2017年南通市数学学科基地命题高考模拟密卷(1)(含详解)

合集下载

江苏省南通市(数学学科基地命题)2017年高考模拟试卷(5) Word版含答案

江苏省南通市(数学学科基地命题)2017年高考模拟试卷(5) Word版含答案

(第9题)F EDCBA(第4题)2017年高考模拟试卷(5)南通市数学学科基地命题 第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位......置上... 1. 设集合{1,2,3},{2,3,6}A B ==,则AB 2. 若复数z 满足i 1i z =+,则z 3. 用系统抽样方法从400名学生随机地编号为400~1若第1抽取的号码为 ▲ .4. 如图是一个算法流程图,若输入n是 ▲ .5. 将甲、乙两个不同的球随机放入编号为1,2,3的3个盒子中,每个盒子的放球数量不限,则1,2号盒子中各有1个球的概率为 ▲ . 6. 设x ∈R ,则“2log 1x <”是“220x x --<”的 ▲ 条件.(从“充分不必要”、“必要不充分”、“既不充分也不必要”、“充要”中选择). 7. 已知圆22(1)4x y ++=与抛物线22y px =(0p >)的准线交于A 、B 两点,且AB =则p 的值为 ▲ .8. 设n S 是等差数列{}n a 的前n 项和,7193()S a a =+,则54a a 的值为 ▲ . 9. 如图,三棱锥BCD A -中,E 是AC 中点,F 在AD 上,且FD AF =2,若三棱锥BEF A -的体积是2,则四棱锥ECDF B -的体积 为 ▲ .10.已知函数()sin(2)3f x x π=+(0x <π≤),且1()()3f f αβ==(βα≠),则=+βα ▲ .11.已知函数f (x )=⎩⎨⎧x 2-1,x ≥0,-x +1,x <0.若函数y =f (f (x ))-k 有3个不同的零点,则实数k 的取值范围是 ▲ .12.已知△ABC 外接圆O 的半径为2,且2AB AC AO +=,||||AB AO =,则CA CB ⋅=▲ .13.设a b c ,,是三个正实数,且()a a b c bc ++=,则a b c +的最大值为 ▲ .14.设a 为实数,记函数f (x )=ax -ax 3(x ∈[12,1])的图象为C .如果任何斜率不小于1的直线与C都至多有一个公共点,则a 的取值范围是 ▲ .二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字 说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对边的长.若a cos B =1,b sin A =2,且A -B =π4.(1)求a 的值; (2)求tan A 的值.16.(本小题满分14分)如图,在四棱锥P -ABCD 中,已知底面ABCD 为矩形,且 AB =2,BC =1,E ,F 分别是AB ,PC 的中点,PA ⊥DE . (1)求证:EF ∥平面PAD ; (2)求证:平面PAC ⊥平面PDE .17.(本小题满分14分)某市2016年新建住房面积为500万m 2,其中安置房面积为200万m 2.计划以后每年新建住房面积比上一年增长10% ,且安置房面积比上一年增加50万m 2. 记2016年为第1年.(第16题)(1)该市几年内所建安置房面积之和首次不低于3 000万m 2?(2)是否存在连续两年,每年所建安置房面积占当年新建住房面积的比保持不变?并说明理由.18.(本小题满分16分)已知椭圆C 的方程为22221(0)y x a b a b+=>>,点A ,B 分别为其左、右顶点,点12,F F 分别为其左、右焦点,以点A 为圆心1AF 为半径作圆A ,以点B 为圆心OB 为半径作圆B .若直线l:y x =被圆A 和圆B.(1)求椭圆C 的离心率;(2)已知a =7,问在x 轴上是否存在点P ,使得过点P 有无数条直线被圆A 和圆B 截得的弦长之比为34,若存在,请求出所有点P 的坐标;若不存在,请说明理由.19.(本小题满分16分)已知函数()(1)e x f x x k =--(e 为自然对数的底数,e 2.71828≈,k ∈R ). (1)当0x >时,求()f x 的单调区间和极值;(2)①若对于任意[1,2]x ∈,都有()4f x x <成立,求k 的取值范围;②若12x x ≠,且12()()f x f x =,证明:122x x k +<.20.(本小题满分16分)给定数列{}n a ,记该数列前i 项12i a a a ,,,中的最大项为i A ,该数列后n i -项 12i i n a a a ++,,,中的最小项为i B ,i i i d A B =-(1231i n =-,,,,).(1)对于数列:3,4,7,1,求出相应的123d d d ,,;(第21—A 题)(2)若n S 是数列{}n a 的前n 项和,且对任意*n ∈N ,有21(1)33n n S a n λλ-=-++,其中0λ>且1λ≠. ① 设2n n b a λ=+,判定数列{}nb 是否为等比数列;② 若数列{}n a 对应的i d 满足:1i i d d +>对任意的正整数1232i n =-,,,,恒成立,求λ的取值范围.第Ⅱ卷(附加题,共40分)21.【选做题】本题包括A 、B 、C 、D 共4小题,请选定其中两小题........,并在相应的答题区域.........内作答....若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,△ABC 内接于圆O ,D 为弦BC 上一点,过D 作直线DP // AC ,交AB 于点E ,交圆O 在A 点处的切线于点P .求证:△PAE ∽△BDE .B .选修4—2:矩阵与变换求曲线||||1x y +=在矩阵10103⎡⎤⎢⎥=⎢⎥⎣⎦M 对应的变换作用下得到的曲线所围成图形的面积.C .选修4—4:极坐标与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为cos (0,sin x a a b y b ϕϕϕ=⎧>>⎨=⎩为参数),且曲线C上的点M 对应的参数π3ϕ=,以O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的普通方程;(2)若12π(,)(,)2A B ρθρθ+,是曲线C 上的两点,求221211ρρ+的值.D .选修4-5:不等式选讲已知a >0,b >0,a +b =1,求12a +1+2b +1 的最小值.22.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.如图,在直三棱柱111ABC A B C -中,已知AB AC ⊥,2AB =,4AC =,13AA =.D 是线段BC 的中点.(1)求直线1DB 与平面11A C D 所成角的正弦值; (2)求二面角111B A D C --的大小的余弦值.23.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.设a >b >0,n 是正整数,A n =1n +1(a n +a n -1b +a n -2b 2+…+a 2b n -2 +ab n -1+b n ) ,B n=(a +b 2)n .(1)证明:A 2>B 2;(2)比较A n 与B n (n ∈N*)的大小,并给出证明.题图BCD A 1 B 1C 1第22题图2017年高考模拟试卷(5)参考答案一、填空题1.{1,2,3,6}. 2.1i +. 3. 391. 4. 18. 5.29. 6.充分不必要. 7.4. 8.76. 9.10.10.已知函数()sin(2)f x x π=+(0x <π≤),且1()()3f f αβ==(βα≠),则=+βα▲ .10.7π.由0x <π≤,知2x ππ7π+≤≤,因为1()()3f f αβ==<,所以()()3π222332αβππ+++=⨯, 所以76αβπ+=.11.(1,2]. f (f (x ))=⎩⎪⎨⎪⎧x 2-2x ,x <0,2-x 2,0≤x <1,x 4-2x 2,x ≥1.作出函数f (f (x ))的图像可知,当1<k ≤2时,函数y =f (f (x ))-k 有3个不同的零点. 12.12.由2AB AC A O +=可得OB OC +=0,即BO OC =,所以圆心在BC 上,且AB AC ⊥.注意到||||=2AB AO =,所以ππ,,4,B C BC AC ====,所以12CA CB ⋅=.13.由()a a b c bc ++=,得1b c b c a a a a ++=⋅,设,b c x y a a ==,则1x y xy ++=, 1ab c x y=++,因为21()2x y x y xy +++=≤,所以2x y ++≥a b c +的最大值.14.设a 为实数,记函数f (x )=ax -ax 3(x ∈[12,1])的图象为C .如果任何斜率不小于1的直线与C 都至多有一个公共点,则a 的取值范围是 ▲ .14.1,42⎡⎤-⎢⎥⎣⎦.由任何斜率不小于1的直线与C 都至多有一个公共点,也即x ∈[12,1]时,曲线()y f x =上任意两点连线的斜率都小于1,所以()1f x '≤在x ∈[12,1]上恒成立.由2()31f x a a x '=-≤,即2310ax a -+≥,设()31g t at a =-+,1,1t ⎡⎤∈⎢⎥⎣⎦,只需1()04g ≥,且(1)0g ≥,所以14a -≤≤.二、解答题15.解:(1)由正弦定理知,b sin A =a sin B =2,①又a cos B =1, ②①,②两式平方相加,得(a sin B )2+(a cos B )2=3, 因为sin 2B +cos 2B =1, 所以a =3(负值已舍);(2)由(1)中①,②两式相除,得sin B cos B=2,即tan B =2,因为A -B =π4,所以tan A =tan(B +π4)=tan B +tanπ41-tan B tanπ4 =1+21-2=-3-22.(14分)16.证:(1)方法1:取线段PD 的中点M ,连结FM 、AM .因为F 为PC 的中点,所以FM ∥CD ,且FM =12CD .因为四边形ABCD 为矩形,E 为AB 的中点,所以EA ∥CD ,且EA =12CD .所以FM ∥EA ,且FM =EA .所以四边形AEFM 为平行四边形.所以EF ∥AM . 又AM ⊂平面P AD ,EF ⊄平面P AD ,所以EF ∥平面P AD .方法2:连结CE 并延长交DA 的延长线于N ,连结PN .因为四边形ABCD 为矩形,所以AD ∥BC , 所以∠BCE =∠ANE ,∠CBE =∠NAE . 又AE =EB ,所以△CEB ≌△NEA . 所以CE =NE .又F 为PC 的中点,所以EF ∥NP . 又NP ⊂平面P AD ,EF ⊄平面P AD , 所以EF ∥平面P AD .方法3:取CD 的中点Q ,连结FQ 、EQ .在矩形ABCD 中,E 为AB 的中点,所以AE =DQ ,且AE ∥DQ .所以四边形AEQD 为平行四边形, 所以EQ ∥AD .又AD ⊂平面P AD ,EQ ⊄平面P AD , 所以EQ ∥平面P AD .(2分)因为Q 、F 分别为CD 、CP 的中点, 所以FQ ∥PD .又PD ⊂平面P AD ,FQ ⊄平面P AD ,所以FQ ∥平面P AD .又FQ 、EQ ⊂平面EQF ,FQ ∩EQ =Q ,所以平面EQF ∥平面P AD .(5分) 因为EF ⊂平面EQF ,所以EF ∥平面P AD . (2) 设AC 、DE 相交于G .在矩形ABCD 中,因为AB =2BC ,E 为AB 的中点,所以DA AE =CDDA= 2.又∠DAE =∠CDA ,所以△DAE ∽△CDA , 所以∠ADE =∠DCA .又∠ADE +∠CDE =∠ADC =90°, 所以∠DCA +∠CDE =90°. 由△DGC 的内角和为180°,得∠DGC =90°. 即DE ⊥AC .因为点P 在平面ABCD 内的正投影O 在直线AC 上,所以PO ⊥平面ABCD . 因为DE ⊂平面ABCD ,所以PO ⊥DE . 因为PO ∩AC =O ,PO 、AC ⊂平面P AC , 所以DE ⊥平面P AC ,又DE ⊂平面PDE ,所以平面P AC ⊥平面PDE .17.解:(1)设n *()n ∈N 年内所建安置房面积之和首次不低于3 000万m 2, 依题意,每年新建安置房面积是以200为首项,50为公差的等差数列, 从而n 年内所建安置房面积之和为(1)20050n n n -⎡⎤+⨯⎢⎥⎣⎦m 2, 则(1)200502n n n -+⨯≥3 000,整理得,271200n n +-≥, 解得8 (15)n n -≤≥舍去.答:8年内所建安置房面积之和首次不低于3 000万m 2.(2)依题意,每年新建住房面积是以500为首项,1.1为公比的等比数列,设第m 年所建安置房面积占当年新建住房面积的比为()p m , 则1120050(1)3()500(10.1)10 1.1m m m m p m --+-+==⋅+⨯, 由()(1)p m p m =+得,13410 1.110 1.1m mm m -++=⨯⨯,解得7m =.答:第7年和第8年,所建安置房面积占当年新建住房面积的比保持不变. ·····14分 18.解:(1)分别过点A 、B 作直线l 的垂线,垂足为11,B A ,由题意得11BB AA =,由点到直线距离公式得112a AA BB ==,因为圆A 以1AF 为半径,所以半径为c ,被直线l截得的弦长为 圆B 以OB 为半径,∴半径为a ,被直线l截得的弦长为因为直线l:y =被圆A 和圆B,==,解得a c 34=(a >c >0). 因为c e a=,所以所求的离心率为34,(2)存在点P ,使得过点P 有无数条直线被圆A 和圆B 截得的弦长之比为34,设点0(,0)P x ,由题意可得直线方程为0()y k x x =-, 直线截圆A 所得的弦长为直线截圆B 所得的弦长为,34==,化简得22222220016(7)9(7)(1)(169)k x k x k c a +--=+-(*),由(1)离心率为34,得22169c a =,即方程(*)为0)1)(49(002=++x x k ,解得10-=x 或490-=x , 即存在2个点)0,1(-和)0,49(-;当10-=x 时,||6||8k k ⎧<⎪⎨<⎪⎩k <<,当490-=x 时,||42||56k k ⎧<⎪⎨<⎪⎩k <,即有无数条直线;故存在2个点P ,使得过点P 有无数条直线被圆A 和圆B 截得的弦长之比为34.19.解:(1)∵()()e ,0x f x x k x '=->.(i )当0k ≤时,()0恒成立'>f x ,∴()f x 的递增区间是0+(,)∞,无递减区间;无极值.(ii )当0>k 时,由()0'>f x 得,>x k ;由()0'<f x 得,0<<x k ;∴()f x 的递减区间是(0,)k ,递増区间是(,+)∞k ,()f x 的极小值为()e k f k =-,无极大值.(2)①由()4f x x <,可得(1)e 40x x k x ---<, 因为e 0x >,所以41e x x x k --<,即41e xxk x >--对任意[1,2]x ∈恒成立, 记4()1ex xg x x =--,则4(1)e 4(1)()1e e x x x x x g x -+-'=-=, 因为[1,2]x ∈,所以()0g x '>,即()g x 在[1,2]x ∈上单调递增,故2max228e 8()(2)1e e g x g -==-=.所以实数k 的取值范围为22e 8(,)e-+∞.②由已知1212()()()f x f x x x =≠,结合(1)可知, 0k >,()f x 在(,)-∞k 上单调递减,在(,+)∞k 上单调递增,又(1)0+=f k ,1<+x k 时,()0<f x .不妨设121<<<+x k x k ,此时2x k >,12->k x k ,故要证122+<x x k ,只要证122k x x ->,只要证12(2)()f k x f x ->, 因12()()f x f x =,即证11(2)()f k x f x ->.设()(2)()h x f k x f x =--2(1)(1)()kx xx k x k x k -+-=---<e e e , 2()e ()()e e k xxx k h x x k -'=--22()()k x x x k --=e e e , ∴当<x k 时,()0h x '<,()h x 在(,)-∞k 上单调递减,∴(,)x k ∈-∞时,()()0k k h x h k >=-+=e e ,故当<x k 时,(2)()->f k x f x ,即11(2)()->f k x f x 成立,∴122+<x x k .20.解:(1)111312A B d ===,,;222413A B d ===,,;333716A B d ===,,. …………………………………………………………………3分(2)① 当1n =时,11(1)1a a λλ-=-+,所以11a =;当2n ≥时,由21(1)33n n S a n λλ-=-++,则1121(1)(1)33n n S a n λλ---=-+-+,两式相减得12(1)3n n n a a a λλλ--=-++,即123n n a a λ-=+,所以11122233(1)3(1)n n n n b a a b λλλλλ---⎡⎤=++=+==⎢⎥--⎣⎦.……………………………6分 因为112313(1)3(1)b a λλλ-=+=--, 所以当13λ≠时,数列{}n b 满足1n n bb λ-=(2n ≥),即数列{}n b 是以313(1)λλ--为首项,λ为公比的等比数列;当13λ=时,数列{}n b 不是等比数列. …………………………………………………8分② 由①知,当13λ≠时,13123(1)3(1)n n a λλλλ--=⋅---;当13λ=时,23(1)n a λ=--. (10)分又{}{}1212max min i i i i n d a a a a a a ++=-,,,,,,, {}{}112123max min i i i i n d a a a a a a ++++=-,,,,,,.由于{}{}1223min min i i n i i n a a a a a a ++++,,,≤,,,,所以由1i i d d +>可得,{}{}12121max max i i a a a a a a +<,,,,,,.所以{}1211max i i a a a a ++=,,,对任意的正整数1232i n =-,,,,恒成立, 即数列{}n a 的前1n -项单调递增是题设成立的必要条件,易知13λ≠. (12)分因为1i i i d a a +=-,112i i i d a a +++=-,所以1212i i i i i d d a a a +++-=+-1231(12)3(1)i λλλλλ--=⋅+--1231(1)3(1)i λλλλ--=⋅--.当1λ>时,由1n n a a +>,得3103(1)λλ->-,解得1λ>, 此时10i i d d +-≥,不符合1i i d d +>,舍去;当01λ<<,由1n n a a +>,得3103(1)λλ-<-,解得11λ<<,此时10i i d d +-<,符合1i i d d +>.综上所述,λ的取值范围是()11,. (16)分第II 卷(附加题,共40分)21A .证:因为PA 是圆O 在点A 处的切线,所以∠PAB =∠ACB .因为PD ∥AC ,所以∠EDB =∠ACB , 所以∠PAE =∠PAB =∠ACB =∠BDE .又∠PEA =∠BED ,故△PAE ∽△BDE . …………………… 10分21B .解:设点(x 0,y 0)为曲线|x |+|y |=1上的任意一点,在矩阵10103M ⎛⎫⎪= ⎪ ⎪⎝⎭对应的变换作用下得到的点为(,)x y '',则0010103xx y y ⎛⎫'⎡⎤⎡⎤ ⎪=⎢⎥⎢⎥ ⎪' ⎪⎣⎦⎣⎦⎝⎭,所以003x x y y ='⎧⎨='⎩ ……5分 所以曲线|x |+|y |=1在矩阵10103M ⎛⎫⎪= ⎪ ⎪⎝⎭对应的变换作用下得到的曲线为|x |+3|y |=1, 所围成的图形为菱形,其面积为1222233⨯⨯= .……10分21C .解:(1)将M 及对应的参数3πϕ=代入cos ,(0,sin x a a b y b ϕϕϕ=⎧>>⎨=⎩为参数),得2cos 3sin3a b ππ⎧=⎪⎪=,所以42a b =⎧⎨=⎩,所以曲线1C 的普通方程为221164x y +=. ……4分(2)曲线1C 的极坐标方程为2222cos sin 1164ρθρθ+=,将12(,),(,)2A B πρθρθ+代入 得222211cos sin 1164ρθρθ+=,222222sin cos 1164ρθρθ+=,所以221211516ρρ+=. ……10分21D .解:因为a >0,b >0,a +b =1,所以(2a +1)+(2b +2)=5,从而(12a +1+2b +1 )[(2a +1)+(2b +2)]=1+4+2b +22a +1+4(2a +1)2b +2≥5+22b +22a +1×4(2a +1)2b +2=9. …………………… 6分所以12a +1+2b +1≥95.当且仅当2b +22a +1=4(2a +1)2b +2,且a +b =1,即a =13,b =23 时,12a +1+2b +1取得最小值95. …………………… 10分 22.解:因为在直三棱柱111ABC A B C -中,AB AC ⊥,所以分别以AB 、AC 、1AA 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系, 则111(0,0,0),(2,0,0),(0,4,0),(0,0,3),(2,0,3),(0,4,3)A B C A B C ,因为D 是BC 的中点,所以(1,2,0)D ,……………………………………………………2分(1)因为111(0,4,0),(1,2,3)AC A D ==-,设平面11A C D 的法向量1111(,,)n x y z =, 则1111100n AC n A D ⎧⋅=⎪⎨⋅=⎪⎩,即111140230y x y z =⎧⎨+-=⎩,取111301x y z =⎧⎪=⎨⎪=⎩,所以平面11A C D 的法向量1(3,0,1)n =,而1(1,2,3)DB =-, 所以1111113cos ,n DB n DB n DB ⋅<>==⋅ 所以直线1DB 与平面11A C D ;…………………………………5分(2)11(2,0,0)A B =,1(1,2,3)DB =-,设平面11B A D 的法向量2222(,,)n x y z =, 则2112100n A B n DB ⎧⋅=⎪⎨⋅=⎪⎩,即222220230x x y z =⎧⎨-+=⎩,取22232x y z =⎧⎪=⎨⎪=⎩,平面11B A D 的法向量2(0,3,2)n =,所以121212130cos ,n n n n n n ⋅<>==⋅, 二面角111B A D C --.……………………………………………10分23.(1)证明:0)(121)2()(31222222>-=+-++=-b a b a b ab a B A (2)证明:11,1B A n ==;,)2(,11,311nn n n n b a B b a b a n A n +=--+=≥++令,,y b a x b a =-=+且0,>y x , 于是,)2(],)()[()1(21)2()2(1111111n n n n n n n n x B y x y x y n y y x y x n A =--++=--++=+++++ 因为y x C y x C y x C y x y x n n n n n n n n 11323111112)22(])()[(+-++++≥++=--+ ,所以n n n n n n n n B x x y x C y n A ===⋅+≥++)2(22)1(21111.。

2017年高考模拟试卷(5)含答案

2017年高考模拟试卷(5)含答案

(第9题)F EDCBA(第4题)2017年高考模拟试卷(5)南通市数学学科基地命题 第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位......置上... 1. 设集合{1,2,3},{2,3,6}A B ==,则AB 2. 若复数z 满足i 1i z =+,则z 3. 用系统抽样方法从400名学生随机地编号为400~1若第1抽取的号码为 ▲ .4. 如图是一个算法流程图,若输入n是 ▲ .5. 将甲、乙两个不同的球随机放入编号为1,2,3的3个盒子中,每个盒子的放球数量不限,则1,2号盒子中各有1个球的概率为 ▲ . 6. 设x ∈R ,则“2log 1x <”是“220x x --<”的 ▲ 条件.(从“充分不必要”、“必要不充分”、“既不充分也不必要”、“充要”中选择). 7. 已知圆22(1)4x y ++=与抛物线22y px =(0p >)的准线交于A 、B 两点,且AB =则p 的值为 ▲ .8. 设n S 是等差数列{}n a 的前n 项和,7193()S a a =+,则54a a 的值为 ▲ . 9. 如图,三棱锥BCD A -中,E 是AC 中点,F 在AD 上,且FD AF =2,若三棱锥BEF A -的体积是2,则四棱锥ECDF B -的体积 为 ▲ .10.已知函数()sin(2)3f x x π=+(0x <π≤),且1()()3f f αβ==(βα≠),则=+βα ▲ .11.已知函数f (x )=⎩⎨⎧x 2-1,x ≥0,-x +1,x <0.若函数y =f (f (x ))-k 有3个不同的零点,则实数k 的取值范围是 ▲ .12.已知△ABC 外接圆O 的半径为2,且2AB AC AO +=,||||AB AO =,则CA CB ⋅=▲ .13.设a b c ,,是三个正实数,且()a a b c bc ++=,则a b c +的最大值为 ▲ .14.设a 为实数,记函数f (x )=ax -ax 3(x ∈[12,1])的图象为C .如果任何斜率不小于1的直线与C都至多有一个公共点,则a 的取值范围是 ▲ .二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字 说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对边的长.若a cos B =1,b sin A =2,且A -B =π4.(1)求a 的值; (2)求tan A 的值.16.(本小题满分14分)如图,在四棱锥P -ABCD 中,已知底面ABCD 为矩形,且 AB =2,BC =1,E ,F 分别是AB ,PC 的中点,PA ⊥DE . (1)求证:EF ∥平面PAD ; (2)求证:平面PAC ⊥平面PDE .17.(本小题满分14分)某市2016年新建住房面积为500万m 2,其中安置房面积为200万m 2.计划以后每年新建住房面积比上一年增长10% ,且安置房面积比上一年增加50万m 2. 记2016年为第1年.(第16题)(1)该市几年内所建安置房面积之和首次不低于3 000万m 2?(2)是否存在连续两年,每年所建安置房面积占当年新建住房面积的比保持不变?并说明理由.18.(本小题满分16分)已知椭圆C 的方程为22221(0)y x a b a b+=>>,点A ,B 分别为其左、右顶点,点12,F F 分别为其左、右焦点,以点A 为圆心1AF 为半径作圆A ,以点B 为圆心OB 为半径作圆B .若直线l:y =被圆A 和圆B.(1)求椭圆C 的离心率;(2)已知a =7,问在x 轴上是否存在点P ,使得过点P 有无数条直线被圆A 和圆B 截得的弦长之比为34,若存在,请求出所有点P 的坐标;若不存在,请说明理由.19.(本小题满分16分)已知函数()(1)e x f x x k =--(e 为自然对数的底数,e 2.71828≈,k ∈R ). (1)当0x >时,求()f x 的单调区间和极值;(2)①若对于任意[1,2]x ∈,都有()4f x x <成立,求k 的取值范围;②若12x x ≠,且12()()f x f x =,证明:122x x k +<.20.(本小题满分16分)给定数列{}n a ,记该数列前i 项12i a a a ,,,中的最大项为i A ,该数列后n i -项 12i i n a a a ++,,,中的最小项为i B ,i i i d A B =-(1231i n =-,,,,). (1)对于数列:3,4,7,1,求出相应的123d d d ,,;(第21—A 题)(2)若n S 是数列{}n a 的前n 项和,且对任意*n ∈N ,有21(1)33n n S a n λλ-=-++,其中0λ>且1λ≠. ① 设23(1)n n b a λ=+-,判定数列{}n b 是否为等比数列;② 若数列{}n a 对应的i d 满足:1i i d d +>对任意的正整数1232i n =-,,,,恒成立,求λ的取值范围.第Ⅱ卷(附加题,共40分)21.【选做题】本题包括A 、B 、C 、D 共4小题,请选定其中两小题........,并在相应的答题区域.........内作答....若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,△ABC 内接于圆O ,D 为弦BC 上一点,过D 作直线DP // AC ,交AB 于点E ,交圆O 在A 点处的切线于点P .求证:△PAE ∽△BDE .B .选修4—2:矩阵与变换求曲线||||1x y +=在矩阵10103⎡⎤⎢⎥=⎢⎥⎣⎦M 对应的变换作用下得到的曲线所围成图形的面积.C .选修4—4:极坐标与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为cos (0,sin x a a b y b ϕϕϕ=⎧>>⎨=⎩为参数),且曲线C上的点M 对应的参数π3ϕ=,以O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的普通方程;(2)若12π(,)(,)2A B ρθρθ+,是曲线C 上的两点,求221211ρρ+的值.D .选修4-5:不等式选讲已知a >0,b >0,a +b =1,求12a +1+2b +1 的最小值.22.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.如图,在直三棱柱111ABC A B C -中,已知AB AC ⊥,2AB =,4AC =,13AA =.D 是线段BC 的中点.(1)求直线1DB 与平面11A C D 所成角的正弦值; (2)求二面角111B A D C --的大小的余弦值.23.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.设a >b >0,n 是正整数,A n =1n +1(a n +a n -1b +a n -2b 2+…+a 2b n -2 +ab n -1+b n ) ,B n=(a +b 2)n .(1)证明:A 2>B 2;(2)比较A n 与B n (n ∈N*)的大小,并给出证明.题图BCD A 1 B 1C 1第22题图2017年高考模拟试卷(5)参考答案一、填空题1.{1,2,3,6}. 2.1i +. 3. 391. 4. 18. 5.29. 6.充分不必要. 7.4. 8.76. 9.10.10.已知函数()sin(2)3f x x π=+(0x <π≤),且1()()3f f αβ==(βα≠),则=+βα▲ .10.76π.由0x <π≤,知2333x ππ7π+≤≤,因为1()()3f f αβ==<,所以()()3π222332αβππ+++=⨯, 所以76αβπ+=.11.(1,2]. f (f (x ))=⎩⎪⎨⎪⎧x 2-2x ,x <0,2-x 2,0≤x <1,x 4-2x 2,x ≥1.作出函数f (f (x ))的图像可知,当1<k ≤2时,函数y =f (f (x ))-k 有3个不同的零点.12.12.由2AB AC AO +=可得OB OC +=0,即BO OC =,所以圆心在BC 上,且AB AC ⊥.注意到||||=2AB AO =,所以ππ,,4,36B C BC AC ====,所以12CA CB ⋅=.13.由()a a b c bc ++=,得1b c b c a a a a ++=⋅,设,b c x y a a==,则1x y xy ++=,1ab c x y =++,因为21()2x y x y xy +++=≤,所以2x y ++≥a b c+的最大值.14.设a 为实数,记函数f (x )=ax -ax 3(x ∈[12,1])的图象为C .如果任何斜率不小于1的直线与C 都至多有一个公共点,则a 的取值范围是 ▲ .14.1,42⎡⎤-⎢⎥⎣⎦.由任何斜率不小于1的直线与C 都至多有一个公共点,也即x ∈[12,1]时,曲线()y f x =上任意两点连线的斜率都小于1,所以()1f x '≤在x ∈[12,1]上恒成立.由2()31f x a ax '=-≤,即2310ax a -+≥,设()31g t at a =-+,1,14t ⎡⎤∈⎢⎥⎣⎦,只需1()04g ≥,且(1)0g ≥,所以142a -≤≤.二、解答题15.解:(1)由正弦定理知,b sin A =a sin B =2,①又a cos B =1, ②①,②两式平方相加,得(a sin B )2+(a cos B )2=3, 因为sin 2B +cos 2B =1, 所以a =3(负值已舍);(2)由(1)中①,②两式相除,得sin B cos B=2,即tan B =2,因为A -B =π4,所以tan A =tan(B +π4)=tan B +tanπ41-tan B tanπ4 =1+21-2=-3-22.(14分)16.证:(1)方法1:取线段PD 的中点M ,连结FM 、AM .因为F 为PC 的中点,所以FM ∥CD ,且FM =12CD .因为四边形ABCD 为矩形,E 为AB 的中点,所以EA ∥CD ,且EA =12CD .所以FM ∥EA ,且FM =EA .所以四边形AEFM 为平行四边形.所以EF ∥AM . 又AM ⊂平面P AD ,EF ⊄平面P AD ,所以EF ∥平面P AD .方法2:连结CE 并延长交DA 的延长线于N ,连结PN .因为四边形ABCD 为矩形,所以AD ∥BC , 所以∠BCE =∠ANE ,∠CBE =∠NAE . 又AE =EB ,所以△CEB ≌△NEA . 所以CE =NE .又F 为PC 的中点,所以EF ∥NP . 又NP ⊂平面P AD ,EF ⊄平面P AD , 所以EF ∥平面P AD .方法3:取CD 的中点Q ,连结FQ 、EQ .在矩形ABCD 中,E 为AB 的中点,所以AE =DQ ,且AE ∥DQ .所以四边形AEQD 为平行四边形, 所以EQ ∥AD .又AD ⊂平面P AD ,EQ ⊄平面P AD , 所以EQ ∥平面P AD .(2分)因为Q 、F 分别为CD 、CP 的中点, 所以FQ ∥PD .又PD ⊂平面P AD ,FQ ⊄平面P AD ,所以FQ ∥平面P AD .又FQ 、EQ ⊂平面EQF ,FQ ∩EQ =Q ,所以平面EQF ∥平面P AD .(5分) 因为EF ⊂平面EQF ,所以EF ∥平面P AD . (2) 设AC 、DE 相交于G .在矩形ABCD 中,因为AB =2BC ,E 为AB 的中点,所以DA AE =CDDA= 2.又∠DAE =∠CDA ,所以△DAE ∽△CDA , 所以∠ADE =∠DCA .又∠ADE +∠CDE =∠ADC =90°, 所以∠DCA +∠CDE =90°. 由△DGC 的内角和为180°,得∠DGC =90°. 即DE ⊥AC .因为点P 在平面ABCD 内的正投影O 在直线AC 上,所以PO ⊥平面ABCD . 因为DE ⊂平面ABCD ,所以PO ⊥DE . 因为PO ∩AC =O ,PO 、AC ⊂平面P AC , 所以DE ⊥平面P AC ,又DE ⊂平面PDE ,所以平面P AC ⊥平面PDE .17.解:(1)设n *()n ∈N 年内所建安置房面积之和首次不低于3 000万m 2, 依题意,每年新建安置房面积是以200为首项,50为公差的等差数列, 从而n 年内所建安置房面积之和为(1)200502n n n -⎡⎤+⨯⎢⎥⎣⎦m 2,则(1)200502n n n -+⨯≥3 000,整理得,271200n n +-≥, 解得8 (15)n n -≤≥舍去.答:8年内所建安置房面积之和首次不低于3 000万m 2.(2)依题意,每年新建住房面积是以500为首项,1.1为公比的等比数列,设第m 年所建安置房面积占当年新建住房面积的比为()p m , 则1120050(1)3()500(10.1)10 1.1m m m m p m --+-+==⋅+⨯, 由()(1)p m p m =+得,13410 1.110 1.1m mm m -++=⨯⨯,解得7m =.答:第7年和第8年,所建安置房面积占当年新建住房面积的比保持不变. ·····14分 18.解:(1)分别过点A 、B 作直线l 的垂线,垂足为11,B A , 由题意得11BB AA =,由点到直线距离公式得112a AA BB ==,因为圆A 以1AF 为半径,所以半径为c ,被直线l截得的弦长为圆B 以OB 为半径,∴半径为a ,被直线l截得的弦长为因为直线l:y x =被圆A 和圆B,==,解得a c 34=(a >c >0). 因为c e a =,所以所求的离心率为34,(2)存在点P ,使得过点P 有无数条直线被圆A 和圆B 截得的弦长之比为34,设点0(,0)P x ,由题意可得直线方程为0()y k x x =-, 直线截圆A 所得的弦长为, 直线截圆B 所得的弦长为34==,化简得22222220016(7)9(7)(1)(169)k x k x k c a +--=+-(*),由(1)离心率为34,得22169c a =,即方程(*)为0)1)(49(002=++x x k ,解得10-=x 或490-=x , 即存在2个点)0,1(-和)0,49(-;当10-=x 时,||6||8k k⎧<⎪⎨<⎪⎩k <<,当490-=x 时,||42||56k k⎧<⎪⎨<⎪⎩k << 即有无数条直线;故存在2个点P ,使得过点P 有无数条直线被圆A 和圆B 截得的弦长之比为34.19.解:(1)∵()()e ,0x f x x k x '=->.(i )当0k ≤时,()0恒成立'>f x ,∴()f x 的递增区间是0+(,)∞,无递减区间;无极值.(ii )当0>k 时,由()0'>f x 得,>x k ;由()0'<f x 得,0<<x k ;∴()f x 的递减区间是(0,)k ,递増区间是(,+)∞k ,()f x 的极小值为()e k f k =-,无极大值.(2)①由()4f x x <,可得(1)e 40x x k x ---<, 因为e 0x >,所以41e x x x k --<,即41e xxk x >--对任意[1,2]x ∈恒成立, 记4()1ex xg x x =--,则4(1)e 4(1)()1e e x x x x x g x -+-'=-=, 因为[1,2]x ∈,所以()0g x '>,即()g x 在[1,2]x ∈上单调递增,故2max228e 8()(2)1e e g x g -==-=.所以实数k 的取值范围为22e 8(,)e-+∞.②由已知1212()()()f x f x x x =≠,结合(1)可知,0k >,()f x 在(,)-∞k 上单调递减,在(,+)∞k 上单调递增,又(1)0+=f k ,1<+x k 时,()0<f x .不妨设121<<<+x k x k ,此时2x k >,12->k x k ,故要证122+<x x k ,只要证122k x x ->,只要证12(2)()f k x f x ->, 因12()()f x f x =,即证11(2)()f k x f x ->.设()(2)()h x f k x f x =--2(1)(1)()kx xx k x k x k -+-=---<e e e , 2()e ()()e e k xxx k h x x k -'=--22()()k x x x k --=e e e , ∴当<x k 时,()0h x '<,()h x 在(,)-∞k 上单调递减,∴(,)x k ∈-∞时,()()0k k h x h k >=-+=e e ,故当<x k 时,(2)()->f k x f x ,即11(2)()->f k x f x 成立,∴122+<x x k .20.解:(1)111312A B d ===,,;222413A B d ===,,;333716A B d ===,,. …………………………………………………………………3分(2)① 当1n =时,11(1)1a a λλ-=-+,所以11a =;当2n ≥时,由21(1)33n n S a n λλ-=-++,则1121(1)(1)33n n S a n λλ---=-+-+,两式相减得12(1)3n n n a a a λλλ--=-++,即123n n a a λ-=+,所以11122233(1)3(1)n n n n b a a b λλλλλ---⎡⎤=++=+==⎢⎥--⎣⎦.……………………………6分 因为112313(1)3(1)b a λλλ-=+=--, 所以当13λ≠时,数列{}n b 满足1n n bb λ-=(2n ≥),即数列{}n b 是以313(1)λλ--为首项,λ为公比的等比数列;当13λ=时,数列{}n b 不是等比数列. …………………………………………………8分② 由①知,当13λ≠时,13123(1)3(1)n n a λλλλ--=⋅---;当13λ=时,23(1)n a λ=--.……………………………………………………………10分又{}{}1212max min i i i i n d a a a a a a ++=-,,,,,,, {}{}112123max min i i i i n d a a a a a a ++++=-,,,,,,.由于{}{}1223min min i i n i i n a a a a a a ++++,,,≤,,,,所以由1i i d d +>可得,{}{}12121max max i i a a a a a a +<,,,,,,.所以{}1211max i i a a a a ++=,,,对任意的正整数1232i n =-,,,,恒成立,即数列{}n a 的前1n -项单调递增是题设成立的必要条件,易知13λ≠. (12)分因为1i i i d a a +=-,112i i i d a a +++=-,所以1212i i i i i d d a a a +++-=+-1231(12)3(1)i λλλλλ--=⋅+--1231(1)3(1)i λλλλ--=⋅--.当1λ>时,由1n n a a +>,得3103(1)λλ->-,解得1λ>, 此时10i i d d +-≥,不符合1i i d d +>,舍去;当01λ<<,由1n n a a +>,得3103(1)λλ-<-,解得113λ<<,此时10i i d d +-<,符合1i i d d +>.综上所述,λ的取值范围是()113,. ……………………………………………………16分第II 卷(附加题,共40分)21A .证:因为PA 是圆O 在点A 处的切线,所以∠PAB =∠ACB .因为PD ∥AC ,所以∠EDB =∠ACB , 所以∠PAE =∠PAB =∠ACB =∠BDE .又∠PEA =∠BED ,故△PAE ∽△BDE . …………………… 10分21B .解:设点(x 0,y 0)为曲线|x |+|y |=1上的任意一点,在矩阵10103M ⎛⎫⎪= ⎪ ⎪⎝⎭对应的变换作用下得到的点为(,)x y '',则0010103xx y y ⎛⎫'⎡⎤⎡⎤ ⎪=⎢⎥⎢⎥ ⎪' ⎪⎣⎦⎣⎦⎝⎭,所以003x x y y ='⎧⎨='⎩ ……5分 所以曲线|x |+|y |=1在矩阵10103M ⎛⎫⎪= ⎪ ⎪⎝⎭对应的变换作用下得到的曲线为|x |+3|y |=1, 所围成的图形为菱形,其面积为1222233⨯⨯= .……10分21C .解:(1)将M 及对应的参数3πϕ=代入cos ,(0,sin x a a b y b ϕϕϕ=⎧>>⎨=⎩为参数),得2cos 3sin 3a b ππ⎧=⎪⎪=,所以42a b =⎧⎨=⎩,所以曲线1C 的普通方程为221164x y +=. ……4分(2)曲线1C 的极坐标方程为2222cos sin 1164ρθρθ+=,将12(,),(,)2A B πρθρθ+代入 得222211cos sin 1164ρθρθ+=,222222sin cos 1164ρθρθ+=,所以221211516ρρ+=. ……10分21D .解:因为a >0,b >0,a +b =1,所以(2a +1)+(2b +2)=5,从而(12a +1+2b +1 )[(2a +1)+(2b +2)]=1+4+2b +22a +1+4(2a +1)2b +2≥5+22b +22a +1×4(2a +1)2b +2=9. …………………… 6分 所以12a +1+2b +1≥95.当且仅当2b +22a +1=4(2a +1)2b +2,且a +b =1,即a =13,b =23 时,12a +1+2b +1取得最小值95. …………………… 10分 22.解:因为在直三棱柱111ABC A B C -中,AB AC ⊥,所以分别以AB 、AC 、1AA 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系, 则111(0,0,0),(2,0,0),(0,4,0),(0,0,3),(2,0,3),(0,4,3)A B C A B C ,因为D 是BC 的中点,所以(1,2,0)D ,……………………………………………………2分(1)因为111(0,4,0),(1,2,3)A C A D ==-,设平面11A C D 的法向量1111(,,)n x y z =,则1111100n A C n A D ⎧⋅=⎪⎨⋅=⎪⎩,即111140230y x y z =⎧⎨+-=⎩,取111301x y z =⎧⎪=⎨⎪=⎩,所以平面11A C D 的法向量1(3,0,1)n =,而1(1,2,3)DB =-, 所以111111335cos ,n DB n DB n DB ⋅<>==⋅, 所以直线1DB 与平面11A C D ;…………………………………5分(2)11(2,0,0)A B =,1(1,2,3)DB =-,设平面11B A D 的法向量2222(,,)n x y z =,则2112100n A B n DB ⎧⋅=⎪⎨⋅=⎪⎩,即222220230x x y z =⎧⎨-+=⎩,取222032x y z =⎧⎪=⎨⎪=⎩,平面11B A D 的法向量2(0,3,2)n =,所以121212130cos ,n n n n n n ⋅<>==⋅, 二面角111B A D C --.……………………………………………10分23.(1)证明:0)(121)2()(31222222>-=+-++=-b a b a b ab a B A (2)证明:11,1B A n ==;,)2(,11,311nn n n n b a B b a b a n A n +=--+=≥++令,,y b a x b a =-=+且0,>y x , 于是,)2(],)()[()1(21)2()2(1111111n n n n n n n n x B y x y x y n y y x y x n A =--++=--++=+++++ 因为y x C y x C y x C y x y x nn n n n n n n 11323111112)22(])()[(+-++++≥++=--+ ,所以n n n n nn n n B x x y x C y n A ===⋅+≥++)2(22)1(21111.。

