电磁场第三版思考题目答案完整版

合集下载

赵凯华陈煕谋《电磁学》第三版思考题及习题答案(完整版)

赵凯华陈煕谋《电磁学》第三版思考题及习题答案(完整版)
ห้องสมุดไป่ตู้
1、 在地球表面上某处电子受到的电场力与它本身的重量相等, 求该处的电场强度 (已知电 子质量 m=9.1×10-31kg,电荷为-e=-1.610-19C). 解: 2、 电子所带的电荷量(基本电荷-e)最先是由密立根通过油滴实验测出的。密立根设计的 实验装置如图所示。一个很小的带电油滴在电场 E 内。调节 E,使作用在油滴上的电场力与 油滴的重量平衡。如果油滴的半径为 1.64×10-4cm,在平衡时,E=1.92×105N/C。求油滴上 的电荷(已知油的密度为 0.851g/cm3) 解: 3、 在早期(1911 年)的一连串实验中,密立根在不同时刻观察单个油滴上呈现的电荷, 其测量结果(绝对值)如下: 6.568×10-19 库仑 13.13×10-19 库仑 19.71×10-19 库仑 8.204×10-19 库仑 16.48×10-19 库仑 22.89×10-19 库仑 11.50×10-19 库仑 18.08×10-19 库仑 26.13×10-19 库仑 根据这些数据,可以推得基本电荷 e 的数值为多少? 解:油滴所带电荷为基本电荷的整数倍。则各实验数据可表示为 kie。取各项之差点儿 4、 根据经典理论,在正常状态下,氢原子中电子绕核作圆周运动,其轨道半径为 5.29× 10-11 米。已知质子电荷为 e=1.60×10-19 库,求电子所在处原子核(即质子)的电场强度。 解: 5、 两个点电荷,q1=+8 微库仑,q2=-16 微库仑(1 微库仑=10-6 库仑) ,相距 20 厘米。求 离它们都是 20 厘米处的电场强度。 解: 与两电荷相距 20cm 的点在一个圆周上,各点 E 大小相等,方向在圆锥在上。 6、 如图所示, 一电偶极子的电偶极矩 P=ql.P 点到偶极子中心 O 的距离为 r ,r 与 l 的夹角为。 在 r>>l 时,求 P 点的电场强度 E 在 r=OP 方向的分量 Er 和垂直于 r 方向上的分量 Eθ。 解:

电磁场与电磁波习题(第三版)习题解答第1-2章

电磁场与电磁波习题(第三版)习题解答第1-2章

ˆ y ˆ 2 yz z ˆ 的旋度。 1.33 计算矢量场 F xxy
解:
ˆ x F x Fx
ˆ y y Fy
ˆ ˆ z x z x Fz xy
ˆ y y 2 yz
ˆ z z 1
ˆ 2 y xz ˆ x
ˆ yx ˆ ,计算 A A 。 1.35 已知 A xy
2
电磁场与电磁波习题答案 chapter 1~2
Copyright @ ShengQian
dE x, y
S dx '
1/ 2
ˆ x x ' yy ˆ x
1/ 2
2 2 2 0 x x ' y 2 x x ' y 2 ˆ x x ' yy ˆ S x dx ' 2 2 2 0 x x ' y ˆ a 2 S x ˆ x x ' yy dx ' E x, y 2 a 2 2 2 0 x x ' y a 2 ˆ ˆ a2 S y x x x' y S dx ' dx ' 2 2 2 a 2 a 2 2 0 2 0 x x ' y x x ' y 2
D 0 E 0
当r a时
Sa D1n D2 n r a 0
当r b时
C 0C a a
Sb D1n D2 n r b 0
0C C b b
分析,本 题求解面电荷分布时, 法线方向和 D1 , D2 关系不要弄 混,这里公式

《电磁学》第三版的思考题和习题答案

《电磁学》第三版的思考题和习题答案
第一章 静电场 §1.1 静电的基本现象和基本规律 思考题: 1、 给你两个金属球, 装在可以搬动的绝缘支架上, 试指出使这两个球带等量异号电荷的方 向。你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。你所用的方法是否要求两球大小 相等? 答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠 近金属球一侧时, 由于静电感应, 靠近玻璃棒的球感应负电荷, 较远的球感应等量的正电荷。 然后两球分开, 再移去玻璃棒, 两金属球分别带等量异号电荷。 本方法不要求两球大小相等。 因为它们本来不带电, 根据电荷守恒定律, 由于静电感应而带电时, 无论两球大小是否相等, 其总电荷仍应为零,故所带电量必定等量异号。 2、 带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。试解释之。 答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。但 接触棒后往往带上同种电荷而相互排斥。 3、 用手握铜棒与丝绸摩擦,铜棒不能带电。戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就 会带电。为什么两种情况有不同结果? 答:人体是导体。当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持 电荷。戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。 计算题: 1、 真空中两个点电荷 q1=1.0×10-10C,q2=1.0×10-11C,相距 100mm,求 q1 受的力。 解: 2、 真空中两个点电荷 q 与 Q,相距 5.0mm,吸引力为 40 达因。已知 q=1.2×10-6C,求 Q。 解:1 达因=克·厘米/秒=10-5 牛顿 3、 为了得到一库仑电量大小的概念, 试计算两个都是一库仑的点电荷在真空中相距一米时 的相互作用力和相距一千米时的相互作用力。 解: 4、 氢原子由一个质子(即氢原子核)和一个电子组成。根据经典模型,在正常状态下,电 子绕核作圆周运动,轨道半径是 r=5.29×10-11m。已知质子质量 M=1.67×10-27kg,电子质 量 m=9.11×10-31kg。 电荷分别为 e=±1.6×10-19 C,万有引力常数 G=6.67×10-11N· m2/kg2。 (1)求电子所受的库仑力; (2)库仑力是万有引力的多少倍?(3)求电子的速度。 解: 5、 卢瑟福实验证明:当两个原子核之间的距离小到 10-15 米时,它们之间的排斥力仍遵守 库仑定律。金的原子核中有 79 个质子,氦的原子核(即α粒子)中有 2 个质子。已知每个 质子带电 e=1.6×10-19 C,α粒子的质量为 6.68×10-27 kg.。当α粒子与金核相距为 6.9× 10-15m 时(设这时它们仍都可当作点电荷) 。求(1)α粒子所受的力; (2)α粒子的加速 度。 解: 6、 铁原子核里两质子间相距 4.0×10-15m,每个质子带电 e=1.6×10-19 C。 (1)求它们之间 的库仑力; (2)比较这力与所受重力的大小。 解: 7、 两个点电荷带电 2q 和 q,相距 l,第三个点电荷放在何处所受的合力为零? 解:设所放的点电荷电量为 Q。若 Q 与 q 同号,则三者互相排斥,不可能达到平衡;故 Q

电磁学第三版思考题与习题解答

电磁学第三版思考题与习题解答

电磁学第三版(梁灿彬)思考题与习题解答第一章 静电场的基本规律思考题1.1答案: (1) ×,正的试探电荷; (2) √ ;(3)× 在无外场是,球面上E⃗ 大小相等。

1.2 答案: 利用对称性分析,垂直轴的分量相互抵消。

1.3答案:(1)× 没有净电荷 ;(2)×; (3)×;(4)√;(5)×;(6)×;(7)×。

1.4答案:无外场时,对球外而言是正确的。

1.5答案:(1)无关 (2) 有关 (3)不能(导体球)、可以(介质球)。

场强叠加原理应用到有导体的问题时,要注意,带电导体单独存在时,有一种电荷分布,它们会产生一种电场;n 个带电导体放在一起时,由于静电感应,导体上的电荷分布发生变化,这时,应用叠加原理应将各个导体发生变化的电荷分布“冻结”起来,然后以“冻结”的电荷分布单独存在时产生的电场进行叠加。

1.6答案:(a 图) 能 ,叠加法(补偿法); (b 图) 不能 。

1.7答案:222121q q φφφφεε-==+,;113131+ -q q φφφφεε==,;134410+0 -q φφφφε==,。

1.8答案:(1)× ;(2)×; (3)×;(4)×;(5)√;(6)×。

1.9答案:n VE en∂=-∂ ,例如匀强电场;E 大,电势的变化率就大,并非一定121122010101.+.=4424R q E dl E dl rR R R πεπεπεπε∞⎝⎰⎰.0E dl =,0n VE e n∂=-=∂。

1.14证明:设s 面上有场强平行于分量,补上另一半球后球内各点的总场强应为零,可见s 面上不能有场强的平行分量,s 面上只有场强垂直分量,故s 面上应为等势面。

习题1.2.1解:(1)设一个电量为q 1,则q 2=4q 1,由公式12204q q F r πε=可以得到: ()2122041.64 5.010q πε-=⨯解之得: q 1=±3.3×10−7(C), q 2=1.33× 10−6(C) (2)当r=0.1时,所受排斥力为:12204q q F r πε==0.4(N ) 1.2.2解:设其中一个电荷电量为q ,则另一个电荷电量为Q -q ,由库仑力 ()2q Q q F k r -= 可知,当()220dF k Q q dq r =-=,即:2Qq = 时两电荷间的斥力最大,所以两者电量均为2Q。

电磁学第三版赵凯华陈煕谋 思考题和课后习题答案详解全解解析(上册)

电磁学第三版赵凯华陈煕谋 思考题和课后习题答案详解全解解析(上册)

第一章静电场§1.1 静电的基本现象和基本规律思考题:1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。

你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。

你所用的方法是否要求两球大小相等?答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。

然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。

本方法不要求两球大小相等。

因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。

2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。

试解释之。

答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。

但接触棒后往往带上同种电荷而相互排斥。

3、用手握铜棒与丝绸摩擦,铜棒不能带电。

戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。

为什么两种情况有不同结果?答:人体是导体。

当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。

戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。

计算题:1、真空中两个点电荷q1=1.0×10-10C,q2=1.0×10-11C,相距100mm,求q1受的力。

解:2、真空中两个点电荷q与Q,相距5.0mm,吸引力为40达因。

已知q=1.2×10-6C,求Q。

解:1达因=克·厘米/秒=10-5牛顿3、为了得到一库仑电量大小的概念,试计算两个都是一库仑的点电荷在真空中相距一米时的相互作用力和相距一千米时的相互作用力。

解:4、氢原子由一个质子(即氢原子核)和一个电子组成。

根据经典模型,在正常状态下,电子绕核作圆周运动,轨道半径是r=5.29×10-11m。

已知质子质量M=1.67×10-27kg,电子质量m=9.11×10-31kg。

谢处方电磁场与电磁波第三版答案

谢处方电磁场与电磁波第三版答案

谢处方电磁场与电磁波(第三版)答案第一章习题解答1.1 三个矢量A 、B 和C 如下: 23xyz=+-A e e e4yz=-+B e e 52x z=-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)ABθ;(5)A 在B 上的分量;(6)⨯A C ; (7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。

解 (1)23A x y z +-===+-e e e A a e e e A (2)-=A B (23)(4)xyzyz+---+=e e e ee 64xyz+-=e e e (3)=A B (23)xyz+-e e e (4)yz-+=e e -11(4)由cos AB θ=14==⨯A B A B,得 1cos AB θ-=(135.5=(5)A 在B 上的分量 B A =A cos AB θ=17=-A B B(6)⨯=A C 123502x yz-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x y z-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e 所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x yz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。

