数学物理方程---特征线法
特征线理论及应用
du
A1 u dx y A1
F1 du A2 A1du F1dx A1dy A2 dx
du dy F1dy A2 du u x A1dy A2 dx A1 A2 dx dy
dx dy
上两式表明: 即沿着特征线,
沿着特征线,分母和分子均为零。
定义
dp G c
G 1 p t c t G 1 p x c x
v 1 p v 1 p (v c) (v c)( )0 t c t x c x
则
基本方程化为以vG 为新的未知函数的偏微分方程:
( v G ) ( v G ) (v c ) 0 t x
其相容方程的解为:
2 v c J 1
结论:
沿着特征线
2 dx c J v c, v 1 dt
dx v c, dt
(黎曼不变量)
沿着特征线
2 v c J 1
(黎曼不变量)
特征线的基本性质 1)一维非定常流动中,平面x-t上任一点,都有两条不同 族的特征线,沿各特征线有各自不同的黎曼不变量; 2)特征线上参量v,c,p,…的一阶导数可以不连续,但这
基本方程与黎曼不变量 (以一维等直截面管为例) (连续方程)
基本方程
v v 0 t x x
(动量方程)
v v 1 p v 0 t x x
等熵流动中只有一个状态参量独立:
( p)
d 1 d ( ) s dp 2 dp dp c
u u A1 A2 F1 0 x y
该方程对应的系数:A1=1, A2=2x, F1=-3x2
则特征线方程为:
特征线理论及应用
由
得:
J J v 2 1 c (J J ) 4
J ( x3 , t ) J ( x3 , t ) v1 v2 2 c1 c2 v( x3 , t ) 2 2 1 2
( 1) c1 c2 1 v1 v2 c( x3 , t ) [ J ( x3 , t ) J ( x3 , t )] 4 2 2 2
C 与发自M点的 C 所包
C+
P
D
围的区域,而这个区域 之外的地方,都不受M点 x 的影响。这个区域称为M 点的影响区。
Q
A
M
B
例:已知初始时刻 v(x,0), c(x,0) , 求D点的v(x,t), c(x,t)
t
CD (x3, t)
C+
A (x1, 0)
M
B (x2, 0)
x
解:在D(x3 , t)点,有
F1 A2
du
A1 u dx y A1
F1 du A2 A1du F1dx A1dy A2 dx
du dy F1dy A2 du u x A1dy A2 dx A1 A2 dx dy
dx dy
上两式表明: 即沿着特征线,
沿着特征线,分母和分子均为零。
例:一阶偏微分方程
u u 2x 3x 2 0 x y
u( x, y ) 的初始条件是
u(0, y ) 5 y 10
用特征线法确定: 1)通过点(2, 4)的特征线 2)沿此特征线的相容方程 3)u (2, 4) 的值
解:(1)对照一般形式的双曲型偏微分方程
u u 2 x 3x 2 0 x y
dx 1 3 ( ) C v c J J dt 4 4 dx 3 1 ( ) C v c J J dt 4 4
中北大学数学物理方程典型例题与解法范例
例1下列各方程是线性的, 还是非线性的? 如果是线性的, 指出是齐次的,还是非齐次的, 并确定它的阶数. (1) 22sin sin 0xx xy yy u xu xu ++=, (2) 12=+y x u u u (3) 320xxxx xxyy yyyy u u u ++=(4)0ln =++u u u xyy xxx , (5) 5352sin xxx xy yy y u u xu u u x -+++=解:(1) 原方程为二阶齐次线性方程(2) 由于2,x y u uu 都为非线性项,因此原方程为一阶非线性方程(3) 原方程为四阶齐次线性方程(4) 由于ln u 为非线性项,因此原方程为三阶非线性方程 (5) 原方程为三阶非齐次线性方程(非齐次项2sin x ) 例2 验证函数 (3)u f x y =+ 是方程: 30x y u u -=的解, 其中f 为任意连续可微函数.证:左(3)3(3)f x y f x y x y ∂∂=+-+∂∂()(3)3()(3)f x y f x y x y ξξ∂∂''=+-+∂∂ 3()3()0f f ξξ''=-==右 (3)x y ξ=+例3 验证函数 22ln()u x y =+是方程: 0xx yy u u +=的一个解证: 222222,x y x y u u x y x y ==++,2222222222222(02)24,()()xx yy x x y u u x y x y x y x y -=+=-++++ 左22222222222224240()()x y x y x y x y x y =-+-==++++右 例4 (1) 长为l 的弦, 两端点固定, 且在初始时刻0=t 处于水平状态, 初始速度为23sinxlπ, 作微小横振动, 试写出此定解问题.(2) 设有一长度为l 的杆, 它的表面是绝热的, 在0=x 的一端温度为5C ,另一端l x=处外界媒介的温度为5C ,且初始温度分布为)(x ϕ, 试写出此定解问题.解:(1) 定解问题为 0(0,)(,)02(,0)0,3s i n t t x x t u u u t u l t u x u x t lπ==⎧⎪==⎪⎨∂⎪==⎪∂⎩(2) 定解问题为 (0,)5,[(,)]5(,0)()t x x x lu u u u t u x t x u x x κϕ==⎧⎪∂⎪=+=⎨∂⎪⎪=⎩例5 将下列二阶线性偏微分方程化为标准型(1)22222320u u u x x y y∂∂∂++=∂∂∂∂,解:(1)特征方程2320y y ''-+=,特征线12,2x y C x y C -=-=,作变量代换2x yx yξη=-⎧⎨=-⎩2,x y u u u u u u ξηξη=+=-- , 22444xx u u u u u u u u ξξξηηξηηξξξηηη=+++=++ 32xy u u u u ξξξηηη=---,2yy u u u u ξξξηηη=++代入原方程,化为0u ξη-=, 所以原方程的标准型为 0u ξη=(2) 22222u u a t x∂∂=∂∂ 解 :特征方程22()dx a dt =,特征线12,x at C x at C +=-=, 作变量代换x at x atξη=+⎧⎨=-⎩, 原方程化为 2222a u a u ξηξη-=,所以原方程的标准型为 0u ξη=(3)22222320u u u u u x x y y x y∂∂∂∂∂++++=∂∂∂∂∂∂解:特征方程2320y y ''-+=,特征线12,2x y C x y C -=-=,作变量代换2x y x y ξη=-⎧⎨=-⎩原方程化为0u u ξηη-+=, 所以原方程的标准型为 0u u ξηη-=例6.证明直角坐标系下的拉普拉斯方程: 22220u ux y∂∂+=∂∂在极坐标系下为01122222=∂∂+∂∂+∂∂θu r r u r ru证:cos ,sin tan r x r y y r x θθθ⎧==⎧⎪⎨⎨=⎩=⎪⎩2()x r x y u u u r r θ=+- , 2y r y xu u u r rθ=+222234412[]xx rr r x x x xyu u u u u r r r r r θθθ=+-++222234412[]yy rr r y y y xyu u u u u r r r r rθθθ=+-+-2222222342[]xx yy rr r x y x y x y u u u u u r r r rθθ++++=+-+222()r x y =+2221111[]rr r rr r u u u u u u r r r r rθθθθ=+-+==++,所以拉普拉斯方程:22220u ux y ∂∂+=∂∂在极坐标系下为 01122222=∂∂+∂∂+∂∂θu r r u r r u。
数学物理方程的重点