江苏省南通市(数学学科基地命题)2017年高考模拟试卷(5)有答案

江苏省南通市(数学学科基地命题)2017年高考模拟试卷(5)有答案

(第9题)F EDCBA(第4题)2017年高考模拟试卷(5) 南通市数学学科基地命题第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1. 设集合{1,2,3},{2,3,6}A B ==,则AB = .2. 若复数z 满足i 1i z =+,则z 的共轭复数是 . 3. 用系统抽样方法从400名学生中抽取容量为20的样本,将400名学生随机地编号为400~1,按编号顺序平均分为20个组. 若第1组中用抽签的方法确定抽出的号码为11,则第20组 抽取的号码为 .4. 如图是一个算法流程图,若输入n 的值是6,则输出S 的值是 .5. 将甲、乙两个不同的球随机放入编号为1,2,3的3个盒子中,每个盒子的放球数量不限,则1,2号盒子中各有1个球的概率为 . 6. 设x ∈R ,则“2log 1x <”是“220x x --<”的条件.(从“充分不必要”、“必要不充分”、“既不充分也不必要”、“充要”中选择).7. 已知圆22(1)4x y ++=与抛物线22y px =(0p >)的准线交于A 、B 两点,且AB =则p 的值为 .8. 设n S 是等差数列{}n a 的前n 项和,7193()S a a =+,则54a a 的值为 . 9. 如图,三棱锥BCD A -中,E 是AC 中点,F 在AD 上,且FD AF =2,若三棱锥BEF A -的体积是2,则四棱锥ECDF B -的体积 为 .10.已知函数()sin(2)3f x x π=+(0x <π≤),且1()()3f f αβ==(βα≠),则=+βα .11.已知函数f (x )=⎩⎨⎧x 2-1,x ≥0,-x +1,x <0.若函数y =f (f (x ))-k 有3个不同的零点,则实数k 的取值范围是 .12.已知△ABC 外接圆O 的半径为2,且2AB AC AO +=,||||AB AO =,则CA CB ⋅= .13.设a b c ,,是三个正实数,且()a a b c bc ++=,则a b c+的最大值为 .14.设a 为实数,记函数f (x )=ax -ax 3(x ∈[12,1])的图象为C .如果任何斜率不小于1的直线与C都至多有一个公共点,则a 的取值范围是 .二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字 说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对边的长.若a cos B =1,b sin A =2,且A -B =π4.(1)求a 的值; (2)求tan A 的值.16.(本小题满分14分)如图,在四棱锥P -ABCD 中,已知底面ABCD 为矩形,且 AB =2,BC =1,E ,F 分别是AB ,PC 的中点,PA ⊥DE . (1)求证:EF ∥平面PAD ; (2)求证:平面PAC ⊥平面PDE .17.(本小题满分14分)某市2016年新建住房面积为500万m 2,其中安置房面积为200万m 2.计划以后每年新建住房 面积比上一年增长10% ,且安置房面积比上一年增加50万m 2. 记2016年为第1年. (1)该市几年内所建安置房面积之和首次不低于3 000万m 2?(2)是否存在连续两年,每年所建安置房面积占当年新建住房面积的比保持不变?并说明理由.18.(本小题满分16分)已知椭圆C 的方程为22221(0)y x a b a b+=>>,点A ,B 分别为其左、右顶点,点12,F F 分别为其左、右焦点,以点A 为圆心1AF 为半径作圆A ,以点B 为圆心OB 为半径作圆B .若直线l :y =被圆A 和圆B .(1)求椭圆C 的离心率;(2)已知a =7,问在x 轴上是否存在点P ,使得过点P 有无数条直线被圆A 和圆B 截得的弦长之比为34,若存在,请求出所有点P(第16题)(第21—A 题)19.(本小题满分16分)已知函数()(1)e x f x x k =--(e 为自然对数的底数,e 2.71828≈,k ∈R ). (1)当0x >时,求()f x 的单调区间和极值;(2)①若对于任意[1,2]x ∈,都有()4f x x <成立,求k 的取值范围;②若12x x ≠,且12()()f x f x =,证明:122x x k +<.20.(本小题满分16分)给定数列{}n a ,记该数列前i 项12i a a a ,,,中的最大项为i A ,该数列后n i -项 12i i n a a a ++,,,中的最小项为i B ,i i i d A B =-(1231i n =-,,,,). (1)对于数列:3,4,7,1,求出相应的123d d d ,,;(2)若n S 是数列{}n a 的前n 项和,且对任意*n ∈N ,有21(1)33n n S a n λλ-=-++,其中0λ>且1λ≠. ① 设23(1)n n b a λ=+-,判定数列{}n b 是否为等比数列;② 若数列{}n a 对应的i d 满足:1i i d d +>对任意的正整数1232i n =-,,,,恒成立, 求λ的取值范围.第Ⅱ卷(附加题,共40分)21.【选做题】本题包括A 、B 、C 、D 共4小题,请选定其中两小题........,并在相应的答题区域内作答.............若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,△ABC 内接于圆O ,D 为弦BC 上一点,过D 作直线DP // AC ,交AB 于点E ,交圆O 在A 点处的切线于点P .求证:△PAE ∽△BDE .B .选修4—2:矩阵与变换求曲线||||1x y +=在矩阵10103⎡⎤⎢⎥=⎢⎥⎣⎦M 对应的变换作用下得到的曲线所围成图形的面积.C .选修4—4:极坐标与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为cos (0,sin x a a b y b ϕϕϕ=⎧>>⎨=⎩为参数),且曲线C上的点M 对应的参数π3ϕ=,以O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的普通方程;(2)若12π(,)(,)2A B ρθρθ+,是曲线C 上的两点,求221211ρρ+的值.D .选修4-5:不等式选讲已知a >0,b >0,a +b =1,求12a +1+2b +1 的最小值.22.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.如图,在直三棱柱111ABC A B C -中,已知AB AC ⊥,2AB =,4AC =,13AA =.D 是线段BC 的中点. (1)求直线1DB 与平面11A C D 所成角的正弦值; (2)求二面角111B A D C --的大小的余弦值.23.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.设a >b >0,n 是正整数,A n =1n +1(a n +a n -1b +a n -2b 2+…+a 2b n -2 +ab n -1+b n ) ,B n =(a +b 2)n .(1)证明:A 2>B 2;题图BCD A 1 B 1C 1第22题图(2)比较A n 与B n (n ∈N*)的大小,并给出证明.2017年高考模拟试卷(5)参考答案一、填空题1.{1,2,3,6}. 2.1i +. 3. 391. 4. 18. 5.29. 6.充分不必要. 7.4. 8.76. 9.10.10.已知函数()sin(2)3f x x π=+(0x <π≤),且1()()3f f αβ==(βα≠),则=+βα . 10.76π.由0x <π≤,知2333x ππ7π+≤≤,因为31()()3f f αβ==()()3π222332αβππ+++=⨯,所以76αβπ+=.11.(1,2]. f (f (x ))=⎩⎪⎨⎪⎧x 2-2x ,x <0,2-x 2,0≤x <1,x 4-2x 2,x ≥1.作出函数f (f (x ))的图像可知,当1<k ≤2时,函数y =f (f (x ))-k 有3个不同的零点. 12.12.由2AB AC AO +=可得OB OC +=0,即BO OC =,所以圆心在BC 上,且AB AC ⊥.注意到||||=2AB AO =,所以ππ,,4,36B C BC AC ====12CA CB ⋅=.13.由()a a b c bc ++=,得1b c b c a a a a ++=⋅,设,b c x y a a==,则1x y xy ++=,1ab c x y =++,因为21()2x y x y xy +++=≤,所以2x y ++≥a b c+.14.设a 为实数,记函数f (x )=ax -ax 3(x ∈[12,1])的图象为C .如果任何斜率不小于1的直线与C 都至多有一个公共点,则a 的取值范围是 .14.1,42⎡⎤-⎢⎥⎣⎦.由任何斜率不小于1的直线与C 都至多有一个公共点,也即x ∈[12,1]时,曲线()y f x =上 任意两点连线的斜率都小于1,所以()1f x '≤在x ∈[12,1]上恒成立.由2()31f x a ax '=-≤,即2310ax a -+≥,设()31g t at a =-+,1,14t ⎡⎤∈⎢⎥⎣⎦,只需1()04g ≥,且(1)0g ≥,所以142a -≤≤.二、解答题 15.解:(1)由正弦定理知,b sin A =a sin B =2,①又a cos B =1, ②①,②两式平方相加,得(a sin B )2+(a cos B )2=3, 因为sin 2B +cos 2B =1, 所以a =3(负值已舍);(2)由(1)中①,②两式相除,得sin B cos B=2,即tan B =2,因为A -B =π4,所以tan A =tan(B +π4)=tan B +tanπ41-tan B tanπ4 =1+21-2=-3-22.(14分)16.证:(1)方法1:取线段PD 的中点M ,连结FM 、AM .因为F 为PC 的中点,所以FM ∥CD ,且FM =12CD .因为四边形ABCD 为矩形,E 为AB 的中点,所以EA ∥CD ,且EA =12CD .所以FM ∥EA ,且FM =EA .所以四边形AEFM 为平行四边形.所以EF ∥AM . 又AM ⊂平面P AD ,EF ⊄平面P AD ,所以EF ∥平面P AD .方法2:连结CE 并延长交DA 的延长线于N ,连结PN .因为四边形ABCD 为矩形,所以AD ∥BC , 所以∠BCE =∠ANE ,∠CBE =∠NAE . 又AE =EB ,所以△CEB ≌△NEA . 所以CE =NE .又F 为PC 的中点,所以EF ∥NP . 又NP ⊂平面P AD ,EF ⊄平面P AD , 所以EF ∥平面P AD .方法3:取CD 的中点Q ,连结FQ 、EQ .在矩形ABCD 中,E 为AB 的中点,所以AE =DQ ,且AE ∥DQ .所以四边形AEQD 为平行四边形, 所以EQ ∥AD .又AD ⊂平面P AD ,EQ ⊄平面P AD , 所以EQ ∥平面P AD .(2分)因为Q 、F 分别为CD 、CP 的中点, 所以FQ ∥PD .又PD ⊂平面P AD ,FQ ⊄平面P AD ,所以FQ ∥平面P AD .又FQ 、EQ ⊂平面EQF ,FQ ∩EQ =Q ,所以平面EQF ∥平面P AD .(5分) 因为EF ⊂平面EQF ,所以EF ∥平面P AD . (2) 设AC 、DE 相交于G .在矩形ABCD 中,因为AB =2BC ,E 为AB 的中点,所以DA AE =CDDA= 2.又∠DAE =∠CDA ,所以△DAE ∽△CDA , 所以∠ADE =∠DCA .又∠ADE +∠CDE =∠ADC =90°, 所以∠DCA +∠CDE =90°. 由△DGC 的内角和为180°,得∠DGC =90°. 即DE ⊥AC .因为点P 在平面ABCD 内的正投影O 在直线AC 上,所以PO ⊥平面ABCD . 因为DE ⊂平面ABCD ,所以PO ⊥DE . 因为PO ∩AC =O ,PO 、AC ⊂平面P AC , 所以DE ⊥平面P AC ,又DE ⊂平面PDE ,所以平面P AC ⊥平面PDE . 17.解:(1)设n *()n ∈N 年内所建安置房面积之和首次不低于3 000万m 2, 依题意,每年新建安置房面积是以200为首项,50为公差的等差数列, 从而n 年内所建安置房面积之和为(1)200502n n n -⎡⎤+⨯⎢⎥⎣⎦m 2,则(1)200502n n n -+⨯≥3 000,整理得,271200n n +-≥, 解得8 (15)n n -≤≥舍去.答:8年内所建安置房面积之和首次不低于3 000万m 2.(2)依题意,每年新建住房面积是以500为首项,1.1为公比的等比数列, 设第m 年所建安置房面积占当年新建住房面积的比为()p m , 则1120050(1)3()500(10.1)10 1.1m m m m p m --+-+==⋅+⨯, 由()(1)p m p m =+得,13410 1.110 1.1m mm m -++=⨯⨯,解得7m =.答:第7年和第8年,所建安置房面积占当年新建住房面积的比保持不变. ·····14分 18.解:(1)分别过点A 、B 作直线l 的垂线,垂足为11,B A ,由题意得11BB AA =,由点到直线距离公式得112a AA BB ==,因为圆A 以1AF 为半径,所以半径为c ,被直线l截得的弦长为圆B 以OB 为半径,∴半径为a ,被直线l截得的弦长为因为直线l:y =被圆A 和圆B,==,解得a c 34=(a >c >0).因为c e a =,所以所求的离心率为34,(2)存在点P ,使得过点P 有无数条直线被圆A 和圆B 截得的弦长之比为34,设点0(,0)P x ,由题意可得直线方程为0()y k x x =-,直线截圆A所得的弦长为, 直线截圆B所得的弦长为34==,化简得22222220016(7)9(7)(1)(169)k x k x k c a +--=+-(*),由(1)离心率为34,得22169c a =,即方程(*)为0)1)(49(002=++x x k ,解得10-=x 或490-=x , 即存在2个点)0,1(-和)0,49(-;当10-=x 时,||6||8k k⎧<⎪⎨<⎪⎩k <<,当490-=x 时,||42||56k k⎧<⎪⎨<⎪⎩k <<,即有无数条直线;故存在2个点P ,使得过点P 有无数条直线被圆A 和圆B 截得的弦长之比为34.19.解:(1)∵()()e ,0x f x x k x '=->.(i )当0k ≤时,()0恒成立'>f x ,∴()f x 的递增区间是0+(,)∞,无递减区间;无极值. (ii )当0>k 时,由()0'>f x 得,>x k ;由()0'<f x 得,0<<x k ;∴()f x 的递减区间是(0,)k ,递増区间是(,+)∞k ,()f x 的极小值为()e k f k =-,无极大值. (2)①由()4f x x <,可得(1)e 40x x k x ---<, 因为e 0x >,所以41e x x x k --<,即41e xxk x >--对任意[1,2]x ∈恒成立, 记4()1ex x g x x =--,则4(1)e 4(1)()1e e x x x x x g x -+-'=-=, 因为[1,2]x ∈,所以()0g x '>,即()g x 在[1,2]x ∈上单调递增,故2max228e 8()(2)1e e g x g -==-=.所以实数k 的取值范围为22e 8(,)e-+∞.②由已知1212()()()f x f x x x =≠,结合(1)可知,0k >,()f x 在(,)-∞k 上单调递减,在(,+)∞k 上单调递增,又(1)0+=f k ,1<+x k 时,()0<f x .不妨设121<<<+x k x k ,此时2x k >,12->k x k ,故要证122+<x x k ,只要证122k x x ->,只要证12(2)()f k x f x ->, 因12()()f x f x =,即证11(2)()f k x f x ->.设()(2)()h x f k x f x =--2(1)(1)()kx xx k x k x k -+-=---<e e e,2()e()()e e kx xx k h x x k -'=--22()()k xxx k --=e e e ,∴当<x k 时,()0h x '<,()h x 在(,)-∞k 上单调递减,∴(,)x k ∈-∞时,()()0k k h x h k >=-+=e e , 故当<x k 时,(2)()->f k x f x ,即11(2)()->f k x f x 成立,∴122+<x x k . 20.解:(1)111312A B d ===,,;222413A B d ===,,;333716A B d ===,,. …………………………………………………………………3分(2)① 当1n =时,11(1)1a a λλ-=-+,所以11a =;当2n ≥时,由21(1)33n n S a n λλ-=-++,则1121(1)(1)33n n S a n λλ---=-+-+,两式相减得12(1)3n n n a a a λλλ--=-++,即123n n a a λ-=+, 所以11122233(1)3(1)n n n n b a a b λλλλλ---⎡⎤=++=+==⎢⎥--⎣⎦.……………………………6分因为112313(1)3(1)b a λλλ-=+=--, 所以当13λ≠时,数列{}n b 满足1n n bb λ-=(2n ≥),即数列{}n b 是以313(1)λλ--为首项,λ为公比的等比数列;当13λ=时,数列{}n b 不是等比数列. …………………………………………………8分② 由①知,当13λ≠时,13123(1)3(1)n n a λλλλ--=⋅---;当13λ=时,23(1)n a λ=--.……………………………………………………………10分又{}{}1212max min i i i i n d a a a a a a ++=-,,,,,,, {}{}112123max min i i i i n d a a a a a a ++++=-,,,,,,.由于{}{}1223min min i i n i i n a a a a a a ++++,,,≤,,,,所以由1i i d d +>可得,{}{}12121max max i i a a a a a a +<,,,,,,.所以{}1211max i i a a a a ++=,,,对任意的正整数1232i n =-,,,,恒成立,即数列{}n a 的前1n -项单调递增是题设成立的必要条件,易知13λ≠.………………12分因为1i i i d a a +=-,112i i i d a a +++=-,所以1212i i i i i d d a a a +++-=+-1231(12)3(1)i λλλλλ--=⋅+--1231(1)3(1)i λλλλ--=⋅--.当1λ>时,由1n n a a +>,得3103(1)λλ->-,解得1λ>, 此时10i i d d +-≥,不符合1i i d d +>,舍去;当01λ<<,由1n n a a +>,得3103(1)λλ-<-,解得113λ<<,此时10i i d d +-<,符合1i i d d +>.综上所述,λ的取值范围是()113,. ……………………………………………………16分第II 卷(附加题,共40分)21A .证:因为PA 是圆O 在点A 处的切线,所以∠PAB =∠ACB .因为PD ∥AC ,所以∠EDB =∠ACB , 所以∠PAE =∠PAB =∠ACB =∠BDE .又∠PEA =∠BED ,故△PAE ∽△BDE . …………………… 10分21B .解:设点(x 0,y 0)为曲线|x |+|y |=1上的任意一点,在矩阵10103M ⎛⎫⎪= ⎪ ⎪⎝⎭对应的变换作用下得到的点为(,)x y '',则0010103xx y y ⎛⎫'⎡⎤⎡⎤ ⎪=⎢⎥⎢⎥ ⎪' ⎪⎣⎦⎣⎦⎝⎭,所以003x x y y ='⎧⎨='⎩ ……5分所以曲线|x |+|y |=1在矩阵10103M ⎛⎫⎪= ⎪ ⎪⎝⎭对应的变换作用下得到的曲线为|x |+3|y |=1, 所围成的图形为菱形,其面积为1222233⨯⨯= .……10分21C .解:(1)将M 及对应的参数3πϕ=代入cos ,(0,sin x a a b y b ϕϕϕ=⎧>>⎨=⎩为参数),得2cos 3sin 3a b ππ⎧=⎪⎪=,所以42a b =⎧⎨=⎩,所以曲线1C 的普通方程为221164x y +=. ……4分 (2)曲线1C 的极坐标方程为2222cos sin 1164ρθρθ+=,将12(,),(,)2A B πρθρθ+代入 得222211cos sin 1164ρθρθ+=,222222sin cos 1164ρθρθ+=,所以221211516ρρ+=. ……10分21D .解:因为a >0,b >0,a +b =1,所以(2a +1)+(2b +2)=5,从而(12a +1+2b +1 )[(2a +1)+(2b +2)]=1+4+2b +22a +1+4(2a +1)2b +2≥5+22b +22a +1×4(2a +1)2b +2=9. …………………… 6分 所以12a +1+2b +1≥95.当且仅当2b +22a +1=4(2a +1)2b +2,且a +b =1,即a =13,b =23 时,12a +1+2b +1取得最小值95. …………………… 10分 22.解:因为在直三棱柱111ABC A B C -中,AB AC ⊥,所以分别以AB 、AC 、1AA 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系, 则111(0,0,0),(2,0,0),(0,4,0),(0,0,3),(2,0,3),(0,4,3)A B C A B C ,因为D 是BC 的中点,所以(1,2,0)D ,……………………………………………………2分 (1)因为111(0,4,0),(1,2,3)AC A D ==-,设平面11A C D 的法向量1111(,,)n x y z =,则1111100n A C n A D ⎧⋅=⎪⎨⋅=⎪⎩,即111140230y x y z =⎧⎨+-=⎩,取111301x y z =⎧⎪=⎨⎪=⎩,所以平面11A C D 的法向量1(3,0,1)n =,而1(1,2,3)DB =-, 所以111111335cos ,n DB n DB n DB ⋅<>==⋅, 所以直线1DB 与平面11A C D ;…………………………………5分 (2)11(2,0,0)A B =,1(1,2,3)DB =-,设平面11B A D 的法向量2222(,,)n x y z =,则2112100n A B n DB ⎧⋅=⎪⎨⋅=⎪⎩,即222220230x x y z =⎧⎨-+=⎩,取22232x y z =⎧⎪=⎨⎪=⎩,平面11B A D 的法向量2(0,3,2)n =,所以121212130cos ,n n n n n n ⋅<>==⋅,二面角111B A D C --13010分 23.(1)证明:0)(121)2()(31222222>-=+-++=-b a b a b ab a B A (2)证明:11,1B A n ==;,)2(,11,311nn n n n b a B b a b a n A n +=--+=≥++令,,y b a x b a =-=+且0,>y x ,于是,)2(],)()[()1(21)2()2(1111111n n n n n n n n x B y x y x y n y y x y x n A =--++=--++=+++++ 因为y x C y x C y x C y x y x nn n n n n n n 11323111112)22(])()[(+-++++≥++=--+ , 所以n n n n nn n n B x x y x C y n A ===⋅+≥++)2(22)1(21111.。

2017年南通市数学学科基地命题高考模拟试卷(2)(含详解)

2017年南通市数学学科基地命题高考模拟试卷(2)(含详解)

2017年高考模拟试卷(2)南通市数学学科基地命题第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分 . 1. 若集合2{|11},{|20}M x x N x x x =-≤≤=-≤,则MN = ▲ .2. 已知复数(2)z i i =--,其中i 是虚数单位,则复数z 在复平面上对应的点位于第 ▲ 象限. 3. 某高中共有1200人,其中高一、高二、高三年级的人数依次成等差数列.现用分层抽样的方法从中抽取48人,那么高二年级被抽取的人数为 ▲ .4. 双曲线22132x y -=的离心率为 ▲ . 5. 执行右边的伪代码后,输出的结果是 ▲ .6. 从2个黄球,2个红球,一个白球中随机取出两个球,则两球颜色不同的 概率是 ▲ .7. 若一个圆锥的母线长为2,侧面积是底面积的2倍,则该圆锥的体积为 ▲ . 8. 在等比数列{}n a 中,已知3754,2320a a a =--=,则7a = ▲ . 9. 若函数)(x f 为定义在R 上的奇函数,当0>x 时,x x x f ln )(=,则不等式e xf -<)(的解集为 ▲ .10. 已知实数,x y 满足40210440x y x y x y +-⎧⎪-+⎨⎪+-⎩≤≥≥,则3z x y =+-的取值范围是 ▲ .11.设函数π()π)3f x x =+和π()sin(π)6g x x =-的图象在y 轴左、右两侧靠近y 轴的交点 分别为M 、N ,已知O 为原点,则OM ON ⋅= ▲ .12.若斜率互为相反数且相交于点(1,1)P 的两条直线被圆O :224x y +=所截得的弦长之比为2,则这两条直线的斜率之积为 ▲ . 13. 设实数1m ≥,不等式||2x x m m -≥-对[1,3]x ∀∈恒成立,则实数m 的取值范围是 ▲ . 14.在斜三角形ABC 中,若114tan tan tan A B C+=,则sinC 的最大值为 ▲ . 二、解答题:本大题共6小题,共90分.15.(本小题满分14分)己知向量(1,2sin ),(sin(),1)3a b πθθ==+,R θ∈.(1)若a b ⊥,求tan θ的值:(2)若//a b ,且(0,)2πθ∈,求以||a 、||b 为边,夹角为θ的三角形的面积.xyAB CO16.(本小题满分14分)如图,在三棱锥P - ABC 中,已知平面PBC ⊥平面ABC . (1)若AB ⊥BC ,CP ⊥PB ,求证:CP ⊥PA :(2)若过点A 作直线l ⊥平面ABC ,求证:l //平面PBC .17.(本小题满分14分)如图,ABCD 是一块边长为100米的正方形地皮,其中ATPS 是一半径为90米的底面为扇形 小山(P 为圆弧TS 上的点),其余部分为平地.今有开发商想在平地上建一个两边落在BC 及 CD 上的长方形停车场PQCR ..(1)设PAB θ∠=,试将矩形PQCR 面积表示为θ的函数; (2)求停车场PQCR 面积的最大值及最小值. .18.(本小题满分14分)如图,点A (1,3)为椭圆1222=+ny x 上一定点,过点A 引两直线与 椭圆分别交于B 、C 两点.(1)求椭圆方程;(2)若直线AB 、AC 与x 轴围成以点A 为顶点的等腰三角形.()i 求直线BC 的斜率;()ii 求△ABC 的面积最大值,并求出此时直线BC 的方程.19.(本小题满分16分)已知数列{n a }中,121,a a a ==,且12()n n n a k a a ++=+对任意正整数n都成立,数列{n a }的前n 项和为Sn.(1)若12k =,且20172017S =,求a ; (2)是否存在实数k ,使数列{n a }是公比不为1的等比数列,且任意相邻三项12,,m m m a a a ++按某顺序排列后成等差数列,若存在,求出所有k 的值;若不存在,请说明理由; (3)若1,2n k S =-求.20.(本小题满分16分)已知函数'()ln ,()f x x a x f x =+为()f x 的导数,()f x 有两个零点1212,,()x x x x < ,且1202x x x +=.(1)当3a =-时,求 ()f x 的单调区间;(2)证明:'0()0f x > ;(3)证明:02(,),t x x ∃∈使得'020()()f x f t x x =--.第II 卷(附加题,共40分)21.【选做题】本题包括A, B,C,D 四小题,每小题10分,请选定其中两小题,并在相应的答题区域.........内作答.... A ,(选修4-1;几何证明选讲)如图,AB 为圆O 的切线,A 为切点,C 为线段AB 的 中点,过C 作圆O 的割线CED (E 在C ,D 之间).求证:∠CBE =∠BDE .B .(选修4-2:矩阵与变换) 已知矩阵 ⎥⎦⎤⎢⎣⎡=a A 203,A 的逆矩阵⎥⎥⎦⎤⎢⎢⎣⎡=-10311b A (1)求a,b 的值;(2)求A 的特征值.C .(选修4-4:坐标系与参数方程) 己知在平面直角坐标系xOy 中,圆M 的参数方程为532cos 272sin 2x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩(θ为参数),以Ox 轴为极轴,O 为极点建立极坐标系,在该极坐标系下, 圆N 是以点3,3π⎛⎫ ⎪⎝⎭为圆心,且过点)2,2(π的圆.(1)求圆M 及圆N 在平面直角坐标系xOy 下的直角坐标方程; (2)求圆M 上任一点P 与圆N 上任一点Q 之间距离的最小值.D .(选修4-5:不等式选讲)已知x,y,z 都是正数且xyz =8,求证:(2+x )(2+y )(2+z )≥64【选做题】第22题、23题,每题10分,共计20分.22.甲、乙两人投篮命中的概率为别为与,各自相互独立,现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛结束后,甲、乙两人进球数的差的绝对值,求ξ的概率分布和数学期望E (ξ).23.对于给定的大于1的正整数n ,设2012n n x a a n a n a n =++++,其中i a ∈{0,1,2,,1n -},1,2,,0,,1i n n =-,且0n a ≠,记满足条件的所有x 的和为A n .(1)求A 2(2)设n A =(1)()2n n n f n -,求f (n ).2017年高考模拟试卷(2)参考答案一、填空题1.[]0,1 2.四 3.16 43 5.286. 4/5. 1—(2222C C +)/25C =4/5 .7..圆锥母线长2,可求底面半径为1,故高. 8. 64. 先得公比q 2=4,知7a =64 .9. (,-∞-e). 11()ln 1,(0,),(,),().f x x f e e e e'=++∞=为减区间为增区间 由于)(x f 是奇函数,结合函数图像得,不等式的解集是(,-∞-e) . 10. [1,7].根据可行域知,目标函数化为z=x-y+3(去掉绝对值是关键) 11. -8/9.令f(x)-g(x)=0,化简得2sin()0,,,66x x k k Z πππππ+=+=∈则15(,(, -)6262M N -,故OM ON ⋅=158(,(, -)=-62629-⋅12. -9或-1/9.设斜率为k,-k,则两条直线方程为kx-y+1-k=0,kx+y-1-k=0,两条弦心距为12d d ==,弦长12l l ==代入弦长之比 得231030k k -+=,求出k=3,或k=-1/3,故结果为-9或-1/9.13. 7(1,2][,)2+∞.(1)当12m ≤≤时,不等式显然成立;(2)当3m ≥时,由1(1)32(2)3m m m m -≥-⎧⎨-≥-⎩得72m ≥;(3)当23m <<时,由02m ≥-得m<2, 矛盾, 综上,7[1,2][,)2m ∈+∞..切化弦得22232()c a b =+,222221cos 263a b c a b C ab ab +-+==≥,于是知sinC 二、解答题15.(1)因为⊥a b ,所以=0⋅a b ,所以π2sin sin 03θθ⎛⎫++= ⎪⎝⎭,即5sin 022θθ+=.因为cos 0θ≠,所以tan 5θ=-.(2)由a ∥b ,得π2sin sin 13θθ⎛⎫+= ⎪⎝⎭, 即2ππ2sin cos2sin cos sin 133θθθ+=,即()131cos 2sin 2122θθ-+=, 整理得,π1sin 262θ⎛⎫-= ⎪⎝⎭ 又π0,2θ⎛⎫∈ ⎪⎝⎭,所以ππ5π2,666θ⎛⎫-∈- ⎪⎝⎭, 所以ππ266θ-=,即π6θ=. 所以三角形的面积=2112sin 3022=16.(1)因为平面PBC ⊥平面ABC ,平面PBC平面ABC BC =,AB ⊂平面ABC ,AB ⊥BC ,所以AB ⊥平面PBC . 因为CP ⊂平面PBC ,所以CP ⊥AB .又因为CP ⊥PB ,且PBAB B =,,AB PB ⊂平面PAB , 所以CP ⊥平面PAB ,又因为PA ⊂平面PAB , 所以CP ⊥PA .(2)在平面PBC 内过点P 作PD ⊥BC ,垂足为D .因为平面PBC ⊥平面ABC ,又平面PBC ∩平面ABC =BC ,PD ⊂平面PBC ,所以PD ⊥平面ABC .又l ⊥平面ABC ,所以l //PD . 又l ⊄平面PBC ,PD ⊂平面PBC , 所以l //平面PBC .17.(1)S P Q C R =f (θ)=(100-90cos θ)(100-90sin θ)=8100sin θcos θ-9000(sin θ+cos θ)+10000 , θ∈[0,2π]. (2)由(1)知S P Q C R =f (θ)=8100sin θcos θ-900(sin θ+cos θ)+10000 ,θ∈[0,2π] .令sin θ+cos θ=t ,则t =2sin (θ+4π)∈[1, 2]. ∴S P Q CR =28100t 2-9000t +10000-28100当t =910时,S P Q CD 最小值为950(m 2)当t =2时,S P Q CD 最大值为14050-90002 (m 2).答:停车场面积的最大值和最小值分别为 14050-90002 (m 2)和950(m 2).APC BDxyAB CO18. (1)把点A (1,3)代入1222=+n y x 得n =6,故椭圆方程为22126x y +=. (2)(i )显然题中等腰三角形腰所在的直线不可能与x 轴垂直, 因此其斜率必存在,设两腰的斜率分别为1k 、2k ,由⎪⎩⎪⎨⎧=+-=-162)1(3221y x x k y得点B 的横坐标为33261211++-=k k x (1=x 为点A 的横坐标),∴点B 的纵坐标为3632321121++-=k k k y ,即)36323,33261(21121211++-++-k k k k k B . 同理可得点C 的坐标为)36323,33261(22222222++-++-k k k k k C ∵ 021=+k k ,∴ 直线BC 的斜率为3=BC k .(ii)设直线BC 的方程为m x y +=3,代入方程16222=+y x 得0632622=-++m mx x , ∴ 212332||m BC -=又点A 到直线BC 的距离为2||m d =∴ 36)6(63)12(63||212222+--=-=⋅=m m m d BC S ∴ 当62=m ,即6=m 或6-=m 时,△ABC 面积取得最大值为3.此时,直线BC 的方程为63±=x y .19.⑴12k =时,121()2n n n a a a ++=+,211n n n n a a a a +++-=-,所以数列{}n a 是等差数列, 此时首项11a =,公差211d a a a =-=-,数列{}n a 的前n 项和是1(1)(1)2n S n n n a =+--,故12017201720172016(1)2a a =+⨯⨯-,得1a =;⑵设数列{}n a 是等比数列,则它的公比21a q a a ==,所以1m m a a -=,1m m a a +=,12m m a a ++=, ①若1m a +为等差中项,则122m m m a a a ++=+,即112m m m a a a -+=+,解得1a =,不合题意;②若m a 为等差中项,则122m m m a a a ++=+,即112m m m a a a -+=+,化简得:220a a +-=,解得2a =-,1a =(舍去);11122215m m m m m m a a a k a a a a a +-++====-+++; ③若2m a +为等差中项,则212m m m a a a ++=+,即112m m m a a a +-=+,化简得:2210a a --=,解得12a =-;11122215m m m m m m a a a k a a a a a +-++====-+++; 综上可得,满足要求的实数k 有且仅有一个,25k =-; ⑶12k =-则121()2n n n a a a ++=-+, 211()n n n n a a a a ++++=-+,32211()n n n n n n a a a a a a ++++++=-+=+,当n 是偶数时, 12341n n n S a a a a a a -=++++++12341()()()n n a a a a a a -=++++++12()(1)22n na a a =+=+, 当n 是奇数时, 12341n n n S a a a a a a -=++++++123451()()()n n a a a a a a a -=+++++++1231()2n a a a -=++1121[()]2n a a a -=+-+11(1)2n a -=-+,1n =也适合上式, 综上可得,n S ⎧=⎨⎩11(1),2(1),2n a n a --++n n 是奇数是偶数.20.(1) '3()3ln ,()x f x x x f x x-=-=,可得f (x)的单调减区间为(0,3),单调增区间为(3,+∞). (2) 设2(1)()ln (1)1x x x x x ϕ-=->+,可证此函数在(1,+∞)是增函数,且(1)0ϕ>,令211x x x =>,代入得到211221ln ln 2x x x x x x -+<-,D而由21112221ln ,ln ln ln x x x a x x a x a x x -=-=-⇒=-->122x x +-,故有12''12012122(22()(1102x x x x af x f x x x x +-+==+>+=++. (3)令2200()ln()x G x x x x x =--,'2020(,),()ln 0,xx x x G x x ∈=>G(x)是增函数, 令201x t x =>,则有0022()[ln (1)]01()[ln (1)]0G x x t t G x x t t =--<⎧⎪⎨=-->⎪⎩(用到lnx<x-1), 由零点定理知,存在02(,),()0t x x G t ∈=, 即20202020ln ln ln ln 111x x x x aa tx x t x x --=⇔+=+--即'020()()f x f t x x =--.第II 卷(附加题,共40分)21.A .因为CA 为圆O 的切线,所以2CA CE CD =⋅, 又CA CB =, 所以2CB CE CD =⋅, 即CB CDCE CB=, 又BCD BCD ∠=∠, 所以BCE ∽DCB , 所以∠CBE =∠BDE .B .(1)因为A A -1=⎣⎡⎦⎤302a ⎣⎢⎢⎡⎦⎥⎥⎤13 0 b 1=⎣⎢⎢⎡⎦⎥⎥⎤ 1 023+ab a =⎣⎡⎦⎤1001.所以⎩⎪⎨⎪⎧a =1,23+ab =0.解得a =1,b =-23. (2)由(1)得A =⎣⎡⎦⎤3021,则A 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪λ-30-2 λ-1=(λ-3)( λ-1).令f (λ)=0,解得A 的特征值λ1=1,λ2=3. C .(1)⊙M :22537()()422x y -+-=,(3,)3π对应直角坐系下的点为33(,)22, (2,)2π对应直角坐系下的点为(0,2),∴⊙N :2233()()122x y -+-= (2)PQ =MN -3=431-=.D .因为x 为正数,所以2+x ≥22x .同理 2+y ≥22y ,2+z ≥22z .(5分)所以(2+x )( 2+y )( 2+z )≥22222288x y z xyz = 因为xyz =8, 所以(2+x )( 2+y )( 2+z )≥64.22.( 1)比赛结束后甲的进球数比乙的进球数多1个,有以下几种情况:甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球. 比赛结束后甲的进球数比乙的进球数多1个的概率: p=++=.(2)由已知得ξ的可能取值为0,1,2,3, P (ξ=0)=+++==,P (ξ=1)=+++=,P (ξ=3)==,P (ξ=2)=1﹣P (ξ=0)﹣P (ξ=1)﹣P (ξ=3)=1﹣=,∴ξ的分布列为: ξ 0 1 2 3 PEξ==1.11 23.⑴当2n =时,01224x a a a =++,0{0,1}a ∈,1{0,1}a ∈,21a =, 故满足条件的x 共有4个,分别为004x =++,024x =++,104x =++,124x =++, 它们的和是22.⑵由题意得,0121,,,,n a a a a -各有n 种取法;n a 有1n -种取法,由分步计数原理可得0121,,,,n a a a a -,n a 的不同取法共有 (1)(1)n n n n n n n ⋅⋅⋅-=-,即满足条件的x 共有(1)n n n -个,当0a 分别取0,1,2,,1n -时,121,,,n a a a -各有n 种取法,n a 有1n -种取法,故n A 中所有含0a 项的和为21(1)(0121)(1)2n n n n n n n --++++--=; 同理,n A 中所有含1a 项的和为21(1)(0121)(1)2n n n n n n n n n --++++--⋅=⋅; n A 中所有含2a 项的和为2122(1)(0121)(1)2n n n n n n n n n --++++--⋅=⋅; n A 中所有含1n a -项的和为2111(1)(0121)(1)2n n n n n n n n n n n ----++++--⋅=⋅; 当n a 分别取1,2,,1i n =-时,0121,,,,n a a a a -各有n 种取法,故n A 中所有含n a 项的和为1(1)(121)2n n n n n n n n n n +-+++-⋅=⋅; 所以n A =2121(1)(1)(1)22n n n n n n n n n n n n +---+++++⋅; 21(1)1(1)212n n n n n n n n n n n +---=⋅+⋅-1(1)(1)2n n n n n n n +-=+- 故1()1n n f n nn +=+-.。

