高一数学必修二知识点学习资料
高一必修二数学学习的知识点
高一必修二数学学习的知识点高一必修二数学是中学数学课程中的重要部分,它是对初中数学知识的延伸和拓展,同时也是为后续学习更深层次的数学知识打下基础。
下面将介绍高一必修二数学学习的主要知识点。
一、函数与方程1.1 一次函数一次函数是高中数学中最基本的函数之一。
一次函数的形式是y=kx+b,其中k和b为常数,k代表斜率,b代表截距。
学习一次函数主要包括函数图象的性质、求解一次方程、一次函数与方程的关系等内容。
1.2 二次函数二次函数是一类重要的非线性函数,其形式为y=ax²+bx+c。
学习二次函数主要包括二次函数图象的性质、二次函数的最值、二次函数与方程的关系等内容。
1.3 指数函数与对数函数指数函数和对数函数是数学中的重要概念。
学习指数函数和对数函数主要包括指数函数的性质、对数函数的性质、指数与对数的互为反函数关系、指数方程与对数方程等内容。
二、三角函数2.1 基本概念学习三角函数首先要掌握相关的基本概念,如角度的度量、弧度制、正弦、余弦、正切、余切等基本概念。
2.2 三角函数的性质与图像掌握三角函数的性质和图像是学习三角函数的关键。
学习三角函数的性质和图像包括变量角、三角函数图像的平移、缩放、反转等内容。
2.3 三角恒等式与解三角形三角恒等式是学习三角函数的重要内容之一,它们在解三角形等实际问题中有广泛的应用。
学习三角恒等式还包括倒数公式、和差公式、倍角公式等。
三、平面向量3.1 向量的基本概念向量是数学中重要的概念之一,学习平面向量需要了解向量的基本概念,如向量的模、方向、单位向量等。
3.2 向量的运算向量的运算包括向量的加法、减法、数量乘法等。
学习向量的运算还需要掌握向量的平行、垂直、共线等相关性质。
3.3 向量的坐标表示向量可以用坐标表示,学习向量的坐标表示需要掌握向量的坐标计算和向量坐标的性质。
四、概率与统计4.1 基本概念学习概率与统计需要了解基本概念,如随机事件、样本空间、概率等。
高一数学必修二知识点归纳优选全文
《必修二》知识点归纳【知识点一】表面积和体积1.①(为弧长,为半径) ③ (为母线长)② ④ (为母线长)⑤ (为上下底面半径,为母线长)2. ① ② ③ ④【知识点二】判定几何中有关平行的方法1.判定线线平行 (1)利用平行公理:; (2)线面平行⇒线线平行:;(3)面面平行⇒线线平行:; (4)线面垂直⇒线线平行:.2. 判定线面平行 (1)判定定理:; (2)面面平行⇒线面平行:3判定面面平行 (1)判定定理:; (2)面面平行⇒线面平行:;(3)面面平行的判定(垂直与平行的转化):.【知识点三】判定几何中有关垂直的方法1 .判定线线垂直:线面垂直⇒线线垂直:2 .判定线面垂直 (1)判定定理1(线线垂直 ⇒ 线面垂直):(2)面面垂直的性质定理(面面垂直 ⇒ 线面垂直):(3)判定定理2(平行与垂直的转化):; (4)面面平行的性质:3 .判定面面垂直:判定定理(线面垂直 ⇒ 面面垂直):.【知识点四】几何中求角和点面距离的方法1. 求异面直线所成角的步骤:(1) 作:用平移法作出异面直线所成角;(2)证:证明作出的角就是所求角;(3)计算:常放入三角形中求角的值.2. 直线和平面所成角:平面内的一条斜线和它在平面上的射影所成的锐角.关键是找面的垂线(线面垂直)3. 求二面角的平面角:以二面角的棱上任一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成角即为二面角的平面角.4. 点到面的距离:①等体积法;②找面的垂线.【知识点五】外心、内心、重心三角形的外心:外接圆的圆心,即三条垂直平分线的交点; 三角形的内心:内接圆的圆心,即三条角平分线的交点;三角形的重心:三条中线的交点(重心将中线分成1:2); 三角形的垂心:三高的交点设三棱锥的顶点在平面的射影是,则:(1)若两两垂直,则是的—垂心; (2)若,则是的—外心;(3)若到的距离都相等,则是的—内心;(4)若,则是的—垂心;(5)若,且,则是——边上的中点;(6)若二面角、二面角和二面角都相等,则是的——内心;(7)若直线与底面所成的角都相等,则是的——外心.【知识点六】直线与方程1. 求斜率——①定义:,其中为直线的倾斜角;②两点斜率公式:2. 直线的五种表示形式名称方程常数的几何意义适用条件点斜式一般情况y-y0=k(x-x0)(x0,y0)是直线上的一个定点,k是斜率直线不垂直于x轴斜截式y=kx+bk是斜率,b是直线在y轴上的截距直线不垂直于x轴两点式一般情况=(x1,y1),(x2,y2)是直线上的两个定点直线不垂直于x轴和y轴截距式+=1a,b分别是直线在x轴,y轴上的两个非零截距直线不垂直于x轴和y轴,且不过原点一般式Ax+By+C=0A,B不同时为0A,B,C为系数任何情况特殊直线x=a(y轴:x=0)垂直于x轴且过点(a,0)斜率不存在y=b(x轴:y=0)垂直于y轴且过点(0,b)斜率k=0①已知直线上一点:设点斜式(分斜率存在和不存在两个情况讨论);②已知直线的斜率:设斜截式;③有关直线在坐标轴的截距:设截距式(注意判断是否需要分情况讨论).3. 两条直线平行与垂直的判定设两直线为;.4. 距离公式类别已知条件公式两点间的距离点到直线的距离两平行线间的距离【知识点七】圆与方程1.(1)圆的标准方程:,圆心为,半径为圆的一般方程:①当时,表示圆心为,半径为的圆;②当时,表示一个点; ③当时,不表示任何图形.2. 点与圆的位置关系判断点和圆或(1) ;(2) ;(3) .3. 直线与圆的位置关系直线与圆的位置关系,设圆心到直线的距离为,则:(1) 判断直线与圆的位置关系的两种方法——和①;②;③.(2) 当直线与圆相交时,求弦长和中点弦的坐标设直线和圆相交于两点,则①求弦长(利用垂径定理与勾股定理):;②求线段的中点的坐标:利用韦达定理求出.(3)当直线和圆相切时,求切线方程①若点在圆上,求过点的切线只有一条,根据,代入点斜式方程即可(其中为圆心).②若点在圆外,求过点的切线有两条,情况一:不存在,则切线方程为:,再判断是否与圆相切;情况二:存在,设切线方程为,根据圆心到切线的距离等于半径:.4. 圆与圆的位置关系(1)设圆和圆,两圆心的距离,则①; ②; ③;④; ⑤.(2) 当两圆相交时,求公共弦方程将两圆化成一般式,两式相减即得公共弦方程(即为公共弦方程)。