一.无界问题的特征线法求解求解1.一维无界弦振动方程的达朗贝尔公式(特征线法在弦振动方程的应用)求解法 1.1齐次方程两端无界弦振动方程的求解 齐次弦振动方程及初始条件:⎩⎨⎧==+∞<<-∞>=-)()0,(),()0,(,0,02x x u x x u x t u a u t xx tt ψϕ其方程为+∞<<-∞>=-x t u a u xx tt ,0,02,其特征方程为022=-⎪⎭⎫⎝⎛a dt dx ,2,1c at x =±所以at x +=ξ,at x -=ηηξu u u x +=,ηξu a u a u t ⨯-⨯=,ηηξηξξu u u u xx ++=2,ηηξηξξu a u a u a u tt 2222+-=)()()()(),(0042at x G at x F G F t x u u u u a u xx tt -++=+=⇒=⇒=-=-ηξξηξη由初始条件)()(')(')0,(),()()()0,(x x aG x aF x u x x G x F x u t ψϕ=-==+=来确定⎰=---xx dbb x G x G a x F x F a 0)()]0()([)]0()([ψ)0()0()(1)()(0x G x F db b a x G x F xx -+=-⎰ψ)()()(x x G x F ϕ=+)(2)0()0()(21)(0x x G x F db b a x F xx ϕψ+-+=⎰)(212)0()0()(21)(0at x x G x F db b aat x F at x x ++-+=+⎰+ϕψ)(2)0()0()(21)(0x x G x F db b a x G xx ϕψ+---=⎰ )(2)()()(21)(0at x at x G at x F db b a at x G atx x -+-----=-⎰-ϕψ)()(),(at x G at x F t x u -++=⎰+-+-++=atx atx db b a at x at x t x u )(21)]()([21),(ψϕϕ(1)此公式为达朗贝尔公式 1.2单侧无界弦振动齐次方程的求解⎪⎩⎪⎨⎧>=>==>>=-0,0),0(),()0,(),()0,(0,0,02t t u t t x x u x x u x t u a u t xx tt ψϕ先求出对应双侧无界弦振动方程⎩⎨⎧ψ=Φ=+∞<<-∞>=-)()0,(),()0,(,0,02x x u x x u x t u a u t xx tt 其中要求)(),(x x ψΦ为奇函数又已知其右侧函数表达式可以求出求出左侧表达式⎩⎨⎧<--≥=Φ0),(0),()(x x x x x ϕϕ,⎩⎨⎧<--≥=ψ0),(0),()(x x x x x ψψ 将其带入达朗贝尔公式可求出对应双侧无界弦振动方程的解⎰+-ψ+-Φ++Φ=atx atx db b a at x at x t x u )(21)]()([21),( 只要令0)(21)]()([210),(,0=Φ+Φ-Φ⇒==⎰-db b a at at t x u x atat又令0>x ,⎪⎪⎩⎪⎪⎨⎧<+---+>+-++=⎰⎰+--+-atx at x atx at x at x db b a at x at a a at x db b a at x at x t x u )(,)(21))](()([21,)(21)]()([21),(ϕϕϕϕϕϕ 此),(t x u 即为单侧无界弦振动齐次方程的解 1.3零初始条件的非齐次弦振动方程的求解⎩⎨⎧==>=-0)0,(,0)0,(0),,(2x u x u t t x f u a u t xx tt 设);,(τt x w 为下面齐次方程的解⎩⎨⎧==>=-),(),(,0),(,02ττττx f x u x u t u a u t xx tt 则⎰=td t x w t x u 0);,(),(ττ为零初始条件的非齐次弦振动方程的解(将),(t x f 作用延时效果累积为将齐次化思想)转换计时器的初始时刻将齐次方程初始时刻换为0需要τ-=t t '可得0','>⇒>=t t dt dt τ 齐次方程可以化简为⎩⎨⎧===>=-0'),,()0,(,0)0,(0',0'2''t x f x w x w t w a w t xx t t τ 使用达朗贝尔公式可以求得⎰+-+-++='')(21)]'()'([21)',(at x at x db b a at x at x t x w ψϕϕ其中),()(,0)(τψϕx f x x ==则⎰-+--=)()(),(21),(τττt a x t a x db b f a t x w ⎰⎰⎰++--==t t a x t a x td db b f a d t x w t x u 0)()(0),(21),(),(τττττ 1.4有初始条件的非齐次无界弦波动方程的求解⎩⎨⎧==+∞<<-∞>=-)()0,(),()0,(,0),,(2x x u x x u x t t x f u a u t xx tt ψϕ 此方程要使用叠加原理进行求解设),(),(),(t x z t x v t x u +=其中分别满足以下方程⎩⎨⎧==+∞<<-∞>=-)()0,(),()0,(,0,02x x v x x v x t v a v t xx tt ψϕ(1)和⎩⎨⎧==+∞<<-∞>=-0)0,(,0)0,(,0),,(2x y x y x t t x f y a y t xx tt (2) 对于方程(1),使用达朗贝尔公式可以求得:其特征方程为022=+⎪⎭⎫⎝⎛a dt dx ,2,1c at x =±所以at x +=ξ,at x -=ηηξv v v x +=,ηξv a v a v t ⨯-⨯=,ηηξηξξv v v v xx ++=2,ηηξηξξv a v a v a v tt 2222+-=)()()()(),(0042at x G at x F G F t x v v v v a v xx tt -++=+=⇒=⇒=-=-ηξξηξη由初始条件)()(')(')0,(),()()()0,(x x aG x aF x v x x G x F x v t ψϕ=-==+=来确定⎰=---xx dbb x G x G a x F x F a 0)()]0()([)]0()([ψ)0()0()(1)()(0x G x F db b a x G x F xx -+=-⎰ψ)()()(x x G x F ϕ=+)(2)0()0()(21)(0x x G x F db b a x F xx ϕψ+-+=⎰)(212)0()0()(21)(0at x x G x F db b aat x F at x x ++-+=+⎰+ϕψ)(2)0()0()(21)(0x x G x F db b a x G xx ϕψ+---=⎰)(2)()()(21)(0at x at x G at x F db b a at x G atx x -+-----=-⎰-ϕψ)()(),(at x G at x F t x v -++=⎰+-+-++=atx atx db b a at x at x t x v )(21)]()([21),(ψϕϕ对于方程2,使用齐次化原理可以求得⎩⎨⎧==>=-0)0,(,0)0,(0),,(2x y x y t t x f y a y t xx tt 设);,(τt x w 为下面齐次方程的解⎩⎨⎧==>=-),(),(,0),(,02ττττx f x y x y t y a y t xx tt 则⎰=td t x w t x y 0);,(),(ττ为零初始条件的非齐次弦振动方程的解(将),(t x f 作用延时效果累积为将齐次化思想)转换计时器的初始时刻将齐次方程初始时刻换为0需要τ-=t t '可得0','>⇒>=t t dt dt τ 齐次方程可以化简为⎩⎨⎧===>=-0'),,()0,(,0)0,(0',0'2''t x f x w x w t w a w t xx t t τ 使用达朗贝尔公式可以求得⎰+-+-++='')(21)]'()'([21)',(at x at x db b a at x at x t x w ψϕϕ其中),()(,0)(τψϕx f x x ==则⎰-+--=)()(),(21),(τττt a x t a x db b f a t x w ⎰⎰⎰++--==t t a x t a x td db b f a d t x w t x y 0)()(0),(21),(),(τττττ最后,根据叠加原理求得⎰⎰⎰++--+-++-++=+=t t a x t a x at x at x d db b f a db b a at x at x t x y t x v t x u 0)()(),(21)(21)]()([21),(),(),(ττψϕϕττ1.5.