江苏省南通市2017届高三第一次模拟考试数学Word版含答案

江苏省南通市2017届高三第一次模拟考试数学Word版含答案

南通市2017届高三第一次调研测试数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 函数2sin(3)3y x π=-的最小正周期为 ▲ .2. 设集合{}13A =,,{}25B a =+,,{}3A B =,则AB = ▲ .3. 复数2(1+2i)z =,其中i 为虚数单位,则z 的实部为 ▲ . 4. 口袋中有若干红球、黄球和蓝球,从中摸出一只球.已知摸出红球的概率为0.48,摸出黄球的概率为0.35,则摸出蓝球的概 率为 ▲ .5. 如图是一个算法的流程图,则输出的n 的值为 ▲ . 6. 若实数x ,y 满足243700x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤,≤,≥,≥,则z =3x +2y 的最大值为 ▲ .7. 抽样统计甲、乙两名学生的5次训练成绩(单位:分),结果如下:则成绩较为稳定(方差较小)的那位学生成绩的方差为 ▲ . 8. 如图,在正四棱柱ABCD –A 1B 1C 1D 1中,3cm AB =,11cm AA =,则三棱锥D 1–A 1BD 的体积为 ▲ 3cm .9. 在平面直角坐标系xOy 中,直线20x y +=为双曲线22221(00)x y a b a b-=>>,的一条渐近线,则该双曲线 的离心率为 ▲ .10.《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则该竹子最上面一节的容积为 ▲ 升.11.在△ABC 中,若2BC BA AC AB CA CB ⋅+⋅=⋅,则sin sin AC的值为 ▲ . 12.已知两曲线()2sin f x x =,()cos g x a x =,π(0)2x ∈,相交于点P .若两曲线在点P 处的切线(第5题)ABCDA 1B 1C 1D 1 (第8题)互相垂直,则实数a 的值为 ▲ .13.已知函数()4f x x x =+-,则不等式2(2)()f x f x +>的解集用区间表示为 ▲ . 14.在平面直角坐标系xOy 中,已知B ,C 为圆224x y +=上两点,点(11)A ,,且AB ⊥AC ,则线段BC 的长的取值范围为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、 证明过程或演算步骤. 15.(本小题满分14分)如图,在平面直角坐标系xOy 中,以x 轴正半轴为始边作锐角α,其终边与单位圆交于点A . 以OA 为始边作锐角β,其终边与单位圆交于点B ,AB. (1)求cos β的值; (2)若点A 的横坐标为513,求点B 的坐标.16.(本小题满分14分)如图,在四棱锥P -ABCD 中,四边形ABCD 为平行四边形,AC ,BD 相交于点O ,点E 为PC 的中点,OP =OC ,PA ⊥PD .求证:(1)直线PA ∥平面BDE ; (2)平面BDE ⊥平面PCD .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(0)a b >>,焦点到(第16题)ABCODPE(第15题)相应准线的距离为1. (1)求椭圆的标准方程;(2)若P 为椭圆上的一点,过点O 作OP 的垂线交直线2y =于点Q ,求2211OP OQ +的值.18.(本小题满分16分)如图,某机械厂要将长6 m ,宽2 m 的长方形铁皮ABCD 进行裁剪.已知点F 为AD 的中点, 点E 在边BC 上,裁剪时先将四边形CDFE 沿直线EF 翻折到MNFE 处(点C ,D 分别落在 直线BC 下方点M ,N 处,FN 交边BC 于点P ),再沿直线PE 裁剪. (1)当∠EFP =4π时,试判断四边形MNPE 的形状,并求其面积; (2)若使裁剪得到的四边形MNPE 面积最大,请给出裁剪方案,并说明理由.19.(本小题满分16分)已知函数2()ln f x ax x x =--,a ∈R . (1)当38a =时,求函数()f x 的最小值;ABCDFEPMN(第18题)xyQOP(第17题)2(2)若10a -≤≤,证明:函数()f x 有且只有一个零点; (3)若函数()f x 有两个零点,求实数a 的取值范围.20.(本小题满分16分)已知等差数列{}n a 的公差d 不为0,且1k a ,2k a ,…,n k a ,…(12k k <<…n k <<…)成等比数列,公比为q .(1)若11k =,23k =,38k =,求1a d的值; (2)当1a d为何值时,数列{}n k 为等比数列; (3)若数列{}n k 为等比数列,且对于任意n *∈N ,不等式2n n k n a a k +>恒成立,求1a 的取值 范围.21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.................... 若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-1:几何证明选讲](本小题满分10分)已知圆O 的直径4AB =,C 为AO 的中点,弦DE 过OA BEDC(第21-A 题)点C 且满足CE =2CD ,求△OCE 的面积.B .[选修4-2:矩阵与变换](本小题满分10分)已知向量11⎡⎤⎢⎥-⎣⎦是矩阵A 的属于特征值–1的一个特征向量.在平面直角坐标系xOy 中,点11P (,)在矩阵A 对应的变换作用下变为33P '(,),求矩阵A .C .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,求直线π()4θρ=∈R 被曲线4sin ρθ=所截得的弦长.D .[选修4-5:不等式选讲](本小题满分10分)求函数3sin y x =+【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出 文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在棱长为2的正方体ABCD –A 1B 1C 1D 1中,P 为棱C 1D 1的中点,Q 为棱BB 1上的点,BADC 1(第22题)A 1D 1B 1CQP且1(0)BQ BB λλ=≠. (1)若12λ=,求AP 与AQ 所成角的余弦值; (2)若直线AA 1与平面APQ 所成的角为45°, 求实数λ的值.23.(本小题满分10分)在平面直角坐标系xOy 中,已知抛物线22(0)x py p =>上的点(1)M m ,到焦点F 的距离为2. (1)求抛物线的方程;(2)如图,点E 是抛物线上异于原点的点,抛物线在点E 处的切线与x 轴相交于点P ,直 线PF 与抛物线相交于A ,B 两点,求△EAB 面积的最小值.南通市2017届高三第一次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分. 1. 函数2sin(3)3y x π=-的最小正周期为 ▲ .【答案】23π y = f (x )(第23题)yOxF AB PE2. 设集合{}13A =,,{}25B a =+,,{}3A B =,则A B = ▲ .【答案】{}135,,3. 复数2(1+2i)z =,其中i 为虚数单位,则z 的实部为 ▲ .【答案】3-4. 口袋中有若干红球、黄球和蓝球,从中摸出一只球.摸出红球的概率为0.48,摸出黄球的概率为0.35,则摸出蓝球的概率为▲ . 【答案】0.175. 如图是一个算法的流程图,则输出的n 的值为 ▲ .【答案】56. 若实数x ,y 满足243700x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤,≤,≥,≥,则z =3x +2y 的最大值为 ▲ .【答案】77. 抽样统计甲、乙两名学生的5次训练成绩(单位:分),结果如下:则成绩较为稳定(方差较小)的那位学生成绩的方差为 ▲ . 【答案】208. 如图,在正四棱柱ABCD –A 1B 1C 1D 1中,3cm AB =,11cm AA =,则三棱锥D 1–A 1BD 的体积为 ▲ 3cm .【答案】329. 在平面直角坐标系xOy 中,直线20x y +=为双曲线22221(00)x y a b a b-=>>,的一条渐近线,则该双曲线的离心率为 ▲ .10.《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则该竹子最上面一节的容积为 ▲ 升. 【答案】1322(第5题)ABCDA 1B 1C 1D 1 (第8题)11.在△ABC 中,若2BC BA AC AB CA CB ⋅+⋅=⋅,则sin sin AC的值为 ▲ .12.已知两曲线()2sin f x x =,()cos g x a x =,π(0)2x ∈,相交于点P .若两曲线在点P 处的切线互相垂直,则实数a 的值为 ▲ .13.已知函数()4f x x x =+-,则不等式2(2)()f x f x +>的解集用区间表示为 ▲ .【答案】(2)(2)-∞-+∞,,14.在平面直角坐标系xOy 中,已知B ,C 为圆224x y +=上两点,点(11)A ,,且AB ⊥AC ,则线段BC 的长的取值范围为 ▲.【答案】二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)如图,在平面直角坐标系xOy 中,以x 轴正半轴为始边作锐角α,其终边与单位圆交于点A . 以OA 为始边作锐角β,其终边与单位圆交于点B,AB . (1)求cos β的值;(2)若点A 的横坐标为513,求点B 的坐标.【解】(1)在△AOB 中,由余弦定理得,2222cos AB OA OB OA OB AOB =+-⋅∠,所以222cos 2OA OB AB AOB OA OB +-∠=⋅ ……………2分22211352115+-==⨯⨯,即3cos 5β=. ………………………………………………………………………6分 (2)因为3cos 5β=,π(0)2β∈,,所以4sin 5β===. …………………………………………8分因为点A 的横坐标为513,由三角函数定义可得,5cos 13α=,(第15题)因为α为锐角,所以12sin 13α===. ……………………10分所以()5312433cos cos cos sin sin 13513565αβαβαβ+=-=⨯-⨯=-,………………12分 ()1235456sin sin cos cos sin 13513565αβαβαβ+=+=⨯+⨯=. 所以点3356()6565B -,. …………………………………………………………14分 16.(本小题满分14分)如图,在四棱锥P -ABCD 中,四边形ABCD 为平行四边形,AC ,BD 相交于点O ,点E 为PC 的中点,OP =OC ,PA ⊥PD .求证:(1)直线PA ∥平面BDE ; (2)平面BDE ⊥平面PCD .【证明】(1)连结OE ,因为O 为平行四边形对角线的交点,所以O 为AC 中点. 又因为E 为PC 的中点,所以OE ∥PA . ……………………4分 又因为OE ⊂平面BDE ,PA ⊄平面BDE ,所以直线PA ∥平面BDE . ……………………………………………………6分 (2)因为OE ∥PA ,PA PD ⊥,所以OE PD ⊥. ………………………………8分因为OP OC =,E 为PC 的中点,所以OE PC ⊥. …………………………10分 又因为PD ⊂平面PCD ,PC ⊂平面PCD ,PCPD P =,所以OE ⊥平面PCD . …………………………………………………………12分 又因为OE ⊂平面BDE ,所以平面BDE ⊥平面PCD . ……………………14分17.(本小题满分14分)如图,在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(0)a b >>,焦点到相应准线的距离为1.(1)求椭圆的标准方程;(2)若P 为椭圆上的一点,过点O 作OP 的垂线交直线y =于点Q ,求2211OP OQ +的值. 【解】(1)由题意得,c a =,21a c c-=, …………2分解得a =1c =,1b =.ABCD (第16题)ABCODPE(第17题)所以椭圆的方程为2212x y +=. …………………………………………………4分(2)由题意知OP 的斜率存在.当OP 的斜率为0时,2OP =,2OQ =,所以22111OP OQ+=. …………6分 当OP 的斜率不为0时,设直线OP 方程为y kx =.由2212x y y kx ⎧+=⎪⎨⎪=⎩,,得()22212k x +=,解得22221x k =+,所以222221k y k =+,所以2222221k OP k +=+. ………………………………………………………………9分因为OP OQ ⊥,所以直线OQ 的方程为1y x k=-.由21y y xk ⎧=⎪⎨=-⎪⎩,得2x k =-,所以2222OQ k =+. ………………………………12分 所以222221*********k OP OQ k k ++=+=++. 综上,可知22111OP OQ +=. ……………………………………………………14分 18.(本小题满分16分)如图,某机械厂要将长6 m ,宽2 m 的长方形铁皮ABCD 进行裁剪.已知点F 为AD 的中点, 点E 在边BC 上,裁剪时先将四边形CDFE 沿直线EF 翻折到MNFE 处(点C ,D 分别落在 直线BC 下方点M ,N 处,FN 交边BC 于点P ),再沿直线PE 裁剪. (1)当∠EFP =4π时,试判断四边形MNPE 的形状,并求其面积; (2)若使裁剪得到的四边形MNPE 面积最大,请给出裁剪方案,并说明理由. 【解】(1)当∠EFP =4π时,由条件得 ∠EFP =∠EFD =∠FEP =4π. 所以∠FPE =2π.所以FN ⊥BC , 四边形MNPE 为矩形.…… 3分 所以四边形MNPE 的面积 S=PN MN ⋅=2 m 2.………… 5分(2)解法一:设<<2EFD θθπ∠=(0),由条件,知∠EFP =∠EFD =∠FEP =θ.ABCDFEPMN(第18题)所以22sin sin PF=θθ=π-22(), 23sin NP=NF PF θ-=-2, 23tan ME θ=-. ………………………………………………………………8分 由230sin 230tan <<2θθθ⎧->⎪2⎪⎪->⎨⎪⎪π⎪⎩,,0,得2sin 32tan 3<<.2θθθ⎧2>⎪⎪⎪>⎨⎪⎪π⎪⎩*,,()0 所以四边形MNPE 面积为1()2S=NP ME MN +122(3)(3)22sin tan +θθ⎡⎤=--⨯⎢⎥2⎣⎦226tan sin 2=θθ--2222(sin cos )6tan 2sin cos =θθθθθ+--36(tan )tan θθ=-+ ………………………………………………………12分66-=-≤. 当且仅当3tan tan =θθ,即tan 3=θθπ时取“=”.………………14分 此时,*()成立. 答:当3EFD π∠=时,沿直线PE 裁剪,四边形MNPE 面积最大,最大值为6- m 2. …………………………………………………………16分 解法二:设BE t = m ,3<<6t ,则6ME t =-.因为∠EFP =∠EFD =∠FEP ,所以PE =PFt BP =-. 所以21323t BP=t --(),213333323t NP=PF=PE=t BP =t t ------+-()(). ………8分 由223<<613023133023t tt tt t ⎧⎪⎪-⎪>⎨-⎪⎪--+>⎪-⎩,,(),()得23<<612310.t t t t ⎧⎪>⎨⎪-+<⎩*,()所以四边形MNPE 面积为 1()2S=NP ME MN +2113362223t t +t t ⎡⎤-=-+-⨯⎢⎥-⎣⎦()()() 23306723t t t -+=-()…………………………………………………………12分 326323t +t ⎡⎤=--⎢⎥-⎣⎦()6-≤当且仅当32323t =t --(),即=3+3t +时取“=”. ………14分 此时,*()成立.答:当点E 距B 点3m 时,沿直线PE 裁剪,四边形MNPE 面积最大,最大值为6- m 2. …………………………………………………………16分19.(本小题满分16分)已知函数2()ln f x ax x x =--,a ∈R . (1)当38a =时,求函数()f x 的最小值;(2)若10a -≤≤,证明:函数()f x 有且只有一个零点; (3)若函数()f x 有两个零点,求实数a 的取值范围. 【解】(1)当38a =时,23()ln 8f x x x x =--.所以(32)(2)31()144x x f x x x x+-'=--=,(x>0). ……………………………2分令()0f x '=,得2x =,当(02)x ∈,时,()0f x '<;当(2)x ∈+∞,时,()0f x '>, 所以函数()f x 在(02),上单调递减,在(2)+∞,上单调递增.所以当2x =时,()f x 有最小值1(2)ln 22f =--.………………………………4分(2)由2()ln f x ax x x =--,得2121()210ax x f x ax x x x--'=--=>,. 所以当0a ≤时,221()<0ax x f x x--'=, 函数()f x 在(0+)∞,上单调递减,所以当0a ≤时,函数()f x 在(0+)∞,上最多有一个零点.……………………6分因为当0a -1≤≤时,(1)1<0f a =-,221e e ()>0e ea f -+=,所以当0a -1≤≤时,函数()f x 在(0+)∞,上有零点.综上,当0a -1≤≤时,函数()f x 有且只有一个零点. ………………………8分 (3)解法一:由(2)知,当0a ≤时,函数()f x 在(0+)∞,上最多有一个零点.因为函数()f x 有两个零点,所以>0a . ………………………………………9分由2()ln f x ax x x =--,得221()(0)ax x f x x x--'=>,,令2()21g x ax x =--.因为(0)10g =-<,2>0a ,所以函数()g x 在(0)+∞,上只有一个零点,设为0x .当0(0)x x ∈,时,()0()0g x f x '<<,;当0()x x ∈+∞,时,()0()0g x f x '>>,. 所以函数()f x 在0(0)x ,上单调递减;在0()x +∞,上单调递增. 要使得函数()f x 在(0+)∞,上有两个零点,只需要函数()f x 的极小值0()0f x <,即200ln 0ax x x --<. 又因为2000()210g x ax x =--=,所以002ln 10x x +->, 又因为函数()2ln 1h x =x x +-在(0+)∞,上是增函数,且(1)0h =, 所以01x >,得0101x <<. 又由20210ax x --=,得22000111112()()24a x x x =+=+-, 所以01a <<. ……………………………………………………………………13分 以下验证当01a <<时,函数()f x 有两个零点. 当01a <<时,21211()10a ag a a a a-=--=>,所以011x a<<. 因为22211e e ()10e e e e a af -+=-+=>,且0()0f x <.所以函数()f x 在01()ex ,上有一个零点.又因为2242222()ln (1)10a f a a a a a a =----=>≥(因为ln 1x x -≤),且0()0f x <.所以函数()f x 在02()x a,上有一个零点.所以当01a <<时,函数()f x 在12()e a,内有两个零点.综上,实数a 的取值范围为(1)0,. ……………………………………………16分 下面证明:ln 1x x -≤.设()1ln t x x x =--,所以11()1x t x x x-'=-=,(x>0). 令()0t x '=,得1x =.当(01)x ∈,时,()0t x '<;当(1)x ∈+∞,时,()>0t x '. 所以函数()t x 在(01),上单调递减,在(1)+∞,上单调递增. 所以当1x =时,()t x 有最小值(1)0t =. 所以()1ln 0t x x x =--≥,得ln 1x x -≤成立. 解法二:由(2)知,当0a ≤时,函数()f x 在(0+)∞,上最多有一个零点.因为函数()f x 有两个零点,所以>0a . ………………………………………9分 由2()ln 0f x ax x x =--=,得关于x 的方程2ln x x a x+=,(x>0)有两个不等 的实数解. 又因为ln 1x x -≤,所以222ln 211(1)1x x x a x x x +-==--+≤,(x>0). 因为x>0时,21(1)11x--+≤,所以1a ≤.又当=1a 时,=1x ,即关于x 的方程2ln x x a x+=有且只有一个实数解. 所以<<1a 0. ……………………………………………………………………13分 (以下解法同解法1)20.(本小题满分16分)已知等差数列{}n a 的公差d 不为0,且1k a ,2k a ,…,n k a ,…(12k k <<…n k <<…)成等比数列,公比为q .(1)若11k =,23k =,38k =,求1a d的值; (2)当1a d为何值时,数列{}n k 为等比数列; (3)若数列{}n k 为等比数列,且对于任意n *∈N ,不等式2n n k n a a k +>恒成立,求1a 的取值 范围.【解】(1)由已知可得:1a ,3a ,8a 成等比数列,所以2111(2)(7)a d a a d +=+, ………2分整理可得:2143d a d =.因为0d ≠,所以143a d =. ……………………………4分 (2)设数列{}n k 为等比数列,则2213k k k =.又因为1k a ,2k a ,3k a 成等比数列,所以[][][]2111312(1)(1)(1)a k d a k d a k d +-+-=+-. 整理,得21213132132(2)(2)a k k k d k k k k k k --=---+. 因为2213k k k =,所以1213213(2)(2)a k k k d k k k --=--. 因为2132k k k ≠+,所以1a d =,即11a d=.………………………………………6分 当11a d=时,1(1)n a a n d nd =+-=,所以n k n a k d =. 又因为1111n n n k k a a q k dq --==,所以11n n k k q -=. 所以1111nn n n k k q q k k q +-==,数列{}n k 为等比数列. 综上,当11a d=时,数列{}n k 为等比数列.………………………………………8分 (3)因为数列{}n k 为等比数列,由(2)知1a d =,11(1)n n k k q q -=>.1111111n n n n k k a a q k dq k a q ---===,11(1)n a a n d na =+-=. 因为对于任意n *∈N ,不等式2n n k n a a k +>恒成立. 所以不等式1111112n n na k a q k q --+>,即111112n n k q a n k q -->+,111111110222n n nn k q q na k q k q --+<<=+恒成立.……………………10分下面证明:对于任意的正实数(01)εε<<,总存在正整数1n ,使得11n n εq <. 要证11n n εq <,即证11ln ln ln n n q ε<+. 因为11ln e 2x x x <≤,则1122111ln 2ln n n n =<,解不等式1211ln ln n n q ε<+,即1122211()ln ln 0n q n ε-+>,可得121n >,所以21n >.不妨取201n ⎡⎤=+⎢⎥⎢⎥⎣⎦,则当10n n >时,原式得证. 所以11102a <≤,所以12a ≥,即得1a 的取值范围是[)2+∞,. ……………16分 21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.................... 若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)已知圆O 的直径4AB =,C 为AO 的中点,弦DE 过点C 且满足CE =2CD ,求△OCE 的面积. 【解】设CD x =,则2CE x =.因为1CA =,3CB =,由相交弦定理,得CA CB CD CE ⋅=⋅, 所以21322x x x ⨯=⋅=,所以x =.…………2分 取DE 中点H ,则OH DE ⊥. 因为2222354()28OH OE EH x =-=-=,所以OH .…………………………………………………………………………6分又因为2CE x =,所以△OCE的面积1122S OH CE =⋅==…………………………10分 B .[选修4-2:矩阵与变换](本小题满分10分)已知向量11⎡⎤⎢⎥-⎣⎦是矩阵A 的属于特征值–1的一个特征向量.在平面直角坐标系xOy 中,点11P (,)在矩阵A 对应的变换作用下变为33P '(,),求矩阵A . 【解】设a b c d ⎡⎤=⎢⎥⎣⎦A , 因为向量11⎡⎤⎢⎥-⎣⎦是矩阵A 的属于特征值–1的一个特征向量,所以111(1)111a b c d -⎡⎤⎡⎤⎡⎤⎡⎤=-=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦.所以11a b c d -=-⎧⎨-=⎩,. ………………………………4分 因为点11P (,)在矩阵A 对应的变换作用下变为33P '(,),所以1313a b c d ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.所以+3+3a b c d =⎧⎨=⎩,. …………………………………………………8分(第21-A 题)解得1a =,2b =,2c =,1d =,所以1221⎡⎤=⎢⎥⎣⎦A .………………………………10分 C .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,求直线π()4θρ=∈R 被曲线4sin ρθ=所截得的弦长. 【解】解法一:在4sin ρθ=中,令π4θ=,得π4sin 4ρ=AB= …………………10分 解法二:以极点O 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系. 直线π()4θρ=∈R 的直角坐标方程为y x =①, ………………………………………3分 曲线4sin ρθ=的直角坐标方程为2240x y y +-=②. ……………………………6分 由①②得00x y =⎧⎨=⎩,,或22x y =⎧⎨=⎩,,……………………………………………………………8分所以(00)(22)A B ,,,, 所以直线π()4θρ=∈R 被曲线4sin ρθ=所截得的弦长AB= ………………10分 D .[选修4-5:不等式选讲](本小题满分10分)求函数3sin y x =+【解】3sin y x x =++…………………………………………2分由柯西不等式得222222(3sin (34)(sin cos )25y x x x =+++=≤,……………………………8分所以max 5y =,此时3sin =5x .所以函数3sin y x =+5. …………………………………10分【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出 文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在棱长为2的正方体ABCD –A 1B 1C 1D 1中,P 为棱C 1D 1的中点,Q 为棱BB 1上的点,且1(0)BQ BB λλ=≠.(第22题)(1)若12λ=,求AP 与AQ 所成角的余弦值; (2)若直线AA 1与平面APQ 所成的角为45°, 求实数λ的值.【解】以{}1AB AD AA ,,为正交基底,建立如图所示空间直角坐标系A xyz -.(1)因为=(122)AP ,,,=(201)AQ ,,, 所以cos =||||AP AQ AP AQ AP AQ ⋅<>,=.所以AP 与AQ .………………………………………4分 (2)由题意可知,1=(002)AA ,,,=(202)AQ λ,,. 设平面APQ 的法向量为n ()x y z =,,, 则00AP AQ ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即220220x y z x z λ++=⎧⎨+=⎩,.令2z =-,则2x λ=,2y λ=-.所以n (222)λλ=--,,.…………………………………………………………6分 又因为直线1AA 与平面APQ 所成角为45°, 所以|cos<n ,1AA >|11=||||AA AA⋅n n =2=, 可得2540λλ-=,又因为0λ≠,所以45λ=. ……………………………10分 23.(本小题满分10分)在平面直角坐标系xOy 中,已知抛物线22(0)x py p =>上的点(1)M m ,到焦点F 的距离为2. (1)求抛物线的方程;(2)如图,点E 是抛物线上异于原点的点,抛物线在点E 处的切线与x 轴相交于点P ,直 线PF 与抛物线相交于A ,B 两点,求△EAB 面积的最小值. 【解】(1)抛物线22(0)x py p =>的准线方程为2py =-, 因为(1)M m ,,由抛物线定义,知y = f (x )(第23题)yOxF AB PE12p MF =+, 所以122p+=,即2p =, 所以抛物线的方程为24x y =.……………………………………………………3分 (2)因为214y x =,所以12y x '=. 设点2()04t E t t ≠,,,则抛物线在点E 处的切线方程为21()42t y t x t -=-.令0y =,则2t x =,即点(0)2tP ,.因为(0)2t P ,,(01)F ,,所以直线PF 的方程为2()2ty x t =--,即20x ty t +-=. 则点2()4t E t ,到直线PF的距离为d ==5分联立方程2420x y x ty t ⎧=⎪⎨⎪+-=⎩,,消元,得2222(216)0t y t y t -++=. 因为2242(216)464(4)0t t t ∆=+-=+>,所以1y =2y =, 所以221212222164(4)1122t t AB y y y y t t ++=+++=++=+=. ………………7分 所以△EAB的面积为3222214(4)1(4)22t t S t t++=⨯=⨯. 不妨设322(4)()x g x x +=(0)x >,则12222(4)()(24)x g x x x+'=-.因为(0x ∈时,()0g x '<,所以()g x在(0上单调递减;)x ∈+∞上,()0g x '>,所以()g x在)+∞上单调递增.所以当x32min 4)()g x ==所以△EAB的面积的最小值为10分。

2017年江苏省南通市高考数学一模试卷

2017年江苏省南通市高考数学一模试卷

2017年江苏省南通市高考数学一模试卷学校:___________姓名:___________班级:___________考号:___________一、填空题(本大题共14小题,共70.0分)1.函数的最小正周期为______ .【答案】【解析】解:函数的最小正周期为,故答案为:.根据函数y=A sin(ωx+φ)的周期等于,得出结论.本题主要考查三角函数的周期性及其求法,利用了y=A sin(ωx+φ)的周期等于,属于基础题.2.设集合A={1,3},B={a+2,5},A∩B={3},则A∪B= ______ .【答案】{1,3,5}【解析】解:集合A={1,3},B={a+2,5},A∩B={3},可得a+2=3,解得a=1,即B={3,5},则A∪B={1,3,5}.故答案为:{1,3,5}.由交集的定义,可得a+2=3,解得a,再由并集的定义,注意集合中元素的互异性,即可得到所求.本题考查集合的交集、并集运算,注意运用定义法,以及集合中元素的互异性,属于基础题.3.复数z=(1+2i)2,其中i为虚数单位,则z的实部为______ .【答案】-3【解析】解:∵z=(1+2i)2=1+4i+(2i)2=-3+4i,∴z的实部为-3.故答案为:-3.直接利用复数代数形式的乘法运算化简得答案.本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.4.口袋中有若干红球、黄球和蓝球,从中摸出一只球.摸出红球的概率为0.48,摸出黄球的概率为0.35,则摸出蓝球的概率为______ .【答案】0.17【解析】解:∵摸出红球的概率为0.48,摸出黄球的概率为0.35,∴摸出蓝球的概率为1-0.48-0.35=0.17.故答案为0.17.利用对立事件的概率公式,可得结论.本题考查对立事件的概率公式,熟练掌握概率的基本性质是求解本题的关键.5.如图是一个算法的流程图,则输出的n的值为______ .【答案】5【解析】解:当n=1,a=1时,满足进行循环的条件,执行循环后,a=5,n=3;满足进行循环的条件,执行循环后,a=17,n=5;满足进行循环的条件,退出循环故输出n值为5故答案为:5.由已知的程序框图可知,该程序的功能是利用循环计算a值,并输出满足a<16的最大n值,模拟程序的运行过程可得答案.本题考查的知识点是程序框图,由于循环的次数不多,故可采用模拟程序运行的方法进行.6.若实数x,y满足则z=3x+2y的最大值为______ .【答案】7【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z=3x+2y得y=-x+z平移直线y=-x+z,由图象可知当直线y=-x+z经过点A时,直线y=-x+z的截距最大,此时z最大.由,解得A(1,2),代入目标函数z=3x+2y得z=3×1+2×2=7.即目标函数z=3x+2y的最大值为7.故答案为:7.作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.【答案】20【解析】解:根据题意,对于甲,其平均数甲==75,其方差S甲2=[(65-75)2+(80-75)2+(70-75)2+(85-75)2+(75-75)2]=50;对于乙,其平均数乙==75,其方差S乙2=[(80-75)2+(70-75)2+(75-75)2+(80-75)2+(70-75)2]=20;比较可得:S甲2>S乙2,则乙的成绩较为稳定;故答案为:20.根据题意,分别求出甲、乙的平均数与方差,比较可得S甲2>S乙2,则乙的成绩较为稳定;即可得答案.本题考查方差的计算,注意掌握方差的计算公式.8.如图,在正四棱柱ABCD-A1B1C1D1中,AB=3cm,AA1=1cm,则三棱锥D1-A1BD的体积为______ cm3.【答案】【解析】解:∵在正四棱柱ABCD-A1B1C1D1中,AB=3cm,AA1=1cm,∴三棱锥D1-A1BD的体积:=====(cm3).故答案为:.三棱锥D1-A1BD的体积==,由此能求出结果.本题考查三棱锥的体积的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.9.在平面直角坐标系x O y中,直线2x+y=0为双曲线=1(a>0,b>0)的一条渐近线,则该双曲线的离心率为______ .【答案】【解析】解:直线2x+y=0为双曲线=1(a>0,b>0)的一条渐近线,可得b=2a,即c2-a2=4a2,可得=.故答案为:.利用双曲线的渐近线方程得到a,b关系,然后求解双曲线的离心率即可.本题考查双曲线的简单性质的应用,考查计算能力.10.《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则该竹子最上面一节的容积为______ 升.【答案】【解析】解:设最上面一节的容积为a1,由题设知,解得.故答案为:.设最上面一节的容积为a1,利用等差数列的通项公式、前n项和公式列出方程组,能求出结果.本题考查等差数列的首项的求法,是基础题,解题时要认真审题,注意等差数列的通项公式和前n项和公式的灵活运用.11.在△ABC中,若•+2•=•,则的值为______ .【答案】【解析】解:在△ABC中,设三条边分别为a、b,c,三角分别为A、B、C,由•+2•=•,得ac•cos B+2bc•cos A=ba•cos C,由余弦定理得:(a2+c2-b2)+(b2+c2-a2)=(b2+a2-c2),化简得=2,∴=,由正弦定理得==.故答案为:.根据题意,利用平面向量的数量积,结合余弦定理和正弦定理,即可求出的值.本题考查了平面向量的数量积以及余弦定理和正弦定理的应用问题,是综合性题目.12.已知两曲线f(x)=2sinx,g(x)=acosx,,相交于点P.若两曲线在点P处的切线互相垂直,则实数a的值为______ .【答案】【解析】解:由f(x)=g(x),即2sinx=acosx,即有tanx==,a>0,设交点P(m,n),f(x)=2sinx的导数为f′(x)=2cosx,g(x)=acosx的导数为g′(x)=-asinx,由两曲线在点P处的切线互相垂直,可得2cosm•(-asinm)=-1,且tanm=,则=1,分子分母同除以cos2m,即有=1,即为a2=1+,解得a=.故答案为:.联立两曲线方程,可得tanx==,a>0,设交点P(m,n),分别求出f(x),g(x)的导数,可得切线的斜率,由两直线垂直的条件:斜率之积为-1,再由同角基本关系式,化弦为切,解方程即可得到a的值.本题考查导数的运用:求切线的斜率,两直线垂直的条件:斜率之积为-1,同时考查同角三角函数的基本关系式,考查化简整理的运算能力,属于中档题.13.已知函数f(x)=|x|+|x-4|,则不等式f(x2+2)>f(x)的解集用区间表示为______ .【答案】,,【解析】解:令g(x)=f(x2+2)-f(x)=x2+2+|x2-2|-|x|-|x-4|,x≥4时,g(x)=2x2-2x+4>0,解得:x≥4;≤x<4时,g(x)=2x2-4>0,解得:x>或x<-,故<x<4;0≤x<时,g(x)=0>0,不合题意;-≤x<0时,g(x)=2x>0,不合题意;x<-时,g(x)=2x2+2x-4>0,解得:x>1或x<-2,故x<-2,故答案为: ,,.令g(x)=f(x2+2)-f(x)=x2+2+|x2-2|-|x|-|x-4|,通过讨论x的范围,求出各个区间上的不等式的解集,取并集即可.本题考查了解绝对值不等式问题,考查分类讨论思想,是一道中档题.14.在平面直角坐标系x O y中,已知B,C为圆x2+y2=4上两点,点A(1,1),且AB⊥AC,则线段BC的长的取值范围为______ .【答案】[,]【解析】解:在平面直角坐标系x O y中,已知B,C为圆x2+y2=4上两点,点A(1,1),且AB⊥AC,如图所示当BC⊥OA时,|BC|取得最小值或最大值.由,可得B(,1)或(,1),由,可得C(1,)或(1,-)解得BC min==,BC max==.故答案为:[,].画出图形,当BC⊥OA时,|BC|取得最小值或最大值,求出BC坐标,即可求出|BC|的长的取值范围.本题考查直线与圆的方程的综合应用、考查数形结合以及转化思想的应用,考查计算能力,属于难题.二、解答题(本大题共12小题,共154.0分)15.如图,在平面直角坐标系x O y中,以x轴正半轴为始边作锐角α,其终边与单位圆交于点A.以OA为始边作锐角β,其终边与单位圆交于点B,AB=.(1)求cosβ的值;(2)若点A的横坐标为,求点B的坐标.【答案】解:(1)在△AOB中,由余弦定理得,AB2=OA2+OB2-2OA•OB cos∠AOB,所以,∠=,即.(2)因为,,,∴.因为点A的横坐标为,由三角函数定义可得,,因为α为锐角,所以.所以,,即点,.【解析】(1)由条件利用余弦定理,求得cosβ的值.(2)利用任意角的三角函数的定义,同角三角函数的基本关系,两角和差的正弦、余弦公式,求得点B的坐标.本题主要考查余弦定理,任意角的三角函数的定义,同角三角函数的基本关系,两角和差的正弦、余弦公式的应用,属于基础题.16.如图,在四棱锥P-ABCD中,四边形ABCD为平行四边形,AC,BD相交于点O,点E为PC的中点,OP=OC,PA⊥PD.求证:(1)直线PA∥平面BDE;(2)平面BDE⊥平面PCD.【答案】证明:(1)连结OE,因为O为平行四边形ABCD对角线的交点,所以O为AC中点.又因为E为PC的中点,所以OE∥PA.…4分又因为OE⊂平面BDE,PA⊄平面BDE,所以直线PA∥平面BDE.…6分(2)因为OE∥PA,PA⊥PD,所以OE⊥PD. (8)分因为OP=OC,E为PC的中点,所以OE⊥PC. (10)分又因为PD⊂平面PCD,PC⊂平面PCD,PC∩PD=P,所以OE⊥平面PCD.…12分又因为OE⊂平面BDE,所以平面BDE⊥平面PCD.…14分.【解析】(1)连结OE,说明OE∥PA.然后证明PA∥平面BDE.(2)证明OE⊥PD.OE⊥PC.推出OE⊥平面PCD.然后证明平面BDE⊥平面PCD.本题考查平面与平面垂直的判定定理的应用,直线与平面平行的判定定理的应用,考查空间想象能力以及逻辑推理能力.17.如图,在平面直角坐标系x O y中,已知椭圆(a>b>0)的离心率为,焦点到相应准线的距离为1.(1)求椭圆的标准方程;(2)若P为椭圆上的一点,过点O作OP的垂线交直线于点Q,求的值.【答案】解:(1)由题意得,,,…2分解得,c=1,b=1.所以椭圆的方程为.…4分(2)由题意知OP的斜率存在.当OP的斜率为0时,,,所以.…6分当OP的斜率不为0时,设直线OP方程为y=kx.由得(2k2+1)x2=2,解得,所以,所以.…9分因为OP⊥OQ,所以直线OQ的方程为.由得,所以OQ2=2k2+2.…12分所以.综上,可知.…14分.【解析】(1)由已知条件可得,,然后求解椭圆的方程.(2)由题意知OP的斜率存在.当OP的斜率为0时,求解结果;当OP的斜率不为0时,设直线OP方程为y=kx.联立方程组,推出.OQ2=2k2+2.然后求解即可.本题考查椭圆的简单性质的应用,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.18.如图,某机械厂要将长6m,宽2m的长方形铁皮ABCD进行裁剪.已知点F为AD的中点,点E在边BC上,裁剪时先将四边形CDFE沿直线EF翻折到MNFE处(点C,D分别落在直线BC下方点M,N处,FN交边BC于点P),再沿直线PE裁剪.(1)当∠EFP=时,试判断四边形MNPE的形状,并求其面积;(2)若使裁剪得到的四边形MNPE面积最大,请给出裁剪方案,并说明理由.【答案】解:(1)当∠EFP=时,由条件得∠EFP=∠EFD=∠FEP=.所以∠FPE=.所以FN⊥BC,四边形MNPE为矩形.…3分所以四边形MNPE的面积S=PN•MN=2m2.…5分(2)解法一:设∠<<,由条件,知∠EFP=∠EFD=∠FEP=θ.所以,,.…8分由>><<得>>,<<所以四边形MNPE面积为== ==…12分.当且仅当,即,时取“=”.…14分此时,(*)成立.答:当∠时,沿直线PE裁剪,四边形MNPE面积最大,最大值为m2.…16分解法二:设BE=tm,3<t<6,则ME=6-t.因为∠EFP=∠EFD=∠FEP,所以PE=PF,即.所以,.…8分由<<>>得<<>,<所以四边形MNPE面积为==…12分=.当且仅当,即时取“=”.…14分此时,(*)成立.答:当点E距B点m时,沿直线PE裁剪,四边形MNPE面积最大,最大值为m2.…16分.【解析】(1)当∠EFP=时,由条件得∠EFP=∠EFD=∠FEP=.可得FN⊥BC,四边形MNPE 为矩形.即可得出.(2)解法一:设∠<<,由条件,知∠EFP=∠EFD=∠FEP=θ.可得,,.四边形MNPE面积为==,化简利用基本不等式的性质即可得出.解法二:设BE=tm,3<t<6,则ME=6-t.可得PE=PF,即.,NP=3-T+,四边形MNPE面积为==,利用基本不等式的性质即可得出.本题考查了函数的性质、矩形的面积计算公式、基本不等式的性质、三角函数的单调性应与求值,考查了推理能力与计算能力,属于中档题.19.已知函数f(x)=ax2-x-lnx,a∈R.(1)当时,求函数f(x)的最小值;(2)若-1≤a≤0,证明:函数f(x)有且只有一个零点;(3)若函数f(x)有两个零点,求实数a的取值范围.【答案】解:(1)当时,.所以′,(x>0).…2分令f'(x)=0,得x=2,当x∈(0,2)时,f'(x)<0;当x∈(2,+ )时,f'(x)>0,所以函数f(x)在(0,2)上单调递减,在(2,+ )上单调递增.所以当x=2时,f(x)有最小值.…4分(2)由f(x)=ax2-x-lnx,得′,>.所以当a≤0时,′<,函数f(x)在(0,+ )上单调递减,所以当a≤0时,函数f(x)在(0,+ )上最多有一个零点.…6分因为当-1≤a≤0时,f(1)=a-1<0,>,所以当-1≤a≤0时,函数f(x)在(0,+ )上有零点.综上,当-1≤a≤0时,函数f(x)有且只有一个零点.…8分(3)由(2)知,当a≤0时,函数f(x)在(0,+ )上最多有一个零点.因为函数f(x)有两个零点,所以a>0.…9分由f(x)=ax2-x-lnx,得′,>,令g(x)=2ax2-x-1.因为g(0)=-1<0,2a>0,所以函数g(x)在(0,+ )上只有一个零点,设为x0.当x∈(0,x0)时,g(x)<0,f'(x)<0;当x∈(x0,+ )时,g(x)>0,f'(x)>0.所以函数f(x)在(0,x0)上单调递减;在(x0,+ )上单调递增.要使得函数f(x)在(0,+ )上有两个零点,只需要函数f(x)的极小值f(x0)<0,即<.又因为,所以2lnx0+x0-1>0,又因为函数h(x)=2lnx+x-1在(0,+ )上是增函数,且h(1)=0,所以x0>1,得<<.又由,得,所以0<a<1.…13分以下验证当0<a<1时,函数f(x)有两个零点.当0<a<1时,>,所以<<.因为>,且f(x0)<0.所以函数f(x)在,上有一个零点.又因为>(因为lnx≤x-1),且f(x0)<0.所以函数f(x)在,上有一个零点.所以当0<a<1时,函数f(x)在,内有两个零点.综上,实数a的取值范围为(0,1).…16分下面证明:lnx≤x-1.设t(x)=x-1-lnx,所以′,(x>0).令t'(x)=0,得x=1.当x∈(0,1)时,t'(x)<0;当x∈(1,+ )时,t'(x)>0.所以函数t(x)在(0,1)上单调递减,在(1,+ )上单调递增.所以当x=1时,t(x)有最小值t(1)=0.所以t(x)=x-1-lnx≥0,得lnx≤x-1成立.【解析】(1)当时,.求出函数的导数,得到极值点,然后判断单调性求解函数的最值.(2)由f(x)=ax2-x-lnx,得′,>.当a≤0时,函数f(x)在(0,+ )上最多有一个零点,当-1≤a≤0时,f(1)=a-1<0,>,推出结果.(3)由(2)知,当a≤0时,函数f(x)在(0,+ )上最多有一个零点.说明a>0,由f(x)=ax2-x-lnx,得′,>,说明函数f(x)在(0,x0)上单调递减;在(x0,+ )上单调递增.要使得函数f(x)在(0,+ )上有两个零点,只需要<.通过函数h(x)=2lnx+x-1在(0,+ )上是增函数,推出0<a<1.验证当0<a<1时,函数f(x)有两个零点.证明:lnx≤x-1.设t(x)=x-1-lnx,利用导数求解函数的最值即可.本题考查函数的导数的综合应用,函数的单调性以及函数的极值,构造法以及分类讨论思想的应用,考查计算能力.20.已知等差数列{a n}的公差d不为0,且,,…,,…(k1<k2<…<k n<…)成等比数列,公比为q.(1)若k1=1,k2=3,k3=8,求的值;(2)当为何值时,数列{k n}为等比数列;(3)若数列{k n}为等比数列,且对于任意n∈N*,不等式>恒成立,求a1的取值范围.【答案】解:(1)由已知可得:a1,a3,a8成等比数列,所以,…2分整理可得:4d2=3a1d.因为d≠0,所以.…4分(2)设数列{k n}为等比数列,则.又因为,,成等比数列,所以.整理,得.因为,所以a1(2k2-k1-k3)=d(2k2-k1-k3).因为2k2≠k1+k3,所以a1=d,即.…6分当时,a n=a1+(n-1)d=nd,所以.又因为,所以.所以,数列{k n}为等比数列.综上,当时,数列{k n}为等比数列.…8分(3)因为数列{k n}为等比数列,由(2)知a1=d,>.,a n=a1+(n-1)d=na1.因为对于任意n∈N*,不等式>恒成立.所以不等式>,即>,<<恒成立.…10分下面证明:对于任意的正实数ε(0<ε<1),总存在正整数n1,使得<.要证<,即证lnn1<n1lnq+lnε.因为<,则<,解不等式<,即>,可得>,所以>.不妨取,则当n1>n0时,原式得证.所以<,所以a1≥2,即得a1的取值范围是[2,+ ).…16分【解析】(1)由已知得:a1,a3,a8成等比数列,从而4d2=3a1d,由此能求出的值.(2)设数列{k n}为等比数列,则,推导出,从而,进而.由此得到当时,数列{k n}为等比数列.(3)由数列{k n}为等比数列,a1=d,>.得到>,<<恒成立,再证明对于任意的正实数ε(0<ε<1),总存在正整数n1,使得<.要证<,即证lnn1<n1lnq+lnε.由此能求出a1的取值范围.本题考查等差数列的首项与公差的比值的求法,考查满足等比数列的等差数列的首项与公差的比值的确定,考查数列的首项的取值范围的求法,综合性强,难度大,对数学思维要求较高.21.已知圆O的直径AB=4,C为AO的中点,弦DE过点C且满足CE=2CD,求△OCE的面积.【答案】解:设CD=x,则CE=2x.因为CA=1,CB=3,由相交弦定理,得CA•CB=CD•CE,所以1×3=x•2x=2x2,所以.…2分取DE中点H,则OH⊥DE.因为,所以.…6分又因为,所以△OCE的面积.…10分.【解析】由相交弦定理,得CD,DE中点H,则OH⊥DE,利用勾股定理求出OH,即可求出△OCE 的面积.本题考查的是相交弦定理,垂径定理与勾股定理,考查学生分析解决问题的能力,属于中档题.22.已知向量是矩阵A的属于特征值-1的一个特征向量.在平面直角坐标系x O y中,点P(1,1)在矩阵A对应的变换作用下变为P'(3,3),求矩阵A.【答案】解:设,因为向量是矩阵A的属于特征值-1的一个特征向量,所以.所以…4分因为点P(1,1)在矩阵A对应的变换作用下变为P'(3,3),所以.所以…8分解得a=1,b=2,c=2,d=1,所以.…10分.【解析】设,根据矩阵变换,列方程组,即可求得a、b、c和d的值,求得A.本题考查矩阵的变换,考查方程思想,体现转化思想,属于中档题.23.在极坐标系中,求直线被曲线ρ=4sinθ所截得的弦长.【答案】解:以极点O为坐标原点,极轴为x轴的正半轴建立平面直角坐标系.直线的直角坐标方程为y=x①,…3分曲线ρ=4sinθ的直角坐标方程为x2+y2-4y=0②.…6分由①②得或…8分所以A(0,0),B(2,2),所以直线被曲线ρ=4sinθ所截得的弦长AB=.…10分.【解析】极坐标方程化为直角坐标方程,联立,求出A,B的坐标,即可求直线被曲线ρ=4sinθ所截得的弦长.本题考查极坐标方程化为直角坐标方程,考查方程思想,比较基础.24.求函数的最大值.【答案】解:…2分由柯西不等式得,…8分所以y max=5,此时.所以函数的最大值为5.…10分.【解析】利用二倍角公式化简函数的解析式,利用柯西不等式求解函数的最值即可.本题考查是的最值,柯西不等式在最值中的应用,考查转化思想以及计算能力.25.如图,在棱长为2的正方体ABCD-A1B1C1D1中,P为棱C1D1的中点,Q为棱BB1上的点,且BQ=λBB1(λ≠0).(1)若,求AP与AQ所成角的余弦值;(2)若直线AA1与平面APQ所成的角为45°,求实数λ的值.【答案】解:以,,为正交基底,建立如图所示空间直角坐标系A-xyz.(1)因为,,,,,,所以<,>=.所以AP与AQ所成角的余弦值为.…4分(2)由题意可知,,,,,,.设平面APQ的法向量为=(x,y,z),则即令z=-2,则x=2λ,y=2-λ.所以=(2λ,2-λ,-2).…6分又因为直线AA1与平面APQ所成角为45°,所以|cos<,>|==,可得5λ2-4λ=0,又因为λ≠0,所以.…10分.【解析】(1)以,,为正交基底,建立如图所示空间直角坐标系A-xyz.求出,,,,,,利用数量积求解AP与AQ所成角的余弦值.(2),,,,,.求出平面APQ的法向量,利用空间向量的数量积求解即可.本题考查空间向量数量积的应用,直线与平面所成角的求法,异面直线所成角的求法,考查计算能力.26.在平面直角坐标系x O y中,已知抛物线x2=2py(p>0)上的点M(m,1)到焦点F的距离为2,(1)求抛物线的方程;(2)如图,点E是抛物线上异于原点的点,抛物线在点E处的切线与x轴相交于点P,直线PF与抛物线相交于A,B两点,求△EAB面积的最小值.【答案】解:(1)抛物线x2=2py(p>0)的准线方程为,因为M(m,1),由抛物线定义,知,所以,即p=2,所以抛物线的方程为x2=4y.…3分(2)因为,所以′.设点,,,则抛物线在点E处的切线方程为.令y=0,则,即点,.因为,,F(0,1),所以直线PF的方程为,即2x+ty-t=0.则点,到直线PF的距离为.…5分联立方程消元,得t2y2-(2t2+16)y+t2=0.因为△=(2t2+16)2-4t4=64(t2+4)>0,所以,,所以.…7分所以△EAB的面积为.不妨设(x>0),则′.因为,时,g'(x)<0,所以g(x)在,上单调递减;,上,g'(x)>0,所以g(x)在,上单调递增.所以当时,.所以△EAB的面积的最小值为.…10分.【解析】(1)求出抛物线x2=2py(p>0)的准线方程为,由抛物线定义,得到p=2,即可求解抛物线的方程.(2)求出函数的′.设点,,,得到抛物线在点E处的切线方程为.求出,.推出直线PF的方程,点,到直线PF的距离,联立求出AB,表示出△EAB的面积,构造函数,通过函数的导数利用单调性求解最值即可.本题考查抛物线与直线的位置关系的应用,函数的导数与函数的最值的求法,考查转化思想以及构造法的应用,难度比较大.。

