解析几何求轨迹基本方法

合集下载

浅谈解析几何中如何求轨迹方程

浅谈解析几何中如何求轨迹方程

动 M 轨 是 () 心 半 为 , 轴 争 点 的 迹 以, 中, 轴 争 半 为 的 a为 长 o 短
垂 直 的直 线 l l 若 l交 X 于 A ,: ,, 。 轴 点 , 交 Y轴 于 B点 , l : 求线 段 A B的
中点 M 的 轨迹 方 程 。 分析 l :设 M( Y , 由 已知 x,)
P运 动 的某 个 几 何 量 t以 此 量 作 为 参 变 数 , 别 建 立 P点 坐 标 。 分
x Y与该 参 数 t 函数 关 系 x f t ,= () 进 而 通 过 消参 化 为 轨 , 的 = () y g t , 迹 的 普通 方 程 F x y = 。 ( , )0
l上l 联 想 到 两 直 线 垂 直 的充 要 条 件 : , 一 1 即 可 列 出 轨 迹 方 。 : , kk : , 程 , 键 是 如 何 用 M 点 坐 标 表 示 A、 关 B两 点 坐 标 。事 实 上 , M 由
综 上 可 知 . M 的轨 迹 方 程 为 x 2 - = 。 点 + y5 O
{ ( ( 参 来表 若 判 轨 方程 示 种曲 t 数) 示, 要 断 迹 表 何 线, 爿 为
t= () y g t
分析 2 :解 法 1中在 利 用 k 2 l时 ,需 注 意 k、2 否 存 l一 k l 是 k 在 . 而 分 情 形讨 论 , 故 能否 避 开 讨 论 呢 ? 只需 利 用 AP B 为直 角 A
中 图 分 类 号 :G6 2 3
文 献标 识 码 :C
文 章 编号 : 6 2 1 7 ( 0 10 — 0 6 0 1 7 — 5 8 2 1 )6 0 9 — 2 即 点 B坐 标 可 表 为 ( x 2 .y 2一 a 2 )

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法求轨迹方程的一般方法:1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线〔如圆、椭圆、双曲线、抛物线〕的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标〔x ,y 〕表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f 〔t 〕, y =g 〔t 〕,进而通过消参化为轨迹的普通方程F 〔x ,y 〕=0。

4. 代入法〔相关点法〕:如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,〔该点坐标满足某已知曲线方程〕,则可以设出P 〔x ,y 〕,用〔x ,y 〕表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点〔含参数〕的坐标,再消去参数求得所求的轨迹方程〔假设能直接消去两方程的参数,也可直接消去参数得到轨迹方程〕,该法经常与参数法并用。

一:用定义法求轨迹方程例1:已知ABC ∆的顶点A ,B 的坐标分别为〔-4,0〕,〔4,0〕,C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,假设b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.【变式】:已知圆的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。

解析几何--交点轨迹求解方法

解析几何--交点轨迹求解方法

解析几何A1,A2是椭圆x^2/9+y^/4=1长轴两端点,P1,P2是垂直于A1A2的弦的两端点,求A1P1与A2P2交点的轨迹2008年二轮复习高中数学方法讲解:5、交轨法一般用于求二动曲线交点的轨迹方程.其过程是选出一个适当的参数,求出二动曲线的方程或动点坐标适合的含参数的等式,再消去参数,即得所求动点轨迹的方程.例1.设A1、A2是椭圆=1的长轴两个端点,P1、P2是垂直于A1A2的弦的端点,则直线A1P1与A2P2交点的轨迹方程为( )A. B. C. D.解析:设交点P(x,y),A1(-3,0),A2(3,0),P1(x0,y0),P2(x0,-y0)∵A1、P1、P共线,∴∵A2、P2、P共线,∴解得x0=答案:C例2.如右图,给出定点A(a,0)(a>0)和直线l:x=-1.B是直线l上的动点,∠BOA的角平分线交AB于C.求点C的轨迹方程,并讨论方程表示的曲线类型与a值的关系.依题意,记B(-1,b)(b∈R),则直线OA和OB的方程分别为y=0和y=-bx.设点C(x,y),则有0≤x <a,由OC平分∠AOB,知点C到OA、OB距离相等.根据点到直线的距离公式得依题设,点C在直线AB上,故有将②式代入①式得整理得y2[(1-a)x2-2ax+(1+a)y2]=0,若y≠0,则(1-a)x2-2ax+(1+a)y2=0(0<x<a);若y=0,则b=0,∠AOB=π,点C的坐标为(0,0),满足上式.综上得点C的轨迹方程为(1-a)x2-2ax+(1+a)y2=0(0≤x<a).(i)当a=1时,轨迹方程化为y2=x(0≤x<1).③此时,方程③表示抛物线弧段;(ii)当a≠1时,轨迹方程为所以,当0<a<1时,方程④表示椭圆弧段;当a>1时,方程④表示双曲线一支的弧段.例3.已知椭圆=1(a>b>0),点P为其上一点,F1、F2为椭圆的焦点,∠F1PF2的外角平分线为l,点F2关于l的对称点为Q,F2Q交l于点R.当P点在椭圆上运动时,求R形成的轨迹方程;.解:(1)∵点F2关于l的对称点为Q,连接PQ,∴∠F2PR=∠QPR,|F2R|=|QR|,|PQ|=|PF2|又因为l为∠F1PF2外角的平分线,故点F1、P、Q在同一直线上,设存在R(x0,y0),Q(x1,y1),F1(-c,0),F2(c,0).|F1Q|=|F2P|+|PQ|=|F1P|+|PF2|=2a,则(x1+c)2+y12=(2a)2.又得x1=2x0-c,y1=2y0.∴(2x0)2+(2y0)2=(2a)2,∴x02+y02=a2.故R的轨迹方程为:x2+y2=a2(y≠0)例4.如右图,直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A、B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=17,|AN|=3,且|BN|有些小问题。