无界弦振动方程的决定区域与影响区域 决定区域:对于特定u(x,t)依赖的(x,t)的取值范围对于(x,t )的取值能影响u(x,t)的取值范围为影响区域2.只含二阶导的2阶偏微分方程的特征线法求解 2.1只含二阶导的二阶偏微分方程的初步化简⎩⎨⎧===++)(),0(),(),0(0y y u y y u Cu Bu Au x yy xy xx ψϕ其特征方程为00,0222=+-⎪⎭⎫ ⎝⎛⇒-=⇒=+==++C dx dy B dx dy A dx dy dy dx d C B A y x y x y y x x ϕϕϕϕϕϕϕϕϕ根据特征方程解的三种不同情况将其进行进一步的化简 2.2特征方程存在两个不同实根时的化简 先用公式法求出特征方程两个不同的实根A ACB B dx dy 242-±=,g A AC B B dx dy =-+=⎪⎭⎫ ⎝⎛2421,e A AC B B dx dy =--=⎪⎭⎫⎝⎛24221c gx y +=2c ex y +=可以用换元法对此偏微分方程进行化简x A AC B B y 242-+-=ξxAACB B y 242---=η将其带入=++yy xy xx Cu Bu Au=ξηu例1.化简下列方程并求解⎩⎨⎧===-+σφ)0,(,)0,(032t u t u u u u x xx tx tt3/2)/(032032222=-+⇒=-+⇒=-+x t x t x x t t xx tx tt u u u ϕϕϕϕϕϕϕϕdtdx dx dt d x t x t //0-=⇒=+=ϕϕϕϕϕ03/2)/(03)/(2)/(22=--⇒=--+dt dx dt dx dt dx dt dx,0,0,3,10,0,0,1,13)2(,)2(22121242===-=======-=+-=+=--=+±=⇒±=+±=tt xt xx t x tt tx xx t x tx t t x t x t t x c t t x dt dx ηηηηηξξξξξηξηηξηξξηξηηηξξηξξηηξηξξηξηηηξξηξξηηξηξξηξηηξηξηξξηξηξηξηξηξηξηξηξηξηξηξu u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u xt xt x x tx xx xx x x xx tt tt tt tt x x x t t t 32)3()3(2)()(96)3(3)3(1,3--=++-+-=++=+++++=+-=++---=+=+=-=+=)()(),(00)369()646()321(32ηξξηηηξηξξg f t x u u u u u u u u xx tx tt +==⇒=--+---+-+=-+2.3当特征方程存在2个相等实根A B dx dy 2)(2,1=12c x AB y =-),0(,2≠=-=B y x A By ηξ 0,0·,0,00====⇒=xx yy u C u A B 或如例1化简下列方程44=++xx tx tt u u u4/4)/(044044222=++⇒=++⇒=++x t x t x x t t xx tx tt u u u ϕϕϕϕϕϕϕϕdtdx dx dt d x t x t //0-=⇒=+=ϕϕϕϕϕ2/,04/4)/(04)/(4)/(22==+-⇒=+-+dt dx dt dx dt dx dt dx dt dx,0,10,2,1,,2========-===-=xt xx tt t x tt xt xx t x x t x ηηηηηξξξξξηξηηξηξξηξηηξηξξηηξηξξηξηηξηξξξξηξηηξηξξηξηηηξηξξξηξηηξξηξηηξξu u u u u u u u u u u u u u u u u u u u u u u u u tx tx x t t x x t x t tx xx xx x x x x xx tt tt t t t t tt 222)(22422222---=+++++=++=++++==++++=0)480()880()4244(=⇒=+-++-+⨯-+ηηηηξηξξu u u u)2()2()()()(t x g t x xf g f u f u -+-=+=⇒=ξξηξη2.4当特征方程存在一对共轭复根时二.积分变换法求解无界一维波动方程、1维热传导方程和二维Laplace 方程 1.傅立叶变换的定义与性质 1.1傅立叶变换的定义)()())((w F dx e x f x f F iwx ==⎰+∞∞-1.2傅立叶变换的位移性质)()()()]([)(c x d ee c xf dx e c x f c x f F iwcRRc x iw iwx --=-=-----⎰⎰)()]([)()()]([)(w F e x f F e c x d e c x f e c x f F iwc Riwc c x iw iwc -----==--=-⎰1.3.傅立叶变换的相似性质dcx e cx f c dcx c ecx f dx ecx f cx f F Rcx c wi Rcx cw i Riwx⎰⎰⎰---===)(11)()()]([)(1)(1)]([1c wF c du e u f c cx f F u c wR ==-⎰1.3傅立叶变换的微分性质⎰⎰⎰-+∞∞-----===RiwxRiwx iwx Riwx dex f e x f x df e dx e x f x f F )(|)()()('))('( )())(()())((0))('(w iwF x f iwF dx e x f iw dx e iw x f x f F Riwx iwx R===--=⎰⎰--⎰⎰⎰-+∞∞-----===Riwx iwx Riwx Riwx dex f e x f x df e dx e x f x f F )('|)(')(')(''))(''( )()())(()())('())(''(22w F iw x f F iw x f iwF x f F ===dx e x f iw e x f x df e dx e x f x f F iwx Rn iwx n n Riwx Riwx n n -------⎰⎰⎰+===)()()()())(()1()1()1()()()()())(()())(())((1)(w F iw x f F iw x f iwF x f F n n n n ===-1.3.