煤燃烧氮氧化物的计算方法
工业燃料燃烧氮氧化物排放系数
按照污染源分类,氮氧化物排放量统计分为工业、生活和移动源三部分,具体做法分别如下:
工业源
工业NOx排放来源于两种渠道,即燃料燃烧排放和生产过程排放。
工业企业NOx排放统计采用企业发表调查方法,即在原有5张企业基表基础上增加工业企业NOx排放量调查表(环基6表)。排放量数据优先采用实测法(监测数据),其次采用系数测算法。
二、NOx排放系数汇总
工业、生活和移动源NOx排放系数详见下表。需要强调的是,该排放系数仅为推荐排放系数,各地区可以根据实际排放情况,或采用地方实测值,或对推荐系数进行适度调整。
工业污染源NOx排放系数
工业污染源燃料燃烧NOx排放系数见表2-1,生产过程NOx排放系数见表2-2。有NOx排放的生产过程包括用沥青铺路、脂肪酸、硝酸、炭黑、钢铁、铁合金、铝、制浆和造纸等行业。
表2-1工业燃料燃烧NOx排放系数kg(NOx)/t(燃料)
排放源
类别煤焦炉气焦炭 Nhomakorabea原油
汽油
煤油
柴油
燃料油
沥青
LPG
天然气(10-4kg/m3)
垃圾沼气/填埋气
煤气(10-4kg/m3)
柴火
生物燃料
炼厂
干气
热
电
火力发电
9.95
7.24
16.7
21.2
7.4
10.06
3.74
40.96
13.53
0.75
工业
7.5
9
5.09
16.7
7.46
9.62
5.84
2.63
20.85
9.5
0.53
炼焦/炼油
0.37
0.24
NOx换算
煤燃烧过程中产生的氮氧化物(NOx )主要是一氧化氮(NO )和二氧化氮(NO 2)。
在燃烧温度大于1200℃的常规燃煤设备中,将会有大量的NO 生成,但NO 2的生成量几乎可以忽略不计,当烟气温度降低至排烟温度的水平时,理论上讲烟气中所有的NO 将氧化成NO 2,但实际上排烟中90%~95%的NOx 仍是NO ,这是由于当反应在温度降低至1300℃以下时,其反应速度将变得缓慢,因此在高温下形成的NOx 将主要以NO 形式排入大气,并在大气中慢慢转化为NO 2。
因此,在炉膛出口测试主要测试NO 的含量。
一、对环境大气(空气)中污染物浓度的表示方法有两种:1、质量浓度表示法:每立方米空气中所含污染物的质量数,即mg/m 3 。
2、体积浓度表示法:一百万体积的空气中所含污染物的体积数,即ppm 大部分气体检测仪器测得的气体浓度都是体积浓度(ppm )。
而按我国规定,特别是环保部门,则要求气体浓度以质量浓度的单位(如:mg/m 3)表示,我们国家的标准规范也都是采用质量浓度单位(如:mg/m 3)表示。
使用质量浓度单位(mg/m 3)作为空气污染物浓度的表示方法,可以方便计算出污染物的真正量。
但质量浓度与检测气体的温度、压力环境条件有关,其数值会随着温度、气压等环境条件的变化而不同;实际测量时需要同时测定气体的温度和大气压力。
而在使用ppm 作为描述污染物浓度时,由于采取的是体积比,不会出现这个问题。
标态下换算:4.22*3ppm M m mg = M 为气体分子量,由于NO 在大气中最终转化为NO 2,因此此处M 按照NO 2的分子量,即为46,ppm 为测定的体积浓度值。
二、国家规定锅炉排烟中NO x 含量,按GB13223-2003《火电厂大气污染物排放标准》换算为标准状态干烟气中过量空气系数为1.4时的质量浓度。
NO X 排放浓度以下式计算:4.1''α•=X X NO NO C C式中:X NO C ——换算到过量空气系数为1.4时的NO X 排放浓度,μL/L ;'XNO C ——实测的NO X 排放浓度; 'α —— 实测的过量空气系数。
氮氧化物排放量计算
锅炉燃烧氮氧化物排放量燃料燃烧生成的氮氧化物量可用下式核算:GNOx=1.63B(B・n+K EVyCNOx)式中:GNOx ~燃料燃烧生成的氮氧化物(以NO2计)量(kg);B ~煤或重油消耗量(kg);8~燃烧氮向燃料型NO的转变率(%),与燃料含氮量n有关。
普通燃烧条件下,燃煤层燃炉为25~50%(n>0.4%),燃油锅炉为32~40%, 煤粉炉取20~25%;n ~燃料中氮的含量(%);Vy ~燃料生成的烟气量(Nm3/kg);CNOx ~温度型NO 浓度(mg/ Nm3),通常取70ppm,即93.8mg/ Nm3。
第一种方法:《环境统计手册》-方品贤中的计算方法(第99和100页)和国家环保总局《关于排污费征收核定有关工作的通知》(环发[2003]64 号)中氮氧化物的计算方法上述方法是一致的,假设了燃烧1kg 煤产生10m3 烟气。
GNOx=1.63XB X (NXp +0.000938GNOx—氮氧化物排放量,kg;B -肖耗的燃煤(油)量,kg;N -然料中的含氮量,%;《环境保护实用数据手册》-胡名操和《环境统计手册》-方品贤统计数据一致。
取0.85%。
(3—燃料中氮的转化率,%。
取70%计算燃烧1t 煤产生氮氧化物量为18.64kg。
第二种方法:根据N守恒,计算公式为:G = BXN/14冷>46其中:G—预测年二氧化氮排放量;N —煤的氮含量(%),取0.85%;a—氮氧化物转化为二氧化氮的效率(%),取70%。
