相关分析和一元线性回归分析SPSS报告

合集下载

SPSS的相关分析和线性回归分析

SPSS的相关分析和线性回归分析

• 如果两变量的正相关性较强,它们秩的变化具有同步性,于

n
Di2
n
(Ui
Vi)2的值较小,r趋向于1;
• i1
i1
如果两变量的正相关性较弱,它们秩的变化不具有同步性,
于是
n
n
Di2 (Ui Vi)2
的值较大,r趋向于0;
• i1
i1
在小样本下,在零假设成立时, Spearman等级相关系数
用最小二乘法求解方程中的两个参数,得到:
1
(xi x)(yi y) (xi x)2
0 ybx
多元线性回归模型
多元线性回归方程: y=β0+β1x1+β2x2+.+βkxk
β1、β2、βk为偏回归系数。 β1表示在其他自变量保持不变的情况下,自变量x1变动
一个单位所引起的因变量y的平均变动。
析功能子命令Bivariate过程、Partial过程、 Distances过程,分别对应着相关分析、偏相关分析和相 似性测度(距离)的三个spss过程。
Bivariate过程用于进行两个或多个变量间的相关分 析,如为多个变量,给出两两相关的分析结果。
Partial过程,当进行相关分析的两个变量的取值都受 到其他变量的影响时,就可以利用偏相关分析对其他变量 进行控制,输出控制其他变量影响后的偏相关系数。
• 回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释变量( 因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
8.4.2 线性回归模型 一元线性回归模型的数学模型:
y0 1x
其中x为自变量;y为因变量; 0 为截距,即
常量; 1 为回归系数,表明自变量对因变量的影

SPSS相关性和回归分析一元线性方程案例解析

SPSS相关性和回归分析一元线性方程案例解析
1:点击“分析”—相关—双变量,进入如下界面:
将“居民总储蓄”和“居民总消费”两个变量移入“变量”框内,在“相关系数”栏目中选择“Pearson",(Pearson是一种简单相关系数分析和计算的方法,如果需要进行进一步分析,需要借助“多远线性回归”分析)在“显著性检验”中选择“双侧检验”并且勾选“标记显著性相关”点击确定,得到如下结果:
2:从anvoa b的检验结果来看(其实这是一个“回归模型的方差分析表)F的统计量为:29.057,P值显示为0.000,拒绝模型整体不显著的假设,证明模型整体是显著的
3:从“系数a”这个表可以看出“回归系数,回归系数的标准差,回归系数的T显著性检验等,回归系数常量为:2878.518,但是SIG为:0.452,常数项不显著,回归系数为:0.954,相对的sig为:0.000,具备显著性,由于在“anvoa b”表中提到了模型整体是“显著”的
SPSS-相关性和回归分析(一元线性方物和人都不是以个体存在的,它们都被复杂的关系链所围绕着,具有一定的相关性,也会具备一定的因果关系,(比如:父母和子女,不仅具备相关性,而且还具备因果关系,因为有了父亲和母亲,才有了儿子或女儿),但不是所有相关联的事物都具备因果关系。
所以一元线性方程为:居民总消费=2878.518+0.954*居民总储蓄
其中在“样本数据统计”中,随即误差一般叫“残差”:
从结果分析来看,可以简单的认为:居民总储蓄每增加1亿,那居民总消费将会增加0.954亿
提示:对于回归参数的估计,一般采用的是“最小二乘估计法”原则即为:“残差平方和最小“
点击“分析”--回归----线性”结果如下所示:
将“因变量”和“自变量”分别拖入框内(如上图所示)从上图可以看出:“自变量”指“居民总储蓄”, "因变量”是指“居民总消费”

