4分)底面圆半径为10cm、高为的圆锥的侧面展开图的面积为cm2.14.(4分)某种型号的小型无人机着陆后滑行的距离S(米)关于滑行的时间t(秒)的函数解析式是S=﹣0.25t2+10t,无人机着陆后滑行秒才能停下来.15.(4分)如图,社小山的东侧炼A处有一个热气球,由于受西风的影响,以30m/min的速度沿与地面成75°角的方向飞行,20min后到达点C处,此时热气球上的人测得小山西侧点B处的俯角为30°,则小山东西两侧A,B两点间的距离为.16.(4分)如图,在矩形ABCD中,AB=3,BC=10,点E在边BC上,DF⊥AE,垂足为F.若DF=6,则线段EF的长为.17.(4分)若a,b是一元二次方程x2﹣5x﹣2=0的两个实数根,则的值为.18.(4分)如图,点A,B在反比例函数y=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是.三、解答题(本大题共8小题,共90分.解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:;(2)先化简,再求值:,其中x=3.20.(8分)如图,已知A,D,C,E在同一直线上,BC和DF相交于点O,AD=CE,AB ∥DF,AB=DF.(1)求证:△ABC≌△DFE;(2)连接CF,若∠BCF=54°,∠DFC=20°,求∠DFE的度数.21.(10分)某市今年初中物理、化学实验技能学业水平考查,采用学生抽签方式决定各自的考查内容.规定:每位考生必须在4个物理实验考查内容(用A、B、C、D表示)和4个化学实验考查内容(用E、F、G、H表示)中各抽取一个进行实验技能考查.小刚在看不到签的情况下,从中各随机抽取一个.(1)小刚抽到物理实验A的概率是;(2)用列表法或画树状图法中的一种方法,求小刚抽到物理实验B和化学实验F的概率.22.(10分)青年大学习是共青团中央为组织引导广大青年深入学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神持续引向深人组织的青年学习行动.某校举办了相关知识竞赛(百分制),并分别在七、八年级中各随机抽取20名学生的成绩进行统计、整理与分析,绘制成如图两幅统计图.成绩用x表示,并且分为A、B、C、D、E五个等级,并且分别是:A:50≤x<60;B:60≤x<70;C:70≤x<80;D:80≤x<90;E:90≤x≤100.七、八年级成绩的平均数、中位数众数如下表:平均数中位数众数七年级76m75八年级777678其中,七年级成绩在C等级的数据为77、75、75、78、79、75、73、75;八年级成绩在E等级的有3人.根据以上信息,解答下列问题:(1)扇形统计图中B等级所占圆心角的度数是,表中m的值为;(2)通过以上数据分析,你认为哪个年级对青年大学习知识掌握得更好?请说明理由;(3)请对该校学生“青年大学习”的掌握情况作出合理的评价.23.(12分)如图,AB是⊙O的直径,点C在⊙O上,∠ABC=60°,⊙O的切线CD与AB的延长线相交于点D.(1)求证:BD=BC;(2)若⊙O的半径为6,求图中阴影部分的面积.24.(13分)随着“双减”政策的逐步落实,其中增加中学生体育锻炼时间的政策引发社会的广泛关注,体育用品需求增加,某商店决定购进A、B两种羽毛球拍进行销售,已知每副A种球拍的进价比每副B种球拍贵20元,用2800元购进A种球拍的数量与用2000元购进B种球拍的数量相同.(1)求A、B两种羽毛球拍每副的进价;(2)若该商店决定购进这两种羽毛球拍共100副,考虑市场需求和资金周转,用于购买这100副羽毛球拍的资金不超过5900元,那么该商店最多可购进A种羽毛球拍多少副?(3)若销售A种羽毛球拍每副可获利润25元,B种羽毛球拍每副可获利润20元,在第(2)问条件下,如何进货获利最大?最大利润是多少元?25.(13分)如图1,P是正方形ABCD边BC上一点,线段AE与AD关于直线AP对称,连接EB并延长交直线AP于点F,连接CF.(1)补全图形,求∠AFE的大小;(2)用等式表示线段CF,BE之间的数量关系,并证明;(3)连接CE,G是CE的中点,AB=2,若点P从点B运动到点C,直接写出DG的最大值.26.(14分)定义:若一个函数的图象上存在横、纵坐标之和为零的点,则称该点为这个函数图象的“平衡点”.例如,点(﹣1,1)是函数y=x+2的图象的“平衡点”.(1)在函数①y=﹣x+3,②y=,③y=﹣x2+2x+1,④y=x2+x+7的图象上,存在“平衡点”的函数是;(填序号)(2)设函数y=﹣(x>0)与y=2x+b的图象的“平衡点”分别为点A、B,过点A作AC⊥y轴,垂足为C.当△ABC为等腰三角形时,求b的值;(3)若将函数y=x2+2x的图象绕y轴上一点M旋转180°,M在(0,﹣1)下方,旋转后的图象上恰有1个“平衡点”时,求M的坐标.2024年江苏省南通市部分学校中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.【分析】利用相反数的意义及绝对值的性质化简A、B,再利用乘法法则计算即可得到C、D.【解答】解:∵A、﹣(﹣2)=2,∴A项不符合题意;∵B、﹣|﹣1|=﹣1,∴B项符合题意;∵C、3×2=6,∴C项不符合题意;∵D、0×(﹣4)=0,∴D项不符合题意.故选:B.【点评】本题考查了相反数的意义,绝对值的性质,有理数的乘法法则,掌握绝对值的性质是解题的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:253000=2.53×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层中间有1个正方形.故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意;故选:B.【点评】本题考查了轴对称图形,解题关键是抓住轴对称图形是指将一个图形沿着某条直线折叠,直线两旁的部分能够完全重合.5.【分析】根据菱形的判定方法分别对各个选项进行判定,即可得出结论.【解答】解:∵AB∥CD,∴∠BAO=∠DCO,∠ABO=∠CDO,∵OA=OC,∴△AOB≌△COD(AAS),∴AB=CD,∴四边形ABCD是平行四边形,A、当AC=BD时,四边形ABCD是矩形;故选项A不符合题意;B、∵AB∥CD,∴∠ABD=∠CDB,∵∠ADB=∠CDB,∴∠ADB=∠ABD,∴AD=AB,∴四边形ABCD为菱形,故选项B符合题意;C、∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC=∠DCB∴∠ABC=∠DCB=90°,∴四边形ABCD是矩形;故选项C不符合题意;D、当AD=BC时,不能判定四边形ABCD为菱形;故选项D不符合题意.故选:B.【点评】本题考查了菱形的判定,平行四边形的判定和性质,等腰三角形的判定和性质,熟练掌握菱形的判定定理是解题的关键.6.【分析】根据平行的性质可得∠DEB=∠1=72°,根据三角形的外角的定义可得∠ADC=42°,再根据平角进行计算即可得到答案.【解答】解:如图,设AB与l1相交于点E,∵l1∥l2,∠1=72°,∴∠DEB=∠1=72°,∵∠A+∠ADC=∠DEB=72°,∠A=30°,∴∠ADE=42°,∵∠ADC+∠BDE+∠2=180°,BD⊥l2,∴∠2=48°.故选:A.【点评】本题主要考查了平行线的性质、三角形外角的定义,平角的定义,熟练掌握平行线的性质、三角形外角的定义,平角的定义是解题的关键.7.【分析】根据原来的米+向桶中加的谷子=10,原来的米+桶中的谷子舂成米=7即可得出答案.【解答】解:根据题意得:,故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找到等量关系:原来的米+向桶中加的谷子=10,原来的米+桶中的谷子舂成米=7是解题的关键.8.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后根据不等式组有且只有3个整数解,即可得到a的取值范围.【解答】解:,解不等式①,得:x≤2,解不等式②,得:x>a,∴该不等式组的解集是a<x≤2,∵关于x的不等式组有且只有3个整数解,∴这三个整数解是0,1,2,∴﹣1≤a<0,故选:A.【点评】本题考查一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式的方法.9.【分析】当0<t≤1时,点P在OE上,当1<t≤2时,点P在OF上,分别求出S与t 的函数关系,即可解答.【解答】解:如图,当0<t≤1时,由题得,PE=BQ=t cm,∵正方向ABCD是边长为2cm,∴P到BC的距离为(2﹣t)cm,∴S=t•(2﹣t)=﹣t2+t,如图,当1<t≤2时,由题得,PF=CQ=(2﹣t)cm,∴四边形CFPQ为矩形,∴PQ=CF=1cm,∴S=t•1=t,故选:D.【点评】本题考查了动点问题的函数图象应用,三角形面积的计算是解题关键.10.【分析】由原式知,(4a2+b)﹣(b2+2a)=0,进一步变形得(2a﹣b)(2a+b﹣)=0,因为b≠2a,所以2a+b﹣=0,得b=﹣2a,代入b2+2a=n得,(﹣2a)+2a=n,配方法求极值.【解答】解:由原式知,(4a2+b)﹣(b2+2a)=0,∴(4a2﹣b2)﹣(2a﹣b)=0∴(2a﹣b)(2a+b)﹣(2a﹣b)=0∴(2a﹣b)(2a+b﹣)=0∵b≠2a∴2a+b﹣=0,∴b=﹣2a,代入b2+2a=n得,(﹣2a)2+2a=n,整理,得n=4a2﹣2a+7=(2a﹣)2+5≥5,∴自然数n的最小值为6故选C.【点评】本题考查等式的基本性质,平方差公式、完全平方公式、配方法求极值;根据式子的具体特征,结合乘法公式对代数式作恒等变形是解题的关键.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分.)11.【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【解答】解:由题意得,x﹣5≥0,解得x≥5,故答案为:x≥5.【点评】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.12.【分析】先提公因式,再利用平方差公式继续分解即可解答.【解答】解:2x﹣8x3=2x(1﹣4x2)=2x(1+2x)(1﹣2x),故答案为:2x(1+2x)(1﹣2x).【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.13.【分析】先求出圆锥的母线长,再根据扇形的面积公式计算即可.【解答】解:∵圆锥的底面半径为10cm,高为10cm,∴圆锥的母线为=20(cm),∴圆锥的侧面展开图的面积为×(2π×10)×20=200π(cm2).故答案为:200π.【点评】本题考查圆锥的计算,解题的关键是求出圆锥的母线和掌握圆锥的侧面展开图的面积公式.14.【分析】飞机停下时,也就是滑行距离最远时,即在本题中需求出s最大时对应的t值.【解答】解:由题意得,S=﹣0.25t2+10t=﹣0.25(t2﹣40t+400﹣400)=﹣0.25(t﹣20)2+100,∵﹣0.25<0,∴t=20时,飞机滑行的距离最大,即当t=20秒时,飞机才能停下来.故答案为:20.【点评】本题考查了二次函数的应用,能熟练的应用配方法得到顶点式是解题关键.15.【分析】作AD⊥BC于D,根据速度和时间先求得AC的长,在Rt△ACD中,求得∠ACD 的度数,再求得AD的长度,然后根据∠B=30°求出AB的长.【解答】解:如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°﹣30°=45°,AC=30×20=600(米),∴AD=AC•sin45°=300(米).在Rt△ABD中,∵∠B=30°,∴AB=2AD=600(米).故答案为:600.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形并解直角三角形,难度适中.16.【分析】证明△AFD∽△EBA,得到,求出AF,即可求出AE,从而可得EF.【解答】解:∵四边形ABCD为矩形,∴AB=CD=3,BC=AD=10,AD∥BC,∴∠AEB=∠DAF,∴△AFD∽△EBA,∴,∵DF=6,∴AF===8,∴,∴AE=5,∴EF=AF﹣AE=8﹣5=3,故答案为:3.【点评】本题考查了相似三角形的判定和性质,矩形的性质,勾股定理,解题的关键是掌握相似三角形的判定方法.17.【分析】先根据一元二次方程的解的定义及根与系数的关系得出a +b =5,a 2=5a +2,再将其代入整理后的代数式计算即可.【解答】解:∵a ,b 是一元二次方程x 2﹣5x ﹣2=0的两个实数根,∴a +b =5,a 2﹣5a ﹣2=0,即:a 2=5a +2,∴,故答案为:5.【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,,x 1•x 2=.也考查了一元二次方程的解.18.【分析】过点B 作直线AC 的垂线交直线AC 于点F ,由△BCE 的面积是△ADE 的面积的2倍以及E 是AB 的中点即可得出S △ABC =2S △ABD ,结合CD =k 即可得出点A 、B 的坐标,再根据AB =2AC 、AF =AC +BD 即可求出AB 、AF 的长度,根据勾股定理即可算出k 的值,此题得解.【解答】解:过点B 作直线AC 的垂线交直线AC 于点F ,如图所示.∵△BCE 的面积是△ADE 的面积的2倍,E 是AB 的中点,∴S △ABC =2S △BCE ,S △ABD =2S △ADE ,∴S △ABC =2S △ABD ,且△ABC 和△ABD 的高均为BF ,∴AC =2BD ,又∵OC •AC =OD •BD ,∴OD =2OC .∵CD =k ,∴点A 的坐标为(,3),点B 的坐标为(﹣,﹣),∴AC =3,BD =,∴AB =2AC =6,AF =AC +BD =,∴CD =k ===.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理,构造直角三角形利用勾股定理巧妙得出k值是解题的关键.三、解答题(本大题共8小题,共90分.解答时应写出文字说明、证明过程或演算步骤)19.【分析】(1)先化简,然后算加减法即可;(2)先算括号内的式子,再算括号外的除法,然后将x的值代入化简后的式子计算即可.【解答】解:(1)=3+﹣1﹣=+;(2)=•===,当x=3时,原式==﹣5.【点评】本题考查实数的运算、分式的化简求值,熟练掌握运算法则是解答本题的关键.20.【分析】(1)由平行线的性质得∠A=∠FDE,根据等式的性质可得AC=DE,再由SAS 证明△ABC≌△DFE即可;(2)先根据三角形的外角可得∠DOC=74°,由平行线的性质可得∠B=∠DOC,最后由全等三角形的性质可得结论.【解答】(1)证明:∵AB∥DF,∴∠A=∠EDF,∵AD=CE,∴AD+CD=CE+CD,即AC=DE,在△ABC和△DFE中,,∴△ABC≌△DFE(SAS);(2)解:∵∠BCF=54°,∠DFC=20°,∴∠DOC=∠BCF+∠DFC=54°+20°=74°,∵AB∥DF,∴∠B=∠DOC=74°,∵△ABC≌△DFE,∴∠DFE=∠B=74°.【点评】本题考查了全等三角形的判定与性质,平行线的性质,证明三角形全等是解题的关键.21.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有16种等可能的结果,再找出抽到B和F的结果数,然后根据概率公式计算.【解答】解:(1)小刚抽到物理实验A的概率是;故答案为:;(2)画树状图为:共有16种等可能的结果,其中抽到B和F的结果数为1,所以小刚抽到物理实验B和化学实验F的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.22.【分析】(1)求出调查人数以及B等级的学生人数所占的百分比即可求出相应的圆心角度数,根据中位数的定义求出中位数即可得出m的值;(2)通过平均数、中位数、众数的大小比较得出答案;(3)根据平均数、中位数、众数综合进行判断即可.【解答】解:(1)由条形统计图可得,调查人数为2+5+8+2+3=20(人),扇形统计图中B等级所占圆心角的度数是360=90°,将七年级这20名学生的成绩从小到大排列,处在中间位置的两个数的平均数为=75,因此中位数是75分,即m=75,故答案为:90°,75;(2)八年级学生的成绩较好,理由:八年级学生成绩的平均数、中位数、众数均比七年级学生的平均数、中位数、众数大,所以八年级学生成绩较好;(3)青年学生对深入学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神掌握情况一般,还需要进一步加强学习和宣传.