北京市海淀区2015-2016年八年级(上)册期末数学试卷

合集下载

2015-2016人教版八年级数学第一学期期末考试试卷及答案

2015-2016人教版八年级数学第一学期期末考试试卷及答案

2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。

每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。

点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。

BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。

对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。

使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。

海淀八年级数学2015上学期期末试卷

海淀八年级数学2015上学期期末试卷

海淀区八年级数学 第一学期期末考试卷姓名: 分数:一、 选择题(共8道小题,每小题4分,共32分)下面各题均有四个选项,其中只有一个是符合题意的.1.下列各式中,最简二次根式是( ).A .5.0B .12C .2xD . 12+x2.下列汽车标志中,不是轴对称图形的是( ).3.下列因式分解结果正确的是( ).A .3221055(2)a a a a a +=+B .249(43)(43)x x x -=+-C .2221(1)a a a --=-D .256(6)(1)x x x x --=-+ 4.已知等腰三角形的两边长分别为7和3,则第三边的长是A .7B .4C .3D .3或7 5.下列各式不能分解因式的是A .224x x - B .214x x ++C .229x y +D .21m - 6.若分式 211x x --的值为0,则x 的值为A .1B .0C .1-D .1±7.如果132x y x +=,那么x y的值为( ).A .21B .32C .31D . 528.2013年9月,北京到大连的高铁开通运营,高铁列车的运行时间比原动车组的运行时间还要快2小时,已知北京到大连的铁路长约为910千米,原动车组列车的平均速度为x千米/时,高铁列车的平均速度比原动车组列车增加了52千米/时.依题意,下面所列方程正确的是 A .910910252x x -=+ B .910910252x x -=- C .910910252x x-=+ D .22(52)910x x ++= 二、填空题(共4道小题,每小题4分,共16分) 9.计算2144()x y x ⋅-= . 10.如果一个多边形的内角和是外角和的3倍,则这个多边形边数为 .11.如图,AB+AC =7,D 是AB 上一点,若点D 在 BC 的垂直平分线上, 则△ACD 的周长为 .12.下列运算中,正确的是_______.(填写所有..正确式子的序号) ①2612a a a ⋅=;②329()x x =;③33(2)8a a =;④22242(5)255a b a b ab -=--. 三、解答题(共6 道小题,每小题5分,共 30 分)13.计算:()213.142π-⎛⎫--- ⎪⎝⎭解:14.解方程:32x - =22xx-- 解:15. 解:16.先化简,再求值已知:23x y =,求222569222y x xy y x y x y x y ⎛⎫-+--÷⎪--⎝⎭的值. 解:17.先化简,再求值:()()()2x y x y x x y +---,其中13x =,3y = 解:18.已知:如图,AB= AC ,∠DAC=∠EAB ,∠B=∠C .求证:BD = CE . 证明:四、解答题(共4 道小题,每小题5分,共 20 分)19.计算:422222222a a b a ab b a ab b b a-+÷⋅-+. 解:20.已知:如图,点B 、E 、C 、F 四点在同一条直线上,AB ∥DE ,AB=DE ,AC 、DE 相交于点O , BE=CF .求证: AC = DF . 证明:21.如图,ABC △中,AD ⊥BC 于点D ,AD =BD ,C ∠=65°,求∠BAC 的度数.22.列方程解应用题:甲乙两站相距1200千米,货车与客车同时从甲站出发开往乙站,已知客车的速度是货车速度的2.5倍,结果客车比货车早6小时到达乙站,求客车与货车的速度分别是多少?解:五、解答题(共3 道小题,23小题7分,24小题7分,25小题8分,共22 分)23.列分式方程解应用题为提升晚高峰车辆的通行速度,北京市交通委路政局积极设置潮汐车道,首条潮汐车道于2013年9月11日开始启用,试点路段为京广桥至慈云寺桥,全程约2.5千米.该路段实行潮汐车道后,在晚高峰期间,通过该路段的车辆的行驶速度平均提高了25%,行驶时间平均减少了1.5分钟.该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶多少千米?24.已知:如图,在Rt△ABC中,∠BAC=90°,AC=6,BC=10,过点A作D E∥BC,交∠ABC的平分线于E,交∠ACB的平分线于D. 求:(1)AB的长;(2)DE的长.解:25.已知:如图,Rt△ABC中,∠BAC=90 .(1)按要求作图:(保留作图痕迹)①延长BC到点D,使CD=BC;②延长CA到点E,使AE=2CA;③连接AD,BE并猜想线段AD与BE的大小关系;(2)证明(1)中你对线段AD与BE大小关系的猜想.解:(1)AD与BE的大小关系是.(2)证明:。

北京市海淀区2016-2017学年八年级上期末数学试题含答案(K12教育文档)

北京市海淀区2016-2017学年八年级上期末数学试题含答案(K12教育文档)

北京市海淀区2016-2017学年八年级上期末数学试题含答案(word版可编辑修改)北京市海淀区2016-2017学年八年级上期末数学试题含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北京市海淀区2016-2017学年八年级上期末数学试题含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北京市海淀区2016-2017学年八年级上期末数学试题含答案(word版可编辑修改)的全部内容。

数 学姓名一.选择题(本大题共30分,每小题3分)1。

第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行。

在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是..轴对称图形的是( )2.下列运算中正确的是( ) A .284x x x -÷=B . 22a a a ⋅= C .()236aa=D .()3339a a =3.石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体。

石墨烯(Graphene )是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0。

000001米长的石墨烯断裂。

其中0.000001用科学记数法表示为( )A .6110-⨯B .71010-⨯C .50.110-⨯D .6110⨯4.在分式2+x x中x 的取值范围是( ) A .2x >-B.2x <- C .0x ≠ D .2x ≠-5.下列各式中,从左到右的变形是因式分解的是( )A .22212(1)1a a a a -+=-+B .22()()x y x y x y +-=-C .265(5)(1)x x x x -+=--D .222()2x y x y xy +=-+6.如图,已知△ABE ≌△ACD ,下列选项中不能被证明的等式是( )A .AD AE = B. DB AE =C 。

北京市海淀区2016-2017学年八年级上期末数学试题含答案【精品试卷】

北京市海淀区2016-2017学年八年级上期末数学试题含答案【精品试卷】

海淀区八年级第一学期期末练习数学2017.1班级姓名成绩一.选择题(本大题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.题号12345678910答案1.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是..轴对称图形的是()2.下列运算中正确的是()A .284x x x-÷=B .22a a a ⋅=C .()236aa =D .()3339a a =3.石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体。

石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂。

其中0.000001用科学记数法表示为()A .6110-⨯B .71010-⨯C .50.110-⨯D .6110⨯4.在分式2+x x中x 的取值范围是()A .2x >- B.2x <-C .0x ≠D .2x ≠-5.下列各式中,从左到右的变形是因式分解的是()A .22212(1)1a a a a -+=-+B .22()()x y x y x y+-=-C .265(5)(1)x x x x -+=--D .222()2x y x y xy+=-+6.如图,已知△ABE ≌△ACD ,下列选项中不能被证明的等式是()A .AD AE = B.DB AE = C.DF EF= D.DB EC=7.下列各式中,计算正确的是A .22(155)535x y xy xy x y -÷=-B .98102(1002)(1002)9996⨯=-+=C .3133x x x -=++D .2(31)(2)32x x x x +-=+-8.如图,90D C ∠=∠=︒,E 是DC 的中点,AE 平分DAB ∠,28DEA ∠=︒,则ABE ∠的度数是()A .62B .31C .28D .259.在等边三角形ABC 中,,D E 分别是,BC AC 的中点,点P 是线段AD 上的一个动点,当△PCE 的周长最小时,P 点的位置在()A .△ABC 的重心处B .AD 的中点处C .A 点处D .D 点处10.定义运算11a ab b +=+,若1a ≠-,1b ≠-,则下列等式中不.正确的是()A .1a bb a⨯=B .b c b c a a a++=C .222(2)()(2)a a ab b b +=+D .1aa=二.填空题(本大题共24分,每小题3分)11.如图△ABC ,在图中作出边AB 上的高CD .12.分解因式:244x y xy y -+=.13.点(2,3)M -关于x 轴对称的点的坐标是.14.如果等腰三角形的两边长分别为4和8,那么它的周长为.15.计算:21224()8a b ab --÷=.16.如图,在△ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于D 点.若BD 平分ABC ∠,则A ∠=︒.17.教材中有如下一段文字:小明通过对上述问题的再思考,提出:两边分别相等且这两边中较大边所对的角相等的两个三角形全等.请你判断小明的说法.(填“正确”或“不正确”)18.如图1,△ABC 中,AD 是∠BAC 的平分线,若AB=AC+CD ,那么∠ACB 与∠ABC 有怎样的数量关系?小明通过观察分析,形成了如下解题思路:图1图2如图2,延长AC 到E ,使CE=CD ,连接DE .由AB=AC+CD ,可得AE=AB .又因为AD 是∠BAC 的平分线,可得△ABD ≌△AED ,进一步分析就可以得到∠ACB 与∠ABC 的数量关系.(1)判定△ABD 与△AED 全等的依据是______________________________________;(2)∠ACB 与∠ABC 的数量关系为:__________________________________.三.解答题(本大题共18分,第19题4分,第20题4分,第21题10分)19.分解因式:(4)()3a b a b ab-++20.如图,DE ∥BC ,点A 为DC 的中点,点,,B A E 共线,求证:DE CB =.21.解下列方程:(1)25231x x x x +=++;(2)1122x x x -=+-.四.解答题(本大题共14分,第22题4分,第23、24题各5分)22.已知2a b +=,求211()()4aba b a b ab+⋅-+的值.23.如图,在等边三角形ABC 的三边上,分别取点,,D E F ,使得△DEF 为等边三角形,求证:AD BE CF ==.24.列方程解应用题:老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂。

2015-2016学年度第一学期期末八年级数学试题(含答案)

2015-2016学年度第一学期期末八年级数学试题(含答案)

2015—2016学年度第一学期期末考试八 年 级 数 学 试 卷试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分,考试时间100分钟。

答题前,学生务必将自己的姓名和学校、班级、学号等填写在答题卷上;答案必须写在答题卷各题目指定区域内的相应位置上;考试结束后,只需将答题卷交回。

第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项正确) 1、9的平方根是( ).A .3B .-3C .±3D .±32、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ).A .1、2、3B . 2、3、4C . 3、4、5D .4、5、63、下列说法:①实数与数轴上的点一一对应;②2a 没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1.其中正确的有( ) A .1个 B .2个 C .3个 D .4个4、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A B C D5、若一个多边形的内角和等于720°,则这个多边形的边数是( ). A .5 B .6 C .7 D .86、为筹备本班元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A .中位数 B .平均数 C .加权平均数 D .众数7、如图,已知棋子“车”的坐标为(-2,3),棋子“马” 的坐标为 (1,3),则棋子“炮”的坐标为( ).A .(3,1)B .(2,2)C .(3,2)D .(-2,2)8.下列一次函数中,y 的值随着x 值的增大而减小的是( ). A .y =x B .y =-x C .y =x +1 D .y = x -19、如图所示,两张等宽的纸条交叉重叠在一起,则重叠部分ABCD 一定是( ). A .菱形 B .矩形 C .正方形 D .梯形10、一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3)与放水时间t (时)的函数关系用图表示为( )A B C D(第9题图)(第7题图)第Ⅱ卷(非选择题)二、填空题(本大题共5小题,每小题3分,共15分,将答案填写在题中横线上) 11、比较大小:3(填“>”、“<”、或“=”).12、写出一个你所学过的既是轴对称又是中心对称图形的四边形: .13、如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是 度.14、 如图,若直线l 1:32-=x y 与l 2:3+-=x y 相交于点P ,则根据图象可得,二元一次方程组⎩⎨⎧=+=-332y x y x 的解是 . 15、 如图,在直角坐标平面内的△ABC 中,点A 的坐标为(0,2),点C 的坐标为(5,5),要使以A 、B 、 C 、D 为顶点的四边形是平行四边形,且点D 坐标在第一象限,那么点D 的坐标是 .三、解答题(本大题共10小题,共75分。

北京市海淀区2016-2017学年八年级上期末考试数学试题含答案

北京市海淀区2016-2017学年八年级上期末考试数学试题含答案

海 淀 区 八 年 级 第 一 学 期 期 末 练 习数 学2017.1班级 姓名 成绩一.选择题(本大题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.题号 1 2 3 4 5 6 7 8 9 10 答案1. 第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行. 在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是..轴对称图形的是( )2.下列运算中正确的是( ) A .284x x x-÷=B . 22a a a ⋅=C .()236aa =D .()3339a a=3.石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体。

石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂。

其中0.000001用科学记数法表示为( )A .6110-⨯B .71010-⨯C .50.110-⨯D .6110⨯4.在分式2+x x中x 的取值范围是( ) A .2x >- B.2x <-C .0x ≠D .2x ≠-5.下列各式中,从左到右的变形是因式分解的是( )A .22212(1)1a a a a -+=-+ B .22()()x y x y x y +-=- C .265(5)(1)x x x x -+=--D .222()2x y x y xy +=-+6.如图,已知△ABE ≌△ACD ,下列选项中不能被证明的等式是( ) A .AD AE = B. DB AE =C. DF EF =D. DB EC =7. 下列各式中,计算正确的是A .22(155)535x y xy xy x y -÷=-B . 98102(1002)(1002)9996⨯=-+=C .3133x x x -=++ D . 2(31)(2)32x x x x +-=+- 8. 如图,90D C ∠=∠=︒,E 是DC 的中点,AE 平分DAB ∠,28DEA ∠=︒,则ABE ∠的度数是( )A .62B .31C .28D .259.在等边三角形ABC 中,,D E 分别是,BC AC 的中点,点P 是线段AD 上的一个动点,当△PCE 的周长最小时,P 点的位置在( )A .△ABC 的重心处B .AD 的中点处C .A 点处D .D 点处10.定义运算11a a b b+=+,若1a ≠-,1b ≠-,则下列等式中不.正确的是( ) A .1a bb a ⨯=B .b c b c a a a ++=C .222(2)()(2)a a ab b b +=+ D .1a a =CFEDBAABDC EPABCDE二.填空题(本大题共24分,每小题3分)11.如图△ABC ,在图中作出边AB 上的高CD .12.分解因式:244x y xy y -+= .13.点(2,3)M -关于x 轴对称的点的坐标是 .14.如果等腰三角形的两边长分别为4和8,那么它的周长为 .15.计算:21224()8a b ab --÷= .16.如图,在△ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于D 点. 若BD 平分ABC ∠,则A ∠= ︒.17.教材中有如下一段文字:小明通过对上述问题的再思考,提出:两边分别相等且这两边中较大边所对的角相等的两个三角形全等. 请你判断小明的说法 . (填“正确”或“不正确”)NMAB CD ABC18.如图1,△ABC 中, AD 是∠BAC 的平分线,若AB=AC+CD ,那么∠ACB 与∠ABC 有怎样的数量关系?小明通过观察分析,形成了如下解题思路:图1 图2如图2,延长AC 到E ,使CE=CD ,连接DE .由AB=AC+CD ,可得AE=AB .又因为AD 是∠BAC 的平分线,可得△ABD ≌△AED ,进一步分析就可以得到∠ACB 与∠ABC 的数量关系. (1)判定△ABD 与△AED 全等的依据是______________________________________; (2)∠ACB 与∠ABC 的数量关系为:__________________________________.三.解答题(本大题共18分,第19题4分, 第20题4分,第21题10分) 19.分解因式:(4)()3a b a b ab -++ABCDEDCB A20.如图,DE ∥BC ,点A 为DC 的中点,点,,B A E 共线,求证:DE CB =.21. 解下列方程:(1)25231x x x x +=++; (2)1122x x x -=+-.四.解答题(本大题共14分,第22题4分,第23、24题各5分) 22.已知2a b +=,求211()()4aba b a b ab+⋅-+的值.A BCDE23. 如图,在等边三角形ABC 的三边上,分别取点,,D E F ,使得△DEF 为等边三角形,求证:AD BE CF ==.24.列方程解应用题:老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂。