B—燃煤量。
计算燃烧1t煤氮氧化物产生量为19.55 kg。
第三种方法:按照《环境保护实用数据手册》-胡名操中相关统计数据,工业锅炉燃烧1t煤产生的氮氧化物为9.08kg (第65页,表2-51);用烟煤作燃料,选锅炉铺撇式加煤产生的氮氧化物为7.5kg(第66页,表2-53); 用无烟煤作燃料的锅炉燃烧,选可移动炉蓖产生的氮氧化物产生量为5kg (第67页,表2-57);美国典型的燃烧烟煤小型工业锅炉的氮氧化物7.5kg (第68页,表2-60)。
燃料燃烧排放污染物物料衡算方法总结(20200524194709)
燃料燃烧排放大气污染物物料衡算方法工业锅炉、采暖锅炉、家用炉等纯燃料燃烧装置使用煤、液体燃料(重油、轻油)、燃气(煤气、液化石油气、天然气)等燃料在燃烧过程中产生大量的烟气、烟尘、粉煤灰和炉渣。
烟气中主要污染物有二氧化硫、氮氧化物和一氧化碳等。
由于纯燃料燃烧过程使用的燃料一般不与物料接触,因此燃料燃烧产生的污染物就是燃料本身燃烧所产生的污染物。
根据《排污费征收使用管理条例》(国务院令第369号)中关于通过物料衡算方法进行排污申报核定的规定特制定本办法,本办法主要适用于不具备监测条件的或者具备监测条件但未提供监测数据的排污者进行排污申报核定和收费。
一、燃料燃烧产生烟尘量的物料衡算方法燃料燃烧时产生的烟尘中包括黑烟和飞灰两部分,黑烟是未完全燃烧的物质,以游离态碳(即碳黑)和挥发物为主,绝大部分是可燃物质,黑烟的粒径一般在0.01—1微米之间。
飞灰是烟尘中不可燃矿物灰分的微粒,粒径一般在1微米以上,它们的产生量与燃料成分、设备、燃烧状况有关。
常用的烟尘量测算办法有燃煤—飞灰计算法和林格曼黑度与烟尘浓度对照法。
1、燃煤—烟尘计算法,公式如下:G sd=1000×B×A×d fh×(1-η)/(1-C fh)Gsd——烟尘排放量,kg;B——耗煤量,T;A——煤中灰分(含尘量),%;dfh——烟气中烟尘占灰分量的比率,%;其值与燃烧与方式有关,常见的链条炉25%,可参考表1;η——除尘系统除尘效率,%,各种除尘器效率可参考表2选取,未装除尘器时,η= 0;;Cfh - 烟尘中可燃物的比率,%,烟尘中可燃物的含量Cfh 一般可取30%,煤粉炉可取8%,沸腾炉可取25%。
表1 烟尘中的灰占煤灰分之百分比d fh值炉型dfh (%) 炉型dfh (%) 炉型dfh (%) 炉型dfh (%) 手烧炉25 抛煤机炉40 振动炉40 煤粉炉85 链条炉25 沸腾炉60 往复推饲炉20表2 各类除尘器的除尘效率η表除尘方式平均除尘效率(%)除尘方式平均除尘效率(%)干式沉降63.4 麻石水膜88.4湿法喷淋、冲击、降尘76.1 静电85.1 旋风84.6 玻璃纤维布袋96.2扩散式85.8 湿式文丘里水膜两级除尘96.8陶瓷多管71.3 百叶窗加电除尘95.2金属多管83.3 SW型加钢管水膜93.00管式水膜75.6 立式多管加灰斗抽风除尘93.00目前我市燃煤主要以丰城、新余的为主,其次有山西等地的煤,其灰分在20%--40%之间,我市燃煤灰份(A)取28%,烟尘中可燃物的百分含量(Cfh)取30%。
煤炭燃烧氮氧化物产生机理及控制方法研究
煤炭燃烧氮氧化物产生机理及控制方法研究Introduction煤炭是中国最主要的能源来源之一,然而,燃烧煤炭常常带来大量的氮氧化物排放,这对环境和人类健康造成了严重影响。
因此,控制煤炭燃烧氮氧化物的排放成为了环保领域的一个重要研究方向。
I. 煤炭燃烧氮氧化物产生机理煤炭中含有氮元素,燃烧过程中,氮元素主要以两种形式存在:一种是有机氮,如蛋白质、脂肪等,另一种是无机氮,如氨、氰化物等。
由于煤样、燃烧条件等的不同,氮元素的存在形式也不同。
煤炭中的氮元素在燃烧过程中会与空气中的氧进行反应,产生一系列氮氧化物(NOx),包括一氧化氮(NO)和二氧化氮(NO2)。
主要反应式如下:N2 + O2 -> 2NO2NO + O2 -> 2NO2II. 煤炭燃烧氮氧化物的控制方法1. 预先措施a. 煤炭氮含量控制:通过调整煤炭的选取和使用,可以有效地控制氮氧化物的排放。
选择低氮煤炭或煤炭洗选去除煤炭中的氮元素是控制煤炭燃烧氮氧化物排放的首要措施。
b. 煤粉矫正:通过改变煤粉中氧气、水分和灰分的含量,调节煤粉的燃烧条件,降低氮氧化物的排放。
2. 燃烧后减排a. 排烟氮氧化物的后处理:在煤炭燃烧锅炉的尾部增加氮氧化物还原剂(如尿素等)来降低NOx的排放。
b. 气体循环系统:通过将锅炉废气中的氮氧化物送入高温区,利用高温分解和还原反应降低氮氧化物的排放。
c. 燃烧控制技术:通过优化煤粉的燃烧条件,如煤粉喷射速度、煤粉尺寸等,降低氮氧化物的排放。
d. SCR脱硝法:在煤炭燃烧工艺中加入一种氨水溶液,使其与废气中的NOx发生反应,生成氮气和水蒸气。
Conclusion总之,煤炭燃烧氮氧化物的排放对环境和人类健康具有严重危害。
因此,控制煤炭燃烧氮氧化物的排放成为了环保领域的一个重要研究方向。