例谈动点的轨迹方程的四种求法

例谈动点的轨迹方程的四种求法

思路探寻求动点的轨迹方程问题经常出现在解析几何试题中,这类问题侧重于考查同学们的推理、分析以及运算能力.求解这类问题的主要方法有定义法、参数法、相关点法和交轨法.下面结合实例,谈一谈这四种方法的特点以及应用技巧.一、定义法定义法是指运用圆锥曲线的定义解题.若发现动点的轨迹形如椭圆、圆、双曲线、抛物线或其中的一部分曲线,就可以根据椭圆、圆、双曲线、抛物线的定义,确定定点、焦点、焦点与动点之间的关系,求得椭圆、圆、双曲线、抛物线方程中的各个参数,便可以快速确定曲线的轨迹方程.例1.如图1所示,已知圆C1:x2+(y+4)2=25和圆C2:x2+(y-4)2=1,某动圆C分别与圆C1和圆C2外切,求动圆圆心C的轨迹方程.图1解:由题意知两圆的圆心为C1(0,-4),C2(0,4),半径为r1=5,r2=1,设动圆C的半径为r,因为圆C分别与圆C1和圆C2外切,所以||CC1=r+5,||CC2=r+1,所以||CC1-||CC2=4<8,即点C到两定点C1、C2的距离之差为常数4,所以动圆圆心C的轨迹是以C1、C2为焦点的双曲线的上支,可得2a=4,2c=||C1C2=8,所以b2=c2-a2=12.所以动圆圆心C的轨迹方程是y24-x212=1(y≥2).结合图形分析动圆C与圆C1、圆C2的位置关系,即可发现||CC1=r+5,||CC2=r+1,即可得出||CC1-||CC2=4<8,由此可联想到双曲线的定义,即平面内到两定点的距离之差为定值的点的轨迹,确定动点的轨迹,求得a、b、c值,即可求得动点的轨迹方程.二、参数法参数法是解答数学问题的重要方法.若动点受某些变量的影响,而我们又无法确定这些变量的取值,则需运用参数法,即用参数表示出变量,设出直线的斜率、点的坐标、曲线的方程等,然后将其代入题设中,建立关系式,通过恒等变换消去参数,即可求得动点的轨迹方程.例2.已知抛物线y2=4px(p>0)的顶点为O,A,B是抛物线上的两个动点,且OA⊥OB,OM⊥AB于点M,求点M的轨迹方程.解:设M(x,y),直线AB的方程为y=kx+b,因为OA⊥OB,所以k=-xy,由ìíîy2=4px,y=kx+b,得k2x2+(2kb-4p)x+b2=0,所以x1x2=-b2k2,y1y2=-4pb k,因为OA⊥OB,所以y1y2=-x1x2,所以-4pbk=-b2k2,即b=-4kp,所以直线AB的方程为y=kx+b=k(x-4p),将k=-xy代入,得x2+y2-4px=0(x≠0),即所求点M的轨迹方程为x2+y2-4px=0(x≠0).解答本题主要运用了参数法,即先引入参数x、y,49k 、b 、x 1、x 2、y 1、y 2,设出动点M 的坐标、直线AB 的方程以及A 、B 两点的坐标;然后将直线与抛物线的方程联立,根据一元二次方程的根与系数的关系建立关系式;最后通过恒等变换消去参数,得到关于x 、y 的方程,即为动点的轨迹方程.三、相关点法若两个动点之间存在某种特定的关系,则可以采用相关点法求解.先分别设出两个动点的坐标,并根据二者之间的关系,用所求动点的坐标表示另一个动点的坐标;然后根据另一个动点的几何关系,建立关于所求动点坐标的关系式,从而求得动点的轨迹方程.运用相关点法解题,要注意寻找两个动点之间的联系,并确定另一个动点所满足的几何关系.例3.如图2所示,在圆x 2+y 2=4上任意选取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,求线段PD中点M 的轨迹方程.图2解:设点M (x ,y ),P (x 0,y 0),因为M 为线段PD 的中点,所以ìíîïïx =x 0,y =y 02,得{x 0=x ,y 0=2y ,又因为点P (x 0,y 0)在圆x 2+y 2=4上,所以x 02+y 02=4,将{x 0=x ,y 0=2y ,代入上述方程中,得x 24+y 2=1,所以点M 的轨迹为一个椭圆,其方程为x 24+y 2=1.本题中P 、M 均为动点,且点M 随着点P 的运动而变化,需采用相关点法求解,先分别设出P 、M 两点的坐标;然后用M 点的坐标表示P 的坐标;再将其代入点P 的轨迹方程,即可确定点M 的轨迹及其方程.四、交轨法当问题中所求的动点为两条动曲线的交点时,往往需采用交轨法,即将两条动曲线的方程联立,消去其中的参数,得到的关于x 、y 的方程即为所求的动点的轨迹方程.例4.如图3所示,已知双曲线C :y 24-x 23=1与y轴交于点A 1(0,-2)与点A 2(0,2),直线l :y =m 与双曲线交于点P ,Q ,直线A 1P 与直线A 2Q 相交于点M ,试求点M 的轨迹方程.图3解:设P (x 1,m ),Q (-x 1,m ),M (x ,y ),因为点P 在双曲线上,所以m 24-x 123=1.当x 1≠0时,直线PA 1的方程为y +2=m +2x 1x ,直线QA 2的方程为y -2=2-m x 1x,可得y 2-4=4-m 2x 12x 2,所以x 12=3m 2-124,将其代入y 2-4=4-m 2x 12x 2,得y 2-4=-43x 2,化简整理得y 24+x 23=1.当x 1=0时,点M 的坐标满足方程y 24+x 23=1.综上所述,点M 的轨迹方程为y 24+x 23=1.仔细分析题意可知,M 为直线A 1P 与直线A 2Q 的交点,且点A 1、A 2、P 、Q 都满足双曲线的方程,于是采用交轨法,求得两动直线A 1P 与A 2Q 的方程,再将两方程联立,消去参数,即可求出交点M 的轨迹方程.总之,求动点的轨迹方程,关键是要根据题目中的几何条件,寻找动点的横坐标与纵坐标之间的关系,建立关于动点的横坐标与纵坐标的方程.求动点的轨迹方程的方法很多,同学们需熟练掌握一些常用方法的特点、适用情形、解题思路,才能将其灵活地应用于解题中.(作者单位:江苏省南通市海门实验学校)思路探寻50。

高中数学求轨迹方程的六种常用技法

高中数学求轨迹方程的六种常用技法

求轨迹方程六种常用技法轨迹方程探求是解析几何中根本问题之一,也是近几年来高考中常见题型之一。

学生解这类问题时,不善于提醒问题内部规律及知识之间相互联系,动辄就是罗列一大堆坐标关系,进展无目大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结与归纳探求轨迹方程常用技法,对提高学生解题能力、优化学生解题思路很有帮助。

本文通过典型例子阐述探求轨迹方程常用技法。

1.直接法根据条件及一些根本公式如两点间距离公式,点到直线距离公式,直线斜率公式等,直接列出动点满足等量关系式,从而求得轨迹方程。

例1.线段,直线相交于,且它们斜率之积是,求点轨迹方程。

解:以所在直线为轴,垂直平分线为轴建立坐标系,那么,设点坐标为,那么直线斜率,直线斜率由有化简,整理得点轨迹方程为练习:1.平面内动点到点距离与到直线距离之比为2,那么点轨迹方程是。

2.设动直线垂直于轴,且与椭圆交于、两点,是上满足点,求点轨迹方程。

3. 到两互相垂直异面直线距离相等点,在过其中一条直线且平行于另一条直线平面内轨迹是〔〕A.直线B.椭圆C.抛物线D.双曲线2.定义法通过图形几何性质判断动点轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹定义,如线段垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何一些性质定理。

例2.假设为两顶点,与两边上中线长之与是,那么重心轨迹方程是_______________。

解:设重心为,那么由与两边上中线长之与是可得,而点为定点,所以点轨迹为以为焦点椭圆。

所以由可得故重心轨迹方程是练习:4.方程表示曲线是〔〕A.椭圆 B.双曲线 C.线段 D.抛物线3.点差法圆锥曲线中与弦中点有关问题可用点差法,其根本方法是把弦两端点坐标代入圆锥曲线方程,然而相减,利用平方差公式可得,,,等关系式,由于弦中点坐标满足,且直线斜率为,由此可求得弦中点轨迹方程。