(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。

电磁场与电磁波第三版课后答案

电磁场与电磁波第三版课后答案

电磁场与电磁波第三版课后答案本文是对《电磁场与电磁波》第三版的课后习题答案的整理与解答。

本书是电磁场与电磁波领域的经典教材,其中的习题对于巩固和加深对电磁场与电磁波知识的理解非常重要。

以下是本文对第三版的习题答案的详细解析。

第一章电磁场基本概念1.1 电磁场基本概念习题答案:1.电磁场的基本概念是指在空间中存在着电场和磁场,它们相互作用产生相互关联的现象;它们是由带电粒子的运动而产生的,是物理学的基本概念之一。

2.宏观电荷位移是指电荷在物体内部的移动;它的存在使得物体表面或其周围的电场产生变化,从而产生an内部电磁场。

3.电磁场的基本方程是麦克斯韦方程组,由四个方程组成:高斯定律、法拉第电磁感应定律、法拉第电磁感应定律的积分形式和安培环路定律。

1.2 矢量分析习题答案:1.根据题目所给的向量,求两个向量的点乘积:$\\vec{A}\\cdot\\vec{B}=A_{x}B_{x}+A_{y}B_{y}+A_{z}B_{ z}$2.根据题目所给的向量,求两个向量的叉乘积:$\\vec{A}\\times\\vec{B}=(A_{y}B_{z}-A_{z}B_{y})\\hat{i}+(A_{z}B_{x}-A_{x}B_{z})\\hat{j}+(A_{x}B_{y}-A_{y}B_{x})\\hat{k}$3.定义标量和矢量场,然后利用高斯定理得出结论。

1.3 电场与静电场习题答案:1.静电场是指电场的源是静止电荷,不会随时间变化,不产生磁场。

2.在静电场中,高斯定律表示为:$\ abla \\cdot\\vec{E} = \\frac{1}{\\varepsilon_0}\\rho$,其中$\ abla\\cdot \\vec{E}$表示电场的散度,$\\varepsilon_0$表示真空介电常数,$\\rho$表示电荷密度。

3.电场的位移矢量$\\vec{D}$定义为$\\vec{D} =\\varepsilon_0 \\vec{E} + \\vec{P}$,其中$\\varepsilon_0$表示真空介电常数,$\\vec{E}$表示电场强度,$\\vec{P}$表示极化强度。

赵凯华陈煕谋《电磁学》第三版的思考题和习题答案

赵凯华陈煕谋《电磁学》第三版的思考题和习题答案
第一章
静电场
§1.1 静电的基本现象和基本规律
思考题:
1、 给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方
向。你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。你所用的方法是否要求两球大小
相等?
答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠
3、 为了得到一库仑电量大小的概念,试计算两个都是一库仑的点电荷在真空中相距一米时 的相互作用力和相距一千米时的相互作用力。 解: 4、 氢原子由一个质子(即氢原子核)和一个电子组成。根据经典模型,在正常状态下,电 子绕核作圆周运动,轨道半径是 r=5.29×10-11m。已知质子质量 M=1.67×10-27kg,电子质 量 m=9.11×10-31kg。电荷分别为 e=±1.6×10-19 C,万有引力常数 G=6.67×10-11N·m2/kg2。 (1)求电子所受的库仑力;(2)库仑力是万有引力的多少倍?(3)求电子的速度。 解: 5、 卢瑟福实验证明:当两个原子核之间的距离小到 10-15 米时,它们之间的排斥力仍遵守 库仑定律。金的原子核中有 79 个质子,氦的原子核(即α粒子)中有 2 个质子。已知每个 质子带电 e=1.6×10-19 C,α粒子的质量为 6.68×10-27 kg.。当α粒子与金核相距为 6.9× 10-15m 时(设这时它们仍都可当作点电荷)。求(1)α粒子所受的力;(2)α粒子的加速 度。 解: 6、 铁原子核里两质子间相距 4.0×10-15m,每个质子带电 e=1.6×10-19 C。(1)求它们之间 的库仑力;(2)比较这力与所受重力的大小。 解: 7、 两个点电荷带电 2q 和 q,相距 l,第三个点电荷放在何处所受的合力为零? 解:设所放的点电荷电量为 Q。若 Q 与 q 同号,则三者互相排斥,不可能达到平衡;故 Q

电磁场与电磁波(第三版)课后答案第5章

电磁场与电磁波(第三版)课后答案第5章

第五章习题解答5.1真空中直线长电流I 的磁场中有一等边三角形回路,如题 5.1图所示,求三角形回路内的磁通。

解根据安培环路定理,得到长直导线的电流I 产生的磁场2IrB e穿过三角形回路面积的磁通为d SB S32322[d ]d d 2db db zd dI I z z xxxx由题 5.1图可知,()tan63x d zx d ,故得到32d 3db dIx dxx3[ln(1)]223Ib d b d5.2通过电流密度为J 的均匀电流的长圆柱导体中有一平行的圆柱形空腔,如题 5.2图所示。

计算各部分的磁感应强度B ,并证明腔内的磁场是均匀的。

解将空腔中视为同时存在J 和J 的两种电流密度,这样可将原来的电流分布分解为两个均匀的电流分布:一个电流密度为J 、均匀分布在半径为b 的圆柱内,另一个电流密度为J 、均匀分布在半径为a 的圆柱内。

由安培环路定律,分别求出两个均匀分布电流的磁场,然后进行叠加即可得到圆柱内外的磁场。

由安培环路定律d CI B l,可得到电流密度为J 、均匀分布在半径为b 的圆柱内的电流产生的磁场为2222b b bbbbr bbr br J r B J r 电流密度为J 、均匀分布在半径为a 的圆柱内的电流产生的磁场为2222a a aaaar aar ar J r B J r 这里a r 和br 分别是点a o 和b o 到场点P 的位置矢量。

将aB 和bB 叠加,可得到空间各区域的磁场为圆柱外:22222babab a r rBJr r ()br b 圆柱内的空腔外:2022ba aar BJr r (,)b ar b r a 空腔内:22b aBJr r J d()ar a 式中d 是点和b o 到点a o 的位置矢量。

由此可见,空腔内的磁场是均匀的。

5.3下面的矢量函数中哪些可能是磁场?如果是,求其源变量J 。

dbIzx题 5.1 图Sbr ar Jboao ab题5.2图d(1) 0,r ar H e B H(圆柱坐标)(2) 0(),x y ay ax H e e BH(3) 0,x y axay H e e BH(4) 0,ar He BH (球坐标系)解根据恒定磁场的基本性质,满足0B 的矢量函数才可能是磁场的场矢量,否则,不是磁场的场矢量。

电磁场与电磁波(第三版)课后问题详解__谢处方

电磁场与电磁波(第三版)课后问题详解__谢处方

第二章习题解答2.1 一个平行板真空二极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。

如果040V U =、1cm d =、横截面210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。

解 (1) 43230004d ()d 9dQ U d x S x τρτε--==-=⎰⎰110044.7210C 3U S dε--=-⨯ (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=⎰⎰11004(10.9710C 3U S d ε--=-⨯ 2.2 一个体密度为732.3210C m ρ-=⨯的质子束,通过1000V 的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。

解 质子的质量271.710kg m -=⨯、电量191.610C q -=⨯。

由21mv qU = 得 61.3710v ==⨯ m s 故 0.318J v ρ== 2A m26(2)10I J d π-== A2.3 一个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀角速度ω绕一个直径旋转,求球内的电流密度。

解 以球心为坐标原点,转轴(一直径)为z 轴。

设球内任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin r φωθ=⨯=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a aφφωρωθθππ===J v e e 2.4 一个半径为a 的导体球带总电荷量为Q ,同样以匀角速度ω绕一个直径旋转,求球表面的面电流密度。

解 以球心为坐标原点,转轴(一直径)为z 轴。

设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin a φωθ=⨯=v r e ω球面的上电荷面密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 2.5 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。

电磁场与电磁波(第三版)课后答案第4章

电磁场与电磁波(第三版)课后答案第4章

第四章习题解答4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为0U ,求槽内的电位函数。

解 根据题意,电位(,)x y ϕ满足的边界条件为① (0,)(,)0y a y ϕϕ== ② (,0)0x ϕ=③ 0(,)x b U ϕ=根据条件①和②,电位(,)x y ϕ的通解应取为1(,)sinh()sin()n n n y n xx y A a aππϕ∞==∑ 由条件③,有01sinh()sin()n n n b n x U A a aππ∞==∑ 两边同乘以sin()n xaπ,并从0到a 对x 积分,得到 002sin()d sinh()an U n xA x a n b a a ππ==⎰2(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ⎧=⎪⎨⎪=⎩L L , 故得到槽内的电位分布 01,3,5,41(,)sinh()sin()sinh()n U n y n xx y n n b a a aππϕππ==∑L 4.2 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。

上板和薄片保持电位0U ,下板保持零电位,求板间电位的解。

设在薄片平面上,从0=y 到d y =,电位线性变化,0(0,)y U y d ϕ=。

解 应用叠加原理,设板间的电位为(,)x y ϕ=12(,)(,)x y x y ϕϕ+其中,1(,)x y ϕ为不存在薄片的平行无限大导体平面间(电压为0U )的电位,即10(,)x y U y b ϕ=;2(,)x y ϕ是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为:① 22(,0)(,)0x x b ϕϕ==②2(,)0()x y x ϕ=→∞a题4.1图题 4.2图③ 002100(0)(0,)(0,)(0,)()U U y y d by y y U U y y d y b db ϕϕϕ⎧-≤≤⎪⎪=-=⎨⎪-≤≤⎪⎩根据条件①和②,可设2(,)x y ϕ的通解为 21(,)sin()e n x bn n n y x y A b ππϕ∞-==∑ 由条件③有 00100(0)sin()()n n U U y y d n y bA U U b y y d y b db π∞=⎧-≤≤⎪⎪=⎨⎪-≤≤⎪⎩∑ 两边同乘以sin()n yb π,并从0到b 对y 积分,得到 0002211(1)sin()d ()sin()d d bn dU U y n y n y A y y y b b b b d b b ππ=-+-=⎰⎰022sin()()U b n d n d b ππ 故得到 (,)x y ϕ=0022121sin()sin()e n x bn U bU n d n y y b d n b b ππππ∞-=+∑ 4.3 求在上题的解中,除开0U y b 一项外,其他所有项对电场总储能的贡献。