【点评】本题考查条形统计图、扇形统计图,平均数、中位数、众数,理解两个统计图中数量之间的关系以及中位数、众数、平均数的意义是正确解答的前提.23.【分析】(1)连接OC,可证明△BOC是等边三角形,则∠BOC=∠BCO=60°,由CD 与⊙O相切于点C,得∠OCD=90°,即可求得∠D=90°﹣∠BOC=30°,∠BCD=90°﹣∠BCO=30°,所以∠BCD=∠D,则BD=BC;(2)作CE⊥OB于点E,则CE=OC•sin60°=3,可求得S阴影=S扇形BOC﹣S△BOC=6π﹣9.【解答】(1)证明:连接OC,则OC=OB,∵∠ABC=60°,∴△BOC是等边三角形,∴∠BOC=∠BCO=60°,∵CD与⊙O相切于点C,∴CD⊥OC,∴∠OCD=90°,∴∠D=90°﹣∠BOC=30°,∠BCD=90°﹣∠BCO=30°,∴∠BCD=∠D,∴BD=BC.(2)解:作CE⊥OB于点E,则∠OEC=90°,∵OC=OB=6,∴CE=OC•sin60°=6×=3,∴S阴影=S扇形BOC﹣S△BOC=﹣×6×3=6π﹣9,∴阴影部分的面积是6π﹣9.【点评】此题重点考查切线的性质、等边三角形的判定与性质、等腰三角形的判定、锐角三角函数与解直角三角形、三角形的面积公式、扇形的面积公式等知识,正确地作出所需要的辅助线是解题的关键.24.【分析】(1)设A种羽毛球拍每副的进价为x元,根据用2800元购进A种球拍的数量与用2000元购进B种球拍的数量相同,列分式方程,求解即可;(2)设该商店购进A种羽毛球拍m副,根据购买这100副羽毛球拍的资金不超过5900元,列一元一次不等式,求解即可;(3)设总利润为w元,表示出w与m的函数关系式,根据一次函数的性质即可确定如何进货总利润最大,并进一步求出最大利润即可.【解答】解:(1)设A种羽毛球拍每副的进价为x元,根据题意,得,解得x=70,经检验,x=70是原分式方程的根,且符合题意,70﹣20=50(元),答:A种羽毛球拍每副的进价为70元,B种羽毛球拍每副的进价为50元;(2)设该商店购进A种羽毛球拍m副,根据题意,得70m+50(100﹣m)≤5900,解得m≤45,m为正整数,答:该商店最多购进A种羽毛球拍45副;(3)设总利润为w元,w=25m+20(100﹣m)=5m+2000,∵5>0,∴w随着m的增大而增大,当m=45时,w取得最大值,最大利润为5×45+2000=2225(元),此时购进A种羽毛球拍45副,B种羽毛球拍100﹣45=55(副),答:购进A种羽毛球拍45副,B种羽毛球拍55副时,总获利最大,最大利润为2225元.【点评】本题考查了分式方程的应用,一元一次不等式的应用,一次函数的应用,理解题意并根据题意建立相应的关系式是解题的关键.25.【分析】(1)由轴对称的性质可得∠DAP=∠EAP=70°,AD=AE,由等腰三角形的性质和三角形内角和定理可求解;(2)先求出∠AFE=45°,通过证明△CDF∽△BDE,可得BE=CF;(3)先确定点G在以O为圆心,1为半径的圆上运动,再根据等腰直角三角形的性质求解即可.【解答】解:(1)补全图形如图1所示;设∠BAP=x,∴∠DAP=90°﹣x,∵线段AE与AD关于直线AP对称,∴∠DAP=∠EAP=90°﹣x,AD=AE,∴∠BAE=90°﹣2x,AB=AE,∴∠E=∠ABE=45°+x,∴∠AFE=180°﹣(90°﹣x)﹣(45°+x)=45°;(2)BE=CF;证明:如图2,连接DF,DE,BD,∵四边形ABCD是正方形,∴BD=CD,∠CDB=45°,∵线段AE与AD关于直线AP对称,∴DF=EF,∠DFA=∠AFE=45°,∴∠DFE=90°,∴∠FDE=45°=∠CDB,DE=DF,∴∠CDF=∠BDE,,∴△CDF∽△BDE,∴,∴BE=CF;(3)如图3,连接AC,BD交于点O,连接OG,∵四边形ABCD是正方形,∴AO=CO,又∵G是CE中点,∴OG=AE=AD=1,∴点G在以O为圆心,1为半径的圆上运动,∴点P从点B运动到点C,点G的运动到BD上时DG的值最大,且DG的最大值为DO+OG,∵OD=AD=,∴DG的最大值为1.【点评】本题是四边形综合题,考查了正方形的性质,轴对称的性质,相似三角形的判断和性质,三角形中位线定理等知识,灵活运用这些性质解决问题是本题的关键.26.【分析】(1)在y=﹣x+3中,令y=﹣x得﹣x=﹣x+3,方程无解,可知y=﹣x+3的图象上不存在“平衡点”;同理可得y=,y=x2+x+7的图象上不存在“平衡点”,y=﹣x2+2x+1的图象上存在“平衡点”;(2)在y=﹣中,令y=﹣x得A(2,﹣2)或(﹣2,2);在y=2x+b中,令y=﹣x 得B(﹣,),当A(2,﹣2)时,C(0,﹣2),可得AB2=2(2+)2,BC2=+(2+)2,AC2=4,分三种情况列方程可得答案;(3)设M(0,m),m<﹣1,求出抛物线y=x2+2x的顶点为(﹣1,﹣1),而点(﹣1,﹣1)关于M(0,m)的对称点为(1,2m+1),可得旋转后的抛物线解析式为y=﹣(x ﹣1)2+2m+1=﹣x2+2x+2m,令y=﹣x得x2﹣3x﹣2m=0,根据旋转后的图象上恰有1个“平衡点”,知x2﹣3x﹣2m=0有两个相等实数根,故9+8m=0,m=﹣,从而得M的坐标为(0,﹣).【解答】解:(1)根据“平衡点”的定义,“平衡点”的横、纵坐标互为相反数,在y=﹣x+3中,令y=﹣x得﹣x=﹣x+3,方程无解,∴y=﹣x+3的图象上不存在“平衡点”;同理可得y=,y=x2+x+7的图象上不存在“平衡点”,y=﹣x2+2x+1的图象上存在“平衡点”;故答案为:③;(2)在y=﹣中,令y=﹣x得﹣x=﹣,解得x=2或x=﹣2,∵x>0,∴A(2,﹣2);在y=2x+b中,令y=﹣x得﹣x=2x+b,解得x=﹣,∴B(﹣,),当A(2,﹣2)时,C(0,﹣2),∴AB2=2(2+)2,BC2=+(2+)2,AC2=4,若AB=BC,则2(2+)2=+(2+)2,解得b=﹣3;若AB=AC,则2(2+)2=4,解得b=﹣3﹣6或b=3﹣6;若BC=AC,则+(2+)2=4,解得b=0或b=﹣6(此时A,B重合,舍去);∴b的值为﹣3或﹣3﹣6或3﹣6或0;(3)设M(0,m),m<﹣1,∵y=x2+2x=(x+1)2﹣1,∴抛物线y=x2+2x的顶点为(﹣1,﹣1),点(﹣1,﹣1)关于M(0,m)的对称点为(1,2m+1),∴旋转后的抛物线解析式为y=﹣(x﹣1)2+2m+1=﹣x2+2x+2m,在y=﹣x2+2x+2m中,令y=﹣x得:﹣x=﹣x2+2x+2m,∴x2﹣3x﹣2m=0,∵旋转后的图象上恰有1个“平衡点”,∴x2﹣3x﹣2m=0有两个相等实数根,∴Δ=0,即9+8m=0,∴m=﹣,∴M的坐标为(0,﹣).【点评】本题考查二次函数的综合应用,涉及新定义,等腰三角形,一元二次方程根的判别式,旋转变换等知识,解题的关键是读懂新定义,利用二次函数与一元二次方程的关系解决问题。
江苏省南通市中考数学试卷及答案(Word解析版)
江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)(•南通)下列各数中,小于﹣3的数是()A.2B.1C.﹣2 D.﹣4考点:有理数大小比较分析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解答:解:A、2>﹣3,故本选项错误;B、1>﹣3,故本选项错误;C、∵|﹣2|=2,|﹣3|=3,∴﹣2>﹣3,故本选项错误;D、∵|﹣4|=4,|﹣3|=3,∴﹣4<﹣3,故本选项正确;故选D.点评:本题考查了有理数的大小比较法则的应用,注意:理数的大小比较法则是:正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小.2.(3分)(•南通)某市参加中考的考生人数约为85000人,将85000用科学记数法表示为()A.8.5×104B.8.5×105C.0.85×104D.0.85×105考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于85000有5位,所以可以确定n=5﹣1=4.解答:解:85 000=8.5×104.故选A.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(•南通)下列计算,正确的是()A.x4﹣x3=x B.x6÷x3=x2C.x•x3=x4D.(xy3)2=xy6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方专题:计算题.分析:A、本选项不能合并,错误;B、利用同底数幂的除法法则计算得到结果,即可做出判断;C、利用同底数幂的乘法法则计算得到结果,即可做出判断;D、利用积的乘方与幂的乘方运算法则计算得到结果,即可做出判断.解答:解:A、本选项不能合并,错误;B、x6÷x3=x3,本选项错误;C、x•x3=x4,本选项正确;D、(xy3)2=x2y6,本选项错误.故选C.点评:此题考查了同底数幂的乘除法,幂的乘方与积的乘方,以及二次根式的乘除法,熟练掌握运算法则是解本题的关键.4.(3分)(•南通)如图所示的几何图形中,既是轴对称图形又是中心对称图形的个数是()A.4B.3C.2D.1考点:中心对称图形;轴对称图形分析:根据轴对称图形与中心对称图形的概念对各图形分析判断后解答即可.解答:解:第一个图形是轴对称图形,不是中心对称图形;第二个图形是轴对称图形,不是中心对称图形;第三个图形是轴对称图形,也是中心对称图形;第四个图形是轴对称图形,不是中心对称图形;第五个图形是轴对称图形,也是中心对称图形;综上所述,第三个和第五个图形既是中心对称图形又是轴对称图形,共2个.故选B.点评:本题考查了轴对称图形与中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(3分)(•南通)有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()A.1B.2C.3D.4考点:三角形三边关系分析:从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.解答:解:四条木棒的所有组合:3,6,8和3,6,9和6,8,9和3,8,9;只有3,6,8和6,8,9;3,8,9能组成三角形.故选:C.点评:此题主要考查了三角形三边关系,三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边;注意情况的多解和取舍.6.(3分)(•南通)函数中,自变量x的取值范围是()A.x>1 B.x≥1 C.x>﹣2 D.x≥﹣2考点:函数自变量的取值范围分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解解:根据题意得:x﹣1>0,答:解得:x>1.故选A.点评:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7.(3分)(•南通)如图,用尺规作出∠OBF=∠AOB,作图痕迹是()A.以点B为圆心,OD为半径的圆B.以点B为圆心,DC为半径的圆C.以点E为圆心,OD为半径的圆D.以点E为圆心,DC为半径的圆考点:作图—基本作图分析:根据作一个角等于已知角的作法进行解答即可.解答:解:作∠OBF=∠AOB的作法,由图可知,①以点O为圆心,以任意长为半径画圆,分别交射线OA、OB分别为点C,D;②以点B为圆心,以OC为半径画圆,分别交射线BO、MB分别为点E,F;③以点E为圆心,以CD为半径画圆,交射于点N,连接BN即可得出∠OBF,则∠OBF=∠AOB.故选D.点评:本题考查的是基本作图,熟知作一个角等于已知角的基本步骤是解答此题的关键.8.(3分)(•南通)用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为()A.3cm B.5cm C.6cm D.8cm考点:圆锥的计算分析:首先根据圆锥的底面周长求得圆锥的底面半径,然后根据勾股定理求得圆锥的母线长就是扇形的半径.解答:解:∵底面周长是6πcm,∴底面的半径为3cm,∵圆锥的高为4cm,∴圆锥的母线长为:=5 ∴扇形的半径为5cm,故选B.点评:本题考查了圆锥的计算,解题的关键是了解圆锥的母线、高及底面半径围成一个直角三角形.9.(3分)(•南通)小李与小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了20km;(2)小陆全程共用了1.5h;(3)小李与小陆相遇后,小李的速度小于小陆的速度;(4)小李在途中停留了0.5h.其中正确的有()A.4个B.3个C.2个D.1个考点:一次函数的应用专题:压轴题.分析:首先注意横纵坐标的表示意义,再观察图象可得他们都行驶了20km;小陆从0.5时出发,2时到达目的地,全程共用了:2﹣0.5=1.5h;小李与小陆相遇后,他们距离目的地有相同的路程,但是小陆到达目的地所用时间小于小李到达目的地所用时间,根据速度=路程÷时间可得小李的速度小于小陆的速度;小李出发0.5小时后停留了0.5小时,然后根据此信息分别对4种说法进行判断.解答:解:(1)根据图象的纵坐标可得:他们都行驶了20km,故原说法正确;(2)根据图象可得:小陆全程共用了:2﹣0.5=1.5h,故原说法正确;(3)根据图象可得:小李与小陆相遇后,他们距离目的地有相同的路程,但是小陆用1个小时到B地,小李用1.5个小时到B地,所以小李的速度小于小陆的速度,故原说法正确;(4)根据图象可得:表示小李的S﹣t图象从0.5时开始到1时结束,时间在增多,而路程没有变化,说明此时在停留,停留了1﹣0.5=0.5小时,故原说法正确.故选A.点评:此题主要考查了学生从图象中读取信息的数形结合能力.同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.10.(3分)(•南通)如图.Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是的中点,CD与AB的交点为E,则等于()A.4B.3.5 C.3D.2.8考点:垂径定理;勾股定理;圆周角定理;相似三角形的判定与性质.专题:压轴题.分析:利用垂径定理的推论得出DO⊥AB,AF=BF,进而得出DF的长和△DEF∽△CEA,再利用相似三角形的性质求出即可.解答:解:连接DO,交AB于点F,∵D是的中点,∴DO⊥AB,AF=BF,∵AB=4,∴AF=BF=2,∴FO是△ABC的中位线,AC∥DO,∵BC为直径,AB=4,AC=3,∴BC=5,∴DO=2.5,∴DF=2.5﹣1.5=1,∵AC∥DO,∴△DEF∽△CEA,∴=,∴==3.故选C.点评:此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出△DEF∽△CEA是解题关键.二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)(•南通)若反比例函数y=的图象经过点A(1,2),则k=2.考点:反比例函数图象上点的坐标特征专压轴题.题:分析:根据反比例函数图象上点的坐标特点可得k=1×2=2.解答:解:∵反比例函数y=的图象经过点A(1,2),∴k=1×2=2,故答案为:2.点评:此题主要考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.(3分)(•南通)如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=20°,则∠COE等于70度.考点:垂线;对顶角、邻补角分析:根据对顶角相等求出∠AOC,根据垂直求出∠AOE,相减即可求出答案.解答:解:∵∠BOD=20°,∴∠AOC=∠BOD=20°,∵OE⊥AB,∴∠AOE=90°,∴∠COE=90°﹣20°=70°,故答案为:70.点评:本题考查了垂直定义,对顶角的应用,关键是求出∠AOE和∠AOC的大小.13.(3分)(•南通)一个几何体的主视图、俯视图和左视图都是大小相同的圆,则这个几何体是球体.考点:由三视图判断几何体分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:球的主视图、左视图、俯视图都是圆,故答案为:球体.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.14.(3分)(•南通)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是.考点:锐角三角函数的定义;直角三角形斜边上的中线分析:首先根据直角三角形斜边中线等于斜边一半求出AB的长度,然后根据锐角三角函数的定义求出sinB即可.