本文介绍了煤炭燃烧氮氧化物的产生机理和控制方法,这些方法可以有效地降低煤炭燃烧氮氧化物的排放,从而达到环保的目的。
常见废气的折算方式和系数(二)
常见废气的折算方式和系数(二)引言概述:本文将介绍常见废气的折算方式和系数(二)。
废气排放是环境污染的重要来源之一,了解不同废气的排放量及其对环境的影响程度,对于环保工作和废气治理具有重要意义。
因此,准确计算和折算废气排放量是一项必要的技术任务。
本文将从五个大点来详细阐述常见废气的折算方式和系数。
正文:1. 二氧化硫(SO2)折算方式和系数1.1 硫磺燃烧产生的SO2的折算方式1.2 天然气燃烧产生的SO2的折算方式1.3 煤燃烧产生的SO2的折算方式1.4 工业废气中SO2的系数计算方法1.5 大气环境中SO2的折算系数的确定方法2. 一氧化氮(NO)和氮氧化物(NOx)折算方式和系数2.1 燃煤工况下NOx的折算方式和系数2.2 工业废气中NOx的折算方式和系数2.3 机动车尾气中NOx的折算方式和系数2.4 大气中NOx的折算系数的计算方法2.5 NO和NOx的折算方式和系数的国际标准比较3. 悬浮颗粒物(PM)折算方式和系数3.1 环境中颗粒物的直接测量方法和折算系数3.2 燃煤工况下PM的折算方式和系数3.3 工业废气中PM的折算方式和系数3.4 移动源排放的PM折算系数计算方法3.5 大气中PM的折算系数的国内外差异分析4. 氨气(NH3)折算方式和系数4.1 农业源废气中NH3的折算方式和系数4.2 工业废气中NH3的折算方式和系数4.3 大气中NH3的排放折算系数的测定方法4.4 大气中NH3的折算系数的应用领域和价值4.5 NH3折算系数的国内外发展情况与趋势5. 挥发性有机物(VOC)折算方式和系数5.1 VOC在室内空气中的测量与折算方法5.2 工业废气中VOC的折算方式和系数5.3 移动源废气中VOC的折算方式和系数5.4 大气中VOC的折算系数的计算方法5.5 VOC折算系数的国际标准和发展动向总结:通过对常见废气折算方式和系数的详细阐述,本文介绍了SO2、NO和NOx、PM、NH3、VOC等废气的折算方式和系数计算方法。
氮氧化物的计算方法
燃烧产生的氮氧化物根实际燃烧条件关系密切,所以要准确估算是非常困难的。
如果条件允许,尽量类比具备可比性同类型项目实测数据;在无实测情况下最好查阅相关书籍或相关研究成果计算方式,根据相关条件选择相近情况公式的计算结果准确率稍高,而且符合导则要求可找到依据出处;切记别拍脑袋。
以下几种方法供大家参考。
传统方法第一种方法:《环境统计手册》-方品贤中的计算方法(第99和100页)和国家环保总局《关于排污费征收核定有关工作的通知》(环发[2003]64号)中氮氧化物的计算方法上述方法是一致的,假设了燃烧1kg煤产生10m3烟气。
GNOx=1.63×B×(N×β+0.000938)GNOx—氮氧化物排放量,kg;B–消耗的燃煤(油)量,kg;N–燃料中的含氮量,%;《环境保护实用数据手册》-胡名操和《环境统计手册》-方品贤统计数据一致。
取0.85%。
β—燃料中氮的转化率,%。
取70%计算燃烧1t煤产生氮氧化物量为18.64kg。
第二种方法:根据N守恒,计算公式为:G=B×N/14×a×46其中:G—预测年二氧化氮排放量;N—煤的氮含量(%),取0.85%;a—氮氧化物转化为二氧化氮的效率(%),取70%。
B—燃煤量。
计算燃烧1t煤氮氧化物产生量为19.55 kg。
第三种方法:按照《环境保护实用数据手册》-胡名操中相关统计数据,工业锅炉燃烧1t煤产生的氮氧化物为9.08kg(第65页,表2-51);用烟煤作燃料,选锅炉铺撇式加煤产生的氮氧化物为7.5kg(第66页,表2-53);用无烟煤作燃料的锅炉燃烧,选可移动炉蓖产生的氮氧化物产生量为5kg(第67页,表2-57);美国典型的燃烧烟煤小型工业锅炉的氮氧化物7.5kg(第68页,表2-60)。
第四种计算方法:采用《产排污系数手册》第十册:按燃烧1t煤来计算:烟煤-层燃炉:2.94kg;285.7mg/m3;(第240页)锅炉燃烧氮氧化物排放量燃料燃烧生成的氮氧化物量可用下式核算:GNOx=1.63B(β·n+10-6Vy·CNOx)式中:GNOx ~燃料燃烧生成的氮氧化物(以NO2计)量(kg);B ~煤或重油消耗量(kg);β ~燃烧氮向燃料型NO的转变率(%),与燃料含氮量n有关。
氮氧化物排放量计算
锅炉燃烧氮氧化物排放量燃料燃烧生成的氮氧化物量可用下式核算:GNOx=1.63B(β·n+10-6Vy·CNOx)式中:GNOx ~燃料燃烧生成的氮氧化物(以NO2计)量(kg);B ~煤或重油消耗量(kg);β ~燃烧氮向燃料型NO的转变率(%),与燃料含氮量n有关。
普通燃烧条件下,燃煤层燃炉为25~50%(n≥0.4%),燃油锅炉为32~40%,煤粉炉取20~25%;n ~燃料中氮的含量(%);Vy ~燃料生成的烟气量(Nm3/kg);CNOx ~温度型NO浓度(mg/Nm3),通常取70ppm,即93.8mg/Nm3。