电磁场与电磁波第三版答案第四章

电磁场与电磁波第三版答案第四章

《电磁场与电磁波》——习题详解第四章 静态场的解4-1 一个点电荷 Q 与无穷大导体平面相距为 d ,如果把它移动到无穷远处,需要 作多少功? 解: 用镜像法, 相当于两个电荷关于 y = 0 平面向相反方向离开,当 Q 移到 y 处时,受到 的电场力为:y Qdy y xdF= Q2 4πε 0 (2 y ) 2-Q 此时移动 d y 需对电荷做功图 4-1dw = Fd y =移到无穷远处做的总功为:Q2 16πε 0 y 2dyW = dw = Fd y =d∫∫∞∫∞ dQ216πε 0 y 2dy=Q2 16πε 0 d当用外力将电荷 Q 移动到无穷远处时,同时也要将镜像电荷移动到无穷远处,所以在整个过程中,外力作的总功为Q2 8πε 0 d也可以用静电能计算,在移动以前,系统的静电能等于两个点电荷之间的相互 作用能:W=1 1 1 1 Q Q Q2 + (Q) q11 + q2 2 = Q = 2 2 2 4π ε 0 (2d ) 2 4π ε 0 (2d ) 8π ε 0 d移动点电荷到无穷远以后,系统的静电能为零.因此,在这个过程中,外力作 功等于系统静电能的增量,即外力作功为Q2 8πε 0 d.43习题四4-2 一个点电荷放在直角导体内部(如图 4-2),求出所有镜像电荷的位置和大小y-q r2 d r3O r1 r4rq ax -qq图 4-2 解:假设如图所示三个镜像电荷,则空间电荷分布为φ (r ) =v1 1 1 1 ( + ) 4πε 0 r1 r2 r3 r4q经检验:在 y = 0 平面上 φ ( r ) = 0 ,在 x = 0 平面上vφ (r ) = 0所以上述解为原问题的解.因此求得镜像电荷的位置和大小如图 4-2 所示,即vq 2 = q 位置 ( a, d ) , q3 = q 位置 ( a, d ) , q 4 = q 位置 (a, d )4-3 证明:一个点电荷 q 和一个带有电荷 Q ,半径为 R 的导体球之间的作用力为Rq Q + D q DRq F= 2 4π ε 0 D 2 (D R 2 ) 2 其中 D 是 q 到球心的距离 ( D > R ) . 证明:使用镜像法分析.由于导体球不接地,本身又带电 Q ,必须在导体球内 加上两个镜像电荷来等效导体球对外的影响.在距离球心 b = R / D 处,镜像电荷2为 q′ = Rq / D ;在球心处,镜像电荷为 q2 = Q q′ = Q + Rq / D .点电荷 q 受导 体球的作用力就等于球内两个镜像电荷对 q 的作用力,即44《电磁场与电磁波》——习题详解F= q2 q′ D 2 + ( D b) 2 4π ε 0 q Rq Rq Q + D q D = + R2 2 4π ε 0 D 2 2 (D ) D Rq Q + D DRq = 2 4π ε 0 D 2 (D R 2 ) 2 q4-4 两个点电荷 + Q 和 Q 位于一个半径为 a 的接地导体球的直径的延长线上, 分 别距离球心 D 和 D . (1) (2) 证明:镜像电荷构成一电偶极子,位于球心,偶极矩为 2a Q / D . 令 Q 和 D 分别趋于无穷,同时保持 Q / D 不变,计算球外的电场. 使用导体球面的镜像法和叠加原理分析.在球内加上两个镜像电荷:2 2 3 2解:(1)一个是 Q 在球面上的镜像电荷, 1 = aQ / D , q 距离球心 b1 = a / D ; 第二个是 Q 在球面上的镜像电荷, q2 = aQ / D ,距离球心 b2 = a / D .当距离较大时,镜像2电荷间的距离很小,等效为一个电偶极子,电偶极矩为p = q 1 (b1 b2 ) =(2) 2a 3Q D2球外任意点的电场等于四个点电荷产生的电场的叠加.设 + Q 和 Q 位于2坐标 z 轴上,当 Q 和 D 分别趋于无穷,同时保持 Q / D 不变时,由 + Q 和 Q 在空 间产生的电场相当于均匀平板电容器的电场,是一个均匀场,均匀场的大小为v 2Q / 4π ε 0 D 2 ,方向在 ez ,由镜像电荷产生的电场可以由电偶极子的公式计算.v E=p 4π ε 0 r3v v (er 2 cos θ + eθ sin θ )45习题四=4-5 2 a 3Q v v (er 2 cos θ + eθ sin θ ) 3 2 4π ε 0 r D接地无限大导体平板上有一个半径为 a 的半球形突起,在点 (0,0, d ) 处有一个 点电荷 q (如图 4-3),求导体上方的电z dq a bq2 -bq3-dq1 图 4-3位. 解:计算导体上方的电位时,要保持导 体平板部分和半球部分的电位都为零.先找平 面导体的镜像电荷 q1 = q ,位于 (0,0, d ) 处.再找球面镜像电荷 q2 = aq / d ,位于(0,0, b) 处,b = a 2 / d .当叠加这两个镜像电荷和原电荷共同产生的电位时,在导体平面上位于 (0,0,b) 处. 和球面上都不为零, 应当在球内再加上一个镜像电荷 q3 = aq / d , 这时,三个镜像电荷和原电荷共同产生的电位在导体平面和球面上都为零,而且三 个镜像电荷在要计算的区域以外. 导体上方的电位为四个点电荷电位的叠加,即=其中 q q1 q2 q3 + + + 4π ε 0 R r1 r2 r3 1R = [ x 2 + y 2 + ( z d ) 2 ]1 2 r1 = [ x 2 + y 2 + ( z + d ) 2 ]1 2 r2 = [ x 2 + y 2 + ( z b) 2 ]1 2 r3 = [ x 2 + y 2 + ( z + b) 2 ]1 24-6 求截面为矩形的无限长区域( 0 < x < a , 0 < y < b )的电位,其四壁的电位 为 ( x,0) = ( x, b) = 0 ,46《电磁场与电磁波》——习题详解 (0, y ) = 0U 0 y b , ( a, y ) = y U 0 (1 ), b 0 < y ≤ b/ 2 b/ 2 < y < b解:法一:由边界条件 ( x,0) = ( x, b) = 0 知,方程的基本解在 y 方向应该 为周期函数,且仅仅取正弦函数,即Yn = sin k n y(k n =nπ ) b在 x 方向,考虑到是有限区域,选取双曲正弦函数和双曲余弦函数,使用边界 (0, y ) = 0 条件,得出仅仅选取双曲正弦函数,即X n = sh nπ x b将基本解进行线性组合,得 = ∑ Cn shn =1∞nπ x nπ y sin b b待定常数由 x = a 处的边界条件确定,即 (a, y ) = ∑ Cn shn =1∞nπ a nπ y sin b b使用正弦函数的正交归一性质,有b nπ a C n sh = 2 b∫ (a, y) sin0bnπ y dy bb/2∫b/2 02 U0 y U b nπ y by nπ y nπ y sin d y = 0 cos sin b b b nπ b nπ b 0=U0 b b nπ b2 nπ cos sin 2 2nπ 2 nπ 2∫y nπ y U 0 1 sin dy b b/2 bb47习题四b 2 b nπ y U b nπ y by nπ y 0 = U 0 cos cos sin nπ b b / 2 b nπ b nπ b bb/2b nπ U 0 b nπ = U 0 sin + cos nπ cos 2 b nπ 2 nπ +化简以后得2U 0 b2 U b b nπ cos nπ 0 cos 2 b nπ b nπ 2b nπ a = C n sh b 2∫ (a, y) sin0bnπ y b nπ d y = 2U 0 2 2 sin b 2 nπ求出系数,代入电位表达式,得nπ 4U 2 sin nπ y sh nπ x = ∑ 2 02 nπ a b b n =1 n π sh b 4-7 一个截面如图 4-4 所示的长槽,向 y 方向无限延伸,两侧的电位是零,槽内∞siny → ∞ , → 0 ,底部的电位为 ( x,0) = U 0求槽内的电位. 解:法一:令 ( x, y ) = X ( x)Y ( y ) = 0 , 因边界条件y =0 =0 = U0 (0, y ) = (a, y ) = 0a图 4-4x所以 X(x) = Acos K x x + B sin K x xQ X ( x) = X (a) = 0求得A = 0 , Kx =nπ a( n = 1,2,3L )X ( x) = Bn sinnπ x ( n = 1,2,3L ) a48《电磁场与电磁波》——习题详解由 Kx + Ky = 0 得 所以 Y ( y ) = C n enπ y a22K y = K x K y = ± j22nπ a( n = 1,2,3L )+ Dn e nπ y a nyπ a nyπ a ( x, y ) =∑n =1 ∞∞(C n e+ Dn e )Bn sinnπ x a=∑n =1 ′ (C n enyπ a′ + Dn e nyπ a) sinnπ x a′ 由边界条件 ( x,+∞) = 0 可得 C n = 0所以 ( x, y ) =∑n =1∞′ Dn enπ y asinnπ x a再由边界条件 ( x,0) = U 0 代入可得∑n =1∞′ Dn e nπ 0 asinnπ x= a∑ D′ sinn n =1∞nπ x = U0 a再两边同乘以 sinmπ x ,并从 0 到 a 积分得 a 4U 0 2U 0 ′ Dn = (1 cos mπ ) = mπ mπ 0 所以槽内电位为∞m = 1,3,5L m = 2,4,6L ( x, y ) =4U 0 myπ mπ e a sin x mπ a m =1, 3, 5....∑=∑n =1∞( 2 n 1) yπ 4U 0 (2n 1)π a x e sin a (2n 1)π法二:由于在 x = 0 和 x = a 两个边界的电位为零,故在 x 方向选取周期解, 且仅仅取正弦函数,即X n = sin k n xnπ kn = a 49习题四在 y 方向,区域包含无穷远处,故选取指数函数,在 y → ∞ 时,电位趋于零,所以 选取Yn = e kn y由基本解的叠加构成电位的表示式为nπ x nπa y e = C n sin a n =1∑∞待定系数由 y = 0 的边界条件确定.在电位表示式中,令 y = 0 ,得U 0 = ∑ Cn sinn =1∞nπ x aCna = 2∫a0U 0 sinaU 0 nπ x dx = (1 cos nπ ) nπ a当 n 为奇数时, Cn =4U 0 ,当 n 为偶数时, Cn = 0 .最后,电位的解为 nπnπ y a=4-84U nπ x ∑,5 nπ0 sin a e n =1, 3∞若上题的底部的电位为 ( x,0) = U 0 sin重新求槽内的电位3π x a解:同上题,在 x 方向选取正弦函数,即 X n = sin k n x , k n = 向选取 Yn = e kn y nπ ,在 y 方 a .由基本解的叠加构成电位的表示式为 = ∑ Cn sinn =1∞nπ x e anπ y a将 y = 0 的电位代入,得 U 0 sinnπ x 3π x ∞ = ∑ Cn sin a a n =1其余系数 Cn = 0 , 应用正弦级数展开的惟一性, 可以得到 n = 3 时,C3 = U 0 ,50《电磁场与电磁波》——习题详解所以 = U 0 sin4-93π x e a3π y a一个矩形导体槽由两部分构成, 如图 4-5 所示, 两个导体板的电位分别是 U 0 和 零,求槽内的电位. 解: 将原问题的电位看成是两个电位的叠加. 一个电位与平行板电容器的电位相同(上板电位为 U 0 ,下板电位为零 ),另一个电位为 U ,即=U0 y +U a y = 0 ,U = 0 y = a ,U = 0 a a 2y其中,U 满足拉普拉斯方程,其边界条件为 = U0 =0x图 4-5x = 0 时, U0 U 0 a y, U0 y= U = (0, y ) U a 0 y, a a < y<a 2 a 0< y< 2x → ∞ 时,电位 U 应该趋于零. U 的形式解为 nπ y e U = ∑ Cn sin a n =1待定系数用 x = 0 的条件确定.∞ ∞ nπ x aU (0, y ) = ∑ Cn sinn =1nπ y anπ y dy aa/2a C = 2 n∫a 0U (0, y ) sin∫a/2 02 U0 y U 0 a nπ y nπ y a nπ y sin dy = y cos sin a a a nπ a nπ a 051习题四U = 0 a a 2 nπ a 2 nπ cos + sin 2 2nπ 2 nπ a∫y nπ y a nπ y U 0 1 sin d y = U 0 cos a a/2 nπ a aaa/2 aU 0 a a 2 nπ y ay nπ y cos sin a nπ a nπ nπ U0 a sin + 2 a nπ 2a/2= U 0a nπnπ cos nπ cos 2 +化简后,得到U a a U0 a2 nπ cos nπ 0 cos 2 a nπ 2 a nπ U a nπ y nπ d y = 0 cos a nπ 2a C = 2 n∫a0U (0, y ) sin只有偶数项系数不为零.将系数求出,代入电位的表达式,得=4-10∞ U0 y 2U 0 nπ nπ y + ∑ cos sin e a a 2 n = 2 , 4 ,L nπnπ x a将一个半径为 a 的无限长导体管平分成两半,两部分之间互相绝缘,上半(0 < φ < π ) 接电压 U 0 ,下半 (π < φ < 2π ) 电位为零,如图 4-6,求管内的电位. 解:圆柱坐标的通解为 (r , φ ) = ( A0φ + B0 )(C0 ln r + D0 ) + ∑ r n ( An cos nφ + Bn sin nφ )n =1∞+ ∑ r n (Cn cos nφ + Dn sin nφ )n =1∞由于柱内电位在 r = 0 点为有限值,通解中不能有 ln r 和 rn项,即有52《电磁场与电磁波》——习题详解Cn = 0 , Dn = 0 , C0 = 0 (n = 1,2, L)柱内电位是角度的周期函数, A0 = 0 .因此,该题的通 解取为 r = U0 φx (r , φ ) = B0 D0 + ∑ r ( An cos nφ + Bn sin nφ )n n =1∞ =0图 4-6各项系数用 r = a 处的边界条件来定. (a, φ ) = B0 D0 + ∑ a n ( An cos nφ + Bn sin nφ ) = n =1∞ U0, 0 < φ < π 0, π < φ < 2πB 0 D0 =a n An =U 1 2π (a, φ ) d φ = 0 2π 0 2∫1π1∫ ∫0 (a, φ ) cos nφ d φ = 02π2πa n Bn =柱内的电位为π0 (a, φ ) sin nφ d φ =U0 (1 cos nπ ) nπ2U U (r , φ ) = 0 + 0 2 π4-111r ∑5L n a sin nφ n =1, 3,∞n半径为无穷长的圆柱面上,有密度为 ρ S = ρ S 0 cos φ 的面电荷,求圆柱面内, 外的电位. 解:由于面电荷是余弦分布,所以柱内,外的电位也是角度的偶函数.柱外的电位不应有 r 项,柱内电位不应有 r 是角度的周期函数.故柱内电位选为nn项.