高一数学重点知识点必修二
高一数学重点知识点必修二(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高一数学重点知识点必修二本店铺为各位同学整理了《高一数学重点知识点必修二》,希望对你的学习有所帮助!1.高一数学重点知识点必修二篇一解三角形(1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.(2)应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.数列(1)数列的概念和简单表示法①了解数列的概念和几种简单的表示方法(列表、图象、通项公式).②了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前项和公式.③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.④了解等差数列与一次函数、等比数列与指数函数的关系.2.高一数学重点知识点必修二篇二指数函数指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
高一必修二数学知识点笔记
高一必修二数学知识点笔记一、函数与方程1. 函数的定义与性质- 函数的定义:函数是两个数集之间的对应关系,它将一个数集的每个元素与另一个数集的唯一元素对应起来。
- 函数的性质:单调性、奇偶性、周期性等。
2. 初等函数- 一次函数:y = kx + b,其中k和b为常数。
代表直线的函数。
- 二次函数:y = ax^2 + bx + c,其中a、b、c为常数。
代表抛物线的函数。
- 幂函数:y = x^a,其中a为常数。
代表曲线的函数,常见的有平方函数、立方函数等。
3. 方程与不等式- 方程:等式的一种特殊形式,通过求解方程可以确定未知数的值。
- 不等式:含有不等号的数学表达式,通过求解不等式可以确定未知数的取值范围。
二、三角函数与解三角形1. 三角函数的定义- 正弦函数:y = sin(x),表示一个单位圆上某个角的y坐标值。
- 余弦函数:y = cos(x),表示一个单位圆上某个角的x坐标值。
- 正切函数:y = tan(x),表示正弦函数与余弦函数的比值。
2. 解三角形- 三角形的三边:边a、边b和边c。
- 三角形的三角函数:正弦定理和余弦定理。
- 解三角形的步骤:根据已知条件,利用正弦定理或余弦定理计算未知量的值。
三、数列与数学归纳法1. 数列的定义与性质- 数列的定义:按照一定规律排列的一组数的有序集合。
- 数列的性质:公差、初项、通项公式等。
2. 数列的表示方法与常用数列- 通项公式表示:an = a1 + (n-1)d,其中an表示数列的第n项,a1表示数列的第一项,d表示公差。
- 递归公式表示:an = an-1 + d,其中an表示数列的第n项,an-1表示数列的第n-1项,d表示公差。
- 常用数列:等差数列、等比数列等。
3. 数学归纳法- 数学归纳法的基本思想:证明当n取某个自然数时,某个命题成立。
包括归纳假设、基本步骤和归纳结论。
四、平面向量与解几何问题1. 平面向量的基本概念- 平面向量的定义:有大小和方向的量,可以用有向线段来表示。
高一必修二数字知识点汇总
高一必修二数字知识点汇总数字在我们的日常生活中无处不在,掌握数字的基本概念和运算规则对我们的学习和生活都至关重要。
本文将对高一必修二数字相关的知识点进行汇总和总结,帮助同学们更好地理解和掌握这些知识。
一、整数与有理数整数是由正整数、负整数和0组成的集合,它们之间可以进行基本的四则运算。
在实际问题中,整数可以用来表示欠账、温度、海拔等。
而有理数包括整数和分数,有理数之间也可以进行运算,例如加减乘除以及求倒数等。
二、整式与分式整式是指由整数或整数、字母和乘方积组成的代数式,可以进行各种运算。
分式是由整式构成的等式,其中分母不等于零。
在运算分式时,我们需要注意化简、约分、通分等基本法则。
三、二次根式二次根式指的是以含有根号的形式表示的数,例如√2、√3等。
对二次根式的运算,我们需要了解如何把它们转化为分数形式,以及进行加减乘除等运算规则。
四、指数与幂指数是表示一个数的乘方指数,例如2^3表示2的三次方,其中2称为底数,3称为指数。
在指数运算中,我们需要掌握指数的性质和运算规则,例如指数的加法、减法和乘方的乘法等。
五、实数与无理数实数包括有理数和无理数。
有理数是指可以表示为两个整数的比值的数,例如分数可以表示为有理数。
而无理数是指不能表示为有理数的数,例如根号2、根号3等。
在实数运算中,我们需要了解实数的性质和运算规则。
六、比例与变比比例是指两个量之间的相对关系,可以用等比例、倍数比和分数比等形式表示。
在比例的运算中,我们需要掌握比例的性质和运算规则,例如比例的乘除法、比例的平方和比例的倒数等。
七、线性方程与不等式线性方程指的是一个或多个变量的一次方程,例如2x + 3 = 7就是一个线性方程。
在解线性方程时,我们需要掌握方程的基本性质和解方程的方法,例如通过消元、配方和代入等方式求解。