例3.椭圆中,过弦恰被点平分,那么该弦所在直线方程为_________________。

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。

)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。

专题:解析几何中的动点轨迹问题

专题:解析几何中的动点轨迹问题

专题:解析几何中的动点轨迹问题学大苏分教研中心 周坤轨迹方程的探求是解析几何中的基本问题之一,也是近几年各省高考中的常见题型之一。

解答这类问题,需要善于揭示问题的内部规律及知识之间的相互联系。

本专题分成四个部分,首先从题目类型出发,总结常见的几类动点轨迹问题,并给出典型例题;其次从方法入手,总结若干技法(包含高考和竞赛要求,够你用的了...);然后,精选若干练习题,并给出详细解析与答案,务必完全弄懂;最后,回顾高考,列出近几年高考中的动点轨迹原题。

OK ,不废话了,开始进入正题吧...Part 1 几类动点轨迹问题一、动线段定比分点的轨迹例1 已知线段AB 的长为5,并且它的两个端点A 、B 分别在x 轴和y 轴上滑动,点P 在段AB 上,(0)AP PB λλ=>,求点P 的轨迹。

()()()00P x y A a B b 解:设,,,,,,()()011101a a xx y b b y λλλλλλλ+⋅⎧⎧=+=⎪⎪⎪+⎨⎨++⋅=⎪⎪=⎩⎪+⎩, 2225a b +=代入()()222221125y x λλλ+++=()()222221252511x y λλλ+=++222514P x y λ=+=当时,点的轨迹是圆;① 1P y λ>当时,点的轨迹是焦点在轴上的椭圆;②01P x λ<<当时,点的轨迹是焦点在轴上的椭圆③;例2 已知定点A(3,1),动点B 在圆O 224x y +=上,点P 在线段AB 上,且BP:PA=1:2,求点P 的轨迹的方程.()()113P x y B x y AB BP =-解:设,,,,有()()()()1133131313x x y y ⎧+-=⎪+-⎪⎨+-⎪=⎪+-⎩11332312x x y y -⎧=⎪⎪⎨-⎪=⎪⎩化简即:22114x y +=代入223331422x y --⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭得 所以点P 的轨迹为()22116139x y ⎛⎫-+-= ⎪⎝⎭二、两条动直线的交点问题例3 已知两点P (-1,3),Q (1,3)以及一条直线:l y x =,设长为2的线段AB 在l 上移动(点A 在B 的左下方),求直线PA 、QB 交点M 的轨迹的方程 ()()()11M x y A t t B t t ++解:设,,,,,, ()()1313PM x y PA t t =+-=+-,,,, ()()131113QM x y QB t t =--=+-+-,,,, ////PM PAQM QB ∴,,()()()()()()()1313123x t t y x t t y ⎧+-=+-⎪∴⎨--=-⎪⎩34222x y t x y x t x y +⎧=⎪-+⎪⎨-⎪=⎪-+⎩32242x y x x y x y +-=-+-+()()()()32422x y x y x y x +-+=-+-228y x -=例4 已知12A A 、是双曲线22221(0,0)x y a b a b-=>>的两个顶点,线段MN 为垂直于实轴的弦,求直线1MA 与2NA 的交点P 的轨迹()()()()()11111200P x y M x y N x y A a A a --解:设,,,,,,,,,,1122A P A MA P A N k k k k =⎧⎪⎨=⎪⎩ 1111y yx a x ay y x a x a⎧=⎪++⎪⎨-⎪=⎪-+⎩ 1111y y y yx a x a x a x a-⋅=⋅+-+- 22122221y y x a x a =--- 2211221x y a b -= 22221112221y x x a b a a-∴=-= 2212221y b x a a=- 22222y b x a a ∴=-- 222222a y b x a b =-+()2222010x y a b x x a b >>+=≠当时,是焦点在轴上的椭圆,;2220a b x y a =>+=当时,是圆;()2222010x y b a y x a b>>+=≠当时,是焦点在轴上的椭圆,;三、动圆圆心轨迹问题例5 已知动圆M 与定圆2216x y +=相切,并且与x 轴也相切,求动圆圆心M 的轨迹()()0M x y y ≠解:设,,224M x y y +=-当圆与定圆内切时,,224M x y y +=+当圆与定圆内切时, 224x y y ∴+=±222168x y y y +=±+2816y x ±=-M 的轨迹是两条抛物线(挖去它们的交点) ()()2211202088y x y y x y =-≠=-+≠或例6 已知圆221:(3)4C x y ++=,222:(3)100C x y -+=,圆M 与圆1C 和圆2C 都相切,求动圆圆心M 的轨迹()()11113,0,3,0,6,C C C C -=解:,M r 设动圆的半径为12(1),,M C C 若圆与外切与内切则122,10MC r MC r ⎧=+⎪⎨=-⎪⎩121112,MC MC C C +=>12M C C 的轨迹是以、为焦点的椭圆,2126263a a c c ====,,,,22227b a c =-=,2213627x y +=椭圆的方程为12,M C C (2)若圆与、都内切则12210MC r MC r⎧=-⎪⎨=-⎪⎩ 12118MC MC C C +=>12M C C 的轨迹是以、为焦点的椭圆2222842637a a c c b a c =====-=,,,,, 221167x y +=椭圆的方程为四、动圆锥曲线中相关点的轨迹例7 已知双曲线过(3,0)A -和(3,0)B ,它的一个焦点是1(0,4)F -,求它的另一个焦点2F 的轨迹()2F x y 解:设,,2121AF AF BF BF -=-由双曲线定义, ()()()()2222113004530045AF BF =--+-==-+-=,,2255AF BF -=-若,222255AF BF AF BF ∴-=-=,,204F x y =≠±的轨迹是直线()2255AF BF -=-+若,22106AF BF AB +=>=,2F A B 的轨迹是以、为焦点的椭圆,210,5,26,3,4,a a c c b ===== 22142516x y y +=≠±椭圆方程为()22204142516x y F x y y =≠±+=≠±的轨迹是直线()或椭圆()例8 已知圆的方程为224x y +=,动抛物线过点(1,0)A -和(1,0)B ,且以圆的切线为准线,求抛物线的焦点F 的轨迹方程()F x y l M 解:设焦点,,准线与圆相切于,1111AA l A BB l B ⊥⊥作于,于,1124AF BF AA BB OM +=+==,F A B 的轨迹是以、为焦点的椭圆,2422213a c AB a c b ======,,,,,()221043x y F y +=≠轨迹的方程是Part 2 求动点轨迹的十类方法一、直接法根据已知条件及一些基本公式如两点间距离公式、点到直线的距离公式、直线的斜率公式、切线长公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。

解析几何(动点轨迹求法)

解析几何(动点轨迹求法)