江苏省南通市(数学学科基地命题)2017年高考模拟试卷(8) Word版含答案

江苏省南通市(数学学科基地命题)2017年高考模拟试卷(8) Word版含答案

2017年高考模拟试卷(8)南通市数学学科基地命题第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分 . 1. 集合{}{}0,2,1,0,1x A B ==-,若{}0,1A B ⋂=,则x = ▲ .2. 若复数()(1i)1i z a =+-(i 为虚数单位,a ∈R )满足||2z =,则2016()ai = ▲ .3. 已知倾斜角为α的直线l 的斜率等于双曲线2213y x -=的离心率,则2016sin(2)3π-α=▲ .4. 某中学共有学生2000人,其中高一年级共有学生650人,高二男生有370人。

现在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.则该校高三学生共有 ▲ 人. 5. 已知偶函数()f x 在[)0,+∞上单调递减,且()30f =,则 不等式2(2)0f x x ->的解集为 ▲ .6. 运行如图所示的算法流程图,输出的结果为 ▲ .7. 已知集合{}2,1,0A =--,{}1,0,1,2B =-,若,a A b B ∈∈, 则b a AB -∈的概率 ▲ .8. 数列{}n a 满足122,1,a a ==且1111(2)n n nn n n a a a n a a a --++-=≥-,则使得20162n a a =成立的正整数 n = ▲ .9.函数()sin f x x x a =+-在区间[]0,2π上恰有三个零点x 1,x 2,x 3,则x 1+x 2+x 3 = ▲ .10. 已知椭圆()22122:10x y C a b a b +=>>的左、右焦点分别为12F F 、.其中2F 也是抛物线224C y x =:的焦点,点M 为12C C 与在第一象限的交点,且1523MF a =-.则椭圆1C 的方程为 ▲ .11. 已知函数222101,()2 1,x mx x f x mx x ⎧+-=⎨+>⎩,,≤≤,若()f x 在区间[)0,+∞上有且只有2个零点,MFEDC BA则实数m 的取值范围是 ▲ . 12. 已知0,0x y >>,且2x y +≤,则4122x y x y+++的最小值为 ▲ . 13. 在平行四边形ABCD 中,3A π∠=,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足||||||||BM CN BC CD =,则AM AN ⋅的最大值为 ▲ . 14. 已知函数2()12f x x x =-的定义域为[]0m ,,值域为20am ⎡⎤⎣⎦,,则实数a 的取值范围是 ▲ .二、解答题:本大题共6小题,共90分.15.(本小题满分14分)已知斜三角形ABC ∆中. (1)求角C ;(2)若c =,求当ABC ∆的周长最大时的三角形的面积.16.(本小题满分14分)如图,矩形ADEF 与梯形ABCD 所在的平面互相垂直,其中AB ∥CD ,AB ⊥BC ,2AB DC =,45BDC ︒∠=,点M 在线段EC 上. (1)若2EM CM =,求证:AE ∥面BDM ; (2)证明:平面BDM ⊥平面ADEF.17.(本小题满分14分)为解决城市的拥堵问题,某城市准备对现有的一条穿城公路MON 进行分流,已知穿城公路MON 自西向东到达城市中心点O 后转向东北方向,现准备修建一条城市高架道路L ,L 在MO 上设一出入口A ,在ON 上设一出入口B ,假设高架道路L 在AB 部分为直线段,且要求市中心O 与AB 的距离为10km . (1)求两站点,A B 之间距离的最小值;(2)公路MO 段上距离市中心O 30km 处有一古建筑群C ,为保护古建筑群,设立一个以C 为圆心,5km 为半径的圆形保护区.则如何在古建筑群和市中心O 之间设计出入口A ,才能使高架道路及其延伸段不经过保护区?18.(本小题满分14分)已知圆O :x 2 + y 2 = 4,两个定点A (a ,2),B (m ,1),其中a ∈R ,m > 0.P 为圆O 上任意一点,且PAPB = k (k 为常数). (1)求常数k 的值;(2)过点E (a ,t )作直线l 与圆C :x 2 + y 2 = m 交于M 、N 两点,若M 点恰好是线段NE的中点,求实数t 的取值范围.19.(本小题满分16分)已知函数2()(1)ln f x x a+x x =--+2,且该函数在1x =处取得极值. (1)求实数a 的值,并求出函数的单调区间;(2)若函数5()()2g x f x b x =-+在区间(0,2016)上只有一个零点,求实数b 的值;(3)令2()()2f x kh x x x x=+--,当0k <时,若函数()f x 的图象与x 轴交于不同的两点1(,0)A x ,()2,0B x ,12x x <,求证:122x x +>N20.(本小题满分16分)对于数列{}n a ,记1n n n a a a +∆=-,11k k k n n n a a a ++∆=∆-∆,,k n N *∈,则称数列{}k n a ∆为数列{}n a 的“k 阶差数列”.(1)已知1()2n n a ∆=-,① 若{}n a 为等比数列,求1a 的值;② 设t 为任意正数,证明:存在k N *∈,当,,n m k n N m N **>≥∈∈时总有||.n m a a t -≤(2)已知23-2n n a ∆=,若11a =,且3n a a ≥对n N *∈恒成立,求2a 的取值范围.第II 卷(附加题,共40分)21.【选做题】本题包括A, B,C,D 四小题,每小题10分,请选定其中两小题,并在相应的.....答题区域内作答........ A.(选修4-1;几何证明选讲)如图,ABC ∆内接于圆O ,过点A 作圆O 的切线交CB 的延长线于点P ,BAC ∠的平分线分别交BC 于点D ,若2PA PB =. 求证:2CD DB =.B .(选修4-2:矩阵与变换)已知矩阵302A a ⎡⎤=⎢⎥⎣⎦,A 的逆矩阵11031A b -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求2A .C .(选修4-4:坐标系与参数方程)在极坐标系中,圆C 的方程为2cos (0)a a ρθ=≠,以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系,设直线l 的参数方程为31(43x t t y t =+⎧⎨=+⎩为参数),若直线l 与圆C 恒有公共点,求实数a 的取值范围.D .(选修4-5:不等式选讲)已知正数x ,y ,z 满足x +y +z =1.求证:22212223x y z y z z x x y ++≥+++.【选做题】第22题、23题,每题10分,共计20分.22.如图,一简单几何体ABCDE 的一个面ABC 内接于圆O, AB 是圆O 的直径,四边形DCBE 为平行四边形,且DC ⊥平面ABC. 若AC=BC=BE =2,(1)BE 边上是否存在一点M ,使得AD 和CM 的夹角为60︒? (2)求锐角二面角O-CE-B 的余弦值.23.设整数n ≥3,集合P ={1,2,3,…,n },A ,B 是P 的两个非空子集.记a n 为所有满足A 中的最大数小于B 中的最小数的集合对(A ,B )的个数. (1)求a 3; (2)求a n .2017年高考模拟试卷(8)参考答案一、填空题1. 0 . 由{}0,1A B ⋂=,可得21x =,所以,0x =2. 1. 法一:由()(1i)1i (1)(1)i z a a a =+-=++-,所以z ,所以222(1)(1)2a a ++-=,所以21a =,即1a =±,所以20162016()()1ai i ==法二:由(1i)1i 2z a =+-==,所以212a +=,所以21a =,即1a =±, 所以20162016()()1ai i ==.3. 45-. 因为tan 2=α,所以,22220162sin cos 2tan 4sin(2)sin 23sin cos 1tan 5παααααααα-=-=-=-=-++. 4. 600. 设高二女生人数为x 人,所以,0.192000x=,即380x =,所以,高三人数为 2000-650-370-380=600人。

(高清版)【江苏省南通市】2017年高考(数学学科基地命题)模拟数学试卷(三)

(高清版)【江苏省南通市】2017年高考(数学学科基地命题)模拟数学试卷(三)

江苏省南通市2017年高考(数学学科基地命题)模拟数学试卷(三)第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分. 1.已知集合{1,2,3,4}=A ,{1,4,7}=B ,则=AB ________.2.已知复数z 满足i 3i =+z (i 是虚数单位),则||z 的值为________.3.已知样本数据12,,...n x x x 的均值5=x ,则样本数据131+x ,231+x ,…,的值为________. 4.执行如图所示的伪代码,则输出的结果为________.5.随机从1,2,3,4,5五个数中取两个数,取出的恰好都为偶数的概率为________. 6.已知等差数列{}n a 满足1210+=a a ,432-=a a .则数列第10项10=a ________. 7.如图,四棱锥-P ABCD 中,⊥PA 底面ABCD ,底面ABCD 是矩形,2=AB ,3=AD ,点E 为棱CD 上一点,若三棱锥-E PAB 的体积为4,则PA 的长为________.8.函数2|log |=y x ,1[,32]4∈x 的值域为________. 9.如果函数3sin(2)=+y x ϕ的图像关于点5π(,0)6中心对称,则||ϕ的最小值为________.10.在平面直角坐标系xOy 中,已知(1,)=-OA t ,(2,2)=OB ,若∠OBA 为直角三角形,则实数t 的值为________.11.若存在实数x ,使不等式2e 2e 10+-≥x x a 成立,则实数a 的取值范围为________. 12.已知正数a ,b 满足13+=ab a b,则ab 的最小值为________. 13.已知点(2,3)A ,点(6,3)-B ,点P 在直线3430-+=x y 上,若满足等式20+=AP BP λ的点P 有两个,则实数λ的取值范围是________.14.设函数33,()2,⎧-<=⎨-≥⎩x x x af x x x a,若关于x 的不等式()4>f x a 在实数集R 上有解,则实数a 的取值范围是________.二、解答题:本大题共6小题,共90分. 15.(本小题满分14分)在△ABC 中,π3=B . (1)若23=AC ,2=BC ,求AB . (2)若13cos =A ,求tan C . 16.(本小题满分14分)如图,在四棱锥-P ABCD 中,⊥AB 平面PAD ,∥DC AB ,2=DC AB ,E 为棱PA 上一点.(1)设O 为AC 与BD 的交点,若2=PE AE ,求证:∥OE 平面PBC ;(2)若⊥DE AP ,求证:⊥PB DE .17.(本小题满分14分)南半球某地区冰川的体积每年中随时间而变化,现用t 表示时间,以月为单位,年初为起点,根据历年的数据,冰川的体积(亿立方米)关于t 的近似函数的关系为321124100,010()4(10)(341)100,1012⎧-+-+<≤=⎨--+<≤⎩t t t t V t t t t (1)该冰川的体积小于100亿立方米的时期称为衰退期.以1-<<i t i 表示第t 月份(1,2,...,12)=i ,问一年内哪几个月是衰退期? (2)求一年内该地区冰川的最大体积. 18.(本小题满分14分)已知圆222:(0)+=>O x y r r 与椭圆2222:1(0)+=>>x y C a b a b相交于点(0,1)M ,(0,1)-N ,且椭圆的离心率为2. (1)求r 值和椭圆C 的方程;(2)过点M 的直线l 另交圆O 和椭圆C 分别于A ,B 两点. ①若23=MB MA ,求直线l 的方程;②设直线NA 的斜率为1k ,直线NB 的斜率为2k ,问:21k k 是否为定值,如果是,求出定值;如果不是,请说明理由.19.(本小题满分16分)设函数()e ||=--x f x x a ,其中a 是实数. (1)若()f x 在R 上单调递增,求实数a 的取值范围;(2)若函数有极大值点2x 和极小值点1x ,且2121()()()-≥-f x f x k x x 恒成立,求实数k 的取值范围. 20.(本小题满分16分)已知数列{}n a 的各项均为正数,2122==a a ,且312++-=n n n na a a a 对*∀∈n N 恒成立,记数列{}n a 的前n 项和为n S .(1)证明:数列212{}-+n n a a 为等比数列;(2)若存在正实数t ,使得数列{+}n S t 为等比数列,求数列{}n a 的通项公式.第Ⅱ卷(附加题,共40分)21.【选做题】本题包括A ,B ,C ,D 四小题,每小题10分,请选定其中两小题,并在相应的答题区域.........内作答.... A.(选修4-1;几何证明选讲)如图,AB 是圆O 的直径,弦BD ,CA 的延长线相交于点E .过E 作BA 的延长线的垂线,垂足为F ,求证:2=-AB BE BD AE AC .B .(选修4-2:矩阵与变换)已知矩阵1214⎡⎤=⎢⎥-⎣⎦A ,向量32⎡⎤=⎢⎥⎣⎦α,计算3A α. C .(选修4-4:坐标系与参数方程)在极坐标系中,直线l 的极坐标方程为π()3=∈R θρ,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线C 的参数方程为2cos ()1cos 2=⎧⎨=-⎩为参数x y ααα,求直线l 与曲线C 交点P 的直角坐标.D .(选修4-5:不等式选讲)已知a ,∈b R ,e >>a b (其中e 是自然数对数的底数),求证:>a b b a .【选做题】第22题、23题,每题10分,共计20分.22.小明和小刚进行篮球投篮比赛,采用五局三胜制,当有人赢得三局时,比赛即停止.已知每局比赛中小明获胜的概率为34. (1)求第三局结束后小明获胜的概率;(2)设比赛的局数为X ,求X 的分布列及数学期望()E X .23.设0(,)(1)-=-+∑nk knk m P n m C m k,(,)-=nn m Q n m C ,其中m ,*∈n N . (1)当1=m 时,求(,1)(,1)P n Q n 的值;(2)对+∀∈m N ,证明:(,)(,)P n m Q n m 恒为定值.为直角,有0=OB AB ,即有()0-=OB OB OA ,∴2=OA OB OB ; , 5=t . .[1,)-+∞.12.23.解:∵a ,b 为正数,根据不等式有13132=+≥ab a b a b, 化简得23≥ab ab ,即有23≥ab ,当且仅当1313⎧=⎪⎪⎨⎪+=⎪⎩a b ab a b时,即23=a ,183=b 时,取“=”.13.(,2)-∞.解:设(,)P x y ,则(2,3)=--AP x y ,(6,3)=-+BP x y ,根据20+=AP BP λ, 代入坐标化简有2213(4)132()2-+=-<x y λλ. 由题意圆:2213(4)132()2-+=-<x y λλ圆与直线3430-+=x y 相交, 圆心到直线的距离22|34403|313234-+==<-+d λ∴2<λ.14.1(,)(7,)2-∞+∞.解:当1≤-a ,函数()f x 有最大值2-a ,此时24->a a ,得0<a ,又∵1≤-a , ∴1≤-a ;当12-<≤a ,函数()f x 有最大值2,此时24>a 得12<a , 又∵12-<≤a ,∴112-<<a , 当2>a ,函数()f x 无最大值,∵取不到33-a a ,∴334->a a a ,即370->a a ,得70-<<a ,或7>a , 又∵2>a , ∴7>a ;综上所述,a 的取值范围是1(,)(7,)2-∞+∞.二、解答题.15.解:(1)∵在△ABC 中,π3=B ,=AC ,2=BC , 由余弦定理得2222cos =+-AC AB BC AB BC B , 得21242=+-AB AB ,即2280--=AB AB 解之得4=AB ,2=-AB (舍去).(2)cos 013=>A ,得π02<<A ,sin 13==A sintan cos ==AA A 又∵π3=B ,∴tan tan 333tan tan()1tan tan 533++=-+=-==-A B C A B A B .16.解:(1)在△AOB 与△COD 中, ∵∥DC AB ,2=DC AB , ∴12==AO AB CO CD , 又∵2=PE AE , ∴在△APC 中,有12==AO AE CO PE ,则∥OE PC . 又∵⊄OE 平面PBC ,⊂PC 平面PBC , ∴∥OE 平面PBC .(2)∵⊥AB 平面PAD ,⊂DE 平面PAD , ∴⊥AB DE .又∵⊥AP DE ,⊂AB 平面PAB ,⊂AP 平面PAB ,⋂=AP AB A , ∴⊥DE 平面PAB ,⊂PB 平面PAD , ∴⊥DE PB .17.解:(1)当010<≤t 时,32()1124100100=+-+<V t t t t , 化简得211240-+<t t , 解得3<t 或8>t ,又∵010<≤t ,故04<<t 或810<≤t ,当1012<≤t 时,()4(10)(341)100100=--+<V t t t ,得41103<<t , 又∵1012<≤t ,故1012<≤t . 综上得04<<t ,或812<≤t .∴衰退期为1月,2月,3月,4月,…9月,10月,11,12月共8个月.(2)由(1)知:()V t 的最大值只能在(4,9)内取到. 由322()(1124100)32224''=-+-+=+-V t t t t t t 令()0'=V t , 得6=t 或43=t (舍去). 当t 变化时,()'V t 与()V t 的变化情况如下表:由上表,()Vt 在6=t 时取最大值(6)136()=亿立方米V . 故该冰川的最大体积为136亿立方米.18.解:(1)∵圆222:+=x y r O 与椭圆22221(0):+=>>x y a b a C b相交于点(0,1)M∴1==b r .又∵离心率为e 2==c a ∴a∴椭圆22:12+=y C x .(2)∵过点M 的直线l 另交圆O 和椭圆C 分别于A ,B 两点,∴直线l 的方程为1(0)=+≠y kx k ,由22112=+⎧⎪⎨+=⎪⎩y kx x y 得22(21)40++=k x kx , ∴222421(,)2121--+++k k B k k ,同理2211=+⎧⎨+=⎩y kx x y 得到22(1)20++=k x kx ,∴22221(,)11--+++k k A k k ,∵23=MB MA ,则224223211--=++k kk k ∵0≠k ,∴2=±k ,即直线l的方程为12=±+y x . ②根据①222421(,)2121--+++k k B k k ,22221(,)11--+++k k A k k , 222111121-++-+====---+A N NAA N k y y k k k k x x k k ,22222111214221-++-+====---+B N NB B N k y y k k k k x x k k , ∴2112=k k 为定值. 19.解:(1)∵e ,()e |e ,⎧-+≥⎪=--=⎨+-<⎪⎩x xx x a x a f x x a x a x a ,则e 1,()e 1,⎧-≥⎪'=⎨+<⎪⎩x x x af x x a ,∵()f x 在R 上单调递增, ∴()0'≥f x 恒成立,当<x a 时,()e 110'=+≥>xf x 恒成立,当≥x a 时,()e 10'=-≥xf x 恒成立,故()0'≥f a ,即0≥a .(2)由(1)知当0≥a 时,()f x 在R 上单调递增,不符题意, ∴有0<a .此时,当<x a 时,()e 110'=+≥>xf x ,()f x 单调递增,当≥x a 时,()e 1'=-xf x ,令()0'=f x ,得0=x ,∴()0'<f x 在(,0)a 上恒成立,()f x 在(,0)a 上单调递减,()0'>f x 在(0,)+∞恒成立,()f x 在(0,)+∞上单调递增,∴()()e ==极大af x f a ,()(0)1==+极小f x f a ,即0<a 符合题意.由2121()()()-≥-f x f x k x x 恒成立,可得e 1--≥a a ka 对任意0<a 恒成立,设()e (1)1=-+-a g a k a ,求导,得()e (1)'=-+ag a k ,①当1≥-k 时,()0'≥g a 恒成立,()g a 在(,0)-∞单调递增, 又∵1(1)0e-=+<g k ,与()0>g a 矛盾; ②当0≥k 时,()0'≤g a 在(,0)-∞上恒成立,()g a 在(,0)-∞单调递减, 又∵(0)0=g ,∴此时()0≥g a 恒成立,符合题意;③当10-<<k 时,令()0'>g a 在(,0)-∞上解集为(ln(1),0)+k , 即()g a 在(ln(1),0)+k 上单调递增, 又∵(0)0=g ,∴(ln(1))0+<g k 不符题意; 综上,实数k 的取值范围为[0,)+∞. 20.证明:(1)由312+++=n n n n a a a a ,可知323311...+++====n n n n a a aa a a a , ∴212232123212212()++---++==++n n n n n n n na a a a a a a a a a ,当1=n 时,123+=a a ,即数列212{}-+n n a a 是以3为首项,3a 为公比的等比数列.(2)法一:由(1),同理可知,数列221{}++n n a a 是以32+a 为首项,3a 为公比的等比数列.故当2=n k 时,32123421233(1)()()...()1--=++++++=-k k k k a S a a a a a a a 故当21=+n k 时,33211234513(2)(1)()()...()11+-+-=+++++++=+-k k n n a a S a a a a a a a a . 又∵{}+n S t 为等比数列,故有221()()()++++=+n n n S t S t S t ,对+∀∈N n 恒成立,∴222221()()()++++=+k k k S t S t S t 和222322()()()++++=+k k k S t S t S t 对+∀∈N k 恒成立,即123333333112333333333(1)3(1)(2)(1)()()(1)111(2)(1)(2)(1)3(1)(1)(1)()111+++⎧--+-++=++⎨---⎩+-+--++++=+---k k k k k k a a a a t t t a a a a a a a a t t t a a a 对+∀∈Nk 恒成立,解得34=a ,1=t ,此时2132(1)(1)(1)++=+S S S 也成立.∴34=a ,1=t ,即21=-n n S 得到12-=n n a .法二:由(1),同理可知,数列221{}++n n a a 是以32+a 为首项,3a 为公比的等比数列.故当2=n k 时,3212342123333(1)33()()...()111--=++++++==----k k k k k a S a a a a a a a a a a 要使得{}+n S t 为等比数列必有2{}+k S t 为等比数列,即有331=-t a 成立① 故当21=+n k 时,333321123451333(2)(1)22()()...()11111+-+-++=+++++++=+=-+---k k k n n a a a a S a a a a a a a a a a a .要使得{}+n S t 为等比数列必有2{}+k S t 为等比数列,即有33211+=--a t a 成立② 联立①②得1=t ,34=a 以下同解法一法三:由(1),同理可知,数列221{}++n n a a 是以32+a 为首项,3a 为公比的等比数列.故当2=n k 时,32123421233(1)()()...()1--=++++++=-k k k k a S a a a a a a a 故当21=+n k 时,33211234513(2)(1)()()...()11+-+-=+++++++=+-k k n n a a S a a a a a a a a . 要使得{}+n S t 为等比数列必有2243()()()++=+S t S t S t 和2132()()()++=+S t S t S t解得1=t ,34=a ,通过验证1=t ,31=a 时,{}+n S t 为等比数列.以下同解法一第Ⅱ卷(附加题,共40分)21.解:A .连接AD , ∵AB 为圆O 的直径,∴90∠=︒ADB ,又∵⊥EF AB ,90∠=︒AFE ,则A ,D ,E ,F 四点共圆, ∴=BD BE BA BF ,又~△△ABC AEF ,即=AB AF AE AC .∴2()-=-=-=BE BD AE AC BA BF AB AF AB BF AF AB .B .∵212()5614--⎡⎤==-+⎢⎥-⎣⎦f λλλλλ,由()0=f λ,得2=λ或3=λ. 当2=λ时,对应的一个特征向量为121⎡⎤=⎢⎥⎣⎦α;当3=λ时,对应的一个特征向量为211⎡⎤=⎢⎥⎣⎦α;设321211⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦m n ,解得11=⎧⎨=⎩m n ,∴33333312122143()12131135⎡⎤⎡⎤⎡⎤=+=+=⨯+⨯=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A A A A αααααC .∵直线l 的极坐标方程为π()3=∈θρR , ∴直线l的直角坐标方程为=y ,又∵曲线C 的参数方程为2cos 1cos 2=⎧⎨=-⎩x y αα,∴曲线C 的普通方程为212,[2,2]2=-+∈-y x x ,联立解方程组2122⎧=⎪⎨=-+⎪⎩y y x .解得3⎧=⎪⎨=-+⎪⎩x y3⎧=⎪⎨=-⎪⎩x y∴点P的直角坐标方程为(3-. D .∵0>a b ,0>b a , ∴要证>a b b a , 只要证ln ln >a b b a只要证ln ln >b ab a,构造函数ln (),(e,)=∈+∞x f x x x . 21ln (),(e,)-'=∈+∞x f x x x,()0'<f x 在区间(e,)+∞恒成立, ∴函数()f x 在(e,)∈+∞x 上是单调递减,∴当e >>a b 时,有()()>f b f a 即ln ln >b ab a,得证. 22.解:(1)记“第三局结束后小明获胜”为事件A ,则3327()()464==P A .(2)由题意可知X 的所有可能取值为3,4,5.33317(3)()()4416==+=P X131333311345(4)()()()()4444128==+=P X C C ,27(5)(3)(4)128===-==P X P X P X .∴比赛局数X 的分布列为∴比赛局数X 的数学期望是74527483()34516128128128=⨯+⨯+⨯=E X . 23.解:(1)当1=m 时,1100111(,1)(1)(1)111++--=∑-=∑-=+++n n k kk k nn k k P n C C k n n , 又∵11(,1)1+==+n Q n C n ,显然(,1)(,1)1=P n Q n .(2)0(,)(1)-=∑-+nk knk mP n m C m k111111(1)()(1)-----=+∑-++-++n k k k nn n k m mC C m k m k111(1,)(1)---=-+∑-+n k k n k m P n m C m k 0(1,)(1)-=-+∑-+n k knk m m P n m C n m k (1,)(,)=-+mP n m P n m n即(,)(1,)=-+nP n m P n m m n, 由累乘,易求得!!1(,)(0,)()!+==+n n mn m P n m P m n m C ,又∵1(,)+=nn Q n m C , ∴(,)(,)1=P n m Q n m .。

江苏省南通市2017届高三高考全真模拟(一)数学试题含答案

江苏省南通市2017届高三高考全真模拟(一)数学试题含答案

2017年江苏高考数学全真模拟试卷一试题1第Ⅰ卷(共60分)一、填空题:本大题共14个小题,每小题5分,共70分.1.已知集合{0,1,2}A =,则A 的子集个数为 .2。

已知复数12z ai =+,22z i =-(其中0a >,i 为虚数单位)。

若12||||z z =,则a 的值为 .3.执行如图所示的流程图,则输出的结果S = .4。

若直线1y x b e=+(e 是自然对数的底数)是曲线ln y x =的一条切线,则实数b 的值是 . 5.某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为 .6.已知数据12,,,n x x x 的方差为3,若数据1ax b +,2ax b +,…,n ax b +(,)a b R ∈的方差为12,则a 的值为 .7。

我们知道,以正三角形的三边的中点为顶点的三角形与原正三角形的面积之比为1:4,类比该命题得到:以正四面体的四个面的中心为顶点的四面体与原正四面体的体积之比为 . 8。

在平面直角坐标系中,如果双曲线22221(0,0)x y a b a b-=>>的焦距为2(0)c c >,那么当,a b 任意变化时,a b c +的最大值是 .9。

已知函数21,0()(1),0x x f x f x x -⎧-+≤=⎨->⎩,若方程()log (2)(01)a f x x a =+<<有且仅有两个不同的实数根,则实数a 的取值范围为 .10.已知函数()2cos f x x x =-,数列{}n a 是公差为8π的等差数列,若123()()()f a f a f a ++4()f a +5()5f a π+=,则2315[()]f a a a -= .11.在平面直角坐标系中,若直线l 与圆221:1C x y +=和圆222:(52)(52)49C x y -+-=都相切,且两个圆的圆心均在直线l 的下方,则直线l 的斜率为 .12。