不等式是由不等号连接的两个代数式构成的表示数之间大小关系的式子。
八、统计与概率统计是指对大量数据进行整理、分析和处理的方法,通过统计我们可以得到数据的平均值、中位数、众数等。
高一数学必修二各章知识点总结
【导语】如果把⾼中三年去挑战⾼考看作⼀次越野长跑的话,那么⾼中⼆年级是这个长跑的中段。
与起点相⽐,它少了许多的⿎励、期待,与终点相⽐,它少了许多的掌声、加油声。
它是孤⾝奋⽃的阶段,是⼀个耐⼒、意志、⾃控⼒⽐拚的阶段。
但它同时是⼀个厚实庄重的阶段,这个时期形成的优势有实⼒。
⾼⼆频道为你整理了《⾼⼀数学必修⼆各章知识点总结》,学习路上,为你加油! 【第⼀章空间⼏何体】 1.1空间⼏何体的结构 1.2空间⼏何体的三视图和直观图 阅读与思考画法⼏何与蒙⽇ 1.3空间⼏何体的表⾯积与体积 探究与发现祖暅原理与柱体、椎体、球体的体积 实习作业 ⼩结 复习参考题 【第⼆章点、直线、平⾯之间的位置关系】 2.1空间点、直线、平⾯之间的位置关系 2.2直线、平⾯平⾏的判定及其性质 2.3直线、平⾯垂直的判定及其性质 阅读与思考欧⼏⾥得《原本》与公理化⽅法 ⼩结 复习参考题 【第三章直线与⽅程】 3.1直线的倾斜⾓与斜率 探究与发现魔术师的地毯 3.2直线的⽅程 3.3直线的交点坐标与距离公式 阅读与思考笛卡⼉与解析⼏何 ⼩结 复习参考题 【第四章圆与⽅程】 4.1圆的⽅程 阅读与思考坐标法与机器证明 4.2直线、圆的位置关系 4.3空间直⾓坐标系 信息技术应⽤⽤《⼏何画板》探究点的轨迹:圆 ⼩结 复习参考题 【函数知识点】 ⼀、定义与定义式: ⾃变量x和因变量y有如下关系: y=kx+b 则此时称y是x的⼀次函数。
特别地,当b=0时,y是x的正⽐例函数。
即:y=kx(k为常数,k≠0) ⼆、⼀次函数的性质: 1.y的变化值与对应的x的变化值成正⽐例,⽐值为k 即:y=kx+b(k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。
三、⼀次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出⼀次函数的图像——⼀条直线。
因此,作⼀次函数的图像只需知道2点,并连成直线即可。
人教版高中数学必修2知识点汇总(一册全)
人教版高中数学必修二知识点汇总第一章 空间几何体1.1柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱'''''E D C B A ABCDE -或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台'''''E D C B A P -几何特征:①上下底面是相似的平行多边形 ①侧面是梯形 ①侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征:①底面是全等的圆;①母线与轴平行;①轴与底面圆的半径垂直;①侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;①母线交于圆锥的顶点;①侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;①侧面母线交于原圆锥的顶点;①侧面展开图是一个弓形。
人教高一数学必修二知识点
人教高一数学必修二知识点高一数学必修二知识点在高一数学必修二中,我们将学习一些基本的数学知识和技巧。
本文将介绍几个重点知识点,帮助大家更好地理解和掌握这门课程。
一、函数的概念和性质函数是数学中非常重要的概念,我们首先需要了解什么是函数以及函数的性质。
函数是一种关系,它可以将一个集合的元素映射到另一个集合的元素上。
具体来说,对于函数$f(x)$,$x$是自变量,$f(x)$是因变量,函数通过运算或规则确定了自变量和因变量之间的对应关系。
函数的性质包括定义域、值域、单调性、奇偶性等。
二、二次函数和一次函数在高一数学必修二中,我们将详细学习二次函数和一次函数。
二次函数是形如$f(x) = ax^2 + bx + c$的函数,其中$a、b、c$为常数且$a \neq 0$。
一次函数是形如$f(x) = kx + b$的函数,其中$k$和$b$为常数。
我们需要了解二次函数和一次函数的图像、性质以及它们在实际问题中的应用。
三、数列与数列的通项公式数列是一系列有规律的数按一定顺序排列而成的序列。
数列中的每一项称为数列的项。
在高一数学必修二中,我们将学习等差数列和等比数列。
等差数列中,每一项与它前一项之间的差值都相等;等比数列中,每一项与它前一项之间的比值都相等。
数列的通项公式是指可以用一个公式表示数列中任意一项与它的位置之间的关系。
四、概率与统计概率和统计是数学中的重要概念,它们在我们的日常生活中应用广泛。
概率是研究随机事件发生的可能性的数学分支,涉及到样本空间、事件、概率等概念。
统计是研究数据的收集、整理、分析和解释的方法和过程,涉及到频数分布、均值、中位数等概念。
我们需要了解概率和统计的基本原理以及如何运用它们解决实际问题。
五、三角函数三角函数是与角度相关的一类函数,包括正弦函数、余弦函数和正切函数等。
我们将学习三角函数的定义、性质以及它们在几何和物理问题中的应用。
三角函数的图像、周期性、导数等性质也是我们需要掌握的知识。
【最新】高一数学必修二各章知识点总结
【最新】高一数学必修二各章知识点总结高一数学必修二各章知识点总结如下:第一章:函数与二次函数1. 函数的概念及性质:定义域、值域、奇偶性、单调性等。
2. 二次函数的基本性质:顶点、对称轴、单调性、零点、图像的开口方向。
3. 一次函数与二次函数的比较与关系:求解一次函数与二次函数的交点等。
