九年级数学 二次函数易错题(Word版 含答案)
初三数学二次函数的专项培优易错试卷练习题(含答案)及答案
初三数学二次函数的专项培优易错试卷练习题(含答案)及答案一、二次函数1.如图,已知抛物线y =x 2+bx +c 与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C (0,-3),对称轴是直线x =1,直线BC 与抛物线的对称轴交于点D . (1)求抛物线的函数表达式; (2)求直线BC 的函数表达式;(3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P 在第三象限. ①当线段PQ =34AB 时,求tan ∠CED 的值; ②当以点C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标.【答案】(1)抛物线的函数表达式为y =x 2-2x -3.(2)直线BC 的函数表达式为y =x -3.(3)①23.①P 1(122),P 2(16,74). 【解析】 【分析】已知C 点的坐标,即知道OC 的长,可在直角三角形BOC 中根据∠BCO 的正切值求出OB 的长,即可得出B 点的坐标.已知了△AOC 和△BOC 的面积比,由于两三角形的高相等,因此面积比就是AO 与OB 的比.由此可求出OA 的长,也就求出了A 点的坐标,然后根据A 、B 、C 三点的坐标即可用待定系数法求出抛物线的解析式. 【详解】(1)∵抛物线的对称轴为直线x=1,∴− 221bba -⨯==1 ∴b=-2∵抛物线与y 轴交于点C (0,-3), ∴c=-3,∴抛物线的函数表达式为y=x 2-2x-3; (2)∵抛物线与x 轴交于A 、B 两点, 当y=0时,x 2-2x-3=0.∴x1=-1,x2=3.∵A点在B点左侧,∴A(-1,0),B(3,0)设过点B(3,0)、C(0,-3)的直线的函数表达式为y=kx+m,则033k mm==+⎧⎨-⎩,∴13 km⎧⎨-⎩==∴直线BC的函数表达式为y=x-3;(3)①∵AB=4,PQ=34 AB,∴PQ=3∵PQ⊥y轴∴PQ∥x轴,则由抛物线的对称性可得PM=32,∵对称轴是直线x=1,∴P到y轴的距离是12,∴点P的横坐标为−12,∴P(−12,−74)∴F(0,−74),∴FC=3-OF=3-74=54∵PQ垂直平分CE于点F,∴CE=2FC=5 2∵点D在直线BC上,∴当x=1时,y=-2,则D(1,-2),过点D作DG⊥CE于点G,∴DG=1,CG=1,∴GE=CE-CG=52-1=32.在Rt△EGD中,tan∠CED=23 GDEG=.②P1(2,-2),P2(6-52).设OE=a,则GE=2-a,当CE为斜边时,则DG2=CG•GE,即1=(OC-OG)•(2-a),∴1=1×(2-a),∴a=1,∴CE=2,∴OF=OE+EF=2∴F、P的纵坐标为-2,把y=-2,代入抛物线的函数表达式为y=x2-2x-3得:2或2∵点P在第三象限.∴P1(2-2),当CD为斜边时,DE⊥CE,∴OE=2,CE=1,∴OF=2.5,∴P和F的纵坐标为:-52,把y=-52,代入抛物线的函数表达式为y=x2-2x-3得:x=1-621+62∵点P在第三象限.∴P2(6-52).综上所述:满足条件为P1(2-2),P2(6-52).【点睛】本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.2.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).(Ⅰ)求二次函数的解析式及点A,B的坐标;(Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;(Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.【答案】(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q553)M (1,8),N(2,13)或M′(3,8),N′(2,3).【解析】【分析】(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;(2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;(3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.