第一种方法:《环境统计手册》-方品贤中的计算方法(第99和100页)和国家环保总局《关于排污费征收核定有关工作的通知》(环发[2003]64号)中氮氧化物的计算方法上述方法是一致的,假设了燃烧1kg煤产生10m3烟气。
GNOx=1.63×B×(N×β+0.000938)GNOx—氮氧化物排放量,kg;B–消耗的燃煤(油)量,kg;N–燃料中的含氮量,%;《环境保护实用数据手册》-胡名操和《环境统计手册》-方品贤统计数据一致。
取0.85%。
β—燃料中氮的转化率,%。
取70%计算燃烧1t煤产生氮氧化物量为18.64kg。
第二种方法:根据N守恒,计算公式为:G=B×N/14×a×46其中:G—预测年二氧化氮排放量;N—煤的氮含量(%),取0.85%;a—氮氧化物转化为二氧化氮的效率(%),取70%。
B—燃煤量。
计算燃烧1t煤氮氧化物产生量为19.55 kg。
第三种方法:按照《环境保护实用数据手册》-胡名操中相关统计数据,工业锅炉燃烧1t煤产生的氮氧化物为9.08kg(第65页,表2-51);用烟煤作燃料,选锅炉铺撇式加煤产生的氮氧化物为7.5kg(第66页,表2-53);用无烟煤作燃料的锅炉燃烧,选可移动炉蓖产生的氮氧化物产生量为5kg(第67页,表2-57);美国典型的燃烧烟煤小型工业锅炉的氮氧化物7.5kg(第68页,表2-60)。
燃料燃烧产生的氮氧化物量计算、排放标准及技术改造补贴汇总
燃料燃烧产生的氮氧化物量计算、排放标准及低氮改造补贴汇总
一、燃料燃烧产生的氮氧化物量的计算方法 天然化石燃料燃烧过程中生成的氮氧化物中,一氧化氮占 90%,其余为二氧化氮。 燃料燃烧生成的 NOx 主要来源于: 一是,燃料中含有许多氮的有机物,如喹啉 C5H5N、吡啶 C9H7N 等,在一定温度下放出大量的氮 原子,而生成大量的 NO,通常称为燃料型 NO。 二是,空气中的氮在高温下氧化为氮氧化物,称为温度型 NOx。燃料含氮量的大小对烟气中氮氧化 物浓度的高低影响很大,而温度是影响温度型氮氧化物生成量大小的主要因素。
2.单台锅炉容量 20 蒸吨以上燃气锅炉补贴 (1)NOx 排放浓度削减幅度不低于 50%,且浓度值低于 30mg/m³的项目,按照改造投资额的 30%给 予奖补资金; (2)氮氧化物排放浓度削减幅度不低于 50%,且浓度值达到 30-80mg/m³之间的,按照改造投资额的 25%给予奖补资金。 (3)2017 年 5 月以后新建燃气锅炉,应达到市环保局关于燃气锅炉低氮燃烧排放标准要求,但不享 受低氮燃烧奖补政策。
【西安】 ——政策 新建燃气锅炉氮氧化物排放浓度低于 30mg/m³,现有燃气锅炉低氮改造后 NOx 排放浓度不高于 80mg/m³。对不同改造方式、不同排放浓度、不同减排效果、不同锅炉容量分类予以奖补。 ——补贴 1.单台锅炉容量 20 蒸吨及以下燃气锅炉 方式一:通过更换低氮燃烧器的方式进行改造,NOx 排放浓度削减幅度不低于 50%,且浓度值低于 30mg/m³的项目 (1)单台燃气锅炉容量小于等于 4 蒸吨,低氮天然气锅炉补贴=2×锅炉容量+3.5(万元) (2)单台燃气锅炉容量大于 4 蒸吨,低氮锅炉奖补资金=1.5×锅炉容量+6(万元) 方式二:通过更换低氮燃烧器的方式进行改造,NOx 排放浓度削减幅度不低于 50%,且浓度值达到 30-80mg/m³之间的项目 (1)单台锅炉容量小于等于 4 蒸吨,锅炉资金补助=1.2×锅炉容量+1.5(万元) (2)单台锅炉容量大于 4 蒸吨,燃气锅炉补贴=锅炉容量+2.5(万元) 方式三:通过整体更换锅炉,氮氧化物排放浓度削减幅度不低于 50%,且浓度值低于 30mg/m³的 项目 (1)单台锅炉容量小于等于 4 蒸吨,低氮锅炉补助=2.6×锅炉容量+7(万元) (2)单台锅炉容量大于 4 蒸吨,低氮燃烧锅炉补贴=2.5×锅炉容量+8(万元)
锅炉燃烧氮氧化物计算
锅炉燃烧氮氧化物排放量燃料燃烧生成的氮氧化物量可用下式核算:G NOx=1.63B(β·n+10-6V y·C NOx)式中:G NOx :燃料燃烧生成的氮氧化物(以NO2计)量(kg);B :煤或重油消耗量(kg);β ~燃烧氮向燃料型NO的转变率(%),与燃料含氮量n有关。
普通燃烧条件下,燃煤层燃为25~50%(n≥0.4%),燃油锅炉为32~40%,煤粉炉取20~25%;n :燃料中氮的含量(%);Vy ~燃料生成的烟气量(Nm3/kg);C NOx ~温度型NO浓度(mg/Nm3),通常取70ppm,即93.8mg/Nm3。
第一种方法:《环境统计手册》-方品贤中的计算方法(第99和100页)和国家环保总局《关于排污费征收核定有关工作的通知》(环发[2003]64号)中氮氧化物的计算方法上述方法是一致的,假设了燃烧1kg煤产生10m3烟气。
G NOx=1.63×B×(N ar×β+0.000938)G NOx—氮氧化物排放量,kg;B–消耗的燃煤(油)量,kg;N ar–燃料中的含氮量,%;《环境保护实用数据手册》-胡名操和《环境统计手册》-方品贤统计数据一致。
取0.85%。