柱内,外的电位也不应有对数项,且1 = A0 + ∑ r n An cos nφn =1∞柱外电位选为 2 = C0 + ∑ r nCn cos nφn =1∞53习题四假定无穷远处的电位为零,定出系数 C0 = 0 . 在界面 r = a 上, 1 = 2 , ε0∞ 2 + ε0 1 = ρ S 0 cos φ r r∞即A0 + ∑ a n An cos nφ = ∑ a nCn cos nφn =1 n =1 ε0 ∑ na n 1Cn cos nφ + ε0 ∑ na n 1 An cos nφ = ρ S 0 cos φn =1 n =1∞∞解之得A0 = 0 , A1 =ρS 0 a2 ρS 0 , C1 = 2ε 2ε 0(n > 1)An = 0 , Cn = 0最后的电位为 ρS0 2ε r cos φ , = 2 0 a ρ S 0 cos φ , 2ε 0 r 3-12r<a r>a将一个半径为 a 的导体球置于均匀电场 E0 中,求球外的电位,电场. 解:采用球坐标系求解,设均匀电场沿正 z 方向,并设原点为电位零点(如图v4-7) . 因 球 面 是 等 位 面 , 所 以 在 r = a 处 , = 0 ; 在 r → ∞ 处 , 电 位 应 是 = E0 r cos θ ,球坐标中电位通解具有如下形式: (r ,θ ) = ∑ ( An r n + Bn r n 1 ) Pn (cos θ )n =0∞用无穷远处的边界条件 r → ∞ 及 = E0 r cos θ ,得到 A1 = E0 ,其余An = 0 .再使用球面上 ( r = a ) 的边界条件54《电磁场与电磁波》——习题详解∞ (a,θ ) = E0 a cos θ + ∑ Bn a n 1 Pn (cos θ ) = 0n =0上式可以改写为E0 a cos θ = ∑ Bn a n 1 Pn (cos θ )n =0∞因为勒让德多项式是完备的,即将任意的函数展开成勒让德多项式的系数是 惟 一 的 , 比 较 上 式 左 右 两 边 , 并 注 意 P (cos θ ) = cos θ , 得 E0 a = B1a 12,即B1 = E0 a 3 ,其余的 Bn = 0 .故导体球外电位为 = 1 电场强度为a3 E0 r cos θ r3 rE0θz图 4-7Er = 2a 3 = E0 1 + 3 cos θ r r a = E0 1 3 sin θ r rθ 3Eθ = 4-13将半径为 a , 介电常数为 ε 的无限长介质圆柱放置于均匀电场 E0 中, E0 沿 设vvx 方向,柱的轴沿 z 轴,柱外为空气,如图 4-8,求任意点的电位,电场.解: 选取原点为电位参考点, 1 表示柱内电位, 2 表示柱外电位. r → ∞ 用 在 处,电位 2 = E0 r cos φ因几何结构和场分布关于 y = 0 平面对称, 故电位表 示式中不应有 φ 的正弦项.令rE0φε ε0图 4-8x1 = A0 + ∑ ( An r n + Bn r n ) cos nφn =1∞55习题四∞ 2 = C0 + ∑ (Cn r n + Dn r n ) cos nφn =1因在原点处电位为零,定出 A0 = 0 , Bn = 0 .用无穷远处边界条件 r → ∞ 及 2 = E0 r cos φ ,定出 C1 = E0 ,其余 Cn = 0 .这样,柱内,外电位简化为 1 = ∑ An r n cos nφn =1∞ 2 = C1r cos φ + ∑ Dn r n cos nφn =1∞再用介质柱和空气界面 ( r = a ) 的边界条件 1 = 2 及 ε 1 = ε 0 2 ,得 r r∞ ∞ n n ∑ An a cos nφ = E0 a cos φ + ∑ Dn a cos nφ n =1 n =1 ∞ ∞ ∑ εnAn a n 1 cos nφ = ε 0 E0 cos φ ∑ ε 0 nDn a n 1 cos nφ n =1 n =1 比较左右 n = 1 的系数,得A1 解之得D1 D1 = E0 , ε A1 + ε 0 2 = ε 0 E0 2 a aA1 = 2ε 0 ε ε0 E0 , D1 = E0 a 2 ε + ε0 ε + ε0比较系数方程左右 n > 1 的各项,得An Dn D = 0 , ε An + ε 0 2n = 0 2n a a n由此解出 An = Dn = 0 .最终得到圆柱内,外的电位分别是1 = E02ε 0 r cos φ , ε + ε0ε ε0 a2 2 = E0 r cos φ + E0 cos φ ε + ε0 r56《电磁场与电磁波》——习题详解电场强度分别为v v 2ε 0 v 2ε 0 E1 = 1 = er E0 cos φ eφ E0 sin φ ε + ε0 ε + ε0v v ε ε 0 a2 v ε ε 0 a2 1 + E0 cos φ eφ 1 E2 = 2 = er ε + ε r 2 E0 sin φ ε + ε0 r2 0 4-14 在均匀电场中,设置一个半径为 a 的介质球,若电场的方向沿 z 轴,求介质 球内,外的电位,电场(介质球的介电常数为 ε ,球外为空气). 解:设球内,外电位解的形式分别为1 = ∑ ( An r n + Bn r n 1 ) Pn (cos nθ ) ,n =0 ∞∞ 2 = ∑ (Cn r n + Dn r n 1 ) Pn (cos nθ )n =0在 选取球心处为电位的参考点, 则球内电位的系数中 A0 = 0 ,Bn = 0 . r → ∞ 处,电位 2 = E0 r cos θ ,则球外电位系数 Cn 中,仅仅 C1 不为零,即 C1 = E0 , 其余为零.因此,球内,外解的形式分别简化为1 = ∑ An r n Pn (cos nθ ) ,n =0∞ 2 = E0 r cos θ + ∑ Dn r n 1 Pn (cos nθ )n =0∞再用介质球面 ( r = a ) 的边界条件 1 = 2 及 ε1 = ε 0 2 ,得 r r∞ ∞ n An a Pn (cos nθ ) = E 0 a cos θ + Dn a n 1 Pn (cos nθ ) n =1 n =1 ∞ ∞ εnA a n 1 P (cos nθ ) = ε E cos θ ε 0 (n + 1) Dn a n 2 Pn (cos nθ ) n n 0 0 n =1 n =1 ∑ ∑∑∑比较上式的系数,可以知道,除了 n = 1 以外,系数 An , Dn 均为零,且A1a = E0 a + D1a 2 , ε A1 = ε 0 E0 2ε 0 D1a 357习题四由此,解出系数A1 = 3ε 0 ε ε0 E0 , D1 = E0 a 3 ε + 2ε 0 ε + 2ε 0 3ε 0 r cos θ , ε + 2ε 0最后得到电位,电场1 = E0 2 = E0 r cos θ + E0v v E1 = 1 = erε ε 0 a3 cos θ ε + 2ε 0 r 23ε 0 v 3ε 0 E0 cos θ eθ E0 sin θ ε + 2ε 0 ε + 2ε 0v ε ε 0 a3 ε ε 0 a3 v v 1 + 2 E0 cos θ eθ 1 E2 = 2 = er ε + 2ε r 3 E0 sin θ ε + 2ε 0 r 3 0 4-15 已知球面 ( r = a ) 上的电位为 = U 0 cos θ ,求球外的电位. 解:设球外电位解的形式为 = ∑ ( An r n + Bn r n 1 ) Pn (cos nθ )n =0∞在无穷远处,应该满足自然边界条件,即电位趋于零.这样确定系数 An = 0 ,球外 电位的形式解简化为 = ∑ Bn r n 1 Pn (cos nθ )n =0∞使用球面 ( r = a ) 的边界条件,有U 0 cos θ = ∑ Bn a n 1 Pn (cos nθ )n =0∞由于勒让德多项式 Pn (cos nθ ) 是线性无关的,考虑到 P (cos θ ) = cos θ ,比较上式 1 左右的系数,得到 B1 = U 0 a , Bn = 02(n = 0,2,3,L) .所以,球外的电位分布为58《电磁场与电磁波》——习题详解 = U04-16a2 cos θ r2求无限长矩形区域 (0 < x < a,0 < y < b) 第一类边值问题的格林函数(即矩形 槽的四周电位为零,槽内有一与槽平行的单位线源,求槽内电位,如图 4-9). 解:这个问题的格林函数满足的方程为 2G 2G 1 + 2 = δ( x x′) δ( y y′) 2 x y ε0格林函数的边界条件是,在矩形区域的四周为零,即 x = 0 或 x = a , G = 0 ,y = 0 或 b = 0 , G = 0 .用分离变量法求这个问题的格林函数.考虑到格林函数在x = 0 , x = a 时的边界条件,将格林函数表示为y b(x',y')G = ∑Ψ n ( y ) sinn =1∞nπ x a将其代入格林函数方程,得a x 2 nπ 2 nπ x 1 = δ( x x′) δ( y y′) Ψ n ( y ) sin 图 4-9 ∑ y 2 a ε0 a n =1 nπ x 上式左右乘以 sin , 并在 0 < x < a 区间积分, 利用正弦函数的正交性和 δ 函数 a∞的积分性质,得函数Ψ n ( y ) 满足的微分方程为2 d2 nπ x ′ 2 nπ sin δ( y y ′) Ψn ( y ) = 2 a ε 0a dy a 在确定函数Ψ n ( y ) 时,将原来的区域分为两个区域,并注意到边界条件,设nπ An sh a (b y ), Ψ n ( y) = nπ Bn sh y, a 在 y = y′ 处,电位连续,即y > y′ y < y′An shnπ nπ (b y′) = Bn sh y′ a a59习题四对于函数Ψ n ( y ) 满足的微分方程,在点源附近积分,得∫y′+ 0 y′0d2 nπ Ψn ( y ) d y 2 dy a 2∫y′+ 0 y′0Ψ0 ( y ) d y = nπ x 2 sin ε 0a a因为电位连续,故上式左边第二项的积分为零,从而有d d nπ x′ 2 sin Ψ n ( y) Ψ n ( y) = dy dy a ε 0a y = y′ y = y′ + 代入函数Ψ n ( y ) 的形式,得nπ nπ nπ nπ x′ nπ 2 (b y′) sin An ch Bn ch y′ = a a a a ε 0a a将上式与 An shnπ nπ (b y′) = Bn sh y′ 相互联立求解,得 a a nπ 2 1 An = sh y′ , nπ ε 0 sh nπ b a a nπ 2 1 Bn = sh (b y′) nπ ε 0 sh nπ b a asin最后得到矩形区域的格林函数为nπ x ′ n π x nπ nπ sin y ≤ y′ sh a (b y′) sh a y, 2 a a = G= nπ ∑ nπ nπ b ε 0π n =1 sh y′ sh (b y ), y ≥ y′ n sh a a a 4-17 推导无限长圆柱区域内(半径为 a )第一类边值问题的格林函数. 解:使用镜像法及其格林函数的定义计算.在半径为 a 的导体圆柱内部离轴 线 r ′ 处,放置一个线密度为 1 单位,与导体圆柱平行的无穷长线电荷,并且维持导∞体柱面的电位为零,求出柱内的电位,这个电位就是柱内的格林函数.当原电荷位 于 r 处,需要在 r ′ 的镜像位置 r ′′ 处,加一个线密度为 1 的线电荷.此时,圆柱内 的电位是v v G (r , r ′) =1 2π εln1 1 1 ln +C R1 2π ε R2R1 和 R2 分别是从 r ′ 和 r ′′ 到 r 的距离(如图 4-10),C 是常数.由柱面上的电位为零,60《电磁场与电磁波》——习题详解可以定出这个常数的值.最后得到柱内的格林函数为v v G (r , r ′) =1 2π εlnR2 r ′ R1 a yrR1 r'R2 r'' x =0 = U0图 4-10 4-18d图 4-11x两个无限大导体平板间距离为 d ,其间有体密度 ρ =ρ 0 x / d 的电荷,极板的电位如图 4-11 所求,用格林函数法求极板之间的电位. 解:先用直接积分法求解.电位仅仅是 x 的函数,故其满足如下方程:ρ x d2 ρ = = 0 2 dx ε0 ε 0d对以上方程积分得ρ x2 ρ x3 d = C1 0 , = C2 + C1 x 0 dx 2ε 0 d 6ε 0 d由 x = 0 及 = 0 , 可 定 出 系 数 C2 = 0 ; 由 x = d 及 = U 0 , 可 定 出 系 数C1 =U 0 ρ0d + ,从而,得到电容器内的电位为 d 6ε 0 =ρ0 x3 6ε 0 dU ρ d + 0 + 0 x d 6ε 0 再用格林函数法求解.这个问题的格林函数为 d x′ x < x′ ε d x, 0 G ( x, x′) = x′ (d x), x > x′ ε 0d 为了计算方便,将这个问题分解为两个:一个是平板电容器内有电荷,而两极板的61习题四电位为零,即奇次边界条件,记电位 1 ;另一个是无电荷分布,极板的电位维持原 来的电位,记电位 2 .用格林函数法计算奇次边界条件时的电位 1 :1 = ρ ( x ′)G ( x, x ′) d x ′0∫d= ρ ( x ′)G ( x, x ′) d x ′ + ρ ( x ′)G ( x, x ′) d x ′0 x∫x∫d=∫x 0ρ 0 x ′ x ′(d x) d x′ + d ε 0d∫d xρ 0 x ′ (d x ′) x d x′ d ε 0dρ 0 (d x) x 3 ρ 0 x 1 2 2 1 (d x )d + (d 3 x 3 ) = + 2 2 3 ε 0d 2 3 ε 0d =ρ0 3 ρ0d x + x 6ε 0 d 2 6ε 0至于电位 2 ,容易得出 2 = (U 0 / d ) x .故所求电位为 = 1 + 2 = 4-192ρ0 2 U 0 ρ0d x + d + 6ε x 6ε 0 d 0 分析复变函数 w = z 能够表示的静电场. 解: w = u + j v = z = ( x + j y ) = x y + j 2 xy2 2 2 2u = x 2 y 2 , v = 2 xy实部的等值线是双曲线 x y = C1 ;虚部的等值线也是双曲线,其方程为2 22 xy = C2 .因此,这个函数能够表示极板形状为双曲线的导体附近的静电场.如果用虚部表示电位函数,在 x = 0 或 y = 0 处,电位为零,可以表示接地的直角导体拐 角附近的静电场. 4-20 分析复变函数 w = arccos z 能够表示哪些情形的静电场.62《电磁场与电磁波》——习题详解解: z = x + j y = cos(u + j v) = cos u ch v j sin u sh vx = cos u ch v , y = sin u sh vx2 y2 x2 y2 + 2 = 1, 2 =1 ch 2 v sh v cos 2 u sin u可见,虚部的等值线是一簇椭圆,实部的等值线是一簇双曲线.当用虚部表示 电位时,能够表示两个共焦点的椭圆柱体之间的场;当用实部表示电位时,能够表 示两个共焦点的双曲线柱体之间的场. 4-21 用有限差分法求图 4-12 所示区域中各个节点的电位. 解:1 4 1 2 = (1 + 4 + 100) 4 1 3 = (1 + 4 ) 4 1 4 = ( 2 + 3 ) 41 = ( 2 + 3 + 100)解这一方程组,得到1 = 2 = 37.5 V , 3 = 4 = 12.5 V100V 1 0V 3 4 2 0V0V 图 4-1263。