江苏省南通市数学学科基地命题2017年高考模拟试卷9Word版含答案

江苏省南通市数学学科基地命题2017年高考模拟试卷9Word版含答案

(第3题)(第6题) 2017年高考模拟试卷(9)南通市数学学科基地命题第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分 .1. 全集{}1,2,3,4,5U =,集合{}1,3,4A =,则U C A = ▲ .2. 设复数i z a b =+(a b ∈,R ,i 是虚数单位),若()2i i z -=则a b +的值为 ▲ .3. 在如图所示的算法流程图中,若输出的y 的值为26,则输入的x 的值为 ▲ .4. 概率为,乙不输的概率为,则两人下成和棋的概率为 ▲ .5. 顶点在原点且以双曲线1322=-y x 的右准线为准线的抛物线方程是 ▲ .6. 为了解学生课外阅读的情况,随机统计了n 名学生的课外阅读时间,所得数据都在[50,150]中, 其频率分布直方图如图所示.已知在[50 100),中 的频数为24,则n 的值为 ▲. 7. 甲,乙两种食物的维生素含量如下表:分别取这两种食物若干并混合,且使混合物中维生素A ,B 的含量分别不低于100,120单位,则混合物重量的最小值为 ▲ kg .8. 60°,则该棱锥的体积为 ▲ .9.在平面直角坐标系xOy 中,已知圆C :22(3)2x y +-=,点A 是x 轴上的一个动点,AP ,AQ 分别切圆C 于P ,Q 两点,则线段PQ 长的取值范围为 ▲ . 10.若函数 0,2,()0ln ,≤x x x f x x ax x ⎧+=⎨>-⎩在其定义域上恰有两个零点,则正实数a 的值为▲ .11.设直线l 是曲线343ln y x x =+的切线,则直线l 的斜率的最小值为 ▲ . 12.扇形AOB 中,弦1AB =,C 为劣弧AB 上的动点,AB 与OC 交于点P ,则OP BP ⋅的最小值是 ▲ .13.在平面直角坐标系xOy 中,已知(cos sin )A αα,,(cos sin )B ββ,是直线y =+上的两点,则tan()αβ+的值为 ▲ .14.已知函数3()2f x x a a x=--+-有且仅有三个零点,且它们成等差数列,则实数a 的取值集合为 ▲ .二、解答题:本大题共6小题,共90分. 15.(本小题满分14分)已知tan α=2,cos β=- 7210,且α,β∈(0,π), (1)求cos2α的值; (2)求2α-β的值. 16.(本小题满分14分)如图,在四棱锥P ABCD -中,△ACD 是正三角形,BD 垂直平分AC ,垂足为M ,ABC ∠=120° ,=1PA AB =,2PD =,N 为PD 的中点. (1)求证:AD ⊥平面PAB ; (2)求证:CN ∥平面PAB .17. (本小题满分14分)在平面直角坐标系xOy 中,已知A B ,分别是椭圆22221(0)yx a b a b +=>>的上、下顶点,点()102M ,为线段AO的中点,AB .(1)求椭圆的方程;(2)设(2)N t ,(0t ≠),直线NA ,NB 分别 交椭圆于点P Q ,,直线NA ,NB ,PQ 的斜率分别为1k ,2k ,3k . ① 求证:P M Q ,,三点共线; ② 求证:132312k k k k k k +-为定值. 18.(本小题满分16分)如图,一个角形海湾AOB ,∠AOB =2θ(常数θ为锐角).拟用长度为l (l 为常数)的围网围成一个养殖区,有以下两种方案可供选择:D(第16题)PAPBPCM N(第17题)2OP D方案一:如图1,围成扇形养殖区OPQ ,其中⌒PQ =l ; 方案二:如图2,围成三角形养殖区OCD ,其中CD =l ;(1)求方案一中养殖区的面积S 1 ;(2)求证:方案二中养殖区的最大面积S 2=l 24tan θ;(3)为使养殖区的面积最大,应选择何种方案?并说明理由.19.(本小题满分16分)已知数列{}n a 的首项为2,前n 项的和为n S ,且111241n n n a a S +-=-(*n ∈N ).(1)求2a 的值; (2)设1nn n na b a a +=-,求数列{}n b 的通项公式;(3)若m p r a a a ,,(*m p r ∈,,N ,m p r <<,)成等比数列,试比较2p 与mr 的大小,并证明.20.(本小题满分16分)已知函数2()ln )xf x e a x b x=++(,其中,a b R ∈. 2.71828e =是自然对数的底数. (1)若曲线()y f x =在1x =处的切线方程为(1)y e x =-.求实数,a b 的值; (2)① 若2a =-时,函数()y f x =既有极大值,又有极小值,求实数b 的取值范围; ② 若2a =,2b ≥-.若()f x kx ≥对一切正实数x 恒成立,求实数k 的最大值(用b 表示).第II 卷(附加题,共40分)21.【选做题】本题包括A, B,C,D 四小题,每小题10分,请选定其中两小题,并在相应的.....答题区域内作答........ A ,(选修4-1;几何证明选讲)如图,1O ,2O 交于两点P Q ,,直线AB 过点P ,与1O ,2O 分别交于点A B ,,直线CD 过点Q ,与1O ,2O 分别交于点C D ,.llAOBAOB图1Q PAOBC D 图2(第18题)2θ2θ2θ求证:AC ∥BD . B .(选修4-2:矩阵与变换)若二阶矩阵M 满足:12583446M ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭.(1)求二阶矩阵M ;(2)若曲线22:221C x xy y ++=在矩阵M 所对应的变换作用下得到曲线C ',求曲线C '的方程.C .(选修4-4:坐标系与参数方程)已知点(1)P αα-(其中[)0,2)απ∈,点P 的轨迹记为曲线1C,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,点Q 在曲线21:)4C ρπθ=+上. (1)求曲线1C 的极坐标方程和曲线2C 的直角坐标方程;(2)当0,02ρθπ≥≤<时,求曲线1C 与曲线2C 的公共点的极坐标. D .(选修4-5:不等式选讲)已知实数0x >,0y >,0z >,证明:1239()()2462yx z x y z ++++≥.【选做题】第22题、23题,每题10分,共计20分.22.已知正六棱锥S ABCDEF -的底面边长为2,高为1.现从该棱锥的7个顶点中随机选取3个点构成三角形,设随机变量X 表示所得三角形的面积.(1)求概率(P X =的值;(2)求X 的分布列,并求其数学期望()E X .23.已知数列{a n }满足:a 1=1,对任意的n ∈N *,都有a n +1=(1+1n 2+n)a n +12n .(1)求证:当n ≥2时,a n ≥2;(2)利用“∀x >0,ln(1+x )<x ”,证明:a n <2e 34(其中e 是自然对数的底数).2017年高考模拟试卷(9)参考答案南通市数学学科基地命题一、填空题1. {}2,5.2. 15.3.-4. 4. 0.5. 5. 26y x =-.6. 60.7. 30. 线性规划或待定系数法,设甲、乙混货物分别为x ,y 克,由题意3x+4y 1005x+2y 120≥⎧⎨≥⎩,设x+y=34)(52)x y x y λμ+++(,解得,31==1414λμ,,即可.8.9.[3. 设CA=x,则PQ=2CPcos<CAP=([3,))x ∈+∞,据此可得2PQ ≤<. 10. 1e. 易知函数()f x 在(],0-∞上有一个零点,所以由题意得方程ln 0ax x -=在()0+∞,上恰有一解,即ln x a x =在()0+∞,上恰有一解. 令ln ()x g x x=,21ln ()0x g x x-'==,得e x =,当()0,e x ∈时,()g x 单调递增,当()e,+x ∈∞时,()g x 单调递减,所以()1e e a g ==.11.9.223331212922k x x x x x=+=++≥,也可以求导. 12. 116-.设弦AB 中点为M ,则()OP BP OM MP BP MP BP ⋅=+⋅=⋅, 若MP BP ,同向,则0OP BP ⋅>;若MP BP ,反向,则0OP BP ⋅<, 故OP BP ⋅的最小值在MP BP ,反向时取得, 此时1||||2MP BP +=,2||||1||||()216MP BP OP BP MP BP +⋅=-⋅-=-≥, 当且仅当1||||4MP BP ==时取等号,即OP BP ⋅的最小值是116-.13.(方法一)由题意,得sin sin ααββ⎧=+⎪⎨=+⎪⎩所以αβ,是方程sin x x =即方程()πsin 3x -=5ππ()26k k αβ+=+∈Z,所以tan()αβ+=. (方法二)同上,αβ,sin 0x x -+=的两根.设()sin f x x x =-+()cos f x x x '=-.令()0f x '=,得0tan x =,所以02x αβ+=,所以(方法三)直线210x y +-=交单位圆于A B ,两点, 过O 作OH AB ⊥,垂足为H ,易知OH =因为OC =,所以60COH ∠=︒,即1502αβ+=︒,所以tan()tan 300αβ+=︒=14.95⎧-⎨⎩⎭.32()322x x a x f x x a x a x ⎧--⎪=⎨⎪--+-<⎩,≥,,,当x a ≥时,320x x --=,得11x =-,23x =,结合图形知,① 当1a <-时,313x -,,成等差数列,则35x =-,代入3220x a x --+-=得,95a =-;② 当13a -≤≤时,方程3220x a x --+-=,即22(1)30x a x +-+=的根为34x x ,,则343x x =,且3432x x +=,解得4x =,又342(1)x x a +=-,所以a .③ 当3a >时,显然不符合. 所以a的取值集合95⎧-⎨⎩⎭. 二、解答题:本大题共6小题,共90分.15. (1)因为tan α=2,所以sin αcos α=2,即sin α=2cos α.又sin 2α+cos 2α=1,所以5cos 2α=1,即cos 2α=15. 所以 cos2α=2cos 2α-1=-35.(2)由α∈(0,π),且tan α=2>1,得α∈(π4,π2),所以2α∈(π2,π). 由题知cos2α=-35,所以sin2α=45.又因为β∈(0,π),cos β=-7210∈(-1,0),所以β∈(π2,π), 所以sin β=210,且2α-β∈(-π2,π2).因为sin(2α-β)=sin2αcos β-cos2αsin β=45×(-7210)-(-35)×210=-22, 所以2α-β=-π4.16.(1)因为BD 垂直平分AC ,所以BA BC =,在△ABC 中,因为120ABC ∠=︒, 所以30BAC ∠=︒.因为△ACD 是正三角形,所以60DAC ∠=︒, 所以90BAD ∠=︒,即AD AB ⊥.因为=1AB ,120ABC ∠=︒,所以AD AC = 又因为1PA =,2PD =,由222PA AD PD +=, 知90PAD ∠=︒,即AD AP ⊥. 因为AB AP ⊂,平面PAB ,AB AP A =,所以AD ⊥平面PAB .(2)(方法一)取AD 的中点H ,连结CH ,NH. 因为N 为PD 的中点,所以HN ∥PA , 因为PA ⊂平面PAB ,HN ⊄平面PAB , 所以HN ∥平面PAB .由△ACD 是正三角形,H 为AD 的中点,所以CH AD ⊥.由(1)知,BA AD ⊥,所以CH ∥BA , 因为BA ⊂平面PAB ,CH ⊄平面PAB , 所以CH ∥平面PAB . 因为CH HN ⊂,平面CNH ,CH HN H =,所以平面CNH ∥平面PAB . 因为CN ⊂平面CNH , 所以CN ∥平面PAB .(方法二)取PA 的中点S ,过C 作CT ∥AD 交AB 的延长线于T ,连结ST ,SN .因为N 为PD 的中点,所以SN ∥AD ,且12SN AD =,因为CT ∥AD ,所以CT ∥SN . 由(1)知,AB AD ⊥,所以CT AT ⊥, 在直角△ CBT 中,1BC =,60CBT ∠=︒, 得CT =由(1)知,AD 12CT AD =,HPABCDMN P ABCDMNTS所以CT SN =.所以四边形SNCT 是平行四边形, 所以CN ∥TS .因为TS ⊂平面PAB ,CN ⊄平面PAB , 所以CN ∥平面PAB .17.(1)由题意知,124()2b b =-,解得a =1b =,所以椭圆的方程为2212x y +=.(2)① 由(2)N t ,,(01)A ,,(01)B -,,则直线NA 的方程为11y x t =+,直线NB 的方程为31y x t=-.由221122y x t x y ⎧=+⎪⎨⎪+=⎩,得,222422.2t x t t y t ⎧=-⎪+⎨-⎪=+⎩,,故()2224222t t t t P --++,. 由223122y x t x y ⎧=-⎪⎨⎪+=⎩,得,222121818.18t x t t y t ⎧=⎪+⎨-⎪=+⎩,,故()22212181818t t t t Q -++,. 所以直线PM 的斜率222221262482PMt t t k t t t ---+==-+, 直线QM 的斜率2222181261812818QMt t t k t t t ---+==+, 所以PM QM k k =,故P M Q ,,三点共线.② 由①知,11k t =,213k t=,2368t k t -=. 所以21323122463182t k k k k k k t t t-+-=⨯-=-, 所以132312k k k k k k +-为定值12-.18.(1)设OP =r ,则l =r ·2θ,即r =l2θ,所以S 1=12lr =l 24θ,θ∈(0,π2).(2)设OC =a ,OD =b .由余弦定理,得l 2=a 2+b 2-2ab cos2θ,所以l 2≥2ab -2ab cos2θ.所以 ab ≤l 22(1-cos2θ),当且仅当a =b 时“=”成立.所以S △OCD =12ab sin2θ≤l 2sin2θ4(1-cos2θ)=l 24tan θ,即S 2=l 24tan θ.(3)1S 2-1S 1=4l 2(tan θ-θ),θ∈(0,π2),. 令f (θ)=tan θ-θ,则f '(θ)=(sin θcos θ)'-1=sin 2θcos 2θ.当θ∈[0,π2)时,f '(θ)>0,所以f (θ)在区间[0,π2)上单调增.所以,当θ∈(0,π2)时,总有f (θ)>f (0)=0,即1S 2-1S 1>0,即S 1>S 2.答:为使养殖区面积最大,应选择方案一. 19. (1)易得2143a =.(2)由111241n n n a a S +-=-,得11241n nn n n a a a a S ++-=-,所以11241n n n n na a S a a ++-=-①.所以12121241n n n n n a a S a a +++++-=-②,由②-①,得12112112n n n n n n n n na a a aa a a a a +++++++=---.因为10n a +≠,所以22112n nn n n na a a a a a ++++=---. 所以121112n n n n n n a a a a a a +++++-=--,即12111n nn n n na a a a a a ++++-=--,即11n n b b +-=,所以数列{}n b 是公差为1的等差数列. 因为112134a b a a ==-,所以数列{}n b 的通项公式为14n b n =-.(3)由(2)知,114n n n a n a a +=--,所以114311414n n an a n n ++=+=--,所以14(1)141n n a a n n +=+--,所以数列41n a n ⎧⎫⎨⎬-⎩⎭是常数列.由124113a =⨯-,所以2(41)3n a n =-.(方法一)由m p r a a a ,,(m p r <<)成等比数列,则41m -,41p -,41r -成等比数列,所以2(41)(41)(41)p m r -=--,所以2168164()0p p mr m r --++=,即2424()0p p mr m r --++=(*).(途径一)(*)式即为2424()4p p mr m r mr -=-+<-所以2211(2))22p -<,即11222p -<,所以p <2p mr <.(途径二)(*)式即为24241p p rm r -+=-.由222222(42)(42)(41)()0414141p p r p p r r r p p r mr p r p r r r -+-+----=⋅-==>---, 所以2p mr <.(方法二)由m p r a a a ,,(m p r <<)成等比数列, 则41m -,41p -,41r -成等比数列, 记4m α=,4p β=,4r γ=(1αβγ<<<), 则有1α-,1β-,1γ-成等比数列,所以2(1)(1)(1)βαγ-=--,即22()ββαγαγ-=-+.若2βαγ=,即2p mr =时,则2αγβ+=,所以αβγ==,矛盾; 若2βαγ>,则22()0βαγβαγ-+=->,所以1()12βαγ>+>,所以[][]2221(2)()()()()()024αγββαγαγαγαγαγαγ+---+>-+--+=->, 矛盾.所以2βαγ<,即2p mr <.20. (1) 由题意知曲线()y f x =过点(1,0),且'(1)e f =;又因为222'()ln e xa f x a xb xx+=-++⎛⎫ ⎪⎝⎭,则有(1)e(2)0,'(1)e()e,f b f a b =+==+=⎧⎨⎩解得3,2a b ==-.(2) ①当2a =-时,函数()y f x =的导函数22'()e 2ln 0xf x x b x =--+=⎛⎫ ⎪⎝⎭,若'()0f x =时,得222ln b x x=+, 设22()2ln g x x x=+(0)x > . 由2332424'()x g x x x x -=-=0=,得x =1ln 2g =+.当0x <<时,'()0g x <,函数()y g x =在区间上为减函数,()(1ln 2,)g x ∈++∞;仅当1ln 2b >+时,()b g x =有两个不同的解,设为1x ,2x 12()x x <.此时,函数()y f x =既有极大值,又有极小值.②由题意2e ln x a x b xkx ++⎛⎫≥ ⎪⎝⎭对一切正实数x 恒成立,取1x =得(2)e k b ≤+.下证2e ln e (2)x a x b xb x ++⎛⎫≥+ ⎪⎝⎭对一切正实数x 恒成立.首先,证明e e xx ≥. 设函数()e e xu x x =-,则'()e e xu x =-,当1x >时,'()0u x >; 当1x <时,'()0u x <;得e e (1)0xx u -=≥,即e e xx ≥,当且仅当都在1x =处取到等号.再证1ln 1x x +≥. 设1()ln 1v x x x =+-,则21'()x v x x-=,当1x >时,'()0v x >;当1x <时,'()0v x <;得()(1)0v x v =≥,即1ln 1x x+≥,当且仅当都在1x =处取到等号. 由上可得2e ln (2)e x a x b xb x ++⎛⎫≥+ ⎪⎝⎭,所以min()(2)e f x b x ⎛⎫=+⎪⎝⎭,即实数k 的最大值为(2)e b +.数学Ⅱ(附加题)21. A. 连结PQ ,因为四边形ACQP 是1O 的内接四边形, 所以A PQD ∠=∠,又在2O 中,PBD PQD ∠=∠,所以A PBD ∠=∠, 所以AC ∥BD .B .(1) 设1234A ⎛⎫= ⎪⎝⎭,则12234A ==-, 1213122A --⎛⎫⎪∴= ⎪-⎝⎭, 21582131461122M -⎛⎫⎛⎫⎛⎫ ⎪∴== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭. (2)11112x x x x x M M y y y y y -'''-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=∴== ⎪ ⎪ ⎪ ⎪ ⎪⎪'''-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,即,2,x x y y x y ''=-⎧⎨''=-+⎩ 代入22221x xy y ++=可得()()()()2222221x y x y x y x y ''''''''-+--++-+=,即22451x x y y ''''-+=,故曲线C '的方程为22451x xy y -+=.C. (1)曲线1C :22(1)2x y ++=,极坐标方程为22cos 10ρθ+-= 曲线2C 的直角坐标方程为1y x =-; (2) 曲线1C 与曲线2C 的公共点的坐标为(0,1)-,极坐标为3(1,)2π. D. 因为0x >,0y >,0z >,所以1233x y z ++,2463y x z ++, 所以1239()()2462yx z x y z ++++≥.当且仅当::1:2:3x y z =时,等号成立.22.(1)从7个顶点中随机选取3个点构成三角形,共有37=35C种取法.其中X =ABF , 这类三角形共有6个.因此(376635P X C ==.(2)由题意,X 2,其中X =ABF ,这类三角形共有6个;其中2X =的三角形有两类,如△PAD (3个),△PAB (6个),共有9个;其中X =PBD ,这类三角形共有6个;其中X =CDF ,这类三角形共有12个;其中X =的三角形如△BDF ,这类三角形共有2个.因此(635P X ==,()9235P X ==, (635P X ==,(1235P X ==,(235P X ==. 所以随机变量X 的概率分布列为:所求数学期望()E X 69612223535353535+⨯++. 23. (1)①当n =2时,a 2=2,不等式成立.②假设当n =k (k ≥2)时不等式成立,即a k ≥2,则当n =k +1时,a k +1=(1+1k (k +1))a k +12k >2.所以,当n =k +1时,不等式也成立. 根据①,②可知,对所有n ≥2,a n ≥2成立.(2)当n ≥2时,由递推公式及(1)的结论有a n +1=(1+1n 2+n )a n +12n ≤(1+1n 2+n +12n +1)a n (n ≥2).两边取对数,并利用已知不等式ln(1+x )<x ,得 ln a n +1≤ln(1+1n 2+n +12n +1)+ln a n <ln a n +1n 2+n +12n +1,故 ln a n +1-ln a n <1n 2+n +12n +1(n ≥2),求和可得ln a n -ln a 2<12⨯3+1 3⨯4+…+1 (n -1)n+123+124+ (12)=(12-13)+(13-14)+…+(1n -1-1n )+123·1-12n -21-12=12-1n +122-12n <34. 由(1)知,a 2=2,故有ln a n 2<34,即a n <2e 34(n ≥2), 而a 1=1<2e 34,所以对任意正整数n ,有a n <2e 34.。

江苏省南通市高考一模数学试卷有答案

江苏省南通市高考一模数学试卷有答案

江苏省南通市2017年高考一模数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.1.函数π2sin(3)3y x =-的最小正周期为_________.2.设集合}3{1A =,,5{}2B a =+,,{}3A B =,则AB =__________.3.复数212i z =+(),其中i 为虚数单位,则z 的实部为__________.4.口袋中有若干红球、黄球和蓝球,从中摸出一只球.摸出红球的概率为0.48,摸出黄球的概率为0.35,则摸出蓝球的概率为__________.5.如图是一个算法的流程图,则输出的n 的值为__________.6.若实数x ,y 满足243700x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩则32z x y =+的最大值为_________.7.抽样统计甲、乙两名学生的5次训练成绩(单位:分),结果如下:则成绩较为稳定(方差较小)的那位学生成绩的方差为__________.8.如图,在正四棱柱1111ABCD A B C D -中,3AB cm =,11AA cm =,则三棱锥11D A BD -的体积为__________cm 3.9.在平面直角坐标系xOy 中,直线20x y +=为双曲线22221x y a b-=(a>0,b>0)的一条渐近线,则该双曲线的离心率为_________.10.《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则该竹子最上面一节的容积为_________升. 11.在ABC △中,若2BC BA AC AB CA CB ∙+∙=∙,则sin sin AC的值为_________. 12.已知两曲线2sin f x x =(),cos g x a x =(),π(0,)2x ∈相交于点P .若两曲线在点P 处的切线互相垂直,则实数a 的值为_________.13.已知函数4f x x x =+-(),则不等式22f x f x +()>()的解集用区间表示为_________.14.在平面直角坐标系xOy 中,已知B ,C 为圆224x y +=上两点,点11A(,),且A B A C ⊥,则线段BC 的长的取值范围为_________.二、解答题:本大题共6小题,共计90分.15.如图,在平面直角坐标系xOy 中,以x 轴正半轴为始边作锐角α,其终边与单位圆交于点A .以OA 为始边作锐角β,其终边与单位圆交于点B ,AB =. (1)求cos β的值; (2)若点A 的横坐标为513,求点B 的坐标.16.如图,在四棱锥P ABCD -中,四边形ABCD 为平行四边形,AC ,BD 相交于点O ,点E 为PC 的中点,OP OC =,PA PD ⊥.求证: (1)直线//PA 平面BDE ; (2)平面BDE ⊥平面PCD .17.如图,在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b +=>>的离心率为2,焦点到相应准线的距离为1.(1)求椭圆的标准方程;(2)若P 为椭圆上的一点,过点O 作OP 的垂线交直线y =于点Q ,求2211OP OQ +的值.18.如图,某机械厂要将长6 m ,宽2 m 的长方形铁皮ABCD 进行裁剪.已知点F 为AD 的中点,点E 在边BC 上,裁剪时先将四边形CDFE 沿直线EF 翻折到MNFE 处(点C ,D 分别落在直线BC 下方点M ,N 处,FN 交边BC 于点P ),再沿直线PE 裁剪.(1)当π4EFP ∠=时,试判断四边形MNPE 的形状,并求其面积; (2)若使裁剪得到的四边形MNPE 面积最大,请给出裁剪方案,并说明理由.19.已知函数2ln f x ax x x =()--,a ∈R . (1)当38a =时,求函数f x ()的最小值; (2)若10a ≤≤-,证明:函数f x ()有且只有一个零点;(3)若函数f x ()有两个零点,求实数a 的取值范围.20.已知等差数列{}n a 的公差d 不为0,且1k a ,2k a ,…,n k a ,…12n k k k (<<<<)成等比数列,公比为q .(1)若11k =,23k =,38k =,求1a d的值; (2)当1a d为何值时,数列{}n k 为等比数列; (3)若数列{}n k 为等比数列,且对于任意*n ∈N ,不等式2n n k n a a k +>恒成立,求1a 的取值范围.南安市2017届高三第一次调研测试数学Ⅱ(附加题)[选做题本题包括四小题,请选2题作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-1:几何证明选讲]21.已知圆O 的直径4AB =,C 为AO 的中点,弦DE 过点C 且满足2CE CD =,求OCE △的面积.[选修4-2:矩阵与变换]22.已知向量11⎡⎤⎢⎥-⎣⎦是矩阵A 的属于特征值1-的一个特征向量.在平面直角坐标系xOy 中,点11P (,)在矩阵A 对应的变换作用下变为'33P (,),求矩阵A . [选修4-4:坐标系与参数方程] 23.在极坐标系中,求直线π()4θρ=∈R 被曲线4sin ρθ=所截得的弦长. [选修4-5:不等式选讲]24.求函数3sin y x =+ [必做题]共2小题,满分20分)25.如图,在棱长为2的正方体1111ABCD A B C D -中,P 为棱11C D 的中点,Q 为棱1BB 上的点,且1BQ BB λ=0λ≠().(1)若12λ=,求AP 与AQ 所成角的余弦值; (2)若直线1AA 与平面APQ 所成的角为45︒,求实数λ的值.26.在平面直角坐标系xOy 中,已知抛物线220x py p (>)上的点1M m (,)到焦点F 的距离为2, (1)求抛物线的方程;(2)如图,点E 是抛物线上异于原点的点,抛物线在点E 处的切线与x 轴相交于点P ,直线PF 与抛物线相交于A ,B 两点,求EAB △面积的最小值.江苏省南通市2017年高考一模数学试卷答 案1.2π3 2.{135},, 3.3- 4.0.17 5.5 6.7 7.20 8.32910.1322111213.(,2)(2,)-∞-+∞14.15.解:(1)在AOB △中,由余弦定理得,2222cos AB OA OB OA OB AOB =+∙∠-,所以,2222221135cos 22115OA OB ABAOB OA OB+-+-∠===⨯⨯, 即3cos 5β=. (2)因为3cos 5β=,(0,)2πβ∈,∴4sin 5β==. 因为点A 的横坐标为513,由三角函数定义可得,5cos 13α=,因为α为锐角,所以12sin 13α===.所以5312433cos()cos cos sin sin 13513565αβαβαβ+=-=⨯-⨯=-,sin()sin cos cos αβαβα+=+1235456sin 13513565β=⨯+⨯=, 即点3356(,)6565B -.16.证明:(1)连结OE ,因为O 为平行四边形ABCD 对角线的交点,所以O 为AC 中点. 又因为E 为PC 的中点, 所以//OE PA .…4分又因为OE ⊂平面BDE ,PA ⊄平面BDE , 所以直线//PA 平面BDE .…6分(2)因为//OE PA ,PA PD ⊥,所以OE PD ⊥.…8分 因为OP OC =,E 为PC 的中点,所以OE PC ⊥.…10分 又因为PD ⊂平面PCD ,PC ⊂平面PCD ,PC PD P =,所以OE ⊥平面PCD .…12分又因为OE ⊂平面BDE ,所以平面BDE ⊥平面PCD .…14分.17.解:(1)由题意得,2c a =,21a c c -=,…2分解得a =1c =,1b =.所以椭圆的方程为2212x y +=.…4分(2)由题意知OP 的斜率存在.当OP 的斜率为0时,2OP =,2OQ =,所以.…6分当OP 的斜率不为0时,设直线OP 方程为y kx =.由2212x y y kx⎧+=⎪⎨⎪=⎩得22212k x +=(),解得22221x k =+,所以222221k y k =+,所以2222221k OP k +=+.…9分 因为OP OQ ⊥,所以直线OQ 的方程为1y x k=.由1y y xk ⎧=⎪⎨=-⎪⎩得x =,所以2222OQ k =+.…12分 所以222221*********k OP OQ k k ++=+=++. 综上,可知22111OP OQ +=.…14分. 18.解:(1)当π4EFP ∠=时,由条件得π4EFP EFD FEP ∠=∠=∠=. 所以π2FPE ∠=.所以FN BC ⊥, 四边形MNPE 为矩形.…3分所以四边形MNPE 的面积2•2S PN MN m ==.…5分 (2)解法一: 设(0)2EFD πθθ∠=<<,由条件,知EFP EFD FEP θ∠=∠=∠=.所以22sin(2)sin 2PF πθθ==-,23sin 2NP NF PF θ=-=-,23tan ME θ=-.…8分 由230sin 2230tan 02θθπθ⎧->⎪⎪⎪->⎨⎪⎪<<⎪⎩得2sin 232tan ,()30.2θθπθ⎧>⎪⎪⎪>*⎨⎪⎪<<⎪⎩所以四边形MNPE 面积为112222()[(3)(3)]2622sin 2tan tan sin 2S NP ME MN θθθθ=+=-+-⨯=--2222(sin cos )366(tan )tan 2sin cos tan θθθθθθθ+=--=-+…12分66≤-=- 当且仅当3tan tan θθ=,即tan θ,π3θ=时取“=”.…14分 此时,(*)成立. 答:当π3EFD ∠=时,沿直线PE 裁剪,四边形MNPE 面积最大,最大值为26-.…16分 解法二:设BE tm =,36t <<,则6ME t =-.因为EFP EFD FEP ∠=∠=∠,所以PE PF =t BP -.所以2132(3)t BP t -=-,213333()32(3)t NP PF PE t BP t t -=-=-=--=-+-.…8分由22361302(3)13302(3)t t t tt t ⎧⎪<<⎪⎪-⎪>⎨-⎪⎪-⎪-+>-⎪⎩得236()12310t t t t <<⎧⎪>*⎨⎪-+<⎩ 所以四边形MNPE 面积为22111333067()[(3)(6)]2222(3)2(3t)t t t S NP ME MN t t t --+=+=-++-⨯=--…12分326[(3)]623t t =--+≤--.当且仅当32(3)23t t -=-,即33t ==+时取“=”.…14分 此时,(*)成立. 答:当点E 距B点33+m 时,沿直线PE 裁剪,四边形MNPE 面积最大,最大值为6-2.…16分.19.解:(1)当38a =时,23()ln 8f x x x x =--.所以31(32)(2)'()144x x f x x x x+-=--=,0x (>).…2分令'()0f x =,得2x =,当0,2x ∈()时,'0f x ()<;当2x ∈+∞(,)时,'0f x ()>,所以函数f x ()在02(,)上单调递减,在2+∞(,)上单调递增. 所以当2x =时,f x ()有最小值1(2)ln 22f =--.…4分(2)由2ln f x ax x x =()--,得2121'()21ax x f x ax x x--=--=,0x >.所以当0a ≤时,221'()0ax x f x x--=<,函数f x ()在0+∞(,)上单调递减,所以当0a ≤时,函数f x ()在0+∞(,)上最多有一个零点.…6分因为当10a ≤≤-时,110f a =()-<,221()0e e af e e-+=>, 所以当10a ≤≤-时,函数f x ()在0+∞(,)上有零点. 综上,当10a ≤≤-时,函数f x ()有且只有一个零点.…8分(3)由(2)知,当0a ≤时,函数f x ()在0+∞(,)上最多有一个零点. 因为函数f x ()有两个零点,所以0a >…9分由2ln f x ax x x =()--,得221'()ax x f x x--=,(0)x >,令221g x ax x =()--.因为010g =()-<,20a >,所以函数g x ()在0+∞(,)上只有一个零点,设为0x .当00x x ∈(,)时,0g x ()<,'0f x ()<;当0x x ∈+∞(,)时,0g x ()>,'0f x ()>. 所以函数f x ()在00x (,)上单调递减;在0x +∞(,)上单调递增. 要使得函数f x ()在0+∞(,)上有两个零点,只需要函数f x ()的极小值00f x ()<,即2000ln 0ax x x --<.又因为2000()210g x ax x =--=,所以002ln 10x x +->,又因为函数2ln 1h x x x =+()-在0+∞(,)上是增函数,且10h =(), 所以01x >,得0101x <<. 又由20210ax x --=,得22000111112()()24a x x x =+=+-, 所以01a <<.…13分 以下验证当01a <<时,函数f x ()有两个零点. 当01a <<时,21211()10a ag a a a a -=--=>, 所以011x a<<.因为22211()10a e e a f e e e e-+=-+=>,且00f x ()<. 所以函数f x ()在01(,)x e上有一个零点. 又因为2242222()ln (1)10a f a a a a a a=--≥--=>(因为ln 1x x ≤﹣),且00f x ()<. 所以函数f x ()在02(,)x a上有一个零点. 所以当01a <<时,函数f x ()在12(,)e a内有两个零点. 综上,实数a 的取值范围为01(,).…16分 下面证明:ln 1x x ≤-.设1ln t x x x =()--,所以11'()1x t x x x-=-=,0x (>). 令'0t x =(),得1x =. 当01x ∈(,)时,'0t x ()<;当1x ∈+∞(,)时,'0t x ()>. 所以函数t x ()在01(,)上单调递减,在1+∞(,)上单调递增. 所以当1x =时,t x ()有最小值10t =().所以1ln 0t x x x =≥()--,得ln 1x x ≤-成立.20.解:(1)由已知可得:1a ,3a ,8a 成等比数列,所以2111(2)(7)a d a a d +=+,…2分整理可得:2143d a d =.因为0d ≠,所以143a d =.…4分 (2)设数列{}n k 为等比数列,则2213k k k =.又因为1k a ,2k a ,3k a 成等比数列,所以2111312[(1)][(1)][(1)]a k d a k d a k d +-+-=+-.整理,得21213132132(2)(2)a k k k d k k k k k k --=---+. 因为2213k k k =,所以121321322a k k k d k k k =(--)(--).因为2132k k k ≠+,所以1a d =,即11a d =.…6分 当11a d=时,11n a a n d nd =+=(-),所以n k n a k d =. 又因为1111n n n k k a a q k dq --==,所以11n n k k q -=.所以1111nn n n k k q q k k q +-==,数列{}n k 为等比数列. 综上,当11a d=时,数列{}n k 为等比数列.…8分 (3)因为数列{}n k 为等比数列,由(2)知1a d =,11(1)n n k k q q -=>.1111111n n n n k k a a q k dq k a q ---===,111n a a n d na =+=(-).因为对于任意*n N ∈,不等式2n n k n a a k +>恒成立.所以不等式1111112n n na k a q k q --+>, 即111112n n k q a n k q -->+,111111110222n n nn k q qn a k q k q --+<<=+恒成立.…10分 下面证明:对于任意的正实数01εε(<<),总存在正整数1n ,使得11n n q ε<. 要证11n n q ε<,即证11ln ln ln n n q ε+<. 因为11ln 2x x x e ≤<,则1122111ln 2ln n n n =<, 解不等式1211ln ln n n q ε<+,即1122211()ln ln 0n q n ε-+>,可得121n >,所以21n >.不妨取01n =+,则当10n n >时,原式得证. 所以11102a <≤,所以12a ≥,即得1a 的取值范围是[2+∞,).…16分 21.解:设CD x =,则2CE x =.因为1CA =,3CB =,由相交弦定理,得••CA CB CD CE =,所以213?22x x x ⨯==,所以2x =.…2分 取DE 中点H ,则OH DE ⊥. 因为2222354()28OH OE EH x =-=-=,所以OH =.…6分又因为2CE x ==所以OCE ∆的面积1122S OH CE ==⨯=10分. 22.解:设a b A c d ⎡⎤=⎢⎥⎣⎦, 因为向量11⎡⎤⎢⎥-⎣⎦是矩阵A 的属于特征值1-的一个特征向量, 所以111(1)111a b c d -⎡⎤⎡⎤⎡⎤⎡⎤=-=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦.所以11a b c d -=-⎧⎨-=⎩…4分 因为点11P (,)在矩阵A 对应的变换作用下变为'33P (,), 所以1313a b c d ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.所以33a b c d +=⎧⎨+=⎩…8分 解得1a =,2b =,2c =,1d =,所以1221A ⎡⎤=⎢⎥⎣⎦.…10分. 23.解:以极点O 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系.直线π()4R θρ=∈的直角坐标方程为y x =①,…3分 曲线4sin ρθ=的直角坐标方程为2240x y y +=-②.…6分由①②得00x y =⎧⎨=⎩或22x y =⎧⎨=⎩…8分 所以00A(,),22B (,),所以直线π()4R θρ=∈被曲线4sin ρθ=所截得的弦长AB =.…10分.24.解:3sin 3sin y x x =++2分由柯西不等式得222222(3sin (34)(sin cos )25y x x x =+≤++=,…8分所以5max y =,此时3sin 5x =.所以函数3sin y x =+5.…10分.25.解:以1{,,}AB AD AA 为正交基底,建立如图所示空间直角坐标系A xyz -.(1)因为(1,2,2)AP =,(2,0,1)AQ =,所以cos ,15APAQAP AQ AP AQ ===.所以AP 与AQ .…4分 (2)由题意可知,1(0,0,2)AA =,(2,0,2)AQ λ=.设平面APQ 的法向量为z n x y =(,,),则00n AP n AQ ⎧=⎪⎨=⎪⎩即220220x y z x z λ++=⎧⎨+=⎩ 令2z =-,则2x λ=,2y λ=-. 所以222n λλ=(,-,-).…6分又因为直线1AA 与平面APQ 所成角为45︒,所以111cos ,2n AA n AA n AA ==, 可得2540λλ=-,又因为0λ≠,所以45λ=.…10分. 26.解:(1)抛物线220x py p =(>)的准线方程为2p y =, 因为1M m (,),由抛物线定义,知12p MF =+, 所以122p +=,即2p =,所以抛物线的方程为24x y =.…3分(2)因为214y x =,所以1'2y x =. 设点2(,)4t E t ,0t ≠,则抛物线在点E 处的切线方程为21()42t y t x t -=-. 令0y =,则2t x =,即点(,0)2t P . 因为(,0)2t P ,01F (,),所以直线PF 的方程为2()2t y x t =-,即20x ty t +=-. 则点2(,)4t E t 到直线PF的距离为d ==5分 联立方程2420x y x ty t ⎧=⎪⎨⎪+-=⎩消元,得2222(2t 16)0t y y t -++=. 因为224221646440t t t =+=+△()-()>,所以1y =,2y = 所以221212222164(4)1122t t AB y y y y t t++=+++=++=+=.…7分 所以EAB △的面积为3222214(4)1(4)22t t S t t ++=⨯=⨯. 不妨设322(4)()(0)x g x x x +=>,则12222(4)'()(24)x g x x x+=-.因为x ∈时,'0g x ()< ,所以g x ()在)x ∈+∞上,'0g x ()>,所以g x ()在)+∞上单调递增.所以当x时,32min ()g x == 所以EAB △的面积的最小值为10分.江苏省南通市2017年高考一模数学试卷解析1.【考点】三角函数的周期性及其求法.【分析】根据函数y=Asin(ωx+φ)的周期等于,得出结论.【解答】解:函数的最小正周期为,故答案为:.2.【考点】并集及其运算.【分析】由交集的定义,可得a+2=3,解得a,再由并集的定义,注意集合中元素的互异性,即可得到所求.【解答】解:集合A={1,3},B={a+2,5},A∩B={3},可得a+2=3,解得a=1,即B={3,5},则A∪B={1,3,5}.故答案为:{1,3,5}.3.【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘法运算化简得答案.【解答】解:∵z=(1+2i)2=1+4i+(2i)2=﹣3+4i,∴z的实部为﹣3.故答案为:﹣3.4.【考点】概率的基本性质.【分析】利用对立事件的概率公式,可得结论.【解答】解:∵摸出红球的概率为0.48,摸出黄球的概率为0.35,∴摸出蓝球的概率为1﹣0.48﹣0.35=0.17.故答案为0.17.5.【考点】程序框图.【分析】由已知的程序框图可知,该程序的功能是利用循环计算a值,并输出满足a<16的最大n值,模拟程序的运行过程可得答案.【解答】解:当n=1,a=1时,满足进行循环的条件,执行循环后,a=5,n=3;满足进行循环的条件,执行循环后,a=17,n=5;满足进行循环的条件,退出循环故输出n值为5故答案为:5.6.【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=3x+2y得y=﹣x+z平移直线y=﹣x+z ,由图象可知当直线y=﹣x+z经过点A时,直线y=﹣x+z的截距最大,此时z最大.由,解得A(1,2),代入目标函数z=3x+2y得z=3×1+2×2=7.即目标函数z=3x+2y的最大值为7.故答案为:7.7.【考点】极差、方差与标准差.【分析】根据题意,分别求出甲、乙的平均数与方差,比较可得S甲2>S乙2,则乙的成绩较为稳定;即可得答案.【解答】解:根据题意,对于甲,其平均数甲==75,其方差S甲2=[(65﹣75)2+(80﹣75)2+(70﹣75)2+(85﹣75)2+(75﹣75)2]=50;对于乙,其平均数乙==75,其方差S乙2=[(80﹣75)2+(70﹣75)2+(75﹣75)2+(80﹣75)2+(70﹣75)2]=20;比较可得:S甲2>S乙2,则乙的成绩较为稳定;故答案为:20.8.【考点】棱柱、棱锥、棱台的体积.【分析】三棱锥D1﹣A1BD的体积==,由此能求出结果.【解答】解:∵在正四棱柱ABCD﹣A1B1C1D1中,AB=3cm,AA1=1cm,∴三棱锥D1﹣A1BD的体积:=====(cm3).故答案为:.9.【考点】双曲线的简单性质.【分析】利用双曲线的渐近线方程得到a,b关系,然后求解双曲线的离心率即可.【解答】解:直线2x+y=0为双曲线=1(a>0,b>0)的一条渐近线,可得b=2a,即c2﹣a2=4a2,可得=.故答案为:.10.【考点】等差数列的通项公式.【分析】设最上面一节的容积为a1,利用等差数列的通项公式、前n项和公式列出方程组,能求出结果.【解答】解:设最上面一节的容积为a1,由题设知,解得.故答案为:.11.【考点】平面向量数量积的运算;正弦定理.【分析】根据题意,利用平面向量的数量积,结合余弦定理和正弦定理,即可求出的值.【解答】解:在△ABC中,设三条边分别为a、b,c,三角分别为A、B、C,由•+2•=•,得ac•cosB+2bc•cosA=ba•cosC,由余弦定理得:(a2+c2﹣b2)+(b2+c2﹣a2)=(b2+a2﹣c2),化简得=2,∴=,由正弦定理得==.故答案为:.12.【考点】利用导数研究曲线上某点切线方程.【分析】联立两曲线方程,可得tanx==,a>0,设交点P(m,n),分别求出f(x),g(x)的导数,可得切线的斜率,由两直线垂直的条件:斜率之积为﹣1,再由同角基本关系式,化弦为切,解方程即可得到a的值.【解答】解:由f(x)=g(x),即2sinx=acosx,即有tanx==,a>0,设交点P(m,n),f(x)=2sinx的导数为f′(x)=2cosx,g(x)=acosx的导数为g′(x)=﹣asinx,由两曲线在点P处的切线互相垂直,可得2cosm•(﹣asinm)=﹣1,且tanm=,则=1,分子分母同除以cos2m,即有=1,即为a2=1+,解得a=.故答案为:.13.【考点】绝对值不等式的解法.【分析】令g(x)=f(x2+2)﹣f(x)=x2+2+|x2﹣2|﹣|x|﹣|x﹣4|,通过讨论x的范围,求出各个区间上的不等式的解集,取并集即可.【解答】解:令g(x)=f(x2+2)﹣f(x)=x2+2+|x2﹣2|﹣|x|﹣|x﹣4|,x≥4时,g(x)=2x2﹣2x+4>0,解得:x≥4;≤x<4时,g(x)=2x2﹣4>0,解得:x>或x<﹣,故<x<4;0≤x<时,g(x)=0>0,不合题意;﹣≤x<0时,g(x)=2x>0,不合题意;x<﹣时,g(x)=2x2+2x﹣4>0,解得:x>1或x<﹣2,故x<﹣2,故答案为:.14.【考点】直线和圆的方程的应用.【分析】画出图形,当BC⊥OA时,|BC|取得最小值或最大值,求出BC坐标,即可求出|BC|的长的取值范围.【解答】解:在平面直角坐标系xOy中,已知B,C为圆x2+y2=4上两点,点A(1,1),且AB⊥AC,如图所示当BC⊥OA时,|BC|取得最小值或最大值.由,可得B(,1)或(,1),由,可得C(1,)或(1,﹣)解得BC min==,BC max==.故答案为:[,].15.【考点】任意角的三角函数的定义.【分析】(1)由条件利用余弦定理,求得cosβ的值.(2)利用任意角的三角函数的定义,同角三角函数的基本关系,两角和差的正弦、余弦公式,求得点B的坐标.16.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)连结OE,说明OE∥PA.然后证明PA∥平面BDE.(2)证明OE⊥PD.OE⊥PC.推出OE⊥平面PCD.然后证明平面BDE⊥平面PCD.17.【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】(1)由已知条件可得,,然后求解椭圆的方程.(2)由题意知OP的斜率存在.当OP的斜率为0时,求解结果;当OP的斜率不为0时,设直线OP方程为y=kx.联立方程组,推出.OQ2=2k2+2.然后求解即可.18.【考点】函数模型的选择与应用.【分析】(1)当∠EFP=时,由条件得∠EFP=∠EFD=∠FEP=.可得FN⊥BC,四边形MNPE为矩形.即可得出.(2)解法一:设,由条件,知∠EFP=∠EFD=∠FEP=θ.可得,,.四边形MNPE面积为==,化简利用基本不等式的性质即可得出.解法二:设BE=tm,3<t<6,则ME=6﹣t.可得PE=PF,即.,NP=3﹣T+,四边形MNPE面积为==,利用基本不等式的性质即可得出.19.【考点】导数在最大值、最小值问题中的应用;根的存在性及根的个数判断;利用导数研究函数的极值.【分析】(1)当时,.求出函数的导数,得到极值点,然后判断单调性求解函数的最值.(2)由f(x)=ax2﹣x﹣lnx,得.当a≤0时,函数f(x)在(0,+∞)上最多有一个零点,当﹣1≤a≤0时,f(1)=a﹣1<0,,推出结果.(3)由(2)知,当a≤0时,函数f(x)在(0,+∞)上最多有一个零点.说明a>0,由f(x)=ax2﹣x﹣lnx,得,说明函数f(x)在(0,x0)上单调递减;在(x0,+∞)上单调递增.要使得函数f(x)在(0,+∞)上有两个零点,只需要.通过函数h(x)=2lnx+x﹣1在(0,+∞)上是增函数,推出0<a<1.验证当0<a<1时,函数f(x)有两个零点.证明:lnx≤x﹣1.设t(x)=x﹣1﹣lnx,利用导数求解函数的最值即可.20.【考点】数列与不等式的综合;等比数列的性质.【分析】(1)由已知得:a1,a3,a8成等比数列,从而4d2=3a1d,由此能求出的值.(2)设数列{k n}为等比数列,则,推导出,从而,进而.由此得到当时,数列{k n}为等比数列.(3)由数列{k n}为等比数列,a1=d,.得到,恒成立,再证明对于任意的正实数ε(0<ε<1),总存在正整数n1,使得.要证,即证lnn1<n1lnq+lnε.由此能求出a1的取值范围.21.【考点】与圆有关的比例线段.【分析】由相交弦定理,得CD,DE中点H,则OH⊥DE,利用勾股定理求出OH,即可求出△OCE的面积.22.【考点】特征值与特征向量的计算.【分析】设,根据矩阵变换,列方程组,即可求得a、b、c和d的值,求得A.23.【考点】简单曲线的极坐标方程.【分析】极坐标方程化为直角坐标方程,联立,求出A,B的坐标,即可求直线被曲线ρ=4sinθ所截得的弦长.24.【考点】柯西不等式在函数极值中的应用;三角函数的最值.【分析】利用二倍角公式化简函数的解析式,利用柯西不等式求解函数的最值即可.25.【考点】直线与平面所成的角.【分析】(1)以为正交基底,建立如图所示空间直角坐标系A﹣xyz.求出,,利用数量积求解AP与AQ所成角的余弦值.(2),.求出平面APQ的法向量,利用空间向量的数量积求解即可.26.【考点】导数在最大值、最小值问题中的应用;抛物线的标准方程;直线与抛物线的位置关系.【分析】(1)求出抛物线x2=2py(p>0)的准线方程为,由抛物线定义,得到p=2,即可求解抛物线的方程.(2)求出函数的.设点,得到抛物线在点E处的切线方程为.求出.推出直线PF的方程,点到直线PF的距离,联立求出AB,表示出△EAB的面积,构造函数,通过函数的导数利用单调性求解最值即可.。