傅立叶变换的乘多项式性质⎰⎰⎰---=-==R Riwx iwx iwx Rdx e x f dw di dx e x f dw d i dx e x xf x xf F ))(())((1)())(( ))(())((())(())((w F dwdi x f F dw d i dx e x f dw d ix xf F R iwx ===⎰- ⎰⎰⎰---===R Riwx iwx Riwxdx e x f dw d i dx e x xf dw d i dx ex xxf x f x F ))(())(()())((2222)())(())(())((2222222222w F dw d i dx e x f dw d i dx e x f dw d i x f x F R iwx iwx R===⎰⎰-- dx e x f x dwd idx e x f xx dx e x f x x f x F iwx n RRiwx n Riwx n n ))(()()())((11-----⎰⎰⎰=== ⎰⎰====--Rn nn n n n R iwx n n n iwx n n nnw F dw d i x f F dw d i dx e x f dw d i dx e x f dw d i x f x F ))(()))((())(())(())((1.4傅立叶变换积分性质由傅立叶变换的微分性质)())((x f dt t f dx dx=⎰∞- ⎰∞-=xdt t f iw x f F )())(()(1))((1))((w F iwx f F iw dt t f F x==⎰∞- 1.5傅立叶变换的卷积性质卷积定义式⎰-=*Rdt t x g t f x g f )()()(卷积公式1)()()(w G w F g f F =*先做卷积再变换系数不变 证明:⎰⎰⎰⎰-----=-=*R iwt t x iw Riwx R Rdx e e dt t x g t f dx dte t x g t f x g f F )()()()()())((⎰⎰⎰⎰-----=-=*RRiwu iwt Rt x iw Riwt dt du e u g e t f dt dx e t x g e t f x g f F )()()()())(()()()())(())(())(()()(w G w F t f F u g F dt u g F e t f g f F Riwt ===*⎰-卷积公式2))()((2)()(x g x f F w G w F π=*先傅立叶变换再做卷积系数要乘系数2π 1.6 主要函数的傅立叶变换)(0,00,)(指数信号⎩⎨⎧<>=-x x e x f x β iw e iw dx e dx eex f F iw x iw x iwxx +=+-===∞++-+∞+-+∞--⎰⎰βββββ1|1))((0)(0)(02)(x ex f -=2.傅立叶变换法求解一维波动方程 2.1无界齐次波动方程的求解⎪⎩⎪⎨⎧==>∈=-)3)(()0,()2)(()0,()1(0,,02x x u x x u t R x u a u txx tt ψϕ 分别对(1)、(2)、(3)式进行傅立叶变换)4(0),()()),((0),()()),((22=+⇒=-t w F aw t w u F t w F iaw t w u F tt tt)5))((())0,((x F w u F ϕ=)6))((())0,((x F w u F t ψ=)7()()()),((21iawt iawt e w C e w C t w u F -+=将(5)、(6)代入(7)式⎩⎨⎧-=+=--iawtawt t iawtiawt e awiC e w awiC t w u F e w C e w C t w u F 2121)()),(()()()),(( ⎩⎨⎧=-=+))(()()())(()()(2121x F w awiC w awiC x F w C w C ψϕ ⎪⎩⎪⎨⎧-=+=)))((1))(((21)()))((1))(((21)(21x F iaw x F w C x F iaw x F w C ψϕψϕ iawt iawt e x F iawx F e x F iaw x F t w u F --++=)))((1))(((21)))((1))(((21)),((ψϕψϕ又由傅立叶变换的位移性质))(()())((x f F e dx e c x f c x f F iwc Riwx --=-=-⎰左边的项的位移系数可以求出at c iwat iwc -=⇒=-)8))(((21))((21at x F e x F iawt +=ϕϕ iwaw F w G at x G e w G e w G F e x F iwaiawt iawt iawt 2))(()()()())(())((21ψψ=+===用傅立叶变换的积分性质进一步化简))((1))(()())((x f F iw dy y f F x f dy x f dx d xx =⇒=⎰⎰∞-∞- ))((21))((1212))(()()(⎰+∞-===+=atx dy y F a w F iw a iwa w F at x G w G ψψψ右边第一项的系数也可以用位移性质求出at c iwat iwc =⇒-=-))((21))((21at x F e x F iwt -=-ϕϕ iwaw F w H at x H e w H e x F iwaiwat iwat 2))(()()()())((21ψψ=-==--继续用傅立叶变换积分性质来化简))((1))(()())((x f F iw dy y f F x f dy x f dx d xx =⇒=⎰⎰∞-∞-))((21))((1212))(()()(⎰-∞-===-=atx dy y F a w F iw a iwa w F at x H w H ψψψ 四项全部求和 )))((21))(((21)))((21))(((21)),((⎰⎰-∞-+∞---+++=atx at x dy y F a at x F dy y F a at x F t w u F ψϕψϕ ))((21))(()(((21)),((⎰+-+-++=atx atx dy y F a at x F at x F t w u F ψϕϕ 对此式施加傅立叶逆变换 ⎰+-+-++=at a at x dy y a at x at x t x u )(21))()((21),(ψϕϕ 2.2非齐次方程的无界波动方程(不用齐次化原理)2.3半无界波动方程的求解3.傅立叶变换法求解一维热传导方程4.傅立叶变换法求解2维Laplace 方程place 变换的定义与性质place 变换求解一维波动方程place 变换求解一维热传导方程place 变换求解2维Laplace 方程二.有限边界的分离变量法求解(正弦初始条件以及二次初始条件)1.第一类边界条件和第二类边界条件第三类边界条件的特征值问题2.齐次化方程(可以用傅里叶级数展开或用齐次化原理)3.齐次化边界条件4.齐次方程,齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子5.齐次方程,非齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子6.非齐次方程,非齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子7.非齐次方程,非齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子8.圆域LAPLACE 问题求解9.矩形域Laplace 方程。
一阶线性偏微分方程的特征线解法
该方程称为Poisson方程或位势方程
第18页
3. 定解条件: =初始条件+边界条件
①. 初始条件:
u t =0 = ϕ ( x, y, z ), ( x, y, z ) ∈ Ω, ut
注意:
t =0
= ψ ( x, y, z ), ( x, y, z ) ∈ Ω,
弦振动方程定解问题需要上述两个初始条件; 热传导方程定解问题只要上述第一个初始条件; 位势方程定解问题不需要初始条件。
这 里 n 为 ∂Ω 的 单 位 外 法 向 , g为 已 知 函 数 。
第20页
注意:
上述三类方程中,对物体 Ω 的边界 ∂Ω 上每一点都要 施加一个边界条件。 对于不同的问题,相应的边界条件有不同的实际意义。
第21页
叙述一个定解问题时,要标明方程和定解条件成立的范围。
例如:一维热传导方程的第一边值问题:
如果配合画图则更清楚。
T u = g1
ut − a 2u xx = f
u = g2
注意:t=T时不能施加条件!!