动点轨迹的求法从近年高考题说起:1、(15年广东理科)已知过原点的动直线l 与圆221:650C x y x 相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程; (3)是否存在实数k ,使得直线:(4)L y k x 与曲线C 只有一个交点:若存在,求出k 的取值范围;若不存在,说明理由.【解析】(1)由22650x y x +-+=得()2234x y -+=,∴ 圆1C 的圆心坐标为()3,0; (2)设(),M x y ,则∵ 点M 为弦AB 中点即1C M AB ⊥,∴ 11C M AB k k ⋅=-即13y yx x⋅=--, ∴ 线段AB 的中点M 的轨迹的方程为223953243x y x ⎛⎫⎛⎫-+=<≤ ⎪ ⎪⎝⎭⎝⎭;(3)由(2)知点M 的轨迹是以3,02C ⎛⎫ ⎪⎝⎭为圆心32r =为半径的部分圆弧EF (如下图所示,不包括两端点),且5,33E ⎛ ⎝⎭,5,33F ⎛- ⎝⎭,又直线L :(y k x =-当直线L 与圆C 32=得34k =±上图可知当3325,,447k ⎡⎧⎫∈--⎨⎬⎢⎩⎭⎣⎦时,直线L :y k =2、(2013上海)已知抛物线24C y x =: 的焦点为F .点 A P 、满足2AP FA =-.当点A 在抛物线C 上运动时,求动点P 的轨迹方程。

解:设动点P 的坐标为( )x y ,,点A 的坐标为( )A A x y ,,则( )A A AP x x y y =--,,因为F 的坐标为(1 0),,所以(1 )A A FA x y =-,, 由2AP FA =-得( )2(1 )A A A A x x y y x y --=--,,. 即2(1)2A A A A x x x y y y -=--⎧⎨-=-⎩ 解得2A Ax xy y =-⎧⎨=-⎩代入24y x =,得到动点P 的轨迹方程为284y x =-.3、(2013年高考新课标1(理))已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与M 外切并且与圆N 内切,圆心P 的轨迹为曲线 C.(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A,B 两点,当圆P 的半径最长时,求|AB|. 解:由已知得圆M 的圆心为M (-1,0),半径1r =1,圆N 的圆心为N (1,0),半径2r =3.设动圆P 的圆心为P (x ,y ),半径为R.(Ⅰ)∵圆P 与圆M 外切且与圆N 内切,∴|PM|+|PN|=12()()R r r R ++-=12r r +=4,由椭圆的定义可知,曲线C 是以M,N 为左右焦点,场半轴长为2,的椭圆(左顶点除外),其方程为221(2)43x y x +=≠-. (Ⅱ)对于曲线C 上任意一点P (x ,y ),由于|PM|-|PN|=22R -≤2,∴R≤2, 当且仅当圆P 的圆心为(2,0)时,R=2.∴当圆P 的半径最长时,其方程为22(2)4x y -+=, 当l 的倾斜角为090时,则l 与y 轴重合,可得|AB|=当l 的倾斜角不为090时,由1r ≠R 知l 不平行x 轴,设l 与x 轴的交点为Q,则||||QP QM =1Rr ,可求得Q(-4,0),∴设l :(4)y k x =+,由l 于圆M1=,解得k =当k=时,将y x =代入221(2)43x y x +=≠-并整理得27880x x +-=,解得1,2x12|x x -=187.当k时,由图形的对称性可知|AB|=187, 综上,|AB|=187或|AB|=动点轨迹常用求法:一、待定系数法它常常适用于动点轨迹的曲线类型已知或利用已知条件可直接推断出其轨迹的曲线方程。

求轨迹的五种方法

求轨迹的五种方法

一、直接法根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(两点距离公式、点到直线距离公式、夹角公式等)进行整理、化简。

即把这种关系“翻译”成含x,y的等式就得到曲线的轨迹方程了。

例:(06全国Ⅰ)在平面直角坐标系中,有一个以和为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与轴的交点分别为A、B,且向量。

求:点M的轨迹方程;解: 椭圆方程可写为: y2a2 + x2b2 =1 式中a>b>0 , 且a2-b2 =33a =32 得a2=4,b2=1,所以曲线C的方程为: x2+ y24 =1 (x>0,y>0). y=21-x2 (0<x<1) y '=-2x1-x2 设P(x0,y0),因P在C上,有0<x0<1, y0=21-x02 , y '|x=x0= -4x0y0 ,得切线AB的方程为:y=-4x0y0 (x-x0)+y0 . 设A(x,0)和B(0,y),由切线方程得x=1x0 , y= 4y0 .由OM→=OA→ +OB→得M的坐标为(x,y), 由x0,y0满足C的方程,得点M的轨迹方程为:1x2 + 4y2 =1 (x>1,y>2)二、代入法(相关点法)有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的。

如果相关点所满足的条件是明显的,或是可分析,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法叫做相关点法。

这种方法是一种极常用的方法,连续好几年高考都考查。

例二(03全国)如图,从双曲线上一点Q引直线的垂线,垂足为N,求线段QN的中点P的轨迹方程。

分析:从题意看动点P的相关点是Q,Q在双曲线上运动,所以本题适合用相关点法。

解:设动点P的坐标为(x,y),点Q的坐标为(x1,y1),则N点的坐标为(2x—x1,2y—y1)∵N在直线x+y=1上,∴2x—x1+2y—y1=2 ①又∵PQ垂直于直线x+y=2∴即x—y + y1—x1=0 ②联立①②解得③又点Q在双曲线上,∴④③代入④,得动点P的轨迹方程是三、定义法若动点轨迹满足已知曲线的定义,可先设定方程,再确定其中的基本量,求出动点的轨迹方程。

7.8解析几何中的轨迹问题

7.8解析几何中的轨迹问题
7.8解析几何中的轨迹问题
中国人民大学附属中学
求轨迹的一般方法 1.直接法:如果动点运动的条件就是一 些几何量的等量关系,这些条件简单明确, 易于表述成含x, y的等式,就得到轨迹方 程,这种方法称之为直接法。用直接法求 动点轨迹一般有建系,设点,列式,化简, 证明五个步骤,最后的证明可以省略,但
例4 经过抛物线y2=2p(x+2p) (p>0)的顶点A
作互相垂直的两直线分别交抛物线于B, C 两点,求线段BC的中点M轨迹方程。 解:A(-2p, 0), 设直线AB的方程为 y=k(x+2p) (k≠0). 与抛物线方程联立方程组 可解得B点的坐标为
1 y ( x 2 p) k
4
(2)当λ≠1时,方程化为
2 22 2 1 3 (x 2 ) y 2 2 表示一个 圆. 2 1 ( 1)
| AB | | BC | 2, m ,求 练习:已知△ABC中, | AC |
点A的轨迹方程,并说明轨迹是什么图形.
(1 m ) x (1 m ) y (2 2m ) x 1 m 0
练习2:已知曲线C:y=x2与直线l:x-y +2=0交于A, B两点,点P在曲线C上,且在 A,B之间,若点Q是线段AB的中点,试求 线段PQ的中点M的轨迹方程;
y x2 2 解:由 得 : x x 2 0 xA 1, xB 2 x y 2 0 1 5 ∴A(—1,1),B(2,4), Q , 2 2
5.点差法:
求圆锥曲线中点弦轨迹问题时,常把 两个端点设为(x1, y1),(x2, y2)并代入圆锥 曲线方程,然后作差求出曲线的轨迹方 程。
要注意“挖”与“补”。