(高清版)【江苏省南通市】2017年高考(数学学科基地命题)模拟数学试卷(四)

(高清版)【江苏省南通市】2017年高考(数学学科基地命题)模拟数学试卷(四)

江苏省南通市2017年高考(数学学科基地命题)模拟数学试卷(四)第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分. 1.已知集合21{}|60A x x =-<,5,{1}0,B -=,则AB =________.2.命题“若a b >,则22a b >”的否命题是________. 3.已知i 为虚数单位,复数12i1iz +=-,则复数z 的虚部是________. 4.一支田径队有男运动员28人,女运动员21人,现按性别用分层抽样的方法,从中抽取14位运动员进行健康检查,则男运动员应抽取________.5.执行如右图所示的程序框图,若输出s 的值为16,那么输入的n 值等于________.6.从装有2个红球和2个黑球的口袋内任取2个球,则其中恰有一个红球的概率是________. 7.等差数列{}n a 中,若357911100a a a a a ++++=,则9133a a -=________.8.将函数()sin2cos2f x x x =+的图像向右平移ϕ个单位(0ϕ>),可得函数()sin2cos2g x x x =-的图像,则ϕ的最小值为________.9.已知圆锥的底面圆心到某条母线的距离为1,则该圆锥母线的长度取最小值时,该圆锥的体积为________. 10.如图,在Rt ABC △中,90C ∠=,4AC =,2BC =,D 是BC 的中点,E 是AB 的中点,P 是ABC △(包括边界)内任一点.则AD EP 的取值范围是________.11.已知函数()f x 是定义在R 上的奇函数,在(0,2]上是增函数,且(4)()f x f x -=-,给出下列结论: ①若1222x x -<<<且120x x +>,则12()()0f x f x +>;②若1204x x <<<且125x x +=,则12()()f x f x >;③若方程()f x m =在[8,8]-内恰有四个不同的实根x 1,x 2,x 3,x 4,则12348x x x x +++=-或8; ④函数()f x 在[8,8]-内至少有5个零点,至多有13个零点; 其中正确的结论的个数是________个.12.已知函数()f x 满足1()2()f x f x =,当[1,3]x ∈时,()ln f x x =,若在区间1[,3]3上,函数()()g x f x ax =-恰有一个零点,则实数a 的取值范围是________.13.设P 是圆M :22()(55)1x y -+-=上的动点,它关于()9,0A 的对称点为Q ,把P 绕原点依逆时针方向旋转90到点S ,则||SQ 的取值范围为________.14.如图,在数轴上截取与闭区间[0,4]对应的线段,对折后(坐标4所对应的点与原点重合)再均匀地拉成4个单位长度的线段,这一过程称为一次操作(例如在第一次操作完成后,原来的坐标1、3变成2,原来的坐标2变成4,等等).那么原闭区间[0,4]上(除两个端点外)的点,在第n 次操作完成后(1n ≥),恰好被拉到与4重合的点所对应的坐标组成的集合是________.二、解答题:本大题共6小题,共90分. 15.(本小题满分14分)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,2A B =,3sin B =. (1)求cos A 及sin C 的值; (2)若2b =,求ABC △的面积. 16.(本小题满分14分)如图所示,在三棱柱111ABC A B C -中,11AA B B 为正方形,11BB C C 为菱形,1160BB C ∠=,平面11AA B B ⊥平面11BB C C .(1)求证:11B C AC ⊥;(2)设点E ,F 分别是B 1C ,AA 1的中点,试判断直线EF 与平面ABC 的位置关系,并说明理由.17.(本小题满分14分)已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1.8元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用,其标准如下:7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.(1)当9天购买一次配料时,求该厂用于配料的保管费用P 是多少元?(2)设该厂x 天购买一次配料,求该厂在这x 天中用于配料的总费用y (元)关于x 的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少? 18.(本小题满分14分)已知椭圆C :22221(0)x y a b a b+=>>3,短轴端点到焦点的距离为2.(1)求椭圆C 的方程;(2)设点A ,B 是椭圆C 上的任意两点,O 是坐标原点,且OA OB ⊥;①求证:存在一个定圆,使得直线AB 始终为该定圆的切线,并求出该定圆的方程; ②若点O 为坐标原点,求AOB △面积的最大值. 19.(本小题满分16分) 已知曲线C :1xy =,117x =过C 上一点(,)n n n A x y 作一斜率12n n k x =-+的直线交曲线C 于另一点,111(,)n n n A x y +++.(1)求n x 与1n x +之间的关系式; (2)求证:数列11{}23n x +-是等比数列,并求数列{}n x 的通项公式; (3)求证:23*123(1)(1)(1)...(1)1()n n x x x x n -+--+-<∈N .20.(本小题满分16分)已知函数2()1(1)ln ()f x x a x x a =----∈R . (1)当0a =时,求函数()f x 的单调区间;(2)若函数()()1g x f x x =-+既有一个极小值和又有一个极大值,求a 的取值范围; (3)若存在(1,2)b ∈,使得当(0,]x b ∈时,()f x 的值域是[(),)f b +∞,求a 的取值范围. 注:自然对数的底数 2.71828...e =.第Ⅱ卷(附加题,共40分)21.【选做题】本题包括A ,B ,C ,D 四小题,每小题10分,请选定其中两小题,并在相应的答题区域内作答.A ,(选修4-1;几何证明选讲)如图,已知AB 切圆O 于点B ,BC 是圆O 的直径,AC 交圆O 于点D ,DE 是圆O 的切线,CE DE ⊥于E ,3DE =,4CE =,求AB 的长.B .(选修4-2:矩阵与变换)求将曲线2y x =绕原点逆时针旋转90后所得的曲线方程.C .(选修4-4:坐标系与参数方程)已知极坐标系的极点与直角坐标系的原点重合,极轴与x 轴的非负半轴重合.若曲线C 1的方程为πsin()2306ρθ-+=,曲线C 2的参数方程为cos sin x y θ,θ.=⎧⎨=⎩(1)将C 1的方程化为直角坐标方程;(2)若点Q 为C 2上的动点,P 为C 1上的动点,求||PQ 的最小值. D .(选修4-5:不等式选讲)设函数()|21||2|f x x x =+--. (1)求不等式()2f x >的解集; (2)若x ∀∈R ,211()2f x t t ≥-恒成立,求实数t 的取值范围. 【选做题】第22题、23题,每题10分,共计20分.22.设A ,B 是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A ,另2只服用B ,然后观察疗效.若在一个试验组中,服用A 有效的小白鼠的只数比服用B 有效的只数多,就称该试验组为甲类组.设每只小白鼠服用A 有效的概率为23,服用B 有效的概率为12. (1)求一个试验组为甲类组的概率;(2)观察三个试验组,用X 表示这三个试验组中甲类组的个数,求X 的分布列和数学期望.23.用数学归纳法证明:224n n nn C <<,其中2n ≥,n ∈N .15.解:(1)∵2A B =,∴2cos cos21sin A B B ==-.∵sin B =11cos 1233A =-⨯=.由题意可知,π(0,)2B∈.∴cos Bsin sin22sin cos3A B B B===.∴sin sin[π()]sin()sin cos cos sin9C A B A B A B A B=-+=+=+=.(2)∵sin sinb aB A=,2b==,∴a=.16.解:(1)连接BC1.在正方形ABB1A1中,1AB BB⊥.因为平面11AA B B⊥平面11BB C C,11111AA B B BB C C BB=平面平面,11AB ABB A⊂平面,所以11BB CA B C⊥平面.因为111BC CB B C⊂平面,所以1AB B C⊥在菱形11BB C C中,.11BC B C⊥因为11B C ABC⊂平面,1AB ABC⊂平面,1B C AB B=,所以11B C ABC⊥平面.因为11AC ABC⊂平面,所以11B C AC⊥.(2)EF ABC∥平面,理由如下:取BC的中点G,连接GE,GA.因为E是B1C的中点,所以1GE BB∥,且112GE BB=.因为F是AA1的中点,所以112AF AA=.在正方形ABB1A1中,11AA BB∥,11AA BB=.所以GE AF ∥,且GE AF =. 所以四边形GEF A 为平行四边形. 所以EF GA ∥.因为EF ABC ⊄平面,GA ABC ⊂平面,所以EF ABC ∥平面.17.解:(1)当9天购买一次时,该厂用于配料的保管费用 700.03200(12)88P =+⨯⨯+=(元). (2)(1)当7x ≤时36010236370236y x x x =++=+(2)当7x >时2[(7)360236706(6)21332143]2y x x x x x =++++-+⋯⋯++=++-∴2370236,73321432,7x x y x x x +≤⎧=⎨++>⎩∴设该厂x 天购买一次配料平均每天支付的费用为()f x 元.2370236,7()3321432,7x x xf x x x x x +⎧≤⎪⎪=⎨++⎪>⎪⎩.当7x ≤时236()370f x x =+当且仅当7x =时()f x 有最小值28264047≈(元)当7x >时23321432144()3(333219)x x f x x x x++==≥++.当且仅当12x =时取等号.∴所求椭圆方程为2214x y +=.(2)①当直线AB 的斜率不存在时,直线AB 的方程为x =,原点O 到直线AB , 当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+,11(,)A x y ,22(,)B x y ,则由2214m y y kx x ==+⎧+⎪⎨⎪⎩,得:222(14)8440k x kmx m +++-=,2216(14)0k m ∆=+->,122814km x x k+=-+,21224414m x x k -=+, 由2212122544014m k OA OB x x y y k --=+==+,得224(1)5m k =+, ∴原点O 到直线AB的距离d ===, 综上所述,原点O 到直线AB;即该定圆方程为2245x y +=. ②当直线AB的斜率不存在时5AB =, 当直线AB的斜率存在时,12|||AB x x =-= 当0k ≠时,||AB =12K =±时等号成立. 当0k =时,||AB =||AB 1255125=.19.解:(1)直线方程为1()2n n n y y x x x -=--+,因为直线过点111(,)n n n A x y +++, ∴111111111()()222n n n n n n n n n n n n n y y x x x x x x x x x x x +++++-=--⇒-=--⇒=+++. (2)设1123n n a x =+-,由(1)得 111111112()22233232n n n n n na a x x x x ++=+=+=-+=-+---又120a =-≠,故11{}23n x +-是等比数列;1(2)21(2)3n n n na x =-⇒=+--.(3)由(2)得∴1(1)(1)212(1)3n n n nnx -=-+--当n 为偶数时,则11111111222211(1)(1)11222222239n n n n n nn n n n n n n n n x x --------++-+-=<=++-∴2312321111(1)(1)(1)...(1) (112222)n n n n x x x x -+-+-++-<+++=-<;当n 为奇数时,则23123(1)(1)(1)...(1)1(1)n n n n x x x x x -+-+-++-<+- 而120123n n x =->+,所以1(1)11n n n x x +-=-<∴23123(1)(1)(1)...(1)1n n x x x x -+-+-++-<综上所述,当*n ∈N 时,23123(1)(1)(1)...(1)1nn x x x x -+-+-++-<成立.20.解:(1)()f x 的定义域为(0,)+∞.当0a =时,11()1x f x x x-'=-=.()001f x x '<⇔<<;()01f x x '>⇔>. 所以,函数()f x 的增区间为(1,)+∞,减区间为(0,1).(2)2()(1)ln g x a x x =---,则21221()2(1)ax ax g x a x x x-+'=---=-.令2()221(0)h x ax ax x =-+>,若函数()g x 有两个极值点,则方程()0h x =必有两个不等的正根,设两根为x 1,x 2.于是2121220480,10,10.2a a a x x x x a ≠⎧⎪∆=->⎪⎪⎨+=>⎪⎪=>⎪⎩解得2a >.当2a >时,()0h x =有两个不相等的正实根,设为x 1,x 2,不妨设12x x <, 则122()()()()a x x x x h x g x x x--'=-=-. 当10x x <<时,()0h x >,()0g x '<,()g x 在1(0,)x 上为减函数; 当12x x x <<时,()0h x <,()0g x '>,()g x 在12(,)x x 上为增函数;当2x x >时,()0h x >,()0g x '<,函数()g x 在2(,)x +∞上为减函数.由此,1x x =是函数()g x 的极小值点,2x x =是函数()g x 的极大值点.符合题意. 综上,所求实数a 的取值范围是(2,)+∞.(3)212(21)1(1)(21)()12(1)ax a x x ax f x a x x x x-++--'=---=-=-①当0a ≤时,210ax x-<.当01x <<时,()0f x '<,()f x 在(0,1)上为减函数; 当1x >时,()0f x '>,()f x 在(1,)+∞上为增函数.所以,当(0,](12)x b b ∈<<时,min ()(1)0()f x f f b ==<,()f x 的值域是[0,)+∞. 不符合题意.②当0a >时,12(1)()2()a x x a f x x--'=-.(i )当112a <,即1a >时,当x 变化时,()f x ',()f x 的变化情况如下:若满足题意,只需满足()(2)2f f a>,即21(1)ln 1ln2222a a a a a ---->--. 整理得11ln2ln21()42a a a ++-≥.令11()ln2ln21()42F a a a a =++-≥,当12a >时,221141()044a F a a a a -'=-=>,所以()F a 在1(,)2+∞上为增函数,所以,当12a >时,111()()ln20222F a F >=->=.可见,当12a >时,1()(2)2f f a >恒成立,故当12a >,(0,](12)x b b ∈<<时,函数()f x 的值域是[(),)f b +∞;所以12a >满足题意.(ⅱ)当112a =,即12a =时,2(1)()0x f x x -'=-≤,当且仅当1x =时取等号.所以()f x 在(0,)+∞上为减函数.从而()f x 在(0,]b 上为减函数.符合题意. (ⅱ)当112a >,即1a <<时,当x 变化时,()f x ',()f x 的变化情况如下表: 若满足题意,只需满足(2)(1)f f <,且22a <(若22a≥,不符合题意), 即1ln2a >-,且14a >. 又11ln24->,所以1ln2a >-.此时,11ln22a -<<.综上,1ln2a >-.所以实数a 的取值范围是(1ln2,)-+∞.21.A .连接OD ,∵DE 是圆O 的切线,∴OD DE ⊥,又∵CE DE ⊥于E ,∴OD CE ∥, ∴ECD ODC OCD ∠=∠=∠,∵3DE =,4CE =,∴5CD =,∴3tan tan tan 4ECD ODC OCD ∠=∠=∠=,∴4cos 5OCD ∠=, 故25cos 4CD BC OCD ==∠,故75tan 16AB BC OCD =∠=. B .由题意得旋转变换矩阵cos90sin900110sin90cos90M ⎡⎤--⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 设00(,)P xy 为曲线2y x =上任意一点,变换后变为另一点(,)x y ,则000110x x y y -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即00,,x y y x =-⎧⎨=⎩ 所以00,,y x x y =-⎧⎨=⎩又因为点P 在曲线2y x =上,所以200y x =,故2()x y -=,即2x y =为所求的曲线方程. C .(1)由已知得31sin cos 2302ρθρθ-+,即0x -. (2)由C 2得221x y +=,所以圆心为2(0,0)C ,半径为1.又圆心到直线C 1的距离为d =||PQ 的最大值为1. D .(1)不等式()2f x >可化为22122x x x >⎧⎨+-+>⎩或1222122x x x ⎧-≤≤⎪⎨⎪++->⎩或122122x x x ⎧<-⎪⎨⎪--+->⎩, 解得5x <-或1x >,所以所求不等式的解集为{|51}x x x <->或.(2)因为3,21()|21||2|31,2213,2x x f x x x x x x x ⎧⎪+>⎪⎪=+--=--≤≤⎨⎪⎪--<-⎪⎩,可得5()2f x ≥-,若x ∀∈R ,211()2f x t t ≥-恒成立,则211522t t -≤-,解得152t ≤≤. 22.设Ai 表示事件“一个试验组中,服用A 有效的小白鼠有i 只”,0,1,2i =;Bi 表示事件“一个试验组中,服用B 有效的小白鼠有i 只”,0,1,2i =.依题意,有112423()39P A ⨯⨯==,222433()9P A ==⨯,0111()224P B =⨯=,1111()2222P B =⨯⨯=.故所求的概率为010212)1414144(()()4949299P P B A P B A P B A =⨯+⨯+⨯==++. (2)由题意知X 的可能值为0,1,2,3,故有35125()()97290P X ===, 123451001()99243()P X C ⨯⨯===, 22345802()99243()P X C ⨯⨯===, 34643()9(7)29P X ===. 从而,X 的分布列为数学期望1251008064401237292432437293EX ⨯⨯+⨯⨯=++=.23.①当2n =时,22222264C ⨯<=<不等式成立.②假设当n k =时,2264k k k k C <=<成立,则当1n k =+时由122(22)(21)2(1)2(21)(+1)(+1)(+1)(+1)(+1)k k k k k k C k k k k k k ++++⨯++===!!!!!!!!!11222222k k k k k k C C ++=>=>=,即11222k k k C +++<.11222122221222244441k kk k k k k k k k k k k C C C C C k +++++=<<=<=+, 因此1112224k k k k C ++++<<成立,即当1n k =+时,不等式成立, 所以,对2n ≥,n ∈N ,不等式224n n nn C <<恒成立.江苏省南通市2017年(数学学科基地命题)高考模拟数学试卷(四)解 析一、填空题1.∵A={x|-4<x<4}, B={-5,0,1}。

2017年南通市数学学科基地命题高考模拟试卷(1)(含详解)

2017年南通市数学学科基地命题高考模拟试卷(1)(含详解)

2017年高考模拟试卷(1) 南通市数学学科基地命题 第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分 . 1. 已知{}2A x x =<,{}1B x x => ,则A B = . 2. 已知复数z 满足(1i)2i z -=+,则复数z 的实部为 . 3. 函数5()log (9)f x x =+ 的单调增区间是 .4. 将一颗质地均匀的正方体骰子(每个面上分别写有数字1,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的的概率是 .5. 执行如图所示的伪代码,若输出的y 的值为13,则输入的x 的值是 .6. 一种水稻品种连续5年的平均单位面积产量(单位:t/hm 2)分别为:9.4,9.7,9.8,10.3,10.8,则这组样本数据的方差为 .7. 已知函数()sin()(030)f x x ωϕωϕ=+<<<<π,.若4x π=-为函数()f x 的一个零点,3x π=为函数()f x 图象的一条对称轴,则ω的值为 .8. 已知1==a b ,且()()22+⋅-=-a b a b ,则a 与b 的夹角为 . 9. 已知() 0 αβ∈π,,,且()1tan 2αβ-=,1tan 5β=-,则tan α的值为 .10.已知x 的一元二次不等式2 >0ax bx c ++的解集为()1 5-,,a b c ,,为常数.则不等式2 0cx bx a ++≤的解集为 . 11.已知正数x ,y 满足121x y+=,则22log log x y +的最小值为 .12.在平面直角坐标系xOy 中,已知圆C :22280x y x ++-=,直线l :(1) ()y k x k =-∈R 过定点A ,且交圆C 于点B ,D ,过点A 作BC 的平行线交CD 于点E ,则三角形AEC 的周长为 .13.设集合{}*2n A x x n ==∈N ,,集合{}*n B x x b n ==∈N , 满足A B =∅ ,且*A B =N .若对任意的*n ∈N ,1n n b b +<,则2017b 为 .14.定义:{}max a b ,表示a ,b 中的较大者.设函数{}()max 11f x x x =-+,,2()g x x k =+,若函数()()y f x g x =-恰有4个零点,则实数k 的取值范围是 . 二、解答题:本大题共6小题,共90分.15.(14分)在三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知cos cos 02C C +=.(1)求C 的值.(2)若c =1,三角形ABC,求a ,b 的值.16.(14分)如图,在多面体ABC —DEF 中,若AB //DE ,BC //EF .(1)求证:平面ABC //平面DEF ;(2)已知CAB ∠是二面角C -AD -E 的平面角. 求证:平面ABC ⊥平面DABE .(第5题)AFED CB(第16题)(第17题)17.(14分)如图,长方形ABCD 表示一张6⨯12(单位:分米)的工艺木板,其四周有边框(图中阴影部分),中间为薄板.木板上一瑕疵(记为点P )到外边框AB ,AD 的距离分别为1分米,2分米.现欲经过点P 锯掉一块三角形废料MAN ,其中M N ,分别在AB ,AD 上.设AM ,AN 的长分别为m 分米,n 分米. (1)为使剩下木板MBCDN 的面积最大,试确定m ,n 的值;(2)求剩下木板MBCDN 的外边框长度(MB ,BC CD DN ,,的长度之和)的最大值.18.(16分)如图,在平面直角坐标系xOy 中,设椭圆C :2221x y a +=(a >1).(1)若椭圆C 的焦距为2,求a 的值;(2)求直线1y kx =+被椭圆C 截得的线段长(用a ,k 表示);(3)若以A (0,1)为圆心的圆与椭圆C 总有4个公共点,求椭圆C 的离心率e 的取值范围. 19.(16分)已知函数32()2()f x x ax bx c a b c =+++∈R ,,.(1)若函数()f x 为奇函数,且图象过点(12)-,,求()f x 的解析式;(2)若1x =和2x =是函数()f x 的两个极值点. ①求a ,b 的值;②求函数()f x 在区间[03],上的零点个数.20.(16分)设等差数列{}n a 与等比数列{}n b 共有m * ( )m ∈N 个对应项相等. (1)若110a b =>,11110a b =>,试比较66a b ,的大小; (2)若34n a n =-,()12n n b -=--,求m 的值.(3)若等比数列{}n b 的公比0q >,且1q ≠,求证:3m ≠.【参考结论】若R 上可导函数()f x 满足()()fa fb =(a b <),则()a b ξ∃∈,,()0f ξ'=. (第18题)(第21- A 题) 第II 卷(附加题,共40分)21.【选做题】本题包括A, B,C,D 四小题,每小题10分,请选定其中两小题,并在相应的答题区域内作答............. A ,(选修4-1;几何证明选讲) 如图,四边形ABCD 是圆的内接四边形,BC BD =,BA 的延长线交CD 的延长线于点E .求证:AE 是四边形ABCD 的外角DAF ∠的平分线.B .(选修4-2:矩阵与变换)已知矩阵1002⎡⎤=⎢⎥⎣⎦A ,11201⎡⎤⎢⎥=⎢⎥⎣⎦B ,求矩阵ABC .(选修4-4:坐标系与参数方程)在极坐标系中,求圆24sin 50ρρθ--=截直线π()3θρ=∈R所得线段长. D.(选修4-5:不等式选讲)求证:5. 【选做题】第22题、23题,每题10分,共计20分. 22.在平面直角坐标系xOy 中,设点2(2)A a a ,,2(2)B b b ,,(12)C ,均在抛物线22(0)y px p =>上,且90BCA ∠=︒.(1)求p 的值;(2)试用a 表示b ;(3)求直线5x =与直线AB 交点的纵坐标. 23. (1)2n n +(2n n ∈*N ≥,)个不同数随机排成如下的一个三角形:kM ()1 k n k ∈*N ≤≤,是从上往下数第k 行中的最大数,n p 为12n M M M <<⋅⋅⋅<的概率. (1)求2p 的值;(2)猜想n p 的表达式,并证明.* * * * * * …………………… * * … * *2017年高考模拟试卷(1)参考答案一、填空题1.()12,.A B = ()12,.2.12. (2)(1)2i 13.i i i z ++++===,则复数z 的实部为 12.3.(-9,+∞).函数5()log (9)f x x =+的单调增区间(-9,+∞).4. 536.点数之和是6包括(15)(24)(33)(42)(15),,,,,,,,,共5种情况,则所求概率是536. 5. 8.若613x =,则1326x =>,不符;若513x +=,则82x =>.6. 0. 244.这组数据的平均数为10,方差为222221(109.4)(109.7)(109.8)(1010.3)(1010.8)0.245⎡⎤-+-+-+-+-=⎣⎦. 7. 76或1878. π.依题意,2220+⋅-=a a b b ,又1==a b ,故1⋅=a b ,则a 与b 的夹角为π. 9. 113.()()()()11tan tan 25tan tan 111tan tan 125αββααββαββ--+=-+===⎡⎤⎣⎦---⨯-113. 10. 11⎡⎤-⎢⎥⎣⎦,.因为不等式2 >0ax bx c ++的解集为()1 5-,,所以(1)(5)>0a x x +-,且0a <,即245>0ax ax a --,则45b a c a =-=-,,则2 0cx bx a ++≤即为254 0ax ax a --+≤,从而254 1 0x x +-≤,故解集为115⎡⎤-⎢⎥⎣⎦,. 11.3.由121x y +=得,0y x =>,则()222222222log log log log log 22y y x y xy y y -++===--()224log 24log 832y y ⎡⎤=-++=⎢⎥-⎣⎦≥. 12. 5.圆C :22(1)9x y -+=,定点A (10)-,,EA ED =,则3EC EA EC ED +=+=,从而三角形AEC 的周长为5.13. 2027.易得数列{}n b :1,3,5,6,7,9,10,11,12,13,14,15,17,…,则1137++++…12121k k k ++-=--,当10k =,12120372017k k +--=>, 2037201720-=,从而第2017项为1121202027--=.14. ()()5114-∞- ,,.{}()max 11f x x x =-+, 2()()g x x k k =+∈R 恰有4个零点,当54k =时,()f x 与()g x 相切.如图,结合图形知,实数k 的取值范围是()()5114-∞- ,,. 二、解答题15. (1)因为cos cos 02C C +=,所以22cos cos 1022C C +-=,解得cos 12C =-或1cos 22C =, 又0C π<< ,故22C π0<<,从而23C π=,即23C π=.(2)由余弦定理2222cos c a b ab C =+-得,221a b ab ++=, ①由三角形ABC的面积1sin 2ab C1ab =, ②由①②得,a b ==.16. (1)因为AB //DE ,又AB ⊄平面DEF , DE ⊂平面DEF ,所以AB //平面DEF , 同理BC //平面DEF , 又因为AB BC C = ,A B B C⊂,平面ABC , 所以平面ABC //平面DEF . (2)因为CAB ∠是二面角C -AD -E 的平面角,所以CA AD BA AD ⊥⊥,,又因为CA AB A = ,AB ,CA ⊂平面ABC ,所以DA ⊥平面ABC ,又DA ⊂平面DABE , 所以平面ABC ⊥平面DABE .17. (1)过点P 分别作AB ,AD 的垂线,垂足分别为E ,F ,则△PNF 与△MPE 相似, 从而PF NF =,所以21n -=,即211+=.欲使剩下木板的面积最大,即要锯掉的三角形废料MAN 的面积12S mn =最小.由211m n =+≥8mn ≥ (当且仅当21m n =,即4m =,2n =时,“=”成立),此时min 4S =(平方分米).(2)欲使剩下木板的外边框长度最大,即要m n +最小.由(1)知,()()212333n m m n m n m n m n +=++=++=≥,(当且仅当2n m =即2m =1n =时,“=”成立),答:此时剩下木板的外边框长度的最大值为33-18. (1)由椭圆C :2221x y a+=(a >1)知,焦距为2,解得a =a >1,所以a =(2)设直线1y kx =+被椭圆截得的线段长为ΑΡ,由22211y kx x y a=+⎧⎪⎨+=⎪⎩,,得()2222120a k x a kx ++=,解得10x =,222221a k x a k =-+.因此2122221a kΑΡx a k=-=+.(第17题)(3)因为圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有2个不同的公共点为P ,Q ,满足AP AQ =.记直线AP ,AQ 的斜率分别为1k ,2k ,且1k ,20k >,12k k ≠. 由(2)知,1AP2AQ12,所以22222222121212)1(2)0k k k k a a k k ⎡⎤-+++-=⎣⎦(, 因为1k ,20k >,12k k ≠,所以22222212121(2)0k k a a k k +++-=,变形得,()()22221211111(2)a a k k ++=+-,从而221+(2)1a a ->,解得a则)1c e a =. 19. (1)因为函数()f x 为偶函数,所以()()f x f x -=-,即()()()323222x a x b x c x ax bx c -+-+-+=----, 整理得,20ax c +=, 所以0a c ==,从而3()2f x x bx =+,又函数()f x 图象过点(12)-,,所以4b =-. 从而3()24f x x x =-.(2)①32()2()f x x ax bx c a b c =+++∈R ,,的导函数2()62f x x ax b '=++. 因为()f x 在1x =和2x =处取得极值,所以(1)0(2)0f f ''==,,即6202440a b a b ++=⎧⎨++=⎩,,解得912a b =-=,. ②由(1)得32()2912()f x x x x c c =-++∈R ,()6(1)(2)f x x x '=--. 列表:显然,函数()f x 在[0由表知,函数()f x 在[0,3]上的最小值为(0)f c =,最大值为(3)9f c =+.所以当0c >或90c +<(即9c <-)时,函数()f x 在区间[03],上的零点个数为0. 当50c -<<时,因为(0)(1)(5)0f f c c =+<,且函数()f x 在(0,1)上是单调增函数,所以函数()f x 在(0,1)上有1个零点.当54c -<<-时,因为(1)(2)(5)(4)0f f c c =++<,且()f x 在(1,2)上是单调减函数, 所以函数()f x 在(1,2)上有1个零点.当94c -<<-时,因为(2)(3)(4)(9)0f f c c =++<,且()f x 在(2,3)上是单调增函数, 所以函数()f x 在(2,3)上有1个零点.综上,当0c >或9c <-时,函数()f x 在区间[03],上的零点个数为0; 当95c -<-≤或40c -<≤时,零点个数为1;当4c =-或5c =-时,零点个数为2;当54c -<<-时,零点个数为3.20.(1)依题意,11111166022a a a aa b ++=- (当且仅当111a a =时,等号成立). (2)易得()1342n n --=--,当n 为奇数时,()13420n n --=--<,所以43n <,又*n ∈N ,故1n =,此时111a b ==-; 当n 为偶数时,()13420n n --=-->,所以43n >,又*n ∈N ,故246n =,,,… 若2n =,则222a b ==,若4n =,则448a b ==, 下证:当6n ≥,且n 为偶数时,()1342n n --<--,即()12134n n --->-. 证明:记()12()34n p n n ---=-,则()()()112434(2)341()32322n n n p n n p n n n +----+-=⋅=>++--, 所以()p n 在6n ≥,且n 为偶数时单调递增, 从而17()(6)17p n p >=>.综上,124n =,,,所以m 的值为3. (3)证明:假设3m =,不妨123n n n <<,满足11n n a b =,22n n a b =,33n n a b =, 设1(1)n a a n d =+-,11n n b b q -=,其中0q >,且1q ≠, 记11()(1)xb f x a x d q q=+--⋅, 则1()ln x b f x d q q q '=-⋅,()21()ln x b f x q q q''=-⋅, 由参考结论,知112()n n ξ∃∈,,1()0f ξ'=,223()n n ξ∃∈,,2()0f ξ'=, 同理,12()ηξξ∃∈,,()0f η''=,即()21()ln 0b f q q qηη''=-⋅=, 这与()21()ln 0b f q q qηη''=-⋅≠矛盾,故假设不成立,从而3m ≠. 第Ⅱ卷(附加题,共40分)A .因为ABCD 是圆的内接四边形,所以DAE BCD ∠=∠,FAE BAC BDC ∠=∠=∠. 因为BC BD =,所以BCD BDC ∠=∠, 所以DAE FAE ∠=∠,所以AE 是四边形ABCD 的外角DAF ∠的平分线.B .因为1002⎡⎤=⎢⎥⎣⎦A ,1101⎡⎤⎢⎥=⎢⎥⎣⎦B , 所以111011020102⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦AB . 由逆矩阵公式得,1114()102-⎡⎤-⎢⎥=⎢⎥⎢⎥⎣⎦AB . C .以极点O 为原点,极轴Ox 为x 轴正半轴建立平面直角坐标系xOy . 则圆24sin 50ρρθ--=化为普通方程22450x y y +--=,即22(2)9x y +-=.直线π()3θρ=∈R化为普通方程y =0y -=.圆心(02),0y -=的距离为1d ==,于是所求线段长为=D .由柯西不等式可得,(()22222215⎤++=⎦≤,(当且仅当=16[34]x =∈,时,“=”成立.)22. (1)依题意,将(12)C ,代入22(0)y px p =>得,2p =; (2)因为 90BCA ∠=︒,所以0CA CB ⋅=,其中2(122)CA a a =-- ,,2(122)CB b b =--,, 从而22(1)(1)4(1)(1)0a b a b --+--=,化简得,5a b +=-;(3)易得直线AB 的方程为222()y a x a b a-=-+, 令5x =得,22(5)2251y a a a a a =-+=-+-++. 23.当2n =时,1,2,3排成一个三角形有:共有6种,其中满足12M M <的有如下4种:所以242p ==;(2)设当n k =时,12k M M M <<⋅⋅⋅的概率为k p ,则当1n k =+时,121k k M M M M +<<⋅⋅⋅<的概率为1k p +, 而1k +排在第1k +行的概率为12(1)(11)22k k k k +=++++, 1 2 3 1 3 2 21 32 3 1 3 1 2 3 2 11 2 3 1 3 22 1 32 3 1所以12(2)2k kp p k k +=+≥,即12(2)2k k p k p k +=+≥, 故3224p p =,4325p p =,5426p p =, (12)n p -=, 叠乘,得()22214n n p p n n -=+⨯⨯⋅⋅⋅⨯,其中24263p ==, 所以n p 2(1)!n n =+.。