北京中学2015—2016学年度第一学期八年级数学期末测试试卷

北京中学2015—2016学年度第一学期八年级数学期末测试试卷

2015---2016学年北京中学八年级上期中数学一、选择题(共10小题;共50分)1. 四个图中,分别给出了变量x与y之间的对应关系,y不是x的函数的是 ( )A. B.C. D.2. 如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于 ( )A. 4B. 6C. 8D. 2103. 当k<0时,正比例函数y=kx的图象大致是 ( )A. B.C. D.4. 已知菱形的两条对角线分别是6 cm和8 cm,则这个菱形的周长是 ( )A. 20B. 16C. 12D. 105. 一次函数y=−3x−1的图象不经过 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 矩形ABCD中,E是BC中点,如果∠BAE=30∘,AE=2,那么AC的长为 ( )A. 3B. 22C. 7D. 67. 若y与x的关系式为y=30x−6,当x=1时,y的值为 ( )3A. 5B. 10C. 4D. −48. 正方形的两条对角线长的和是8 cm,那么它的面积是 ( )A. 8 cm2B. 4 cm2C. 4 2 cm2D. 16 cm29. 如图,在矩形ABCD中,AB=13,BC=7,点E,F分别在AB,CD上,将矩形ABCD沿EF折叠,使点A,D分别落在矩形ABCD外部的点A1,D1处,则阴影部分图形的周长为 ( )A. 20B. 30C. 36D. 4010. 甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则下列结论正确的是 ( )A. 乙的速度是4米/秒B. 离开起点后,甲、乙两人第一次相遇时,距离起点12米C. 甲从起点到终点共用时83秒D. 乙到达终点时,甲、乙两人相距68米二、填空题(共8小题;共40分)11. 函数y=x−5自变量x的取值范围为.12. 如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=4,S2=8,则AB的长为.13. 如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则CD的长是.14. 如图,平行四边形ABCD与平行四边形DCFE的周长相等,且∠BAD=60∘,∠F=110∘,则∠DAE的度数为.15. 若点m,−3在函数y=−5x+1的图象上,则m的值为.16. 等腰直角三角形的斜边为10,则斜边上的高为.17. 在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD中,AD∥BC,请添加一个条件,使得四边形ABCD是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”,你同意的观点,理由是.18. 对正方形ABCD进行分割,如图1,其中E、F分别是BC、CD的中点,M、N、G分别是OB、OD、EF的中点,沿分化线可以剪出一副"七巧板",用这些部件可以拼出很多图案,图2就是用其中6块拼出的"飞机".若△GOM的面积为1,则"飞机"的面积为.三、解答题(共8小题;共104分)BD.19. 已知:如图,在△ABC中,CF平分∠ACB,CA=CD,AE=EB.求证:EF=1220. 如图,将矩形ABCD沿EF折叠,使点D与点B重合,已知AB=3,AD=9,求BE的长.21. 阅读下面的材料勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为a,b,斜边为c,然后按图1 的方法将它们摆成正方形.ab+c2,由图 1 可以得到a+b2=4×12整理,得a2+2ab+b2=2ab+c2.所以a2+b2=c2.如果把图1 中的四个全等的直角三角形摆成图2所示的正方形,请你参照上述证明勾股定理的方法,完成下面的填空:由图 2 可以得到,整理,得,所以.22. 如图,已知直线l1经过点A−1,0与点B2,3,另一条直线l2经过点B,且与x轴相交于点P m,0.(1)求直线l1的解析式;(2)若△APB的面积为3,求m的值.23. 如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;AC,连接CE,24. 如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DE∥AC且DE=12 OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60∘,求AE的长.25. 如图所示,某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之的函数关系.(1)有月租费的收费方式是(填①或②),月租费是元;(2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.26. 如图1,矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN上,若∠1=∠2=∠3=∠4,则称四边形EFGH为矩形MNPQ的反射四边形.图 2,图3,图4 中,四边形ABCD为矩形,且AB=4,BC=8.(1)理解与作图:在图2、图3 中,点E,F分别在BC,CD边上,试利用正方形网格在图上作出矩形ABCD 的反射四边形EFGH.(2)计算与猜想:求图2,图3 中反射四边形EFGH的周长,并猜想矩形ABCD的反射四边形的周长是否为定值?(3)启发与证明:如图 4,为了证明上述猜想,小华同学尝试延长GF交BC的延长线于M,试利用小华同学给我们的启发证明(2)中的猜想.答案第一部分1. D2. B 【解析】提示:由已知得AD=8,则BD= AB2−AD2=6.3. C4. A5. A6. C 【解析】提示:由已知可得BE=1=EC,∴AD=BC=2,AB=CD=3,∴AC=7.7. C 8. A 【解析】提示:一条对角线长为4,边长为22,面积为222=8.9. D 【解析】阴影部分图形的周长为EA1+A1D1+FD1+EB+CB+FC=AE+AD+DF+EB+CB+FC=2AB+BC=40.10. D【解析】甲的速度为12÷3=4米/秒;12米为甲出发3秒时,甲乙的距离,所以第一次相遇时,距离起点大于12米;甲用时400÷4=100秒;乙用80秒到达终点,则甲此时用了83秒,此时甲乙相距400−83×4=68米.第二部分11. x≥512. 23【解析】S2=AC2,S1=BC2,S3=AB2=12,∴AB=23.13. 4【解析】由已知可得∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠DEC,∴∠CDE=∠DEC,∴CD=CE=6−2=4.14. 25∘【解析】由于平行四边形ABCD与平行四边形DCFE的周长相等,且有公共边CD,所以AD=DE,∠CDE=∠F=110∘,∠ADC=180∘−∠BAD=180∘−60∘=120∘,所以∠ADE=360∘−110∘−120∘=130∘,所以∠DAE=180∘−130∘÷2=25∘.15. 4516. 5【解析】提示:由题意可知腰长为52,斜边上的高把这个等腰直角三角形分成两个全等的等腰直角三角形,∴斜边上的高为5.17. 小明;一组对边平行且相等的四边形是平行四边形18. 14第三部分19. ∵CA=CD,∴△ACD为等腰三角形.∵CF平分∠ACB,∴F为AD中点.又AE=EB,∴EF=12BD.20. 由已知得BE=DE.∵AB=3,AD=9,∴AE=9−BE.在Rt△ABE中AB2+AE2=BE2,∴32+9−BE2=BE2,∴BE=5.21. 4×12ab+b−a2=c2;2ab+b2−2ab+a2=c2;a2+b2=c2.22. (1)设l1:y=kx+b.将A−1,0与点B2,3代入解析式,得−k+b=0,2k+b=3.解得k=1, b=1.∴y=x+1.(2)S△APB=12AP×y B=12∣m−−1∣×3 =3解得m=−3或m=1.23. (1)∵四边形ABCD,四边形AEFG都是正方形,∴∠EAG=∠BAD=90∘,AD=AB,AE=AG.∴∠EAB=∠GAD.在△EAB和△GAD中AE=AG,∠EAB=∠GAD,AB=AD.∴△EAB≌△GAD.∴EB=GD.(2)EB⊥GD.∵△EAB≌△GAD,∴∠AEB=∠AGD.∵∠AMG=∠EMH,∠GAE=90∘,∴∠EHM=90∘,∴EB⊥GD.24. (1)在菱形ABCD中,OC=12AC.∴DE=OC,∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)在菱形ABCD中,∠ABC=60∘,∴AC=AB=2.∴在矩形OCED中,CE=OD= AD2−AO2=3.在Rt△ACE中,AE=2+CE2=7.25. (1)①;30(2)设①收费方式y1=k1x+b1,②收费方式y2=k2x.将0,30,500,80代入y1=k1x+b1,得b1=30,500k1+b1=80.解得k1=0.1, b1=30.y1=0.1x+30.将500,100代入y2=k2x,得500k2=100,k2=0.2,y2=0.2x.(3)令y1=y2,即0.1x+30=0.2x,解得x=300.当x=300时,两种收费相同.当x>300时,①方案实惠.当x<300时,②方案实惠.26. (1)(2)在图2中,EF=FG=GH=HE=2+42=20=25,∴四边形EFGH的周长为4×25=85.在图3中,EF=GH=22+12=5,FG=HE=32+62=45=35,∴四边形EFGH的周长为2×5+2×35=25+65=85.猜想:矩形ABCD的反射四边形的周长为定值.(3)延长GH交CB的延长线于点N.∵∠1=∠2,∠1=∠5,∴∠2=∠5.又FC=FC,∴△FCE≌△FCM.∴EF=MF,EC=MC.同理:NH=EH,NB=EB.∴MN=2BC=16.∵∠M=90∘−∠5=90∘−∠1,∠N=90∘−∠3,∴∠M=∠N.∴GM=GN.过点G作GK⊥BC于K.MN=8.则KM=12∴GM= GK2+KM2=42+82=45.∴四边形EFGH的周长为2GM=85.第11页(共11页)。

2015-2016学年北京市海淀区初二上学期期末数学试卷(含答案)

2015-2016学年北京市海淀区初二上学期期末数学试卷(含答案)

八年级第一学期期末练习数 学 2016.5一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个..符合题意.请将正确选项前的字母填在表格中相应的位置. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.下列标志是轴对称图形的是A B C D2.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 002 5米,把数字0.000002 5用科学记数法表示为A .62.510⨯B .60.2510-⨯C .62510-⨯D .62.510-⨯3.使分式23x -有意义的x 的取值范围是A .3x ≠B .3x >C .3x <D .3x = 4.下列计算中,正确的是A .238()a a =B .842a a a ÷=C .325a a a +=D .235a a a ⋅= 5.如图,△ABC ≌△DCB ,若AC =7,BE =5,则DE 的长为A .2B .3C .4D .56.在平面直角坐标系中,已知点A (2,m )和点B (n ,-3)关 于x 轴对称,则m n +的值是A .-1B .1C .5D .-57.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同..的刻度分别与点M ,N 重合,过角尺顶点C 作射线OC .由此作法便可得△MOC ≌△NOC ,其依据是A .SSSB .SASC .ASAD .AAS8.下列各式中,计算正确的是A .2(21)21x x x -=-B .23193x x x +=-- C .22(2)4a a +=+ D . 2(2)(3)6x x x x +-=+-9.若1a b +=,则222a b b -+的值为A .4B .3C .1D .010.如图,在△ABC 中,AB =AC ,∠A =40°,AB 的垂直平分线MN 交AC 于D 点,则∠DBC 的度数是A .20°B .30°C .40°D .50° 11.若分式61a +的值为正整数,则整数a 的值有 A .3个 B .4个 C .6个 D .8个 12.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边 的中点,点M 为线段EF 上一动点,则△CDM 周长的最小值为 A .6 B .8C .10D .12二、填空题(本题共24分,每小题3分) 13.当x = 时,分式1xx -值为0. 14.分解因式:24x y y -= . 15.计算:233x y ⎛⎫-= ⎪⎝⎭.16.如果等腰三角形的两边长分别为3和7,那么它的周长为 .17.如图,DE ⊥AB ,∠A =25°,∠D =45°,则∠ACB 的度数为 .18.等式222()a b a b +=+成立的条件为 .19.如图,在△ABC 中,BD 是边AC 上的高,CE 平分∠ACB ,交BD 于点E ,DE =2,BC =5,则△BCE 的面积为 .20.图1是用绳索织成的一片网的一部分,小明探索这片网的结点数(V ),网眼数(F ),边数(E )之间的关系,他采用由特殊到一般的方法进行探索,列表如下:特殊网图结点数(V ) 4 6 9 12 网眼数(F ) 1 2 4 6 边数(E )4712☆表中“☆”处应填的数字为 ;根据上述探索过程,可以猜想V ,F , E 之间满足的等量关系为 ;如图2,若网眼形状为六边形,则V ,F , E 之间满足的等量关系为 .图1 图2三、解答题(本题共16分,每小题4分) 21.计算:114(π3)32-⎛⎫---+- ⎪⎝⎭.22.如图,E 为BC 上一点,AC ∥BD ,AC =BE ,BC =DB .求证:AB= ED .23.计算:2234221121x x x x x x ++⎛⎫-÷ ⎪---+⎝⎭.24.解方程:3111x x x -=-+.四、解答题(本题共13分,第25题4分,第26题5分,第27题4分) 25.已知3x y -=,求2[()()()]2x y x y x y x -++-÷的值.26.北京时间2015年7月31日,国际奥委会主席巴赫宣布:中国北京获得2022年第24届冬季奥林匹克运动会举办权.北京也创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市,张家口也成为本届冬奥会的协办城市.近期,新建北京至张家口铁路可行性研究报告已经获得国家发改委批复,同意新建北京至张家口铁路,铁路全长约180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少了20分钟,求高铁列车的平均行驶速度.27.已知:如图,线段AB和射线BM交于点B.(1)利用尺规完成以下作图,并保留作图痕迹(不写作法).①在射线BM上作一点C,使AC=AB;②作∠ABM的角平分线交AC于D点;③在射线CM上作一点E,使CE=CD,连接DE.(2)在(1)所作的图形中,猜想线段BD与DE的数量关系,并证明.AMB五、解答题(本题共11分,第28题5分,第29题6分)28.如图1,我们在2016年1月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”).该十字星的十字差为⨯-⨯=,再选择其它位置的十字星,可以发现“十字差”仍为48.121462048(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为____________.(2)若将正整数依次填入k列的长方形数表中(3k≥),继续前面的探究,可以发现相应“十字差”为与列数k有关的定值,请用k表示出这个定值,并证明你的结论.(3)如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”,若某个十字星中心的数在第32行,且其相应的“十字差”为2015,则这个十字星中心的数为__________________(直接写出结果).图1 图2图329.数学老师布置了这样一道作业题:在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,α+β=120°,连接AD,求∠ADB的度数.小聪提供了研究这个问题的过程和思路:先从特殊问题开始研究,当α=90°,β=30°时(如图1),利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形的相关知识便可解决这个问题.图1 图2(1)请结合小聪研究问题的过程和思路,求出这种特殊情况下∠ADB的度数;(2)结合小聪研究特殊问题的启发,请解决数学老师布置的这道作业题;(3)解决完老师布置的这道作业题后,小聪进一步思考,当点D和点A在直线BC的异侧时,且∠ADB的度数与(1)中相同,则α,β满足的条件为_______________________________________________(直接写出结果).八年级第一学期期末练习数 学 答 案 2016.1一、选择题(本题共36分,每小题3分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDADACABCBBC二、填空题(本题共24分,每小题3分)13.0x =; 14.(2)(2)y x x +-; 15.269x y; 16.17; 17.110°;18.0ab =; 19.5; 20.17,1V F E +-=,1V F E +-=. 三、解答题(本题共16分,每小题4分)21.解:原式=2123--+ ---------------------------------------------------------------------3分 =2 . -------------------------------------------------------------------------4分 22.证明:∵AC ∥BD ,∴∠C =∠EBD . ---------------------------------------------------------1分在△ABC 和△EDB 中,,,,A C E B C E B D B C D B =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△EDB . ----------------------------------------------------------------------3分 ∴AB =ED . --------------------------------------------------------------------4分23.解:原式=2342(1)2(1)(1)(1)(1)(1)x x x x x x x x ⎡⎤+++-÷⎢⎥+-+--⎣⎦--------------------------------------------1分 =2(34)2(1)(1)(1)(1)2x x x x x x+-+-⋅+-+ -----------------------------------------------2分=22(1)(1)(1)2x x x x x +-⋅+-+ --------------------------------------------------3分=11x x -+. ---------------------------------------------------------------------4分 24.解:方程两边乘以(1)(1)x x +-,得(1)(1)(1)3(x x x x x +-+-=-. ------------------------------------------1分解得 2x =. ----------------------------------------------------------3分检验:当2x =时,(1)(1)0x x +-≠.所以, 原分式方程的解为2x =. ---------------------------------4分四、解答题(本题共13分,第25题4分,第26题5分,第27题4分) 25.解:原式=2222(2)2x xy y x y x -++-÷ -------------------------------------1分 =2(22)2x xy x -÷ -------------------------------------------2分=x y -. -------------------------------------------------------3分当3x y -=时,原式=x y -=3. -------------------------------------------4分26.解:设普通快车的平均行驶速度为x 千米/时,则高铁列车的平均行驶速度为1.5x 千米/时.----1分 根据题意得18018011.53x x -=. -------------------------------------3分 解得 180x =. ----------------------------------------------4分 经检验,180x =是所列分式方程的解,且符合题意.∴1.5 1.5180270x =⨯=.答:高铁列车的平均行驶速度为270千米/时. -----------------------------5分27.解:(1)(注:不写结论不扣分)ME DC B A-------------------------------1分(2)BD =DE -------------------------------------------------------------2分证明:∵BD 平分∠ABC ,∴∠1=12∠ABC . ∵AB =AC , ∴∠ABC =∠4. ∴∠1=12∠4. ∵CE =CD , ∴∠2=∠3.∵∠4=∠2+∠3, ∴∠3=12∠4. ∴∠1=∠3.∴BD =DE . ---------------------------------------------------------4分4321ME DCB A五、解答题(本题共11分,第28题5分,第29题6分) 28.(1)24; -------------------------------------------------------------------------------------1分(2)21k -; ---------------------------------------------------------------------------2分 证明:设十字星中心的数为x ,则十字星左右两数分别为1x -,1x +,上下两数分别为x k -,x k +(3k ≥).十字差为(1)(1)()()x x x k x k -+--+ -----------------------------------3分=222(1)()x x k ---=2221x x k --+=21k -. -------------------------------------------------4分∴这个定值为21k -.(3)976. --------------------------------------------------------------------5分 29.(1)解:如图,作∠AB D′=∠ABD , B D′=BD ,连接CD′,A D′.∵AB =AC ,∠BAC =90°, ∴∠ABC =45°. ∵∠DBC =30°,∴∠ABD =∠ABC -∠DBC =15°.∵AB =AB ,∠AB D′=∠ABD , B D′=BD , ∴△ABD ≌△ABD′. ∴∠ABD =∠ABD′=15°,∠ADB =∠AD ′B . ∴∠D′BC =∠ABD′+∠ABC =60°. ∵BD =BD′,BD =BC , ∴BD′=BC .∴△D′BC 是等边三角形. ----------------------------------------------1分 ∴D′B =D′C ,∠BD′C =60°. ∵AB AC =,AD AD ''=, ∴△AD ′B ≌△AD ′C . ∴∠A D′B =∠A D′C .∴∠ A D′B =12∠BD′C =30°. ∴∠ADB =30°. -------------------------------------------------------------2分(2)解:第一种情况:当60120α︒︒<≤时如图,作∠AB D′=∠ABD , B D′=BD ,连接CD′,A D′. ∵AB =AC , ∴∠ABC =∠ACB .∵∠BAC +∠ABC +∠ACB =180°, ∴α+2∠ABC =180°.∴∠ABC =1809022αα︒-=︒-. ∴∠ABD =∠ABC -∠DBC =902αβ︒--.同(1)可证△ABD ≌△ABD′. ∴∠ABD =∠ABD′=902αβ︒--,BD =BD′,∠ADB =∠AD ′B .D 'DCBA- 11 - ∴∠D′BC =∠ABD′+∠ABC =9090180()22ααβαβ︒--+︒-=︒-+.∵120αβ+=︒, ∴∠D′BC =60°.以下同(1)可求得∠ADB =30°. -----------------------------------------3分 第二种情况:当060α︒︒<<时,如图,作∠AB D′=∠ABD , B D′=BD ,连接CD′,A D′.∵AB =AC ,∴∠ABC =∠ACB .∵∠BAC +∠ABC +∠ACB =180°,∴α+2∠ABC =180°.∴∠ABC =1809022αα︒-=︒-. ∴∠ABD =∠DBC -∠ABC =902αβ-︒-(). 同(1)可证△ABD ≌△ABD′.∴∠ABD =∠ABD′=902αβ-︒-(),BD =BD′,∠ADB =∠AD ′B . ∴∠D′BC =∠ABC -∠ABD′=90[(90)]=180()22ααβαβ︒---︒-︒-+.∵120αβ+=︒,∴∠D′BC =60°.∵BD =BD′,BD =BC ,∴BD′=BC .∴△D′BC 是等边三角形.∴D′B =D′C ,∠BD′C =60°.同(1)可证△AD ′B ≌△AD ′C .∴∠A D′B =∠A D′C .∵∠A D′B +∠A D′C +∠BD′C =360°,∴2∠ A D′B +60°=360°.∴∠ A D′B =150°.∴∠ADB =150°. ---------------------------------------------4分(3)0180α︒︒<<,60β=︒或120180α︒︒<<,120αβ-=︒. ------------------------------6分(注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分)。