解答:解:∵Rt△ABC中,CD是斜边AB上的中线,CD=2,∴AC=2CD=4,则sinB==.故答案为:.点评:本题考查了锐角三角函数的定义,属于基础题,解答本题的关键是掌握直角三角形斜边上的中线定理和锐角三角函数的定义.15.(3分)(•南通)已知一组数据5,8,10,x,9的众数是8,那么这组数据的方差是2.8.考点:方差;众数分析:根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.解答:解:∵一组数据5,8,10,x,9的众数是8,∴x是8,∴这组数据的平均数是(5+8+10+8+9)÷5=8,∴这组数据的方差是:[(5﹣8)2+(8﹣8)2+(10﹣8)2+(8﹣8)2+(9﹣8)2]=2.8.故答案为:2.8.点评:此题考查了众数、平均数和方差,掌握众数、平均数和方差的定义及计算公式是此题的关键,众数是一组数据中出现次数最多的数.一般地设n个数据,x1,x2,…x n 的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].16.(3分)(•南通)如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.考点:一次函数与一元一次不等式分析:由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(﹣1,﹣2)及直线y=kx+b 与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x 轴下方的部分对应的x的取值即为所求.解答:解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x 轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故答案为﹣2<x<﹣1.点评:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.17.(3分)(•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC 于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为5 cm.考点:相似三角形的判定与性质;等腰三角形的判定与性质;勾股定理;平行四边形的性质专题:压轴题.分析:首先,由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得内错角∠DAE=∠BEA,等量代换后可证得AB=BE,即△ABE是等腰三角形,根据等腰三角形“三线合一”的性质得出AE=2AG,而在Rt△ABG中,由勾股定理可求得AG的值,即可求得AE的长;然后,利用平行线分线段成比例的性质分别得出EF,FC的长,即可得出答案.解答:解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6cm,∴EC=9﹣6=3(cm),∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6cm,BG=4cm,∴AG==2(cm),∴AE=2AG=4cm;∵EC∥AD,∴====,∴=,=,解得:EF=2(cm),FC=3(cm),∴EF+CF的长为5cm.故答案为:5.点评:本题考查了平行四边形的性质,相似三角形的判定与性质,勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查,难度适中.18.(3分)(2013•南通)已知x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m﹣n+2≠0,则当x=3(m+n+1)时,多项式x2+4x+6的值等于3.考点:二次函数的性质专题:压轴题.分析:先将x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等理解为x=2m+n+2和x=m+2n时,二次函数y=x2+4x+6的值相等,则抛物线的对称轴为直线x=,又二次函数y=x2+4x+6的对称轴为直线x=﹣2,得出=﹣2,化简得m+n=﹣2,即可求出当x=3(m+n+1)=3(﹣2+1)=﹣3时,x2+4x+6的值.解答:解:∵x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,∴二次函数y=x2+4x+6的对称轴为直线x==,又∵二次函数y=x2+4x+6的对称轴为直线x=﹣2,∴=﹣2,∴3m+3n+2=﹣4,m+n=﹣2,∴当x=3(m+n+1)=3(﹣2+1)=﹣3时,x2+4x+6=(﹣3)2+4×(﹣3)+6=3.故答案为3.点评:本题考查了二次函数的性质及多项式求值,难度中等.将x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等理解为x=2m+n+2和x=m+2n时,二次函数y=x2+4x+6的值相等是解题的关键.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(11分)(•南通)(1)计算:;(2)先化简,再求代数式的值:,其中m=1.考点:分式的化简求值;零指数幂;二次根式的混合运算分析:(1)本题涉及零指数幂、绝对值、二次根式化简三个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)先通分,然后进行四则运算,最后将m=1代入.解答:解:(1)=÷÷1﹣3=﹣3;(2)=•=,当m=1时,原式=﹣.点评:(1)主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、绝对值、二次根式等考点的运算;(2)解答此题的关键是把分式化到最简,然后代值计算.20.(9分)(•南通)在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C (﹣1,0)三点.(1)点A关于原点O的对称点A′的坐标为(1,﹣5),点B关于x轴的对称点B′的坐标为(4,﹣2),点C关于y轴的对称点C的坐标为(1,0).(2)求(1)中的△A′B′C′的面积.考点:关于原点对称的点的坐标;三角形的面积;关于x轴、y轴对称的点的坐标分析:(1)关于原点对称的两点的横、纵坐标都是互为相反数;关于x轴对称的两点的横坐标相同,纵坐标互为相反数;关于y轴对称的两点的横坐标互为相反数,纵坐标相同;(2)根据点A′(1,﹣5),B′(4,﹣2),C′(1,0)在平面直角坐标系中的位置,可以求得A′C′=5,B′D=3,所以由三角形的面积公式进行解答.解答:解:(1)∵A(﹣1,5),∴点A关于原点O的对称点A′的坐标为(1,﹣5).∵B(4,2),∴点B关于x轴的对称点B′的坐标为(4,﹣2).∵C(﹣1,0),∴点C关于y轴的对称点C的坐标为(1,0).故答案分别是:(1,﹣5),(4,﹣2),(1,0).(2)如图,∵A′(1,﹣5),B′(4,﹣2),C′(1,0).∴A′C′=|﹣5﹣0|=5,B′D=|4﹣1|=3,∴S△A′B′C′=A′C′•B′D=×5×3=7.5,即(1)中的△A′B′C′的面积是7.5.点评:本题考查了关于原点、x轴、y轴对称的点的坐标,三角形的面积.解答(2)题时,充分体现了“数形结合”数学思想的优势.21.(8分)(•南通)某水果批发市场将一批苹果分为A,B,C,D四个等级,统计后将结果制成条形图,已知A等级苹果的重量占这批苹果总重量的30%.回答下列问题:(1)这批苹果总重量为4000kg;(2)请将条形图补充完整;(3)若用扇形图表示统计结果,则C等级苹果所对应扇形的圆心角为90度.考点:条形统计图;扇形统计图分析:(1)根据A等级苹果的重量÷A等级苹果的重量占这批苹果总重量的30%,求得这批苹果总重量;(2)求得C等级苹果的重量,补全统计图;(3)求得C等级苹果的百分比,然后计算其所占的圆心角度数.解答:解:(1)1200÷30%=4000(kg).故这批苹果总重量为4000kg;(2)4000﹣1200﹣1600﹣200=1000(kg),将条形图补充为:(3)×360°=90°.故C等级苹果所对应扇形的圆心角为90度.故答案为:4000,90.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(10分)(•南通)在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:小华列出表格如下:第一次第二次1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)①(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)回答下列问题:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后不放回(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为(3,2);(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?考点:列表法与树状图法分析:(1)根据小明画出的树形图知数字1在第一次中出现,但没有在第二次中出现可以判断;(2)根据横坐标表示第一次,纵坐标表示第二次可以得到答案;(3)根据树状图和统计表分别求得其获胜的概率,比较后即可得到答案.解答:解:(1)观察树状图知:第一次摸出的数字没有在第二次中出现,∴小明的实验是一个不放回实验,(2)观察表格发现其横坐标表示第一次,纵坐标表示第二次,(3)理由如下:∵根据小明的游戏规则,共有12种等可能的结果,数字之和为奇数的有8种,∴概率为:=;∵根据小华的游戏规则,共有16种等可能的结果,数字之和为奇数的有8种,∴概率为:=,∵>∴小明获胜的可能性大.故答案为不放回;(3,2).点评:本题考查了列表法和树状图法,利用列表法或树状图法展示某一随机事件中所有等可能出现的结果数n,再找出其中某一事件所出现的可能数m,然后根据概率的定义可计算出这个事件的概率=.23.(8分)(•南通)若关于x的不等式组恰有三个整数解,求实数a的取值范围.考点:一元一次不等式组的整数解分析:首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.解答:解:解+>0,得x>﹣;解3x+5a+4>4(x+1)+3a,得x<2a,∴不等式组的解集为﹣<x<2a.∵关于x的不等式组恰有三个整数解,∴2<2a≤3,解得1<a≤.点评:本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.24.(8分)(•南通)如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.考点:矩形的判定;全等三角形的判定与性质专题:证明题.分析:求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.解答:证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=BC,∴四边形BCDE是平行四边形,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∵四边形BCDE是平行四边形,∴BE∥CD,∴∠CDE+∠BED=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.点评:本题考查了矩形的判定,平行四边形的性质和判定,平行线的性质全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力,注意:有一个角是直角的平行四边形是矩形.25.(8分)(•南通)如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC=2∠B,⊙O 的切线AP与OC的延长线相交于点P,若PA=cm,求AC的长.考点:切线的性质分析:根据直径求出∠ACB=90°,求出∠B=30°,∠BAC=60°,得出△AOC是等边三角形,得出∠AOC=60°,OA=AC,在Rt△OAP中,求出OA,即可求出答案.解答:解:∵AB是⊙O直径,∴∠ACB=90°,∵∠BAC=2∠B,∴∠B=30°,∠BAC=60°,∵OA=OC,∴△AOC是等边三角形,∴∠AOC=60°,AC=OA,∵PA是⊙O切线,∴∠OAP=90°,在Rt△OAP中,PA=6cm,∠AOP=60°,∴OA===6,∴AC=OA=6.点评:本题考查了圆周角定理,切线的性质,解直角三角形,等边三角形的性质和判定的应用,主要考查学生的推理能力.26.(8分)(•南通)某公司营销A、B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?考点:二次函数的应用分析:(1)把两组数据代入二次函数解析式,然后利用待定系数法求解即可;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,根据总利润等于两种产品的利润的和列式整理得到W与m的函数关系式,再根据二次函数的最值问题解答.解答:解:(1)∵当x=1时,y=1.4;当x=3时,y=3.6,∴,解得,所以,二次函数解析式为y=﹣0.1x2+1.5x;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,则W=﹣0.1m2+1.5m+0.3(10﹣m)=﹣0.1m2+1.2m+3=﹣0.1(m﹣6)2+6.6,∵﹣0.1<0,∴当m=6时,W有最大值6.6,∴购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.点评:本题考查了二次函数的应用,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,比较简单,(2)整理得到所获利润与购进A产品的吨数的关系式是解题的关键.27.(13分)(•南通)如图,在Rt△ABC中,∠ACB=90°,AC=,BC=3,△DEF是边长为a(a为小于3的常数)的等边三角形,将△DEF沿AC方向平移,使点D在线段AC上,DE∥AB,设△DEF与△ABC重叠部分的周长为T.(1)求证:点E到AC的距离为一个常数;(2)若AD=,当a=2时,求T的值;(3)若点D运动到AC的中点处,请用含a的代数式表示T.考点:相似形综合题分析:(1)解直角三角形,求得点E到AC的距离等于a,这是一个定值;(2)如答图2所示,作辅助线,将四边形MDEN分成一个等边三角形和一个平行四边形,求出其周长;(3)可能存在三种情形,需要分类讨论:①若0<a≤,△DEF在△ABC内部,如答图3所示;②若<a≤,点E在△ABC内部,点F在△ABC外部,在如答图4所示;③若<a<3,点E、F均在△ABC外部,如答图5所示.解答:解:(1)由题意得:tanA===,∴∠A=60°.∵DE∥AB,∴∠CDE=∠A=60°.如答图1所示,过点E作EH⊥AC于点H,则EH=DE•sin∠CDE=a•=a.∴点E到AC的距离为一个常数.(2)若AD=,当a=2时,如答图2所示.设AB与DF、EF分别交于点M、N.∵△DEF为等边三角形,∴∠MDE=60°,由(1)知∠CDE=60°,∴∠ADM=180°﹣∠MDE﹣∠CDE=60°,又∵∠A=60°,∴△ADM为等边三角形,∴DM=AD=.过点M作MG∥AC,交DE于点G,则∠DMG=∠ADM=60°,∴△DMG为等边三角形,∴DG=MG=DM=.∴GE=DE﹣DG=2﹣=.∵∠MGD=∠E=60°,∴MG∥NE,又∵DE∥AB,∴四边形MGEN为平行四边形.∴NE=MG=,MN=GE=.∴T=DE+DM+MN+NE=2+++=.(3)若点D运动到AC的中点处,分情况讨论如下:①若0<a≤,△DEF在△ABC内部,如答图3所示:∴T=3a;②若<a≤,点E在△ABC内部,点F在△ABC外部,在如答图4所示:设AB与DF、EF分别交于点M、N,过点M作MG∥AC交DE于点G.与(2)同理,可知△ADM、△DMG均为等边三角形,四边形MGEN为平行四边形.∴DM=DG=NE=AD=,MN=GE=DE﹣DG=a﹣,∴T=DE+DM+MN+NE=a++(a﹣)+=2a+;③若<a<3,点E、F均在△ABC外部,如答图5所示:设AB与DF、EF分别交于点M、N,BC与DE、EF分别交于点P、Q.在Rt△PCD中,CD=,∠CDP=60°,∠DPC=30°,∴PC=CD•tan60°=×=.∵∠EPQ=∠DPC=30°,∠E=60°,∴∠PQE=90°.由(1)知,点E到AC的距离为a,∴PQ=a﹣.