4. 二次函数的图像与方程:画出给定二次函数的图像,根据图像确定二次函数的方程等。
5. 二次函数与根式、指数、对数的应用。
第二章:三角函数1. 角度制与弧度制的转换。
2. 弧度制下的任意角的三角函数值的计算。
3. 三角函数的简单性质及其关系:同角三角函数的相互关系、倒数三角函数的相互关系等。
4. 三角函数的图像与性质:正弦函数、余弦函数、正切函数的图像与性质等。
5. 三角函数的应用:三角函数在几何、物理、工程等领域的应用。
第三章:指数与对数函数1. 指数的定义、性质及运算规律:指数与乘法、除法、乘方运算规律等。
2. 对数的定义、性质及运算规律:对数与指数的关系、对数运算法则等。
3. 指数函数与对数函数的简单性质与图像:指数函数与对数函数的基本性质、图像和性质等。
4. 指数函数与对数函数的应用:指数与对数在增长与衰减、微积分、金融等领域的应用。
第四章:数列1. 数列的概念与性质:等差数列、等比数列、通项公式、前n 项和等。
2. 数列的运算:数列的加减乘除等。
3. 等差数列与等差中项:等差数列的通项公式、等差数列的求和公式、等差数列的奇数项和、以及奇数和与偶数和等。
4. 等比数列与等比中项:等比数列的通项公式、等比数列的求和公式、等比数列的前n项和、无穷等比级数等。
5. 等差数列与等差中项的应用:等差数列在等价代换、简化形式、利润计算等方面的应用。
第五章:排列与组合1. 排列与组合的基本概念:排列、组合的定义与计算方法等。
2. 排列与组合的计算:排列与组合的计算公式、乘法原理、加法原理等。
3. 排列与组合的应用:排列与组合在概率、几何、数学问题解法等领域的应用。
高一必修二数学知识点总结及公式
高一必修二数学知识点总结及公式高中数学的学习,对于每个学生来说都是一次全新的挑战。
特别是高一阶段,作为高中新生的学习起点,需要理解和掌握许多基础数学知识点和公式。
本文将对高一必修二数学知识点进行总结,并给出相应的公式。
一、二次函数二次函数是高中数学中非常重要的一个概念,掌握二次函数的性质和相关的公式对于解题至关重要。
1. 二次函数的标准方程:y = ax² + bx + c,其中 a、b、c 为常数,a ≠ 0。
2. 二次函数的顶点坐标公式:对于二次函数 y = ax² + bx + c,其顶点的横坐标为 x = -b/2a,纵坐标为 y = -(b²-4ac)/4a。
3. 二次函数的对称轴公式:对于二次函数 y = ax² + bx + c,其对称轴的方程为 x = -b/2a。
4. 二次函数图像的开口方向:若 a > 0,则二次函数图像开口向上;若 a < 0,则二次函数图像开口向下。
5. 二次函数的判别式:判别式 D = b²-4ac,D > 0 时,二次函数有两个不同的实根;D = 0 时,二次函数有一个重根;D < 0 时,二次函数没有实根。
二、三角函数三角函数是数学中的重要分支,掌握三角函数的基本概念和公式,对高中数学的学习和后续数学知识的理解都起到至关重要的作用。
1. 正弦函数与余弦函数的定义:对于任意角θ,其正弦函数的值为sinθ,余弦函数的值为cosθ。
2. 正切函数的定义:对于任意角θ,其正切函数的值为tanθ。
3. 三角函数的基本关系式:sin²θ + cos²θ = 1,1 + tan²θ = sec²θ,1 + cot²θ = csc²θ。
4. 常用三角函数的周期性:sin(θ + 2πk) = sinθ,cos(θ + 2πk) = cosθ,tan(θ + πk) = tanθ(其中 k 为整数)。
高一必修二每章知识点公式总结
高一必修二每章知识点公式总结第一章:函数与导数1. 函数概念函数是一种特殊的关系,将自变量的值映射到因变量的值上,通常表示为y=f(x),其中x为自变量,y为因变量。
2. 定义域和值域定义域是自变量可能取值的范围,对于有理函数而言,需要考虑分母为零的情况。
值域是函数在定义域上取到的所有可能值。
3. 函数的基本性质a) 奇偶性:f(-x) = f(x)为偶函数,f(-x) = -f(x)为奇函数。
b) 单调性:f'(x)>0,函数递增;f'(x)<0,函数递减。
c) 最值:通过求导或者化简函数表达式,可以得到函数的最值。
d) 零点:函数取零值的点叫做零点,通过解方程f(x)=0,可以求得函数的零点。
4. 极值和最值a) 极值:函数在一定区间内取得的最大值或最小值。
通过求导,可以找到函数的驻点,再通过二阶导数判定其为极大值、极小值还是无极值。
b) 最值:函数在定义域上取得的最大值或最小值。
第二章:三角函数1. 基本概念a) 正弦函数sin(x):对于任意实数x,都可以通过单位圆上的一个点,该点与原点的连线与x轴正半轴之间的夹角所确定。
b) 余弦函数cos(x):对于任意实数x,都可以通过单位圆上的一个点,该点与原点的连线与x轴正半轴之间的夹角的余弦值。
c) 正切函数tan(x):tan(x) = sin(x)/cos(x),在直角三角形中,tan(x)表示斜边与对边之比。
2. 基本性质a) 周期性:sin(x)和cos(x)的周期均为2π,tan(x)的周期为π。
b) 奇偶性:sin(-x) = -sin(x),cos(-x) = cos(x),tan(-x) = -tan(x)。
c) 值域:-1 ≤ sin(x) ≤ 1,-1 ≤ cos(x) ≤ 1,tan(x)的值域为全体实数。
3. 三角函数的图像与性质a) 正弦函数的图像:周期为2π,对称于x轴。
当x=0时,取得最小值-1;当x=π/2时,取得最大值1。
高一必修2计算知识点归纳
高一必修2计算知识点归纳计算是数学学科的重要组成部分,也是高中数学学习的基础。