2015-2016学年北京市海淀区年级上期末练习试卷含答案

2015-2016学年北京市海淀区年级上期末练习试卷含答案

海淀区九年级第一学期期末练习数 学 试 卷(分数:120分 时间:120分钟) 2016.1学校 姓名 准考证号 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表格中相应的位置.1.在△ABC 中,∠C=90°,BC=3,AB=5,则sin A 的值是A .53B .54C .34D .432.如图,△ABC 内接于⊙O ,若o 100AOB ∠=,则∠ACB 的度数是 A .40° B .50° C .60° D .80°3.抛物线2(2)1y x =-+的顶点坐标是 A .(21)--,B .(21)-,C .(21)-,D .(21),A .12-B .7-C .1-D .1 5.如图,在ABCD 中,E 是AB 的中点,EC 交BD 于点F ,则△BEF 与△DCF 的面积比为A .49 B .19 C .14D .126.抛物线22y x =向左平移1个单位,再向下平移3个单位,则平移后的抛物线的解析式为A .()2213y x =++ B .()2213y x =+- C .()2213y x =-- D .()2213y x =-+7.已知点(11,x y )、(22,x y )、(33,x y )在双曲线1y x=上,当3210x x x <<<时,1y 、2y 、3y 的大小关系是A .321y y y <<B .231y y y <<C .213y y y <<D .132y y y << 8.如图,AB 是⊙O 的直径,C 、D 是圆上的两点.若BC=8,2cos 3D =,则AB 的长为 A .3 B .163C .5D .12 9.在平面直角坐标系xOy 中,A 为双曲线6y x=-上一点,点B 的坐标为(4,0).若 △AOB 的面积为6,则点A 的坐标为 A .(4-,32) B .(4,32-)C .(2-,3)或(2,3-)D .(3-,2)或(3,2-)10.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++ 与x 轴只有一个交点M ,与平行于x 轴的直线l 交于A 、B 两点.若AB =3,则点M 到直线l 的距离为A .52 B .94 C .2 D .74二、填空题(本题共18分,每小题3分)11.请写出一个图象在第二、四象限的反比例函数解析式 . 12.已知关于x 的方程260x x m -+= 有两个不相等的实数根,则m 的取值范围是 .13.如图,在平面直角坐标系xOy 中,△ABC 与△'''A B C 顶点的横、 纵坐标都是整数.若△ABC 与△'''A B C 是位似图形,则位似中心的坐标14.正比例函数1y k x =与反比例函数2k y x=的图象交于A 、B 两点,若 点A 的坐标是(1,2),则点B 的坐标是___________.15.古算趣题:“笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭.有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足.借问竿长多少数, 谁人算出我佩服.”若设竿长为x 尺,则可列方程为 .16.正方形CEDF 的顶点D 、E 、F 分别在△ABC 的边AB 、BC 、AC 上.(1)如图,若tan 2B =,则BE BC的值为 ;(2)将△ABC 绕点D 旋转得到△'''A B C ,连接'BB 、'CC .若''5CC BB =,则tan B 的值为 . 三、解答题(本题共72分,第17~26题,每小题5分,第27题6分,第28题8分,第29题8分)17.计算:2sin 303tan 60cos 45︒+︒-︒.18.解方程:2250x x +-=.19.如图,D 是AC 上一点,DE ∥AB ,∠B =∠DAE . 求证:△ABC ∽△DAE .20.已知m 是方程210x x +-=的一个根,求代数式2(1)(1)(1)m m m +++-的值.21.已知二次函数28y x bx =++的图象与x 轴交于A 、B 两点,点A 的坐标为(2,0)-,求点B 的坐标.22.如图,矩形ABCD 为某中学课外活动小组围建的一个生物苗圃园,其中两边靠墙(墙足够长),另外两边用长度为16米的篱笆(虚线部分)围成.设AB 边的长度为x 米,矩形ABCD 的面积为y 平方米.(1)y 与x 之间的函数关系式为 (不要求写自变量的取值范围); (2)求矩形ABCD 的最大面积.23.如图,在△ABC 中,∠ACB =90︒,D 为AC 上一点,DE ⊥AB 于点E ,AC =12,BC =5. (1)求cos ADE ∠的值;(2)当DE DC =时,求AD 的长.24.如图,在平面直角坐标系xOy 中,双曲线xmy =与直线2-=kx y 交于点A (3,1). (1)求直线和双曲线的解析式;(2)直线2-=kx y 与x 轴交于点B ,点P 是双曲线xmy =上一点,过点P 作直线PC ∥x 轴,交y 轴于点C ,交直线2-=kx y 于点D .若DC =2OB ,直接写出点P 的坐标为 .25.如图,小嘉利用测角仪测量塔高,他分别站在A 、B 两点测得塔顶的仰角45,50.αβ=︒=︒AB 为10米.已知小嘉的眼睛距地面的高度AC 为1.5米,计算塔的高度.(参考数据:sin 50︒取0.8,cos50︒取0.6,tan50︒取1.2)26.如图,△ABC 内接于⊙O ,过点B 作⊙O 的切线DE ,F 为射线BD 上一点,连接CF . (1)求证:CBE A ∠=∠;(2)若⊙O 的直径为5,2BF =,tan 2A =,求CF 的长.27.如图,在平面直角坐标系xOy 中,定义直线x m =与双曲线n ny x=的交点,m n A (m 、n 为正整数)为 “双曲格点”,双曲线n ny x=在第一象限内的部分沿着竖直方向平移或以平行于x 轴的直线为对称轴进行翻折之后得到的函数图象为其“派生曲线”.(1)①“双曲格点”2,1A 的坐标为 ;②若线段4,34,n A A 的长为1个单位长度,则n = ; (2)图中的曲线f 是双曲线11y x=的一条“派生曲线”,且经过点2,3A ,则f 的解析式为y = ; (3)画出双曲线33y x =的“派生曲线”g (g 与双曲线33y x=不重合),使其经过“双曲格点”2,a A 、3,3A 、4,b A .28.(1)如图1,△ABC 中,90C ∠=︒,AB 的垂直平分线交AC 于点D ,连接BD .若AC =2, BC =1,则△BCD 的周长为 ;(2)O 为正方形ABCD 的中心,E 为CD 边上一点,F 为AD 边上一点,且△EDF 的周长等于AD 的长.①在图2中求作△EDF (要求:尺规作图,不写作法,保留作图痕迹); ②在图3中补全图形,求EOF ∠的度数; ③若89AF CE=,则OF OE的值为 .29.在平面直角坐标系xOy 中,定义直线y ax b =+为抛物线2y ax bx =+的特征直线,C ,a b ()为其特征点.设抛物线2y ax bx =+与其特征直线交于A 、B 两点(点A 在点B的左侧).(1)当点A 的坐标为(0,0),点B 的坐标为(1,3)时,特征点C 的坐标为 ; (2)若抛物线2y ax bx =+如图所示,请在所给图中标出点A 、点B 的位置;(3)设抛物线2y ax bx =+的对称轴与x 轴交于点D ,其特征直线交y 轴于点E ,点F 的坐标为(1,0),DE ∥CF .①若特征点C 为直线4y x =-上一点,求点D 及点C 的坐标;②若1tan 22ODE <∠<,则b 的取值范围是 . 海淀区九年级第一学期期末数学练习答案及评分标准2016.1一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题6分,第28题8分,第29题8分)17.(本小题满分5分)解:原式2122⎛⎫=+ ⎪ ⎪⎝⎭……………………………3分1122=+ ……………………………4分=.……………………………5分18.(本小题满分5分) 解法一:522=+x x .15122+=++x x . ……………………………2分 6)1(2=+x . ……………………………3分 61±=+x . 16-±=x . ∴161-=x ,162--=x . ……………………………5分解法二:521-===c b a ,,.∆=ac b 42-)5(1422-⨯⨯-=204+==240>. …………………………2分∴2b x a-=221-±=⨯ ……………………………3分22-±=1=-±.∴161-=x ,162--=x . ………………………………5分19.(本小题满分5分) 证明:∵DE //AB ,∴∠CAB =∠EDA . ………………………………3分 ∵∠B =∠DAE ,∴△ABC ∽△DAE . ………………………………5分 20.(本小题满分5分)解:∵m 是方程210x x +-=的一个根,∴210m m +-=. ………………………………1分 ∴21m m +=.∴22211m m m =+++-原式 ………………………………3分 222m m =+2=. ………………………………5分 21.(本小题满分5分)解:∵二次函数28y x bx =++的图象与x 轴交于点A (2,0)-, ∴0428b =-+. ………………………………1分∴6b =. ………………………………2分∴二次函数解析式为268y x x =++. ………………………………3分 即(2)(4)y x x =++ .∴二次函数(2)(4)y x x =++与x 轴的交点B 的坐标为(4,0)-. ……5分22.(本小题满分5分)解:(1)216y x x =-+; ………………………………2分(2)∵216y x x =-+,∴2(8)64y x =--+. ………………………………4分∵016x <<,∴当8x =时,y 的最大值为64.答:矩形ABCD 的最大面积为64平方米. ………………………………5分 23.(本小题满分5分)解:解法一:如图,(1)∵DE ⊥AB ,∴∠DEA =90°. ∴∠A+∠ADE =90°. ∵∠ACB =90︒, ∴∠A+∠B =90°.A∴∠ADE =∠B . ………………………………1分 在Rt △ABC 中,∵AC =12,BC =5, ∴AB =13. ∴5cos 13BC B AB ==. ∴5cos cos 13ADE B ∠==. ………………………………2分 (2)由(1)得5cos 13DE ADE AD ∠==,设AD 为x ,则513DE DC x ==.………………………………3分∵ 12AC AD CD =+=, ∴51213x x +=. .………………………………4分 解得263x =. ∴ 263AD =. …………………………5分 解法二:(1) ∵90DE AB C ⊥∠=︒,, ∴90DEA C ∠=∠=︒. ∵A A ∠=∠, ∴△ADE ∽△ABC .∴ADE B ∠=∠. ………………………… 1分 在Rt △ABC 中,∵12,5AC BC ==, ∴13.AB = ∴5cos .13BC B AB == ∴5cos cos .13ADE B ∠==…………………………2分 (2) 由(1)可知 △ADE ∽△ABC . ∴.DE AD BC AB= ………………………………3分设AD x =,则12DE DC x ==-. ∴12513x x-=. .………………………………4分 解得263x =.∴263AD =.…………………………5分 24.(本小题满分5分)解:(1) ∵直线2-=kx y 过点A (3,1),∴132k =-.∴1k =.∴直线的解析式为2y x =-. ………………………………2分 ∵双曲线x m y =过点A (3,1), ∴3m =. ∴双曲线的解析式为3y x=. ………………………………3分 (2)3,22⎛⎫ ⎪⎝⎭或1,62⎛⎫-- ⎪⎝⎭. ………………………………5分 25.(本小题满分5分)解:如图,依题意,可得10==AB CD ,5.1==AC FG ,︒=∠90EFC .在Rt △EFD 中,∵β=50︒,2.1tan ==FD EF β, ∴FD EF 2.1=.在Rt △EFC 中,∵α=45︒,∴FD EF CF 2.1==. ………………………2分∵10=-=FD CF CD ,∴50=FD .∴602.1==FD EF . ……………………4分∴5.615.160=+=+=FG EF EG .答:塔的高度为5.61米. ………………………………5分26.(本小题满分5分)解:如图,(1)连接BO 并延长交⊙O 于点M ,连接MC .∴∠A =∠M ,∠MCB =90°.∴∠M +∠MBC =90°.G∵DE 是⊙O 的切线,∴∠CBE +∠MBC =90°.∴M CBE ∠=∠.∴A CBE ∠=∠. ………………………………2分(2) 过点C 作CN DE ⊥于点N .∴ 90CNF ∠=︒.由(1)得,M CBE A ∠=∠=∠.∴tan tan tan 2M CBE A =∠==.在Rt △BCM 中,∵5tan 2BM M ==,,∴BC = ………………………………3分在Rt △CNB 中,∵tan 2BC CBE =∠=, ∴42CN BN ==,. .………………………………4分∵2BF =,∴4FN BF BN =+=.在Rt △FNC 中,∵4,4FN CN ==,∴CF = …………………………5分27.(本小题满分6分)解:(1)①(2,12); ………………………………1分 ②7; ………………………………2分(2)11y x=+; ………………………………4分 (3)如图. ………………………………6分28. (本小题满分8分)解:(1)3; ………………………………1分(2)①如图,△EDF 即为所求; ………………………………3分②在AD 上截取AH ,使得AH =DE ,连接OA 、OD 、OH .∵点O 为正方形ABCD 的中心,∴OA OD =,90AOD ∠=︒,1245∠=∠=︒.∴△ODE ≌△OAH . ………………………………4分∴DOE AOH ∠=∠,OE OH =.∴90EOH ∠=︒.∵△EDF 的周长等于AD 的长,∴EF HF =. ………………………………5分∴△EOF ≌△HOF .∴45EOF HOF ∠=∠=︒. ………………………………6分. ………………………………8分 29.(本小题满分8分)解:(1)(3,0); ……………………1分(2)点A 、点B 的位置如图所示;…………………………3分(3)①如图,∵特征点C 为直线4y x =-上一点,∴4b a =-.∵抛物线2y ax bx =+的对称轴与x 轴交于点D , ∴对称轴22b x a=-=.∴点D 的坐标为2,0(). ……………………………4分 ∵点F 的坐标为(1,0),∴1DF =.∵特征直线y =ax +b 交y 轴于点E ,∴点E 的坐标为0,b (). ∵点C 的坐标为,a b (), ∴CE ∥DF .∵DE ∥CF ,∴四边形DECF 为平行四边形.∴1CE DF ==.………………………………5分∴1a =-.∴特征点C 的坐标为1,4-(). ………………………………6分 ②102b -≤<或548b <<. ………………………………8分。

海淀区2015—2016八年级数学期末试题

海淀区2015—2016八年级数学期末试题

海淀区2015—2016八年级数学期末试题海淀区八年级第一学期期末练数学2016.1分数:100分时间:90分钟)一、选择题:(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的。