0
u ( x , 0) = ϕ ( x )
l
第22页
x
位势方程边值问题:
位势方程的第一边值(Dirchlet)问题:
-Δu ( x) = f ( x), x = ( x1 , L , xn ) ∈ Ω,
第14页
热传导方程的混合问题:
热传导方程的第一边值(Dirchlet)问题:
∂u − a 2 Δu ( x, y, z , t ) = f ( x, y, z , t ), ∂t ( x, y, z ) ∈ Ω, t > 0,
u ( x, y, z , 0) = ϕ ( x, y, z ),
数学物理方程--- 6 特征线法 共28页PPT资料
数解之,得
第
学
物理又
u2t2ctc2 x3t c,则
六 章
方 程
u2 t2 (x 3 t)t (x 3 t)2
特 征
2 t2 x t 3 t2 x 2 6 x t 9 t2
线
x28t25xt
法
此解法关键之处是找到直线 x3t c ,偏微分方程转化为
常微分方程。直线 x3t c 称为一阶偏微分方程(1)的特征线
有
数学3u3(uu)ut 3ux xt
物
理 方
程所以
3u
3u
4
3
.
43
3
.
即
u
4
9
1.
9
对 两边积分,可得
第 六 章 特 征 线 法
u221g(),
99
其中,g ( ) 为一个可微函数。
由
u(,)221g(),
西安交通大学 数学与统计学院
例2 求解线性方法柯西问题
ut (xcost)ux0,t0,x (6)
数
u(x,0)11x2,x
(7) 第
学 物 理
解
方程(6)式的特征方程为 dx xcost 0, dt
而过点 ( , 0 )
六 章
方 的特征线就是下面问题的解
理
dt
第 六 章
方
程 称为(4)式的特征方程,其积分曲线称为(4)式的特征曲线。
特 征
注1 给出例1求解方法的一个几何解释。在该例中,使用了参数线
c,即为特征线的初始值x ( 0 ) 。当参数 c x(0) 在x 轴滑动时,法
数学物理方程- _特征线法 2014-12答案
2t2 xt 3t2 x2 6xt 9t2
x2 8t2 5xt 此解法关键之处是找到直线 x 3t c ,偏微分方程转化为
常微分方程。直线 x 3t c 称为一阶偏微分方程(1)的特征线
uut(
3ux x t, 0 t, x, 0) x2, x
x
(1) (2)
由方程(2)
99
u(x, 0) x2
得
x2 2 x2 1 x2 g(x), 99
即
8 x2 g(x),
所以
9
u(x,t) 2 x2 1 (x 3t)x 8 (x 3t)2,
99
9
2 x2 1 x2 3 tx 8 (x2 6x 9t2 ), 9 9 99
x2 5tx 8t2.
例1 求解线性方法Cauchy问题
uut(
3ux x t, 0 t, x, 0) x2, x
x
(1) (2)
解 方程(1)的左端 ut 3ux 是 u(x,t) 的一阶偏导数的线性
组合。特征线方法的基本思想就是将其转化为 u(x,t) 关于t的全
导数。
du dt
ut
uxx
x
定义1 考虑下面一阶线性微分方程
aut bux cu f
4
其中 a 、b、c 和 f 均为自变量 x 、t 的函数。
方程
a dx b 0
5
dt
称为(4)式的特征方程,其积分曲线称为(4)式的特征曲线。
注1 给出例1求解方法的一个几何解释。在该例中,使用了参数
c,即为特征线的初始值x(0) 。当参数 c x(0) 在x 轴滑动时,
dt
的特征线就是下面问题的解
dx
x
特征线法
3
分解成两个一阶的方程:
∂u1 − a ∂u1 = v, ∂t ∂x ∂v ∂v
+ a = 0. ∂t ∂x
根据初值条件, 给出 u1 以 v 在 t = 0 上的初值条件
(1-1) (2-1)
u1(x, 0) = 0, v(x, 0) = ϕ(x).
(1-2) (2-2)
求得特征线, 它们分别是常微分方程 ∂x = −a, ∂t
微分算子可以分解为
∂ ∂∂ ∂
+a ∂t ∂x
−a ∂t ∂x
u1 = 0
(**)
可以把原方程
∂ ∂ ∂ ∂
+a
−a
∂t
∂x
∂t
∂x
u1(x, 0),
∂ ∂t
u1(x,
0)
=
ϕ(x),
u1 = 0,
−∞ < x < +∞, t > 0, −∞ < x < +∞, −∞ < x < +∞.
v(x, t) = ϕ(x − at).
4
再由另一个方程得
t
u1(x1(t), t) = ϕ(x1(τ ) − aτ )dτ.
0
从 x1(t) = c − at 推出
t
1 c−2at
1 x+at
u1(x, t) =
ϕ(c − 2aτ )dτ = −
0
2a
c
ϕ(ξ)dξ =
ϕ(ξ)dξ.
2a x−at
• 沿着特征线将原方程化为关于 u = u(x(t, c), t) 的常微分方程 (其中 c 为参数), 并求出 u = u0(t, c)
• 从特征线方程解出 c = ϕ(x, t), 所求的解为 u = u0(t, ϕ(x, t))
行波法求解偏微分方程
行波法求解偏微分方程引言偏微分方程是数学中重要的研究对象之一,它描述了自然界中许多现象的变化规律。
解决偏微分方程的问题在科学和工程领域具有广泛的应用。
行波法(也称为特征线法)是一种常用的方法,用于求解一阶和二阶偏微分方程。
本文将介绍行波法的基本原理、步骤以及应用示例。
行波法的基本原理行波法基于特征线理论,通过沿特定方向传播的特征线来求解偏微分方程。
对于一阶偏微分方程,其特征线可以直接得到;对于二阶偏微分方程,需要通过变换将其转化为一阶形式后再进行求解。
行波法的步骤1.对于一维偏微分方程,首先确定其特征线。
对于二维和三维情况,则需要确定多组特征线。
2.沿着特征线进行坐标变换,将原始偏微分方程转化为常微分方程。
3.解常微分方程得到参数函数。
4.将参数函数代入坐标变换公式,得到原始偏微分方程的解。
行波法的应用示例一阶偏微分方程考虑一维线性对流方程:∂u ∂t +a∂u∂x=0其中,a为常数。
根据行波法的步骤,我们可以得到特征线方程:dxdt=a解特征线方程可得特征线为直线x=at+C,其中C为常数。
将坐标变换x=at+C 代入原始偏微分方程,并进行求解,即可得到原始偏微分方程的解。
二阶偏微分方程考虑二维波动方程:∂2u ∂t2−c2(∂2u∂x2+∂2u∂y2)=0首先确定两组特征线:dx dt =c, dydt=c解特征线方程可得特征线为直线x=ct+C1和y=ct+C2,其中C1,C2为常数。
沿着特征线进行坐标变换:x′=x−ct−C1, y′=y−ct−C2将坐标变换后的偏微分方程进行求解,得到参数函数。
然后将参数函数代入坐标变换公式,即可得到原始偏微分方程的解。
总结行波法是一种求解偏微分方程的有效方法,通过确定特征线并进行坐标变换,可以将原始偏微分方程转化为常微分方程进行求解。
行波法在物理学、工程学等领域具有广泛的应用,可以用于描述波动、传热、扩散等现象。