在高一必修2课程中,我们学习了许多与计算相关的知识点,包括大数的运算、分数的运算、根式的运算、实数的运算等。
下面是对这些知识点的归纳总结。
一、大数的运算1.大数的读法:亿、亿分之一、亿分之一亿等。
2.大数的比较:可以按位比较,从高位到低位逐个比较数字的大小。
3.大数的加减法:分别按位进行加法或减法运算,注意进位和借位的处理。
4.大数的乘法:采用竖式计算或列式计算,注意进位的处理。
5.大数的除法:采用长除法进行计算,要注意整除和带余除法的区别。
二、分数的运算1.分数的定义:分数由分子和分母组成,表示部分与整体的比例关系。
2.分数的四则运算:分别对分子和分母进行运算,注意约分和通分的处理。
3.分数的加减法:通分后按照分子进行加减运算,注意分子的符号保持一致。
4.分数的乘法:将分子和分母分别相乘,然后进行约分。
5.分数的除法:将除数的倒数乘以被除数,然后进行约分。
三、根式的运算1.根式的定义:根式由根号和被开方数组成,表示求平方根或其他次方根的运算。
2.根式的基本性质:根号下的数值必须大于等于0,不能出现负数或分母为0的情况。
3.根式的化简:将根号下的数值分解成素数的乘积,然后求出根号的值。
4.根式的运算:可以进行加减法、乘法和除法运算,按照数学规律进行处理。
四、实数的运算1.整数的运算:包括正整数和负整数的加减乘除运算。
2.有理数的运算:包括整数和分数的加减乘除运算。
3.无理数的运算:包括根式和π的加减乘除运算。
4.实数的运算法则:满足交换律、结合律、分配律等基本性质。
以上是高一必修2课程中涉及的计算知识点的归纳总结。
通过学习这些知识点,我们可以更好地理解和掌握计算方法,提高解题能力和运算速度。
在实际应用中,我们可以运用这些知识点解决生活中的问题,例如计算购物所需的金额、计算比例关系等。
希望同学们能够通过不断的练习和应用,巩固和提升计算能力,为进一步学习数学打下坚实的基础。
人教版高一数学必修二知识点总结
人教版高一数学必修二知识点总结
一、函数的概念
1、定义:函数是将一些特定的元素映射成另外一些特定的元素的规律性变化。
2、概念:可以把一组值一一对应起来,并具有相同的规律性的数列称为函数,函数的概念可以用计算、图示、代数表达式等方法表达。
3、函数的特性:函数的特性有唯一性和对称性,即任意一个自变量对应唯一的因变量,而且两个自变量互换,两个因变量也一定会互换。
二、一元函数的图象
1、一元函数的图像:一元函数的图象反映函数的变化规律,是比较直观的表示形式,可以根据函数的表达式,画出函数的图像。
2、特殊的图像:当函数关系是y=x时,则函数的图像是一条直线,当函数关系是y=(1/x)时,则函数的图像是一个反比例曲线,当函数关系是y=k时,则函数的图像是一条水平线。
三、函数的特殊性
1、单调性:函数f(x)在定义域内有且仅有一个最值,称为该函数关系的单调性,当函数f(x)在定义域内单调递增时,称为单调递增;当函数f(x)在定义域内单调递减时,称为单调递减。
2、连续性:在定义域内,任意一点处的函数值之差都可以接近于零,则该函数关系称为连续的。
3、奇偶性:函数f(x)的奇偶性,是指函数f(x)在x=a处的值与函数f(-a)
在x=-a处的值是否有关联性。
如果f(a)=f(-a),则说明函数f(x)具有奇偶性,此时函数的图像关于y轴是对称的。
高一数学必修二复习知识点归纳
高一数学必修二复习知识点归纳(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学必修二复习知识点归纳本店铺为各位同学整理了《高一数学必修二复习知识点归纳》,希望对你的学习有所帮助!1.高一数学必修二复习知识点归纳篇一(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。
数学高一必修二知识点归纳
数学高一必修二知识点归纳一、立体几何初步1. 空间几何体的结构- 棱柱- 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
- 棱柱的分类:按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。
- 棱柱的性质:侧棱都平行且相等;两个底面与平行于底面的截面是全等的多边形;过不相邻的两条侧棱的截面是平行四边形。
- 棱锥- 棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
- 棱锥的分类:按底面多边形的边数分为三棱锥、四棱锥、五棱锥等。
- 棱锥的性质:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比。
- 棱台- 棱台的定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。
- 棱台的分类:按底面多边形的边数分为三棱台、四棱柱、五棱台等。
- 棱台的性质:棱台的各侧棱延长后交于一点;棱台的上下底面是相似多边形;棱台的侧面积等于各个梯形面积之和。
- 圆柱、圆锥、圆台- 圆柱:以矩形的一边所在直线为轴旋转,其余三边旋转形成的面所围成的旋转体叫做圆柱。
圆柱的轴截面是矩形。
- 圆锥:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转形成的面所围成的旋转体叫做圆锥。
圆锥的轴截面是等腰三角形。
- 圆台:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。
圆台的轴截面是等腰梯形。
- 球- 球的定义:以半圆的直径所在直线为轴,半圆面旋转一周形成的旋转体叫做球。