请将正确选项前的字母填在表格中相应的位置。

1.下列图形中,不是轴对称图形的是A)(B)(C)(D)2.下列运算中正确的是A)2x+3y=5xy (B)x÷x=x (C)(xy)=xy (D)2x·x=2x3.在平面直角坐标系xOy中,点P(-3,5)关于x轴的对称点的坐标是A)(3,5)(B)(3,-5)(C)(5,-3)(D)(-3,-5)4.如果3x+2在实数范围内有意义,那么x的取值范围是A)x≠-2,-3 (B)x<-2,-3 (C)x≥-2,-3 (D)x≥-2,35.下列各式中,从左到右的变形是因式分解的是A)3x+3y-5=3(x+y)-5 (B)(x+1)(x-1)=x-1 (C)x+2x+1=(x+1) (D)x(x-y)=x-xy6.下列三个长度的线段能组成直角三角形的是A)1,2,3 (B)1,3,5 (C)2,4,6 (D)5,5,67.计算2(3-12),结果为A)6 (B)-6 (C)6-6 (D)6/-68.下列各式中,正确的是A)b/(b+2a) (B)b/2a+1 (C)-a+b/a+2a (D)-(a-2)/(a-2c)9.若x+m与2-x的乘积中不含x的一次项,则实数m的值为A)-2 (B)2 (C)0 (D)110.如图,在△ABC和△___中,若∠ACB=∠CED=90°,AB=CD,BC=DE,则下列结论中不正确的是A)△ABC≌△CDE (B)CE=AC (C)AB⊥CD (D)E为BC中点11.如图,由四个全等的直角三角形与一个小正方形拼成一个大正方形。

如果大正方形的面积是25,小正方形的面积是1,直角三角形的两条直角边的长分别是a和b,那么(a+b)的值为A)49 (B)25 (C)13 (D)112.当x分别取-2014、-2013、-2012、…。

2015-2016学年北京市海淀区年级上期末练习试卷含答案

2015-2016学年北京市海淀区年级上期末练习试卷含答案

海淀区九年级第一学期期末练习数 学 试 卷(分数:120分 时间:120分钟) 2016.1学校 姓名 准考证号 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表格中相应的位置.1.在△ABC 中,∠C=90°,BC=3,AB=5,则sin A 的值是A .53B .54C .34D .432.如图,△ABC 内接于⊙O ,若o 100AOB ∠=,则∠ACB 的度数是 A .40° B .50° C .60° D .80°3.抛物线2(2)1y x =-+的顶点坐标是 A .(21)--,B .(21)-,C .(21)-,D .(21),A .12-B .7-C .1-D .1 5.如图,在ABCD 中,E 是AB 的中点,EC 交BD 于点F ,则△BEF 与△DCF 的面积比为A .49 B .19 C .14D .126.抛物线22y x =向左平移1个单位,再向下平移3个单位,则平移后的抛物线的解析式为A .()2213y x =++ B .()2213y x =+- C .()2213y x =-- D .()2213y x =-+7.已知点(11,x y )、(22,x y )、(33,x y )在双曲线1y x=上,当3210x x x <<<时,1y 、2y 、3y 的大小关系是A .321y y y <<B .231y y y <<C .213y y y <<D .132y y y << 8.如图,AB 是⊙O 的直径,C 、D 是圆上的两点.若BC=8,2cos 3D =,则AB 的长为 A .3 B .163 C .5D .129.在平面直角坐标系xOy 中,A 为双曲线6y x=-上一点,点B 的坐标为(4,0).若 △AOB 的面积为6,则点A 的坐标为 A .(4-,32) B .(4,32-)C .(2-,3)或(2,3-)D .(3-,2)或(3,2-)10.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++ 与x 轴只有一个交点M ,与平行于x 轴的直线l 交于A 、B 两点.若AB =3,则点M 到直线l 的距离为A .52 B .94 C .2 D .74二、填空题(本题共18分,每小题3分)11.请写出一个图象在第二、四象限的反比例函数解析式 . 12.已知关于x 的方程260x x m -+= 有两个不相等的实数根,则m 的取值范围是 .13.如图,在平面直角坐标系xOy 中,△ABC 与△'''A B C 顶点的横、 纵坐标都是整数.若△ABC 与△'''A B C 是位似图形,则位似中心的坐标14.正比例函数1y k x =与反比例函数2k y x=的图象交于A 、B 两点,若 点A 的坐标是(1,2),则点B 的坐标是___________.15.古算趣题:“笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭.有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足.借问竿长多少数, 谁人算出我佩服.”若设竿长为x 尺,则可列方程为 .16.正方形CEDF 的顶点D 、E 、F 分别在△ABC 的边AB 、BC 、AC 上.(1)如图,若tan 2B =,则BE BC的值为 ;(2)将△ABC 绕点D 旋转得到△'''A B C ,连接'BB 、'CC .若''5CC BB =,则tan B 的值为 . 三、解答题(本题共72分,第17~26题,每小题5分,第27题6分,第28题8分,第29题8分)17.计算:2sin 303tan 60cos 45︒+︒-︒.18.解方程:2250x x +-=.19.如图,D 是AC 上一点,DE ∥AB ,∠B =∠DAE . 求证:△ABC ∽△DAE .20.已知m 是方程210x x +-=的一个根,求代数式2(1)(1)(1)m m m +++-的值.21.已知二次函数28y x bx =++的图象与x 轴交于A 、B 两点,点A 的坐标为(2,0)-,求点B 的坐标.22.如图,矩形ABCD 为某中学课外活动小组围建的一个生物苗圃园,其中两边靠墙(墙足够长),另外两边用长度为16米的篱笆(虚线部分)围成.设AB 边的长度为x 米,矩形ABCD 的面积为y 平方米.(1)y 与x 之间的函数关系式为 (不要求写自变量的取值范围); (2)求矩形ABCD 的最大面积.23.如图,在△ABC 中,∠ACB =90︒,D 为AC 上一点,DE ⊥AB 于点E ,AC =12,BC =5. (1)求cos ADE ∠的值;(2)当DE DC =时,求AD 的长.24.如图,在平面直角坐标系xOy 中,双曲线xmy =与直线2-=kx y 交于点A (3,1). (1)求直线和双曲线的解析式;(2)直线2-=kx y 与x 轴交于点B ,点P 是双曲线xmy =上一点,过点P 作直线PC ∥x 轴,交y 轴于点C ,交直线2-=kx y 于点D .若DC =2OB ,直接写出点P 的坐标为 .25.如图,小嘉利用测角仪测量塔高,他分别站在A 、B 两点测得塔顶的仰角45,50.αβ=︒=︒AB 为10米.已知小嘉的眼睛距地面的高度AC 为1.5米,计算塔的高度.(参考数据:sin 50︒取0.8,cos50︒取0.6,tan50︒取1.2)26.如图,△ABC 内接于错误!未指定书签。