求轨迹方程的常见方法

求轨迹方程的常见方法

求轨迹方程的常见方法由运动轨迹求方程是解析几何的一类重要问题,下面谈谈求轨迹方程的几种常用方法。

一、直接法建立适当的座标系后,设动点为,根据几何条件寻求之间的关係式。

例1 已知动点m到椭圆的右焦点的距离与到直线x=6的距离相等,求点m的轨迹方程。

变式:已知点m与椭圆的左焦点和右焦点的距离之比为,求点m的轨迹方程。

变式2:在三角形abc中,b(-6,0), c(-6,0),直线ab,ac斜率乘积为,求顶点a的轨迹。

说明:求轨迹需要说明是什幺曲线并指出曲线的位置与大小,求轨迹方程怎不必说明。

二、定义法由题设所给动点满足的几何条件,经过化简变形,可以看出动点满足圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程。

例2 已知圆的圆心为m1,圆的圆心为m2,一动圆与这两个圆外切,求动圆圆心p的轨迹方程。

解:设动圆的半径为r,由两圆外切的条件可得:,。

∴动圆圆心p的轨迹是以m1、m2为焦点的双曲线的右支,c=4,a=2,b2=12。

故所求轨迹方程为。

三、待定係数法由题意可知曲线型别,将方程设成该曲线方程的一般形式,利用题设所给条件求得所需的待定係数,进而求得轨迹方程。

例3 已知双曲线中心在原点且一个焦点为f(,0),直线y=x-1与其相交于m、n两点,mn中点的横座标为,求此双曲线方程。

解:设双曲线方程为。

将y=x-1代入方程整理得。

由韦达定理得。

又有,联立方程组,解得。

∴此双曲线的方程为。

四、引数法选取适当的引数,分别用参数列示动点座标,得到动点轨迹的引数方程,再消去引数,从而得到动点轨迹的普通方程。

例4 过原点作直线l和抛物线交于a、b两点,求线段ab的中点m的轨迹方程。

解:由题意分析知直线l的斜率一定存在,设直线l的方程y=kx。

把它代入抛物线方程,得。

因为直线和抛物线相交,所以△>0,解得。

设a(),b(),m(x,y),由韦达定理得。

由消去k得。

又,所以。

解析几何题型方法归纳(配例题)

解析几何题型方法归纳(配例题)

解析几何解题方法归纳一.求轨迹方程(常出现在小题或大题第一问): 1.【待定系数法】(1)已知焦点在x 轴上的椭圆两个顶点的坐标为(4,0±),离心率为12,其方程为 .2211612x y += 提示:2a c =,且24,2,12a c b =∴==.(2)已知椭圆中心在原点,焦距为2倍,则该椭圆的标准方程是 .提示:已知2222242,16b a b c a a b c⎧⎧===⎪⎪⇒⇒⇒⎨⎨=-=⎪⎪⎩⎩221164x y +=与221416x y +=为所求. (3)已知双曲线12222=-b y a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23求双曲线的方程; 解:∵(1),332=a c 原点到直线AB :1=-by a x 的距离.3,1.2322==∴==+=a b c ab b a ab d .故所求双曲线方程为 .1322=-y x2. 【定义法】由动点P 向圆221x y +=引两条切线PA 、PB ,切点分别为A 、B ,60APB ∠=︒,则动点P 的轨迹方程为 .解:设(,)P x y ,连结OP ,则90,30PAO APO ∠=︒∠=︒, 所以22OP OA ==. 3.【几何性质代数化】与圆2240x y x +-=外切,且与y 轴相切的动圆圆心的轨迹方程是____________.y 2=8x (x >0)或y =0(x <0) 提示:若动圆在y 轴右侧,则动圆圆心到定点(2,0)与到定直线x =-2的距离相等,其轨迹是抛物线;若动圆在y 轴左侧,则动圆圆心轨迹是x 负半轴.4.【相关点法】P 是抛物线2210x y -+=上的动点,点A 的坐标为(0,1-),点M 在直线PA 上,且2PM MA =,则点M 的轨迹方程为解:设点(,)M x y ,由2PM MA =,()3,32P x y ∴+,代入2210x y -+=得22(3)3210x y --+=即218310x y --=5.【参数法】一元二次函数22()(21)1()f x x m x m m R =+++-∈的图象的顶点的轨迹方程是提示:设22(21)1()y x m x m m R =+++-∈顶点坐标为(,)x y ,则22211224(1)(21)544m x m m m y m +⎧=-=--⎪⎪⎨--+⎪==--⎪⎩,消去m ,得顶点的轨迹方程34x y -= 二.常见几何关系转化与常见问题类型 (1)中点问题:韦达定理、点差法变式:A 、B 、C 、D 共线且AB =CD 问题,可以转化为共中点问题,或者弦长相等; 例1:已知双曲线中心在原点且一个焦点为F,0),直线1y x =-与其相交于M 、N 两点,MN 中点的横坐标为23-,则此双曲线的方程为 。

轨迹方程问题

轨迹方程问题

大家好!今天我讲的热点问题是轨迹问题。

一、轨迹问题在教材中的地位和作用二、轨迹问题的高考命题走向三、轨迹问题的大纲要求及应试策略四、求轨迹方程的基本方法求轨迹方程的基本方法有:直接法、相关点法、定义法、参数法、交轨法、向量法等。

(一)、直接法:直接法也叫直译法,即根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(如两点间距离公式、点到直线距离公式、夹角公式等)进行整理、化简。

这种求轨迹方程的过程不需要特殊的技巧。

例1 :已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数 ( >0),求动点M的轨迹方程,说明它表示什么曲线。

说课:这个例题用直接法解,寻找动点所满足的条件:|MN|= |MQ|,然后再利用有关公式将条件用坐标表示出来,进而求出轨迹方程。

例1在书本上的原型是(试验修订本数学第二册(上)P100例4,P112例3):点M(x,y)与定点F(c,0)的距离和它到定直线L:x= 的距离的比是常数(a>c>0)(或c>a>0),求点M的轨迹。

这是椭圆和双曲线的第二定义,经变化,即化为例1。

而例1 再经变化又可得:课本原题2(试验修订本数学第二册(上)P85小结与复习例2):求证到圆心距离为a(a>0)的两个相离定圆的切线长相等的点的轨迹是直线。

(图1)将这个课本例题进一步扩展,就得到:2005年高考·江苏卷19题变式:(2005年高考·江苏卷)如图2,圆O1与圆O2的半径都是1,O1O2=4,过动点P分别作圆O1与圆O2的切线PM、PN(M、N分别为切点),使得PM= PN,试建立适当的坐标系,并求动点P的轨迹方程。