掌握行波法的基本原理和步骤对于解决实际问题具有重要意义。
第三章 一阶偏微分方程
(r)
➢ 处理含间断问题的原则:分段求解
第三章一阶偏微分方程——追赶现象
例1 含有激波的追赶问题
间断条件
h, q 1 h2
2
dxs dt
1 2
hl2
1 2
hr2
hl hr
1 2
(hl
hr )
初值
t / h0 xs
第三章一阶偏微分方程——追赶现象
➢ 图象
h
t=0
h0
t</h0
t=/h0
通解
g1(x, y,u) k1, g2 (x, y,u) k2
初始曲线限制
F(k1, k2 ) 0
解曲面
F(g1(x, y,u), g2 (x, y,u)) 0
第三章一阶偏微分方程——特征线法
➢ 例2.3
特征方程 通解 解曲面 由初值 得解
u u 1
x y
( 为常数)
dy , du 1
kc
dx
v
dt
1
(1
NK
Kc)2
第三章一阶偏微分方程——追赶现象
➢
dt (c n)l (c n)r 1 nl nr
cl cr
➢ 特征线光滑解
dc k c dx v
c
c0
exp(
k v
x)
(x xs )
第三章一阶偏微分方程——追赶现象
➢ 原因:形成强间断——激波,微分方程失效
问题:补充间断面上的关系
第三章一阶偏微分方程——追赶现象
3。激波间断关系
q r
t x
l, ql
dxs/dt
r, qr
0
xl
xs
xr
数学中的椭圆型偏微分方程
数学中的椭圆型偏微分方程在数学领域中,椭圆型偏微分方程是一类重要的方程类型。
它在物理学、工程学和计算机科学等各个领域都有广泛的应用。
本文将介绍椭圆型偏微分方程的定义、性质和求解方法,从而帮助读者更好地理解和应用这一方程类型。
一、椭圆型偏微分方程的定义椭圆型偏微分方程是指具有标准形式的二阶偏微分方程,其中二次项系数的行列式不为零。
一般而言,椭圆型偏微分方程可以表示为:∑[i,j=1 to n] {aij(x) ∂²u/∂xi ∂xj} + ∑[i=1 to n] bi(x) ∂u/∂xi + cu = f其中,a_ij、b_i、c、f是相关系数或函数;u是未知函数,表示问题的解;x_1,x_2,…,x_n是自变量。
二、椭圆型偏微分方程的性质1. 正定性:椭圆型偏微分方程的二次项系数矩阵是正定矩阵。
这意味着椭圆型方程的解在定义域上满足一定的正定性条件。
2. 内部渐进性:椭圆型方程的解在区域的内部是光滑且渐进的。
3. 边界条件:椭圆型方程需要通过边界条件来获得唯一解。
常见的边界条件包括:泊松方程中的迪里切特边界条件和诺依曼边界条件。
三、椭圆型偏微分方程的求解方法1. 分离变量法:分离变量法是椭圆型偏微分方程求解的一种常见方法。
通过假设解可以表示为各个自变量分量的乘积形式,然后将未知函数与其各个自变量的分量进行分离,最终得到一个由各自变量分量的常微分方程组成的代数方程。
2. 特征线法:特征线法适用于一类特殊的椭圆型偏微分方程。
通过求解特征方程,我们可以找到解的参数化表示,从而将原方程化为一个更简单的常微分方程。
3. 有限差分法:有限差分法是一种通过在空间和时间上离散化方程来数值求解椭圆型偏微分方程的方法。
通过将偏微分方程转化为差分方程,可以用迭代方法求解离散问题。
四、椭圆型偏微分方程的应用1. 热传导方程:热传导方程可以描述物体内部温度分布随时间变化的情况。
通过求解热传导方程,我们可以研究热量在不同材料中的传导行为。
数学物理方程- _特征线法 2014-12
u( uy
x,0) f ( ( x,0)
x) 1
3
g(x) f ( x)
3x2 g( x)
0
1 3
f (x)
g( x)
C
解 出f ( x) 9 x 2 C, g( x) 3 x 2 C
u( x,
y)
9
(
4
x
1
y)2
3(x
4
y)2
3x2
y2.
43
4
线性二阶偏微分方程:叠加原理
联立(A)(B)两式,可得
f (x) 1 (x) 1
x
(
)d
1
(
f
(0)
g (0))
2
2a 0
2
g(x) 1 (x) 1
x
(
)d
1
(
f
(0)
g (0))
2
2a 0
2
所以
u(x,t) f (x at) g(x at)
(B) (7) (8)
1 (x at) 1
xat
(
)d
1
有
3u 3(u u ) 3u
ut 3ux x t
43 .
所以
3u
4
3
.
3
即
u
4
9
1.
9
对 两边积分,可得
u 22 1 g( ),
99
其中,g() 为一个可微函数。
由
u( ,) 2 2 1 g( ),
99
u(x,t) 2 x2 1 (x 3t)x g(x 3t),
定义1 考虑下面一阶线性微分方程
aut bux cu f
一阶偏微分方程的特征线法
一阶偏微分方程的特征线法
一阶偏微分方程的特征线法是一种在求解偏微分方程的一种有效的数
值解法,也可以称之为特征线的数值测试。
它将一维特征线作为解决
方案,根据微分方程的偏导数在一条离散特征线上求解,使得问题变
得相对简单,方便求解。
这种方法不仅可以用于一阶偏微分方程,而
且还可用于多维偏微分方程。
特征线法对解偏微分方程有很大的帮助。
特征线实际上是由微分方程
构成的,特征线是方程的特征方程的解,这种方法的最大优点是可以
明确其数学形式,这样就可以利用离散化方法求解一般的微分方程,
它更加的方便快捷。
此外,特征线法有其独特性,它将问题分解为一维离散问题,只要将
原始方程变形成特征型方程,就可以将复杂的多元方程转换为一维的
特征型方程,由于特征线方程的特殊性,可以在离散点间计算出特征
线的值,从而获得解决方案,这样的方法有效的避免了复杂的数值分
析求解方法所带来的复杂性,使得问题更易于处理和解决。
总之,特征线法在求解偏微分方程中有着重要的作用,由于其独特的
特性,可以有效的将复杂的多维微分方程简化成一维特征线,由于离
散性,可以很容易的计算出特征线上各个离散点间的值,从而获得解。
偏微分方程的特解法初步
偏微分方程的特解法初步偏微分方程(Partial Differential Equation, PDE)是数学中的重要分支,广泛应用于物理、工程、金融等领域。
解决PDE问题的一种方法是求其特解,本文将初步介绍几种常见的偏微分方程特解法。
一、分离变量法分离变量法是求解线性齐次偏微分方程的一种常用方法,适用于具备一定对称性特征的方程。
其基本思想是将未知函数表示成各个变量的乘积形式,然后分别解各个变量的常微分方程,再将各个解叠加起来得到原方程的解。
以二维空间的波动方程为例,其形式为:∂²u/∂t² =c²(∂²u/∂x² + ∂²u/∂y²)我们假设解可以表示为:u(x, y, t) = X(x)Y(y)T(t)将其代入原方程,可得分离后的方程:X''/X + Y''/Y = 1/(c²T²) * T''/T = -k²由此得到一个关于X和Y的常微分方程组,以及一个关于T的常微分方程。
将各个方程分别求解,再将解函数叠加起来,即可得到原方程的特解。
二、变量代换法变量代换法是将偏微分方程转化为简单的常微分方程,从而求解其特解。