北京市海淀区2015-2016学年八年级下期末数学试卷含答案解析

北京市海淀区2015-2016学年八年级下期末数学试卷含答案解析

北京市海淀区 2015-2016 学年八年级下期末数学试卷含答案分析一、选择题:(此题共 30 分,每题 3 分)在以下各题的四个备选答案中,只有一个是正确的.1.以下各式中,运算正确的选项是()A.B.C.D.2.以下各组数中,以它们为边长的线段不可以组成直角三角形的是()A.1,,B.3, 4,5 C.5, 12, 13 D.2,2,33.如图,矩形 ABCD 中,对角线 AC,BD 交于点 O.若∠ AOB=60°,BD=8,则 AB 的长为()A.4 B.C.3 D.54.已知 P1(﹣ 1,y1),P2(2,y2)是一次函数 y=﹣x+1 图象上的两个点,则 y1,y2 的大小关系是()A.y1=y2 B.y1<y2 C.y1>y2 D.不可以确立5.2022 年将在北京﹣张家口举办冬天奥运会,特意多学校开设了相关的课程.如表记录了某校 4 名同学短道速滑选拔赛成绩的均匀数与方差s 2:队员1队员2队员3队员4均匀数(秒)51505150方差s2(秒2) 3.5 3.514.515.5依照表中数据,要从中选择一名成绩好又发挥牢固的运动员参加比赛,应当选择()A.队员 1 B.队员 2C.队员 3D .队员 46.用配方法解方程x2﹣2x﹣3=0,原方程应变形为()A.(x﹣1)2=2 B.(x+1)2=4 C.(x﹣ 1)2=4D.(x+1)2=27.如图,在平行四边形ABCD 中,∠BAD 的均分线交 BC 于点 E,∠ABC 的均分线交 AD 于点 F,若 BF=12,AB=10 ,则 AE 的长为()A.13 B.14 C.15 D.168.一个有进水管与出水管的容器,从某时辰开始4min 内只进水不出水,在随后的 8min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量 y(单位:L )与时辰 x(单位: min)之间的关系以下图.则8min 时容器内的水量为()A.20 L B.25 L C. 27L D.30 L9.若对于 x 的方程 kx2﹣(k+1)x+1=0 的根是整数,则知足条件的整数 k 的个数为()A.1 个 B.2 个C.3 个D.4 个10.如图 1,在菱形 ABCD 中,∠ BAD=60 °, AB=2 ,E 是 DC 边上一个动点, F 是 AB 边上一点,∠ AEF=30°.设 DE=x ,图中某条线段长为y, y与x 知足的函数关系的图象大概如图 2 所示,则这条线段可能是图中的()A.线段 EC B.线段 AE C.线段 EF D.线段 BF二、填空题:(此题共 18 分,每题 3 分)11.写出一个以 0,1 为根的一元二次方程.12.若对于 x 的一元二次方程x2+4x﹣m=0 有实数根,则 m 的取值范畴是.13.如图,为了检查平行四边形书架 ABCD 的侧边能否与上、下面都垂直,工人师傅用一根绳索比较了其对角线 AC,BD 的长度,若两者长度相等,则该书架的侧边与上、下面都垂直,请你讲出此中的数学原理.14.若一次函数 y=kx+b (k≠0)的图象以下图,点P(3,4)在函数图象上,则对于x 的不等式 kx+b ≤4 的解集是.15.以下图,DE 为△ ABC 的中位线,点 F 在 DE 上,且∠ AFB=90 °,若 AB=5 ,BC=8,则 EF 的长为.16.如图,正方形ABCD 的面积是2,E,F,P 分不是AB ,BC, AC 上的动点, PE+PF 的最小值等于.三、解答题:(此题共 22 分,第 17-19 题每题 4 分,第 20-21 题每题4分)17.运算:.18.解方程: y( y﹣4)=﹣1﹣2y.19.已知 x=1 是方程 x2﹣3ax+a2=0 的一个根,求代数式3a2﹣9a+1 的值.20.在平面直角坐标系xOy 中,一次函数的图象经过点A(2, 3)与点 B(0,5).(1)求此一次函数的表达式;(2)若点 P 为此一次函数图象上一点,且△ POB 的面积为 10,求点 P 的坐标.21.如图,四边形 ABCD 中, AB=10 ,BC=13,CD=12,AD=5, AD ⊥CD,求四边形 ABCD 的面积.四、解答题:(此题共 10 分,第 22 题 5 分,第 23 题 5 分)22.阅读以下资料:北京市了抓疏解非国都功能那个“牛鼻子”,迁市、移企,人随走.城、西城、海淀、丰台⋯人口开始增,城六区人口20 16年由升降.而在,海淀区多地域人口都开始降落.数字示:2015 年区常住外来人口150 万人,同比降落 1.1%,减少 1.7 万人,初次了增.和海淀一,丰台也在2015 年初次了常住外来人口增,同比降落 1.4%,减少 1.2 万人;、西城,常住外来人口同呈降落:2015 年城同比降落 2.4%,减少 5000 人,西城同比降落 5.5%,减少 1.8 万人;石景山,常住外来人口最近几年来增速放,估计到2016 年年末,全区常住外来人口可降至63.5 万,比 2015 年减少 1.7 万人,初次增;⋯2016 年初,市改委流露, 2016 年本市将保证达成人口控目城六区常住人口2015 年降落 3%,迎来人口由升降的拐点.人口降落背后,是本市密鼓疏解非国都功能的大略.依照以上资料解答以下咨:(1)石景山区 2015 年常住外来人口万人;(2)2015 年城、西城、海淀、丰台四个城区常住外来人口同比降落率最高的是区;依照资猜中的信息估计2015年四个城区常住外来人口数最多的是区;(3)假如 2017 年海淀区常住外来人口降到121.5 万人,求从 2015 年至 2017 年均匀每年外来人口的降落率.23.如,四形ABCD 是矩形,点 E 在 CD 上,点 F 在 DC 延上, AE=BF .(1)求:四形 ABFE 是平行四形;(2)若∠ BEF=∠DAE ,AE=3,BE=4,求 EF 的.五、解答:(本共 20 分,第 24 6 分,第 25-26 每小 6 分)24.如 1,将1 的正方形 ABCD 扁 1 的菱形 ABCD.在菱形 ABCD 中,∠ A 的大小α,面 S.(1)全表:α30°45°60°90°120°135°150°S1(2)填空:由(1)能位正方形在扁的程中,菱形的面跟着∠ A 大小的化而化,不如把位菱形的面S S(α).比如:当α=30°,S=S(30°)= ;当α=135° , S=S=.由上表能获得S(60°)=S(°);S=S(°),⋯,由此能出S=(°).(3)两同样的等腰直角三角板按 2 的方式搁置, AD=,∠AOB =α,研究中两个暗影的三角形面能否相等,并明原因(注:能利用( 2)中的).25.如,在正方形 ABCD 中,点 M 在 CD 上,点 N 在正方形 AB CD 外面,且足∠ CMN=90 °, CM=MN .接 AN ,CN,取 AN 的中点E,接 BE,AC,交于 F 点.(1)①依意全形;②求: BE⊥ AC.(2)研究段 BE,AD ,CN 所足的等量关系,并明你的.(3) AB=1 ,若点 M 沿着段 CD 从点 C 运到点 D,在运程中,段 EN 所的面(斩钉截铁写出答案).26.在平面直角坐系 xOy 中,形 G 的投影矩形定以下:矩形的两分不平行于 x , y ,形 G 的点在矩形的上或内部,且矩形的面最小.矩形的的与短的的比 k,我称常数 k形 G 的投影比.如 1,矩形 ABCD △ DEF 的投影矩形,其投影比.(1)如图 2,若点 A (1,3),B(3,5),则△ OAB 投影比 k 的值为.(2)已知点 C(4,0),在函数 y=2x﹣4(此中 x<2)的图象上有一点 D,若△ OCD 的投影比 k=2,求点 D 的坐标.(3)已知点 E(3,2),在直线 y=x+1 上有一点 F(5,a)和一动点 P,若△ PEF 的投影比 1<k<2,则点 P 的横坐标 m 的取值范围(直截了当写出答案).2015-2016 学年北京市海淀区八年级(下)期末数学试卷参照答案与试题分析一、选择题:(此题共 30 分,每题 3 分)在以下各题的四个备选答案中,只有一个是正确的.1.以下各式中,运算正确的选项是(A.B.C.)D.【考点】二次根式的加减法.【剖析】分不依照归并同类项的法例、二次根式的化简法例对各选项进行逐个剖析即可.【解答】解: A 、3﹣=2≠3,故本选项错误;B、=2,故本选项正确;C、2 与不是同类项,不可以归并,故本选项错误;D、=2≠﹣ 2,故本选项错误.应选 B.2.以下各组数中,以它们为边长的线段不可以组成直角三角形的是()A.1,,B.3, 4,5 C.5, 12, 13 D.2,2,3【考点】勾股定理的逆定理.【剖析】欲求证能否为直角三角形,利用勾股定理的逆定理即可.那个地址给出三边的长,只需考证两小边的平方和等于最长边的平方即可.【解答】解: A、12+()2=3=()2,故是直角三角形,故错误;B、42+32=25=52,故是直角三角形,故错误;C、52+122=169=132,故是直角三角形,故错误;D、22+22=8≠32,故不是直角三角形,故正确.应选 D.3.如图,矩形 ABCD 中,对角线 AC,BD 交于点 O.若∠ AOB=60°,BD=8,则 AB 的长为()A.4 B.C.3 D.5【考点】矩形的性质.【剖析】先由矩形的性质得出OA=OB ,再证明△ AOB 是等边三角形,得出 AB=OB=4 即可.【解答】解:∵四边形ABCD 是矩形,∴O A= AC, OB= BD=4,AC=BD ,∴O A=OB ,∵∠ AOB=60 °,∴△ AOB 是等边三角形,∴A B=OB=4 ;应选: A.4.已知 P1(﹣ 1,y1),P2(2,y2)是一次函数 y=﹣x+1 图象上的两个点,则 y1,y2 的大小关系是()A.y1=y2 B.y1<y2 C.y1>y2 D.不可以确立【考点】一次函数图象上点的坐标特色.【剖析】先依照一次函数y=﹣x+1 中 k=﹣1 判断出函数的增减性,再依照﹣ 1<2 进行解答即可.【解答】解:∵ P1(﹣ 1,y1)、P2(2,y2)是 y=﹣x+1 的图象上的两个点,∴y1=1+1=2,y2=﹣2+1=﹣1,∵2>﹣ 1,∴y1>y2.应选 C.5.2022 年将在北京﹣张家口举办冬天奥运会,特意多学校开设了相关的课程.如表记录了某校 4 名同学短道速滑选拔赛成绩的均匀数与方差s 2:队员1队员2队员3队员4均匀数(秒)51505150方差s2(秒2) 3.5 3.514.515.5依照表中数据,要从中选择一名成绩好又发挥牢固的运动员参加比赛,应当选择()A.队员 1 B.队员 2C.队员 3D .队员 4【考点】方差;加权均匀数.【剖析】据方差的意义可作出判断.方差是用来权衡一组数据颠簸大小的量,方差越小,表示这组数据散布比较集中,各数据偏离均匀数越小,即颠簸越小,数据越牢固.【解答】解:由于队员 1 和 2 的方差最小,但队员 2 均匀数最小,所以成绩好,所以队员 2 成绩好又发挥牢固.应选 B.6.用配方法解方程x2﹣2x﹣3=0,原方程应变形为()A.(x﹣1)2=2 B.(x+1)2=4 C.(x﹣ 1)2=4D.(x+1)2=2【考点】解一元二次方程-配方法.【剖析】先移项,再配方,即方程两边同时加前一次项系数同样的平方.【解答】解:移项得,x2﹣2x=3,配方得, x2﹣2x+1=4,即( x﹣1)2=4,应选 C.7.如图,在平行四边形ABCD 中,∠BAD 的均分线交 BC 于点 E,∠ABC 的均分线交 AD 于点 F,若 BF=12,AB=10 ,则 AE 的长为()A.13 B.14 C.15 D.16【考点】平行四边形的性质.【剖析】先证明四边形 ABEF 是平行四边形,再证明邻边相等即可得出四边形 ABEF 是菱形,得出 AE⊥BF,OA=OE,OB=OF= BF=6,由勾股定理求出 OA,即可得出 AE 的长.【解答】解:以下图:∵四边形 ABCD 是平行四边形,∴A D ∥BC,∴∠ DAE= ∠AEB ,∵∠ BAD 的均分线交 BC 于点 E,∴∠ DAE= ∠BEA ,∴∠ BAE= ∠BEA ,∴A B=BE ,同理可得 AB=AF ,∴A F=BE ,∴四边形 ABEF 是平行四边形,∵A B=AF ,∴四边形 ABEF 是菱形,∴A E⊥BF,OA=OE,OB=OF= BF=6,∴OA===8,∴A E=2OA=16 ;应选: D.8.一个有进水管与出水管的容器,从某时辰开始4min 内只进水不出水,在随后的8min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量 y(单位:L )与时辰 x(单位: min)之间的关系以下图.则8min 时容器内的水量为()A.20 L B.25 L C. 27L D.30 L【考点】函数的图象.【剖析】用待定系数法求对应的函数关系式,再代入解答即可.【解答】解:设当4≤x≤12 时的直线方程为: y=kx+b(k≠0).∵图象过( 4,20)、( 12,30),∴,解得:,∴y= x+15 (4≤x≤12);把 x=8 代入解得: y=10+15=25,应选 B9.若对于 x 的方程 kx2﹣(k+1)x+1=0 的根是整数,则知足条件的整数 k 的个数为()A.1 个 B.2 个C.3 个D.4 个【考点】根的判不式.【剖析】当 k=0 时,可求出 x 的值,依照 x 的值为整数可得出 k=0 切合题意;k≠0 时,利用分解因式法解一元二次方程可求出x 的值,再依照x 的值为整数联合 k 的值为整数即可得出 k 的值.综上即可得出结论.【解答】解:当 k=0 时,原方程为﹣ x+1=0,解得: x=1,∴k=0 切合题意;当k≠0 时,kx2﹣(k+1)x+1=(kx﹣1)(x﹣1)=0,解得: x1=1,x2= ,∵方程的根是整数,∴为整数, k 为整数,∴k=±1.综上可知:知足条件的整数k 为 0、1 和﹣ 1.应选 C.10.如图 1,在菱形 ABCD 中,∠ BAD=60 °, AB=2 ,E 是 DC 边上一个动点, F 是 AB 边上一点,∠ AEF=30°.设 DE=x ,图中某条线段长为y, y 与 x 知足的函数关系的图象大概如图 2 所示,则这条线段可能是图中的()A.线段 EC B.线段 AE C.线段 EF D.线段 BF 【考点】动点咨询题的函数图象.【剖析】求出当点 E 与点 D 重合时,即 x=0 时 EC、AE、EF、BF 的长可清除 C、D;当点 E 与点 C 重合时,即 x=2 时,求出 EC、AE 的长可清除A,可得答案.【解答】解:当点 E 与点 D 重合时,即 x=0 时,EC=DC=2,AE=AD= 2,∵∠ A=60 °,∠ AEF=30°,∴∠ AFD=90 °,在 RT△ADF 中,∵ AD=2 ,∴A F= AD=1, EF=DF=ADcos∠ADF= ,∴B F=AB ﹣AF=1 ,联合图象可知 C、D 错误;当点 E 与点 C 重合时,即 x=2 时,如图,连结 BD 交 AC 于 H,此刻 EC=0,故 A 错误;∵四边形 ABCD 是菱形,∠ BAD=60 °,∴∠ DAC=30 °,∴AE=2AH=2ADcos ∠DAC=2 ×2×=2,故B正确.应选: B.二、填空题:(此题共 18 分,每题 3 分)11.写出一个以 0,1 为根的一元二次方程x2﹣x=0.【考点】根与系数的关系.【剖析】先依照 1+0=1,1×0=0,而后依照根与系数的关系写出知足条件的一个一元二次方程.【解答】解:∵ 1+0=1,1×0=0,∴以 1 和 0 的一元二次方程可为x2﹣x=0.故答案为 x2﹣x=0.12.若对于 x 的一元二次方程 x2+4x﹣m=0 有实数根,则 m 的取值范围是 m≥﹣ 4 .【考点】根的判不式.【剖析】依照对于 x 的一元二次方程 x2+4x﹣m=0 有实数根,可得△≥0,从而可求得 m 的取值范围.【解答】解:∵对于x 的一元二次方程x2+4x﹣m=0 有实数根,∴△ =42﹣4×1×(﹣ m)≥ 0,解得, m≥4,故答案为: m≥4.13.如图,为了检查平行四边形书架ABCD 的侧边能否与上、下面都垂直,工人师傅用一根绳索比较了其对角线AC,BD 的长度,若两者长度相等,则该书架的侧边与上、下面都垂直,请你讲出此中的数学原理对角线相等的平行四边形是矩形,矩形的四个角差不多上直角.【考点】矩形的判断;平行四边形的性质.【剖析】依照矩形的判断定理:对角线相等的平行四边形是矩形即可判断.【解答】解:这类做法的依照是对角线相等的平行四边形为矩形,故答案为:对角线相等的平行四边形是矩形,矩形的四个角差不多上直角.(“矩形的四个角差不多上直角”没写不扣分)14.若一次函数 y=kx+b (k≠0)的图象以下图,点 P(3,4)在函数图象上,则对于 x 的不等式 kx+b ≤4 的解集是 x≤3 .【考点】一次函数与一元一次不等式;待定系数法求一次函数分析式.【剖析】先依照待定系数法求得一次函数分析式,再解对于 x 的一元一次不等式即可.P(3,4)和【解答】解法 1:∵直线 y=kx+b (k≠0)的图象经过点(0,﹣ 2),∴,解得,∴一次函数分析式为y=2x﹣2,当 y=2x﹣2≤4 时,解得 x≤3;解法 2:点 P(3,4)在一次函数 y=kx+b (k≠0)的图象上,则当 kx+b≤4 时, y≤4,故对于 x 的不等式 kx+b≤ 4 的解集为点 P 及其左边部分图象对应的横坐标的会合,∵P 的横坐标为 3,∴不等式 kx+b≤4 的解集为: x≤3.故答案为: x≤315.以下图,DE 为△ ABC 的中位线,点 F 在 DE 上,且∠ AFB=90 °,若 AB=5 ,BC=8,则 EF 的长为.【考点】三角形中位线定理;直角三角形斜边上的中线.【剖析】利用直角三角形斜边上的中线等于斜边的一半,可求出DF的长,再利用三角形的中位线平行于第三边,同时等于第三边的一半,可求出 DE 的长,从而求出EF 的长【解答】解:∵∠ AFB=90 °, D 为 AB 的中点,∴DF=AB=2.5 ,∵D E 为△ ABC 的中位线,∴DE= BC=4,∴EF=DE﹣DF=1.5,故答案为: 1.5.16.如图,正方形ABCD 的面积是 2,E,F,P 分不是 AB ,BC, AC上的动点, PE+PF 的最小值等于.【考点】轴对称 -最短路线咨询题;正方形的性质.【剖析】过点 P 作 MN ∥ AD 交 AB 于点 M ,交 CD 于点 N,依照正方形的性质可得出MN ⊥AB ,且PM≤PE、PN≤PF,由此即可得出AD ≤PE +PF,再由正方形的面积为 2 即可得出结论.【解答】解:过点 P 作 MN ∥AD 交 AB 于点 M ,交 CD 于点 N,以下图.∵四边形 ABCD 为正方形,∴M N ⊥AB ,∴P M≤PE(当 PE⊥AB 时取等号),PN≤PF(当 PF⊥BC 时取等号),∴M N=AD=PM+PN ≤PE+PF,∵正方形 ABCD 的面积是 2,∴A D= .故答案为:.三、解答题:(此题共 22 分,第 17-19 题每题 4 分,第 20-21 题每题4分)17.运算:.【考点】二次根式的混淆运算.【剖析】先化简,而后依照混淆运算的法例,先算括号里面的,而后算乘法,最后算减法.【解答】解:=,====.18.解方程: y( y﹣4)=﹣1﹣2y.【考点】解一元二次方程-配方法.【剖析】先去括号,移项归并同类项获得y2﹣2y+1=0,再依照完整平方公式即可求解.【解答】解: y( y﹣4)=﹣1﹣2y,y2﹣2y+1=0,(y﹣1)2=0,y1=y2=1.19.已知 x=1 是方程 x2﹣3ax+a2=0 的一个根,求代数式3a2﹣9a+1 的值.【考点】一元二次方程的解.【剖析】依照方程解的定义,把x=1 代入得出对于 a 的方程,求得a 的值,再代入即可得出答案.【解答】解:∵ x=1 是方程 x2﹣3ax+a2=0 的一个根,∴1﹣3a+a2=0.∴a2﹣3a=﹣1.∴3a2﹣9a+1=3(a2﹣3a)+1=3×(﹣ 1)+1=﹣2.或解:∵ x=1 是方程 x2﹣3ax+a2=0 的一个根,∴1﹣3a+a2=0.∴a2﹣3a+1=0.解方程得.把代入得 3a2﹣ 9a+1 得 3a2﹣9a+1=﹣2.20.在平面直角坐标系xOy 中,一次函数的图象经过点A(2, 3)与点 B(0,5).(1)求此一次函数的表达式;(2)若点 P 为此一次函数图象上一点,且△ POB 的面积为 10,求点 P 的坐标.【考点】待定系数法求一次函数分析式.【剖析】(1)设此一次函数的表达式为 y=kx+b(k≠0).由点 A、B 的坐标利用待定系数法即可求出该函数的表达式;(2)设点 P 的坐标为( a,﹣ a+5).依照三角形的面积公式即可列出对于 a 的含绝对值符号的一元一次方程,解方程即可得出结论.【解答】解:(1)设此一次函数的表达式为 y=kx+b(k≠0).∵一次函数的图象经过点 A (2,3)与点 B( 0,5),∴,解得.∴此一次函数的表达式为y=﹣x+5.(2)设点 P 的坐标为( a,﹣ a+5).∵B(0,5),∴OB=5.∵S△POB=10,∴.∴|a|=4.∴a=±4.∴点 P 的坐标为( 4,1)或(﹣ 4,9).21.如,四形 ABCD 中, AB=10 ,BC=13,CD=12,AD=5, AD ⊥CD,求四形 ABCD 的面.【考点】勾股定理.【剖析】接 AC,点 C 作 CE⊥AB 于点 E,在 Rt△ACD 中依照勾股定理求出 AC 的,由等腰三角形的性得出 AE=BE= AB ,在 Rt△CA E 中依照勾股定理求出 CE 的,再由 S 四形 ABCD=S △DAC+S △ABC即可得出.【解答】解:接AC,点 C 作 CE⊥AB 于点 E.∵A D ⊥CD,∴∠ D=90°.在 Rt△ACD 中, AD=5 ,CD=12,AC=.∵B C=13,∴AC=BC .∵C E⊥AB ,AB=10 ,∴AE=BE= AB=.在 Rt△CAE 中,CE=.∴S 四形 ABCD=S △DAC+S △ABC=.四、解答:(本共 10 分,第 22 5 分,第 23 5 分)22.以下资料:北京市了抓疏解非国都功能那个“牛鼻子”,迁市、移企,人随走.城、西城、海淀、丰台⋯人口开始增,城六区人口20 16年由升降.而在,海淀区多地域人口都开始降落.数字示:2015 年区常住外来人口150 万人,同比降落 1.1%,减少 1.7 万人,初次了增.和海淀一,丰台也在2015 年初次了常住外来人口增,同比降落 1.4%,减少 1.2 万人;、西城,常住外来人口同呈降落:2015 年城同比降落 2.4%,减少 5000 人,西城同比降落 5.5%,减少 1.8 万人;石景山,常住外来人口最近几年来增速放,估计到2016 年年末,全区常住外来人口可降至63.5 万,比 2015 年减少 1.7 万人,初次增;⋯2016 年初,市改委流露, 2016 年本市将保证达成人口控目城六区常住人口2015 年降落 3%,迎来人口由升降的拐点.人口降落背后,是本市密鼓疏解非国都功能的大略.依照以上资料解答以下咨:(1)石景山区 2015 年常住外来人口 65.2 万人;(2)2015 年城、西城、海淀、丰台四个城区常住外来人口同比降落率最高的是西城区;依照资猜中的信息估计 2015 年四个城区常住外来人口数最多的是海淀区;(3)假如 2017 年海淀区常住外来人口降到121.5 万人,求从 2015 年至 2017 年均匀每年外来人口的降落率.【考点】一元二次方程的用;用本估计体.【剖析】(1)由 2016 年全区常住外来人口63.5 万,比 2015 年减少 1.7 万人,列式 63.5+1.7=65.2;(2)挨次把四个区人口的同比降落率作比即可得出同比降落率最高的是西城区,再运算四个城区 2015 年的人口数行比;(3)海淀均匀每年常住外来人口的降落率x,原数 150 万人,以后数 121.5 万人,降落了两年,依照降低率公式列方程解出即可.【解答】解:(1)63.5+1.7=65.2,故答案: 65.2,(2)由于海淀区同比降落 1.1%,丰台同比降落 1.4%,东城同比降落2.4%,西城则同比降落 5.5%,所以同比降落率最高的是西城,2015 年这四个城区常住外来人口数:海淀区:约为 150 万人,丰台: 1.2×104÷1.4%﹣ 12000≈845142≈85(万人),东城:5000÷24%﹣5000≈15833≈1.6(万人),西城:18000÷5.5%﹣18000≈309272≈31(万人),则常住外来人口数最多的是海淀区;故答案为:西城,海淀;(3)解:设海淀均匀每年常住外来人口的降落率为x.由题意,得 150(1﹣x)2=121.5.解得, x1=0.1=10%,x2=1.9.(不合题意,舍去)答:海淀均匀每年常住外来人口的降落率为 10%.23.如图,四边形 ABCD 是矩形,点 E 在 CD 边上,点 F 在 DC 延伸线上, AE=BF .(1)求证:四边形 ABFE 是平行四边形;(2)若∠ BEF=∠DAE ,AE=3,BE=4,求 EF 的长.【考点】矩形的性质;平行四边形的判断与性质.【剖析】(1)欲证明四边形 ABFE 是平行四边形,只需证明 AE∥ BF,EF∥ AB 即可.(2)先证明△ AEB 是直角三角形,再依照勾股定理运算即可.【解答】(1)证明:∵四边形 ABCD 是矩形,∴AD=BC ,∠ D=∠BCD=90°.∴∠ BCF=180°﹣∠ BCD=180°﹣ 90°=90°.∴∠ D=∠BCF.在 Rt△ADE 和 Rt△BCF 中,∴R t△ADE ≌Rt△BCF.∴∠ 1=∠F.∴A E∥BF.∵AE=BF ,∴四边形 ABFE 是平行四边形.(2)解:∵∠ D=90°,∴∠ DAE+∠1=90°.∵∠BEF=∠DAE ,∴∠BEF+∠1=90°.∵∠ BEF+∠1+∠AEB=180°,∴∠ AEB=90 °.在 Rt△ABE 中, AE=3,BE=4,AB=.∵四边形 ABFE 是平行四边形,∴E F=AB=5 .五、解答题:(此题共 20 分,第 24 题 6 分,第 25-26 题每题 6 分)24.如图 1,将边长为 1 的正方形 ABCD 压扁为边长为 1 的菱形 ABC D.在菱形 ABCD 中,∠ A 的大小为α,面积记为 S.(1)请补全表:α30°45°60°90°120°135°150°S1(2)填空:由(1)可以觉察单位正方形在压扁的过程中,菱形的面积跟着∠ A 大小的变化而变化,不如把单位菱形的面积S 记为 S(α).比如:当α=30°,S=S(30°)=;当α=135° , S=S=.由上表能获得S(60°)=S(120°);S=S(30°),⋯,由此能出S=(α°).(3)两同样的等腰直角三角板按 2 的方式搁置,AD=,∠AOB =α,研究中两个暗影的三角形面能否相等,并明原因(注:能利用( 2)中的).【考点】四形合.【剖析】(1) D 作 DE⊥AB 于点 E,当α=45° ,可求得 DE,从而可求得菱形的面 S,同理可求当α=60° S 的,当α=120° ,D 作 DF⊥AB 交 BA 的延于点 F,可求得 DF,可求得 S 的,同应当α=135° S 的;(2)依照表中所运算出的 S 的,可得出答案;(3)将△ ABO 沿 AB 翻折获得菱形 AEBO ,将△ CDO 沿 CD 翻折获得菱形 OCFD.利用( 2)中的,可求得△ AOB 和△ COD 的面,从而可求得.【解答】解:(1)当α=45° ,如 1, D 作 DE⊥AB 于点 E,DE= AD= ,∴S=AB? DE= ,同应当α=60° S= ,当α=120° ,如 2, D 作 DF⊥AB ,交 BA 的延于点 F,∠ DAE=60 °,∴D F= AD= ,∴S=AB? DF= ,同应当α=150° ,可求得 S= ,故表中挨次填写:;;;;(2)由( 1)可知 S(60°) =S,S=S(30°),∴S=S(α)故答案为: 120;30;α;(3)两个带暗影的三角形面积相等.证明:如图 3 将△ ABO 沿 AB 翻折获得菱形 AMBO ,将△ CDO 沿 CD 翻折获得菱形 OCND .∵∠ AOD= ∠COB=90°,∴∠ COD+∠AOB=180 °,∴S△AOB= S 菱形 AMBO= S(α)S△CDO= S 菱形 OCND=S由( 2)中结论 S(α) =S∴S△AOB=S△ CDO.25.如图,在正方形 ABCD 中,点 M 在 CD 边上,点 N 在正方形 AB CD 外面,且知足∠ CMN=90 °, CM=MN .连结 AN ,CN,取 AN 的中点E,连结 BE,AC,交于 F 点.(1)①依题意补全图形;②求证: BE⊥ AC.(2)请研究线段 BE,AD ,CN 所知足的等量关系,并证明你的结论.(3)设 AB=1 ,若点 M 沿着线段 CD 从点 C 运动到点 D,则在该运动过程中,线段 EN 所扫过的面积为(斩钉截铁写出答案).【考点】四边形综合题.【剖析】(1)①依照题意补全图形即可;②连结 CE,由正方形以及等腰直角三角形的性质可得出∠ ACD= ∠MCN=45 °,从而得出∠ ACN=90°,再依照直角三角形的性质以及点 E 为 AN 的中点即可得出 AE=CE,由此即可得出B、E 在线段 AC 的垂直均分线上,由此即可证得 BE⊥AC;(2)BE= AD+ CN.依照正方形的性质可得出 BF= AD ,再联合三角形的中位线性质可得出 EF= CN,由线段间的关系即可证出结论;(3)找出 EN 所扫过的图形为四边形 DFCN.依照正方形以及等腰直角三角形的性质可得出BD∥CN,由此得出四边形DFCN 为梯形,再由A B=1,可算出线段 CF、 DF、CN 的长度,利用梯形的面积公式即可得出结论.【解答】解:(1)①依题意补全图形,如图 1 所示.②证明:连结 CE,如图 2 所示.∵四边形 ABCD 是正方形,∴∠ BCD=90°, AB=BC ,∴∠ ACB= ∠ACD=∠BCD=45°,∵∠ CMN=90 °, CM=MN ,∴∠ MCN=45 °,∴∠ ACN= ∠ACD+ ∠MCN=90 °.∵在 Rt△ACN 中,点 E 是 AN 中点,∴A E=CE= AN .∵AE=CE ,AB=CB ,∴点 B,E 在 AC 的垂直均分线上,∴B E 垂直均分 AC,∴B E⊥AC.(2)BE= AD+ CN.证明:∵ AB=BC ,∠ ABE= ∠CBE,∴A F=FC.∵点 E是 AN 中点,∴A E=EN ,∴F E 是△ ACN 的中位线.∴F E= CN.∵BE⊥AC,∴∠ BFC=90°,∴∠ FBC+∠ FCB=90°.∵∠ FCB=45°,∴∠ FBC=45°,∴∠ FCB=∠ FBC,∴B F=CF.在 Rt△BCF 中, BF2+CF2=BC2,∴BF= BC.∵四边形 ABCD 是正方形,∴BC=AD ,∴BF=AD .∵BE=BF+FE,∴BE= AD+ CN.(3)在点 M 沿着线段 CD 从点 C 运动到点 D 的过程中,线段 EN 所扫过的图形为四边形DFCN.∵∠ BDC=45°,∠ DCN=45°,∴B D∥CN,∴四边形 DFCN 为梯形.∵A B=1 ,∴C F=DF= BD= ,CN= CD= ,∴S 梯形 DFCN=(DF+CN)? CF=(+)×=.故答案为:.26.在平面直角坐标系 xOy 中,图形 G 的投影矩形定义以下:矩形的两组对边分不平行于 x 轴, y 轴,图形 G 的极点在矩形的边上或内部,且矩形的面积最小.设矩形的较长的边与较短的边的比为 k,我们称常数 k 为图形 G 的投影比.如图 1,矩形 ABCD 为△ DEF 的投影矩形,其投影比.(1)如图 2,若点 A (1,3),B(3,5),则△ OAB 投影比 k 的值为.(2)已知点 C(4,0),在函数 y=2x﹣4(此中 x<2)的图象上有一点 D,若△ OCD 的投影比 k=2,求点 D 的坐标.(3)已知点 E(3,2),在直线 y=x+1 上有一点 F(5,a)和一动点 P,若△ PEF 的投影比 1<k<2,则点 P 的横坐标 m 的取值范围1<m<3 或m>5(斩钉截铁写出答案).【考点】一次函数综合题.【剖析】(1)在图 2 中作出△ OAB 的投影矩形 ACBD ,依照投影比的定义即可得出结论;(2)设出 D 点的坐标,分0≤x≤2 和 x<0 两种情况考虑,找出两种情况下△ OCD 的投影矩形,依照投影比的定义列出对于x 的方程,解方程即可得出结论;(3)依照题意画出图形,依照投影矩形的不一样分四种情况考虑(m≤1,1< m<3,3≤m≤5 和 m>5),找出每种情况下的投影矩形投影比,依照 m的取值范围确立k 的取值范围,由此即可得出结论.【解答】解:(1)在图 2 中过点 B 作 BC⊥x 轴于点 C,作 BD⊥y 轴于点 D,则矩形 ACBD 为△ O AB 的投影矩形,∵点 B(3,5),∴O C=3,BC=5,∴△ OAB 投影比 k 的值为= .(2)∵点 D 为函数 y=2x﹣4(此中 x<2)的图象上的点,设点 D 坐标为( x,2x﹣4)(x<2).分以下两种情况:①当 0≤x≤2 时,如图 3 所示,作投影矩形 OMNC .∵O C≥OM ,,∴解得 x=1,∴D(1,﹣ 2);②当 x<0 时,如图 4 所示,作投影矩形 MDNC .∵点 D 坐标为( x,2x﹣4),点 M 点坐标为( x,0),∴D M=|2x ﹣4|=4﹣2x,MC=4 ﹣x,∵x<0,∴D M >CM,∴,但此方程无解.∴当 x<0 时,知足条件的点 D 不存在.综上所述,点 D 的坐标为 D(1,﹣ 2).(3)令 y=x+1 中 y=2,则 x+1=2,解得: x=1.①当 m≤1 时,作投影矩形 A′FB′P,如图 5 所示.此刻点 P(m,m+1),PA′=5﹣ m,FA′=6﹣(m+1)=5﹣ m,△PEF 的投影比 k==1,∴m≤1 不切合题意;②当 1<m<3 时,作投影矩形A′FB′Q,如图 6 所示.此刻点 P(m,m+1),FB′=5﹣ m,FA′ =6﹣2=4,△PEF 的投影比 k ==,∵1<m<3,∴1<k<2,∴1<m<3 切合题意;③当 3≤m≤5 时,作投影矩形 A′FB′E,如图 7 所示.此刻点 E(3,2),FA′=6﹣2=4,FB′=5﹣3=2,△PEF的投影比 k= =2,∴3≤m≤5 不切合题意;④当 m>5 时,作投影矩形A′PB′E,如图 8 所示.此刻点 P(m,m+1),点 E(3,2),PB′ =m+1﹣2=m﹣1,PA′ =m ﹣3,△ PEF 的投影比 k==,∵m>5,∴1<k<2,∴m>5 切合题意.综上可知:点 P 的横坐标 m 的取值范围为 1<m<3 或 m>5.故答案为: 1<m<3 或 m>5.2017年 2月 18日。