【详解】(Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,令y=0,得到:x2﹣4x﹣5=0,解得x=﹣1或5,∴A(﹣1,0),B(5,0).(Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).把点Q′坐标代入y=﹣x2+4x+5,得到:m2﹣4m﹣5=﹣m2﹣4m+5,∴55∴Q55(Ⅲ)如图,作MK⊥对称轴x=2于K.①当MK=OA ,NK=OC=5时,四边形ACNM 是平行四边形. ∵此时点M 的横坐标为1, ∴y=8,∴M (1,8),N (2,13),②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形, 此时M′的横坐标为3,可得M′(3,8),N′(2,3). 【点睛】本题主要考查了二次函数的应用,第3问中理解通过平移AC 可应用“一组对边平行且相等”得到平行四边形.3.已知抛物线26y x x c =-++.(1)若该抛物线与x 轴有公共点,求c 的取值范围;(Ⅱ)设该抛物线与直线21y x =+交于M ,N 两点,若25MN =C 的值; (Ⅲ)点P ,点Q 是抛物线上位于第一象限的不同两点,,PA QB 都垂直于x 轴,垂足分别为A ,B ,若OPA OQB ∆≅∆,求c 的取值范围.【答案】(I )9c -…;(Ⅱ)2c =-;(Ⅲ)c 的取值范围是2174c -<< 【解析】 【分析】(1) 抛物线与x 轴有公共点,则判别式为非负数,列不等式求解即可;(2)求出二次函数与直线的交点,并根据勾股定理求出MN 的长度,列方程即可求解; (3)由OPA OQB ∆≅∆可知,P ,Q 两点的坐标特点,设坐标得到设点P 的坐标为(, )m n ,则点Q 的坐标为(,)n m ,代入二次函数,得到n,m 的关系,则只需保证该方程有正根即可求解. 【详解】解:(I )∵抛物线26y x x c =-++与x 轴有交点,∴一元二次方程260x x c -++=有实根。
九年级上册数学 二次函数易错题(Word版 含答案)
九年级上册数学 二次函数易错题(Word 版 含答案)一、初三数学 二次函数易错题压轴题(难)1.在平面直角坐标系中,将函数2263,(y x mx m x m m =--≥为常数)的图象记为G .(1)当1m =-时,设图象G 上一点(),1P a ,求a 的值; (2)设图象G 的最低点为(),o o F x y ,求o y 的最大值;(3)当图象G 与x 轴有两个交点时,设右边交点的横坐标为2,x 则2x 的取值范围是 ; (4)设1112,,2,16816A m B m ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,当图象G 与线段AB 没有公共点时,直接写出m 的取值范围.【答案】(1)0a =或3a =-;(2)118;(3)21136x -<<-;(4)18m <-或116m >-【解析】 【分析】(1)将m=-1代入解析式,然后将点P 坐标代入解析式,从而求得a 的值; (2)分m >0和m ≤0两种情况,结合二次函数性质求最值; (3)结合二次函数与x 轴交点及对称轴的性质确定取值范围; (4)结合一元二次方程根与系数的关系确定取值范围. 【详解】解:(1)当1m =-时,()22613y x x x =++≥把(),1P a 代入,得22611a a ++=解得0a =或3a =- (2)当0m >时,,(3)F m m - 此时,0o y m =-<当0m ≤时,2223926=2()22y x mx m x m m m =----- ∴239,22F m m m ⎛⎫--⎪⎝⎭此时,229911=()22918m m m ---++ ∴0y 的最大值118=综上所述,0y 的最大值为118(3)由题意可知:当图象G 与x 轴有两个交点时,m >0当抛物线顶点在x 轴上时,22=4(6)42()=0b ac m m -=--⨯⨯-△ 解得:m=0(舍去)或29m =-由题意可知抛物线的对称轴为直线x=32m 且x ≥3m∴当图象G 与x 轴有两个交点时,设右边交点的横坐标为x 2,则x 2的取值范围是21136x -<<- (4)18m <-或116m >- 【点睛】本题属于二次函数综合题,考查了二次函数的性质,不等式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考压轴题.2.