∴QE=PQ•tan30°=(a﹣)×=a﹣,PE=2QE=a﹣.由②可知,四边形MDEN的周长为2a+.∴T=四边形MDEN的周长﹣PE﹣QE+PQ=(2a+)﹣(a﹣)﹣(a﹣)+(a﹣)=a+﹣.综上所述,若点D运动到AC的中点处,T的关系式为:T=.点评:本题考查了运动型综合题,新颖之处在于所求是重叠部分的周长而非面积.难点在于第(3)问,根据题意,可能的情形有三种,需要分类讨论,避免漏解.28.(13分)(•南通)如图,直线y=kx+b(b>0)与抛物线相交于点A(x1,y1),B(x2,y2)两点,与x轴正半轴相交于点D,与y轴相交于点C,设△OCD的面积为S,且kS+32=0.(1)求b的值;(2)求证:点(y1,y2)在反比例函数的图象上;(3)求证:x1•OB+y2•OA=0.考点:二次函数综合题专题:压轴题.分析:(1)先求出直线y=kx+b与x轴正半轴交点D的坐标及与y轴交点C的坐标,得到△OCD的面积S=﹣,再根据kS+32=0,及b>0即可求出b的值;(2)先由y=kx+8,得x=,再将x=代入y=x2,整理得y2﹣(16+8k2)y+64=0,然后由已知条件直线y=kx+8与抛物线相交于点A(x1,y1),B (x2,y2)两点,知y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,根据一元二次方程根与系数的关系得到y1•y2=64,即点(y1,y2)在反比例函数的图象上;(3)先由勾股定理,得出OA2=+,OB2=+,AB2=(x1﹣x2)2+(y1﹣y2)2,由(2)得y1•y2=64,又易得x1•x2=﹣64,则OA2+OB2=AB2,根据勾股定理的逆定理得出∠AOB=90°.再过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,根据两角对应相等的两三角形相似证明△AEO∽△OFB,由相似三角形对应边成比例得到=,即可证明x1•OB+y2•OA=0.解答:(1)解:∵直线y=kx+b(b>0)与x轴正半轴相交于点D,与y轴相交于点C,∴令x=0,得y=b;令y=0,x=﹣,∴△OCD的面积S=(﹣)•b=﹣.∵kS+32=0,∴k(﹣)+32=0,解得b=±8,∵b>0,∴b=8;(2)证明:由(1)知,直线的解析式为y=kx+8,即x=,将x=代入y=x2,得y=()2,整理,得y2﹣(16+8k2)y+64=0.∵直线y=kx+8与抛物线相交于点A(x1,y1),B(x2,y2)两点,∴y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,∴y1•y2=64,∴点(y1,y2)在反比例函数的图象上;(3)证明:由勾股定理,得OA2=+,OB2=+,AB2=(x1﹣x2)2+(y1﹣y2)2,由(2)得y1•y2=64,同理,将y=kx+8代入y=x2,得kx+8=x2,即x2﹣8kx﹣64=0,∴x1•x2=﹣64,∴AB2=+++﹣2x1•x2﹣2y1•y2=+++,又∵OA2+OB2=+++,∴OA2+OB2=AB2,∴△OAB是直角三角形,∠AOB=90°.如图,过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵∠AOB=90°,∴∠AOE=90°﹣∠BOF=∠OBF,又∵∠AEO=∠OFB=90°,∴△AEO∽△OFB,∴=,∵OE=﹣x1,BF=y2,∴=,∴x1•OB+y2•OA=0.点评:本题是二次函数的综合题型,其中涉及到的知识点有二次函数、反比例函数图象上点的坐标特征,三角形的面积,一次函数与二次函数的交点,一元二次方程根与系数的关系,勾股定理及其逆定理,相似三角形的判定与性质,综合性较强,难度适中.求出△OCD的面积S是解第(1)问的关键;根据函数与方程的关系,得到y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,进而得出y1•y2=64是解第(2)问的关键;根据函数与方程的关系,一元二次方程根与系数的关系,勾股定理及其逆定理得出∠AOB=90°,是解第(3)问的关键.21 / 21。
2022江苏南通中考数学试卷+答案解析
2022年江苏南通中考数学一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1.若气温零上2 ℃记作+2 ℃,则气温零下3 ℃记作()A.-3 ℃B.-1 ℃C.+1 ℃D.+5 ℃2.下面由北京冬奥会比赛项目图标组成的四个图形中,可看作轴对称图形的是()A B C D3.沪渝蓉高铁是国家中长期铁路网规划“八纵八横”之沿江高铁通道的主通道,其中南通段总投资约39 000 000 000元,将39 000 000 000用科学记数法表示为()A.3.9×1011B.0.39×1011C.3.9×1010D.39×1094.用一根小木棒与两根长分别为3 cm,6 cm的小木棒组成三角形,则这根小木棒的长度可以为()A.1 cmB.2 cmC.3 cmD.4 cm5.如图是由5个相同的正方体搭成的立体图形,则它的主视图为()A B C D6.李师傅家的超市今年1月盈利3 000元,3月盈利3 630元。
若从1月到3月,每月盈利的平均增长率都相同,则这个平均增长率是()A.10.5%B.10%C.20%D.21%7.如图,a∥b,∠3=80°,∠1-∠2=20°,则∠1的度数是()A.30°B.40°C.50°D.80°8.根据图象,可得关于x的不等式kx>-x+3的解集是()A.x<2B.x>2C.x<1D.x>19.如图,在▱ABCD中,对角线AC,BD相交于点O,AC⊥BC,BC=4,∠ABC=60°.若EF过点O且与边AB,CD分别相交于点E,F,设BE=x,OE2=y,则y关于x的函数图象大致为()A B C D10.已知实数m,n满足m2+n2=2+mn,则(2m-3n)2+ (m+2n)(m-2n)的最大值为()A.24B.443C.163D.-4二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分)11.为了了解“双减”背景下全国中小学生完成课后作业的时间情况,比较适合的调查方式是(填“全面调查”或“抽样调查”).12.分式2x−2有意义,则x应满足的条件是.13.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱。
最新江苏省南通市中考数学真题合集试卷附解析
江苏省南通市中考数学真题合集试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.圆锥的高为3cm ,底面直径为8cm ,这个圆锥的侧面积为( ).A .12πcm 2B .15πcm 2C .20πcm 2D .24πcm 2 2.二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列说法不正确...的是( ) A .240b ac ->B .0a >C .0c >D .02b a -< 3. 关于2y x=,下列判断正确的是( ) A .y 随x 的增大而增大B .y 随x 的增大而减小C .在每一个象限内,y 随x 的增大而增大D .在每一个象限内,y 随x 的增大而减小4.下列不等式的解法正确的是( )A .如果22x ->,那么1x <-B .如果3223x >-,那么0x < C .如果33x <-,那么1x >- D .如果1103x -<,那么0x > 5.如图所示的一些交通标志中,是轴对称图形的有( ).A . 1个B . 2个C .3个D .4个 6.若关于x 的方程2111x m x x ++=--会产生增根,则m 是( ) A .-1B .1C .-2D .2 7.如图,指出OA 是表示什么方向的一条射线() A .南偏东40° B .北偏东40° C .东偏北40° D .北偏西40° 8.若x 表示一个两位数,y 也表示一个两位数,小明想用 x 、 y 来组成一个四位数,且把 x 放在 y 的右边..,你认为下列表达式中哪一个是正确的( ) A .yx B .x+y C .100x+y D .100y+x9.数轴上A 、B 两点分别是-8. 2,365,则A 、B 两点间的距离为( )A .4145B .2145C .-1.6D .1.610.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.......在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换......过程中,两个对应三角形(如图2)的对应点所具有的性质是( )A .对应点连线与对称轴垂直B .对应点连线被对称轴平分C .对应点连线被对称轴垂直平分D .对应点连线互相平行二、填空题11.如图,在黑暗的房间里,用白炽灯照射一个足球,则球在地面上的投影是一个 ,当球离地面越来越近时,地面上的投影会 .12.袋中装有 1个黑球、2个白球、3个红球,从中任取一个,那么取到的是白球的概率是 .13.如图中的=x _________.14.若矩形一个角的平分线分一边为4 cm 和3 cm 两部分,则矩形的周长为 .15.在□ABCD 中.M 是BC 的中点,N 是MC 的中点,P 为AD 上任意一点.若□ABCD 的面积是l ,则△PMN 的面积为 .16.正三角形可以镶嵌平面,任意三角形呢? (填“可以”或“不可以”即可)17.若一个边三角形的边长为 6,则它的面积为 .18.如图, ∠BAM= 75°,∠BGE= 75°,∠CHG=105°,可推出AM ∥ EF ,AB ∥CD ,试完成下列填空.解:∵ ∠BAM = 75°,∠BGE= 75°( ),∴∠BAM=∠BGE ,∴ ∥ ( ).又∵∠AGH=∠BGE ( ),∴∠AGH=75°,∴∠AGH+∠CHG=75°+105°=l80°,∴ ∥ ( ).A CB A ' B 'C ' 图2 图119.当x时,分式21xx-+的值为零.20.若a 的值使得224(2)1x x a x++=+-成立,则a= .21.从一副扑克牌中任意抽取一张,下列各个事件:A.抽到黑桃B.抽到的数字小于8C.抽到数字 5D.抽到的牌是红桃 2则将上述各个事件的可能性按从大到小的顺序排列依次是.解答题22.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时才完成,已知甲每小时比乙多加工2个零件,则甲每小时加工个零件,乙每小时加工个零件.23.任何实数的绝对值都是数.24.绝对值等于它的相反数的数是 .三、解答题25.,底边为,求它的面积.26.0b a<<)22b a-27.求直线y=x+1,y=-x+3与x轴所围成的三角形的面积.28.化简:(1)249 ()77a a aa a a--⋅-+(2)12() 11b bbb b +÷---.29.有一批型号相同的陶瓷杯子共1000个,其中有一等品700个,二等品200个,三等品100个,从中任选1个杯子,求下列事件发生的概率:(1)选到一等品的概率;(2)选到二等品的概率;(3)选到三等品的概率.30.布袋里装有红、黄、蓝三种颜色的球各一个,它们除颜色外部相同,现在从袋里随机地摸出两个球,都有哪些可能性?请把所有的可能性写出来. 以此作为情境,设计一个不确定事件.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.D4.D5.B6.D7.8.D9.A10.B二、填空题11.圆,变小12.113.3214.22或20 cm15.116.8可以17.18.已知;m;EF;同位角相等,两直线平行;对顶角相等;AB;CD;同旁内角互补,两直线平行19.=220.321.BACD22.16,1423.非负24.负数或0三、解答题25.226.2227.b a428.(1)14;(2)1b29.(1)107;(2)51;(3)101. 30.可能有一红一黄、一红一蓝、一黄一蓝三种情形,略。
2023年江苏省南通市中考数学试卷含答案解析
绝密★启用前2023年江苏省南通市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.计算(−3)×2,正确的结果是( )A. 6B. 5C. −5D. −62.2023年5月21日,以“聚力新南通、奋进新时代”为主题的第五届通商大会暨全市民营经济发展大会召开,40个重大项目集中签约,计划总投资约41800000000元,将41800000000用科学记数法表示为( )A. 4.18×1011B. 4.18×1010C. 0.418×1011D. 418×1083.如图所示的四个几何体中,俯视图是三角形的是( )A. 三棱柱B. 圆柱C. 四棱锥D. 圆锥4.如图,数轴上A,B,C,D,E五个点分别表示数1,2,3,4,5,则表示数√ 10的点应在( )A. 线段AB上B. 线段BC上C. 线段CD上D. 线段DE上5.如图,△ABC中,∠ACB=90°,顶点A,C分别在直线m,n上,若m//n,∠1=50°,则∠2的度数为( )A. 140°B. 130°C. 120°D. 110°6.若a2−4a−12=0,则2a2−8a−8的值为( )A. 24B. 20C. 18D. 167.如图,从航拍无人机A看一栋楼顶部B的仰角α为30°,看这栋楼底部C的俯角β为60°,无人机与楼的水平距离为120m,则这栋楼的高度为( )A. 140√ 3mB. 160√ 3mC. 180√ 3mD. 200√ 3m8.如图,四边形ABCD是矩形,分别以点B,D为圆心,线段BC,DC长为半径画弧,两弧相交于点E,连接BE,DE,BD.若AB=4,BC=8,则∠ABE的正切值为( )A. 43B. 45C. 34D. 359.如图1,△ABC中,∠C=90°,AC=15,BC=20.点D从点A出发沿折线A−C−B运动到点B停止,过点D作DE⊥AB,垂足为E.设点D运动的路径长为x,△BDE的面积为y,若y与x的对应关系如图2所示,则a−b 的值为( )A. 54B. 52C. 50D. 4810.若实数x,y,m满足x+y+m=6,3x−y+m=4,则代数式−2xy+1的值可以是( )A. 3B. 52C. 2 D. 32二、填空题(本大题共8小题,共30.0分)11.计算3√ 2−√ 2=______ .12.分解因式:a2−ab=______.13.如图,△ABC中,D,E分别是AB,AC的中点,连接DE,则S△ADES△ABC=______ .14.某型号汽车行驶时功率一定,行驶速度v(单位:m/s)与所受阻力F(单位:N)是反比例函数关系,其图象如图所示.若该型号汽车在某段公路上行驶时速度为30m/s,则所受阻力F为______ N.15.如图,AB是⊙O的直径,点C,D在⊙O上,若∠DAB=66°,则∠ACD=______ 度.16.勾股数是指能成为直角三角形三条边长的三个正整数,世界上第一次给出勾股数公式的是中国古代数学著作《九章算术》.现有勾股数a,b,c,其中a,b均小于c,a=12m2−12,c=12m2+12,m是大于1的奇数,则b=______ (用含m的式子表示).17.已知一次函数y=x−k,若对于x<3范围内任意自变量x的值,其对应的函数值y都小于2k,则k的取值范围是______ .18.如图,四边形ABCD的两条对角线AC,BD互相垂直,AC=4,BD=6,则AD+BC的最小值是______ .三、解答题(本大题共8小题,共90.0分。
江苏省南通市通州区2024届中考联考数学试题含解析