2015~2016+海淀区+初二上 答案

2015~2016+海淀区+初二上 答案

2017/9/22预览页2015~2016学年北京海淀区初二上学期期中语文试卷爱智康1.【答案】C2.【答案】D3.【答案】C4.【答案】B5.【答案】B6.【答案】C7.【答案】C8.【答案】B9.【答案】D10.【答案】答案示例:立场不同、所处环境不同的人,应该用宽容的心对待别人!11.【答案】答案示例:谢某为了教训偷公司钢管的小偷,将对方打成重伤。

记者昨天获悉,昌平法院以故意伤害罪判处谢某有期徒刑3年,附带民事赔偿8.6万余元。

12.【答案】(1)便要还家,设酒杀鸡作食(2)不必藏于己;力恶其不出于身也(3)可远观而不可亵玩焉(4)波撼岳阳城(5)白云千载空悠悠(6)浮云游子意2017/9/22预览页爱智康(7)芳草鲜美,落英缤纷(8)会当凌绝顶,一览众山小(9)感时花溅泪,恨别鸟惊心(10)吏呼一何怒,妇啼一何苦13.【答案】1大2调弄,这里指弹(琴)(1)(2)B1这是简陋的屋子,只是我的品德高尚(也就不感到简陋了)。

2苔藓碧绿,长到台阶上;草色青葱,映入竹帘里。

(3)(4)要点:1.从结构上,呼应前文。

2.从内容上,突出文章的主旨。

各1分,语言组织1分 。

14.【答案】(1)1.2.3.历史悠久结构坚固形式优美(2)不能去掉,“约”表推测语气,“几乎”表接近,用上这两个词加以限制体现了语言的准确性。

(3)列数字、作比较。

例略。

15.【答案】(1)1.2.父亲雪天卖柴父亲的叮嘱(2)景物描写(环境描写或自然环境描写)。

作用:衬托父亲卖柴路上的艰辛和怕耽误我上学的急切心情;也为情节的发展作了铺垫。

(3)焦急 ;伤心、矛盾、愤怒(意对即可)(4)渴望得到别人的尊重;用自己的善良、宽厚之心,教育孩子要心地善良,同情、尊重所有人。

(意对即可)16.【答案】略17.【答案】陆游、王维、杜甫、李白18.【答案】(1)略(2)略。

2016北京海淀八年级上期末数学试卷

2016北京海淀八年级上期末数学试卷

2016北京海淀八年级上期末数学试卷一、选择题 1.下列标志是轴对称图形的是( ).A.B.C.D.2. 数字 A. C.是指大气中直径小于或等于 微米的颗粒物, 用科学记数法表示为( ). B. D.微米等于米,把3.使分式 A. C.有意义的 的取值范围是( B. D.).4.下列计算中,正确的是( A. B.) .C.D.1 / 275.如图,≌,若,,则的长为().A. C.B. D.6.在平面直角坐标系中,已知点 ). A. C. B. D.和点关于 轴对称,则的值是(2 / 277.工人师傅常用角尺平分一个任意角.做法如下:如图, 是一个任意角,在边 , 上分别取 ,移动角尺,使角尺两边相同 的刻度分别与点 , 重合, .. 过角尺顶点润厲钐瘗睞枥。

作射线.由此作法便可得≌,其依据是().矚慫A. C.B. D. ).8.下列各式中,计算正确的是( A. B.C.D.9.若 A. C.,则 B. D.的值为().10.如图,在 中, 的度数是( ).,,的垂直平分线交于点,则A. C.B. D.11.若分式 A. 个的值为正整数,则整数 的值有( B. 个 3 / 27).C. 个D. 个4 / 2712.如图,等腰三角形 的底边 长为 ,面积是 ,腰 的垂直平分线 分别 交 , 边于 , 点.若点 为 边的中点,点 为线段 上一动点,则 周长的最小值为( ).聞創沟燴鐺險爱氇。

A. C.B. D.二、填空题 13.当 __________时,分式 值为 .14.分解因式:__________.15.计算:__________.16.如果等腰三角形的两边长分别为 和 ,那么它的周长为__________.17.如图,,,,则的度数为__________.18.等式成立的条件为__________.5 / 2719.如图,在 中, 是边 上的高, , ,则 的面积为__________.平分,交于点,6 / 2720.图 是用绳索织成的一片网的一部分,小明探索这片网的结点数( ),边数(諍锩瀨濟溆。

海淀区八上期末数学试卷

海淀区八上期末数学试卷

一、选择题(每题3分,共30分)1. 下列数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 已知a=2,b=-3,则a+b的值为()A. -1B. 1C. 5D. -53. 若一个等腰三角形的底边长为6,腰长为8,则这个三角形的周长为()A. 18B. 20C. 22D. 244. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 等腰梯形D. 长方形5. 下列函数中,是奇函数的是()A. y=x^2B. y=x^3C. y=x^4D. y=x^56. 若一个数的平方根是-3,则这个数是()A. 9B. -9C. 3D. -37. 下列不等式中,正确的是()A. 2x > 4B. 3x < 9C. 4x ≤ 16D. 5x ≥ 258. 已知一次函数y=kx+b,当x=1时,y=2;当x=2时,y=4,则k的值为()A. 1B. 2C. 3D. 49. 下列等式中,正确的是()A. (a+b)^2 = a^2 + b^2B. (a-b)^2 = a^2 - b^2C. (a+b)^2 = a^2 + 2ab + b^2D. (a-b)^2 = a^2 - 2ab + b^210. 若直角三角形的两条直角边分别为3和4,则斜边的长度为()A. 5B. 7C. 9D. 11二、填空题(每题3分,共30分)11. 若x=2,则x^2-3x+2的值为______。