β—燃料中氮的转化率,%。
取70%计算燃烧1t煤产生氮氧化物量为18.64kg。
第二种方法:根据N守恒,计算公式为:G=B×N/14×a×46其中:G—预测年二氧化氮排放量;N—煤的氮含量(%),取0.85%a—氮氧化物转化为二氧化氮的效率(%),取70%。
B—燃煤量。
计算燃烧1t煤氮氧化物产生量为19.55 kg。
第三种方法:按照《环境保护实用数据手册》-胡名操中相关统计数据,工业锅炉燃烧1t煤产生的氮氧化物为9.08kg(第65页,表2-51);用烟煤作燃料,选锅炉铺撇式加煤产生的氮氧化物为7.5kg(第66页,表2-53);用无烟煤作燃料的锅炉燃烧,选可移动炉蓖产生的氮氧化物产生量为5kg(第67页,表2-57);美国典型的燃烧烟煤小型工业锅炉的氮氧化物7.5kg (第68页,表2-60)。
燃料燃烧污染物计算
一、燃料燃烧产生烟尘量的物料衡算方法燃料燃烧时产生的烟尘中包括黑烟和飞灰两部分,黑烟是未完全燃烧的物质,以游离态碳(即碳黑)和挥发物为主,绝大部分是可燃物质,黑烟的粒径一般在0.01—1微米之间。
飞灰是烟尘中不可燃矿物灰分的微粒,粒径一般在1微米以上,它们的产生量与燃料成分、设备、燃烧状况有关。
常用的烟尘量测算办法有燃煤—飞灰计算法和林格曼黑度与烟尘浓度对照法。
1、燃煤—飞灰计算法燃煤—飞灰计算法公式如下:G sd = B . A . d fh .(1 - η)/(1 - C fh)G sd–烟尘排放量,kg ;B –耗煤量,kg;A –煤中灰份含量,%;d fh–烟气中烟尘占灰分量的比率,%,其值与燃烧与方式有关,可参考表1;η- 除尘系统的除尘效率,各种除尘器效率可参考表2选取,未装除尘器时,η= 0;C fh - 烟尘中可燃物的比率,%,烟尘中可燃物的含量C fh 一般可取40%,煤粉炉可取8%,沸腾炉可取25%。
表1烟尘中的灰占煤灰分之百分比d fh值表2各类除尘器的除尘效率η表一般燃煤灰份(A)取28%,烟尘中可燃物的百分含量(C fh)取40%。
在不考虑除尘效率情况下,锅炉不同燃煤方式燃用时的烟尘产污系数见表3。
表3锅炉不同燃煤方式燃用时的烟尘产污系数(kg/t煤)最终计算公式为:G sd= 0.19 .B 。
(1-η), (kg、kg、d fh=40% )二、燃料燃烧产生二氧化硫量的物料衡算方法1、煤炭中硫的成分可分为可燃硫和非可燃硫,可燃硫约占全硫分的80%。
煤燃烧后产生的二氧化硫的排放量计算公式如下:Cso2 = 2 。
80% 。
B 。
S 。
(1 - η)2、燃油燃烧后产生的二氧化硫的排放量计算公式如下:Cso2 = 2 。
B 。
S 。
(1 - η)Cso2 -- 二氧化硫排放量,kg;B –消耗的燃料煤(油)量,kg;S –燃料中的全硫分含量,%;η- 脱硫装置的二氧化硫去除率,%,各种脱硫技术的平均效果见表5。
氮氧化物排放量计算
锅炉燃烧氮氧化物排放量燃料燃烧生成的氮氧化物量可用下式核算:GNOx=1.63B(β·n+10-6Vy·CNOx)式中:GNOx ~燃料燃烧生成的氮氧化物(以NO2计)量(kg);B ~煤或重油消耗量(kg);β ~燃烧氮向燃料型NO的转变率(%),与燃料含氮量n有关。
普通燃烧条件下,燃煤层燃炉为25~50%(n≥0.4%),燃油锅炉为32~40%,煤粉炉取20~25%;n ~燃料中氮的含量(%);Vy ~燃料生成的烟气量(Nm3/kg);CNOx ~温度型NO浓度(mg/Nm3),通常取70ppm,即93.8mg/Nm3。
第一种方法:《环境统计手册》-方品贤中的计算方法(第99和100页)和国家环保总局《关于排污费征收核定有关工作的通知》(环发[2003]64号)中氮氧化物的计算方法上述方法是一致的,假设了燃烧1kg煤产生10m3烟气。
GNOx=1.63×B×(N×β+0.000938)GNOx—氮氧化物排放量,kg;B–消耗的燃煤(油)量,kg;N–燃料中的含氮量,%;《环境保护实用数据手册》-胡名操和《环境统计手册》-方品贤统计数据一致。
取0.85%。
β—燃料中氮的转化率,%。
取70%计算燃烧1t煤产生氮氧化物量为18.64kg。
第二种方法:根据N守恒,计算公式为:G=B×N/14×a×46其中:G—预测年二氧化氮排放量;N—煤的氮含量(%),取0.85%;a—氮氧化物转化为二氧化氮的效率(%),取70%。
B—燃煤量。
计算燃烧1t煤氮氧化物产生量为19.55 kg。
第三种方法:按照《环境保护实用数据手册》-胡名操中相关统计数据,工业锅炉燃烧1t煤产生的氮氧化物为9.08kg(第65页,表2-51);用烟煤作燃料,选锅炉铺撇式加煤产生的氮氧化物为7.5kg (第66页,表2-53);用无烟煤作燃料的锅炉燃烧,选可移动炉蓖产生的氮氧化物产生量为5kg(第67页,表2-57);美国典型的燃烧烟煤小型工业锅炉的氮氧化物7.5kg(第68页,表2-60)。
污染物核算:燃烧氮氧化物核算
0.000938——热力型氮氧物的核算系数
2.燃烧氮氧化物产生量计算
➢ 例题1: 求耗煤量4000吨的煤粉锅炉氮氧化物产生量为多少?