从这些变式我们可看到;数学教材始终是高考数学命题的源头活水,高考试题有相当一部分是源于教材,即从课本的例题、习题出发,采取科学的组合、加工、扩展或赋予新的背景等形成的,充分体现了教材的基础作用。

解析几何中的轨迹方程求解

解析几何中的轨迹方程求解

解析几何中的轨迹方程求解轨迹方程是解析几何中的一个重要概念,它描述了一个点或物体在空间中移动时所形成的路径。

在解析几何中,通过求解轨迹方程,我们可以更好地理解点、线、平面和曲线的运动特性。

1. 轨迹方程的定义轨迹方程是描述一个点在空间中运动时其位置关系的方程。

它通常由坐标变量及其参数所组成,通过参数的变化,可以获得点在空间中的不同位置。

在解析几何中,常见的轨迹方程有直线方程、圆的方程、椭圆的方程、抛物线的方程和双曲线的方程等。

这些方程中的参数表示了轨迹的特性,例如直线的斜率、圆的半径等。

2. 求解轨迹方程的步骤对于不同的轨迹类型,求解轨迹方程的步骤可能略有不同。

下面以直线方程为例,介绍求解轨迹方程的一般步骤:步骤一:确定知识点首先,要明确已知的知识点或条件。

在求解直线方程的轨迹时,我们需要知道直线上的两个点或直线的斜率。

步骤二:列出方程根据已知的知识点,我们可以列出代表轨迹的方程。

对于直线轨迹,一般的方程形式为 y = mx + c,其中 m 表示直线的斜率,c 表示直线与 y 轴的截距。

步骤三:确定参数根据已知条件,确定方程中的参数。

对于直线方程,参数包括斜率m 和截距c。

步骤四:解方程将已知条件代入方程中,解方程获得未知参数的值。

解方程可以使用代数法、几何方法或数值计算等方法。

步骤五:得到轨迹方程将求解得到的参数代入方程中,得到轨迹方程。

轨迹方程表示了点在空间中的路径。

3. 轨迹方程的应用轨迹方程在解析几何中具有广泛的应用。

它可以用于描述物体的运动轨迹、分析几何特性以及解决实际问题。

例如,通过求解轨迹方程,我们可以计算一个物体在空间中的位置,预测其未来的位置,从而实现控制和导航。

轨迹方程也可以用来描述天体运动、流体力学等领域中的运动规律。

此外,轨迹方程还可以用于几何图形的设计和建模。

通过调整轨迹方程中的参数,我们可以创建出各种不同形状的曲线,用于艺术、设计和工程等领域。

4. 总结解析几何中的轨迹方程求解是一个重要的数学概念。

轨迹问题

轨迹问题

解析几何中的轨迹问题 一、定义法:1.已知M 是直线l :x =−1上的动点,点F 的坐标是(1,0),过M 的直线l′与l 垂直,并且l′与线段MF 的垂直平分线相交于点N . (Ⅰ)求点N 的轨迹C 的方程; 试题解析:(Ⅰ)依题意,|NM|=|NF|,即曲线C 为抛物线,其焦点为F(1,0),准线方程为l :x =−1,所以曲线C 的方程为y 2=4x .2.已知圆()22:11M x y ++=,圆()22:19N x y -+=,动圆ρ与圆M 外切并与圆N 内切,圆心ρ的轨迹为曲线C . (1)求C 的方程;试题解析:由已知得圆M 的圆心为()1,0M -,半径11r =;圆N 的圆心为()1,0N ,半径23r =,设圆ρ的圆心为(),P x y ,半径为R .(1)因为圆ρ与圆M 外切并且与圆N 内切,所以由椭圆的定义可知,曲线C 是以,M N 为左、右焦点,长半轴长为2,短半轴长为顶点除外)……5分 3.动圆N 过点且与圆M 相切,记圆心N 的轨迹为E .(1)求轨迹E 的方程;试题解析: (1所以圆内切于圆,所以点的轨迹为椭圆,,所以1b =,所以轨迹的方程为 4.已知点M(-2,0),N(2,0),动点P 满足条件|PM|-|PN|=P 的轨迹为W . ⑴求W 的方程; 【解析】 试题分析:(1)利用双曲线的定义,可求W 的方程;(2)设点的坐标,利用向量的数量积公式,N M N E试题解析:(1)P 的轨迹是以M,N 为焦点的双曲线的右支,实半轴长,半焦距2c =,故徐半轴长W5.已知圆()22:116E x y ++=,点()1,0,F P 是圆E 上任意一点,线段PE 的垂直平分线和半径PE 相交于Q .(1)求动点Q 的轨迹P 的方程; 【解析】试题分析:(1)利用定义法求椭圆方程;(2)通过设而不求法,列方程,解得2λ=.试题解析:(1)连结,故动点Q 的轨迹Γ是以,E F 为焦点,长轴长为4的椭圆可知2,1a c ==,则所以点Q 的轨迹Γ的方程为 6.已知椭圆的左、右焦点分别为21F F 、,过点作垂直于轴的直线,直线垂直于点,线段的垂直平分线交于点. (1)求点的轨迹的方程;试题解析:解:(1)∵,∴点到定直线:的距离等于它到定点的距离,∴点的轨迹是以为准线,为焦点的抛物线. ∴点的轨迹的方程为.7.已知点C 为圆()2218x y ++=的圆心,P 是圆上的动点,点Q 在圆的半径CP 上,且有点QF 1C 1F x 1l 2l 1l P 2PF 2l M M 2C ||||2MF MP =M 1l 2-=x )0,2(2F M 2C 1l 2F M 2C x y 82=()1,0A 和AP 上的点M ,满足0,2MQ AP AP AM ==.(1)当点P 在圆上运动时,求点Q 的轨迹方程; (1)由题意知MQ 中线段AP 的垂直平分线,所以,所以点Q 的轨迹是以点,CA 为焦点,焦距为28.在平面直角坐标系xOy 中,动点P 到点()1,0F的距离比它到轴的距离多1. (Ⅰ)求点的轨迹的方程;试题解析:(Ⅰ)依题意,点P 到点()1,0F 的距离与它到直线1x =-的距离相等,∴点P 的轨迹E 是以F 为焦点,以直线1x =-为准线的抛物线,∴E 的方程为24yx =;9、已知点M(-3,0),N (3,0),B (1,0),动圆C 与直线MN 切于点B ,过M ,N 与圆C 相切的两直线相较于点P ,则P 点轨迹方程是 。