该方法适用于通过变换后的方程能够得到特定解的情况。
以二维空间的热传导方程为例,其形式为:∂u/∂t = α²(∂²u/∂x² + ∂²u/∂y²)我们假设通过变换可以将原方程化为一个具有常微分方程解的形式:v(η) = u(x, y, t)其中η为某个变换后的新变量。
对该变量进行合适的变换,可将方程化简为一个常微分方程,从而可以通过常微分方程的解函数得到原方程的特解。
三、特征线法特征线法是解决非线性偏微分方程的一种有效方法,适用于具有一定的对称性和可分离变量的特征的方程。
该方法的基本思想是通过指定特征曲线的参数方程,将原方程转化为一个只包含未知函数的常微分方程。
特征线理论及应用分析
由
得:
J J v 2 1 c (J J ) 4
J ( x3 , t ) J ( x3 , t ) v1 v2 2 c1 c2 v( x3 , t ) 2 2 1 2
( 1) c1 c2 1 v1 v2 c( x3 , t ) [ J ( x3 , t ) J ( x3 , t )] 4 2 2 2
dy A2 dx A1
代入
A1 (
u A2 u ) F1 0 式 x A1 y
u dy u A1 ( ) F1 0 x dx y
偏微分方程可化简为:
du A1 F1 0 dx
或: (4)
du F1 dx A1
得到偏微分方程的相容方程
特征线的第一个数学意义: 【是平面上这样一族曲线:沿着此族中任一曲线(a),
基本方程与黎曼不变量 (以一维等直截面管为例) (连续方程)
基本方程
v v 0 t x x
(动量方程)
v v 1 p v 0 t x x
等熵流动中只有一个状态参量独立:
( p)
d 1 d ( ) s dp 2 dp dp c
简单波流动
4 J 3 J
t
J
0
2 J
c/c0
1 J
0 J (II)
0 J
(I)
(3)
0 J
(2)
(1)
(0)
(4)
0 J
0 J
(0)
活塞运动迹线
x 特征线
v/c0 相容关系描述的状态特征线
复合波流动
t 10 4 9 7 6 C+ 5 3 8 2 C2 8 9 3 10 v/c1 5 6 4
6.2 一维波动方程的特征线法
utt − a u xx = 0 ⇒ −4a uξη = 0 ⇒ uξη = 0
2
u (ξ ,η ) = f (ξ ) + g (η )
u ( x, t ) = f ( x − at ) + g ( x + at )
通解
u ( x, t ) = f ( x − at ) + g ( x + at )
2
作自 ξ = x − at 变量 特征 η = x + at 变换
u x = u ξ ξ x + uηη x = u ξ + uη 则 u xx = u ξξ + 2 u ξη + uηη u u u a u u = ξ + η = ( − ) t t t ξ η ξ η u = a 2 (u − 2 u + u ) ξξ ξη ηη tt
φ ( x ), 0 < x < +∞ ; Φ ( x ) = − φ ( − x ), − ∞ < x < 0. Ψ ( x ) = ψ ( x ), 0 < x < +∞ ; − ψ ( − x ), − ∞ < x < 0.
Φ ( x ), Ψ ( x )
沿特征线 x + at = c1 化简定解问题得
dv = 0, t > 0 dt v ( 0 ) = ψ ( c1 ) + a φ ′ ( c1 )
v(t ) = ψ (c1 ) + aφ ′(c1 )
v( x, t ) = ψ ( x + at ) + aφ ′( x + at )
数学物理方程--- 6 特征线法
第 六 章 特 征 线 法
定义1
考虑下面一阶线性微分方程
aut bu x cu f
数 学 物 理 方 程
4
第 方程 dx 六 a b 0 5 章 dt 称为(4)式的特征方程,其积分曲线称为(4)式的特征曲线。 特 征 注1 给出例1求解方法的一个几何解释。在该例中,使用了参数 线 法 c,即为特征线的初始值x (0) 。当参数 c x(0) 在 x 轴滑动时,
(3)式的解曲线就织成了(1)式--(2)式的解曲面。 为了避免和常数c混淆,下面用变量 代替参数c。请记住:
b t 其中 a 、 、c 和 f 均为自变量 x 、 的函数。
x(0) , 变化相当于 x (0) 在 x 轴上滑动。
西安交通大学 数学与统计学院
例2 求解线性方法柯西问题 ut ( x cos t )u x 0, t 0, x (6) 1 (7) u ( x, 0) 1 x 2 , x 数 第 学 dx x cos t 0, 而过点 ( , 0) 六 物 解 方程(6)式的特征方程为 章 dt 理 方 的特征线就是下面问题的解 特 程 dx 征 x cos t 0, t 0 线 dt 法 x(0) 解之可得 x esin t。沿此特征线原定解问题(6)-(7)简化为 du dt ut ( x cos t )u x 0, t 0 u (0) u ( , 0) 1 1 2 西安交通大学 数学与统计学院所以(11)源自第 六 章 特 征 线 法
1 1 t u ( x, t ) ( x t 1) e ( x t 1)e 2t 2 2
特征线法
t
则有:0
dU
t
0
2a
c2
a
' 2a
c2
d
U
t
U
0
1 2a
t 0
2a
c2
a
' 2a
c2
d
2a
c2
特征线法 2020-5-15
Huafeng Zhang
School of Physical Science and Technology, Yangtze University
U
t
U
0
1 2a
如果x=x(t),则
u(x,t) u x(t),t U t
u
t
x,t u
x
x,t u
f
x,t
u t0 x
对上式求关于t的导数
dU u x u t u u dx dt x t t t t x dt
假设x(t)对t的依赖关系可以表示为:
dx dt
x t
, t
考虑方程 u x,t u x,t u f x,t ,得:
t
0
2a
c2
Байду номын сангаас
a
' 2a
c2
d
2a
c2
1 2a
2at c2 c2
a
'
d
1 2a
x at x at
a
'
d
1 2
x
at
x
at
1 2a
xat d
xat
利用 U t0 x at 可得:
u
x, t
U
t
1 2
x
14第六章波动方程的特征线法.pdf
utt −=
a 2u xx 0,
t > 0, 0 < x < ∞
(1)
=
ut ( x, 0) ψ ( x), x ≥ 0 (2)
u ( x, 0) ϕ ( x) ,=
u=
(3)
(0, t ) 0 , t ≥ 0
解:先考虑一个辅助问题
utt −=
a 2u xx 0,
t > 0, − ∞ < x < ∞
u | x − at =
=
0 ϕ ( x) , x ≥ 0
u |
=