解: 取β=20%,N=1.5%、将数据带入如下公式
GNOx 1.63B ( N 0.000938 )
燃烧氮氧化物核算
燃烧氮氧化物产生机理 燃烧氮氧化物产生量计算 氮氧化物控制
1.燃烧氮氧化物产生机理
燃烧氮氧化物根据产生的机理不同, 可以将氮氧化物分为: 燃料型氮氧化物 热力型氮氧化物 快速型氮氧化物
1.燃烧氮氧化物产生机理
燃料型氮氧化物:由燃料中氮化合 物(如喹啉(C5H5N)、吡啶 (C9H7N)等)在燃烧中氧化而成。 由于燃料中氮的热分解温度低于煤 粉燃烧温度,在600-800oC时就 会生成燃料型氮氧化物,它在煤粉 燃烧NOx产物中占60-80%。
GNOx= 1.63×4000×(20%×1.5% + 0.000938)
= 25.68t
3.氮氧化物控制
➢ (1)分级燃烧方式 ➢ 在第一阶段将从主燃烧器供入炉膛的空气量减少到总燃烧空
气量的70%~75% (相当于理论空气量的80 %左右),使燃 料先在缺氧的条件下燃烧,第一级燃烧区内过量空气系数 , 因而降低了燃烧区内的燃烧速度和温度水平。在此较低温度 和还原性气氛中不仅降低了NOX的反应效率,同时也控制了 NOX在这一区的生成。 ➢ 第二阶段中,为了完成全部燃烧过程,完全燃烧所需的其余 空气通过喷口送入炉膛形成“火上风”(OFA,Over Fire Air),与第一阶段燃烧区在“贫氧燃烧”条件下所产生的烟 气混合,在过量空气系数 的条件下完成全部燃烧过程。 ➢ 空气分级燃烧是一种简单有效的低NOX燃烧技术,采用空气2.燃烧氮氧ຫໍສະໝຸດ 物产生量计算表1 燃料含氮量
锅炉污染物计算
排污系数:燃烧一吨煤,排放0.9-1.2万标立方米燃烧废气,电厂可取小值,其他小厂可取大值。
燃烧一吨油,排放1.2-1.6万标立方米废气,柴油取小值,重油取大值。
①1吨煤炭燃烧时产生的SO2量=1600×S千克;S含硫率,一般0.6-1.5%。
②1吨燃油燃烧时产生的SO2量=2000×S千克;S含硫率,一般重油1.5-3%,柴油0.5-0.8%。
根据《中国环境影响评价培训教材》:燃烧1m3的柴油排放的主要大气污染物总量:氮氧化物(以NO2计)8.57kg/m3,二氧化硫10.0kg/m3,烟尘1.80kg/m3。
柴油重度取950kgf/Nm3,则项目主要大气污染物NO2、SO2和烟尘的排放系数分别为9.02kg/t、10.53kg/t、1.89kg/t。
③天然气燃烧排烟量按燃烧每立方米天然气产生烟气量为10.30Nm3/Nm3。
SO2产物系数为9.6 kg/106m3,NO2产物系数为1920 kg/106m3,烟尘产物系数为160kg/106m3,一、燃料燃烧产生烟尘量的物料衡算方法烟尘计算法公式如下:Gsd = B·A ·dfh·(1 - η)/(1-Cfh)Gsd –烟尘排放量,kg ;B –耗煤量,kg ;A –煤中的含尘量,%;dfh –烟尘中飞灰占灰分总量的份额,%,其值与燃烧方式有关,可参考表1;η- 除尘系统的除尘效率,各种除尘器效率可参考表2选取,未装除尘器时,η= 0;Cfh - 烟尘中的含碳量,%,烟尘中可燃物的含量Cfh 一般可取30%,煤粉炉可取8%,沸腾炉可取25%。
表1 烟尘中的灰占煤灰分之百分比dfh值表2 各类除尘器的除尘效率η表二、燃料燃烧产生二氧化硫量的物料衡算方法1、煤炭中硫的成分可分为可燃硫和非可燃硫,可燃硫约占全硫分的80%。
煤燃烧后产生的二氧化硫的排放量计算公式如下:G SO2 = 2 · 80% ·B ·S ·(1 - η)2、燃油燃烧后产生的二氧化硫的排放量计算公式如下:G SO2 = 2 ·B ·S ·(1 - η)G SO2 -- 二氧化硫排放量,kg;B –消耗的燃料煤(油)量,kg;S –燃料中的全硫分含量,%;η- 脱硫装置的二氧化硫去除率,%,各种脱硫技术的平均效果见表3。
燃煤电厂排烟中NO_x构成及浓度换算方法的探讨
机组等级
所测锅炉台数 α=1.4 时 NO 平 α=1.4 时 NO2 平 α=1.4 时 NOx 平均 (台) 均浓度(ppm) 均浓度(ppm) 浓度 (ppm)
NO/NOx (%)
以 NO 计 NOx 浓度(mg/m3)
以 NO2 计 NOx 浓度
(mg/m3)
NO 和 NO2 合计
(mg/m3)
W 型火焰 固态排 300MW 及以上
10
797
24
炉
渣
等级
821
97.08
1100
1683
1117
300MW 及以上
9
407
3
等级
410
99.27
549
841
552
200MW 等级
12
471
4
固态排