相关分析和回归分析SPSS实现

相关分析和回归分析SPSS实现

相关分析和回归分析SPSS实现SPSS(统计包统计分析软件)是一种广泛使用的数据分析工具,在相关分析和回归分析方面具有强大的功能。

本文将介绍如何使用SPSS进行相关分析和回归分析。

相关分析(Correlation Analysis)用于探索两个或多个变量之间的关系。

在SPSS中,可以通过如下步骤进行相关分析:1.打开SPSS软件并导入数据集。

2.选择“分析”菜单,然后选择“相关”子菜单。

3.在“相关”对话框中,选择将要分析的变量,然后单击“箭头”将其添加到“变量”框中。

4.选择相关系数的计算方法(如皮尔逊相关系数、斯皮尔曼等级相关系数)。

5.单击“确定”按钮,SPSS将计算相关系数并将结果显示在输出窗口中。

回归分析(Regression Analysis)用于建立一个预测模型,来预测因变量在自变量影响下的变化。

在SPSS中,可以通过如下步骤进行回归分析:1.打开SPSS软件并导入数据集。

2.选择“分析”菜单,然后选择“回归”子菜单。

3.在“回归”对话框中,选择要分析的因变量和自变量,然后单击“箭头”将其添加到“因变量”和“自变量”框中。

4.选择回归模型的方法(如线性回归、多项式回归等)。

5.单击“统计”按钮,选择要计算的统计量(如参数估计、拟合优度等)。

6.单击“确定”按钮,SPSS将计算回归模型并将结果显示在输出窗口中。

在分析结果中,相关分析会显示相关系数的数值和统计显著性水平,以评估变量之间的关系强度和统计显著性。

回归分析会显示回归系数的数值和显著性水平,以评估自变量对因变量的影响。

值得注意的是,相关分析和回归分析在使用前需要考虑数据的要求和前提条件。

例如,相关分析要求变量间的关系是线性的,回归分析要求自变量与因变量之间存在一定的关联关系。

总结起来,SPSS提供了强大的功能和工具,便于进行相关分析和回归分析。

通过上述步骤,用户可以轻松地完成数据分析和结果呈现。

然而,分析结果的解释和应用需要结合具体的研究背景和目的进行综合考虑。

SPSS的相关分析和回归分析

SPSS的相关分析和回归分析
(如:身高和体重)
n
( Xi X )(Yi Y )
r
11
n
n
( Xi X )2 (Yi Y )2i 1i 1源自2021/3/611
计算相关系数
(一)相关系数 (3)种类:
n
n
Di2 (Ui Vi )2
i 1
i 1
R
1
6 n(n2
Di2 1)
• Spearman相关系数:用来度量定序或定类变量间的线性相
第八章 SPSS的相关分析和回归分 析
2021/3/6
1
概述
(一)相关关系
(1)函数关系:(如:销售额与销售量;圆面积和圆半径.)
是事物间的一种一一对应的确定性关系.即:当一 个变量x取一定值时,另一变量y可以依确定的关 系取一个确定的值
(2)统计关系:(如:收入和消费;身高的遗传.)
事物间的关系不是确定性的.即:当一个变量x取 一定值时,另一变量y的取值可能有几个.一个变 量的值不能由另一个变量唯一确定
300
•散点图在进行相
200
关分析时较为粗略
100
领导(管理)人数
2021/3/6
0
Rsq = 0.7762
8 200 400 600 800 1000 1200 1400 1600 1800
普通职工数
计算相关系数
(一)相关系数 (1)作用:
– 以精确的相关系数(r)体现两个变量间的线性 关系程度.
2021/3/6
17
计算相关系数
(五)应用举例
• 通过27家企业普通员工人数和管理人员数,利用 相关系数分析人数之间的关系
– *表示t检验值发生的概率小于等于0.05,即总体无相 关的可能性小于0.05;

spss一元回归分析详细操作与结果分析

spss一元回归分析详细操作与结果分析

spss一元回归分析详细操作与结果分析Case1:降水&纬度Case1数据说明:⏹53个台站的年降水量、年蒸发量、纬度和海拔数据⏹在本例中,把降水量P作为因变量,纬度作为自变量Case1目的:⏹分析降水量和纬度之间的数量关系Case1操作要点:⏹做散点图,查看两因素之间是否线性相关⏹如果线性相关,接着做线性回归分析,揭示其数量关系⏹对回归方程做显著性检验打开spss的数据编辑器,编辑变量视图注意:因为我们的数据中“台站名”最多是5个汉字,所以字符串宽度最小为10才能全部显示。

编辑数据视图,将excel数据复制粘贴到spss中⏹从菜单上依次点选:图形—旧对话框—散点/点状⏹定义简单分布,设置Y为年降水量,X为纬度⏹由散点图发现,降水量与纬度之间线性相关给散点图添加趋势线的方法:•双击输出结果中的散点图•在“图表编辑器”的菜单中依次点击“元素”—“总计拟合线”,由此“属性”中加载了“拟合线”•拟合方法选择“线性”,置信区间可以选95%个体,应用step3:线性回归分析⏹从菜单上依次点选:分析—回归—线性⏹设置:因变量为“年降水量”,自变量为“纬度”⏹“方法”:选择默认的“进入”,即自变量一次全部进入的方法。

⏹“统计量”:•勾选“模型拟合度”,在结果中会输出“模型汇总”表•勾选“估计”,则会输出“系数”表⏹“绘制”:在这一项设置中也可以做散点图⏹“保存”:•注意:在保存中被选中的项目,都将在数据编辑窗口显示。

•在本例中我们勾选95%的置信区间单值,未标准化残差⏹“选项”:只需要在选择方法为逐步回归后,才需要打开【统计量】按钮⏹“回归系数”复选框组:定义回归系数的输出情况•勾选“估计”可输出回归系数B及其标准误差,t值和p值•勾选“误差条图的表征”则输出每个回归系数的95%可信区间•勾选“协方差矩阵”则会输出各个自变量的相关矩阵和方差、协方差矩阵。

⏹“残差”复选框组:•用于选择输出残差诊断的信息,可选的有Durbin-Watson残差序列相关性检验、个案诊断。

实验报告四.SPSS一元线性相关回归分析预测

实验报告四.SPSS一元线性相关回归分析预测

a
均值 159.1000 .000 .781 159.2740 .00000 .000 -.038 -.17402 .007 .900 .104 .100
标准 偏差 1.79729 1.000 .308 1.95023 1.75840 .943 1.025 2.10525 1.084 1.583 .133 .176
广东金融学院实验报告
课程名称:市场调查与预测
实验编号 及实验名称 姓 名
实验四:SPSS 一元线性相关回归分析预测 马秀文 实验中心 周刺天
系 班
别 级
工商管理系 市场营销 2 班 4