已知函数222222(0)114(0)22x ax a x y x ax a x ⎧-+-<⎪=⎨---+≥⎪⎩(a 为常数). (1)若点()1,2在此函数图象上,求a 的值. (2)当1a =-时,①求此函数图象与x 轴的交点的横坐标.②若此函数图象与直线y m =有三个交点,求m 的取值范围.(3)已知矩形ABCD 的四个顶点分别为点()2,0A -,点()3,0B ,点()3,2C ,点()2,2D -,若此函数图象与矩形ABCD 无交点,直接写出a 的取值范围.【答案】(1)1a =或3a =-;(2)①1x =--1x =+;②724m ≤<或21m -<<-;(3)3a <--或1a ≤<-或a >【解析】 【分析】(1)本题根据点(1,2)横坐标大于零,故将点代入对应解析式即可求得a 的取值. (2)①本题将1a =-代入解析式,分别令两个函数解析式y 值为零即可求得函数与x 轴交点横坐标;②本题可求得分段函数具体解析式,继而求得顶点坐标,最后平移直线y m =观察其与图像交点,即可得到答案.(3)本题可根据对称轴所在的位置分三种情况讨论,第一种为当2a <-,将2222y x ax a =-+-函数值与2比大小,将2211422y x ax a =---+与0比大小;第二种为当20a -≤<,2222y x ax a =-+-函数值与0比大小,且该函数与y 轴的交点和0比大小,2211422y x ax a =---+函数值与2比大小,且该函数与y 轴交点与2比大小;第三种为2222y x ax a =-+-与y 轴交点与2比大小,2211422y x ax a =---+与y 轴交点与0比大小. 【详解】(1)将()1,2代入2211422y x ax a =---+中,得2112422a a =---+,解得1a =或3a =-.(2)当1a =-时,函数为2221,(0)17(0)22x x x y x x x ⎧+-<⎪=⎨-++≥⎪⎩,①令2210x x +-=,解得1x =--1x =- 令217022x x -++=,解得1x =+或1x =-综上,1x =--1x =+.②对于函数()2210y x x x =+-<,其图象开口向上,顶点为()1,2--; 对于函数217(0)22y x x x =-++≥,其图象开口向下,顶点为()1,4,与y 轴交于点70,2⎛⎫⎪⎝⎭. 综上,若此函数图象与直线y m =有三个交点,则需满足724m ≤<或21m -<<-. (3)2222y x ax a =-+-对称轴为x a =;2211422y x ax a =---+对称轴为x a =-. ①当2a <-时,若使得2222y x ax a =-+-图像与矩形ABCD 无交点,需满足当2x =-时,2222y x ax a =-+-24+422a a =->+,解不等式得0a >或4a ,在此基础上若使2211422y x ax a =---+图像与矩形ABCD 无交点,需满足当3x =时,2221111493422220y x ax a a a =---+=⨯--+<-,解得3a >或3a <--,综上可得:3a <--.②当20a -≤<时,若使得2222y x ax a =-+-图像与矩形ABCD 无交点,需满足2x =-时,2222y x ax a =-+-24+420a a =+-<;当0x =时,22222=20y x ax a a =-+--≤;得222a -≤<-,在此基础上若使2211422y x ax a =---+图像与矩形ABCD 无交点,需满足0x =时,2221114=42222y x ax a a ---+->=;3x =时,2221111493422222y x ax a a a =---+=⨯--+>-;求得21a -<<-; 综上:21a -≤<-.③当0a ≥时,若使函数图像与矩形ABCD 无交点,需满足0x =时,22222=22y x ax a a =-+--≥且2221114+40222y x ax a a =---+=-<;求解上述不等式并可得公共解集为:22a >.综上:若使得函数与矩形ABCD 无交点,则322a <--或21a -≤<-或22a >. 【点睛】本题考查二次函数综合,求解函数解析式常用待定系数法,函数含参数讨论时,往往需要分类讨论,分类讨论时需要先选取特殊情况以用来总结规律,继而将规律一般化求解题目.3.