江苏省南通市通州区2024届中考联考数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)1.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是()A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为22.如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()A.①B.③C.②或④D.①或③3.由五个相同的立方体搭成的几何体如图所示,则它的左视图是( )A.B.C.D.4.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是()A.43B.35C.53D.345.如图,半径为1的圆O1与半径为3的圆O2相内切,如果半径为2的圆与圆O1和圆O2都相切,那么这样的圆的个数是()A.1 B.2 C.3 D.46.下列等式正确的是()A.x3﹣x2=x B.a3÷a3=aC.231(2)(2)2-÷-=-D.(﹣7)4÷(﹣7)2=﹣727.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁8.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A.(2017,0)B.(2017,12)C.(2018,3)D.(2018,0)9.点A、C为半径是4的圆周上两点,点B为AC的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆半径的中点上,则该菱形的边长为()A.7或22B.7或23C.26或22D.26或2310.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=2x(x>0)的图象上,则△OAB的面积等于()A.2 B.3 C. 4 D.6二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是_____.12.若m、n 是方程x2+2018x﹣1=0 的两个根,则m2n+mn2﹣mn=_________.13.对于函数y= 2x,当函数y﹤-3时,自变量x的取值范围是____________ .14.已知点(﹣1,m)、(2,n )在二次函数y=ax2﹣2ax﹣1的图象上,如果m>n,那么a____0(用“>”或“<”连接).15.如图,A、B是双曲线y=kx上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若D为OB的中点,△ADO的面积为3,则k的值为_____.16.如图,已知点A是反比例函数2yx=-的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为______.三、解答题(共8题,共72分)17.(8分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.①若该公司当月卖出3部汽车,则每部汽车的进价为万元;②如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)18.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:此次共调查了名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.19.(8分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A、B、C、D,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图.请结合图中的信息解答下列问题:(1)本次抽查测试的学生人数为,图①中的a的值为;(2)求统计所抽查测试学生成绩数据的平均数、众数和中位数.20.(8分)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.求证:AB=DC;试判断△OEF的形状,并说明理由.21.(8分)如图,在矩形ABCD中,AB═2,3,P是BC边上的一点,且BP=2CP.(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图②,在(1)的条体下,判断EB 是否平分∠AEC ,并说明理由;(3)如图③,在(2)的条件下,连接EP 并廷长交AB 的廷长线于点F ,连接AP ,不添加辅助线,△PFB 能否由都经过P 点的两次变换与△PAE 组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)22.(10分)计算:2cos30°+27-33--(12)-2 23.(12分)如图1,在直角梯形ABCD 中,动点P 从B 点出发,沿B→C→D→A 匀速运动,设点P 运动的路程为x ,△ABP 的面积为y ,图象如图2所示.(1)在这个变化中,自变量、因变量分别是 、 ;(2)当点P 运动的路程x =4时,△ABP 的面积为y = ;(3)求AB 的长和梯形ABCD 的面积.24.如图,在平面直角坐标系中,圆M 经过原点O ,直线364y x =--与x 轴、y 轴分别相交于A ,B 两点.(1)求出A ,B 两点的坐标;(2)若有一抛物线的对称轴平行于y 轴且经过点M ,顶点C 在圆M 上,开口向下,且经过点B ,求此抛物线的函数解析式;(3)设(2)中的抛物线交轴于D 、E 两点,在抛物线上是否存在点P ,使得S △PDE =110S △ABC ?若存在,请求出点P 的坐标;若不存在,请说明理由.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴选项A,B、D错误;故选C.考点:方差;加权平均数;中位数;众数.2、D【解题分析】分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.【题目详解】分两种情况讨论:①当点P顺时针旋转时,BP2增加到2,再降到02,图象③符合;②当点P逆时针旋转时,BP2降到0,再增加到22,图象①符合.故答案为①或③.故选D.【题目点拨】本题考查了动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.3、D【解题分析】找到从正面看所得到的图形即可,注意所有看到的棱都应表现在主视图中.【题目详解】解:从正面看第一层是二个正方形,第二层是左边一个正方形.故选A.【题目点拨】本题考查了简单组合体的三视图的知识,解题的关键是了解主视图是由主视方向看到的平面图形,属于基础题,难度不大.4、D【解题分析】根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD的值.【题目详解】∵CD是AB边上的中线,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,AC=8,∴tan∠A=6384 BCAC==,∴tan∠ACD的值34.故选D.【题目点拨】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.5、C【解题分析】分析:过O1、O2作直线,以O1O2上一点为圆心作一半径为2的圆,将这个圆从左侧与圆O1、圆O2同时外切的位置(即圆O3)开始向右平移,观察图形,并结合三个圆的半径进行分析即可得到符合要求的圆的个数.详解:如下图,(1)当半径为2的圆同时和圆O1、圆O2外切时,该圆在圆O3的位置;(2)当半径为2的圆和圆O1、圆O2都内切时,该圆在圆O4的位置;(3)当半径为2的圆和圆O1外切,而和圆O2内切时,该圆在圆O5的位置;综上所述,符合要求的半径为2的圆共有3个.故选C.点睛:保持圆O1、圆O2的位置不动,以直线O1O2上一个点为圆心作一个半径为2的圆,观察其从左至右平移过程中与圆O1、圆O2的位置关系,结合三个圆的半径大小即可得到本题所求答案.6、C【解题分析】直接利用同底数幂的乘除运算法则以及有理数的乘方运算法则分别计算得出答案.【题目详解】解:A、x3-x2,无法计算,故此选项错误;B、a3÷a3=1,故此选项错误;C、(-2)2÷(-2)3=-12,正确;D、(-7)4÷(-7)2=72,故此选项错误;故选C.【题目点拨】此题主要考查了同底数幂的乘除运算以及有理数的乘方运算,正确掌握相关运算法则是解题关键.7、A【解题分析】根据方差的概念进行解答即可.【题目详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【题目点拨】本题考查了方差,解题的关键是掌握方差的定义进行解题.8、C【解题分析】本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为2017÷6=336余1,点F滚动1次时的横坐标为2,纵坐标为3,点F滚动7次时的横坐标为8,纵坐标为3,所以点F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题.【题目详解】.解:∵正六边形ABCDEF一共有6条边,即6次一循环;∴2017÷6=336余1,∴点F滚动1次时的横坐标为2,纵坐标为3,点F滚动7次时的横坐标为8,纵坐标为3,∴点F滚动2107次时的纵坐标与相同,横坐标的次数加1,∴点F滚动2107次时的横坐标为2017+1=2018,纵坐标为3,∴点F滚动2107次时的坐标为(2018,3),故选C.【题目点拨】本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型.9、C【解题分析】过B作直径,连接AC交AO于E,如图①,根据已知条件得到BD=12OB=2,如图②,BD=6,求得OD、OE、DE的长,连接OD,根据勾股定理得到结论.【题目详解】过B作直径,连接AC交AO于E,∵点B为AC的中点,∴BD⊥AC,如图①,∵点D恰在该圆直径上,D为OB的中点,∴BD=12×4=2,∴OD=OB-BD=2,∵四边形ABCD是菱形,∴DE=12BD=1,∴OE=1+2=3,连接OC,∵CE=2222=43=7OC OE--,在Rt△DEC中,由勾股定理得:DC=2222=(7)1=22CE DE++;如图②,OD=2,BD=4+2=6,DE=12BD=3,OE=3-2=1,由勾股定理得:2222=41=15OC OE--2222=3(15)=26DE CE++.故选C.【题目点拨】本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键.10、B【解题分析】作BD⊥x轴于D,CE⊥x轴于E,∴BD∥CE,∴CE AE AC BD AD AB==,∵OC是△OAB的中线,∴12 CE AE ACBD AD AB===,设CE=x,则BD=2x,∴C的横坐标为2x,B的横坐标为1x,∴OD=1x,OE=2x,∴DE=OE-OD=2x﹣1x=1x,∴AE=DE=1x,∴OA=OE+AE=213x x x +=,∴S△OAB=12OA•BD=12×32xx⨯=1.故选B.点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、(2n﹣1,2n﹣1).【解题分析】解:∵y=x-1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,∴B n坐标(2n-1,2n-1).故答案为(2n-1,2n-1).12、1【解题分析】根据根与系数的关系得到m+n=﹣2018,mn=﹣1,把m2n+mm2﹣mn分解因式得到mn(m+n﹣1),然后利用整体代入的方法计算.【题目详解】解:∵m、n 是方程x2+2018x﹣1=0 的两个根,则原式=mn(m+n﹣1)=﹣1×(﹣2018﹣1)=﹣1×(﹣1)=1,故答案为:1.【题目点拨】本题考查了根与系数的关系,如果一元二次方程ax2+bx+c=0 的两根分别为与,则解题时要注意这两个关系的合理应用.13、-23<x<0【解题分析】根据反比例函数的性质:y随x的增大而减小去解答. 【题目详解】解:函数y= 2x 中,y 随x 的增大而减小,当函数y ﹤-3时 223? x 3x -∴- 又函数y= 2x中,x 0≠ 203x ∴-<< 故答案为:-23<x<0. 【题目点拨】此题重点考察学生对反比例函数性质的理解,熟练掌握反比例函数性质是解题的关键.14、>;【解题分析】∵2y ax 2ax 1=--=a(x-1)2-a-1,∴抛物线对称轴为:x=1,由抛物线的对称性,点(-1,m )、(2,n )在二次函数2y ax 2ax 1=--的图像上,∵|−1−1|>|2−1|,且m >n ,∴a>0.故答案为>15、1.【解题分析】过点B 作BE ⊥x 轴于点E ,根据D 为OB 的中点可知CD 是△OBE 的中位线,即CD=BE ,设A (x ,),则B (2x ,),故CD=,AD=﹣,再由△ADO 的面积为1求出k 的值即可得出结论.解:如图所示,过点B 作BE ⊥x 轴于点E ,∵D 为OB 的中点,∴CD 是△OBE 的中位线,即CD=BE .设A(x,),则B(2x,),CD=,AD=﹣,∵△ADO的面积为1,∴AD•OC=3,(﹣)•x=3,解得k=1,故答案为1.16、2 yx =【解题分析】∵点A是反比例函数2yx=-的图象上的一个动点,设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,∴AC=n,OC=﹣m,∴∠ACO=∠ADO=90°,∵∠AOB=90°,∴∠CAO+∠AOC=∠AOC+∠BOD=90°,∴∠CAO=∠BOD,在△ACO与△ODB中,∵∠ACO=∠ODB,∠CAO=∠BOD,AO=BO,∴△ACO≌△ODB,∴AC=OD=n,CO=BD=﹣m,∴B(n,﹣m),∵mn=﹣2,∴n(﹣m)=2,∴点B所在图象的函数表达式为2yx =,故答案为:2yx =.三、解答题(共8题,共72分)17、解:(1)22.1.(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为:21-[27-0.1(x-1)]=(0.1x+0.9)(万元),当0≤x≤10,根据题意,得x·(0.1x+0.9)+0.3x=12,整理,得x2+14x-120=0,解这个方程,得x1=-20(不合题意,舍去),x2=2.当x>10时,根据题意,得x·(0.1x+0.9)+x=12,整理,得x2+19x-120=0,解这个方程,得x1=-24(不合题意,舍去),x2=3.∵3<10,∴x2=3舍去.答:要卖出2部汽车.【解题分析】一元二次方程的应用.(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:27-0.1×2=22.1.,(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0≤x≤10,以及当x>10时,分别讨论得出即可.18、(1)200;(2)见解析;(3)126°;(4)240人.【解题分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数【题目详解】(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:24100×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.【题目点拨】此题考查扇形统计图和条形统计图,看懂图中数据是解题关键19、(1)50、2;(2)平均数是7.11;众数是1;中位数是1.【解题分析】(1)根据A等级人数及其百分比可得总人数,用C等级人数除以总人数可得a的值;(2)根据平均数、众数、中位数的定义计算可得.【题目详解】(1)本次抽查测试的学生人数为14÷21%=50人,a%=1250×100%=2%,即a=2.故答案为50、2;(2)观察条形统计图,平均数为1492081274650⨯+⨯+⨯+⨯=7.11.∵在这组数据中,1出现了20次,出现的次数最多,∴这组数据的众数是1.∵将这组数据从小到大的顺序排列,其中处于中间的两个数都是1,∴882+=1,∴这组数据的中位数是1.【题目点拨】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.20、(1)证明略(2)等腰三角形,理由略【解题分析】证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS),∴AB=DC.(2)△OEF 为等腰三角形理由如下:∵△ABF ≌△DCE ,∴∠AFB=∠DEC .∴OE=OF .∴△OEF 为等腰三角形.21、(1)作图见解析;(2)EB 是平分∠AEC ,理由见解析; (3)△PFB 能由都经过P 点的两次变换与△PAE 组成一个等腰三角形,变换的方法为:将△BPF 绕点B 顺时针旋转120°和△EPA 重合,①沿PF 折叠,②沿AE 折叠.【解题分析】【分析】(1)根据作线段的垂直平分线的方法作图即可得出结论;(2)先求出DE=CE=1,进而判断出△ADE ≌△BCE ,得出∠AED=∠BEC ,再用锐角三角函数求出∠AED ,即可得出结论;(3)先判断出△AEP ≌△FBP ,即可得出结论.