111521216 2013/12/9 无
实验地点 指导教师
实验日期 同组其他成员
实验时数 成 绩
一、实验目的及要求 利用 SPSS 进行回归分析。 二、实验环境及相关情况(包含使用软件、实验设备、主要仪器及材料等) 通过实验教学中心的教学环境发布相关练习资料。 软件运行环境:操作系统 WindowsXP,办公自动化软件,SPSS 统计分析软件包。 硬件设备:实验室的个人电脑。 三、实验内容及步骤(包含简要的实验步骤流程) 为了了解某地母亲身高 x 与女儿身高 Y 的相关关系,随机测得 10 对母女的身高(见文 件“母女身高.sav”) 。利用 SPSS 软件,完成以下任务: 1.画出 x、Y 散点图,观察因变量与自变量之间关系是否有线性特点; 2.试对 x 与 Y 进行一元线性回归分析,列出一元线性回归预测模型; 3.预测当母亲身高为 161cm 时女儿的身高?
第 2 页 共 7 页
四、实验结果(包括程序或图表(截图) 、 自变量与因变量有线性特点, 即母亲身高和女儿身高有线性特点, 且大致呈正相关的关系。

SPSS相关性和回归分析一元线性方程案例解析

SPSS相关性和回归分析一元线性方程案例解析
所以一元线性方程为:居民总消费=2878.518+0.954*居民总储蓄
其中在“样本数据统计”中,随即误差一般叫“残差”:
从结果分析来看,可以简单的认为:居民总储蓄每增加1亿,那居民总消费将会增加0.954亿
提示:对于回归参数的估计,一般采用的是“最小二乘估计法”原则即为:“残差平方和最小“
1:点击“分析”—相关—双变量,进入如下界面:
将“居民总储蓄”和“居民总消费”两个变量移入“变量”框内,在“相关系数”栏目中选择“Pearson",(Pearson是一种简单相关系数分析和计算的方法,如果需要进行进一步分析,需要借助“多远线性回归”分析)在“显著性检验”中选择“双侧检验”并且勾选“标记显著性相关”点击确定,得到如下结果:
从以上结果,可以看出“Pearson"的相关性为0.821,(可以认为是“两者的相关系数为0.821)属于“正相关关系”同时“显著性(双侧)结果为0.000,由于0.000<0.01,所以具备显著性,得出:“居民总储蓄”和“居民总消费”具备相关性,有关联。
既然具备相关性,那么我们将进一步做分析,建立回归分析,并且构建“一元线性方程”,如下所示:
2:从anvoa b的检验结果来看(其实这是一个“回归模型的方差分析表)F的统计量为:29.057,P值显示为0.000,拒绝模型整体不显著的假设,证明模型整体是显著的
3:从“系数a”这个表可以看出“回归系数,回归系数的标准差,回归系数的T显著性检验等,回归系数常量为:2878.518,但是SIG为:0.452,常数项不显著,回归系数为:0.954,相对的sig为:0.000,具备显著性,由于在“anvoa b”表中提到了模型整体是“显著”的
SPSS-相关性和回归分析(一元线性方程)案例解析

SPSS相关性分析

SPSS相关性分析

相关分析的作用



判断变量之间有无联系 确定相关关系的表现形式及相关分析方法 把握相关关系的方向与密切程度 为进一步采取其他统计方法进行分析提供依据 用来进行预测
相关分析和回归分析区别


相关分析:如果仅仅研究变量之间的相互关系 的密切程度和变化趋势,并用适当的统计指标 描述。 回归分析:如果要把变量间相互关系用函数表 达出来,用一个或多个变量的取值来估计另一 个变量的取值。
2 Cn
2 (U V ) n(n 1)
偏相关分析


概念:当有多个变量存在时,为了研究任何两 个变量之间的关系,而使与这两个变量有联系 的其它变量都保持不变。即控制了其它一个或 多个变量的影响下,计算两个变量的相关性。 偏相关系数:偏相关系数是用来衡量任何两个 变量之间的关系的大小。 自由度:在统计学中,自由度指的是计算某一 统计量时,取值不受限制的变量个数。通常 df=n-k。其中n为样本含量,k为被限制的条 件数或变量个数,或计算某一统计量时用到其 它独立统计量的个数。
线性相关和非线性相关
统计关系还可以分为: (1)线性相关:当一个变量的值发生变化时, 另外的一个变量也发生大致相同的变化。在直 角坐标系中,如现象观察值的分布大致在一条 直线上,则现象之间的相关关系为线性相关或 直线相关(Linear correlation)。 (2)非线性相关:如果一个变量发生变动,另 外的变量也随之变动,但是,其观察值分布近 似的在一条曲线上,则变量之间的相关关系为 非线性相关或曲线相关(Curvilinear correlation)
回归方程统计检验