100MW 等级
14
431
4
非 W 型火 渣
焰炉
100MW 以下等
13
350
1
级
475
99.16
637
5 结论
根据以上所述,燃煤电厂锅炉排放烟气中的氮氧化物绝大部分(基本在 99%以上)是一氧化氮(NO), 而不是二氧化氮(NO2)。因此,在测得锅炉排烟中氮氧化物的体积浓度 μmol/mol(ppm)浓度后,按 NO 进行折算质量浓度(mg/Nm3),即折算系数为 1.34 比较接近实际情况;按 NO2 折算(折算系数为 2.05)不 合理,不符合燃煤电厂锅炉排放的实际情况,会夸大火电厂锅炉氮氧化物的排放量。建议在国标 GB13223-2003 下一版修订时,予以考虑。
2.2 氮氧化物的生成途径
氮氧化物的生成途径主要有三种:温度型、快速型和燃料型[1]。 2.2.1 温度型
燃料燃烧排放污染物物料衡算方法总结
燃料燃烧排放污染物物料衡算方法总结Final approval draft on November 22, 2020燃料燃烧排放大气污染物物料衡算方法工业锅炉、采暖锅炉、家用炉等纯燃料燃烧装置使用煤、液体燃料(重油、轻油)、燃气(煤气、液化石油气、天然气)等燃料在燃烧过程中产生大量的烟气、烟尘、粉煤灰和炉渣。
烟气中主要污染物有二氧化硫、氮氧化物和一氧化碳等。
由于纯燃料燃烧过程使用的燃料一般不与物料接触,因此燃料燃烧产生的污染物就是燃料本身燃烧所产生的污染物。
根据《排污费征收使用管理条例》(国务院令第369号)中关于通过物料衡算方法进行排污申报核定的规定特制定本办法,本办法主要适用于不具备监测条件的或者具备监测条件但未提供监测数据的排污者进行排污申报核定和收费。
一、燃料燃烧产生烟尘量的物料衡算方法燃料燃烧时产生的烟尘中包括黑烟和飞灰两部分,黑烟是未完全燃烧的物质,以游离态碳(即碳黑)和挥发物为主,绝大部分是可燃物质,黑烟的粒径一般在—1微米之间。
飞灰是烟尘中不可燃矿物灰分的微粒,粒径一般在1微米以上,它们的产生量与燃料成分、设备、燃烧状况有关。
常用的烟尘量测算办法有燃煤—飞灰计算法和林格曼黑度与烟尘浓度对照法。
1、燃煤—烟尘计算法,公式如下:G sd=1000×B×A×d fh×(1-η)/(1-C fh)Gsd——烟尘排放量,kg;B——耗煤量,T;A——煤中灰分(含尘量),%;dfh——烟气中烟尘占灰分量的比率,%;其值与燃烧与方式有关,常见的链条炉25%,可参考表1;η——除尘系统除尘效率,%,各种除尘器效率可参考表2选取,未装除尘器时,η= 0;;Cfh - 烟尘中可燃物的比率,%,烟尘中可燃物的含量Cfh 一般可取30%,煤粉炉可取8%,沸腾炉可取25%。
目前我市燃煤主要以丰城、新余的为主,其次有山西等地的煤,其灰分在20%--40%之间,我市燃煤灰份(A)取28%,烟尘中可燃物的百分含量(Cfh)取30%。
NOX的计算公式
NOX的计算公式NOX(Nitrogen Oxides,氮氧化物)是指包括二氧化氮(NO2)和一氧化氮(NO)在内的氮气反应的氮氧化合物。
NOX的计算公式可以根据化学反应原理和燃烧过程中的氮氧化反应来推导。
在燃烧过程中,主要的NOX生成路径包括热力NOX和燃料NOX两种。
1.热力NOX的生成路径:热力NOX是通过燃烧过程中氮气和氧气相互作用生成的。
当燃料内含有氮基化合物时,这些氮基化合物经过燃烧反应会产生NOX。
比如,下面是氨(NH3)和硝酸盐(NOx^-)燃烧时生成NOX的化学反应式:NH3+O2→NO+H2ONOx^-+(1/2)O2→NO+(1/2)O2^-2.燃料NOX的生成路径:燃料NOX是指在燃料燃烧中,含有氮的燃料和氧气反应产生的NOX。
这主要发生在高温和过剩氧气条件下。
最常见的燃料NOX生成路径是燃烧过程中氮气与氧气进行氧化反应,生成一氧化氮(NO)。
下面是煤燃烧过程中燃料NOX的生成反应式:N2+O2→2NO综上所述,NOX的计算公式可以通过热力NOX和燃料NOX的生成路径来推导。
具体方法包括:1.计算热力NOX的贡献:根据燃料中氮的含量和燃烧工况,计算热力NOX的生成量。
这需要考虑燃料中氮的化合物种类和氧气的供应情况。
2.计算燃料NOX的贡献:根据燃料的组成和燃烧条件,计算燃料NOX的生成量。
这需要考虑燃料中氮的含量、燃烧温度和过剩空气系数等参数。
3.综合计算总的NOX生成量:将热力NOX和燃料NOX的生成量相加,得到总的NOX生成量。
这样可以根据燃料组成和燃烧条件估计NOX的排放量。
需要注意的是,NOX的计算公式是一个估算值,实际情况会受到多种因素的影响,如燃料的性质、燃烧设备的特性、氧气供给方式等。