12. 已知a=5,b=-2,则a^2+b^2的值为______。

13. 下列图形中,是圆的是______。

14. 若一个角的补角是60°,则这个角是______。

15. 下列函数中,是反比例函数的是______。

16. 若一个数的平方根是-5,则这个数的相反数的平方根是______。

17. 若一个数x满足不等式2x-1 < 3,则x的取值范围是______。

18. 已知一次函数y=kx+b,当x=0时,y=1;当x=2时,y=3,则k的值为______。

2015-2016学年北京市海淀区年级上期末练习试卷含答案

2015-2016学年北京市海淀区年级上期末练习试卷含答案

海淀区九年级第一学期期末练习数 学 试 卷(分数:120分 时间:120分钟) 2016.1学校 姓名 准考证号 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表格中相应的位置.1.在△ABC 中,∠C=90°,BC=3,AB=5,则sin A 的值是A .53B .54C .34D .432.如图,△ABC 内接于⊙O ,若o 100AOB ∠=,则∠ACB 的度数是 A .40° B .50° C .60° D .80°3.抛物线2(2)1y x =-+的顶点坐标是 A .(21)--,B .(21)-,C .(21)-,D .(21),A .12-B .7-C .1-D .1 5.如图,在ABCD 中,E 是AB 的中点,EC 交BD 于点F ,则△BEF 与△DCF 的面积比为A .49 B .19 C .14D .126.抛物线22y x =向左平移1个单位,再向下平移3个单位,则平移后的抛物线的解析式为A .()2213y x =++ B .()2213y x =+- C .()2213y x =-- D .()2213y x =-+7.已知点(11,x y )、(22,x y )、(33,x y )在双曲线1y x=上,当3210x x x <<<时,1y 、2y 、3y 的大小关系是A .321y y y <<B .231y y y <<C .213y y y <<D .132y y y << 8.如图,AB 是⊙O 的直径,C 、D 是圆上的两点.若BC=8,2cos 3D =,则AB 的长为 A .3 B .163 C .5D .129.在平面直角坐标系xOy 中,A 为双曲线6y x=-上一点,点B 的坐标为(4,0).若 △AOB 的面积为6,则点A 的坐标为 A .(4-,32) B .(4,32-)C .(2-,3)或(2,3-)D .(3-,2)或(3,2-)10.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++ 与x 轴只有一个交点M ,与平行于x 轴的直线l 交于A 、B 两点.若AB =3,则点M 到直线l 的距离为A .52 B .94 C .2 D .74二、填空题(本题共18分,每小题3分)11.请写出一个图象在第二、四象限的反比例函数解析式 . 12.已知关于x 的方程260x x m -+= 有两个不相等的实数根,则m 的取值范围是 .13.如图,在平面直角坐标系xOy 中,△ABC 与△'''A B C 顶点的横、 纵坐标都是整数.若△ABC 与△'''A B C 是位似图形,则位似中心的坐标14.正比例函数1y k x =与反比例函数2k y x=的图象交于A 、B 两点,若 点A 的坐标是(1,2),则点B 的坐标是___________.15.古算趣题:“笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭.有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足.借问竿长多少数, 谁人算出我佩服.”若设竿长为x 尺,则可列方程为 .16.正方形CEDF 的顶点D 、E 、F 分别在△ABC 的边AB 、BC 、AC 上.(1)如图,若tan 2B =,则BE BC的值为 ;(2)将△ABC 绕点D 旋转得到△'''A B C ,连接'BB 、'CC .若''5CC BB =,则tan B 的值为 . 三、解答题(本题共72分,第17~26题,每小题5分,第27题6分,第28题8分,第29题8分)17.计算:2sin 303tan 60cos 45︒+︒-︒.18.解方程:2250x x +-=.19.如图,D 是AC 上一点,DE ∥AB ,∠B =∠DAE . 求证:△ABC ∽△DAE .20.已知m 是方程210x x +-=的一个根,求代数式2(1)(1)(1)m m m +++-的值.21.已知二次函数28y x bx =++的图象与x 轴交于A 、B 两点,点A 的坐标为(2,0)-,求点B 的坐标.22.如图,矩形ABCD 为某中学课外活动小组围建的一个生物苗圃园,其中两边靠墙(墙足够长),另外两边用长度为16米的篱笆(虚线部分)围成.设AB 边的长度为x 米,矩形ABCD 的面积为y 平方米.(1)y 与x 之间的函数关系式为 (不要求写自变量的取值范围); (2)求矩形ABCD 的最大面积.23.如图,在△ABC 中,∠ACB =90︒,D 为AC 上一点,DE ⊥AB 于点E ,AC =12,BC =5. (1)求cos ADE ∠的值;(2)当DE DC =时,求AD 的长.24.如图,在平面直角坐标系xOy 中,双曲线xmy =与直线2-=kx y 交于点A (3,1). (1)求直线和双曲线的解析式;(2)直线2-=kx y 与x 轴交于点B ,点P 是双曲线xmy =上一点,过点P 作直线PC ∥x 轴,交y 轴于点C ,交直线2-=kx y 于点D .若DC =2OB ,直接写出点P 的坐标为 .25.如图,小嘉利用测角仪测量塔高,他分别站在A 、B 两点测得塔顶的仰角45,50.αβ=︒=︒AB 为10米.已知小嘉的眼睛距地面的高度AC 为1.5米,计算塔的高度.(参考数据:sin 50︒取0.8,cos50︒取0.6,tan50︒取1.2)26.如图,△ABC 内接于错误!未指定书签。

北京市海淀区2015_2016学年八年级数学下学期期末考试试题(扫描版)

北京市海淀区2015_2016学年八年级数学下学期期末考试试题(扫描版)

北京市海淀区2015-2016学年八年级数学下学期期末考试试题八年级第二学期期末练习数学答案2016.7B 二、填空题(本题共18分,每小题3分)11.20x x -=或(1)0x x -=(答案不唯一); 12.4m >-;13.对角线相等的平行四边形是矩形,矩形的四个角都是直角;(“矩形的四个角都是直角”没写不扣分)14.3x ≤; 15.32; 16三、解答题(本题共22分,第17—19题每小题4分,第20—21题每小题5分)17.解:原式=2, ----2分==3⨯-------------------------------------------------------------------------------3分= =.-----------------------------------------------------------------------------------------4分 18.解:221y y -+=, --------------------------------------------------------------------------------------1分 2(1)0y -=,------------------------------------------------------------------------------------------3分 121y y ==.-------------------------------------------------------------------------------------------4分 19.解法一:解:∵1x =是方程2230x ax a -+=的一个根,∴2130a a -+=.---------------------------------------------------------------------------------------1分∴231a a -=-.--------------------------------------------------------------------------------------2分 ∴223913(3)1a a a a -+=-+--------------------------------------------------------------------3分3(1)12=⨯-+=-. -----------------------------------------------------------------4分解法二:解:∵1x =是方程2230x ax a -+=的一个根,∴ 2130a a -+=.---------------------------------------------------------------------------------------1分∴2310a a -+=.------------------------------------------------------------------------------------2分解方程得a =. -------------------------------------------------------------------------------3分把a =代入得2391a a -+得23912a a -+=-.----------------------------------------4分20.解:(1)设此一次函数的表达式为y kx b =+(0k ≠). ∵一次函数的图象经过点A (2,3)与点B (0,5), ∴23,5.k b b +=⎧⎨=⎩ -----------------------------------------------------------------------------------1分解得1,5.k b =-⎧⎨=⎩∴此一次函数的表达式为5y x =-+.----------------------------------------------------3分说明:求对k 给1分,求对b 给1分. (2)设点P 的坐标为(a ,5a -+). ∵B (0,5), ∴OB =5. ∵S △POB =10, ∴15||102a ⨯⨯=. ∴||4a =.∴4a =±.∴点P 的坐标为(4,1)或(4-,9). ----------------------------------------------5分 说明:两个坐标每个1分.21.解:连接AC ,过点C 作CE ⊥AB 于点E . ∵AD ⊥CD , ∴∠D =90°.在Rt △ACD 中, AD=5, CD =12,AC =13=.---------------------------------------------------------1分 ∵BC =13, ∴AC =BC . -----------------------------------------------2分 ∵CE ⊥AB , AB =10,∴AE =BE =12AB =11052⨯=. ----------------------3分在Rt △CAE 中,CE12=. -----------------4分∴S 四边形ABCD =S △DAC +S △ABC =11512101*********⨯⨯+⨯⨯=+=. -----------------5分四、解答题(本题共10分,第22题5分,第23题5分)22.(1)65.2; -----------------------------------------------------------------------------------------------1分 (2)西城; 海淀;(每空1分) ------------------------------------------------------------------3分 (3)解:设海淀平均每年常住外来人口的下降率为x . 由题意,得 2150(1)121.5x -=.---------------------------------------------------------------------4分 解得,10.110%x ==, 2 1.9x =.(不合题意,舍去)答:海淀平均每年常住外来人口的下降率为10%. -----------------------------------------5分23.(1)证明:∵四边形ABCD 是矩形, ∴AD =BC , ∠D =∠BCD =90°.∴∠BCF =180°-∠BCD =180°-90°=90°. ∴∠D =∠BCF . ----------------------------------------------------------------------1分 在Rt △ADE 和Rt △BCF 中, ,.AE BF AD BC =⎧⎨=⎩∴Rt △ADE ≌Rt △BCF . ---------------------------------------------------------2分 ∴∠1=∠F . ∴AE ∥BF . ∵AE =BF ,∴四边形ABFE 是平行四边形. ---------------------------------------------------3分 (2)解:∵∠D =90°,∴∠DAE +∠1=90°.E∵∠BEF =∠DAE , ∴∠BEF +∠1=90°.∵∠BEF +∠1+∠AEB =180°, ∴∠AEB =90°.--------------------------------------------------------------------------4分 在Rt △ABE 中, AE =3,BE =4,AB 5.∵四边形ABFE 是平行四边形, ∴EF =AB = 5. --------------------------------------------------------------------------5分 五、解答题(本题共20分,第24题6分,第25—26题每小题7分)24.(1;12.(说明:每对两个给1分) ----------------------------------2分(2)120;30;α. -----------------------------------------------------------------------------------4分 (说明:前两个都答对给1分,最后一个α答对给1分) (3)答:两个带阴影的三角形面积相等.证明:将△ABO 沿AB 翻折得到菱形AEBO , 将△CDO 沿CD 翻折得到菱形OCFD .∴S △AOB =12S 菱形AEBO=12S (α) ---------------------------------------------------5分 S △CDO =12S 菱形OCFD=12S (180α︒-)-----------------------------------------6分 由(2)中结论S (α)=S (180α︒-) ∴S △AOB =S △CDO . 25.(1)①依题意补全图形.---------------------------------------------------------1分 ②解法1:证明:连接C E .∵四边形ABCD 是正方形, ∴∠BCD =90°, AB =BC .∴∠ACB =∠ACD =12∠BCD =45°.∵∠CMN =90°, CM =MN , ∴∠MCN =45°.∴∠ACN =∠ACD +∠MCN =90°. ∵在Rt △ACN 中, 点E 是AN 中点, ∴AE=CE =12AN .----------------------------------------------------------------------------2分 ∵AE =CE , AB =CB ,∴点B ,E 在AC 的垂直平分线上. ∴BE 垂直平分AC . ∴BE ⊥AC . --------------------------------------------------------------------------------------3分 解法2:证明:连接CE .∵四边形ABCD 是正方形, ∴∠BCD =90°, AB =BC .∴∠ACB =∠ACD =12∠BCD =45°.∵∠CMN =90°,CM =MN , ∴△CMN 是等腰直角三角形. ∴∠MCN =45°.∴∠ACN =∠ACD +∠MCN =90°. ∵在Rt △ACN 中, 点E 是AN 中点,∴AE =CE =12AN .在△ABE 和△CBE 中,,,.AE CE AB CB BE BE =⎧⎪=⎨⎪=⎩∴△ABE ≌△CBE (SSS ). -----------------------------------------------------------------2分 ∴∠ABE =∠CBE . ∵AB =BC , ∴BE ⊥AC . --------------------------------------------------------------------------------------3分(2)BE+12CN (或2BE+CN ). ---------------------------------------4分证明:∵AB =BC , ∠ABE =∠CBE , ∴AF =FC .∵点E 是AN 中点,∴FE 是△ACN 的中位线.∴FE =12CN .∵BE ⊥AC ,∴∠BFC =90°.∴∠FBC +∠FCB =90°. ∵∠FCB =45°, ∴∠FBC =45°. ∴∠FCB =∠FBC . ∴BF =CF .在Rt △BCF 中, 222BF CF BF +=,∴BF =BC .--------------------------------------------------------------------------------5分 ∵四边形ABCD 是正方形, ∴BC =AD .∴BF AD .∵BE =BF +FE ,∴BE =AD +12CN .----------------------------------------------------------------------6分(3)34.---------------------------------------------------------------------------------------------------7分26.(1)53k =. ------------------------------------------------------------------------------------------------2分(2)∵点D 为函数24y x =-(其中2x <)的图象上的点, 设点D 坐标为(x ,24x -)(2x <). 分以下两种情况:①当02x ≤≤时, 如图①所示, 作投影矩形OMNC . ∵OC ≥OM ,∴442(24)OC k OM OM x ====--. 解得1x =. ∴ D (1,-2). -------------------------------------------------------------------------------4分 ②当0x <时,如图②所示, 作投影矩形MDNC .∵点D 坐标为(x ,24x -), 点M 点坐标为(x ,0), ∴2442DM x x =-=-, 4MC x =-.∴DM >CM ,∴4224DM x k MC x-===-, 但此方程无解.∴ 当0x <时,满足条件的点D 不存在.--------------------------------------------------5分 综上所述,点D 的坐标为D (1,-2).(3)答:13m <<或5m >.---------------------------------------------------------------------------7分 (注:每对一个给1分)。

北京市海淀区2014-2015学年八年级上期末练习数学试题

北京市海淀区2014-2015学年八年级上期末练习数学试题

海淀区八年级第一学期期末练习数 学 2015.1(分数:100分 时间:90分钟)学校 班级 姓名 成绩 一、选择题:(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的. 请将正确选项前的字母填在表格中相应的位置. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.下列图形中,不是..轴对称图形的是(A ) (B ) (C ) (D ) 2.下列运算中正确的是(A )xy y x 532=+ (B )428x x x =÷ (C )3632)(y x y x = (D )62322x x x =⋅3.在平面直角坐标系xOy 中,点P (-3,5)关于x 轴的对称点的坐标是(A ) (3,5) (B )(3,-5) (C )(5,-3) (D )(-3,-5) 432x +x 的取值范围是 (A )x ≠-32 (B )x <-32 (C )x ≥-32 (D )x ≥23-5.下列各式中,从左到右的变形是因式分解的是(A )3353()5x y x y +-=+- (B )2(1)(1)1x x x +-=-(C )2221(1)x x x ++=+ (D )xy x y x x -=-2)(6.下列三个长度的线段能组成直角三角形的是(A )123 (B )135 (C )2,4,6 (D )5,5,67.计算)123(2- ,结果为 (A )6 (B )6- (C )66- (D )66-8.下列各式中,正确的是(A )212+=+a b a b (B )22++=a b a b (C )a b a b c c-++=- (D )22)2(422--=-+a a a a 9.若x m +与2x -的乘积中不含x 的一次项,则实数m 的值为 (A )2- (B )2 (C )0 (D )110.如图,在△ABC 和△CDE 中,若︒=∠=∠90CED ACB ,AB=CD ,BC=DE ,则下列结论中不正确...的是 (A )△ABC ≌ △CDE (B )CE=AC (C )AB ⊥CD (D )E 为BC 中点11.如图,由四个全等的直角三角形与一个小正方形拼成一个大正方形. 如果大正方形的面积是25,小正方形的面积是1,直角三角形的两条直角边的长分别是a 和b ,那么2()a b +的值为(A )49 (B )25 (C )13 (D )112.当x 分别取2014-、2013-、2012-、….、2-、1-、0、1、12、13、…、12012、12013、12014时,计算分式2211x x -+的值,再将所得结果相加,其和等于(A )1- (B )1 (C )0 (D ) 2014 二、填空题:(本题共24分,每小题3分)13.若实数x y 、满足320x y -++=,则x y +的值为 .14.计算:2325b a ⎛⎫- ⎪⎝⎭= .15.比较大小:23____32.16.分解因式:3312a a -= .17.如图,△ABC ≌△DEF ,点F 在BC 边上,AB 与EF 相交于点P .若37DEF ∠=︒,PB=PF ,则APF ∠= °. 18.如图,△ABC 是等边三角形,点D 为 AC 边上一点,以BD 为边作等边△BDE, 连接CE .若CD =1,CE =3,则BC =_____. 19.在平面直角坐标系xOy 中,点A 、点B 的坐标分别为(-6,0)、(0,8).若△ABC 是以∠BAC 为顶角的等腰三角形,点C 在x 轴上,则点C 的坐标为 .20.如图,分别以正方形ABCD 的四条边为边,向其内部作等边三角形,得到△ABE 、△BCF 、△CDG 、△DAH ,连接EF 、FG 、GH 、HE .若AB =2,则四边形EFGH 的面积为 . 三、解答题:(本题共14分,第21题5分,第22题9分) 21.计算:1018()(2)2π-+-++12-.22.(1)解方程:xx x 211=--.(2))先化简,再求值:2)4442(22+÷-+--+x xx x x x x ,其中2=x .四、解答题:(本题共9分,第23题4分,第24题5分)23.如图,点F 、C 在BE 上,BF CE =,AB DE =,∠B =∠E . 求证: ∠A =∠D .24. 列方程(组)解应用题:上图为地铁调价后的计价图. 调价后,小明、小伟从家到学校乘地铁分别需4元和3元.由于刷卡坐地铁有优惠,因此,他们平均每次实付3.6元和2.9元.已知小明从家到学校乘地铁的里程比小伟从家到学校乘地铁的里程多5千米,且小明每千米享受的优惠金额是小伟的2倍,求小明和小伟从家到学校乘地铁的里程分别是多少千米?五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分).25.已知:如图,△ABC,射线AM平分BAC(1)尺规作图(不写作法,保留作图痕迹)作BC的中垂线,与AM相交于点G,连接BG、CG.(2)在(1)的条件下,∠BAC和∠BGC的等量关系为,证明你的结论.对于两个不等的非零实数a 、b ,若分式()()x a x b x--的值为零,则x a =或x b =.又因为2()()()()x a x b x a b x ab abx a b x x x ---++==+-+,所以关于x 的方程abx a b x+=+有两个解,分别为1x a =,2x b =. 应用上面的结论解答下列问题:(1)方程86x x+=的两个解中较大的一个为 ; (2)关于x 的方程42m n m mn nx mnx mn-+-+=的两个解分别为1x 、2x (12x x <),若1x 与2x 互为倒数,则1_____x =,2______x =;(3)关于x 的方程22322321n n x n x +-+=+-的两个解分别为1x 、2x (12x x <),求2122x x -的值.如图1,在△ABC 中,3180A B ∠+∠=︒,4BC =,5AC =,求AB 的长. 小明的思路:如图2,作BE AC ⊥于点E ,在AC 的延长线上取点D ,使得DE AE =,连接BD ,易得A D ∠=∠,△ABD 为等腰三角形.由3180A ABC ∠+∠=︒和180A ABC BCA ∠+∠+∠=︒,易得2BCA A ∠=∠,△BCD 为等腰三角形.依据已知条件可得AE 和AB 的长.图1 图2解决下列问题:(1)图2中, AE = ,AB = ;(2)在△ABC 中,A ∠、B ∠、C ∠的对边分别为a 、b 、c .①如图3,当32180A B ∠+∠=︒时,用含a 、c 的式子表示b ;(要求写解答过程) ②当34180A B ∠+∠=︒,2b =,3c =时,可得a = .图3。