回归方程的拟合优度:回归直线与各观测点的接近程度称 为回归方程的拟合优度,也就是样本观测值聚集在回归线 周围的紧密程度 。

SPSS一元线性相关回归分析预测

SPSS一元线性相关回归分析预测
Standardized Coefficients
t
Sig.
Bபைடு நூலகம்
Std. Error
Beta
1
(Constant)
34.996
42.932
.815
.439
母亲身高
.782
.270
.715
2.891
.020
a. Dependent Variable:女儿身高
女儿身高=34.995798+母亲身高*0.781513
答:1.画出x、Y散点图,观察因变量与自变量之间关系是否有线性特点;
散点图:
有线性关系。由上图可看出,因变量与自变量总体上存在正相关关系,图形大致呈向右上方上升的趋势。
2.试对x与Y进行一元线性回归分析,列出一元线性回归预测模型;
Coefficientsa
Model
Unstandardized Coefficients
六、教师评语
1.□优秀(90~100分):完成所有规定实验内容,实验步骤正确,结果正确;
2.□良好(80~89分):完成绝大部分规定实验内容,实验步骤正确,结果正确;
3.□中等(70~79分):完成绝大部分规定实验内容,实验步骤基本正确,结果基本正确;
4.□及格(60~69分):基本完成规定实验内容,实验步骤基本正确,完成结果基本正确;
硬件设备:实验室的个人电脑。
三、实验内容及步骤(包含简要的实验步骤流程)
为了了解某地母亲身高x与女儿身高Y的相关关系,随机测得10对母女的身高(见文件“母女身高.sav”)。利用SPSS软件,完成以下任务:
1.画出x、Y散点图,观察因变量与自变量之间关系是否有线性特点;
2.试对x与Y进行一元线性回归分析,列出一元线性回归预测模型;

实验报告四.spss一元线性相关回归分析预测

实验报告四.spss一元线性相关回归分析预测

实验报告四.spss一元线性相关回归分析预测
本实验使用spss 17.0软件,针对50个被试者,使用一元线性相关回归分析预测变
量X和Y的关系。

一、实验目的
通过一元线性相关回归分析,预测50个被试者的被试变量X(会计实操次数)和被试变量Y(综合评价分)之间的关系,来检验变量X是否能够预测变量Y的值。

二、实验流程
(2)数据收集:通过收集50个被试者的实际实操次数与综合评价分,建立反映这两
者之间关系的一元线性回归方程。

(3)数据分析:通过SPSS软件的一元线性相关回归分析预测变量X和Y的关系,使
用R方值进行检验研究结果的显著性。

以分析变量X对于变量Y的影响程度。

三、实验结果及分析
1.回归分析结果如下所示:变量X的系数b = 0.6755,t = 7.561,p = 0.000,说
明变量X和被试变量Y之间存在着显著的相关关系;R方值为0.941,说明变量X可以较
好地预测变量Y。

2.可以得出一元线性回归方程为:Y=0.67×X+5.293,其中,b为系数,X是自变量,Y是因变量。

四、结论
(1)50个被试者实际实操次数与综合评价分之间存在着显著的相关性;
(2)变量X可以较好地预测变量Y,R方值较高;。

相关分析报告与回归分析报告SPSS实现

相关分析报告与回归分析报告SPSS实现

相关分析与回归分析一、试验目标与要求本试验项目的目的是学习并使用SPSS 软件进展相关分析和回归分析,具体包括:(1) 皮尔逊pearson 简单相关系数的计算与分析(2) 学会在SPSS 上实现一元与多元回归模型的计算与检验。

(3) 学会回归模型的散点图与样本方程图形。

(4) 学会对所计算结果进展统计分析说明。

(5) 要求试验前,了解回归分析的如下内容。

♦ 参数α、β的估计♦ 回归模型的检验方法:回归系数β的显著性检验〔t -检验〕;回归方程显著性检验〔F -检验〕。

二、试验原理1.相关分析的统计学原理相关分析使用某个指标来明确现象之间相互依存关系的密切程度。

用来测度简单线性相关关系的系数是Pearson 简单相关系数。

2.回归分析的统计学原理相关关系不等于因果关系,要明确因果关系必须借助于回归分析。

回归分析是研究两个变量或多个变量之间因果关系的统计方法。

其根本思想是,在相关分析的根底上,对具有相关关系的两个或多个变量之间数量变化的一般关系进展测定,确立一个适宜的数据模型,以便从一个量推断另一个未知量。

回归分析的主要任务就是根据样本数据估计参数,建立回归模型,对参数和模型进展检验和判断,并进展预测等。

线性回归数学模型如下:i ik k i i i x x x y εββββ+++++= 22110在模型中,回归系数是未知的,可以在已有样本的根底上,使用最小二乘法对回归系数进展估计,得到如下的样本回归函数:iik k i i i e x x x y +++++=ββββˆˆˆˆ22110 回归模型中的参数估计出来之后,还必须对其进展检验。

如果通过检验发现模型有缺陷,如此必须回到模型的设定阶段或参数估计阶段,重新选择被解释变量和解释变量与其函数形式,或者对数据进展加工整理之后再次估计参数。

回归模型的检验包括一级检验和二级检验。

一级检验又叫统计学检验,它是利用统计学的抽样理论来检验样本回归方程的可靠性,具体又可以分为拟和优度评价和显著性检验;二级检验又称为经济计量学检验,它是对线性回归模型的假定条件能否得到满足进展检验,具体包括序列相关检验、异方差检验等。

SPSS回归分析实验报告

SPSS回归分析实验报告

中国计量学院现代科技学院实验报告实验课程:应用统计学实验名称: 回归分析_____________ 班级:___________________________ 学号:______________________________ 姓名:__________________________ 实验日期:2012.05.23 ____________实验成绩:________________ 指导教师签名: __________________实验目的一元线性回归简单地说是涉及一个自变量的回归分析个变量之间的线性关系,建立线性数学模型并进行评价预测一元线性回归的求解和多元线性回归理论与方法。