【题目详解】(1)依题意作出图形如图①所示;(2)EB 是平分∠AEC ,理由:∵四边形ABCD 是矩形,∴∠C=∠D=90°,CD=AB=2,3,∵点E 是CD 的中点,∴DE=CE=12CD=1, 在△ADE 和△BCE 中,90AD BC C D DE CE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ADE ≌△BCE ,∴∠AED=∠BEC ,在Rt△ADE中,AD=3,DE=1,∴tan∠AED=ADDE=3,∴∠AED=60°,∴∠BCE=∠AED=60°,∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,∴BE平分∠AEC;(3)∵BP=2CP,BC=3=,∴323在Rt△CEP中,tan∠CEP=CPCE3∴∠CEP=30°,∴∠BEP=30°,∴∠AEP=90°,∵CD∥AB,∴∠F=∠CEP=30°,在Rt△ABP中,tan∠BAP=BPAB3∴∠PAB=30°,∴∠EAP=30°=∠F=∠PAB,∵CB⊥AF,∴AP=FP,∴△AEP≌△FBP,∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.【题目点拨】本题考查了矩形的性质,全等三角形的判定和性质,解直角三角形,图形的变换等,熟练掌握和灵活应用相关的性质与定理、判断出△AEP≌△△FBP是解本题的关键.22、37【解题分析】根据实数的计算,先把各数化简,再进行合并即可.【题目详解】原式=234+-7【题目点拨】此题主要考查实数的计算,解题的关键是熟知特殊三角函数的化简与二次根式的运算.23、(1)x ,y ;(2)2;(3)AB =8,梯形ABCD 的面积=1.【解题分析】(1)依据点P 运动的路程为x ,△ABP 的面积为y ,即可得到自变量和因变量;(2)依据函数图象,即可得到点P 运动的路程x =4时,△ABP 的面积;(3)根据图象得出BC 的长,以及此时三角形ABP 面积,利用三角形面积公式求出AB 的长即可;由函数图象得出DC 的长,利用梯形面积公式求出梯形ABCD 面积即可.【题目详解】(1)∵点P 运动的路程为x ,△ABP 的面积为y ,∴自变量为x ,因变量为y .故答案为x ,y ;(2)由图可得:当点P 运动的路程x =4时,△ABP 的面积为y =2.故答案为2; (3)根据图象得:BC =4,此时△ABP 为2,∴12AB •BC =2,即12×AB ×4=2,解得:AB =8; 由图象得:DC =9﹣4=5,则S 梯形ABCD =12×BC ×(DC +AB )=12×4×(5+8)=1. 【题目点拨】本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键.24、(1)A (﹣8,0),B (0,﹣6);(2)21462y x x =---;(3)存在.P 点坐标为(﹣,-1)或(﹣4,-1)或(﹣,1)或(﹣4,1)时,使得110PDE ABC S S ∆∆=. 【解题分析】分析:(1)令已知的直线的解析式中x=0,可求出B 点坐标,令y=0,可求出A 点坐标;(2)根据A 、B 的坐标易得到M 点坐标,若抛物线的顶点C 在⊙M 上,那么C 点必为抛物线对称轴与⊙O 的交点;根据A 、B 的坐标可求出AB 的长,进而可得到⊙M 的半径及C 点的坐标,再用待定系数法求解即可;(3)在(2)中已经求得了C 点坐标,即可得到AC 、BC 的长;由圆周角定理:∠ ACB=90°,所以此题可根据两直角三角形的对应直角边的不同来求出不同的P 点坐标.本题解析:(1)对于直线364y x =--,当0x =时,6y =-;当0y =时, 所以A (﹣8,0),B (0,﹣6);(2)在Rt △AOB 中,,∵∠AOB=90°,∴AB 为⊙M 的直径,∴点M 为AB 的中点,M (﹣4,﹣3),∵MC ∥y 轴,MC=5,∴C (﹣4,2),设抛物线的解析式为y=a(x+4)²+2, 把B (0,﹣6)代入得16a+2=﹣6,解得a=12-, ∴抛物线的解析式为21(4)2y x =-+ ,即21462y x x =---; (3)存在.当y=0时,21(4)22y x =-++ ,解得x ,=﹣2,x ,=﹣6, ∴D (﹣6,0),E (﹣2,0),18202ABC ACM BCM S S S CM ∆∆∆=+=⨯⨯=, 设P (t ,2142t t ---6), ∵110PDE ABC S S ∆∆= ∴211(26)4622t t -+---=110⨯20, 即|21462t t ---|=1,当21462t t ---=-1,解得14t =-,24t =-,此时P 点坐标为(﹣,-1)或(﹣4,-1);当214612t t ---=时 ,解得1t =﹣,2t =﹣4﹣;此时P 点坐标为(﹣,1)或(﹣4,1).综上所述,P点坐标为(﹣6,-1)或(﹣46,-1)或(﹣2,1)或(﹣42,1)时,使得110PDE ABCS S∆∆=.点睛:本题考查了二次函数的综合应用及顶点式求二次函数的解析式和一元二次方程的解法,本题的综合性较强,注意分类讨论的思想应用.。
江苏省南通市中考数学试卷(附答案解析)
第 1 页 共 25 页2020年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算|﹣1|﹣3,结果正确的是( )A .﹣4B .﹣3C .﹣2D .﹣12.今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约68000km 2.将68000用科学记数法表示为( )A .6.8×104B .6.8×105C .0.68×105D .0.68×1063.下列运算,结果正确的是( )A .√5−√3=√2B .3+√2=3√2C .√6÷√2=3D .√6×√2=2√34.以原点为中心,将点P (4,5)按逆时针方向旋转90°,得到的点Q 所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限5.如图,已知AB ∥CD ,∠A =54°,∠E =18°,则∠C 的度数是( )A .36°B .34°C .32°D .30°6.一组数据2,4,6,x ,3,9,5的众数是3,则这组数据的中位数是( )A .3B .3.5C .4D .4.57.下列条件中,能判定▱ABCD 是菱形的是( )A .AC =BDB .AB ⊥BC C .AD =BD D .AC ⊥BD8.如图是一个几何体的三视图(图中尺寸单位:cm ),则这个几何体的侧面积为( )A .48πcm 2B .24πcm 2C .12πcm 2D .9πcm 29.如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B ﹣E ﹣D 运动到点D。
(中考精品卷)江苏省南通市中考数学真题(解析版)
2022年江苏南通数学标卷标答注意事项:考生在答题前请认真阅读本注意事项:1.本试卷共6页,满分为150分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡上指定的位置。
3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 若气温零上2℃记作2+℃,则气温零下3℃记作()A. 3-℃B. 1-℃C. 1+℃D. 5+℃【答案】A【解析】【分析】根据气温是零上2℃记作+2℃,则可以表示出气温是零下3℃,从而可以解答本题.【详解】解:∵气温是零上2℃记作+2℃,∴气温是零下3℃记作−3℃.故选:A.【点睛】本题考查正数和负数,解题的关键是明确正数和负数在题中表示的含义.2. 下面由北京冬奥会比赛项目图标组成的四个图形中,可看作轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A.不是轴对称图形,故本选项不合题意;B .不是轴对称图形,故本选项不合题意;C .不是轴对称图形,故本选项不合题意;D .是轴对称图形,故本选项符合题意.故选:D .【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置.3. 沪渝蓉高铁是国家中长期铁路网规划“八纵八横”之沿江高铁通道的主通道,其中南通段总投资约39000000000元,将39000000000用科学记数法表示为( )A. 113.910⨯B. 110.3910⨯C. 103.910⨯D. 93910⨯【答案】C【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值≥10时,n 是正整数数.【详解】解:由题意可知:1039000000000=3.910⨯,故选:C【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4. 用一根小木棒与两根长分别为3cm,6cm 的小木棒组成三角形,则这根小木棒的长度可以为( )A. 1cmB. 2cmC. 3cmD. 4cm【答案】D【解析】【分析】设第三根木棒的长为x cm ,再根据三角形的三边关系得出x 取值范围即可.【详解】解:设第三根木棒的长为x cm ,则6−3<x <6+3,即3<x <9.观察选项,只有选项D 符合题意.故选:D .【点睛】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边;任意两边之差小于第三边.5. 如图是中5个相同的正方体搭成的立体图形,则它的主视图为( )A. B. C. D.【答案】A【解析】【分析】根据主视图的意义,从正面看该组合体所得到的图形进行判断即可.【详解】解:从正面看该组合体,所看到的图形与选项A 中的图形相同,故选:A .【点睛】本题考查简单组合体的主视图,理解视图的意义,掌握三视图的画法是正确判断的前提.6. 李师傅家的超市今年1月盈利3000元,3月盈利3630元.若从1月到3月,每月盈利的平均增长率都相同,则这个平均增长率是( )A. 10.5%B. 10%C. 20%D. 21%【答案】B【解析】【分析】设每月盈利的平均增长率为x ,根据今年1月盈利3000元,3月盈利3630元,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设每月盈利的平均增长率为x ,依题意,得:3000(1+x )2=3630,解得:x 1=0.1=10%,x 2=−2.1(不合题意,舍去).故选:B .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.7. 如图,,380,1220∠=︒∠-∠︒=∥a b ,则1∠的度数是( )A. 30°B. 40︒C. 50︒D. 80︒【答案】C【解析】【分析】根据平行线的性质和三角形外角的性质可得∠1+∠2=80°,结合1220∠-∠=︒,两式相加即可求出1∠.【详解】解:如图,∵//a b ,∴∠4=∠1,∴∠3=∠4+∠2=∠1+∠2=80°,∵1220∠-∠=︒,∴21100∠=︒,∴150∠=︒,故选:C .【点睛】本题考查了平行线的性质,三角形外角的性质,求出∠1+∠2=80°是解题的关键.8. 根据图像,可得关于x 的不等式3>-+kx x 的解集是( )A. 2x <B. 2x >C. 1x <D. 1x >【答案】D【解析】【分析】写出直线y =kx 在直线y =−x +3上方所对应的自变量的范围即可.【详解】解:根据图象可得:不等式kx >−x +3的解集为:x >1.故选:D .【点睛】本题考查了一次函数与一元一次不等式,根据两个函数的交点坐标及图象确定不等式的解集是解题的关键.9. 如图,在ABCD 中,对角线,AC BD 相交于点O ,,4,60⊥=∠=︒AC BC BC ABC ,若EF 过点O 且与边,AB CD 分别相交于点E ,F ,设2,==BE x OE y ,则y 关于x 的函数图像大致为( )A. B. C. D.【答案】C【解析】【分析】过点O 向AB 作垂线,交AB 于点M ,根据含有30°角的直角三角形性质以及勾股定理可得AB 、AC 的长,再结合平行四边形的性质可得AO 的长,进而求出OM 、AM 的长,设BE x =,则5EM x =-,然后利用勾股定理可求出y 与x 的关系式,最后根据自变量的取值范围求出函数值的范围,即可做出判断.【详解】解:如图过点O 向AB 作垂线,交AB 于点M ,∵AC ⊥BC ,∠ABC =60°,∴∠BAC =30°,∵BC =4,∴AB =8,AC =,∵四边形ABCD 是平行四边形,∴12AO AC ==,∴12OM AO ==,∴3AM ==,设2,==BE x OE y ,则835EM AB AM EM x x =--=--=-,∵222OE OM EM =+,∴()253y x =-+,∵08x ≤≤,∴312y ≤≤.故选:C .【点睛】此题主要考查了平行四边形的性质、勾股定理、含有30°角的直角三角形的性质以及二次函数图象等知识,解题关键是求解函数解析式和函数值的范围.10. 已知实数m ,n 满足222+=+m n mn ,则2(23)(2)(2)-++-m n m n m n 的最大值为( )A. 24B. 443C. 163D. 4-【答案】B【解析】【分析】先将所求式子化简为107mn -,然后根据()22220m n m n mn +++=≥及222+=+m n mn 求出23mn ≥-,进而可得答案. 【详解】解:2(23)(2)(2)-++-m n m n m n222241294m mn n m n =-++-225125m mn n =-+()5212mn mn =+-107mn =-;∵()22220m n m n mn +++=≥,222+=+m n mn ,∴220mn mn ++≥,∴32mn ≥-, ∴23mn ≥-, ∴441073mn -≤, ∴2(23)(2)(2)-++-m n m n m n 的最大值为443, 故选:B .【点睛】本题考查了完全平方公式、平方差公式的应用,不等式的性质,正确对所求式子化简并求出mn 的取值范围是解题的关键.二、填空题(本人题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上) 11. 为了了解“双减”背景下全国中小学生完成课后作业的时间情况,比较适合的调查方式是___________(填“全面调查”或“抽样调查”).【答案】抽样调查【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【详解】解:为了了解“双减”背景下全国中小学生完成课后作业的时间情况,比较适合的调查方式是抽样调查,故答案为:抽样调查.【点睛】本题考查了抽样调查和全面调查区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12. 分式22x -有意义,则x 应满足的条件是___________. 的【答案】2x≠【解析】【分析】根据分式有意义的条件是分母不为0得出不等式,求解即可.【详解】解:分式22x-有意义,即20x-≠,∴2x≠,故答案为:2x≠.【点睛】本题考查分式有意义的条件,牢记分式有意义的条件是分式的分母不为0.13. 《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱。
最新江苏省南通市中考数学学业水平测试试卷附解析