电磁场与电磁波(第三版)课后答案第2章

电磁场与电磁波(第三版)课后答案第2章

电磁场与电磁波(第三版)课后答案第2章第⼆章习题解答⼀个平⾏板真空⼆极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。

如果040V U =、1cm d =、横截⾯210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。

解(1) 43230004d ()d 9dQ U d x S x τρτε--==-=??110044.7210C 3U S dε--=-? (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=?11004(10.9710C 3U S d ε--=-? ⼀个体密度为732.3210C m ρ-=?的质⼦束,通过1000V 的电压加速后形成等速的质⼦束,质⼦束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。

解质⼦的质量271.710kg m -=?、电量191.610C q -=?。

由21mv qU = 得 61.3710v ==? m s故 0.318J v ρ== 2A m26(2)10I J d π-== A⼀个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀⾓速度ω绕⼀个直径旋转,求球内的电流密度。

解以球⼼为坐标原点,转轴(⼀直径)为z 轴。

设球内任⼀点P 的位置⽮量为r ,且r 与z 轴的夹⾓为θ,则P 点的线速度为sin r φωθ=?=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a a φφωρωθθππ===J v e e ⼀个半径为a 的导体球带总电荷量为Q ,同样以匀⾓速度ω绕⼀个直径旋转,求球表⾯的⾯电流密度。

解以球⼼为坐标原点,转轴(⼀直径)为z 轴。

设球⾯上任⼀点P 的位置⽮量为r ,且r 与z 轴的夹⾓为θ,则P 点的线速度为sin a φωθ=?=v r e ω球⾯的上电荷⾯密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。