二. 实验环境中国计量学院现代科技学院机房310三. 实验步骤与内容1打开应用统计学实验指导书,新建excel表,主要功能是处理两本实验要求掌握新疆 3670.2 766852 •打开SPSS,将数据导入3 •打开分析,选择回归分析再选择线性因变量选全年供水总量,自变量选供水管道长度 统计里回归系数选估计,再选择模型拟合空旧I 圖囤 丨_ |韵虫| 叮鬥 口圭|冃 钥10 11 12 13 14 15W 17 1R19 2021232425 26 272831地区|供水管道|全年供水 天肄 1J 西对蒙古黒龙江:工芯 晰江 安徵 江西闕北云甫宁裏var var var var var var1ESS E6S22 W771 5669 5&36 21999 E385906G' 22099j 3663'f 24127627011406 15669 3572969231727 6063 12251 3275 5209 365 42705010393 T&39 367C120323165632 45198527425363 735S06212714390^921 76685-SP5S Data Editor訳肋(囲恚 E ■ T -S i.U64537 160132 110512 143240568949 134412 202417107777525 5^276 2田7氐185C92257787彳胎狞■!235535 20412B 230610 159570 153367 308309^ 360395"按继续再按确定会出来分析的结果7EB■* b |\M> Ww & Vslife Vtowfi2iZ736^91却朋134412 2W*i 71(177FE£EZ2第I*口川 鼻州出常-* MKlt "Ell“ f j. |4iJI+ Regressionbth De pe n den tVa rt attie'(万平方米)a. Predictors: (ConstamtJ.ft^Xa. Predittnrs: (Ccnstant ),ftzKr®Iff Io. Dcpen dent Vari at>le :(万平右米)3DependentVariabie'对以上结果进行分析:(1)回归方程为:y=28484.712+11.610X (X 是自变量供水管道长度,丫是因 变量全年供水总量)(2)检验1) 拟合效果检验根据表2可知,R2=0.819 ,即拟合效果好,线性成立。

相关分析和回归分析SPSS

相关分析和回归分析SPSS

人均 国民收入
1068.8 1169.2 1250.7 1429.5 1725.9 2099.5
人均 消费金额
643 690 713 803 947 1148
计算结果

解:根据样本相关系数的计算公式有
r
n x x n y y
2 2 2
n xy x y
回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释 变量(因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
回归分析与相关分析的区别
1. 相关分析中,变量 x 变量 y 处于平等的地位, 是对称的双向关系;回归分析中,变量 y 称为因 变量,处在被解释的地位, x 称为自变量,用于 预测因变量的变化,是一种不对称的单向关系。 2. 相关分析中所涉及的变量 x 和 y 都是随机变量 ;回归分析中,因变量 y 是随机变量,自变量 x 可以是随机变量,也可以是非随机的确定变量。 3. 相关分析主要描述两个变量间线性关系的密切程 度;回归分析不仅可以揭示变量 x 对变量 y 的 影响大小,还可以由回归方程进行预测和控制。
一元线性回归模型(概念要点)

对于只涉及一个自变量的简单线性回归模型可表示 为 y = b + b x +
模型中,y 是 x 的线性函数(部分)加上误差项 线性部分反映了由于 x 的变化而引起的 y 的变化 误差项 是随机变量 • 反映了除 x 和 y 之间的线性关系之外的随机因素对 y 的影响 • 是不能由 x 和 y 之间的线性关系所解释的变异性 b0 和 b1 称为模型的参数
Bivariate过程用于进行两个或多个变量间的相关分析,如为
多个变量,给出两两相关的分析结果。 Partial过程,当进行相关分析的两个变量的取值都受到其他 变量的影响时,就可以利用偏相关分析对其他变量进行控制 ,输出控制其他变量影响后的偏相关系数。 Distances过程用于对各样本点之间或各个变量之间进行相似 性分析,一般不单独使用,而作为聚类分析和因子分析等的 预分析。

相关分析和回归分析实验

相关分析和回归分析实验

实验五 相关分析和回归分析实验实验目的:用SPSS 进行相关分析、一元线性回归、多元线性回归和非线性回归分析。

实验步骤:一、相关分析 步骤1:准备数据步骤2:根据问题需要,选择“分析/相关”子菜单中的“双变量”、“偏相关”或“距离”过程,进行相关性分析。

如选择“双变量”,在如图6.1所示窗口选择变量和参数,单击“确定”按钮,在结果输出窗口得到输出窗口。

图6.1 双变量相关分析中变量选择和参数选择窗口相关性1.091.90944.0911.90944Pearson 相关性显著性(双侧)NPearson 相关性显著性(双侧)N产地1产地2产地1产地2图6.2 计算结果二、一元线性回归某省1978-1989年国内生产总值和固定资产投资完成额资料如表6.1所示。

年份 国内生产总值y固定资产投资完成额xxy x2y21978 195 20 3900 400 38025 197921020420040044100试配合适当的回归模型。