江苏省南通市中考数学学业水平测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.两名百米赛跑运动员几乎同时到达终点时,哪种视图有利于区分谁是冠军( )A .主视图B .左视图C . 俯视图D .B 与C 都行2.如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,则tan EFC ∠的值为( )A .34B .43C .35D .453.矩形、菱形、正方形都具有的性质是( ) A .每一条对角线平分一组对角B .对角线相等C .对角线互相平分D .对角线互相垂直 4.下列结论:①平行四边形内角和为360°;②平行四边形对角线相等; ③平行四边形对角线互相平分;④平行四边形邻角互补.其中正确的个数是( )A .1B .2C .3D .4 5. 某厂一月份的总产量为 500 吨,三月份的总产量达到 720 吨,若设平均每月的增长率是x ,则可以列方程( )A .2500(1)720x +=B .500(12)720x +=C .2500(1)720x +=D .2720(1+)500x = 6.x 为实数,下列式子一定有意义的是( )A .21x +B .2x x +C .211x - D .21x 7.不等式2(1)3m x +>的解集为( ) A .231x m >+ B .231x m <+ C .231x m ≥+ D .231x m ≤+ 8.图中几何体的左视图是( )9.如图,在边长为4的等边三角形ABC 中,AD 是BC 边上的高,点E 、F 是AD 上的两点,则图中阴影部分的面积是( )A .43B .33C .23D .310.若关于x 的方程230m mx m ++-=是一元一次方程,则这个方程的解是( )A.1 B.-l C.-4 D.411.若a、b是整数,且12ab=,则a b+的最小值是()A.-13 B.-7 C.8 D. 7二、填空题12.在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是 (填上序号即可).13.已知一组比例线段的长度分别是x,2,5,8,则x= .14.若反比例函数kyx=中,当x =6 时,y =-2,则其函数关系式为.15.按下列要求,写出仍能成立的不等式:(1)63>,两边都减去3,得;(2)50x+<,两边都加上 (— 5),得;(3)3253nm>,两边都乘 15,得;(4)718x-≥,两边都乘87-,得.16.为了了解某校八年级800名学生数学考试情况,从中抽取了200名学生的数学成绩进行统计,请判断下列说法是否正确.(1)这种调查方式是抽样调查;( )(2)800名学生是总体;( )(3)每名学生的数学成绩是个体;( )(4)200名学生是总体的一个样本;( )(5)200是样本容量.( )17.如图,在△ABC中,∠BAC=45°,现将△ABC绕点A 逆时针旋转30°至△ADE的位置.则∠DAC= .18.在ΔABC中, ∠C=90°,BD平分∠ABC,交AC于D,若AB=5,CD=2, 则ΔABD的面积是 .19.如果a-2b=5,那么12-2a+4b= .20.如图,在△ABC中,已知AD=ED,AB=EB,∠A=75°,那么∠1+∠C的度数是.21.观察下列等式9-1=8;16-4=12;25 -9= 16;36--16=20;…这些等式反映出自然数间的某种规律,设n(n≥1)表示自然数,用关于 n 的等式表示这个规律为.22.用“>”或“<”号填空: (1)-3 -4;(2)(4)-- |5|--;(3)45- 34-;(4)0 1|10|3-. 三、解答题画出图中几何体的三种视图.24.如图,已知等腰梯形ABCD 中,AD ∥BC ,AB=DC ,AC 与BD 相交于点O .请在图中找出一对全等的三角形,并加以证明.25.三明市某工厂2006年捐款1万元给希望工程,以后每年都捐款,计划到2008年共捐款4.75万元,问该厂捐款的平均增长率是多少?26.如图所示,一棵大树被龙卷风吹断了,折断点离地面9 m ,树顶端落在离树根12 m 处,问这棵大树原先高度是多少?D B A O C27.在一块长16cm 、宽12cm 的长方形荒地上,要建造一个花园并使所占面积为荒地面积的一半,小明的设计方案如图所示,其中花园四周小路的宽度都相等,请帮小明计算一下小路的宽是多少米?28.如图所示,画出把圆0的半径缩小到原来的35后的图形.29.一家公司的市场调查员把本公司即将推出的一种新点心免费送给36人品尝,以调查这种点心的甜度是否适中,调查结果如下:C C C B AD B C C A 太甜E 太淡D C C A B D CE C B 稍甜E C C A B E C B C C 适中C B C C C B CD C D 稍淡请用表格整理上面的数据,并推断这种点心的甜度是否适中.30.甲、乙两品牌服装的单价分别为 a 元和b 元,现实行打折销售,甲种服装按 8 折(即原价的 80%)销售,乙种服装按7 折销售,若购买两种品牌服装各一件,共需多少元?12cm x x16cm【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.C4.C5.A6.A7.A8.A9.C10.C11.A二、填空题12.②13.20 或165或5414.12yx=-15.(1)630->;(2)x<-5;(3)9m>10n;(4)87 x≤-16.(1)√ (2)× (3)√ (4)× (5)√17.1518.519.220.75°21.22(2)4(1)n n n+-=+22.(1)> (2)> (3)< (4)<三、解答题23.如图:24.解:△ABC≌△DCB .证明:∵在等腰梯形ABCD中,AD∥BC,AB=DC,∴∠ABC=∠DCB.在∆ABC与∆DCB中AB DC ABC DCB BC CB =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DCB .(注:答案不唯一)25.50%26.24m27.2米.28.略29.统计表略.从统计的表格中,不难发现选C 的占大多数,占总数的52.8%,说明该点心的甜度是适中的30.80%a+70b%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2016•南通)2的相反数是()A.﹣2 B.﹣C.2 D.2.(3分)(2016•南通)太阳半径约为696000km,将696000用科学记数法表示为()A.696×103B.69.6×104C.6.96×105D.0.696×1063.(3分)(2016•南通)计算的结果是()A.B.C.D.4.(3分)(2016•南通)下列几何图形:其中是轴对称图形但不是中心对称图形的共有()A.4个B.3个C.2个D.1个5.(3分)(2016•南通)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形6.(3分)(2016•南通)函数y=中,自变量x的取值范围是()A.x且x≠1 B.x且x≠1 C.x且x≠1 D.x且x≠17.(3分)(2016•南通)如图,为了测量某建筑物MN的高度,在平地上A处测得建筑物顶端M的仰角为30°,向N点方向前进16m到达B处,在B处测得建筑物顶端M的仰角为45°,则建筑物MN的高度等于()A.8()m B.8()m C.16()m D.16()m 8.(3分)(2016•南通)如图所示的扇形纸片半径为5cm,用它围成一个圆锥的侧面,该圆锥的高是4cm,则该圆锥的底面周长是()A.3πcmB.4πcm C.5πcm D.6πcm9.(3分)(2016•南通)如图,已知点A(0,1),点B在x轴正半轴上的一动点,以AB 为边作等腰直角三角形ABC,使点C在第一象限,∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,则表示y与x的函数关系的图象大致是()A.B.C.D.10.(3分)(2016•南通)平面直角坐标系xOy中,已知A(﹣1,0)、B(3,0)、C(0,﹣1)三点,D(1,m)是一个动点,当△ACD的周长最小时,△ABD的面积为()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2016•南通)计算:x3•x2=______.12.(3分)(2016•南通)已知:如图直线AB与CD相交于点O,OE⊥AB,∠COE=60°,则∠BOD等于______度.13.(3分)(2016•南通)某几何体的三视图如图所示,则这个几何体的名称是______.14.(3分)(2016•南通)如图Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则cosA=______.15.(3分)(2016•南通)已知一组数据5,10,15,x,9的平均数是8,那么这组数据的中位数是______.16.(3分)(2016•南通)设一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,则x1+x2(x22﹣3x2)=______.17.(3分)(2016•南通)如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC与点E,将△BCE绕点C顺时针旋转90°得到△DCF,若CE=1cm,则BF=______cm.18.(3分)(2016•南通)平面直角坐标系xOy中,已知点(a,b)在直线y=2mx+m2+2(m >0)上,且满足a2+b2﹣2(1+2bm)+4m2+b=0,则m=______.三、解答题(本大题共10小题,共96分)19.(10分)(2016•南通)(1)计算:|﹣2|+(﹣1)2+(﹣5)0﹣;(2)解方程组:.20.(8分)(2016•南通)解不等式组,并写出它的所有整数解.21.(9分)(2016•南通)某水果批发市场新进一批水果,有苹果、西瓜、桃子和香蕉四个品种,统计后将结果绘制成条形图(如图),已知西瓜的重量占这批水果总重量的40%.回答下列问题:(1)这批水果总重量为______kg;(2)请将条形图补充完整;(3)若用扇形图表示统计结果,则桃子所对应扇形的圆心角为______度.22.(7分)(2016•南通)不透明袋子里装有红色、绿色小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,求两次都摸到红色小球的概率.23.(8分)(2016•南通)列方程解应用题:某列车平均提速60km/h,用相同的时间,该列车提速前行驶200km,提速后比提速前多行驶100km,求提速前该列车的平均速度.24.(9分)(2016•南通)已知:如图,AM为⊙O的切线,A为切点,过⊙O上一点B作BD⊥AM于点D,BD交⊙O于点C,OC平分∠AOB.(1)求∠AOB的度数;(2)当⊙O的半径为2cm,求CD的长.25.(8分)(2016•南通)如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.26.(10分)(2016•南通)平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过(﹣1,m2+2m+1)、(0,m2+2m+2)两点,其中m为常数.(1)求b的值,并用含m的代数式表示c;(2)若抛物线y=x2+bx+c与x轴有公共点,求m的值;(3)设(a,y1)、(a+2,y2)是抛物线y=x2+bx+c上的两点,请比较y2﹣y1与0的大小,并说明理由.27.(13分)(2016•南通)如图,△ABC中,∠ACB=90°,AC=5,BC=12,CO⊥AB于点O,D是线段OB上一点,DE=2,ED∥AC(∠ADE<90°),连接BE、CD.设BE、CD的中点分别为P、Q.(1)求AO的长;(2)求PQ的长;(3)设PQ与AB的交点为M,请直接写出|PM﹣MQ|的值.28.(14分)(2016•南通)如图,平面直角坐标系xOy中,点C(3,0),函数y=(k>0,x>0)的图象经过▱OABC的顶点A(m,n)和边BC的中点D.(1)求m的值;(2)若△OAD的面积等于6,求k的值;(3)若P为函数y═(k>0,x>0)的图象上一个动点,过点P作直线l⊥x轴于点M,直线l与x轴上方的▱OABC的一边交于点N,设点P的横坐标为t,当时,求t的值.2016年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2016•南通)2的相反数是()A.﹣2 B.﹣C.2 D.【分析】依据相反数的定义求解即可.【解答】解:2的相反数是﹣2.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(3分)(2016•南通)太阳半径约为696000km,将696000用科学记数法表示为()A.696×103B.69.6×104 C.6.96×105 D.0.696×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将696000用科学记数法表示为:6.96×105.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2016•南通)计算的结果是()A.B.C.D.【分析】根据同分母的分式相加的法则:分母不变,分子相加.【解答】解:原式==,故选D.【点评】本题考查了分式的加减,掌握分时加减的法则是解题的关键.4.(3分)(2016•南通)下列几何图形:其中是轴对称图形但不是中心对称图形的共有()A.4个B.3个C.2个D.1个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:正方形和圆既是中心对称图形,也是轴对称图形;等边三角形是轴对称图形,不是中心对称图形;正五边形是轴对称图形,不是中心对称图形.故选C.【点评】本题考查了中心对称图形,掌握好中心对称与轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180度后与原图重合.5.(3分)(2016•南通)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【分析】根据多边形的内角和公式(n﹣2)•180°与多边形的外角和定理列式进行计算即可得解.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故这个多边形是四边形.故选B.【点评】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.6.(3分)(2016•南通)函数y=中,自变量x的取值范围是()A.x且x≠1 B.x且x≠1 C.x且x≠1 D.x且x≠1【分析】根据二次根式的被开方数为非负数且分母不为0,列出不等式组,即可求x的范围.【解答】解:2x﹣1≥0且x﹣1≠0,解得x≥且x≠1,故选B.【点评】本题考查了函数自变量的取值范围,当函数表达式是分式时,要注意考虑分式的分母不能为0;当函数表达式是二次根式时,要注意考虑二次根式的被开方数大于等于.7.(3分)(2016•南通)如图,为了测量某建筑物MN的高度,在平地上A处测得建筑物顶端M的仰角为30°,向N点方向前进16m到达B处,在B处测得建筑物顶端M的仰角为45°,则建筑物MN的高度等于()A.8()m B.8()m C.16()m D.16()m【分析】设MN=xm,由题意可知△BMN是等腰直角三角形,所以BN=MN=x,则AN=16+x,在Rt△AMN中,利用30°角的正切列式求出x的值.【解答】解:设MN=xm,在Rt△BMN中,∵∠MBN=45°,∴BN=MN=x,在Rt△AMN中,tan∠MAN=,∴tan30°==,解得:x=8(+1),则建筑物MN的高度等于8(+1)m;故选A.【点评】本题是解直角三角形的应用,考查了仰角和俯角的问题,要明确哪个角是仰角或俯角,知道仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角;并与三角函数相结合求边的长.8.(3分)(2016•南通)如图所示的扇形纸片半径为5cm,用它围成一个圆锥的侧面,该圆锥的高是4cm,则该圆锥的底面周长是()A.3πcmB.4πcm C.5πcm D.6πcm【分析】根据题意首先求出圆锥的底面半径,进而利用圆周长公式得出答案.【解答】解:∵扇形纸片半径为5cm,用它围成一个圆锥的侧面,该圆锥的高是4cm,∴圆锥的底面半径为:=3(cm),∴该圆锥的底面周长是:2π×3=6π(cm).故选:D.【点评】此题主要考查了圆锥的计算以及圆周长公式,正确得出圆锥的底面半径是解题关键.9.(3分)(2016•南通)如图,已知点A(0,1),点B在x轴正半轴上的一动点,以AB 为边作等腰直角三角形ABC,使点C在第一象限,∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,则表示y与x的函数关系的图象大致是()A.B.C.D.【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【解答】解:作AD∥x轴,作CD⊥AD于点D,若右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选:A.【点评】本题考查动点问题的函数图象,解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.10.(3分)(2016•南通)平面直角坐标系xOy中,已知A(﹣1,0)、B(3,0)、C(0,﹣1)三点,D(1,m)是一个动点,当△ACD的周长最小时,△ABD的面积为()A.B.C.D.【分析】先根据△ACD的周长最小,求出点C关于直线x=1对称的点E的坐标,再运用待定系数法求得直线AE的解析式,并把D(1,m)代入,求得D的坐标,最后计算,△ABD 的面积.【解答】解:由题可得,点C关于直线x=1的对称点E的坐标为(2,﹣1),设直线AE的解析式为y=kx+b,则,解得,∴y=﹣x﹣,将D(1,m)代入,得m=﹣﹣=﹣,即点D的坐标为(1,﹣),∴当△ACD的周长最小时,△ABD的面积=×AB×|﹣|=×4×=.故选(C)【点评】本题属于最短路线问题,主要考查了轴对称性质的运用以及待定系数法的运用,解决问题的关键是运用两点之间线段最短这一基本事实.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2016•南通)计算:x3•x2=x5.【分析】根据同底数的幂的乘法即可求解.