电磁场与电磁波第三版答案第三章

电磁场与电磁波第三版答案第三章

《电磁场与电磁波》——习题详解第三章 恒定电流的电场和磁场3-1 一个半径为 a 的球内均匀分布着总量为 q 的电荷,若其以角速度 ω 绕一直径匀 速旋转,求球内的电流密度. 解:传导电流:导体中的自由电子或半导体中的自由电荷在电场作用下作定向 运动所形成的电流. 运流电流: 带电粒子在真空或气体中运动时形成的电流. 本题求的是运流电流. 选 取 球 坐 标系 . 设 转 轴和 直 角 坐 标系 的 z 轴 重 合 , 球 内 某 一点 的 坐标为 ( r , θ , φ ),则电流密度为v v J =ρv =q v 3qω r sin θ v eφ ω r sin θ eφ = 2 4π a 3 4π a 3注意到球面坐标的有向面积元为v v v v d S = er r 2 sin θ d θ d φ + eθ r sin θ d r d φ + eφ r d r d θ可以得到总电流为I=∫∫Sv v J dS =∫ ∫0πJr d r d θ =0aqω 2π2π总电流也可以通过电流强度的定义计算. 因为球体转动一周的时间为 T = 所以ω,I=3-2球形电容器内,外极板的半径分别为 a , b ,其间媒质的电导率为 σ ,当外加 电压为 U 0 时,计算功率损耗并求电阻. 解:设内,外极板之间的总电流为 I .由对称性,可以得到极板间的电流密q qω = T 2π度为v J= v E=I24π r I v e 2 r 4πσ rv er ,U0 = E d r =a∫bI 1 1 4πσ a b 25习题三从而I=v 4πσU 0 σU 0 v ,J = er 1 1 1 1 2 r a b a b2单位体积内功率损耗为 U0 J 1 1 p= =σ r 2 σ a b 2总功率损耗为P=∫b ap 4π r d r =24πσ U 02 1 1 a b2∫d r 4πσ U 02 = 2 1 1 a r a bb由P =U 02 ,得 R R= 1 1 1 4πσ a b 3-3土壤的电导率为 σ . 略去地面的影 一个半径为 a 的导体球作为电极深埋地下, 响,求电极的接地电阻. 解: 当不考虑地面影响时, 这个问题就相当于计算位于无限大均匀导电媒质中的导体球的恒定电流问题.设导体球的电流为 I ,则任意点的电流密度为v J=I 4π rI2v v er , E =I 4πσ rI2v er导体球面的电位为(选取无穷远处为电位零点)U =接地电阻为∫∞a4πσ r2dr =4πσ aR=3-4U 1 = I 4πσ a在无界非均匀导电媒质(电导率和介电常数均是坐标的函数)中,若恒定电流存 在,证明媒质中的自由电荷密度为 ρ = E (ε 证明:由方程 J = 0 得vε σ ) . σv26《电磁场与电磁波》——习题详解v v v v J = (σ E ) = E σ + σ E = 0即E = 故有vσ v Eσρ = D = (ε E ) = E ε + ε Ev ε σ v v = E ε ε E = E ε σ σ σ vvvv3-5如图 3-1,平板电容器间由两种媒质完全填充,厚度分别为 d1 和 d 2 ,介电常数 分别为 ε 1 和 ε 2 ,电导率分别为 σ 1 和 σ 2 ,当外加电压 U 0 时,求分界面上的自 由电荷面密度. 解:设电容器极板之间的电流密度为 J ,则J = σ 1 E1 = σ 2 E2E1 =于是Jσ1, E2 =Jσ2U0d1 d2ε1,σ1 ε2,σ2U0 =即Jd1σ1+Jd 2σ2图 3-1J=U0σ1 σ 2分界面上的自由面电荷密度为d1+d2ρ S = D2 n D1n = ε 2 E2 ε 1 E1 = ε ε U0 = 2 1 σ σ d1 d 2 1 2 +3-6 ε2σ2ε1 J σ1 σ1 σ 2内,外导体半径分别为 a , c 的同轴线,其间填充两种漏电媒质,电导率分别27习题三为 σ 1 ( a < r < b )和 σ 2 ( b < r < c ),求单位长度的漏电电阻. 解:设每单位长度从内导体向外导体的电流为 I ,则电流密度为v J=各区域的电场为I2π rv erv E1 = v E2 =内,外导体间的电压为I2πσ 1rv er ( a < r < b ) v er ( b < r < c )I2πσ 2 rU0 =∫c av v E dr =∫I dr + 2πσ 1 r ab∫ 2πσ r = 2πσb 2cI drIln1b I c + ln a 2πσ 2 b因而,单位长度的漏电电阻为R=3-71 1 U b c = ln + ln I 2πσ 1 a 2πσ 2 b一个半径为 10cm 的半球形接地电极,电极平面与地面重合,如图 3-2,若土 壤的电导率为 0.01S/m,求当电极通过的电流为 100A 时,土壤损耗的功率. 解:半球形接地器的电导为G = 2πσ a接地电阻为I σ a图 3-21 1 R= = G 2πσ a土壤损耗的功率为100 2 = ≈ 1.59 ×106 W P=I R= 2πσ a 2π × 0.01× 0.12I23-8一个正 n 边形(边长为 a )线圈中通过的电流为 I ,试证此线圈中心的磁感应强 度为B= 0 nI π tan 2π a n解:先计算有限长度的直导线在线圈中心产生的磁场.使用公式B=0 I (sin α1 sin α 2 ) 4π r28《电磁场与电磁波》——习题详解并注意到α1 = α 2 =2π π = 2n n设正多边形的外接圆半径是 a .由于r π = cos a n所以,中心点的磁感应强度为B=3-9 0 nI π tan 2π a n求载流为 I ,半径为 a 的圆形导线中心的磁感应强度. 解:电流元 I d l 在中心处产生的磁场为vv v v 0 I d l × er dB = 4π r2各电流元在中心处产生的磁场在同一方向,并注意 的磁场为 3-100 I2a∫rdl2=2π ,所以,圆心处 a.一个载流 I1 的长直导线和一个载流 I 2 的圆环(半径为 a )在同一平面内,圆心 与导线的距离是 d .证明两电流之间的相互作用力为 0 I1 I 2 1 d a d22BdF解:选取图 3-3 所示的坐标.直线电流产生的 I1 磁感应强度为I2 d图 3-3v I v 0 I1 v B1 = 0 1 eφ = eφ 2π r 2π (d + a cos θ )v v v F = I 2 d l 2 × B1θ a∫由对称性可以知道,圆电流环受到的总作用力仅仅有水平分量, d l2 × eφ 的 水平分量为 a cos θ d θ ,再考虑到圆环上,下对称,得vvF=使用公式 0 I1 I 2 2π∫π20 0 I1 I 2 a cos θ dθ = π d + a cos θ∫π0d 1 d θ d + a cos θ 29习题三∫π0dθ = d + a cos θπd a22最后得出二回路之间的作用力为 0 I1 I 2 力). 3-11 d 1 (负号表示吸引 2 2 d a 内,外半径分别为 a , b 的无限长空心圆柱中均匀分布着轴向电流 I ,求柱 内,外的磁感应强度. 解:法一:取积分回路为半径为 r ,圆心在轴上的圆,由安培定律 r≤a 时∫lv v v v H dl = 0 H = 0 B = 0a<r≤b 时 v v H dl =∫lI π (r 2 a 2 ) π (b a 2 )2(r 2 a 2 ) I H 2π r = 2 b a2 H = (r 2 a 2 ) I 2π r (b 2 a 2 )v v (r 2 a 2 ) I 0 v er B = 0 H = 2π r (b 2 a 2 )r >b时∫lv v H dl = I v H= I v er2π r v v I v B = 0 H = 0 er 2π r法二:使用圆柱坐标系.电流密度沿轴线方向为30《电磁场与电磁波》——习题详解 r<a 0, I J = , a<r <b 2 2 π (b a ) 0, b<r 由电流的对称性,可以知道磁场只有圆周分量.用安培定律计算不同区域的磁 场.当 r < a 时,磁场为零.当 a < r < b 时,选取安培回路为半径等于 r 且与导电 圆柱的轴线同心的圆.该回路包围的电流为I ′ = Jπ (r 2 a 2 ) =由 B dl = 2π rB =I (r 2 a 2 ) b2 a2∫vv 0 I ′ ,得 0 I (r 2 a 2 ) B= 2π r (b 2 a 2 )当 r > b 时,回路内包围的总电流为 I ,于是 B = 3-120 I . 2π r两个半径都为 a 的圆柱体,轴间距为 d , d < 2a (如图 3-4).除两柱重叠部 分 ( R 区域) 外,柱间有大小相等,方向相反的电流,密度为 J ,求 R 区域 的B.v解:在重叠区域分别加上量值相等(密度为 J ),方向相反的电流分布,可以 将原问题电流分布化为一个圆柱体内均匀分布正向电流,另一个圆柱体内均匀分布 反向电流.由其产生的磁场可以通过叠加原理计算. 由沿正方向的电流(左边圆柱)在重叠y区域产生的磁感应强度为 B1 :∫B1 d l = 2π r1 B1 = 0π r12 JJ r1r2JB1 = 0 r1 J2o1 vdo2x其方向为左边圆周方向 eφ 1 .图 3-4由沿负方向的电流(右边圆柱)在重叠区域产生的磁感应强度为 B2 :B2 = 0 r2 J231习题三其方向为右边圆柱的圆周方向 eφ 2 . 注意:vv v v v v v eφ1 = ez × eρ1 , eφ 2 = ez × eρ 2 v v v Jv v v B = B1 + B2 = 0 ez × (r1eρ 1 r2 eρ 2 ) 2 Jv J v v = 0 ez × (d ex ) = 0 d e y 2 2 v v v v v 3-13 证明矢位 A1 = ex cos y + e y sin x 和 A2 = e y (sin x + x sin y ) 给出相同的磁场 v B ,并证明它们得自相同的电流分布.它们是否均满足矢量泊松方程?为什么? 证明:与给定矢位相应的磁场为v v ex ey v v B1 = × A1 = x y cos y sin x v ex v v B2 = × A2 = x 0v ez v = ez (cos x + sin y ) z 0 v ez v = ez (cos x + sin y ) z 0v ey y sin x + x sin y所以,两者的磁场相同.与其相应的电流分布为v v 1 1 v v J1 = × B1 = (ex cos y + e y sin x)00v 1 v v J2 = (ex cos y + e y sin x)0可以验证,矢位 A1 满足矢量泊松方程,即vv v v v v 2 A1 = 2 (e x cos y + e y sin x) = (e x cos y + e y sin x) = 0 J 1但是,矢位 A2 不满足矢量泊松方程,即v32《电磁场与电磁波》——习题详解v v v v 2 A2 = 2 [e y (sin x + x sin y )] = e y (sin x + x sin y ) ≠ 0 J 2这是由于 A2 的散度不为零.当矢位不满足库仑规范时,矢位与电流的关系为vv v v v × × A2 = 2 A2 + ( A2 ) = 0 J 2可以验证,对于矢位 A2 ,上式成立,即vv v v 2 A2 + ( A2 ) = e y (sin x + x sin y ) + ( x cos y )v v v = e y (sin x + x sin y ) + ex cos y e y x sin y v v = e y sin x + ex cos y v = 0 J 23-14 半径为 a 的长圆柱面上有密度为 J S 的面电流, 电流方向分别为沿圆周方向和 沿轴线方向,分别求两种情况下柱内,外的 B . 解:(1)当面电流沿圆周方向时,由问题的对称性可以知道,磁感应强度仅仅 是半径 r 的函数,而且只有轴向方向的分量,即vvv v B = ez Bz (r )由于电流仅仅分布在圆柱面上,所以,在柱内或柱外, × B = 0 .将 B = ez Bz (r ) 代入 × B = 0 ,得vvvvv v B × B = eφ z = 0 r即磁场是与 r 无关的常量.在离柱面无穷远处的观察 点,由于电流可以看成是一系列流向相反而强度相同的电流 元之和,所以磁场为零.由于 B 与 r 无关,所以在柱外的任 一点处,磁场恒为零 . 为了计算柱内的磁场, 选取安培回路为图 3-5 所示的矩 形回路vh图 3-533习题三∫lv v B d l = hB = h 0 J S因而柱内任一点处, B = e z 0 J S (2) 当面电流沿轴线方向时,由对称性可知,空间的磁场仅仅有圆周分量,且 只是半径的函数.在柱内,选取安培回路为圆心在轴线并且位于圆周方向的圆.可 以得出,柱内任一点的磁场为零.在柱外,选取圆形回路, B d l =lvv∫vv 0 I ,与该回路交链的电流为 2π aJ S , B d l = 2π rB ,所以l∫vvv v a B = eφ 0 J S r 3-15 一对无限长平行导线,相距 2a ,线上载有大小相等,方向相反的电流 I (如 v v 图 3-6),求磁矢位 A ,并求 B .解:将两根导线产生的磁矢位看作是单个导线产生的磁矢位的叠加,对单个 导线,先计算有限长度产生的磁矢位.设导线长度为 l ,导线 1 的磁矢位为(场点选 在 xoy 平面)A1 =0 I 4π∫ I l / 2 + [(l / 2) 2 + r12 ]l / 2 dz = 0 ln 2 2 12 2π r1 l / 2 (r + z ) 1l/2当 l → ∞ 时,有y A1 =0 I l ln r1 2π-ar2 I图 3-6r1 a I x同理,导线 2 产生的磁矢位为A2 = 由两个导线产生的磁矢位为0 I l ln r2 2πv v l v I l A = ez ( A1 + A2 ) = ez 0 ln ln r 2π 1 r2 v 0 I r2 v 0 I ( x + a) 2 + y 2 = ez ln = ez ln 2π r1 4π ( x a) 2 + y 2相应的磁场为34《电磁场与电磁波》——习题详解v v A v A v B = × A = ex z e y z y x v I = ex 0 2π y y ( x + a) 2 + y 2 ( x a) 2 + y 2 x+a xa v I ey 0 2 2 2 2 2π ( x + a) + y ( x a) + y v v v v v v 3-16 由无限长载流直导线的 B 求矢位 A (用 B d S = A d l , 并且 r = r0 处为∫S∫C磁矢位的参考零点),并验证 × A = B . 解:设导线和 z 轴重合.由于电流只有 z 分量,磁矢位也只有 z 分量.用安培 环路定律,可以得到直导线的磁场为vvv I v B = 0 eφ 2π r 选取矩形回路 C ,如图 3-7 所求.在此回路上,注意到磁矢位的参考点.磁矢位的线积分为∫ ∫SCv v A d l = Az hv v BdS =∫∫0 I Ih r d r d z = 0 ln r0 2π r 2πIBh r0 r图 3-7由此得到I r Az (r ) = 0 ln r0 2π可以验证rv v I v A v B = × A = z eφ = 0 eφ 2π r r3-17 证明 xoy 平面上半径为 a , 圆心在原点的圆电流环(电流为 I )在 z 轴上的磁标 位为 m = 1 2 2 1 2 2 (a + z ) 证明:法一:由毕奥萨伐尔定律可求得,z 轴上某一点的磁感应强度为:Iz35习题三v B=Ia 22( a + z )2 2 3/ 2v ezv v B H = =Ia 2 v e 2 2 3/ 2 z 2(a + z )由 H = m = (v m v m v m v e + e + e ) x x y y z z可得 m Ia 2 = z 2( a 2 + z 2 ) 3 / 2 m = ∫ Ia 2 Iz dz = +C 2 2 3/ 2 2 2( a + z ) 2(a + z 2 )1 / 2当 z → ∞ 时, m = 0 ,求得C=所以I 2 z ) ( a + z 2 )1 / 22 m = (1 I 2法二:整个圆形回路在轴线上产生的磁场,由于对称,仅仅有轴向分量.使用 叠加原理,可以计算出轴线上任一点的磁场强度为Ia 2 H= 2( a 2 + z 2 ) 3 2由磁标位与磁场强度的关系式 H = m ,可以得到m =3-18∫∞zHdz =∫∞z Ia 2 I z d z = 1 2 2 12 2 2 32 2 (a + z ) 2(a + z )一个长为 L ,半径为 a 的圆柱状磁介质沿轴向方向均匀磁化(磁化强度为M 0 ),求它的磁矩.若 L = 10cm , a = 2cm , M 0 = 2 A / m ,求出磁矩的值. 解:均匀磁化介质内的磁化电流为零.在圆柱体的顶面与底面,有v v v Jms = M × n = 036《电磁场与电磁波》——习题详解在侧面v v v v v v J m s = M × n = M 0 ez × er = M 0 eφ侧面的总电流为I = JmsL = M 0L磁矩为m = IS = Iπ a 2 = M 0 Lπ a 2代入相关数值后得m = M 0 Lπ a 2 = 2 × 0.1× π × 0.02 2 = 2.512 × 10 4 A m 23-19 球心在原点,半径为 a 的磁化介质球中, M = M 0 磁化电流的体密度和面密度. 解:磁化电流的体密度为vz2 v ez ( M 0 为常数) ,求 a2v v Jm = × M = 0在球面上v v v z2 v v v J m s = M × n = M 0 ez × er = M 0 2 sin θ eφ a注意,在球面上v v z = a cos θ , J m s = M 0 cos 2 θ sin θ eφ3-20 证明磁介质内部的磁化电流是传导电流的( r 1 )倍. 证明:由于 J = × H , J m = × Mvvvv因而 3-21v v v v v v v B = H = 0 ( H + M ) , M = 1 H = ( r 1) H 0 v v J m = ( r 1) J已知内,外半径分别为 a , b 的无限长铁质圆柱壳(磁导率为 )沿轴向有恒 定的传导电流 I ,求磁感应强度和磁化电流.37习题三解: 考虑到问题的对称性, 用安培环路定律可以得出各个区域的磁感应强度. 当 r < a 时, B = 0vv I (r 2 a 2 ) v 当 a < r < b 时, B = eφ 2π r (b 2 a 2 )当 r > b 时, B = 当 a < r < b 时,v0 I v eφ 2π rv v I (r 2 a 2 ) v 1 v M = ( r 1) H = ( r 1) B = ( r 1) eφ 2π r (b 2 a 2 ) v v v 1 (rM ρ ) v ( r 1) I J m = × M = ez = ez r r π (b 2 a 2 )当 r > b 时, J m = 0 在 r = a 处,磁化强度 M = 0 ,所以vvv v v v v J m s = M × n = M × (er ) = 0在 r = b 处,磁化强度 M =v Jms3-22( r 1) I v eφ ,所以 2π b v v v v ( 1) I v = M × n = M × er = r ez 2π b v设 x < 0 的半空间充满磁导率为 的均匀磁介质, x > 0 的空间为真空,线电流 I 沿 z 轴方向,如图 3-8,求磁感应强度和磁场强度. 解:由恒定磁场的边界条件,可以判断出,在磁介质和真空中,磁感应强度相 同,而磁场强度不同.由问题的对称性,选取以 z 轴为轴线,半径为 r 的圆环为安 培回路,有∫注意到lv v H d l = π rH 1 + π rH 2 = Iy0H1 =1B1, H2 =2B2, B1 = B2 = BIx图 3-838《电磁场与电磁波》——习题详解1 = 0 , 2 = 因而得B= 0 I π ( 0 + )r其方向沿圆周方向. 3-23 已知在半径为 a 的无限长圆柱导体内有恒定电流 I 沿轴向方向.设导体的磁 导率为 1 ,其外充满磁导率为 2 的均匀磁介质,求导体内,外的磁场强度, 磁感应强度,磁化电流分布. 解:考虑到问题的对称性,在导体内,外分别选取与导体圆柱同轴的圆环作 为安培回路,并注意电流在导体内是均匀分布的.可以求出磁场强度如下:Ir v eφ 2π a 2 v I v r > a 时, H = eφ 2π r磁感应强度如下:v r ≤ a 时, H =v Ir v r ≤ a 时, B = 1 2 eφ 2π a v 2 I v r > a 时, B = eφ 2π r为了计算磁化电流,要求出磁化强度:v v v v Ir I v , J m = × M = e z 1 1 r ≤ a 时, M = eφ 1 1 2 2π a 2 0 0 π av v v v I r > a 时, M = eφ 2 1 , Jm = × M = 0 0 2π r在 r = a 的界面上计算面电流时,可以理解为在两个磁介质之间有一个很薄的 真空层.这样,其磁化面电流就是两个磁介质的磁化面电流之和,即v v v v v J m s = M 1 × n1 + M 2 × n2这里的 n1 , n2 分别是从磁介质到真空的单位法向.如果取从介质 1 到介质 2 的单位法向是 n ,则有vvvv v v v v J m s = M1 × n M 2 × n39习题三代入界面两侧的磁化强度,并注意到 n = er ,得vvv I v v 2 I J m s = e z 1 1 2π a + ez 1 2π a 0 0 I v = ez 2 1 0 0 2π a3-24 试证长直导线和其共面的正三角形之间的互感为M=0 a (a + b) ln1 + b a π 3 其中 a 是三角形的高,b 是三角形平行于长直导线的边至直导线的距离(且该 边距离直导线最近). 证明:取如图 3-9 所示的坐标.直线电流 I 产生的磁场为B=0 I 2π x由图 3-9 知道,三角形三个顶点的坐标分别为 A(b, a3 ) , B (b, a3) ,C (a + b,0) ,直线 AC 的方程为 z=互感磁通为z A I1 b B图 3-91 (a + b x) 3C b+axΨ = BdS = 2∫∫a +b b0 I 1 (a + b x) d x 2π x 3=0 I a (a + b) ln1 + b a π 3 0 a (a + b) ln1 + b a π 3 直线与矩形回路的互感为M=3-25无限长的直导线附近有一矩形回路(二者不共面,如图 3-10),试证它们之间 的互感为40《电磁场与电磁波》——习题详解M =0 a R ln 2 2 12 2π [2b( R c ) + b 2 + R 2 ]1 2b a R R1图 3-10IIc证明:直线电流 I 产生的磁场为 B =0 I ,作积分,得出磁通量 2π rΨ = BdS =注意:∫∫R1 R 0 Ia Ia R d r = 0 ln 1 R 2π r 2π1 2 1 2 1 2R1 = [c + (b + R c ) ] = [2b( R c ) + b + R ]2 2 2 2 2 2 2 2将其代入,即可得到互感. 3-26 外导体的内半径为 b , 通过的电流为 I . 空气绝缘的同轴线, 内导体半径为 a , 设外导体壳的厚度很薄,因而其储存的能量可以忽略不计.计算同轴线单位 长度的储能,并由此求单位长度的自感. 解:设内导体的电流均匀分布,用安培环路定律可求出磁场.r < a 时, H =Ir 2π a 2 I a < r < b 时, H = 2π rWm =单位长度的磁场能量为∫a01 H 2 2π r d r + 2 0∫b a1 H 2 2π r d r 2 0=0 I 2 0 I 2 b ln + 16π 4π aL=故得单位长度的自感为0 0 b + ln 8π 2π a41习题三其中第一项是内导体的内自感. 3-27 一个长直导线和一个圆环(半径为 a )在同一平面,圆心与导线的距离是 d , 证明它们之间互感为M = 0 (d d 2 a 2 )证明:设直导线位于 z 轴上,由其产生的磁场I r d θB=0 I 0 I = 2π x 2π (d + r cos θ ) 0 I其中各量的含义如图 3-11 所示,磁通量为图 3-11Φ = BdS =∫∫∫0 2π 0a2π 02π (d + r cos θ )2πr dθ d r上式先对 θ 积分,并用公式∫得dθ = d + a cos θd 2 a2Φ = 0 I所以互感为 3-28∫ardr d r2 20= 0 I (d d 2 a 2 )M = 0 (d d 2 a 2 )如图 3-12 所示的长密绕螺线管(单位长度 n 匝),通过的电流为 I ,铁心的磁 导率为 ,面积为 S ,求作用在它上面的力. 解:在忽略边缘影响时,密绕螺线管内部的磁场是一个均匀磁场,其值为H = NI , 管外磁场为零. 设螺线管的长度为 L , 铁心位于螺线管内的部分长度为 x , 总的磁场能量为Wm =1 1 Sx( NI ) 2 + 0 S ( L x)( NI ) 2 2 2Wm xL● ● ● ● ● ● ●用电流不变情形下的虚位移公式,得到铁心受力 x0SF==I1 ( 0 ) SN 2 I 2 2× × × × × × × 图 3-12力的方向沿 x 增加的方向.42。