球的截面性质:球心和截面圆心的连线垂直于截面;r = √(R^2)-d^{2}(R为球的半径,d为球心到截面的距离,r为截面半径)。
2. 空间几何体的三视图和直观图- 三视图- 定义:正视图(主视图)是从几何体的前面向后面正投影得到的投影图;侧视图(左视图)是从几何体的左面向右面正投影得到的投影图;俯视图是从几何体的上面向下面正投影得到的投影图。
高一必修二数学知识点归纳
高一必修二数学知识点归纳一、函数的概念与性质函数是数学中描述变量之间依赖关系的重要工具。
在高中数学的学习中,函数的概念和性质是必修二课程的核心内容之一。
函数可以定义为一个规则,使得对于每一个输入值,都会有一个确定的输出值与之对应。
这种对应关系可以用集合的语言来描述,即函数是一个集合到另一个集合的映射。
1.1 函数的定义域与值域函数的定义域是指所有可能的输入值的集合,而值域则是所有可能的输出值的集合。
理解这两个概念对于分析函数的行为至关重要。
例如,函数f(x) = 1/x的定义域是所有非零实数,因为当x=0时,函数没有定义。
1.2 函数的单调性与奇偶性函数的单调性描述了函数值随自变量变化的趋势。
一个函数如果在其定义域内随着x的增加而增加,那么它是单调递增的;如果随着x的增加而减少,则为单调递减。
奇偶性则描述了函数图像关于原点或y轴的对称性。
奇函数满足f(-x) = -f(x),而偶函数满足f(-x) =f(x)。
1.3 函数的极限与连续性极限是微积分的基础概念之一,它描述了当自变量趋近于某一点时,函数值的行为。
连续性则是函数图像不间断的特性。
一个函数在某一点连续,意味着在这一点附近,函数的图像没有跳跃或断点。
二、二次函数与一元二次方程二次函数是形式为f(x) = ax^2 + bx + c的函数,其中a、b、c为常数,且a≠0。
二次函数的图像是一个开口向上或向下的抛物线。
一元二次方程则是形如ax^2 + bx + c = 0的方程,其解可以通过求根公式得到。
2.1 二次函数的图像与性质二次函数的图像具有对称轴和顶点,这些特性可以帮助我们了解函数的最大值或最小值以及变化趋势。
对称轴的方程是x = -b/2a,顶点的坐标为(-b/2a, f(-b/2a))。
2.2 一元二次方程的解法一元二次方程的解可以通过配方法、因式分解法或使用求根公式直接计算。
求根公式为x = (-b ± √(b^2 - 4ac)) / 2a,其中b^2 -4ac被称为判别式,它决定了方程的根的数量和性质。
高一数学知识点必修二框架
高一数学知识点必修二框架第一章:函数与导数1. 全书的布置,如教材版本、学期、页码等信息2. 函数基本概念2.1. 函数的定义及其表示法2.2. 自变量、因变量和函数值的关系2.3. 函数的定义域和值域3. 常用函数3.1. 常量函数、线性函数、二次函数3.2. 反比例函数和指数函数4. 导数的概念4.1. 导数的定义及其几何意义4.2. 导数与切线的关系第二章:三角函数1. 三角函数的概念1.1. 弧度制及其与度数制的关系1.2. 三角函数的定义及其周期性2. 三角函数的基本性质2.1. 正弦函数、余弦函数和正切函数的图像与性质2.2. 三角函数的诱导公式3. 三角函数的应用3.1. 解三角形问题3.2. 利用三角函数解实际问题第三章:平面向量1. 向量的概念及其表示1.1. 向量的定义和基本性质1.2. 向量的表示法2. 向量运算2.1. 向量的加法、减法和数乘2.2. 向量的数量积和向量积3. 平面向量的几何应用3.1. 向量的共线与垂直3.2. 利用向量解几何问题第四章:立体几何与解析几何1. 空间几何的基本概念1.1. 点、线、面的概念1.2. 空间几何的基本性质和公理2. 点、直线、平面的位置关系2.1. 平行与垂直2.2. 相交与夹角3. 空间图形的度量3.1. 距离、角度和面积的定义 3.2. 用向量解决空间问题第五章:概率与统计1. 随机事件与概率1.1. 随机事件的基本概念1.2. 概率的定义和性质2. 离散型随机变量2.1. 随机变量的基本概念2.2. 离散型随机变量的概率分布和期望3. 统计与统计图3.1. 数据的收集和整理3.2. 统计图的绘制和分析结语:通过学习高一数学必修二的知识点,我们对函数与导数、三角函数、平面向量、立体几何与解析几何,以及概率与统计等内容有了更深入的了解。
这些知识点将为我们打下坚实的数学基础,为高中阶段和将来的学习打下坚实的基础。
希望同学们在接下来的学习中能够巩固这些知识,掌握数学的基本概念和方法,为更高级的数学学习奠定牢固的基础。
高一数学知识点归纳大全必修二
高一数学知识点归纳大全必修二一、空间几何体1. 棱柱、棱锥、棱台的结构特征:棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。
棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。
棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
2. 圆柱、圆锥、圆台、球的结构特征:圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体。
圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体。
圆台:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。
球:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体。
3. 空间几何体的三视图和直观图:三视图:正视图、侧视图、俯视图。
直观图:斜二测画法。