如图,若抛物线y =x 2+bx+c 与x 轴相交于A ,B 两点,与y 轴相交于点C ,直线y =x ﹣3经过点B ,C . (1)求抛物线的解析式;(2)点P 是直线BC 下方抛物线上一动点,过点P 作PH ⊥x 轴于点H ,交BC 于点M ,连接PC .①线段PM 是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P 运动的过程中,是否存在点M ,恰好使△PCM 是以PM 为腰的等腰三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.【答案】(1)y =x 2﹣2x ﹣3;(2)①有,94;②存在,(2,﹣3)或(32,2﹣2) 【解析】 【分析】(1)由直线表达式求出点B 、C 的坐标,将点B 、C 的坐标代入抛物线表达式,即可求解;(2)①根据PM =(x ﹣3)﹣(x 2﹣2x ﹣3)=﹣(x ﹣32)2+94即可求解; ②分PM =PC 、PM =MC 两种情况,分别求解即可. 【详解】解:(1)对于y =x ﹣3,令x =0,y =﹣3,y =0,x =3, 故点B 、C 的坐标分别为(3,0)、(0,﹣3), 将点B 、C 的坐标代入抛物线表达式得:9303b c c ++=⎧⎨=-⎩,解得:32c b =-⎧⎨=-⎩,故抛物线的表达式为:y =x 2﹣2x ﹣3;(2)设:点M (x ,x ﹣3),则点P (x ,x 2﹣2x ﹣3), ①有,理由:PM =(x ﹣3)﹣(x 2﹣2x ﹣3)=﹣(x ﹣32)2+94, ∵﹣1<0,故PM 有最大值,当x =32时,PM 最大值为:94; ②存在,理由:PM 2=(x ﹣3﹣x 2+2x+3)2=(﹣x 2+3x )2; PC 2=x 2+(x 2﹣2x ﹣3+3)2; MC 2=(x ﹣3+3)2+x 2;(Ⅰ)当PM =PC 时,则(﹣x 2+3x )2=x 2+(x 2﹣2x ﹣3+3)2, 解得:x =0或2(舍去0), 故x =2,故点P (2,﹣3);(Ⅱ)当PM =MC 时,则(﹣x 2+3x )2=(x ﹣3+3)2+x 2,解得:x =0或(舍去0和),故x =3,则x 2﹣2x ﹣3=2﹣,故点P (3,2﹣).综上,点P 的坐标为:(2,﹣3)或(3,2﹣). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质等,其中(2)②,要注意分类求解,避免遗漏.4.如图,抛物线2(0)y ax bx c a =++≠与坐标轴的交点为()30A -,,()10B ,,()0,3C -,抛物线的顶点为D .(1)求抛物线的解析式.(2)若E 为第二象限内一点,且四边形ACBE 为平行四边形,求直线CE 的解析式. (3)P 为抛物线上一动点,当PAB ∆的面积是ABD ∆的面积的3倍时,求点P 的坐标.【答案】(1)223y x x =+-;(2)33y x =--;(3)点P 的坐标为()5,12-或()3,12.【解析】 【分析】(1)本题考查二次函数解析式的求法,可利用待定系数法,将点带入求解;(2)本题考查二次函数平行四边形存在性问题,可根据题干信息结合平行四边形性质确定动点位置,进一步利用待定系数法求解一次函数解析式;(3)本题考查二次函数与三角形面积问题,可先根据题干面积关系假设动点坐标,继而带入二次函数,列方程求解. 【详解】(1)∵抛物线2y ax bx c =++与坐标轴的交点为()30A -,,()10B ,,()0,3C -,∴93003a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得123a b c =⎧⎪=⎨⎪=-⎩∴抛物线的解析式为223y x x =+-. (2)如图,过点E 作EH x ⊥轴于点H,则由平行四边形的对称性可知1AH OB ==,3EH OC ==. ∵3OA =,∴2OH =,∴点E 的坐标为()2,3-. ∵点C 的坐标为()0,3-,∴设直线CE 的解析式为()30y kx k =-< 将点()2,3E -代入,得233k --=,解得3k =-,∴直线CE 的解析式为33y x =--.(3)∵2223(1)4y x x x =+-=+-,∴抛物线的顶点为()1,4D --.∵PAB ∆的面积是ABD ∆的面积的3倍, ∴设点P 为(),12t .将点(),12P t 代入抛物线的解析式223y x x =+-中,得22312t t +-=,解得3t =或5t =-, 故点P 的坐标为()5,12-或()3,12. 