探求轨迹的五种途径

探求轨迹的五种途径

探求轨迹的五种途径湖南省澧县第六中学 任勇求动点的轨迹问题是解析几何中的一类重要问题.它能全面考查学生的数学能力和数学思想,并以其题目形式灵活多样,解法精妙在解析几何中占有重要的地位,成为历届高考命题的热点.但是许多同学由于求解这类问题不懂章法,陷入思维混乱的状态,以至于兜了一大圈仍无功而返..那么,如何才能面对各种轨迹问题做到有的放矢,化解自如呢?以下五种求解之策无疑是学生探求轨迹的必备利器.一直接法如果动点满足的条件本身就是一些几何量的等量关系,或这些几何条件简单明确而易于表达,我们只需把这种关系“翻译”成含动点坐标x,y 的等式,就得到轨迹的方程,由于这种求轨迹的过程不需要其它步骤,也不需要特殊的技巧,所以称之为直接法,也叫直译法.例1(2005年江苏高考题)如图,圆O 1和圆O 2的半径都等于1,O 1O 2=4,过动点P 分别作圆O 1,圆O 2的切线PM,PN(M,N 为切点),使得PM=2PN,试建立平面直角坐标系,并求动点P 的轨迹方程.分析 动点P 满足的条件,题设中已给出,此时只需建系设点P(x,y)代入条件即可. 解:如图,以O 1O 2的中点O 为原点,O 1O 2 所在直线为x 轴,建立所示的平面直角坐标系,则O 1(-2,0) O 2(2,0) 由已知 PM=2PN. 得:PM 2=2PN 2.又两圆的半径均为1,所以 PO 12-1=2(PO 22-1) 设P(x,y),则(x+2)2+y 2-1=2[(x-2)2+y 2-1] 即(x-6)2+y 2=33 ∴ 所求的轨迹方程为 (x-6)2+y 2=33 (或x 2+y 2-12x+3=0)xyo 2o 1oPMN二定义法若动点轨迹满足已知曲线的定义(如圆锥曲线的定义),则可先根据题意设定方程,再确定其中的基本量.例2 已知动圆过定点(2p ,0),且与直线x=-2p相切,其中p ›0,求动圆圆心的轨迹C 方程.解:如图,设M 为动圆圆心,(2p ,0)记为F.过点M 作直线x=-2p的垂线,垂足为N.知:∣MF ∣=∣MN ∣即:动点M 到定点F 与定直线x=-2p的距离相等.由抛物线定义知:点M 的轨迹为抛物线,其中F(2p ,0)为焦点,x=-2p为准线. 所以轨迹C 的方程:y 2=2px(p>0)xyX=-P 2OFMN三 转移法如果动点P(x,y)依赖于已知曲线上的另一个动点M(x 0,y 0)而运动,(不妨将前者称之为被动点,后者称之为主动点),且点M 的坐标可用动点P 的坐标(x,y)的函数式来表示,那么,可以把点P 的运动转移为点M 在已知曲线上的运动来求点P 的轨迹方程,这种求轨迹的方法称之为转移法.转移法求轨迹主要分四步:(1)确定主动点和被动点(已知轨迹的点为主动点,要求的点为被动点); (2)寻找主动点和被动点的函数关系; (3)用被动点坐标表示主动点坐标; (4)代入主动点轨迹方程.例3:已知△ABC 的两个顶点B(-8,0),C(0,0).顶点A 在曲线x 2+y 2-16x=0上运动,求△ABC 的重心G 的轨迹方程.分析:重心G 的运动是由点A 在曲线x 2+y 2-16x=0上运动引起的.因而设G(x,y)为被动点;点A(x 1,y 1)为主动点,再用x,y 表示出点A 的坐标即可建立G 的轨迹方程.解: 如图,设G(x,y)是所求轨迹上的任意一点,顶点A 的坐标A(x 1,y 1). ∵G 是△ABC 的重心,∴由三角形重心坐标公式: 30)8(1x x ++-=即:831+=x x3001y y ++=y y 31= ∵点A 在曲线x 2+y 2-16x=0上.即:x 12+y 12-16x 1=0 ∴(3x+8)2+(3y)2-16(3x+8)=0整理,得: 9x 2+9y 2-64=0 又当 A.B.C 三点共线时,无法构成△ABC.此时无重心可言,∴ △ABC 的重心的轨迹方程为:x 2+y 2=964(y ≠0)xy(C)01oBGA四 点差法如果轨迹问题中涉及到弦中点的问题,都可考虑点差法.只要通过代点作差,并以弦斜率作为引渡,即可获得动点的轨迹方程,此法称为点差法.例4 以P(2,2)为圆心的圆与椭圆x 2+2y 2=m 交于A,B 两点,求AB 中点M 的轨迹方程.解:如图,设A(x 1,y 1),B(x 2,y 2),M(x,y),则x 12+2y 12=m,x 22+2y 22=m,两式作差得x 12-x 22+2y 12-2y 22=0,即(x 1-x 2)(x 1+x 2)+2(y 1-y 2)(y 1+y 2)=0 ∴2x+2·2y ·k AB =0. ∵PM ⊥AB. ∴K PM ·K AB =-1,∴2x+2·2y ·(-22--y x )=0 化简得M 点的轨迹方程为 xy+2x-4y=0xyp(2,2)oBAM五.参数法 如果动点的横、纵坐标之间满足的关系式不容易直接找到,可根据已知条件适当选择一个或两个参数,使动点坐标x 、y 分别与参数建立关系式,然后消去参数,就得到动点的轨迹方程。

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有:1.直接法:若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为(,x y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y 的关系式。

从而得到轨迹方程,这种求轨迹方程的方法称作直接法。

例1:在直角△ABC 中,斜边是定长2a (0)a >,求直角顶点C 的轨迹方程。

解:由于未给定坐标系,为此,首先建立直角坐标系,取AB 所在的直线为x 轴,AB 的中点O 为坐标原点,过O 与AB 垂直的直线为y 轴(如图).则有A (,0)a -,B (,0)a 。

设动点C 为(,)x y ,∵222||||||AC BC AB +=,∴2224a +=,即222x y a +=.由于C 点到达A 、B 位置时直角三角形ABC 不存在,轨迹中应除去A 、B 两点,故所求方程为222x y a +=(x a ≠±)。

2.代入法(或利用相关点法):即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。

例2:已知一条长为6的线段两端点A 、B 分别在x 、y 轴上滑动,点M 在线段AB 上,且:1:2AM MB =,求动点M 的轨迹方程。

解:设A (,0)a ,B (0,)b ,M (,)x y ,一方面,∵||6AB =,∴2236a b +=, ①另一方面,M 分AB 的比为12,∴1022133122130121312a x a a xb y b y b ⎧+⨯⎪==⎪⎪+⎧=⎪⎪⇒⎨⎨⎪⎪=+⎩⎪==⎪+⎪⎩ ② ②代入①得:223()(3)362x y +=,即221164x y +=。