因此,在实际应用中,需要根据具体情况结合实测数据来确定NOX的排放水平。
锅炉污染物计算
排污系数:燃烧一吨煤,排放万标立方米燃烧废气,电厂可取小值,其他小厂可取大值。
燃烧一吨油,排放-万标立方米废气,柴油取小值,重油取大值。
①1吨煤炭燃烧时产生的SO2量=1600×S千克;S含硫率,一般。
②1吨燃油燃烧时产生的SO2量=2000×S千克;S含硫率,一般重油%,柴油。
根据《中国环境影响评价培训教材》:燃烧1m3的柴油排放的主要大气污染物总量:氮氧化物(以NO2计)8.57kg/m3,二氧化硫10.0kg/m3,烟尘1.80kg/m3。
柴油重度取950kgf/Nm3,则项目主要大气污染物NO2、SO2和烟尘的排放系数分别为9.02kg/t、10.53kg/t、1.89kg/t。
③天然气燃烧排烟量按燃烧每立方米天然气产生烟气量为Nm3。
SO2产物系数为kg/106m3,NO2产物系数为1920 kg/106m3,烟尘产物系数为160kg/106m3,一、燃料燃烧产生烟尘量的物料衡算方法烟尘计算法公式如下:Gsd = B·A ·dfh·(1 - η)/(1-Cfh)Gsd –烟尘排放量 ,kg ;B –耗煤量,kg ;A –煤中的含尘量,%;dfh –烟尘中飞灰占灰分总量的份额,%,其值与燃烧方式有关,可参考表1;η- 除尘系统的除尘效率,各种除尘器效率可参考表2选取,未装除尘器时,η= 0;Cfh - 烟尘中的含碳量,%,烟尘中可燃物的含量Cfh 一般可取30%,煤粉炉可取8%,沸腾炉可取25%。
表1 烟尘中的灰占煤灰分之百分比dfh值表2 各类除尘器的除尘效率η表二、燃料燃烧产生二氧化硫量的物料衡算方法1、煤炭中硫的成分可分为可燃硫和非可燃硫,可燃硫约占全硫分的80%。
煤燃烧后产生的二氧化硫的排放量计算公式如下:G SO2 = 2 · 80% ·B ·S ·(1 - η)2、燃油燃烧后产生的二氧化硫的排放量计算公式如下:G SO2= 2 ·B ·S ·(1 - η)G SO2-- 二氧化硫排放量,kg;B –消耗的燃料煤(油)量,kg;S –燃料中的全硫分含量,%;η- 脱硫装置的二氧化硫去除率,%,各种脱硫技术的平均效果见表3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
属于不属于风险物质,根据化学品。
危险货物品名表什么的判别重大危险源就根据09年
从而判定风险评价等级
2、《国家危险废物名录》(2008年6月);
3、《危险货物品名表》(GB12268-2005);
4、《危险化学品目录》(2002版);
5、《剧毒化学品目录》(2002版);
这些判定你的项目有哪些危险品
根据《建设项目环境风险评价技术导则》(HJ/T169-2004)及《危险化学品重大危险源辨识》(GB18218-2009),判定本项目环境风险评价等级
你都已经知道是剧毒化学品了,就看重大危险品辨识和环评导则就行。
小心看迷糊了。
高人总结了几种计算氮氧化物的计算方法
第一种方法:
《环境统计手册》-方品贤中的计算方法(第99和100页)和国家环保总局《关于排污费征收核定有关工作的通知》(环发[2003]64号)中氮氧化物的计算方法上述方法是一致的,假设了燃烧1kg煤产生10m3烟气。
GNOx=1.63×B×(N×β+0.000938)
GNOx—氮氧化物排放量,kg;
B–消耗的燃煤(油)量,kg;
N–燃料中的含氮量,%;《环境保护实用数据手册》-胡名操和《环境统计手册》-方品贤统计数据一致。
取0.85%。
β—燃料中氮的转化率,%。
取70%
计算燃烧1t煤产生氮氧化物量为18.64kg。
第二种方法:根据N守恒,计算公式为:G=B×N/14×a×46
其中:G—预测年二氧化氮排放量;
N—煤的氮含量(%),取0.85%;
a—氮氧化物转化为二氧化氮的效率(%),取70%。
B—燃煤量。
计算燃烧1t煤氮氧化物产生量为19.55 kg。
第三种方法:
按照《环境保护实用数据手册》-胡名操中相关统计数据,工业锅炉燃烧1t煤产生的氮氧化物为9.08kg(第65页,表2-51);用烟煤作燃料,选锅炉铺撇式加煤产生的氮氧化物为7.5kg (第66页,表2-53);用无烟煤作燃料的锅炉燃烧,选可移动炉蓖产生的氮氧化物产生量为5kg(第67页,表2-57);美国典型的燃烧烟煤小型工业锅炉的氮氧化物7.5kg(第68页,表2-60)。
第四种计算方法:
采用《产排污系数手册》第十册:按燃烧1t煤来计算:
烟煤-层燃炉:2.94kg;285.7mg/m3;(第240页)。