【点睛】本题考查二次函数与几何的综合,利用待定系数法求解解析式时还可以假设交点式,几何图形存在性问题求解往往需要利用其性质,假设动点坐标,列方程求解.5.如图,抛物线2y x bx c =-++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.点A 坐标的为3,0,点C 的坐标为()0,3.(Ⅰ)求抛物线的解析式;(Ⅱ)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作i 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作//PQ AB 交抛物线于点Q ,过点Q 作QN x ⊥轴于点N .若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求AEM △的面积;(Ⅲ)在(Ⅱ)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若=22FG DQ ,求点F 的坐标.【答案】(Ⅰ)223y x x =--+;(Ⅱ)12;(Ⅲ)()4,5F --或()1,0 【解析】 【分析】(Ⅰ)将点A ,点C 坐标代入解析式可求解;(Ⅱ)设M (x ,0),P (x ,-x 2-2x+3),利用对称性可求点Q (-2-x ,-x 2-2x+3),可求MP=-x 2-2x+3,PQ=-2-x-x=-2-2x ,则可用x 表示矩形PMNQ 的周长,由二次函数的性质可求当矩形PMNQ 的周长最大时,点P 的坐标,即可求点E ,点M 的坐标,由三角形面积公式可求解;(Ⅲ)先求出点D 坐标,即可求DQ=2,可得FG=4,设F (m ,-m 2-2m+3),则G (m ,m+3),用含有m 的式子表示FG 的长度即可求解. 【详解】解:(Ⅰ)依题意()()2330{3b c c --+⨯-+==解得2{3b c =-= 所以223y x x =--+(Ⅱ)2223(1)4yx x x抛物线的对称轴是直线1x =-(,0)M x ,()2,23P x x x --+,其中31x -<<-∵P 、Q 关于直线1x =-对称 设Q 的横坐标为a 则()11a x --=-- ∴2a x =--∴()22,23Q x x x ----+∴223MP x x =--+,222PQ x x x =---=--∴周长()222222232822(2)10d x x x x x x =----+=--+=-++ 当2x =-时,d 取最大值,此时,(2,0)M - ∴2(3)1AM =---= 设直线AC 的解析式为y kx b =+则303k b b -+=⎧⎨=⎩,解得13k b =⎧⎨=⎩∴设直线AC 的解析式为3y x将2x =-代入3yx,得1y =∴(2,1)E -, ∴1EM=∴11111222AEM S AM ME ∆=⋅=⨯⨯=(Ⅲ)由(Ⅱ)知,当矩形PMNQ 的周长最大时,2x =-此时点()0,3Q ,与点C 重合, ∴3OQ = ∵2223(1)4yx x x∴()1,4D -过D 作DK y ⊥轴于K , 则1DK =,4OK = ∴431OK OK OQ =-=-= ∴DKQ 是等腰直角三角形,2DQ =∴224FG DQ ==设()2,23F m m m --+,则(,3)G m m +()223233FG m m m m m =+---+=+∴234m m +=,解得14m =-,21m = 当4m =-时,2235m m --+=- 当1m =时,2230m m --+=. ∴()4,5F --或()1,0【点睛】本题是二次函数综合题,考查了二次函数的性质,矩形的性质,等腰直角三角形的性质等,利用参数表示线段的长度是本题的关键.6.如图,直线3yx与x 轴、y 轴分别交于点A ,C ,经过A ,C 两点的抛物线2y ax bx c =++与x 轴的负半轴的另一交点为B ,且tan 3CBO ∠=(1)求该抛物线的解析式及抛物线顶点D 的坐标;(2)点P 是射线BD 上一点,问是否存在以点P ,A ,B 为顶点的三角形,与ABC 相似,若存在,请求出点P 的坐标;若不存在,请说明理由【答案】(1)243y x x =++,顶点(2,1)D --;(2)存在,52,33P ⎛⎫--⎪⎝⎭或(4,3)-- 【解析】 【分析】(1)利用直线解析式求出点A 、C 的坐标,从而得到OA 、OC ,再根据tan ∠CBO=3求出OB ,从而得到点B 的坐标,然后利用待定系数法求出二次函数解析式,整理成顶点式形式,然后写出点D 的坐标;(2)根据点A 、B 的坐标求出AB ,判断出△AOC 是等腰直角三角形,根据等腰直角三角形的性质求出AC ,∠BAC=45°,再根据点B 、D 的坐标求出∠ABD=45°,然后分①AB 和BP 是对应边时,△ABC 和△BPA 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可;②AB 和BA 是对应边时,△ABC 和△BAP 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可. 