电磁场与电磁波(第三版)课后答案第3章

电磁场与电磁波(第三版)课后答案第3章

第三章习题解答3.1 真空中半径为a 的一个球面,球的两极点处分别设置点电荷q 和q -,试计算球赤道平面上电通密度的通量Φ(如题3.1图所示)。

解 由点电荷q 和q -共同产生的电通密度为33[]4q R R π+-+-=-=R R D 22322232()(){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e 则球赤道平面上电通密度的通量d d zz SSS Φ====⎰⎰D S D e22322232()[]2d 4()()aq a arr r a r a ππ--=++⎰ 221201)0.293()aqa q q r a =-=-+ 3.2 1911年卢瑟福在实验中使用的是半径为a r 的球体原子模型,其球体内均匀分布有总电荷量为Ze -的电子云,在球心有一正电荷Ze (Z 是原子序数,e 是质子电荷量),通过实验得到球体内的电通量密度表达式为02314ra Ze r r r π⎛⎫=- ⎪⎝⎭D e ,试证明之。

解 位于球心的正电荷Ze 球体内产生的电通量密度为 124rZer π=D e 原子内电子云的电荷体密度为 333434a a Ze Zer r ρππ=-=- 电子云在原子内产生的电通量密度则为32234344r r ar Ze rr r ρπππ==-D e e 故原子内总的电通量密度为 122314ra Ze r r r π⎛⎫=+=- ⎪⎝⎭D D D e 3.3 电荷均匀分布于两圆柱面间的区域中,体密度为30C m ρ, 两圆柱面半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所示。

求空间各部分的电场。

解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。

但可把半径为a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布,而在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布,如题3.3图()b 所示。