4. 空间几何体的表面积与体积:棱柱、棱锥、棱台的表面积和体积公式。
圆柱、圆锥、圆台、球的表面积和体积公式。
二、点、直线、平面之间的位置关系1. 平面的基本性质:公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
公理2:过不在一条直线上的三点,有且只有一个平面。
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
2. 空间中直线与直线之间的位置关系:平行、相交、异面。
平行公理、等角定理。
3. 空间中直线与平面之间的位置关系:直线在平面内、直线与平面平行、直线与平面相交。
4. 平面与平面之间的位置关系:平行、相交。
三、直线与方程1. 直线的倾斜角与斜率:倾斜角的定义和范围。
斜率的定义和计算公式。
2. 直线的方程:点斜式、斜截式、两点式、截距式、一般式。
3. 两直线的位置关系:平行、垂直的判定条件。
4. 距离公式:两点间的距离公式。
点到直线的距离公式。
两平行直线间的距离公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修二知识点第一部分:立体几何一、多面体●1. 多面体——由若干个平面多边形围成的几何体叫做多面体。
多面体有几个面就称为几面体。
棱柱棱锥棱台定义由一个平面多边形沿某一方向平移形成的空间几何体。
当棱柱的一个底面收缩为一点时,得到的几何体。
棱锥被一个平行于底面的平面所截后,截面和底面之间的部分。
性质(1) 两个底面与平行于底面的截面是对应边互相平行的全等多边形; (2) 侧面都是平行四边形, 侧棱都相等;(3) 过棱柱不相邻的两条侧棱的截面都是平行四边形。
(1) 底面是多边形; (2) 平行于底面的截面与底面相似;(3) 侧面是有一个公共顶点的三角形。
(1) 两个底面是相似多边形; (2) 两个底面以及平行于底面的截面是对应边互相平行的相似多边形; (3) 侧面都是梯形。
●2.二、中心投影和平行投影●1. 投影——是光线(投射线)通过物体,向选定的面(投影面)投射,并在该面上得到图形的方法。
投射线交于一点的投影称为中心投影。
投射线相互平行的投影称为平行投影。
平行投影按投射方向是否正对着投影面,可分为斜投影和正投影。
●2. 视图——物体按正投影向投影面投射所得的图形。
光线从物体的前面向后投射所得的投影称为主视图或正视图,自上向下的称为俯视图,自左向右的称为左视图。
正视图、俯视图、左视图称为三视图;作图关键:按“长对正、高平齐、宽相等”。
●3. 空间几何体画在纸上,要体现立体感,底面常用斜二侧画法,画出它的直观图。
三角形底面是平 行四边形侧棱与 底面垂直底面 是矩形棱长 相等四棱柱平行六面体直平行六面体长方体正方体'''的面积为S',则S'。
作图ABC的面积为S,用斜二测画法画得它的直观图三角形A B C关键:倾斜45︒,横“等”纵“半”。
三、平面基本性质:(三公理三推论)四、空间两条不重合的直线的位置关系●1. 空间两条直线有三种位置关系:(1)相交直线;(2)平行直线;(3)异面直线。
●2. 若从有无公共点角度看,可分两类:有且只有一个公共点——相交直线平行直线没有公共点异面直线●3. 若从是否共面的角度看, 可分为两类:相交直线在同一平面内平行直线不同在任一平面内——异面直线●4. 异面直线(1) 定义: 不同在任何一个平面内的两条直线叫做异面直线。
(2) 性质: 两条异面直线既不相交也不平行。
(3) 判定定理——连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线。
(4) 异面直线所成的角——设b a ,是两条异面直线,经过空间任一点O 作直线//,//a a b b '',我们把a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角)。
(5) 异面直线所成角的范围为(0,2π⎤⎥⎦。
(6) 求异面直线所成的角分两步:一是找角,通过平行移动找两直线所成的角;二是求角,通过解三角形求角。
两条异面直线所成的角是直角,则称两条异面直线互相垂直.所以线线垂直包括两条相交直线互相垂直和两条异面直线互相垂直两种情况。
五、空间的直线与平面证明线面平行,要抓住上述判定定理中的“内”“外”两关键字眼,“内应外合”。
通过勾股定理的逆定理计算得出垂直也是常用手段。
●3. 点到平面的距离——过α外一点A 向α作垂线,则A 和垂足B 之间的距离叫做点A 到平面α的距离。
●4. 线面所成的角——平面α的一条斜线l 与它在该平面内的射影所成的锐角,叫做这条直线与这个平面所成的角. l α⊥时称l 与α所成的角为直角;//l α时称l 与α所成的角为0︒角。
线面角范围为[0,]2π。
●5. 三垂线定理:如果平面内一条直线和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
●6. 三垂线逆定理:如果平面内一条直线和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直。
六、空间的平面与平面●3. 二面角——从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面。
棱为l ,两个半平面分别为,αβ的二面角记为l αβ--。
二面角范围为[0,]π。
●4. 二面角平面角的作法:一是定义,在棱上取一点,分别在二面角的两个面作与棱垂直的射线,这两条射线所成的角就是二面角的平面角;二是利用线面垂直的判定和性质,在二面角的一个面内取一点P 作另一个面的垂线,自垂足A 作二面角的棱的垂线AO ,AO 与棱交于点O ,则POA ∠即为二面角的平面角或其补角;三是过空间一点作二面角的棱的垂面,垂面与二面角的两个面的交线所成的角是二面角的平面角。