【详解】解:(1)令y=0,则x+3=0, 解得x=-3, 令x=0,则y=3,∴点A (-3,0),C (0,3), ∴OA=OC=3, ∵tan ∠CBO=3OCOB=, ∴OB=1, ∴点B (-1,0),把点A 、B 、C 的坐标代入抛物线解析式得,93003a b c a b c c -+=⎧⎪-+=⎨⎪=⎩,解得:143a b c =⎧⎪=⎨⎪=⎩, ∴该抛物线的解析式为:243y x x =++, ∵y=x 2+4x+3=(x+2)2-1, ∴顶点(2,1)D --;(2)∵A(-3,0),B(-1,0),∴AB=-1-(-3)=2,∵OA=OC,∠AOC=90°,∴△AOC是等腰直角三角形,∴AC=2OA=32,∠BAC=45°,∵B(-1,0),D(-2,-1),∴∠ABD=45°,①AB和BP是对应边时,△ABC∽△BPA,∴AB ACBP BA=,即2322BP=,解得BP=22,过点P作PE⊥x轴于E,则BE=PE=23×22=23,∴OE=1+23=53,∴点P的坐标为(-53,-23);②AB和BA是对应边时,△ABC∽△BAP,∴AB ACBA BP=,即2322BP =,解得BP=32过点P作PE⊥x轴于E,则BE=PE=2=3, ∴OE=1+3=4, ∴点P 的坐标为(-4,-3); 综合上述,当52,33P ⎛⎫--⎪⎝⎭或(4,3)--时,以点P ,A ,B 为顶点的三角形与ABC ∆相似;【点睛】本题是二次函数综合题型,主要利用了直线与坐标轴交点的求解,待定系数法求二次函数解析式,等腰直角三角形的判定与性质,相似三角形的判定与性质,难点在于(2)要分情况讨论.7.定义:在平面直角坐标系中,O 为坐标原点,设点P 的坐标为(x ,y ),当x <0时,点P 的变换点P′的坐标为(﹣x ,y );当x≥0时,点P 的变换点P′的坐标为(﹣y ,x ). (1)若点A (2,1)的变换点A′在反比例函数y=k x的图象上,则k= ; (2)若点B (2,4)和它的变换点B'在直线y=ax+b 上,则这条直线对应的函数关系式为 ,∠BOB′的大小是 度.(3)点P 在抛物线y=x 2﹣2x ﹣3的图象上,以线段PP′为对角线作正方形PMP'N ,设点P 的横坐标为m ,当正方形PMP′N 的对角线垂直于x 轴时,求m 的取值范围.(4)抛物线y=(x ﹣2)2+n 与x 轴交于点C ,D (点C 在点D 的左侧),顶点为E ,点P 在该抛物线上.若点P 的变换点P′在抛物线的对称轴上,且四边形ECP′D 是菱形,求n 的值.【答案】(1) -2;(2) y=13x+103,90;(3) m <0,或;(4) n=﹣8,n=﹣2,n=﹣3.【解析】【分析】(1)先求出A 的变换点A ′,然后把A ′代入反比例函数即可得到结论;(2)确定点B ′的坐标,把问题转化为方程组解决;(3)分三种情形讨论:①当m <0时;②当m ≥0,PP '⊥x 轴时;③当m ≥0,MN ⊥x 轴时.(4)利用菱形的性质,得到点E 与点P '关于x 轴对称,从而得到点P '的坐标为(2,﹣n ).分两种情况讨论:①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ),代入抛物线解析式,求解即可;②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入抛物线解析式,求解即可.【详解】(1)∵A (2,1)的变换点为A ′(-1,2),把A ′(-1,2)代入y =k x中,得到k =-2.故答案为:-2.(2)点B (2,4)的变换点B ′(﹣4,2),把(2,4),(﹣4,2)代入y =ax +b 中.得到:2442a b a b +=⎧⎨-+=⎩,解得:13103a b ⎧=⎪⎪⎨⎪=⎪⎩,∴11033y x =+. ∵OB 2=2224+=20,OB ′2=2224+=20,BB ′2=22(42)(24)--+-=40,∴OB 2+OB ′2=BB ′2,∴∠BOB ′=90°.