步骤1:输入和整理数据。

步骤2:绘制散点图,如图6.3所示,检查变量的相关性。

步骤3:选择“分析/回归/线性”,在图6.4窗口选择自变量和因变量,单击“统计量”按钮,在弹出的窗口设置参数;单击“图”按钮,可以选择输出的图形。

最后单击“确定”按钮。

步骤4:在结果输出窗口得一元线性回归计算结果。

根据选择的参数不同,得到ANOV A 和回归系数等数据,如图6.5所示。

图6.3 散点图图6.4 线性回归变量选择和参数设置窗口系数a171.92016.31610.537.0002.277.135.98316.883.000(常量)x模型1B 标准误非标准化系数Beta标准化系数t显著性因变量: ya.图6.5 计算所得回归系数三、多元线性回归以教程第六章第三节例题数据为基础,使用SPSS 软件进行多元线性回归。

在SPSS 中,多元线性回归和一元线性回归使用相同的命令。

区别在于在如6.4所示窗口中的自变量一项,将选择多个自变量即可。

相关分析和一元线性回归分析SPSS报告

相关分析和一元线性回归分析SPSS报告

用下面的数据做相关分析和一元线性回归分析:选用普通高等学校毕业生数和高等学校发表科技论文数量做相关分析和一元线性回归分析。

一、相关分析1.作散点图普通高等学校毕业生数和高等学校发表科技论文数量的相关图从散点图可以看出:普通高等学校毕业生数和高等学校发表科技论文数量的相关性很大。

2.求普通高等学校毕业生数和高等学校发表科技论文数量的相关系数把要求的两个相关变量移至变量中,因为都是定距数据,选择相关系数中的Pearson,点击确定,可以得到下面的结果:关;相关系数检验对应的概率P值=0.000,小于显著性水平0.05,应拒绝原假设(两变量之间不具有相关性),即毕业生人数好发表科技论文数之间的相关性显著。

3.求两变量之间的相关性选择相关系数中的全部,点击确定:Correlations(万人) (篇)Kendall's tau_b (万人)CorrelationCoefficient1.000 1.000** Sig. (2-tailed) . .N 14 14 (篇) CorrelationCoefficient1.000**1.000Sig. (2-tailed) . .N 14 14Spearma n's rho (万人)CorrelationCoefficient1.000 1.000**Kendall相关系数=1.000,呈正相关;无相关系数检验对应的概率P 值,应接受原假设(两变量之间不具有相关性),即毕业生数与发表论文数之间相关性不显著。

两相关变量(毕业生数和发表论文数)的Spearman 相关系数=1.000,呈正相关;无相关系数检验对应的概率P值,应接受原假设(两变量之间不具有相关性),即毕业生数与发表论文数之间相关性不显著。

4.普通高等学校毕业生数和高等学校发表科技论文数量的相关系数将所求变量移至变量,将控制变量移至控制中,选中显示实际显著性水平,点击确定:Correlations相关系数=0.998,呈正相关;对应的偏相关系数双侧检验p 值0,小于显著性水平0.05,应拒绝原假设(两变量之间不具有相关性),即普通高校毕业生数与发表论文数之间相关性显著。

SPSS相关分析实验报告_实验报告_

SPSS相关分析实验报告_实验报告_

SPSS相关分析实验报告篇一:spss对数据进行相关性分析实验报告实验一一.实验目的掌握用spss软件对数据进行相关性分析,熟悉其操作过程,并能分析其结果。

二.实验原理相关性分析是考察两个变量之间线性关系的一种统计分析方法。

更精确地说,当一个变量发生变化时,另一个变量如何变化,此时就需要通过计算相关系数来做深入的定量考察。

P值是针对原假设H0:假设两变量无线性相关而言的。

一般假设检验的显著性水平为0.05,你只需要拿p值和0.05进行比较:如果p值小于0.05,就拒绝原假设H0,说明两变量有线性相关的关系,他们无线性相关的可能性小于0.05;如果大于0.05,则一般认为无线性相关关系,至于相关的程度则要看相关系数R值,r越大,说明越相关。

越小,则相关程度越低。

而偏相关分析是指当两个变量同时与第三个变量相关时,将第三个变量的影响剔除,只分析另外两个变量之间相关程度的过程,其检验过程与相关分析相似。

三、实验内容掌握使用spss软件对数据进行相关性分析,从变量之间的相关关系,寻求与人均食品支出密切相关的因素。

(1)检验人均食品支出与粮价和人均收入之间的相关关系。

a.打开spss软件,输入“回归人均食品支出”数据。

b.在spssd的菜单栏中选择点击,弹出一个对话窗口。

C.在对话窗口中点击ok,系统输出结果,如下表。

从表中可以看出,人均食品支出与人均收入之间的相关系数为0.921,t检验的显著性概率为0.000<0.01,拒绝零假设,表明两个变量之间显著相关。

人均食品支出与粮食平均单价之间的相关系数为0.730,t检验的显著性概率为0.000<0.01,拒绝零假设,表明两个变量之间也显著相关。

(2)研究人均食品支出与人均收入之间的偏相关关系。

读入数据后:A.点击系统弹出一个对话窗口。

B.点击OK,系统输出结果,如下表。

从表中可以看出,人均食品支出与人均收入的偏相关系数为0.8665,显著性概率p=0.000<0.01,说明在剔除了粮食单价的影响后,人均食品支出与人均收入依然有显著性关系,并且0.8665<0.921,说明它们之间的显著性关系稍有减弱。