七、柱、锥、台、球的表面积和体积 ●1. 侧面积公式(注:c 表示柱、锥、台的底面周长,c '表示棱台上底面周长,h '表示正棱锥或正棱台的斜高)●2. 体积公式●3. 球——与定点的距离等于或小于定长的点的集合,叫做球体,简称球。
球面——与定点距离等于定长的点的集合。
大圆——球面被经过球心的平面截得的圆叫做大圆,被不经过球心的平面截得的圆叫做小圆。
两点的球面距离——球面上两点之间的最短距离(就是经过两点的大圆在这两点间的一段劣弧的长度)。
●4. 球的截面性质(1) 用一个平面截球,所得的截面是一个圆面; (2) 球心和截面圆心的连线⊥截面; (3) 球心到截面距离d 与球的半径R 及截面的半径r 满足关系:22r R d =-。
●5. 球面面积公式:24S R π=球面 ●6. 球体积公式:343V R π=球αr Rd第二部分:直线方程一、直线 ●1.直线的方程(1)直线l 的倾斜角α的取值范围是0απ≤<;平面内的任意一条直线都有唯一确定的倾斜角。
(2)直线l 的斜率tan (0,k ααπ=≤<且2πα≠)。
变化情况如下:斜率的计算公式:若斜率为k 的直线过点111(,)P x y 与222(,)P x y ,则211221()y y k x x x x -=≠-。
(3)直线方程的五种形式●2.两条直线位置关系(1)设两条直线111:l y k x b =+和222:l y k x b =+,则有下列结论:1212//l l k k ⇔=且12b b ≠; 12121l l k k ⊥⇔⋅=-。
(2)设两条直线111111:0(,l A x B y C A B ++=不全为0)和2222:0l A x B y C ++=22(,A B ,不全为0),则有下列结论:12//l l ⇔12210A B A B -=且12210BC B C -≠或12210A B A B -=且12210AC A C -≠; 12l l ⊥⇔12120A A B B +=。
(3)求两条直线交点的坐标:解两条直线方程所组成的二元一次方程组而得解。
(4)与直线0Ax By C ++=平行的直线一般可设为0Ax By m ++=;与直线0Ax By C ++=垂直的直线一般可设为0Bx Ay n -+=。
(5)过两条已知直线1112220,0A x B y C A x B y C ++=++=交点的直线系:111222222()0(0)A x B y C A x B y C A x B y C λ+++++=++=其中不包括直线●3.中点公式:平面内两点111(,)P x y 、222(,)P x y ,则12,P P 两点的中点(,)P x y 为1212,22y y x x x y ++==。
●4.两点间的距离公式:平面内两点111(,)P x y ,222(,)P x y ,则12,PP 两点间的距离为:12PP ●5.点到直线的距离公式:平面内点111(,)P x y 到直线0Ax By C ++=的距离为:d 。
设平面两条平行线12:0,:0,l Ax By C l Ax By D C D ++=++=≠,12l l 则与的距离为d 。
二、对称问题●1. 点关于点成中心对称的对称中心恰是这两点为端点的线段的中点,因此中心对称的问题是线段中点坐标公式的应用问题。
设00(,)P x y ,对称中心为(,)A a b ,则P 关于A 的对称点为00(2,2)P a x b y '--。
●2. 点关于直线成轴对称问题由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”.利用“垂直”“平分”这两个条件建立方程组,就可求出对顶点的坐标.一般情形如下:设点00(,)P x y 关于直线y kx b =+的对称点为(,)P x y ''',则有00001,,22y y k x x y y x x k b '-⎧⋅=-⎪'-⎪⎨''++⎪=⋅+⎪⎩,可求出x ',y '。
特殊地,点00(,)P x y 关于直线x a =的对称点为00(2,)P a x y '-;点00(,)P x y 关于直线y b =的对称点为00(,2)P x b y '-。
●3. 曲线关于点、曲线关于直线成中心对称或轴对称问题,一般是转化为点的中心对称或轴对称(这里既可选特殊点,也可选任意点实施转化)。
一般结论如下:(1)曲线(,)0f x y =关于已知点(,)A a b 的对称曲线的方程是(2,2)0f a x b y --=。
(2)曲线(,)0f x y =关于直线y kx b =+的对称曲线的求法:设曲线(,)0f x y =上任意一点为00(,)P x y ,P 点关于直线y kx b =+的对称点为(,)P x y ',则由(2)知,P 与P '的坐标满足0000122y y k x x y y x x k b -⎧⋅=-⎪-⎪⎨++⎪=⋅+⎪⎩,从中解出0x 、0y ,代入已知曲线(,)0f x y =,应有00(,)0f x y =。
利用坐标代换法就可求出曲线(,)0f x y =关于直线y kx b =+的对称曲线方程。
●4. 两点关于点对称、两点关于直线对称的常见结论: (1)点(,)x y 关于x 轴的对称点为(,)x y -; (2)点(,)x y 关于y 轴的对称点为(,)x y -; (3)点(,)x y 关于原点的对称点为(,)x y --; (4)点(,)x y 关于0x y -=的对称点为(,)y x ; (5)点(,)x y 关于直线0x y +=的对称点为(,)y x --。