【江苏省南通市】2017年高考一模数学试卷-答案

【江苏省南通市】2017年高考一模数学试卷-答案

江苏省南通市2017年高考一模数学试卷答 案1.2π3 2.{135},, 3.3- 4.0.17 5.5 6.7 7.20 8.32910.1322111213.(,2)(2,)-∞-+∞14.15.解:(1)在AOB △中,由余弦定理得,2222cos AB OA OB OA OB AOB =+∙∠-,所以,2222221135cos 22115OA OB ABAOB OA OB+-+-∠===⨯⨯, 即3cos 5β=. (2)因为3cos 5β=,(0,)2πβ∈,∴4sin 5β==. 因为点A 的横坐标为513,由三角函数定义可得,5cos 13α=,因为α为锐角,所以12sin 13α===.所以5312433cos()cos cos sin sin 13513565αβαβαβ+=-=⨯-⨯=-,sin()sin cos cos αβαβα+=+1235456sin 13513565β=⨯+⨯=, 即点3356(,)6565B -.16.证明:(1)连结OE ,因为O 为平行四边形ABCD 对角线的交点,所以O 为AC 中点. 又因为E 为PC 的中点, 所以//OE PA .…4分又因为OE ⊂平面BDE ,PA ⊄平面BDE , 所以直线//PA 平面BDE .…6分(2)因为//OE PA ,PA PD ⊥,所以OE PD ⊥.…8分 因为OP OC =,E 为PC 的中点,所以OE PC ⊥.…10分 又因为PD ⊂平面PCD ,PC ⊂平面PCD ,PC PD P =,所以OE ⊥平面PCD .…12分又因为OE ⊂平面BDE ,所以平面BDE ⊥平面PCD .…14分.17.解:(1)由题意得,c a =,21a c c -=,…2分解得a =1c =,1b =.所以椭圆的方程为2212x y +=.…4分(2)由题意知OP 的斜率存在.当OP 的斜率为0时,2OP =,2OQ =,所以.…6分当OP 的斜率不为0时,设直线OP 方程为y kx =.由2212x y y kx⎧+=⎪⎨⎪=⎩得22212k x +=(),解得22221x k =+,所以222221k y k =+,所以2222221k OP k +=+.…9分 因为OP OQ ⊥,所以直线OQ 的方程为1y x k=.由1y y xk ⎧=⎪⎨=-⎪⎩得x =,所以2222OQ k =+.…12分 所以222221*********k OP OQ k k ++=+=++. 综上,可知22111OP OQ +=.…14分. 18.解:(1)当π4EFP ∠=时,由条件得π4EFP EFD FEP ∠=∠=∠=. 所以π2FPE ∠=.所以FN BC ⊥, 四边形MNPE 为矩形.…3分所以四边形MNPE 的面积2•2S PN MN m ==.…5分 (2)解法一: 设(0)2EFD πθθ∠=<<,由条件,知EFP EFD FEP θ∠=∠=∠=.所以22sin(2)sin 2PF πθθ==-,23sin 2NP NF PF θ=-=-,23tan ME θ=-.…8分 由230sin 2230tan 02θθπθ⎧->⎪⎪⎪->⎨⎪⎪<<⎪⎩得2sin 232tan ,()30.2θθπθ⎧>⎪⎪⎪>*⎨⎪⎪<<⎪⎩所以四边形MNPE 面积为112222()[(3)(3)]2622sin 2tan tan sin 2S NP ME MN θθθθ=+=-+-⨯=--2222(sin cos )366(tan )tan 2sin cos tan θθθθθθθ+=--=-+…12分66≤-- 当且仅当3tan tan θθ=,即tan θ,π3θ=时取“=”.…14分 此时,(*)成立. 答:当π3EFD ∠=时,沿直线PE 裁剪,四边形MNPE 面积最大,最大值为26-.…16分 解法二:设BE tm =,36t <<,则6ME t =-.因为EFP EFD FEP ∠=∠=∠,所以PE PF =t BP -.所以2132(3)t BP t -=-,213333()32(3)t NP PF PE t BP t t -=-=-=--=-+-.…8分由22361302(3)13302(3)t t t tt t ⎧⎪<<⎪⎪-⎪>⎨-⎪⎪-⎪-+>-⎪⎩得236()12310t t t t <<⎧⎪>*⎨⎪-+<⎩ 所以四边形MNPE 面积为22111333067()[(3)(6)]2222(3)2(3t)t t t S NP ME MN t t t --+=+=-++-⨯=--…12分326[(3)]623t t =--+≤--.当且仅当32(3)23t t -=-,即33t ==+时取“=”.…14分 此时,(*)成立. 答:当点E 距B点33+m 时,沿直线PE 裁剪,四边形MNPE 面积最大,最大值为6-2.…16分.19.解:(1)当38a =时,23()ln 8f x x x x =--.所以31(32)(2)'()144x x f x x x x+-=--=,0x (>).…2分令'()0f x =,得2x =,当0,2x ∈()时,'0f x ()<;当2x ∈+∞(,)时,'0f x ()>,所以函数f x ()在02(,)上单调递减,在2+∞(,)上单调递增. 所以当2x =时,f x ()有最小值1(2)ln 22f =--.…4分(2)由2ln f x ax x x =()--,得2121'()21ax x f x ax x x--=--=,0x >.所以当0a ≤时,221'()0ax x f x x--=<,函数f x ()在0+∞(,)上单调递减,所以当0a ≤时,函数f x ()在0+∞(,)上最多有一个零点.…6分因为当10a ≤≤-时,110f a =()-<,221()0e e af e e-+=>, 所以当10a ≤≤-时,函数f x ()在0+∞(,)上有零点. 综上,当10a ≤≤-时,函数f x ()有且只有一个零点.…8分(3)由(2)知,当0a ≤时,函数f x ()在0+∞(,)上最多有一个零点. 因为函数f x ()有两个零点,所以0a >…9分由2ln f x ax x x =()--,得221'()ax x f x x--=,(0)x >,令221g x ax x =()--.因为010g =()-<,20a >,所以函数g x ()在0+∞(,)上只有一个零点,设为0x .当00x x ∈(,)时,0g x ()<,'0f x ()<;当0x x ∈+∞(,)时,0g x ()>,'0f x ()>. 所以函数f x ()在00x (,)上单调递减;在0x +∞(,)上单调递增. 要使得函数f x ()在0+∞(,)上有两个零点,只需要函数f x ()的极小值00f x ()<,即2000ln 0ax x x --<.又因为2000()210g x ax x =--=,所以002ln 10x x +->, 又因为函数2ln 1h x x x =+()-在0+∞(,)上是增函数,且10h =(), 所以01x >,得0101x <<. 又由20210ax x --=,得22000111112()()24a x x x =+=+-, 所以01a <<.…13分 以下验证当01a <<时,函数f x ()有两个零点. 当01a <<时,21211()10a ag a a a a -=--=>, 所以011x a<<.因为22211()10a e e af e e e e-+=-+=>,且00f x ()<. 所以函数f x ()在01(,)x e上有一个零点.又因为2242222()ln (1)10a f a a a a a a=--≥--=>(因为ln 1x x ≤﹣),且00f x ()<.所以函数f x ()在02(,)x a上有一个零点.所以当01a <<时,函数f x ()在12(,)e a内有两个零点. 综上,实数a 的取值范围为01(,).…16分 下面证明:ln 1x x ≤-. 设1ln t x x x =()--,所以11'()1x t x x x-=-=,0x (>). 令'0t x =(),得1x =.当01x ∈(,)时,'0t x ()<;当1x ∈+∞(,)时,'0t x ()>. 所以函数t x ()在01(,)上单调递减,在1+∞(,)上单调递增. 所以当1x =时,t x ()有最小值10t =(). 所以1ln 0t x x x =≥()--,得ln 1x x ≤-成立.20.解:(1)由已知可得:1a ,3a ,8a 成等比数列,所以2111(2)(7)a d a a d +=+,…2分整理可得:2143d a d =.因为0d ≠,所以143a d =.…4分 (2)设数列{}n k 为等比数列,则2213k k k =.又因为1k a ,2k a ,3k a 成等比数列,所以2111312[(1)][(1)][(1)]a k d a k d a k d +-+-=+-.整理,得21213132132(2)(2)a k k k d k k k k k k --=---+.因为2213k k k =,所以121321322a k k k d k k k =(--)(--).因为2132k k k ≠+,所以1a d =,即11a d=.…6分 当11a d=时,11n a a n d nd =+=(-),所以n k n a k d =. 又因为1111n n n k k a a q k dq --==,所以11n n k k q -=.所以1111nn n n k k q q k k q +-==,数列{}n k 为等比数列. 综上,当11a d=时,数列{}n k 为等比数列.…8分 (3)因为数列{}n k 为等比数列,由(2)知1a d =,11(1)n n k k q q -=>.1111111n n n n k k a a q k dq k a q ---===,111n a a n d na =+=(-).因为对于任意*n N ∈,不等式2n n k n a a k +>恒成立. 所以不等式1111112n n na k a qk q --+>,即111112n n k q a n k q -->+,111111110222n n n n k q qna k q k q --+<<=+恒成立.…10分下面证明:对于任意的正实数01εε(<<),总存在正整数1n ,使得11n n q ε<. 要证11n n q ε<,即证11ln ln ln n n q ε+<. 因为11ln 2x x x e ≤<,则1122111ln 2ln n n n =<,解不等式1211ln ln n n q ε<+,即1122211()ln ln 0n q n ε-+>,可得121n >,所以21n >.不妨取01n =+,则当10n n >时,原式得证. 所以11102a <≤,所以12a ≥,即得1a 的取值范围是[2+∞,).…16分 21.解:设CD x =,则2CE x =. 因为1CA =,3CB =,由相交弦定理,得••CA CB CD CE =, 所以213?22x x x ⨯==,所以2x =.…2分 取DE 中点H ,则OH DE ⊥.因为2222354()28OH OE EH x =-=-=,所以OH =.…6分又因为2CE x ==所以OCE ∆的面积1122S OH CE ==⨯=10分. 22.解:设a b A c d ⎡⎤=⎢⎥⎣⎦,因为向量11⎡⎤⎢⎥-⎣⎦是矩阵A 的属于特征值1-的一个特征向量,所以111(1)111a b cd -⎡⎤⎡⎤⎡⎤⎡⎤=-=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦.所以11a b c d -=-⎧⎨-=⎩…4分 因为点11P (,)在矩阵A 对应的变换作用下变为'33P (,), 所以1313a b c d ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.所以33a b c d +=⎧⎨+=⎩…8分 解得1a =,2b =,2c =,1d =,所以1221A ⎡⎤=⎢⎥⎣⎦.…10分.23.解:以极点O 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系. 直线π()4R θρ=∈的直角坐标方程为y x =①,…3分 曲线4sin ρθ=的直角坐标方程为2240x y y +=-②.…6分由①②得00x y =⎧⎨=⎩或22x y =⎧⎨=⎩…8分所以00A(,),22B (,),所以直线π()4R θρ=∈被曲线4sin ρθ=所截得的弦长AB =.…10分.24.解:3sin 3sin y x x =++2分由柯西不等式得222222(3sin (34)(sin cos )25y x x x =+≤++=,…8分 所以5max y =,此时3sin 5x =.所以函数3sin y x =+5.…10分.25.解:以1{,,}AB AD AA 为正交基底,建立如图所示空间直角坐标系A xyz -. (1)因为(1,2,2)AP =,(2,0,1)AQ =,所以cos ,15APAQ AP AQ AP AQ===.所以AP 与AQ .…4分 (2)由题意可知,1(0,0,2)AA =,(2,0,2)AQ λ=. 设平面APQ 的法向量为z n x y =(,,),则00n AP n AQ ⎧=⎪⎨=⎪⎩即220220x y z x z λ++=⎧⎨+=⎩令2z =-,则2x λ=,2y λ=-. 所以222n λλ=(,-,-).…6分又因为直线1AA 与平面APQ 所成角为45︒, 所以111cos ,2n AA n AA n AA ==, 可得2540λλ=-,又因为0λ≠,所以45λ=.…10分.26.解:(1)抛物线220x py p =(>)的准线方程为2py =, 因为1M m (,),由抛物线定义,知12pMF =+, 所以122p+=,即2p =,所以抛物线的方程为24x y =.…3分(2)因为214y x =,所以1'2y x =. 设点2(,)4t E t ,0t ≠,则抛物线在点E 处的切线方程为21()42t y t x t -=-.令0y =,则2tx =,即点(,0)2t P .因为(,0)2t P ,01F (,),所以直线PF 的方程为2()2ty x t =-,即20x ty t +=-. 则点2(,)4t E t 到直线PF的距离为d ==5分 联立方程2420x y x ty t ⎧=⎪⎨⎪+-=⎩消元,得2222(2t 16)0t y y t -++=. 因为224221646440t t t =+=+△()-()>,所以1y =,2y = 所以221212222164(4)1122t t AB y y y y t t++=+++=++=+=.…7分 所以EAB △的面积为3222214(4)1(4)22t t S t t++=⨯=⨯. 不妨设322(4)()(0)x g x x x +=>,则12222(4)'()(24)x g x x x+=-.因为x ∈时,'0g x ()< ,所以g x ()在)x ∈+∞上,'0g x ()>,所以g x ()在)+∞上单调递增.所以当x时,32min()g x ==所以EAB △的面积的最小值为10分.江苏省南通市2017年高考一模数学试卷解析1.【考点】三角函数的周期性及其求法.【分析】根据函数y=Asin(ωx+φ)的周期等于,得出结论.【解答】解:函数的最小正周期为,故答案为:.2.【考点】并集及其运算.【分析】由交集的定义,可得a+2=3,解得a,再由并集的定义,注意集合中元素的互异性,即可得到所求.【解答】解:集合A={1,3},B={a+2,5},A∩B={3},可得a+2=3,解得a=1,即B={3,5},则A∪B={1,3,5}.故答案为:{1,3,5}.3.【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘法运算化简得答案.【解答】解:∵z=(1+2i)2=1+4i+(2i)2=﹣3+4i,∴z的实部为﹣3.故答案为:﹣3.4.【考点】概率的基本性质.【分析】利用对立事件的概率公式,可得结论.【解答】解:∵摸出红球的概率为0.48,摸出黄球的概率为0.35,∴摸出蓝球的概率为1﹣0.48﹣0.35=0.17.故答案为0.17.5.【考点】程序框图.【分析】由已知的程序框图可知,该程序的功能是利用循环计算a值,并输出满足a<16的最大n值,模拟程序的运行过程可得答案.【解答】解:当n=1,a=1时,满足进行循环的条件,执行循环后,a=5,n=3;满足进行循环的条件,执行循环后,a=17,n=5;满足进行循环的条件,退出循环故输出n值为5故答案为:5.6.【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=3x+2y得y=﹣x+z平移直线y=﹣x+z ,由图象可知当直线y=﹣x+z经过点A时,直线y=﹣x+z的截距最大,此时z最大.由,解得A(1,2),代入目标函数z=3x+2y得z=3×1+2×2=7.即目标函数z=3x+2y的最大值为7.故答案为:7.7.【考点】极差、方差与标准差.【分析】根据题意,分别求出甲、乙的平均数与方差,比较可得S甲2>S乙2,则乙的成绩较为稳定;即可得答案.【解答】解:根据题意,对于甲,其平均数甲==75,其方差S甲2=[(65﹣75)2+(80﹣75)2+(70﹣75)2+(85﹣75)2+(75﹣75)2]=50;对于乙,其平均数乙==75,其方差S乙2=[(80﹣75)2+(70﹣75)2+(75﹣75)2+(80﹣75)2+(70﹣75)2]=20;比较可得:S甲2>S乙2,则乙的成绩较为稳定;故答案为:20.8.【考点】棱柱、棱锥、棱台的体积.【分析】三棱锥D1﹣A1BD的体积==,由此能求出结果.【解答】解:∵在正四棱柱ABCD﹣A1B1C1D1中,AB=3cm,AA1=1cm,∴三棱锥D1﹣A1BD的体积:=====(cm3).故答案为:.9.【考点】双曲线的简单性质.【分析】利用双曲线的渐近线方程得到a,b关系,然后求解双曲线的离心率即可.【解答】解:直线2x+y=0为双曲线=1(a>0,b>0)的一条渐近线,可得b=2a,即c2﹣a2=4a2,可得=.故答案为:.10.【考点】等差数列的通项公式.【分析】设最上面一节的容积为a1,利用等差数列的通项公式、前n项和公式列出方程组,能求出结果.【解答】解:设最上面一节的容积为a1,由题设知,解得.故答案为:.11.【考点】平面向量数量积的运算;正弦定理.【分析】根据题意,利用平面向量的数量积,结合余弦定理和正弦定理,即可求出的值.【解答】解:在△ABC中,设三条边分别为a、b,c,三角分别为A、B、C,由•+2•=•,得ac•cosB+2bc•cosA=ba•cosC,由余弦定理得:(a2+c2﹣b2)+(b2+c2﹣a2)=(b2+a2﹣c2),化简得=2,∴=,由正弦定理得==.故答案为:.12.【考点】利用导数研究曲线上某点切线方程.【分析】联立两曲线方程,可得tanx==,a>0,设交点P(m,n),分别求出f(x),g(x)的导数,可得切线的斜率,由两直线垂直的条件:斜率之积为﹣1,再由同角基本关系式,化弦为切,解方程即可得到a的值.【解答】解:由f(x)=g(x),即2sinx=acosx,即有tanx==,a>0,设交点P(m,n),f(x)=2sinx的导数为f′(x)=2cosx,g(x)=acosx的导数为g′(x)=﹣asinx,由两曲线在点P处的切线互相垂直,可得2cosm•(﹣asinm)=﹣1,且tanm=,则=1,分子分母同除以cos2m,即有=1,即为a2=1+,解得a=.故答案为:.13.【考点】绝对值不等式的解法.【分析】令g(x)=f(x2+2)﹣f(x)=x2+2+|x2﹣2|﹣|x|﹣|x﹣4|,通过讨论x的范围,求出各个区间上的不等式的解集,取并集即可.【解答】解:令g(x)=f(x2+2)﹣f(x)=x2+2+|x2﹣2|﹣|x|﹣|x﹣4|,x≥4时,g(x)=2x2﹣2x+4>0,解得:x≥4;≤x<4时,g(x)=2x2﹣4>0,解得:x>或x<﹣,故<x<4;0≤x<时,g(x)=0>0,不合题意;﹣≤x<0时,g(x)=2x>0,不合题意;x<﹣时,g(x)=2x2+2x﹣4>0,解得:x>1或x<﹣2,故x<﹣2,故答案为:.14.【考点】直线和圆的方程的应用.【分析】画出图形,当BC⊥OA时,|BC|取得最小值或最大值,求出BC坐标,即可求出|BC|的长的取值范围.【解答】解:在平面直角坐标系xOy中,已知B,C为圆x2+y2=4上两点,点A(1,1),且AB⊥AC,如图所示当BC⊥OA时,|BC|取得最小值或最大值.由,可得B(,1)或(,1),由,可得C(1,)或(1,﹣)解得BC min==,BC max==.故答案为:[,].15.【考点】任意角的三角函数的定义.【分析】(1)由条件利用余弦定理,求得cosβ的值.(2)利用任意角的三角函数的定义,同角三角函数的基本关系,两角和差的正弦、余弦公式,求得点B的坐标.16.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)连结OE,说明OE∥PA.然后证明PA∥平面BDE.(2)证明OE⊥PD.OE⊥PC.推出OE⊥平面PCD.然后证明平面BDE⊥平面PCD.17.【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】(1)由已知条件可得,,然后求解椭圆的方程.(2)由题意知OP的斜率存在.当OP的斜率为0时,求解结果;当OP的斜率不为0时,设直线OP方程为y=kx.联立方程组,推出.OQ2=2k2+2.然后求解即可.18.【考点】函数模型的选择与应用.【分析】(1)当∠EFP=时,由条件得∠EFP=∠EFD=∠FEP=.可得FN⊥BC,四边形MNPE为矩形.即可得出.(2)解法一:设,由条件,知∠EFP=∠EFD=∠FEP=θ.可得,,.四边形MNPE面积为==,化简利用基本不等式的性质即可得出.解法二:设BE=tm,3<t<6,则ME=6﹣t.可得PE=PF,即.,NP=3﹣T+,四边形MNPE面积为==,利用基本不等式的性质即可得出.19.【考点】导数在最大值、最小值问题中的应用;根的存在性及根的个数判断;利用导数研究函数的极值.【分析】(1)当时,.求出函数的导数,得到极值点,然后判断单调性求解函数的最值.(2)由f(x)=ax2﹣x﹣lnx,得.当a≤0时,函数f(x)在(0,+∞)上最多有一个零点,当﹣1≤a≤0时,f(1)=a﹣1<0,,推出结果.(3)由(2)知,当a≤0时,函数f(x)在(0,+∞)上最多有一个零点.说明a>0,由f(x)=ax2﹣x ﹣lnx,得,说明函数f(x)在(0,x0)上单调递减;在(x0,+∞)上单调递增.要使得函数f(x)在(0,+∞)上有两个零点,只需要.通过函数h(x)=2lnx+x﹣1在(0,+∞)上是增函数,推出0<a<1.验证当0<a<1时,函数f(x)有两个零点.证明:lnx≤x﹣1.设t(x)=x﹣1﹣lnx,利用导数求解函数的最值即可.20.【考点】数列与不等式的综合;等比数列的性质.【分析】(1)由已知得:a1,a3,a8成等比数列,从而4d2=3a1d,由此能求出的值.(2)设数列{k n}为等比数列,则,推导出,从而,进而.由此得到当时,数列{k n}为等比数列.(3)由数列{k n}为等比数列,a1=d,.得到,恒成立,再证明对于任意的正实数ε(0<ε<1),总存在正整数n1,使得.要证,即证lnn1<n1lnq+lnε.由此能求出a1的取值范围.21.【考点】与圆有关的比例线段.【分析】由相交弦定理,得CD,DE中点H,则OH⊥DE,利用勾股定理求出OH,即可求出△OCE的面积.22.【考点】特征值与特征向量的计算.【分析】设,根据矩阵变换,列方程组,即可求得a、b、c和d的值,求得A.23.【考点】简单曲线的极坐标方程.【分析】极坐标方程化为直角坐标方程,联立,求出A,B的坐标,即可求直线被曲线ρ=4sinθ所截得的弦长.24.【考点】柯西不等式在函数极值中的应用;三角函数的最值.【分析】利用二倍角公式化简函数的解析式,利用柯西不等式求解函数的最值即可.25.【考点】直线与平面所成的角.【分析】(1)以为正交基底,建立如图所示空间直角坐标系A﹣xyz.求出,,利用数量积求解AP与AQ所成角的余弦值.(2),.求出平面APQ的法向量,利用空间向量的数量积求解即可.26.【考点】导数在最大值、最小值问题中的应用;抛物线的标准方程;直线与抛物线的位置关系.【分析】(1)求出抛物线x2=2py(p>0)的准线方程为,由抛物线定义,得到p=2,即可求解抛物线的方程.(2)求出函数的.设点,得到抛物线在点E处的切线方程为.求出.推出直线PF的方程,点到直线PF的距离,联立求出AB,表示出△EAB的面积,构造函数,通过函数的导数利用单调性求解最值即可.。

【江苏省南通】2017学年基地命题高考模拟数学年试题(一)

【江苏省南通】2017学年基地命题高考模拟数学年试题(一)

江苏省南通市2017年高考一模数学试卷答 案1.2π3 2.{135},, 3.3- 4.0.17 5.5 6.7 7.20 8.32910.1322111213.(,2)(2,)-∞-+∞14.15.解:(1)在AOB △中,由余弦定理得,2222cos AB OA OB OA OB AOB =+∙∠-,所以,2222221135cos 22115OA OB ABAOB OA OB+-+-∠===⨯⨯, 即3cos 5β=. (2)因为3cos5β=,(0,)2πβ∈,∴4sin 5β==. 因为点A 的横坐标为513,由三角函数定义可得,5cos 13α=, 因为α为锐角,所以12sin 13α=.所以5312433cos()cos cos sin sin 13513565αβαβαβ+=-=⨯-⨯=-,sin()sin cos cos αβαβα+=+1235456sin 13513565β=⨯+⨯=, 即点3356(,)6565B -.16.证明:(1)连结OE ,因为O 为平行四边形ABCD 对角线的交点,所以O 为AC 中点. 又因为E 为PC 的中点, 所以//OE PA .…4分又因为OE ⊂平面BDE ,PA ⊄平面BDE , 所以直线//PA 平面BDE .…6分(2)因为//OE PA ,PA PD ⊥,所以OE PD ⊥.…8分 因为OP OC =,E 为PC 的中点,所以OE PC ⊥.…10分 又因为PD ⊂平面PCD ,PC ⊂平面PCD ,PC PD P =,所以OE ⊥平面PCD .…12分又因为OE ⊂平面BDE ,所以平面BDE ⊥平面PCD .…14分.17.解:(1)由题意得,c a =,21a c c -=,…2分解得a =1c =,1b =.所以椭圆的方程为2212x y +=.…4分(2)由题意知OP 的斜率存在.当OP 的斜率为0时,2OP =,2OQ =,所以.…6分当OP 的斜率不为0时,设直线OP 方程为y kx =.由2212x y y kx⎧+=⎪⎨⎪=⎩得22212k x +=(),解得22221x k =+,所以222221k y k =+,所以2222221k OP k +=+.…9分 因为OP OQ ⊥,所以直线OQ 的方程为1y x k=.由1y y xk ⎧=⎪⎨=-⎪⎩得x =,所以2222OQ k =+.…12分 所以222221*********k OP OQ k k ++=+=++. 综上,可知22111OP OQ +=.…14分. 18.解:(1)当π4EFP ∠=时,由条件得π4EFP EFD FEP ∠=∠=∠=. 所以π2FPE ∠=.所以FN BC ⊥, 四边形MNPE 为矩形.…3分所以四边形MNPE 的面积2•2S PN MN m ==.…5分 (2)解法一: 设(0)2EFD πθθ∠=<<,由条件,知EFP EFD FEP θ∠=∠=∠=.所以22sin(2)sin 2PF πθθ==-,23sin 2NP NF PF θ=-=-,23tan ME θ=-.…8分由230sin 2230tan 02θθπθ⎧->⎪⎪⎪->⎨⎪⎪<<⎪⎩得2sin 232tan ,()30.2θθπθ⎧>⎪⎪⎪>*⎨⎪⎪<<⎪⎩所以四边形MNPE 面积为112222()[(3)(3)]2622sin 2tan tan sin 2S NP ME MN θθθθ=+=-+-⨯=--2222(sin cos )366(tan )tan 2sin cos tan θθθθθθθ+=--=-+…12分66≤-- 当且仅当3tan tan θθ=,即tan θ=π3θ=时取“=”.…14分 此时,(*)成立. 答:当π3EFD ∠=时,沿直线PE 裁剪,四边形MNPE 面积最大,最大值为26-.…16分 解法二:设BE tm =,36t <<,则6ME t =-.因为EFP EFD FEP ∠=∠=∠,所以PE PF =t BP =-.所以2132(3)t BP t -=-,213333()32(3)t NP PF PE t BP t t -=-=-=--=-+-.…8分由22361302(3)13302(3)t tt tt t ⎧⎪<<⎪⎪-⎪>⎨-⎪⎪-⎪-+>-⎪⎩得236()12310t t t t <<⎧⎪*⎨⎪-+<⎩ 所以四边形MNPE 面积为22111333067()[(3)(6)]2222(3)2(3t)t t t S NP ME MN t t t --+=+=-++-⨯=--…12分326[(3)]623t t =--+≤--.当且仅当32(3)23t t -=-,即333t ==+时取“=”.…14分 此时,(*)成立. 答:当点E 距B点3+时,沿直线PE 裁剪,四边形MNPE 面积最大,最大值为6-2.…16分.19.解:(1)当38a =时,23()ln 8f x x x x =--.所以31(32)(2)'()144x x f x x x x+-=--=,0x (>).…2分令'()0f x =,得2x =,当0,2x ∈()时,'0f x ()<;当2x ∈+∞(,)时,'0f x ()>,所以函数f x ()在02(,)上单调递减,在2+∞(,)上单调递增. 所以当2x =时,f x ()有最小值1(2)ln 22f =--.…4分(2)由2ln f x ax x x =()--,得2121'()21ax x f x ax x x--=--=,0x >.所以当0a ≤时,221'()0ax x f x x--=<,函数f x ()在0+∞(,)上单调递减,所以当0a ≤时,函数f x ()在0+∞(,)上最多有一个零点.…6分因为当10a ≤≤-时,110f a =()-<,221()0e e af e e-+=>, 所以当10a ≤≤-时,函数f x ()在0+∞(,)上有零点. 综上,当10a ≤≤-时,函数f x ()有且只有一个零点.…8分(3)由(2)知,当0a ≤时,函数f x ()在0+∞(,)上最多有一个零点. 因为函数f x ()有两个零点,所以0a >…9分由2ln f x ax x x =()--,得221'()ax x f x x--=,(0)x >,令221g x ax x =()--.因为010g =()-<,20a >,所以函数g x ()在0+∞(,)上只有一个零点,设为0x .当00x x ∈(,)时,0g x ()<,'0f x ()<;当0x x ∈+∞(,)时,0g x ()>,'0f x ()>. 所以函数f x ()在00x (,)上单调递减;在0x +∞(,)上单调递增. 要使得函数f x ()在0+∞(,)上有两个零点,只需要函数f x ()的极小值00f x ()<,即2000ln 0ax x x --<. 又因为2000()210g x ax x =--=,所以002ln 10x x +->, 又因为函数2ln 1h x x x =+()-在0+∞(,)上是增函数,且10h =(), 所以01x >,得0101x <<. 又由200210ax x --=,得22000111112()()24a x x x =+=+-, 所以01a <<.…13分 以下验证当01a <<时,函数f x ()有两个零点. 当01a <<时,21211()10a ag a a a a -=--=>, 所以011x a<<.因为22211()10a e e af e e e e-+=-+=>,且00f x ()<. 所以函数f x ()在01(,)x e上有一个零点.又因为2242222()ln (1)10a f a a a a a a=--≥--=>(因为ln 1x x ≤﹣),且00f x ()<.所以函数f x ()在02(,)x a上有一个零点.所以当01a <<时,函数f x ()在12(,)e a内有两个零点. 综上,实数a 的取值范围为01(,).…16分 下面证明:ln 1x x ≤-. 设1ln t x x x =()--,所以11'()1x t x x x-=-=,0x (>). 令'0t x =(),得1x =.当01x ∈(,)时,'0t x ()<;当1x ∈+∞(,)时,'0t x ()>. 所以函数t x ()在01(,)上单调递减,在1+∞(,)上单调递增. 所以当1x =时,t x ()有最小值10t =(). 所以1ln 0t x x x =≥()--,得ln 1x x ≤-成立.20.解:(1)由已知可得:1a ,3a ,8a 成等比数列,所以2111(2)(7)a d a a d +=+,…2分 整理可得:2143d a d =.因为0d ≠,所以143a d =.…4分 (2)设数列{}n k 为等比数列,则2213k k k =.又因为1k a ,2k a ,3k a 成等比数列,所以2111312[(1)][(1)][(1)]a k d a k d a k d +-+-=+-.整理,得21213132132(2)(2)a k k k d k k k k k k --=---+. 因为2213k k k =,所以121321322a k k k d k k k =(--)(--).因为2132k k k ≠+,所以1a d =,即11a d=.…6分 当11a d=时,11n a a n d nd =+=(-),所以n k n a k d =. 又因为1111n n n k k a a q k dq --==,所以11n n k k q -=.所以1111nn n n k k q q k k q +-==,数列{}n k 为等比数列. 综上,当11a d=时,数列{}n k 为等比数列.…8分 (3)因为数列{}n k 为等比数列,由(2)知1a d =,11(1)n n k k q q -=>.1111111n n n n k k a a q k dq k a q ---===,111n a a n d na =+=(-).因为对于任意*n N ∈,不等式2n n k n a a k +>恒成立. 所以不等式1111112n n na k a qk q --+>,即111112n n k q a n k q -->+,111111110222n n n n k q qna k q k q --+<<=+恒成立.…10分下面证明:对于任意的正实数01εε(<<),总存在正整数1n ,使得11n n q ε<. 要证11n n q ε<,即证11ln ln ln n n q ε+<. 因为11ln 2x x x e ≤<,则1122111ln 2ln n n n =<,解不等式1211ln ln n n q ε<+,即1122211()ln ln 0n q n ε-+>,可得121n,所以21n >.不妨取01n =+,则当10n n >时,原式得证. 所以11102a <≤,所以12a ≥,即得1a 的取值范围是[2+∞,).…16分 21.解:设CD x =,则2CE x =. 因为1CA =,3CB =,由相交弦定理,得••CA CB CD CE =, 所以213?22x x x ⨯==,所以x =.…2分 取DE 中点H ,则OH DE ⊥.因为2222354()28OH OE EH x =-=-=,所以OH =.…6分又因为2CE x =所以OCE ∆的面积1122S OH CE ==⨯.…10分. 22.解:设ab A c d ⎡⎤=⎢⎥⎣⎦,因为向量11⎡⎤⎢⎥-⎣⎦是矩阵A 的属于特征值1-的一个特征向量,所以111(1)111a b c d -⎡⎤⎡⎤⎡⎤⎡⎤=-=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦.所以11a b c d -=-⎧⎨-=⎩…4分 因为点11P (,)在矩阵A 对应的变换作用下变为'33P (,), 所以1313a b c d ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.所以33a b c d +=⎧⎨+=⎩…8分 解得1a =,2b =,2c =,1d =,所以1221A ⎡⎤=⎢⎥⎣⎦.…10分.23.解:以极点O 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系. 直线π()4R θρ=∈的直角坐标方程为y x =①,…3分 曲线4sin ρθ=的直角坐标方程为2240x y y +=-②.…6分由①②得00x y =⎧⎨=⎩或22x y =⎧⎨=⎩…8分所以00A(,),22B (,),所以直线π()4R θρ=∈被曲线4sin ρθ=所截得的弦长AB =.…10分.24.解:3sin 3sin y x x =++2分由柯西不等式得222222(3sin (34)(sin cos )25y x x x =+≤++=,…8分 所以5max y =,此时3sin 5x =.所以函数3sin y x =+5.…10分.25.解:以1{,,}AB AD AA 为正交基底,建立如图所示空间直角坐标系A xyz -. (1)因为(1,2,2)AP =,(2,0,1)AQ =,所以cos ,APAQ AP AQ AP AQ===.所以AP 与AQ .…4分 (2)由题意可知,1(0,0,2)AA =,(2,0,2)AQ λ=. 设平面APQ 的法向量为z n x y =(,,),则00n AP n AQ ⎧=⎪⎨=⎪⎩即220220x y z x z λ++=⎧⎨+=⎩令2z =-,则2x λ=,2y λ=-. 所以222n λλ=(,-,-).…6分又因为直线1AA 与平面APQ 所成角为45︒, 所以111cos ,2n AA n AA n AA ==, 可得2540λλ=-,又因为0λ≠,所以45λ=.…10分.26.解:(1)抛物线220x py p =(>)的准线方程为2py =, 因为1M m (,),由抛物线定义,知12pMF =+, 所以122p+=,即2p =,所以抛物线的方程为24x y =.…3分(2)因为214y x =,所以1'2y x =. 设点2(,)4t E t ,0t ≠,则抛物线在点E 处的切线方程为21()42t y t x t -=-.令0y =,则2t x =,即点(,0)2tP .因为(,0)2t P ,01F (,),所以直线PF 的方程为2()2ty x t =-,即20x ty t +=-. 则点2(,)4t E t 到直线PF的距离为d =5分 联立方程2420x y x ty t ⎧=⎪⎨⎪+-=⎩消元,得2222(2t 16)0t y y t -++=. 因为224221646440t t t =+=+△()-()>,所以1y =,2y =,所以221212222164(4)1122t t AB y y y y t t++=+++=++=+=.…7分 所以EAB △的面积为3222214(4)1(4)22t t S t t++=⨯=⨯. 不妨设322(4)()(0)x g x x x+=>,则12222(4)'()(24)x g x x x +=-.因为x ∈时,'0g x ()< ,所以g x ()在)x ∈+∞上,'0g x ()>,所以g x ()在)+∞上单调递增.所以当x =32min4)()g x =所以EAB △的面积的最小值为10分.江苏省南通市2017年高考一模数学试卷解析1.【考点】三角函数的周期性及其求法.【分析】根据函数y=Asin(ωx+φ)的周期等于,得出结论.【解答】解:函数的最小正周期为,故答案为:.2.【考点】并集及其运算.【分析】由交集的定义,可得a+2=3,解得a,再由并集的定义,注意集合中元素的互异性,即可得到所求.【解答】解:集合A={1,3},B={a+2,5},A∩B={3},可得a+2=3,解得a=1,即B={3,5},则A∪B={1,3,5}.故答案为:{1,3,5}.3.【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘法运算化简得答案.【解答】解:∵z=(1+2i)2=1+4i+(2i)2=﹣3+4i,∴z的实部为﹣3.故答案为:﹣3.4.【考点】概率的基本性质.【分析】利用对立事件的概率公式,可得结论.【解答】解:∵摸出红球的概率为0.48,摸出黄球的概率为0.35,∴摸出蓝球的概率为1﹣0.48﹣0.35=0.17.故答案为0.17.5.【考点】程序框图.【分析】由已知的程序框图可知,该程序的功能是利用循环计算a值,并输出满足a<16的最大n值,模拟程序的运行过程可得答案.【解答】解:当n=1,a=1时,满足进行循环的条件,执行循环后,a=5,n=3;满足进行循环的条件,执行循环后,a=17,n=5;满足进行循环的条件,退出循环故输出n值为5故答案为:5.6.【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=3x+2y得y=﹣x+z平移直线y=﹣x+z ,由图象可知当直线y=﹣x+z经过点A时,直线y=﹣x+z的截距最大,此时z最大.由,解得A(1,2),代入目标函数z=3x+2y得z=3×1+2×2=7.即目标函数z=3x+2y的最大值为7.故答案为:7.7.【考点】极差、方差与标准差.【分析】根据题意,分别求出甲、乙的平均数与方差,比较可得S甲2>S乙2,则乙的成绩较为稳定;即可得答案.【解答】解:根据题意,对于甲,其平均数甲==75,其方差S甲2=[(65﹣75)2+(80﹣75)2+(70﹣75)2+(85﹣75)2+(75﹣75)2]=50;对于乙,其平均数乙==75,其方差S乙2=[(80﹣75)2+(70﹣75)2+(75﹣75)2+(80﹣75)2+(70﹣75)2]=20;比较可得:S甲2>S乙2,则乙的成绩较为稳定;故答案为:20.8.【考点】棱柱、棱锥、棱台的体积.【分析】三棱锥D1﹣A1BD的体积==,由此能求出结果.【解答】解:∵在正四棱柱ABCD﹣A1B1C1D1中,AB=3cm,AA1=1cm,∴三棱锥D1﹣A1BD的体积:=====(cm3).故答案为:.9.【考点】双曲线的简单性质.【分析】利用双曲线的渐近线方程得到a,b关系,然后求解双曲线的离心率即可.【解答】解:直线2x+y=0为双曲线=1(a>0,b>0)的一条渐近线,可得b=2a,即c2﹣a2=4a2,可得=.故答案为:.10.【考点】等差数列的通项公式.【分析】设最上面一节的容积为a1,利用等差数列的通项公式、前n项和公式列出方程组,能求出结果.【解答】解:设最上面一节的容积为a1,由题设知,解得.故答案为:.11.【考点】平面向量数量积的运算;正弦定理.【分析】根据题意,利用平面向量的数量积,结合余弦定理和正弦定理,即可求出的值.【解答】解:在△ABC中,设三条边分别为a、b,c,三角分别为A、B、C,由•+2•=•,得ac•cosB+2bc•cosA=ba•cosC,由余弦定理得:(a2+c2﹣b2)+(b2+c2﹣a2)=(b2+a2﹣c2),化简得=2,∴=,由正弦定理得==.故答案为:.12.【考点】利用导数研究曲线上某点切线方程.【分析】联立两曲线方程,可得tanx==,a>0,设交点P(m,n),分别求出f(x),g(x)的导数,可得切线的斜率,由两直线垂直的条件:斜率之积为﹣1,再由同角基本关系式,化弦为切,解方程即可得到a的值.【解答】解:由f(x)=g(x),即2sinx=acosx,即有tanx==,a>0,设交点P(m,n),f(x)=2sinx的导数为f′(x)=2cosx,g(x)=acosx的导数为g′(x)=﹣asinx,由两曲线在点P处的切线互相垂直,可得2cosm•(﹣asinm)=﹣1,且tanm=,则=1,分子分母同除以cos2m,即有=1,即为a2=1+,解得a=.故答案为:.13.【考点】绝对值不等式的解法.【分析】令g(x)=f(x2+2)﹣f(x)=x2+2+|x2﹣2|﹣|x|﹣|x﹣4|,通过讨论x的范围,求出各个区间上的不等式的解集,取并集即可.【解答】解:令g(x)=f(x2+2)﹣f(x)=x2+2+|x2﹣2|﹣|x|﹣|x﹣4|,x≥4时,g(x)=2x2﹣2x+4>0,解得:x≥4;≤x<4时,g(x)=2x2﹣4>0,解得:x>或x<﹣,故<x<4;0≤x<时,g(x)=0>0,不合题意;﹣≤x<0时,g(x)=2x>0,不合题意;x<﹣时,g(x)=2x2+2x﹣4>0,解得:x>1或x<﹣2,故x<﹣2,故答案为:.14.【考点】直线和圆的方程的应用.【分析】画出图形,当BC⊥OA时,|BC|取得最小值或最大值,求出BC坐标,即可求出|BC|的长的取值范围.【解答】解:在平面直角坐标系xOy中,已知B,C为圆x2+y2=4上两点,点A(1,1),且AB⊥AC,如图所示当BC⊥OA时,|BC|取得最小值或最大值.由,可得B(,1)或(,1),由,可得C(1,)或(1,﹣)解得BC min==,BC max==.故答案为:[,].15.【考点】任意角的三角函数的定义.【分析】(1)由条件利用余弦定理,求得cosβ的值.(2)利用任意角的三角函数的定义,同角三角函数的基本关系,两角和差的正弦、余弦公式,求得点B的坐标.16.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)连结OE,说明OE∥PA.然后证明PA∥平面BDE.(2)证明OE⊥PD.OE⊥PC.推出OE⊥平面PCD.然后证明平面BDE⊥平面PCD.17.【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】(1)由已知条件可得,,然后求解椭圆的方程.(2)由题意知OP的斜率存在.当OP的斜率为0时,求解结果;当OP的斜率不为0时,设直线OP方程为y=kx.联立方程组,推出.OQ2=2k2+2.然后求解即可.18.【考点】函数模型的选择与应用.【分析】(1)当∠EFP=时,由条件得∠EFP=∠EFD=∠FEP=.可得FN⊥BC,四边形MNPE为矩形.即可得出.(2)解法一:设,由条件,知∠EFP=∠EFD=∠FEP=θ.可得,,.四边形MNPE面积为==,化简利用基本不等式的性质即可得出.解法二:设BE=tm,3<t<6,则ME=6﹣t.可得PE=PF,即.,NP=3﹣T+,四边形MNPE面积为==,利用基本不等式的性质即可得出.19.【考点】导数在最大值、最小值问题中的应用;根的存在性及根的个数判断;利用导数研究函数的极值.【分析】(1)当时,.求出函数的导数,得到极值点,然后判断单调性求解函数的最值.(2)由f(x)=ax2﹣x﹣lnx,得.当a≤0时,函数f(x)在(0,+∞)上最多有一个零点,当﹣1≤a≤0时,f(1)=a﹣1<0,,推出结果.(3)由(2)知,当a≤0时,函数f(x)在(0,+∞)上最多有一个零点.说明a>0,由f(x)=ax2﹣x﹣lnx,得,说明函数f(x)在(0,x0)上单调递减;在(x0,+∞)上单调递增.要使得函数f(x)在(0,+∞)上有两个零点,只需要.通过函数h(x)=2lnx+x﹣1在(0,+∞)上是增函数,推出0<a<1.验证当0<a<1时,函数f(x)有两个零点.证明:lnx≤x﹣1.设t(x)=x﹣1﹣lnx,利用导数求解函数的最值即可.20.【考点】数列与不等式的综合;等比数列的性质.【分析】(1)由已知得:a1,a3,a8成等比数列,从而4d2=3a1d,由此能求出的值.(2)设数列{k n}为等比数列,则,推导出,从而,进而.由此得到当时,数列{k n}为等比数列.(3)由数列{k n}为等比数列,a1=d,.得到,恒成立,再证明对于任意的正实数ε(0<ε<1),总存在正整数n1,使得.要证,即证lnn1<n1lnq+lnε.由此能求出a1的取值范围.21.【考点】与圆有关的比例线段.【分析】由相交弦定理,得CD,DE中点H,则OH⊥DE,利用勾股定理求出OH,即可求出△OCE的面积.22.【考点】特征值与特征向量的计算.【分析】设,根据矩阵变换,列方程组,即可求得a、b、c和d的值,求得A.23.【考点】简单曲线的极坐标方程.【分析】极坐标方程化为直角坐标方程,联立,求出A,B的坐标,即可求直线被曲线ρ=4sinθ所截得的弦长.24.【考点】柯西不等式在函数极值中的应用;三角函数的最值.【分析】利用二倍角公式化简函数的解析式,利用柯西不等式求解函数的最值即可.25.【考点】直线与平面所成的角.【分析】(1)以为正交基底,建立如图所示空间直角坐标系A﹣xyz.求出,,利用数量积求解AP与AQ所成角的余弦值.(2),.求出平面APQ的法向量,利用空间向量的数量积求解即可.26.【考点】导数在最大值、最小值问题中的应用;抛物线的标准方程;直线与抛物线的位置关系.【分析】(1)求出抛物线x2=2py(p>0)的准线方程为,由抛物线定义,得到p=2,即可求解抛物线的方程.(2)求出函数的.设点,得到抛物线在点E处的切线方程为.求出.推出直线PF的方程,点到直线PF的距离,联立求出AB,表示出△EAB的面积,构造函数,通过函数的导数利用单调性求解最值即可.。