《2024年数据统计分析软件SPSS的应用(五)——相关分析与回归分析》范文

《2024年数据统计分析软件SPSS的应用(五)——相关分析与回归分析》范文

《数据统计分析软件SPSS的应用(五)——相关分析与回归分析》篇一数据统计分析软件SPSS的应用(五)——相关分析与回归分析一、引言在当今的大数据时代,数据统计分析成为了科学研究、市场调研、社会统计等众多领域的重要工具。

SPSS(Statistical Package for the Social Sciences)作为一款功能强大的数据统计分析软件,被广泛应用于各类数据分析中。

本文将重点介绍SPSS 中相关分析与回归分析的应用,以帮助读者更好地理解和掌握这两种分析方法。

二、相关分析1. 相关分析的概念与目的相关分析是研究两个或多个变量之间关系密切程度的一种统计方法。

其目的是通过计算相关系数,了解变量之间的线性关系强度和方向,为后续的回归分析提供依据。

2. SPSS中的相关分析操作步骤(1)导入数据:将数据导入SPSS软件中,建立数据文件。

(2)选择分析方法:在SPSS菜单中选择“分析”->“相关”->“双变量”,进行相关分析。

(3)设置变量:在弹出的对话框中,设置需要进行相关分析的变量。

(4)计算相关系数:点击“确定”后,SPSS将自动计算两个变量之间的相关系数,并显示在结果窗口中。

3. 相关分析的注意事项(1)选择合适的相关系数:根据研究目的和数据特点,选择合适的相关系数,如Pearson相关系数、Spearman相关系数等。

(2)控制混淆变量:在进行相关分析时,要控制可能影响结果的混淆变量,以提高分析的准确性。

三、回归分析1. 回归分析的概念与目的回归分析是研究一个或多个自变量与因变量之间关系的一种预测建模方法。

其目的是通过建立自变量和因变量之间的数学模型,预测因变量的值或探究自变量对因变量的影响程度。

2. SPSS中的回归分析操作步骤(1)导入数据:同相关分析一样,将数据导入SPSS软件中。

(2)选择分析方法:在SPSS菜单中选择“分析”->“回归”->“线性”,进行回归分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相关分析和一元线性回归分析SPSS报告用下面的数据做相关分析和一元线性回归分析:选用普通高等学校毕业生数和高等学校发表科技论文数量做相关分析和一元线性回归分析。

一、相关分析1.作散点图普通高等学校毕业生数和高等学校发表科技论文数量的相关图从散点图可以看出:普通高等学校毕业生数和高等学校发表科技论文数量的相关性很大。

2.求普通高等学校毕业生数和高等学校发表科技论文数量的相关系数把要求的两个相关变量移至变量中,因为都是定距数据,选择相关系数中的Pearson,点击确定,可以得到下面的结果:Correlations普通高等学校毕业生数(万人) 高等学校发表科技论文数量(篇)普通高等学校毕业生数(万人) Pearson Correlation 1 .998**Sig. (2-tailed) .000N 14 14高等学校发表科技论文数量(篇) Pearson Correlation .998** 1 Sig. (2-tailed) .000N 14 14**. Correlation is significant at the 0.01 level (2-tailed).两相关变量的Pearson相关系数=0.0998,表示呈高度正相关;相关系数检验对应的概率P值=0.000,小于显著性水平0.05,应拒绝原假设(两变量之间不具有相关性),即毕业生人数好发表科技论文数之间的相关性显著。

3.求两变量之间的相关性选择相关系数中的全部,点击确定:Correlations(万人) (篇)Kendall's tau_b (万人) Correlation Coefficient 1.000 1.000**Sig. (2-tailed) . .N 14 14(篇) Correlation Coefficient 1.000** 1.000Sig. (2-tailed) . .N 14 14Spearman's rho (万人) Correlation Coefficient 1.000 1.000**Sig. (2-tailed) . .N 14 14(篇) Correlation Coefficient 1.000** 1.000Sig. (2-tailed) . .N 14 14**. Correlation is significant at the 0.01 level (2-tailed).注解:两相关变量(毕业生数和发表论文数)的Kendall相关系数=1.000,呈正相关;无相关系数检验对应的概率P值,应接受原假设(两变量之间不具有相关性),即毕业生数与发表论文数之间相关性不显著。

两相关变量(毕业生数和发表论文数)的Spearman相关系数=1.000,呈正相关;无相关系数检验对应的概率P值,应接受原假设(两变量之间不具有相关性),即毕业生数与发表论文数之间相关性不显著。

4.普通高等学校毕业生数和高等学校发表科技论文数量的相关系数将所求变量移至变量,将控制变量移至控制中,选中显示实际显著性水平,点击确定:Correlations普通高等学校毕业生数(万人) 高等学校发表科技论文数量(篇)普通高等学校毕业生数(万人) Pearson Correlation 1 .998**Sig. (2-tailed) .000N 14 14高等学校发表科技论文数量(篇) Pearson Correlation .998** 1 Sig. (2-tailed) .000N 14 14**. Correlation is significant at the 0.01 level (2-tailed).注解: 两相关变量(普通高校毕业生数和发表论文数)的偏相关系数=0.998,呈正相关;对应的偏相关系数双侧检验p值0,小于显著性水平0.05,应拒绝原假设(两变量之间不具有相关性),即普通高校毕业生数与发表论文数之间相关性显著。