《电磁场与电磁波第三版》课后答案

《电磁场与电磁波第三版》课后答案

ˆ cos ˆ cos sin ˆ F2 (r , , ) sin sin , F2 ( , , z ) 3 用直角坐标系中的坐标分 1.9 将圆柱坐标系中的矢量场 F1 ( , , z ) 2
量表示。 解:根据
习题
ˆ 3y ˆz ˆ y ˆ 2z ˆ; B x ˆ ,求:(a) A 和 B 的大小(模) 1.1 已知 A 2 x ; (b) A 和 B 的单位
矢量;(c) A B ;(d) A B ;(e)A 和 B 之间的夹角;(f) A 在 B 上的投影。 解:(a) A 和 B 的大小
ˆ sin ˆ cos cos ˆ F1 (r , , ) sin cos Fr 2 sin cos F 2 cos cos F 2 sin sin cos cos cos sin sin sin cos sin cos sin sin cos sin cos cos Fx 2 sin Fy 2 0 Fz 2 cos 0 sin sin sin 1 cos sin 0 0 cos
ˆ Ay y ˆ A Ax x ˆ By y ˆ B Bx x ˆ x
ˆ y By Cy
ˆ z ˆ ( Bz C x Bx C z ) y ˆ ( Bx C y B y C x ) z ˆ Bz ( B y C z Bz C y ) x Cz
ˆ 12 y ˆz ˆ 3y ˆz ˆ 和 2x ˆ ,求从 P 点到 Q 点的距离矢 1.6 P 点和 Q 点的位置矢量分别为 5 x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁场第三版思考题目答案集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]一:1.7什么是矢量场的通量通量的值为正,负或0分别表示什么意义矢量场F穿出闭合曲面S的通量为:当大于0时,表示穿出闭合曲面S的通量多于进入的通量,此时闭合曲面S 内必有发出矢量线的源,称为正通量源。

当小于0时,小于有汇集矢量线的源,称为负通量源。

当等于0时等于、闭合曲面内正通量源和负通量源的代数和为0,或闭合面内无通量源。

1.8什么是散度定理它的意义是什么矢量分析中的一个重要定理:称为散度定理。

意义:矢量场F的散度在体积V上的体积分等于矢量场F在限定该体积的闭合积分,是矢量的散度的体积与该矢量的闭合曲面积分之间的一个变换关系。

1.9什么是矢量场的环流环流的值为正,负,或0分别表示什么意义矢量场F沿场中的一条闭合回路C的曲线积分,称为矢量场F沿的环流。

大于0或小于0,表示场中产生该矢量的源,常称为旋涡源。

等于0,表示场中没有产生该矢量场的源。

1.10什么是斯托克斯定理它的意义是什么该定理能用于闭合曲面吗在矢量场F所在的空间中,对于任一以曲面C为周界的曲面S,存在如下重要关系这就是是斯托克斯定理矢量场的旋度在曲面S上的面积分等于矢量场F在限定曲面的闭合曲面积分,是矢量旋度的曲面积分与该矢量沿闭合曲面积分之间的一个变换关系。

能用于闭合曲面.1,11 如果矢量场F能够表示为一个矢量函数的旋度,这个矢量场具有什么特性=0,即F为无散场。

1.12如果矢量场F能够表示为一个标量函数的旋度,这个矢量场具有什么特性=0即为无旋场1.13 只有直矢量线的矢量场一定是无旋场,这种说法对吗为什么不对。

电力线可弯,但无旋。

1.14 无旋场与无散场的区别是什么无旋场F的旋度处处为0,即,它是有散度源所产生的,它总可以表示矢量场的梯度,即 =0无散场的散度处处为0,即,它是有旋涡源所产生的,它总可以表示为某一个旋涡,即。

二章:2.1点电荷的严格定义是什么点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。

当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。

就可将带电体所带电荷看成集中在带电体的中心上。

即将带电体抽离为一个几何点模型,称为点电荷。

2.2 研究宏观电磁场时,常用到哪几种电荷的分布模型?有哪几种电流分布模型他们是如何定义的常用的电荷分布模型有体电荷,,面电荷,线电荷和点电荷常用的电流分布模型有体电流模型,面电流模型和线电流模型他们是根据电荷和电流的密度分布来定义的2,3点电荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢点电荷的电场强度与距离r的二次方成反比。

2.4 简述和所表征的静电场特性表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是静电场的通量源。

表明静电场是无旋场。

2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。

高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以与闭合面外的电荷无关,即在电场(电荷)分布具有某些对称性时,可应用高斯定律求解给定电荷分布的电场强度。

2.6 简述和所表征的静磁场特性=0表明穿过任意闭合面的磁感应强度的通量等于0,磁力线是无关尾的闭合线,表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源2.7 表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。

安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和倍即如果电路分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。

2.9极化强度的如何定义的极化电荷密度与极化强度又什么关系单位体积的点偶极矩的矢量和称为极化强度,P与极化电荷密度的关系为极化强度P与极化电荷面的密度:2.10 电位移矢量定义为:其单位制中它的单位是什么电位移矢量定义为:其单位是库伦/平方米2.11 简述磁场与磁介质相互作用的物理现象在磁场与磁介质相互作用时,外磁场使磁介质中的分子磁矩沿外磁场取向,磁介质被磁化,被磁化的介质要产生附加磁场,从而使原来的磁场分布发生变化,磁介质中的磁感应强度B可看做真空中传导电流产生的磁感应强度B0 和磁化电流产生的磁感应强度B次的叠加,即2.12 磁化强度是如何定义的磁化电流密度与磁化强度又什么关系单位体积内分子磁矩的矢量和称为磁化强度磁化电流体密度与磁化强度:磁化电流面密度与磁化强度:2.13 磁场强度是如何定义的在国际单位制中它的单位是什么磁场强度定义为:国际单位之中,单位是安培/米2,14 你理解均匀媒质与非均匀媒质,线性媒质与非线性媒质,各向同性与各向异性媒质的含义么均匀媒质是指介电常数或磁介质磁导率处处相等。

不是空间坐标的函数非均匀媒质是指介电常数或磁介质的磁导率是空间坐标的标量函数线性媒质是与的方向无关是标量和的方向相同各向异性媒质是指和的方向相同2.15 什么是时变电磁场随时间变化的电荷和电流产生的电场和磁场也随时间变化,而且电场和磁场相互关联,密布可分,时变的电场产生磁场,时变的磁场产生电场,统称为时变电磁场2.16试从产生的原因,存在的区域以及引起的效应等方面比较传导电流和位移电流传导电流和位移电流都可以在空间激发磁场但是两者的本质不同(1)传导电流是电荷的定向运动,而位移电流的本质是变化着的电场。

(2)传导的电流只能存在于导体中,而位移电流可以存在于真空,导体,电介质中(3)传导电流通过导体时会产生焦耳热,而位移电流不会产生焦耳热2.18 麦克斯韦方程组的4个方程是相互独立的么?试简要解释不是相互独立的,其中表明时变磁场不仅由传导电流产生,也是有移电流产生,它揭示的是时变电场产生时变磁场表明时变磁场产生时变电场,电场和磁场是相互关联的,但当场量不随时间变化时,电场和磁场又是各自存在的2.20 什么是电磁场的边界条件你能说出理想导体表面的边界条件吗把电磁场矢量 E , D ,B , H 在不同媒质分界面上各自满足的关系称为电磁场的边界条件理想导体表面上的边界条件为:第三章3.1电位是如何定义的E= 中的负号的意义是什么DA 由静电场基本方程和矢量恒等式可知,电场强度E可表示为标量函数的梯度,即 E= 试中的标量函数称为静电场的电位函数,简称电位。

试中负号表示场强放向与该点电位梯度的方向相反。

3.2 如果空间某一点的电位为零,则该点的电位为零,这种说话正确吗?为什么DA 不正确,因为电场强度大小是该点电位的变化率,3.33.4求解电位函数的泊松方程或拉普拉斯方程时,边界条件有何意义DA 边界条件起到给方程定解得作用。

3.5电容是如何定义的?写出计算电容的基本步骤。

DA 两导体系统的电容为任一导体上的总电荷与两导体之间的电位差之比,即:其基本计算步骤:1根据导体的几何形状,选取合适坐标系。

2假定两导体上分别带电荷 q和-q。

3根据假定电荷求出E.4由求得电位差。

5求出比值C=3.8 什么叫广义坐标和广义力你了解虚位移的含义吗广义坐标是指系统中各带电导体的形状,尺寸和位置的一组独立几何量,而企图改变某一广义坐标的力就,就为对印该坐标的广义力,广义坐标发生的位移,称为虚位移3.9 恒定电场基本方程的微分形式所表征的恒定电场性质是什么恒定电场是保守场,恒定电流是闭合曲线2.10 恒定电场和静电场比拟的理论根据是什么静电比拟的条件又是什么理论依据是唯一性定理,静电比拟的条件是两种场的电位都是拉普拉斯方程的解且边界条件相同.3.12如何定义电感你会计算平行双线,同轴的电感DA在恒定磁场中把穿过回路的磁通量与回路中的电流的比值称为电感系数,简称电感。

3.13写出用磁场矢量B,H表示的计算磁场能量的公式:3.14 在保持此链接不变的条件下,如何计算磁场力?若是保持电流不变,又如何计算磁场力两种条件下得到的结果是相同的吗DA :两种情况下求出的磁场力是相同的3.15什么是静态场的边值问题?用文字叙述第一类、第二类及第三类边值问题。

答:静态场的边值型问题是指已知场量在场域边界上的值,求场域内的均匀分布问题。

第一类边值问题:已知位函数在场域边界面S上各点的值,即给定。

第二类边值问题:已知位函数在场域边界面S上各点的法向导数值,即给定。

第三类边值问题:已知一部分边界面S1上位函数的值,而在另一部分边界S2上已知位函数的法向导数值,即给定3.16用文字叙述静态场解的唯一性定理,并简要说明它的重要意义。

答:惟一性定理:在场域V的边界面S上给定的值,则泊松方程或拉普拉斯方程在场域V内有惟一解。

意义:(1)它指出了静态场边值问题具有惟一解得条件。

在边界面S上的任一点只需给定的值,而不能同时给定两者的值;(2)它为静态场值问题的各种求解方法提供了理论依据,为求解结果的正确性提供了判据。

3.17什么是镜像法其理论依据的是什么答:镜像法是间接求解边值问题的一种方法,它是用假想的简单电荷分布来等效代替分界面上复杂的电荷分布对电位的贡献。

不再求解泊松方程,只需求像电荷和边界内给定电荷共同产生的电位,从而使求解简化。

理论依据是唯一性定理和叠加原理。

3.18如何正确确定镜像电荷的分布?答:()所有镜像电荷必须位于所求场域以外的空间中;()镜像电荷的个数,位置及电荷量的大小以满足场域边界面上的边界条件来确定。

3.19什么是分离变量法在什么条件下它对求解位函数的拉普拉斯方程有用答:分离变量法是求解边值问题的一种经典方法。

它是把待求的位函数表示为几个未知函数的乘积,该未知函数仅是一个坐标变量函数,通过分离变量,把原偏微分方程化为几个常微分方程并求解最后代入边界条件求定解。

3.20在直角坐标系的分离变量法中,分离常数k可以是虚数吗为什么答:不可以,k若为虚数则为无意义的解。

第四章4.1在时变电磁场中是如何引入动态位A和的A和不唯一的原因何在答:根据麦克斯韦方程·B=0和 *E= 引入矢量位A和标量位,使得:A和不唯一的原因在于确定一个矢量场需同时规定该矢量场的散度和旋度,而B= A只规定了A的旋度,没有规定A的散度4.2 什么是洛仑兹条件为何要引入洛仑兹条件在洛仑兹条件下,A和满足什么方程答:,称为洛仑兹条件,引入洛仑兹条件不仅可得到唯一的A和,同时还可使问题的求解得以简化在洛仑兹条件下,A和满足的方程:4.3坡印廷矢量是如何定义的他的物理意义答:坡印廷矢量S=E*H 其方向表示能量的流动方向,大小表示单位时间内穿过与能量流动方向相垂直的单位面积的能量4.4什么是坡印廷定理它的物理意义是什么答:坡印廷定理:它表明体积V内电磁能量随时间变化的增长率等于场体积V内的电荷电流所做的总功率之和,等于单位时间内穿过闭合面S进入体积V内的电磁能流。

相关文档
最新文档