【江苏省南通市】2017年基地命题高考模拟数学试卷(一)-答案

【江苏省南通市】2017年基地命题高考模拟数学试卷(一)-答案

当 9 c 5 或 4 c 0 时,零点个数为 1; 当 c 4 或 c 5 时,零点个数为 2;
当 5 c 4 时,零点个数为 3.
4/7
20.(1)依题意,
a6
b6
a1
a11 2
b1b11
a1
a11 2
a1a11 0 ,
(当且仅当 a1 a11 时,等号成立).
(2)易得 3n 4 (2)n1 ,当 n 为奇数时, 3n 4 (2)n1 0 ,所以 n 4 , n 1 3
从而 (a2 1)(b2 1) 4(a 1)(b 1) ,
6/7
化简得, b a 5 ; a 1
(3)易得直线 AB 的方程为 y 2a 2 (x a2 ) , ba
令 x 5 得,
y
a
2 5
a
(5
a2 )
2a
2

a 1
23.当 n 2 时,1,2,3 排成一个三角形有:
1 23
k
1 行的概率为
(k
k 1 1)(1 k
1)
k
2
2

2
所以
pk 1
k
2
2
pk (k
2) ,即
pk 1 pk
k
2
(k 2
2) ,
故 p3 2 , p4 2 , p5 2 ,…, pn 2 ,
p2 4 p3 5 p4 6
pn1 n 1
叠乘,得 pn
2n2
p2 (n 1) n
4
,其中
证明:记
p(n)
(2)n1 3n 4
,则
p(n 2) p(n)
(2)n1 3n 2

江苏省南通市(数学学科基地命题)2017年高考模拟试卷(10)

江苏省南通市(数学学科基地命题)2017年高考模拟试卷(10)

2017年高考模拟试卷(10)南通市数学学科基地命题第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分 . 1. 设全集{2,1,0,1,2},{2,1,2}U A =--=-,则U A =ð ▲ .2. 设a ∈R ,i 是虚数单位,若()()1a i i +-为纯虚数,则a = ▲ .3. 在样本频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形面积和的14,且样本容量为160,则中间一组的频数为__▲______.4. 棱长均为2的正四棱锥的体积为 ▲ .5. 已知m ∈{-1,0,1},n ∈{-2,2},若随机选取m ,n ,则直线10mx ny ++=上存在第二象限的点的概率是 ▲ .6. 如图所示的流程图,当输入n 的值为10时,则输出S 7. 已知正数a ,b 满足a 2-ab 10+=,则8a b +8. 在平面直角坐标系xOy 中,已知点A 为双曲线22x y -点B 和点C 在双曲线的右支上,ABC ∆面积为 ▲ .9. 已知ABC ∆中,角A B C ,,的对边分别为a b c ,,,且5tan B 则sin B 的值是 ▲ .10.已知函数2()||2x f x x +=+,x R ∈,则2(2)f x x f -<解集是 ▲ .11.记等差数列{}n a 的前n 项和为n S ,已知13a =,且数列{}nS 也为等差数列,则11a = ▲ .12.在平面直角坐标系xOy 中,已知点(0)(0)A t t ->,,(0)B t ,,点C 满足8AC BC ⋅=,且点C 到直线l :34240x y -+=的最小距离为95,则实数t 的值是 ▲ .13. 设函数⎩⎨⎧≥<-=1,21,13)(2x x x x x f ,则满足2))((2))((a f a f f =的a 的取值范围为▲ .14. 已知函数2()()()(0)f x x a x b b =--≠,不等式()()f x mxf x '≥对x R ∀∈恒成立,则2m a b +-= ▲ .二、解答题:本大题共6小题,共90分.15.(本小题满分14分)在ABC ∆中,三个内角分别为A,B,C ,已知sin(A )2cosA 6π+=.(1)若cos C =,求证:230a c -=.(2)若(0,)3B π∈,且4cos()5A B -=,求sin B .16.(本小题满分14分)已知四棱锥P ABCD -中,底面ABCD 是直角梯形,AB ∥DC ,60ABC ∠=︒,1,DC AD ==PB =PC .(1)若N 为PA 的中点,求证:DN ∥平面PBC ;(2)若M 为BC 的中点,求证:MN ⊥BC .17.(本小题满分14分)如图,有一直径为8米的半圆形空地,现计划种植甲、乙两种水果,已知单位面积种植甲水果的经济价值是种植乙水果经济价值的5倍,但种植甲水果需要有辅助光照.半圆周上的C 处恰有一可旋转光源满足甲水果生长的需要,该光源照射范围是6ECF π∠=,点,E F 在直径AB 上,且6ABC π∠=.(1)若CE =AE 的长;(2)设ACE α∠=, 求该空地产生最大经济价值时种植甲种水果的面积..ND CBAP(第18题)18.(本小题满分14分)如图,在平面直角坐标系xOy 中,已知椭圆E :22221(0)y x a b a b+=>>的离心率为,点()12 33A ,在椭圆E 上,射线AO 与椭圆E 的另一交点为B ,点(4)P t t -,在椭圆E 内部,射线AP ,BP 与椭圆E 的另一交点分别为C (1)求椭圆E 的方程;(2)求证:直线CD 的斜率为定值.19.(本小题满分16分)设R ∈a ,函数ax x x f -=ln )(.(1)求)(x f 的单调递增区间;(2)设,ax ax x f x ++=2)()(F 问)(F x 是否存在极值,若存在,请求出极值;若不存在,请说明理由;(3)设),(B ),(A 2211y x y x ,是函数ax x f x g +=)()(图象上任意不同的两点,线段AB的中点为,),(C 00y x 直线AB 的斜率为k .证明:)(0x g k '>.20.(本小题满分16分)已知数列{}n a 的各项均为正数,且对任意不小于2的正整数n ,都有123a a a +++⋅⋅⋅1n n a ka -++21n ta =-(k ,t 为常数)成立.(1)若12k =,14t =,问:数列{}n a 是否为等差数列?并说明理由;(2)若数列{}n a 是等比数列,求证:t =0,且0k <.第II 卷(附加题,共40分)21.【选做题】本题包括A, B,C,D 四小题,每小题10分,请选定其中两小题,并在相应的.....答题区域内作答........ A.(选修4-1;几何证明选讲)如图,∠PAQ 是直角,圆O 与射线AP 相切于点T ,与射线AQ 相交于两点B C 、.求证:BT 平分∠OBA .B .(选修4-2:矩阵与变换)在平面直角坐标系xOy 中,设点P (x ,3)在矩阵M 1234⎡⎤=⎢⎥⎣⎦对应的变换下得到点Q (y -4,y +2),求2x y ⎡⎤⎢⎥⎣⎦M .C .(选修4-4:坐标系与参数方程)已知直线l :cos sin x t my t αα=+⎧⎨=⎩(t 为参数)恒经过椭圆C :⎩⎨⎧==ϕϕsin 3cos 5y x (ϕ为参数)的右焦点F .(1)求m 的值;(2)设直线l 与椭圆C 交于A ,B 两点,求FA FB ⋅的最大值与最小值.D .(选修4-5:不等式选讲)已知 a b c ,,均为正数,且a +2b +3c =9.求证:14a +118b +1108c≥19.【选做题】第22题、23题,每题10分,共计20分.22.一个袋中装有黑球,白球和红球共n (n ∈N*)个,这些球除颜色外完全相同.已知从袋中任意摸出1个球,得到黑球的概率是25.现从袋中任意摸出2个球.(1)若n =15,且摸出的2个球中至少有1个白球的概率是47,设ξ表示摸出的2个球中红球的个数,求随机变量ξ的概率分布及数学期望E ξ;(2)当n 取何值时,摸出的2个球中至少有1个黑球的概率最大,最大概率为多少?23.设集合{1,0,1}M =-,集合123{(,,)|,1,2,,}n n i A x x x x x M i n =∈= ,,,集合n A 中满足条件 “121||||||n x x x m ≤+++≤ ”的元素个数记为nm S .(1)求22S 和42S 的值;(2)当m n <时,求证:nmS 111322n m n +++<+-.2017年高考模拟试卷(10)参考答案一、填空题1.{1,0}-2.1-3.32.4. . 5.23. m 、n 的取法共有3×2=6种,即共有6条直线,其中当m =0,n =2和m =-1,n =2,直线10mx ny ++=恰好不经过第二象限,所有经过第二象限的直线有4条,所以P =23. 6.54. 7.6.8..9. 35.10.(1,2). 10()4102x f x x x ≥⎧⎪=⎨--<⎪-⎩,由2220234x x x x x ⎧-<⎪⎨-<-⎪⎩得1<x<2.11. 63 .可设,n S an b ==+平方比较系数得,B=b=0,故知n S =,结合113S a ==,所以23n S n =,则11111063a S S =-=.12.1. 设() C x y ,,则2228AC BC x y t ⋅=+-=,所以点C为半径的圆,故圆心到直线的距离24955d ==1t =(负舍).设()t f a =,所以2))((2))((a f a f f =化为()22f t t =由函数式得()23121t t t -=<或()22221t t t =≥,所以1t =或1t ≥,即()12f a =或()1f a ≥12a ∴=或23a ≥,因此a 的取值范围为14.23. 2()()()[(31)(2)]0mxf x f x x b m x a b ma mb x ab '-=--++---≤,可知13m =,进而()[(2)3]0x b a b x ab -+-≤,由于0b ≠得a=b ,所以2m a b +-=2/3 .二、解答题15. 因为sin(A )2cosA 6π+=1A cos A 2cos A 2+=,即sin A =,因为()A 0,∈π,且cos A 0≠,所以tan A A 3π=. (1)因为22sin C cos C 1+=,cos C =()C 0,∈π,所以sin C = 由正弦定理知a csin A sinC =,即32a sin A c sinC ===,即230a c -= (2)因为(0,)3B π∈,所以033A B B ,ππ⎛⎫-=-∈ ⎪⎝⎭,因为22sin ()cos ()1A B A B -+-=,所以3sin()5A B -=, 所以()()sin sin sin cos()cos sin()B A A B A A B A A B =--=---=. 16.(本小题满分14分)已知四棱锥P ABCD -中,底面ABCD 是直角梯形,AB ∥DC ,60ABC ∠=︒,1,DC AD ==PB =PC .(1)若N 为PA 的中点,求证:DN ∥平面PBC ;(2)若M 为BC 的中点,求证:MN ⊥BC . 解析:(1)取PB 的中点E ,连接NE ,CE ,因为ABCD 是直角梯形,AB ∥DC ,60ABC ∠=︒,1,DC AD =易得AC =CB = AB =2,又因E 为PB 的中点,N 为PA 的中点, 所以NE ∥CD 且NE =CD 所以四边形CDNE 是平行四边形 所以DN ∥CE ; 又CE ⊂平面PBC ,DN ⊄平面PBC … 所以DN ∥平面PBC (2)连接AM ,PM . 因为PB =PC ,M 为BC 的中点所以PM ⊥BC , 因为AC =AB ,M 为BC 的中点MNDCBAPBNDCBAP所以AM ⊥BC , 又因为AM PM M = , ,AM PM ⊂平面PAM , 所以BC ⊥平面PAM . 因为NM ⊂平面PAM , 所以MN ⊥BC .17.(1)连结AC ,已知点C 在以AB 为直径的半圆周上,所以ABC ∆为直角三角形, 因为8AB =,6ABC π∠=,所以3BAC π∠=,4AC =,在ACE ∆中由余弦定理2222cos CE AC AE ACAE A =+-,且CE =,所以213164A EA E =+-,解得1AE =或3AE =,(2)因为2ACB π∠=,6ECF π∠=,所以ACE α∠=[0,]3π∈,所以362AFC A ACF πππππαα⎛⎫∠=-∠-∠=--+=- ⎪⎝⎭,在ACF ∆中由正弦定理得sin sin cos sin()2CF AC AC AC A CFA παα===∠-,所以CF =,在ACE ∆中,由正弦定理得:sin sin sin()3CE AC AC A AEC πα==∠+,所以sin()3CE α+ ,若产生最大经济效益,则CEF ∆的面积ECF S D 最大,1312sin 2sin()cos 2sin(2)33ECF S CE CF ECF ππααα∆=⋅∠==++,因为[0,]3πα∈,所以0sin(2)13πα+≤≤.所以当=3πα时,ECF S D取最大值为,此时该地块产生的经济价值最大.18.(1)易得()()222212331a b+=,且 解得21a =,212b =,所以椭圆E 的方程为2221x y +=;(2)设00()P x y ,,11( )A x y ,,22( )B x y ,,33( )C x y ,,44( )D x y ,, 则0040x y +=,221121x y +=,222221x y +=,又设1AP PC λ= ,2BP PD λ=,其中12λλ∈R ,,则1013110131(1) (1) x x x y y y λλλλ+-⎧=⎪⎪⎨+-⎪=⎪⎩,,代入椭圆2221x y +=并整理得,22222210011101011(1)(2)(2)2(1)(2)x y x y x x y y λλλ++++-++=,从而有 2210001011(1)(2)2(2)1x y x x y y λλ++-+=-, ① 同理可得,2220002022(1)(2)2(2)1,x y x x y y λλ++-+=-②①-②得,221200()(21)0x y λλ-+-=,因为220021x y +<,所以12λλ=,从而//AB CD ,故2CD AB k k ==. 19.在区间),0(+∞上,xaxa x x f -=-='11)(. (Ⅰ) xaxa x x f -=-='11)(. (1)当0≤a 时,∵0>x ,∴0)(>'x f 恒成立,)(x f 的单调增区间为),0(+∞; (2)当0>a 时,令0)(>'x f ,即01>-x ax ,得ax 10<< ∴)(x f 的单调增区间为)1,0(a综上所述:当0≤a 时,)(x f 的单调增区间为),0(+∞;当0>a 时,)(x f 的单调增区间为)1,0(a. (Ⅱ) 2ln )(F ax x x +=,得)0(1221)(F 2>+=+='x xax ax x x 当0≥a 时,恒有0)(F >'x ,∴)(F x 在),0(+∞上为单调增函数, 故)(F x 在),0(+∞上无极值;当0<a 时,令0)(F ='x ,得ax 21-= )(F 0)(F )21,0(x x a x ,,>'-∈单调递增;)(F 0)(F )21(x x ax ,,,<'∞+-∈单调递减.∴2121ln )21(F )(F --=-=a a x 极大值,)(F x 无极小值 综上所述:当0≥a 时,)(F x 无极值;当0<a 时,)(F x 有极大值2121ln --a ,无极小值. (Ⅲ)证明:12121212ln ln x x x x x x y y k --=--=, 又2210x x x +=,所以210021|)(ln )(0x x x x x g x x +=='='=, 要证)(0x g k '>,即证2112122ln ln x x x x x x +>--,不妨设210x x <<,即证211212)(2ln ln x x x x x x +->-,即证1)1(2ln 121212+->x x x x x x ,设112>=x x t ,即证:1421)1(2ln +-=+->t t t t , 也就是要证:0214ln >-++t t ,其中),1(+∞∈t , 事实上:设))(1,(t 214ln )(+∞∈-++=t t t k , 则0)1()1()1(4)1()1(41)(22222>+-=+-+=+-='t t t t t t t t t t k , 所以)(t k 在),1(+∞上单调递增,因此0)1()(=>k t k ,即结论成立. 20.(1)当12k =,14t =时,2123111124n n n a a a a a a -+++⋅⋅⋅++=- ()2n ≥,① 所以212321111124n n n a a a a a a ---+++⋅⋅⋅++=- ()3n ≥,②①-②得,2211111112244n n n n n a a a a a ---+-=-()3n ≥,即()()1120n n n n a a a a --+--=()3n ≥,因为数列{}n a 是正项数列,所以10n n a a -+>,从而12n n a a --=()3n ≥, ①中,令2n =得,212211124a a a +=-, ③若数列{}n a 是等差数列,则必有212a a -=,④由③④得,11a =,所以,当且仅当11a =时,数列{}n a 是公差为2的等差数列;否则,数列{}n a 不是等差数列;(2)因为212311n n n a a a a ka ta -+++⋅⋅⋅++=- ()2n ≥,⑤所以21232111n n n a a a a ka ta ---+++⋅⋅⋅++=- ()3n ≥, ⑥ ⑤-⑥得,22111n n n n n a ka ka ta ta ---+-=-()3n ≥,⑦依题意,设11n n a a q -=()1 0a q >,, 代入⑦得,()[]2211(1)10n t a q q k q -⋅---+=()3n ≥, ⑧ 若1q =,则10=(矛盾),若1q ≠,⑧中,令3n =,4得,()212211(1)1 (1)(1)1 t a q q k q t a q q k q ⎧⋅-=-+⎪⎨⋅-=-+⎪⎩,,两式相减得,()211(1)0a q q q t +-=, 因为1 0 1a q q >≠,,且,所以0t =, 此时123110 (2)n n a a a a ka n -+++⋅⋅⋅++=-<≥,又因为数列{}n a 是正项数列,所以0k <,即证.第II 卷(附加题,共40分)21.A . 因为AT 是切线,所以OT ⊥AP .又因为∠PAQ 是直角,即AQ ⊥AP , 所以AB ∥OT ,所以∠TBA =∠BTO .又OT =OB ,所以∠OTB =∠OBT , 所以∠OBT =∠TBA , 即BT 平分∠OBA . B .依题意,1234⎡⎤⎢⎥⎣⎦3x ⎡⎤=⎢⎥⎣⎦42y y -⎡⎤⎢⎥+⎣⎦,即64 3122 x y x y +=-⎧⎨+=+⎩,,解得0 10 x y =⎧⎨=⎩,, 21 21 27 103 43 415 22M ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦所以,27 1001001022015 22x y ⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦M . C .(1)椭圆的参数方程化为普通方程,得221259x y +=,因为5,3,4a b c ===,则点F 的坐标为(4,0). 因为直线l 经过点(,0)m ,所以4m =.(2)将直线l 的参数方程代入椭圆C 的普通方程,并整理得:222(9cos 25sin )72cos 810t t ααα++-=.设点,A B 在直线参数方程中对应的参数分别为12,t t ,则 12||FA FB t t ⋅==22281819cos 25sin 916sin ααα=++. 当sin 0α=时,FA FB ⋅取最大值9; 当sin 1α=±时,FA FB ⋅取最小值8125.D . 因为a ,b ,c 都是正数, 所以(a +2b +3c )()2111418108a b c ++≥,因为a +2b +3c =9, 所以14a +118b +1108c ≥19.22.(1)设袋中黑球的个数为x (个),记“从袋中任意摸出一个球,得到黑球”为事件A ,则2()155x P A ==,∴x =6. 设袋中白球的个数为y (个),记“从袋中任意摸出两个球,至少得到一个白球”为事件B ,则2152154()17yC P B C -=-=,∴y 2-29y +120=0, ∴y =5或y =24(舍) ∴红球的个数为4(个).∴随机变量ξ的取值为0,1,2,ξ的分布列是数学期望11442560122110535105E ξ=⨯+⨯+⨯==158.(2)设袋中有黑球z 个,则z =25n (n =5,10,15…).设“从袋中任意摸出两个球,至少得到一个黑球”为事件C ,则P (C )=1-2522C nnC =2125+625×1n -1,当n =5时,P (C )最大,最大值为910.23.(1)228S =,4232S = . (2)设集合{0}P =,{1,1}Q =-.若12||||||1n x x x +++= ,即123,,n x x x x ,,中有1n -个取自集合P ,1个取自集合Q , 故共有112n nC -种可能,即为112n C , 同理,12||||||2n x x x +++= ,即123,,,n x x x x ,中有2n -个取自集合P ,2个取自集合Q ,故共有222n nC -种可能,即为222n C , ……若12||||||n x x x m +++= ,即123,,,n x x x x ,中有n m -个取自集合P ,m 个取自集合Q , 故共有2n m m nC -种可能,即为2m m n C , 所以1122222n m m mn n n S C C C =++⋅⋅⋅+, 因为当0k n ≤≤时,1k nC ≥,故10kn C -≥, 所以1122222n m mmn n n S C C C =+++ 001122112(222)(1)2(1)2m m m m n n n n n n n n C C C C C C ++<+++++-++-0011221112(222222)(222)m m m m n nm m n n n n n n n C C C C C C ++++=+++++++-++11(12)(22)n n m ++=+--11322n n m ++=-+.。

【江苏省南通市】2017年高考(数学学科基地命题)模拟数学试卷(九)

【江苏省南通市】2017年高考(数学学科基地命题)模拟数学试卷(九)

江苏省南通市2017年高考(数学学科基地命题)模拟数学试卷(九)第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分. 1.全集{1,2,3,4,5}U =,集合{1,3,4}A =,则U C A =________.2.设复数i z a b =+(,a b ∈R ,i 是虚数单位),若(2i)i z -=,则a b +的值为________. 3.在如图所示的算法流程图中,若输出的y 的值为26,则输入的x 的值为________.4.甲、乙两人下棋,结果是一人获胜或下成和棋.已知甲不输的概率为0.8,乙不输的概率为0.7,则两人下成和棋的概率为________.5.顶点在原点且以双曲线2213x y -=的右准线为准线的抛物线方程是________.6.为了解学生课外阅读的情况,随机统计了n 名学生的课外阅读时间,所得数据都在[50,150]中,其频率分布直方图如图所示.已知在[50,100)中的频数为24,则n 的值为________.8,侧棱与底面所成的角为60°,则该棱锥的体积为________. 9.在角坐标系xOy 中,已知圆C :22(3)2x y +-=,点A 是x 轴上的一个动点,AP 平面直,AQ 分别切圆C 于P ,Q 两点,则线段PQ 长的取值范围为________.10.若函数0,2,()0ln ,x x x f x x ax x ≤⎧+=⎨>-⎩在其定义域上恰有两个零点,则正实数a 的值为________.11.设直线l 是曲线343ln y x x =+的切线,则直线l 的斜率的最小值为________. 12.扇形AOB 中,弦1AB =,C 为劣弧AB 上的动点,AB 与OC 交于点P ,则O PB P的最小值是________.13.在平面直角坐标系xOy 中,已知(cos ,sin )A αα,(cos ,sin )B ββ是直线y =tan()αβ+的值为________.14.已知函数3()||2f x x a a x =--+-有且仅有三个零点,且它们成等差数列,则实数a 的取值集合为(1)求cos2α的值; (2)求2αβ-的值. 16.(本小题满分14分)如图,在四棱锥P ABCD -中,ACD △是正三角形,BD 垂直平分AC ,垂足为M ,120ABC ∠=,=1PA AB =,2PD =,N 为PD 的中点.(1)求证:AD ⊥平面PAB ; (2)求证:CN ∥平面PAB . 17.(本小题满分14分)在平面直角坐标系xOy 中,已知A ,B 分别是椭圆22221(0)y x a b a b+=>>的上、下顶点,点1(0)2M ,为线段AO 的中点,AB =.(1)求椭圆的方程(2)设(,2)N t (0t ≠),直线NA ,NB 分别 交椭圆于点P ,Q ,直线NA ,NB ,PQ 的斜率分别为1k ,2k ,3k . ①求证:P ,M ,Q 三点共线; ②求证:132312k k k k k k +-为定值. 18.(本小题满分16分)如图,一个角形海湾AOB ,2AOB θ∠=(常数θ为锐角).拟用长度为l (l 为常数)的围网围成一个养殖区,有以下两种方案可供选择:方案一:如图1,围成扇形养殖区OPQ ,其中PQ l =; 方案二:如图2,围成三角形养殖区OCD ,其中CD l =;(1)求方案一中养殖区的面积1S ;(2)求证:方案二中养殖区的最大面积224tan l S θ=;(3)为使养殖区的面积最大,应选择何种方案?并说明理由.19.(本小题满分16分)已知数列{}n a 的首项为2,前n 项的和为n S ,且111241n n n a a S +-=-(*n ∈N ).(1)求2a 的值; (2)设1nn n na b a a +=-,求数列{}n b 的通项公式;(3)若m a ,p a ,r a (*,,m p r ∈N ,m p r <<,)成等比数列,试比较2p 与mr 的大小,并证明. 20.(本小题满分16分)已知函数2()e ln )xf x a x b x=++(,其中,a b ∈R .e 2.71828=是自然对数的底数. (1)若曲线()y f x =在1x =处的切线方程为e(1)y x =-.求实数a ,b 的值;(2)①若2a =-时,函数()y f x =既有极大值,又有极小值,求实数b 的取值范围; ②若2a =,2b ≥-.若()f x kx ≥对一切正实数x 恒成立,求实数k 的最大值(用b 表示).第Ⅱ卷(附加题,共40分)21.【选做题】本题包括A ,B ,C ,D 四小题,每小题10分,请选定其中两小题,并在相应的答题区域内作答.A .(选修4-1;几何证明选讲)如图,1O ,2O 交于两点P ,Q ,直线AB 过点P ,与1O ,2O 分别交于点A ,B ,直线CD 过点Q ,与1O ,2O 分别交于点C ,D .求证:AC BD ∥.B .(选修4-2:矩阵与变换)若二阶矩阵M 满足:12583446M ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭.(1)求二阶矩阵M ;(2)若曲线C :22221x xy y ++=在矩阵M 所对应的变换作用下得到曲线C ',求曲线C '的方程. C .(选修4-4:坐标系与参数方程)已知点(1)P αα-(其中[0,2π)α∈),点P 的轨迹记为曲线1C ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,点Q 在曲线2C:1π)4ρθ=+上.(1)求曲线1C 的极坐标方程和曲线2C 的直角坐标方程;(2)当0ρ≥,02πθ≤<时,求曲线1C 与曲线2C 的公共点的极坐标. D .(选修4-5:不等式选讲)【选做题】第22题、23题,每题10分,共计20分.22.已知正六棱锥S ABCDEF -的底面边长为2,高为1.现从该棱锥的7个顶点中随机选取3个点构成三角形,设随机变量X 表示所得三角形的面积.(1)求概率(P X =的值;(2)求X 的分布列,并求其数学期望()E X .23.已知数列{}n a 满足:11a =,对任意的*n ∈N ,都有121)1(12n n na a n n ++=++. (1)求证:当2n ≥时,2n a ≥;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年高考模拟试卷(1)南通市数学学科基地命题第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分 . 1. 已知{}2A x x =<,{}1B x x => ,则A B = ▲ . 2. 已知复数z 满足(1i)2i z -=+,则复数z 的实部为 ▲ . 3. 函数5()log (9)f x x =+ 的单调增区间是 ▲ .4. 将一颗质地均匀的正方体骰子(每个面上分别写有数字1,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的的概率是 ▲ .5. 执行如图所示的伪代码,若输出的y 的值为13,则输入的x 的值是 ▲ . 6.9.4,9.7,9.7. 已知函数()f x 一个零点,x =8. 已知1==a b 9. 已知( 0 αβ∈,10.已知关于x 为常数.则不等式 2 cxbx a ++≤11.已知正数x ,12.)k ∈R 过定点A ,且交圆C 于点B ,D ,过点A 作BC 的平行线交CD 于点E ,则三角形AEC 的周长为 ▲ . 13.设集合{}*2n A x x n ==∈N ,,集合{}*n B x x b n ==∈N , 满足A B =∅ ,且*A B =N .若对任意的*n ∈N ,1n n b b +<,则2017b 为 ▲ .14.定义:{}max a b ,表示a ,b 中的较大者.设函数{}()max 11f x x x =-+,,2()g x x k =+, 若函数()()y f x g x =-恰有4个零点,则实数k 的取值范围是 ▲ .(第5题)(第17题)二、解答题:本大题共6小题,共90分. 15.(本小题满分14分)在三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知cos cos 02C C +=.(1)求C 的值.(2)若c =1,三角形ABC a ,b 的值.16.(本小题满分14分)(1(2)已知∠17.(本小题满分如图,长方形, 现欲经过点P 的 长分别为m (1 定m ,n (2 BC CD ,18.(本小题满分16分)如图,在平面直角坐标系xOy 中,设椭圆C :2221x y a+=(a >1). (1)若椭圆C 的焦距为2,求a 的值;(2)求直线1y kx =+被椭圆C 截得的线段长(用a ,k 表示);(3)若以A (0,1)为圆心的圆与椭圆C 总有4个公共点,求椭圆C 的离心率e 的19.(本小题满分 已知函数()f x (1)若函数f (2)若1x = ①求a , ②求函数20.(本小题满分 设等差数列{}n a 与等比数列{}n b 共有m * ( )m ∈N 个对应项相等. (1)若110a b =>,11110a b =>,试比较66a b ,的大小; (2)若34n a n =-,()12n n b -=--,求m 的值.(3)若等比数列{}n b 的公比0q >,且1q ≠,求证:3m ≠.【参考结论】若R 上可导函数()f x 满足()()f a f b =(a b <),则()a b ξ∃∈,,()0f ξ'=.第II 卷(附加题,共40分)21.【选做题】本题包括A, B,C,D 四小题,每小题10分,请选定其中两小题,并在相应的答题区域.........内作答.... A ,(选修4-1;几何证明选讲) 如图,四边形ABCD 是圆的内接四边形,BC BD =,BA 的延长线交CD 的延长线于点E .求证:AE 是四边形ABCD 的外角DAF ∠的平分线.B .(选修4-2:矩阵与变换) 已知矩阵10⎡⎤=⎢⎣A 112⎡⎤C .(选修4-4π()3θρ=∈R所得线段长. D .(选修4-5【选做题】第222222(y px p => (1)求p (2)试用a (3)求直线x 23.(1)2n n +(nk M ()1 k n k ∈*N ≤≤,是从上往下数第k 行中的最大数,n p 为12n M M M <<⋅⋅⋅<的概率. (1)求2p 的值;(2)猜想n p 的表达式,并证明.* * * * * * …………………… * * … * *2017年高考模拟试卷(1)参考答案一、填空题1.()12,.A B = ()12,. 2.12. (2)(1)2i 13.1i (1)(1)2i i iz i i ++++===--+,则复数z 的实部为 12.3.(-9,+∞).函数5()log (9)f x x =+的单调增区间(-9,+∞).4. 536.点数之和是6包括(15)(24)(33)(42)(15),,,,,,,,,共5种情况,则所 求概率是536.5. 8.若613x =,则1326x =>,不符;若513x +=,则82x =>.6. 0. 244 21(109.410.8)0.2⎡-+⎣7. 76或1878. π.依题意,π. 9. 113.tan α=10. 115⎡⎤-⎢⎥⎣⎦,,且0a <,即245ax ax a -- 0a ≤,从而254 1 0x x +-≤11.3.由121x y +=得,02y x y =>-,则()222222222log log log log log 22y y x y xy y y -++===-- ()224log 24log 832y y ⎡⎤=-++=⎢⎥-⎣⎦≥.12. 5.易得圆C :22(1)9x y -+=,定点A (10)-,,EA ED =,则3EC EA EC ED +=+=, 从而三角形AEC 的周长为5.13. 2027.易得数列{}n b :1,3,5,6,7,9,10,11,12,13,14,15,17,…, 则1137++++…12121k k k ++-=--,当10k =,12120372017k k +--=>,2037201720-=,从而第2017项为1121202027--=.14. ()()5114-∞- ,,.{}()max 11f x x x =-+,2()()g x x k k =+∈R 恰有4个零点,当54k =时,()f x 与()g x 相切.如图,结合图形知,实数k 的取值范围是()5114-∞- ,,.二、解答题15. (1)因为 又0 (2 2a + ab 由①②得,a b ==.16. (1)因为AB //DE ,又AB ⊄平面DEF , DE ⊂平面DEF ,所以AB //平面DEF , 同理BC //平面DEF , 又因为AB BC C = , A B B C⊂,平面ABC ,所以平面ABC //平面DEF . (2)因为CAB ∠是二面角C -AD -E 的平面角,所以CA AD BA AD ⊥⊥,, 又因为CA AB A = , AB ,CA ⊂平面ABC ,所以DA ⊥平面ABC , 又DA ⊂平面DABE ,所以平面ABC ⊥平面DABE .17. (1)过点P 分别作AB ,AD 的垂线,垂足分别为E ,F ,S 由 (2 (当且仅当2n m m n =即2m =1n 时,“=”成立),答:此时剩下木板的外边框长度的最大值为33-18. (1)由椭圆C :2221x y a+=(a >1)知, 焦距为2, 解得a =因为a >1,所以a =(2)设直线1y kx =+被椭圆截得的线段长为ΑΡ, 由22211y kx x y a=+⎧⎪⎨+=⎪⎩,,得()2222120a k x a kx ++=, 解得10x =,222221a kx a k=-+.因此2122221a k ΑΡx a k=-=+. (3)因为圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有2个不同的公共点为P ,Q ,满足AP AQ =.则)1c e a =. 19. (1)因为函数()f x 为偶函数,所以()()f x f x -=-,即()()()323222x a x b x c x ax bx c -+-+-+=----, 整理得,20ax c +=,所以0a c ==,从而3()2f x x bx =+,又函数()f x 图象过点(12)-,,所以4b =-. 从而3()24f x x x =-.(2)①32()2()f x x ax bx c a b c =+++∈R ,,的导函数2()62f x x ax b '=++. 因为()f x 在1x =和2x =处取得极值,所以(1)0(2)0f f ''==,, 即6202440a b a b ++=⎧⎨++=⎩,,解得912a b =-=,. ②由(1)得32()2912()f x x x x c c =-++∈R ,()6(1)(2)f x x x '=--. 列表:显然,函数()f x 在由表知,函数()f x 所以当0c >或9c +当50c -<<当54c -<<-所以函数()f x 在(1当94c -<<-所以函数()f x 在(2综上,当0c >或9c <-时,函数()f x 在区间[03],上的零点个数为0; 当95c -<-≤或40c -<≤时,零点个数为1; 当4c =-或5c =-时,零点个数为2;当54c -<<-时,零点个数为3.20.(1)依题意,11111166022a a a aa b ++=- (当且仅当111a a =时,等号成立).(2)易得()1342n n --=--,当n 为奇数时,()13420n n --=--<,所以43n <,又*n ∈N ,故1n =,此时111a b ==-;当n 为偶数时,()13420n n --=-->,所以43n >,又*n ∈N ,故246n =,,,… 若2n =,则222a b ==,若4n =,则448a b ==, 下证:当6n ≥,且n 为偶数时,()1342n n --<--,即()12134n n --->-. 证明:记()12()34n p n n ---=-,则()()()112434(2)341()32322n n n p n n p n n n +----+-=⋅=>++--, 所以()p n 在6n ≥,且n 为偶数时单调递增,17 综上, (3)证明:假设 由参考结论,知1ξ∃∈ 0, 3. A .因为ABCD 是圆的内接四边形,所以DAE BCD ∠=∠,FAE BAC BDC ∠=∠=∠. 因为BC BD =,所以BCD BDC ∠=∠, 所以DAE FAE ∠=∠,所以AE 是四边形ABCD 的外角DAF ∠的平分线. B .因为1002⎡⎤=⎢⎥⎣⎦A ,1101⎡⎤⎢⎥=⎢⎥⎣⎦B , 所以11101122020102⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦AB .由逆矩阵公式得,1114()102-⎡⎤-⎢⎥=⎢⎥⎢⎥⎣⎦AB . C .以极点O 为原点,极轴Ox 为x 轴正半轴建立平面直角坐标系xOy . 则圆24sin 50ρρθ--=化为普通方程22450x y y +--=, 即22(2)9x y +-=. 直线π()3θρ=∈R化为普通方程y =0y -=. 圆心 D . ( 22. (1 (2 51a a ++ (3)易得直线AB 的方程为222()y a x ab a-=-+, 令5x =得, 22(5)2251y a a a a a =-+=-+-++.23.当2n =时,1,2,3排成一个三角形有:12 3 1 3 2 2 1 3 23 13 1 2 3 2 1共有6种,其中满足12M M <的有如下4种:所以24263p ==;(2)设当n k =时,12k M M M <<⋅⋅⋅的概率为k p ,则当1n k =+时,121k k M M M M +<<⋅⋅⋅<的概率为1k p +, 而1k +排在第1k +行的概率为12(1)(11)2k k k k +=++++,所以 故3224p p =,4325p p = 所以n p1 2 3 1 3 2 2 1 3 23 1。

相关文档
最新文档