【解答】解:原式=x5.故答案是:x5.【点评】本题考查了同底数幂的乘法法则,底数不变指数相加,理清指数的变化是解题的关键.12.(3分)(2016•南通)已知:如图直线AB与CD相交于点O,OE⊥AB,∠COE=60°,则∠BOD等于30度.【分析】根据垂线的定义,可得∠ACE的度数,根据余角的性质,可得∠AOC的度数,根据对顶角相等,可得答案.【解答】解:由垂线的定义,得∠AOE=90°,由余角的性质,得∠AOC=∠AOE﹣∠COE=30°,由对顶角相等,得∠BOD=∠AOC=30°,故答案为:30.【点评】本题考查了垂线,利用了垂线的定义,余角的性质,对顶角的性质.13.(3分)(2016•南通)某几何体的三视图如图所示,则这个几何体的名称是圆柱.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为长方形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱,故答案为:圆柱.【点评】考查了由三视图判断几何体,主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为圆就是圆柱.14.(3分)(2016•南通)如图Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则cosA=.【分析】首先根据直角三角形斜边上的中线等于斜边的一半,即可求得AB的长,然后利用余弦函数的定义求解.【解答】解:∵直角△ABC中,CD是斜边AB上的中线,∴AB=2CD=2×2=4,则cosA==.故答案是:.【点评】本题考查了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半,以及三角函数的定义,理解性质求得AB的长是关键.15.(3分)(2016•南通)已知一组数据5,10,15,x,9的平均数是8,那么这组数据的中位数是9.【分析】根据平均数的定义先求出x的值,再根据中位数的定义即可得出答案.【解答】解:根据平均数的定义可知,(5+10+15+x+9)÷5=8,解得:x=1,把这组数据从小到大的顺序排列为1,5,9,10,15,处于中间位置的那个数是9,那么由中位数的定义可知,这组数据的中位数是9;故答案为:9.【点评】本题主要考查了中位数,掌握中位数的定义是本题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.16.(3分)(2016•南通)设一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,则x1+x2(x22﹣3x2)=3.【分析】由题意可知x22﹣3x2=1,代入原式得到x1+x2,根据根与系数关系即可解决问题.【解答】解:∵一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,∴x12﹣3x1﹣1=0,x22﹣3x2﹣1=0,x1+x2=3,∴x22﹣3x2=1,∴x1+x2(x22﹣3x2)=x1+x2=3,故答案为3.【点评】本题考查根与系数关系、一元二次方程根的定义,解题的关键是灵活运用根与系数的关系定理,属于中考常考题型.17.(3分)(2016•南通)如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC与点E,将△BCE绕点C顺时针旋转90°得到△DCF,若CE=1cm,则BF=2+cm.【分析】过点E作EM⊥BD于点M,则△DEM为等腰直角三角形,根据角平分线以及等腰直角三角形的性质即可得出DE的长度,再根据正方形以及旋转的性质即可得出线段BF 的长.【解答】解:过点E作EM⊥BD于点M,如图所示.∵四边形ABCD为正方形,∴∠BAC=45°,∠BCD=90°,∴△DEM为等腰直角三角形.∵BE平分∠DBC,EM⊥BD,∴EM=EC=1cm,∴DE=EM=cm.由旋转的性质可知:CF=CE=1cm,∴BF=BC+CF=CE+DE+CF=1++1=2+cm.故答案为:2+.【点评】本题考查了旋转的性质、正方形的性质以及角平分线的性质,解题的关键是求出线段BC以及CF的长度.本题属于基础题,难度不大,解决该题型题目时,结合角平分线以及等腰直角三角形的性质求出线段的长度是关键.18.(3分)(2016•南通)平面直角坐标系xOy中,已知点(a,b)在直线y=2mx+m2+2(m >0)上,且满足a2+b2﹣2(1+2bm)+4m2+b=0,则m=﹣1+.【分析】把b=2ma+m2+2代入a2+b2﹣2(1+2bm)+4m2+b=0,利用非负数的性质,求出a、b(用m表示),再代入b=2ma+m2+2解方程即可解决问题.【解答】解:∵点(a,b)在直线y=2mx+m2+2(m>0)上,∴b=2ma+m2+2代入a2+b2﹣2(1+2bm)+4m2+b=0,整理得到(b﹣2m)2+(a+m)2=0,∵(b﹣2m)2≥0,(a+m)2≥0,∴a=﹣m,b=2m代入b=2ma+m2+2得到,2m=﹣2m2+m2+2,∴m2+2m﹣2=0,∴m=﹣1,∵m>0,∴m=﹣1+,故答案为﹣1+【点评】本题考查一次函数图象上点的特征,非负数的性质,完全平方公式等知识,解题的关键是熟练应用非负数的性质解决问题,属于中考填空题中的压轴题.三、解答题(本大题共10小题,共96分)19.(10分)(2016•南通)(1)计算:|﹣2|+(﹣1)2+(﹣5)0﹣;(2)解方程组:.【分析】(1)先用绝对值,零指数,算术平方根化简最后合并即可;(2)用加减消元法解方程组即可.【解答】解(1)原式=2+1+1﹣2=2,(2)①+②得,4x=4,∴x=1,把x=1代入①得,1+2y=9,∴y=4,∴原方程组的解为.【点评】此题是解二元一次方程组,主要考查了绝对值,零指数幂,二次根式的化简,方程组的解法,解本题的关键是解方程组消元的方法的选择.20.(8分)(2016•南通)解不等式组,并写出它的所有整数解.【分析】根据解不等式组的方法可以求得原不等式组的解集,从而可以求得它的所有整数解.【解答】解:由①,得x<2,由②,得x>﹣4,故原不等式组的解集是﹣4<x<2,∴这个不等式组的所有整数解是x=﹣3或x=﹣2或x=﹣1或x=0或x=1.【点评】本题考查一元一次不等式组的整数解、解一元一次不等式组,解题的关键是明确解一元一次不等式的方法.21.(9分)(2016•南通)某水果批发市场新进一批水果,有苹果、西瓜、桃子和香蕉四个品种,统计后将结果绘制成条形图(如图),已知西瓜的重量占这批水果总重量的40%.回答下列问题:(1)这批水果总重量为4000kg;(2)请将条形图补充完整;(3)若用扇形图表示统计结果,则桃子所对应扇形的圆心角为90度.【分析】(1)设这批水果总重量为mkg,根据西瓜的重量占这批水果总重量的40%,列出方程即可解决.(2)根据苹果的重量=总重量﹣西瓜的重量﹣桃子的重量﹣香蕉西瓜的重量,即可画出图形.(3)根据圆心角=360°×百分比,即可解决问题.【解答】解:(1)设这批水果总重量为mkg,应用m•40%=1600,解得m=4000kg,故答案为4000.(2)∵苹果的重量=总重量﹣西瓜的重量﹣桃子的重量﹣香蕉西瓜的重量=4000﹣1600﹣1000﹣200=1200,条形图如图所示,(3)∵桃子的重量占这批水果总重量的==25%,∴桃子所对应扇形的圆心角为360°×25%=90°,故答案为90.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(7分)(2016•南通)不透明袋子里装有红色、绿色小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,求两次都摸到红色小球的概率.【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【解答】解:画树状图得:∵共有4种等可能的结果,两次都摸到红球的只有1种情况,∴两次都摸到红球的概率是.【点评】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.23.(8分)(2016•南通)列方程解应用题:某列车平均提速60km/h,用相同的时间,该列车提速前行驶200km,提速后比提速前多行驶100km,求提速前该列车的平均速度.【分析】设提速前列车的平均速度为xkm/h,根据提速后,列车用相同时间比提速前多行驶100km,列方程求解.【解答】解:设提速前列车的平均速度为xkm/h,由题意得,=,解得:x=120,经检验,x=120是原分式方程的解,且符合题意.答:提速前列车的平均速度为120km/h.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.24.(9分)(2016•南通)已知:如图,AM为⊙O的切线,A为切点,过⊙O上一点B作BD⊥AM于点D,BD交⊙O于点C,OC平分∠AOB.(1)求∠AOB的度数;(2)当⊙O的半径为2cm,求CD的长.【分析】(1)由AM为圆O的切线,利用切线的性质得到OA与AM垂直,再由BD与AM 垂直,得到OA与BD平行,利用两直线平行内错角相等得到一对角相等,再由OC为角平分线得到一对角相等,以及OB=OC,利用等边对等角得到一对角相等,等量代换得到∠BOC=∠OBC=∠OCB=60°,即可得出答案;(2)过点O作OE⊥BD于点E,进而得出四边形OADE是矩形,得出DC的长即可.【解答】解:(1)∵AM为圆O的切线,∴OA⊥AM,∵BD⊥AM,∴∠OAD=∠BDM=90°,∴OA∥BD,∴∠AOC=∠OCB,∵OB=OC,∴∠OBC=∠OCB,∵OC平分∠AOB,∴∠AOC=∠BOC,∴∠BOC=∠OCB=∠OBC=60°,∴∠AOB=120°;(2)过点O作OE⊥BD于点E,∵∠BOC=∠OCB=∠OBC=60°,∴△OBC是等边三角形,∴BE=EC=1,∵∠OED=∠EDA=∠OAD=90°,∴四边形OADE是矩形,∴DE=OA=2,∴EC=DC=1.【点评】此题考查了切线的性质,平行线的判定与性质以及等腰三角形的性质,熟练掌握切线的性质是解本题的关键.25.(8分)(2016•南通)如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.【分析】(1)先根据平行四边形的性质得出AB=CD,AB∥CD,再由BE=AB得出BE=CD,根据平行线的性质得出∠BEF=∠CDF,∠EBF=∠DCF,进而可得出结论;(2)根据平行四边形的性质可得AB∥CD,AB=CD,∠A=∠DCB,再由AB=BE,可得CD=EB,进而可判定四边形BECD是平行四边形,然后再证明BC=DE即可得到四边形BECD 是矩形【解答】(1)证明:∵四边形ABCD是平行四边形,∵AB=CD,AB∥CD.∵BE=AB,∴BE=CD.∵AB∥CD,∴∠BEF=∠CDF,∠EBF=∠DCF,在△BEF与△CDF中,∵,∴△BEF≌△CDF(ASA);(2)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠A=∠DCB,∵AB=BE,∴CD=EB,∴四边形BECD是平行四边形,∴BF=CF,EF=DF,∵∠BFD=2∠A,∴∠BFD=2∠DCF,∴∠DCF=∠FDC,∴DF=CF,∴DE=BC,∴四边形BECD是矩形.【点评】此题主要考查的值矩形的判定及平行四边形的性质,关键是掌握平行四边形的对边相等;对角相等;对角线互相平分.26.(10分)(2016•南通)平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过(﹣1,m2+2m+1)、(0,m2+2m+2)两点,其中m为常数.(1)求b的值,并用含m的代数式表示c;(2)若抛物线y=x2+bx+c与x轴有公共点,求m的值;(3)设(a,y1)、(a+2,y2)是抛物线y=x2+bx+c上的两点,请比较y2﹣y1与0的大小,并说明理由.【分析】(1)由抛物线上两点代入抛物线解析式中即可求出b和c;(2)令y=0,抛物线和x轴有公共点,即△≥0,和非负数确定出m的值,(3)将两点代入抛物线解析式中,表示出y1,y2,求出y2﹣y1分情况讨论即可【解答】解:(1)∵抛物线y=x2+bx+c经过(﹣1,m2+2m+1)、(0,m2+2m+2)两点,∴,∴,即:b=2,c=m2+2m+2,(2)由(1)得y=x2+2x+m2+2m+2,令y=0,得x2+2x+m2+2m+2=0,∵抛物线与x轴有公共点,∴△=4﹣4(m2+2m+2)≥0,∴(m+1)2≤0,∵(m+1)2≥0,∴m+1=0,∴m=﹣1;(3)由(1)得,y=x2+2x+m2+2m+2,∵(a,y1)、(a+2,y2)是抛物线的图象上的两点,∴y1=a2+2a+m2+2m+2,y2=(a+2)2+2(a+2)+m2+2m+2,∴y2﹣y1=[(a+2)2+2(a+2)+m2+2m+2]﹣[a2+2a+m2+2m+2]=4(a+2)当a+2≥0,即a≥﹣2时,y2﹣y1≥0,当a+2<0,即a<﹣2时,y2﹣y1<0.【点评】此题是二次函数综合题,主要考查了待定系数法,抛物线与x轴的交点,比较代数式的大小,解本题的关键是求出b,用m表示出抛物线解析式,难点是分类讨论.27.(13分)(2016•南通)如图,△ABC中,∠ACB=90°,AC=5,BC=12,CO⊥AB于点O,D是线段OB上一点,DE=2,ED∥AC(∠ADE<90°),连接BE、CD.设BE、CD的中点分别为P、Q.(1)求AO的长;(2)求PQ的长;(3)设PQ与AB的交点为M,请直接写出|PM﹣MQ|的值.【分析】(1)由△ABC∽△ACO,得=,由此即可求出OA.(2)如图2中,取BD中点F,CD中点Q,连接PF、QF,在Rt△PFQ中,求出PF,QF 即可解决问题.(3)如图3中,取AD中点G,连接GQ,由PF∥GQ,推出△PMF∽△QMG,推出==,由PM+QM=,可以求出PM,QM,即可解决问题.【解答】解:(1)如图1中,∵CO⊥AB,∴∠AOC=∠ACB=90°,∵∠A=∠A,∴△ABC∽△ACO,∴=,∵AB===13,∴OA==.(2)如图2中,取BD中点F,CD中点Q,连接PF、QF,则PF∥ED,FQ∥BC,PF⊥FQ,且PF=ED=1,FQ=BC=6,在Rt△PFQ中,PQ===.(3)如图3中,取AD中点G,连接GQ,∵GQ∥AC,ED∥AC,PF∥ED,∴PF∥GQ,∴△PMF∽△QMG,∴==,∵PM+QM=,∴PM=,MQ=,∴|PM﹣QM|=.【点评】本题考查三角形相似综合题、平行线的性质、勾股定理、相似三角形的判定和性质、解题的关键是学会添加常用辅助线,构造特殊三角形以及相似三角形解决问题,属于中考压轴题.28.(14分)(2016•南通)如图,平面直角坐标系xOy中,点C(3,0),函数y=(k>0,x>0)的图象经过▱OABC的顶点A(m,n)和边BC的中点D.(1)求m的值;(2)若△OAD的面积等于6,求k的值;(3)若P为函数y═(k>0,x>0)的图象上一个动点,过点P作直线l⊥x轴于点M,直线l与x轴上方的▱OABC的一边交于点N,设点P的横坐标为t,当时,求t的值.【分析】(1)根据平行四边形的性质确定出B的坐标从而确定出D的坐标,而点A,D在反比例函数图象上,建立方程求出m,(2)根据三角形OAD的面积是平行四边形OABC面积的一半,确定出n即可;(3)根据平行四边形的性质和双曲线的性质,确定出PM,ON即可.【解答】解:(1)∵点C(3,0),▱OABC的顶点A(m,n),∴B(m+3,n),∴D(+3,n),∵函数y=(k>0,x>0)的图象经过▱OABC的顶点A(m,n)和边BC的中点D,∴mn=k,,∴m=2,(2)∵点D是平行四边形BC中点,∴S平行四边形OABC=2S△OAD=12,∵S平行四边形OABC=3×n=12,∴n=4,由(1)知,m=2,∴k=mn=8,(3)①如图1,点N在OA上,由(1)知,m=2,∴A(2,n).即0<t<2直线OA的解析式为y=x,设点P的横坐标为t,∴P(t,),∵过点P作直线l⊥x轴于点M.∴N(t,t),M(t,0),∴PN=﹣t,PM=,∵,∴=4(﹣t),∴t=或t=﹣(舍),②如图2,当点N在AB上时,由(1)知,B(5,n),∴2≤t≤5由题意知,P(t,).N(t,n),M(t,0),∵,∴4(n﹣)=,∴t=,③如图3,4,当点N在BC上时,(3<t≤5)∵B(5,n),C(3,0),∴直线BC解析式为y=x﹣,∴P(t,),N(t,t﹣),M(t,0),∵,∴4|t﹣﹣|=,∴t=或t=(舍)或t=或t=(舍)∴t的值为,,或.【点评】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积,平行四边形的面积,平行四边形的性质,解本题的关键是求出m,n的值.。