x =0 h(t ) , t ≥ 0
解:易得其中方程的解的形式为
u ( x, t ) = f ( x − at ) + g ( x + at )
为确定函数和,利用定解条件有
ϕ=
( x) f (0) + g (2 x)
u ( x=
可得
1 x + at
u ( x, t ) =
ψ (α )dα
∫
2a x − at
此即达朗贝尔公式在 = 的表达式。
1
1 x + at
=
u
[ϕ ( x − at ) + ϕ ( x + at )] + ∫ x−at ψ (α )dα
2
2a
例1. 求定解问题
0
utt − a u xx =
(2).当 − < 时,即 >
时,有
Φ ( x − at ) =
−ϕ (at − x)
而 + > ,故有 + = ( + )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x(0) , 变化相当于 x(0) 在 x 轴上滑动。
西安交通大学 数学与统计学院
例2 求解线性方法柯西问题
ut (x cos t)ux 0,t 0, x
(6)
数
u(x,
0)
1 1 x2
,
x
(7) 第
学 物 理 方
解 方程(6)式的特征方程为
的特征线就是下面问题的解
dx dt
x cos t
西安交通大学 数学与统计学院
99
u(x,t) 2 x2 1 (x 3t)x g(x 3t), 99
由方程(2)
u(x, 0) x2
数得
学 物
x2 2 x2 1 x2 g(x),
理
99
第 六 章
方程即
8 x2 g(x),
特 征
所以
9
线 法
u(x,t) 2 x2 1 (x 3t)x 8 (x 3t)2,
(x t)ux
dU
dx
dt ut ux dt ut (x t)ux
则
数
数和求解方法。
第
学 物
例1
求解线性方法Cauchy问题
理 方 程
uut(
3ux x t, 0 t, x, 0) x2, x
x
六
章
(1)
特
(2)
征
组合解。特方征程线(方1)法的的左基端本思ut 想 就3u是x 是将其u(转x,化t)为的一u(阶x,偏t)导关数于的t线的性全线 法
99
9
2 x2 1 x2 3 tx 8 (x2 6x 9t2 ), 9 9 99
x2 5tx 8t2.
西安交通大学 数学与统计学院
定义1 考虑下面一阶线性微分方程
aut bux cu f
4
其中 a 、b、c 和 f 均为自变量 x 、t 的函数。
数 学
方程
物
a dx b 0
章
方 程
u 2t2 (x 3t)t (x 3t)2
特 征
2t2 xt 3t2 x2 6xt 9t2
线
x2 8t2 5xt
法
此解法关键之处是找到直线 x 3t c ,偏微分方程转化为
常微分方程。直线 x 3t c 称为一阶偏微分方程(1)的特征线
uut(
3ux x t, 0 t, x, 0) x2, x
,
x
六 章
(1)
特 征
(2) 线
法
也可以用变量代换方法求解。具体做法是,做变换
x 3t, x.
则 ut u t u t u (3) u 0 3u ,
ux u x u x u 1 u 1 u u
西安交通大学 数学与统计学院
即 ut 3u , ux u u , t , x .
8
数 最后,由特征线方程 x esint解出 xesint , 将其代入到 第
学
物(8)式中便得(6)式-(7)式的解为
理 方 程
u(x,
t)
1
1 x 2e2 sin t
六 章 特 征
线
法
西安交通大学 数学与统计学院
练习
求下列Cauchy问题的解
数 学
uut|t0(x
x
t)ux
u
x,
x
ቤተ መጻሕፍቲ ባይዱ
R, t
第6章 特征线法
数
第
学
六
物 理
章
方 程
特 征
线
法
本章中心内容
特征线法求解一阶偏微分方程以及一维波动方程
西安交通大学 数学与统计学院
Method of characteristics 一种基于特征理论的求解双
数学物理曲为一人 维型们不偏所定微用常分。流方电和程子二组计维的算定似机常方出流法现等。以问它后题产,中生又得较得到早到了,了广19进泛世一 的纪步用末的。已发经展有,效在地第 六 章
0,
程
dx
x
cos t
0, t
0
dt
而过点
(
,
0)
六 章
特 征 线
x(0)
法
解之可得 x esint。沿此特征线原定解问题(6)-(7)简化为
du dt
ut
(x cos t)ux
0, t
0
西安交通大学
数学与统计u学(院0)
u(
,
0)
1
1
2
易得该问题的解为
1
u 常数 u(0) 1 2
代入
3
ut 3ux x t
有
数学3u 3(u u ) ut 3ux x t
物
理 方
程所以
3u
3u
4
3
.
43 .
3
即
u
4
9
1.
9
对 两边积分,可得
第 六 章 特 征 线 法
u 22 1 g( ),
99
其中,g() 为一个可微函数。
由
u( ,) 2 2 1 g( ),
5
理
dt
第 六 章
方
程 称为(4)式的特征方程,其积分曲线称为(4)式的特征曲线。
特 征
注1 给出例1求解方法的一个几何解释。在该例中,使用了参数线
c,即为特征线的初始值x(0) 。当参数 c x(0) 在x 轴滑动时,法
(3)式的解曲线就织成了(1)式--(2)式的解曲面。
为了避免和常数c混淆,下面用变量 代替参数c。请记住:
方 特征线法也是求解偏微分方程的一种基本方法。其实质 程是沿偏微分方程的特征线积分以使方程的形式简化,从而使
特 征
其求解称为可能。它不仅适用于线性偏微分方程,而且也是 线
求解非线性方程的一种有效方法。
法
西安交通大学 数学与统计学院
第一节、一阶偏微分方程特征线法
一、特征线法
结合一些具体的定解问题的求解,说明特征线方法的基本思想
导数。
du dt
ut
uxx
x
t
在这条直线 x 3t c 上,即 x c 3t ,在这个直线上,上述
定解问题转化为
西安交通大学 数学与统计学院
du 4t c, 0 t dt
(3)
u(0) u(x(0), 0) x2 (0) c2
数解之,得
第
学
u 2t2 ct c2
六
物理又 x 3t c ,则
0
(9)
第 六
物 解 第一步 求特征线。 特征线方程
理
章
方 程
dx x t
dt
特
(10)
征
x(0) c
线 法
的解为
x(t) et t 1 cet
(11)
第二步 化偏微分方程为常微分问题并求解。令
U (t) u(x(t),t)
西 则安交通大学dd数Ut学与统u计t 学院ux
dx dt
ut
x
(1) (2)
西安交通大学 数学与统计学院
特征线 x 3t c 是方程 dx 3 0 的解,方程
dx 3 0
dt
称为(1)的特征方程,其解就是(1)的特征线。
dt
数 沿一阶偏微分方程的特征线将方程化为常微分方程,便是特 第
学物征线法的基本思想。
理 方
对定解问题(1)(2)
程
uut(
3ux x t, 0 t x, 0) x2, x