二、一元线性回归从前面的相关分析可以看出普通高等学校毕业生数和高等学校发表科技论文数量呈高度正相关关系,所以,下面对这两个变量做一元线性回归分析。

1.建立回归方程点击选项,选中使用F的概率,如上图所示。

点击继续,确定:Variables Entered/Removed bModel VariablesEnteredVariablesRemoved Method1 (篇)a. Entera. All requested variables entered.b. Dependent Variable: (万人)此图显示的是回归分析方法引入变量的方式。

Model SummaryModel R R Square Adjusted RSquareStd. Error ofthe Estimate1 .998a.996 .996 11.707a. Predictors: (Constant), (篇)此图是回归方程的拟合优度检验。

注解:上图是回归方程的拟合优度检验。

第二列:两变量(被解释变量和解释变量)的相关系数R=0.998.第三列:被解释变量(毕业人数)和解释变量(发表科技论文数)的判定系数R2=0.996是一元线性回归方程拟合优度检验的统计量;判定系数越接近1,说明回归方程对样本数据的拟合优度越高,被解释变量可以被模型解释的部分越多。

第四列:被解释变量(毕业人数)和解释变量(发表科技论文数)的调整判定系数R2=0.996。

这主要适用于多个解释变量的时候。

第五列:回归方程的估计标准误差=11.707.ANOVA bModel Sum of Squares df Mean Square F Sig.1 Regression 448318.664 1 448318.664 3271.335 .000aResidual 1644.535 12 137.045Total 449963.199 13a. Predictors: (Constant), (篇)b. Dependent Variable: (万人)注解:回归方程的整体显著性检验—回归分析的方差分析第二列:被解释变量(毕业人数)的总离差平方和=449963.199,被分解为两部分:回归平方和=448318.664;剩余平方和=1644.535.F检验统计量的值=3271.335,对应概率的P值=0.000,小于显著性水平0.05,应拒绝回归方程显著性检验的原假设(回归系数与0不存在显著性差异),结论:回归系数不为0,被解释变量(毕业人数)与解释变量(发表科技论文数)的线性关系是显著的,可以建立线性模型。

Coefficients aModel Unstandardized CoefficientsStandardizedCoefficientst Sig.B Std. Error Beta1 (Constant) -316.259 14.029 -22.543 .000(篇) .001 .000 .998 57.196 .000Coefficients aModel Unstandardized CoefficientsStandardizedCoefficientst Sig.B Std. Error Beta1 (Constant) -316.259 14.029 -22.543 .000(篇) .001 .000 .998 57.196 .000a. Dependent Variable: (万人)注解:回归方程的回归系数和常数项的估计值,以及回归系数的显著性检验。

第二列:常数项估计值=-316.259;回归系数估计值=0.001.第三列:回归系数的标准误差=0.000第四列:标准化回归系数=0.998.第五、六列:回归系数T检验的t统计量值=57.196,对应的概率P 值=0.000,小于显著性水平0.05,拒绝原假设(回归系数与0不存在显著性差异),结论:回归系数不为0,被解释变量(毕业人数)与解释变量(发表科技论文数)的线性关系是显著的。

于是,回归方程为:y i=-316.259+0.001x2.回归方程的进一步分析(1)在统计量中选中误差条图的表征,水平百分之95.点击继续,然后点击确定,输出每个非标准化回归系数的95%置信区间:选中统计量中的描述性,点击继续,然后确定,输出变量的均值、标准差相关系数矩阵和单侧检验概率值:Descriptive StatisticsMean Std. Deviation N(万人) 465.92 186.044 14(篇) 932780.57 221459.019 14Correlations(万人) (篇)Pearson Correlation (万人) 1.000 .998(篇) .998 1.000Sig. (1-tailed) (万人) . .000(篇) .000 .N (万人) 14 14(篇) 14 14(2)残差分析选中统计量中的个案诊断,所有个案,点击继续,然后确定:Residuals Statistics aMinimum Maximum Mean Std. Deviation N Predicted Value 137.72 707.16 465.92 185.704 14 Std. Predicted Value -1.767 1.299 .000 1.000 143.153 6.5364.320 .995 14 Standard Error of PredictedValueAdjusted Predicted Value 139.53 713.78 466.40 185.620 14 Residual -26.276 19.112 .000 11.247 14 Std. Residual -2.245 1.633 .000 .961 14 Stud. Residual -2.511 1.696 -.018 1.048 14 Deleted Residual -32.896 20.618 -.473 13.403 14 Stud. Deleted Residual -3.491 1.862 -.073 1.259 14 Mahal. Distance .015 3.123 .929 .890 14 Cook's Distance .000 .795 .100 .205 14 Centered Leverage Value .001 .240 .071 .068 14 a. Dependent Variable: (万人)Casewise Diagnostics aCaseNumber Std. Residual (万人) Predicted Value Residual1 -2.245 681 707.16 -26.2762 .811 659 649.87 9.4943 .834 639 628.96 9.7594 .314 625 621.02 3.6785 -.542 608 614.50 -6.3416 .061 575 574.71 .7117 -.418 531 536.00 -4.8968 1.633 512 492.84 19.1129 .370 448 443.45 4.33610 -.259 378 380.53 -3.03211 1.070 307 294.27 12.52712 -.447 239 244.33 -5.22813 -.842 188 197.55 -9.85214 -.341 134 137.72 -3.993a. Dependent Variable: (万人)从上表可以看出,第8例的残差和标准化残差最大。

相关文档
最新文档