2016-2017海淀区初二上册期末数学试题

2016-2017海淀区初二上册期末数学试题

2016-2017海淀区初二上册期末数学试题海淀区八年级第一学期期末练习数学017.1班级姓名成绩一.选择题(本大题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.题号 1 2 3 4 5 6 7 8 9 10 答案1. 第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行. 在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是..轴对称图形的是()5.下列各式中,从左到右的变形是因式分解的是( )A .22212(1)1aa a a -+=-+B .22()()x y x y xy +-=-C .265(5)(1)x x x x -+=--D .222()2xy x y xy+=-+6.如图,已知△ABE ≌△ACD ,下列选项中不能被证明的等式是( ) A .AD AE = B. DB AE = C. DF EF= D.DB EC =7. 下列各式中,计算正确的是A .22(155)535x y xy xy x y -÷=-B .98102(1002)(1002)9996⨯=-+=C .3133x x x -=++ C FEDBAD .2(31)(2)32x x x x +-=+-8. 如图,90D C ∠=∠=︒,E 是DC 的中点,AE 平分DAB ∠,28DEA ∠=︒,则ABE ∠的度数是( )A .62B .31C .28D .259.在等边三角形ABC 中,,D E 分别是,BC AC 的中点,点P 是线段AD 上的一个动点,当△PCE 的周长最小时,P 点的位置在( )A .△ABC 的重心处B .AD 的中点处C .A 点处D .D 点处10.定义运算11a ab b +=+,若1a ≠-,1b ≠-,则下列等式AB DCEPABCDE中不.正确的是( ) A .1a bb a⨯= B .b c b c a a a++= C .222(2)()(2)a a ab b b +=+ D .1aa=二.填空题(本大题共24分,每小题3分)11.如图△ABC ,在图中作出边AB 上的高CD .12.分解因式:244x y xy y -+= .13.点(2,3)M -关于x 轴对称的点的坐标是 .14.如果等腰三角形的两边长分别为4和8,那么它的周长为 . 15.计算:21224()8a bab --÷=.16.如图,在△ABC 中,AB AC =,AB 的垂直平分线MN交AC 于D 点. 若BD 平分ABC ∠,则A ∠= ︒.NMAB CDABC17.教材中有如下一段文字:小明通过对上述问题的再思考,提出:两边分别相等且这两边中较大边所对的角相等的两个三角形全等. 请你判断小明的说法. (填“正确”或“不正确”)18.如图1,△ABC中,AD是∠BAC的平分线,若AB=AC+CD,那么∠ACB与∠ABC有怎样的数量关系?小明通过观察分析,形成了如下解题思路:图1图2如图2,延长AC 到E ,使CE=CD ,连接DE .由AB=AC+CD ,可得AE=AB .又因为AD 是∠BAC 的平分线,可得△ABD ≌△AED ,进一步分析就可以得到∠ACB 与∠ABC 的数量关系.(1)判定△ABD 与△AED 全等的依据是______________________________________;(2)∠ACB 与∠ABC 的数量关系为:__________________________________.ACDCBA三.解答题(本大题共18分,第19题4分, 第20题4分,第21题10分) 19.分解因式:(4)()3a b a b ab -++20.如图,DE ∥BC ,点A 为DC 的中点,点,,B A E 共线,求证:DE CB =.21. 解下列方程:(1)25231x x x x +=++;(2)1122x x x -=+-.ABCDE四.解答题(本大题共14分,第22题4分,第23、24题各5分)22.已知2a b +=,求211()()4ab a b a b ab+⋅-+的值.23. 如图,在等边三角形ABC 的三边上,分别取点,,D E F,使得△DEF 为等边三角形,求证:AD BE CF ==.24.列方程解应用题:老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016海淀区八年级第一学期期末练习数 学 2016.1一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个..符合题意.请将正确选项前的字母填在表格中相应的位置. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.下列标志是轴对称图形的是( )A B C D2.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 002 5米,把数字0.000002 5用科学记数法表示为( )A .62.510⨯B .60.2510-⨯C .62510-⨯D .62.510-⨯3.使分式23x -有意义的x 的取值范围是( )A .3x ≠B .3x >C .3x <D .3x = 4.下列计算中,正确的是( )A .238()a a =B .842a a a ÷=C .325a a a +=D .235a a a ⋅= 5.如图,△ABC ≌△DCB ,若AC =7,BE =5,则DE 的长为( ) A .2 B .3 C .4 D .56.在平面直角坐标系中,已知点A (2,m )和点B (n ,-3)关 于x 轴对称,则m n +的值是( )A .-1B .1C .5D .-57.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同..的刻度分别与点M ,N 重合,过角尺顶点C 作射线OC .由此作法便可得△MOC ≌△NOC ,其依据是( )A .SSSB .SASC .ASAD .AAS8.下列各式中,计算正确的是( )A .2(21)21x x x -=-B .23193x x x +=-- C .22(2)4a a +=+ D . 2(2)(3)6x x x x +-=+-9.若1a b +=,则222a b b -+的值为( ) A .4 B .3 C .1 D .010.如图,在△ABC 中,AB =AC ,∠A =40°,AB 的垂直平分线MN 交AC 于D 点,则∠DBC 的度数是( )A .20°B .30°C .40°D .50° 11.若分式61a +的值为正整数,则整数a 的值有( ) A .3个 B .4个 C .6个 D .8个12.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边 的中点,点M 为线段EF 上一动点,则△CDM 周长的最小值为( )A .6B .8C .10D .12二、填空题(本题共24分,每小题3分) 13.当x = 时,分式1xx -值为0. 14.分解因式:24x y y -= . 15.计算:233x y ⎛⎫-= ⎪⎝⎭.16.如果等腰三角形的两边长分别为3和7,那么它的周长为 .17.如图,DE ⊥AB ,∠A =25°,∠D =45°,则∠ACB 的度数为 .18.等式222()a b a b +=+成立的条件为 .19.如图,在△ABC 中,BD 是边AC 上的高,CE 平分∠ACB ,交BD 于点E ,DE =2,BC =5,则△BCE 的面积为 .20.图1是用绳索织成的一片网的一部分,小明探索这片网的结点数(V),网眼数(F),边数(E)之间的关系,他采用由特殊到一般的方法进行探索,列表如下:特殊网图结点数(V) 4 6 9 12网眼数(F) 1 2 4 6边数(E) 4 7 12 ☆表中“☆”处应填的数字为;根据上述探索过程,可以猜想V,F,E之间满足的等量关系为;如图2,若网眼形状为六边形,则V,F,E之间满足的等量关系为.图1 图2三、解答题(本题共16分,每小题4分)21.计算:114(π3)32-⎛⎫---+-⎪⎝⎭.22.如图,E为BC上一点,AC∥BD,AC=BE,BC=DB.求证:AB= ED.23.计算:2234221121x x x x x x ++⎛⎫-÷ ⎪---+⎝⎭.24.解方程:3111x x x -=-+.四、解答题(本题共13分,第25题4分,第26题5分,第27题4分) 25.已知3x y -=,求2[()()()]2x y x y x y x -++-÷的值.26.北京时间2015年7月31日,国际奥委会主席巴赫宣布:中国北京获得2022年第24届冬季奥林匹克运动会举办权.北京也创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市,张家口也成为本届冬奥会的协办城市.近期,新建北京至张家口铁路可行性研究报告已经获得国家发改委批复,同意新建北京至张家口铁路,铁路全长约180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少了20分钟,求高铁列车的平均行驶速度.27.已知:如图,线段AB和射线BM交于点B.(1)利用尺规完成以下作图,并保留作图痕迹(不写作法).①在射线BM上作一点C,使AC=AB;②作∠ABM的角平分线交AC于D点;③在射线CM上作一点E,使CE=CD,连接DE.(2)在(1)所作的图形中,猜想线段BD与DE的数量关系,并证明.AMB五、解答题(本题共11分,第28题5分,第29题6分)28.如图1,我们在2016年1月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”).该十字星的十字差为⨯-⨯=,再选择其它位置的十字星,可以发现“十字差”仍为48.121462048(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为____________.(2)若将正整数依次填入k列的长方形数表中(3k≥),继续前面的探究,可以发现相应“十字差”为与列数k有关的定值,请用k表示出这个定值,并证明你的结论.(3)如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”,若某个十字星中心的数在第32行,且其相应的“十字差”为2015,则这个十字星中心的数为__________________(直接写出结果).图1 图2图329.数学老师布置了这样一道作业题:在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,α+β=120°,连接AD,求∠ADB的度数.小聪提供了研究这个问题的过程和思路:先从特殊问题开始研究,当α=90°,β=30°时(如图1),利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形的相关知识便可解决这个问题.图1 图2(1)请结合小聪研究问题的过程和思路,求出这种特殊情况下∠ADB的度数;(2)结合小聪研究特殊问题的启发,请解决数学老师布置的这道作业题;(3)解决完老师布置的这道作业题后,小聪进一步思考,当点D和点A在直线BC的异侧时,且∠ADB的度数与(1)中相同,则α,β满足的条件为_______________________________________________(直接写出结果).八年级第一学期期末练习数 学 答 案 2016.1一、选择题(本题共36分,每小题3分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDADACABCBBC二、填空题(本题共24分,每小题3分)13.0x =; 14.(2)(2)y x x +-; 15.269x y; 16.17; 17.110°;18.0ab =; 19.5; 20.17,1V F E +-=,1V F E +-=. 三、解答题(本题共16分,每小题4分)21.解:原式=2123--+ ---------------------------------------------------------------------3分 =2 . -------------------------------------------------------------------------4分 22.证明:∵AC ∥BD ,∴∠C =∠EBD . ---------------------------------------------------------1分在△ABC 和△EDB 中,,,,AC EB C EBD BC DB =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△EDB . ----------------------------------------------------------------------3分 ∴AB =ED . --------------------------------------------------------------------4分23.解:原式=2342(1)2(1)(1)(1)(1)(1)x x x x x x x x ⎡⎤+++-÷⎢⎥+-+--⎣⎦--------------------------------------------1分 =2(34)2(1)(1)(1)(1)2x x x x x x +-+-⋅+-+ -----------------------------------------------2分 =22(1)(1)(1)2x x x x x +-⋅+-+ --------------------------------------------------3分 =11x x -+. ---------------------------------------------------------------------4分 24.解:方程两边乘以(1)(1)x x +-,得(1)(1)(1)3(1)x x x x x +-+-=-. ------------------------------------------1分 解得 2x =. ----------------------------------------------------------3分检验:当2x =时,(1)(1)0x x +-≠.所以, 原分式方程的解为2x =. ---------------------------------4分四、解答题(本题共13分,第25题4分,第26题5分,第27题4分) 25.解:原式=2222(2)2x xy y x y x -++-÷ -------------------------------------1分 =2(22)2x xy x -÷ -------------------------------------------2分=x y -. -------------------------------------------------------3分当3x y -=时,原式=x y -=3. -------------------------------------------4分26.解:设普通快车的平均行驶速度为x 千米/时,则高铁列车的平均行驶速度为1.5x 千米/时.----1分 根据题意得18018011.53x x -=. -------------------------------------3分 解得 180x =. ----------------------------------------------4分 经检验,180x =是所列分式方程的解,且符合题意.∴1.5 1.5180270x =⨯=.答:高铁列车的平均行驶速度为270千米/时. -----------------------------5分27.解:(1)(注:不写结论不扣分)ME DC B A-------------------------------1分(2)BD =DE -------------------------------------------------------------2分证明:∵BD 平分∠ABC ,∴∠1=12∠ABC . ∵AB =AC , ∴∠ABC =∠4. ∴∠1=12∠4. ∵CE =CD , ∴∠2=∠3.∵∠4=∠2+∠3, ∴∠3=12∠4. ∴∠1=∠3.∴BD =DE . ---------------------------------------------------------4分五、解答题(本题共11分,第28题5分,第29题6分) 28.(1)24; -------------------------------------------------------------------------------------1分4321ME DCB A(2)21k -; ---------------------------------------------------------------------------2分 证明:设十字星中心的数为x ,则十字星左右两数分别为1x -,1x +,上下两数分别为x k -,x k +(3k ≥).十字差为(1)(1)()()x x x k x k -+--+ -----------------------------------3分=222(1)()x x k ---=2221x x k --+=21k -. -------------------------------------------------4分∴这个定值为21k -.(3)976. --------------------------------------------------------------------5分 29.(1)解:如图,作∠AB D′=∠ABD , B D′=BD ,连接CD′,A D′.∵AB =AC ,∠BAC =90°, ∴∠ABC =45°. ∵∠DBC =30°,∴∠ABD =∠ABC -∠DBC =15°.∵AB =AB ,∠AB D′=∠ABD , B D′=BD , ∴△ABD ≌△ABD′. ∴∠ABD =∠ABD′=15°,∠ADB =∠AD ′B . ∴∠D′BC =∠ABD′+∠ABC =60°. ∵BD =BD′,BD =BC , ∴BD′=BC .∴△D′BC 是等边三角形. ----------------------------------------------1分 ∴D′B =D′C ,∠BD′C =60°. ∵AB AC =,AD AD ''=, ∴△AD ′B ≌△AD ′C . ∴∠A D′B =∠A D′C .∴∠ A D′B =12∠BD′C =30°. ∴∠ADB =30°. -------------------------------------------------------------2分(2)解:第一种情况:当60120α︒︒<≤时如图,作∠AB D′=∠ABD , B D′=BD ,连接CD′,A D′. ∵AB =AC , ∴∠ABC =∠ACB .∵∠BAC +∠ABC +∠ACB =180°, ∴α+2∠ABC =180°.∴∠ABC =1809022αα︒-=︒-.∴∠ABD =∠ABC -∠DBC =902αβ︒--.同(1)可证△ABD ≌△ABD′. ∴∠ABD =∠ABD′=902αβ︒--,BD =BD′,∠ADB =∠AD ′B .∴∠D′BC =∠ABD′+∠ABC =9090180()22ααβαβ︒--+︒-=︒-+.D 'DCBA- 11 - ∵120αβ+=︒,∴∠D′BC =60°.以下同(1)可求得∠ADB =30°. -----------------------------------------3分 第二种情况:当060α︒︒<<时,如图,作∠AB D′=∠ABD , B D′=BD ,连接CD′,A D′.∵AB =AC ,∴∠ABC =∠ACB .∵∠BAC +∠ABC +∠ACB =180°,∴α+2∠ABC =180°.∴∠ABC =1809022αα︒-=︒-. ∴∠ABD =∠DBC -∠ABC =902αβ-︒-(). 同(1)可证△ABD ≌△ABD′.∴∠ABD =∠ABD′=902αβ-︒-(),BD =BD′,∠ADB =∠AD ′B . ∴∠D′BC =∠ABC -∠ABD′=90[(90)]=180()22ααβαβ︒---︒-︒-+.∵120αβ+=︒,∴∠D′BC =60°.∵BD =BD′,BD =BC ,∴BD′=BC .∴△D′BC 是等边三角形.∴D′B =D′C ,∠BD′C =60°.同(1)可证△AD ′B ≌△AD ′C .∴∠A D′B =∠A D′C .∵∠A D′B +∠A D′C +∠BD′C =360°,∴2∠ A D′B +60°=360°.∴∠ A D′B =150°.∴∠ADB =150°. ---------------------------------------------4分(3)0180α︒︒<<,60β=︒或120180α︒︒<<,120αβ-=︒. ------------------------------6分(注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分)。

相关文档
最新文档