评注:本例中,由于M 点的坐标随着A 、B 的变化而变化,因而动点M 的坐标(,)x y 可以用A 、B 点的坐标来表示,而点M 又满足已知条件,从而得到M 的轨迹方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何中轨迹问题的求解策略
求曲线方程的常用思路和方法
1.直译法
例1 求与y 轴相切,并且和圆2240x y x +-=外切的圆的圆心的轨迹方程. 解 由2240x y x +-=,有()2
2222x y -+=.
设动圆的圆心P 的坐标为(x ,y).根据题意设点A 的坐标为(2,0),则有2PA x =+,即
2x =+.化简整理得2
44y x x =+.当0x ≥时,28;y x =当x ﹤0时,
y=0.
综上可知,所求圆心的轨迹方程为28y x =(x ≥0)或y=0(x <0).
小结 直接将动点满足的几何等量关系“翻译”成动点x 、y ,所得方程即为所求动点的轨迹方程.用直译法求解,列式容易,但在对等式等价变形与化简过程中应特别留心是否需要讨论.
2.定义法
例2 已知圆C :()2
2
125x y ++=内一点A(1,0),Q 点为圆C 上任意一点,线段AQ
的垂直平分线与线段CQ 连线交于点M ,求点M 的轨迹方程.
解 连接AM ,点M 在线段AQ 的垂直平分线上,则AM=MQ. 5=+MQ CM ,∴5=+MA CM .
故点M(x ,y)到点C(-1,0)和点A(1,0)的距离之和是常数5,且5>2.所以点P 的轨迹是一个以A 、C 为焦点的椭圆.
∵2a=5,2c=2,∴2
2
2
214
b a
c =-=
.∴点M 的轨迹方程为
2
2
125214
4
x
y
+
=.
小结 若动点运动的几何条件恰好与圆锥曲线的定义吻合,可直接根据定义建立动点的轨迹方程.用定义法求解可先确定曲线的类型与方程的具体结构式,然后用待定系数法求解. 3.代入法
例3 抛物线x 2
=4y 的焦点为F ,过点M(0,-1)作直线l 交抛物线于不同两点A 、B ,以AF 、BF 为邻边作平行四边形FARB ,求顶点R 的轨迹方程.
解 设点R 的坐标为(x ,y),平行四边形FARB 的对角线的点为P(x 0,y 0),F(0,1),由中点坐标公式可得001,22
x y x y +=
=
.
设A 点的坐标为(x 1,y 1),B(x 2,y 2),则可知x 1≠x 2, 且x 12=4y 1,x 22
=4y 2.上述两式对应相减得x 12-x 22=4(y 1-y 2).从而有02
A B x k =
.
又A 、P 、B 、M 四点共线,且00
1PM y k x +=,由K AB = K PM 可得x 02=2(y 0+1).把001,2
2
x y x y +=
=
代入上式并整理得x 2=4y+12.
小结 动点是直线被圆锥曲线截得的弦中点,只要通过代点作差并以弦的斜率作为过渡,即可获得动点的轨迹方程.事实上这就是中点弦问题的处理方法. 4.参数法
例4 已知点P 在直线x=2上移动,直线l
垂直,通过点A(1,0)及点P 的直线m 和直线l 相交于点Q Q 的轨迹方程.
解 如图1所示,设OP 所在直线的斜率为k ,则点 P 的坐标为(2,2k).
由l O P ⊥,得直线的方程为x+ky=0. ① 易得直线m 的方程为y=2k(x-1). ②
由于点Q(x ,y)是直线l 和直线m 的交点,所以将①②
联立,消去k ,得点Q 的轨迹方程为02222=-+x y x (x 小结 当动点坐标满足的等量关系不容易直接找到时,我们可选取与动点坐标有密切关系的量(如角、斜率k 、比值等)作参数t ,根据已知条件求出动点的参数式方程,然后消去参数t 即可得动点的轨迹方程,这种求轨迹方程的方法叫参数法.
圆与圆锥曲线的轨迹问题
例5 如图2所示,矩形A B C D 的两条对角线相交于点(20)M ,,A B 边所在直线的方程为360x y --=,点
(11)T -,在A D 边所在的直线上.
(1)求A D 边所在直线的方程. (2)求矩形A B C D 外接圆的方程.
(3)若动圆P 过点(20)N -,,且与矩形A B C D 的外接圆外切,求动圆P 的圆心的轨迹方程.
解 (1)A D 边所在直线的方程为320x y ++=. (2)矩形A B C D 外接圆的方程为2
2
(2)8x y -+=.
(3)因为动圆P过点N,所以
P N是该圆的半径.又动圆P与圆M外切,
所以PM PN
=+
PM PN
-=
故点P的轨迹是以M
N
,为焦点,实轴长为的双曲线的左支.
因为实半轴长a=
半焦距2
c=,所以虚半轴长b==从而动圆P的圆心的轨迹方程为
22
1(
22
x y
x
-=≤.
小结根据题设条件,分析矩形图形的有关性质,通过解由两个直线方程组成的方程组求得圆心坐标,再利用两点间的距离公式求出半径,从而得出“矩形ABCD的外接圆”的标准方程.本题的第(1)问和第(2)问,将平面几何中的一个重要而基本的图形——矩形与圆结合起来,难度不大,但考查的基础知识却不少.
立体几何与解析几何的轨迹问题
1.轨迹为椭圆
例6如图3所示,AB是平面a的斜线段,A
在平面a内运动,使得△ABP的面积为定值,则动点P
A.圆
B.椭圆
C.一条直线
D.两条平行直线
解根据△ABP的面积为定值,线段AB是定值,则动点P到线
段AB的距离也是定值,设此定值为d,所以点P在平面a的轨迹是一个以d为半径且与线段AB垂直的圆在平面a上的投影,即为椭圆.选B.
小结涉及面积、点到直线的距离等多个知识点的综合,实质利用投影,考查对椭圆图像的理解.
2.轨迹为抛物线
例7如图4所示,在正方体ABCD—A
1
B
1
C
1
D
1
中,
P是侧面BB
1
C
1
C内一个动点,若P到直线BC与直线C
1
D
1
的距离相等,则动点P的轨迹所在的曲线是
A.直线
B.圆
C.双曲线
D.抛物线
解由C
1
D
1
⊥平面BB
1
C
1
C,得PC
1
⊥C
1
D
1
,所以PC
1
就是点P到直线C
1
D
1
的距离.因此已知条件转化为点P
到BC的距离等于点P到点C
1
的距离.根据抛物线的定
义,可知点P的轨迹所在的曲线是抛物线.选D.
小结例6和例7均巧妙地利用了题中某些定值定量条件,从而转化为定义法来判定动点轨迹.这其实也是解析几何中求轨迹问题常用的方法之一.
3.轨迹为双曲线
例8已知α
α∉
e,,过点P引与直线e成45°角的直线交平面α于Q,则Q点
⊂p
的轨迹是
A.两个点
B.双曲线
C.椭圆
D.抛物线
解如图5所示,过点P作PO⊥α于O点,
以过O点与e平行的直线为y轴,以OP为z轴,
建立空间直角坐标系.过点Q作OA⊥x轴于A.设Q
点的坐标为(x,y,0),则A点的坐标为(x,0,0).
由于P点固定,我们不妨设P(0,0,h),由OA=PA,
可知y2=x2+h2.故Q点的轨迹是双曲线.选B.
小结解答本题时,首先建立空间直角坐标系,然后把立体几何与解析几何知识直接联
系起来,根据圆锥曲线的定义作出判断.。

相关文档
最新文档