故答案为:y =13x +103,90. (3)①当m <0时,点P 与点P '关于y 轴对称,此时MN 垂直于x 轴,所以m <0. ②当m ≥0,PP '⊥x 轴时,则点P '的坐标为(m ,m ),点P 的坐标为(m ,﹣m ). 将点P (m ,﹣m )代入y =x 2﹣2x ﹣3,得:﹣m =m 2﹣2m ﹣3.解得:12m m ==(不合题意,舍去).所以m = ③当m ≥0,MN ⊥x 轴时,则PP '∥x 轴,点P 的坐标为(m ,m ).将点P (m ,m )代入y =x 2﹣2x ﹣3,得:m =m 2﹣2m ﹣3.解得:123322m m ==(不合题意,舍去).所以32m +=. 综上所述:m 的取值范围是m <0,m=12+或m=32. (4)∵四边形ECP 'D 是菱形,∴点E 与点P '关于x 轴对称.∵点E 的坐标为(2,n ),∴点P '的坐标为(2,﹣n ).①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ).代入y =(x ﹣2)2+n ,得:﹣n =(﹣2﹣2)2+n ,解得:n =﹣8.②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入y =(x ﹣2)2+n ,得:﹣2=(﹣n ﹣2)2+n .解得:n 1=﹣2,n 2=﹣3.综上所述:n 的值是n =﹣8,n =﹣2,n =﹣3.【点睛】本题是二次函数综合题、一次函数的应用、待定系数法、变换点的定义等知识,解题的关键是理解题意,学会用分类讨论的射线思考问题,学会用方程的思想思考问题,属于中考压轴题.8.如图,已知顶点为M (32,258)的抛物线过点D (3,2),交x 轴于A ,B 两点,交y 轴于点C ,点P 是抛物线上一动点.(1)求抛物线的解析式;(2)当点P 在直线AD 上方时,求△PAD 面积的最大值,并求出此时点P 的坐标; (3)过点P 作直线CD 的垂线,垂足为Q ,若将△CPQ 沿CP 翻折,点Q 的对应点为Q '.是否存在点P ,使Q '恰好落在x 轴上?若存在,求出点P 的坐标;若不存在,说明理由.【答案】(1)213222y x x =-++;(2)最大值为4,点P (1,3);(3)存在,点P 139313-+). 【解析】【分析】 (1)用待定系数法求解即可;(2)由△PAD 面积S =S △PHA +S △PHD ,即可求解;(3)结合图形可判断出点P 在直线CD 下方,设点P 的坐标为(a ,213222a a -++),当P 点在y 轴右侧时,运用解直角三角形及相似三角形的性质进行求解即可.【详解】解:(1)设抛物线的表达式为:y =a (x ﹣h )2+k =a (x ﹣32)2+258, 将点D 的坐标代入上式得:2=a (3﹣32)2+258, 解得:a =﹣12, ∴抛物线的表达式为:213222y x x =-++; (2)当x =0时,y =﹣12x 2+32x +2=2, 即点C 坐标为(0,2), 同理,令y =0,则x =4或﹣1,故点A 、B 的坐标分别为:(﹣1,0)、(4,0),过点P 作y 轴的平行线交AD 于点H,由点A 、D 的坐标得,直线AD 的表达式为:y =12(x +1), 设点P (x ,﹣12x 2+32x +2),则点H (x ,12x +12), 则△PAD 面积为:S =S △PHA +S △PHD =12×PH ×(x D ﹣x A )=12×4×(﹣12x 2+32x +2﹣12x 12-)=﹣x 2+2x +3, ∵﹣1<0,故S 有最大值,当x =1时,S 有最大值,则点P (1,3);(3)存在满足条件的点P ,显然点P 在直线CD 下方,设直线PQ 交x 轴于F ,点P 的坐标为(a ,﹣12a 2+32a +2),当P 点在y 轴右侧时(如图2),CQ =a ,PQ =2﹣(﹣12a 2+32a +2)=12a 2﹣32a , 又∵∠CQ ′O +∠FQ ′P =90°,∠COQ ′=∠Q ′FP =90°,∴∠FQ ′P =∠OCQ ′,∴△COQ ′∽△Q ′FP ,'''Q C Q P CO FQ =,即213222'a a a Q F-=, ∴Q ′F =a ﹣3,∴OQ ′=OF ﹣Q ′F =a ﹣(a ﹣3)=3,CQ =CQ ′=22223213CO OQ +=+=, 此时a =13,点P 的坐标为(13,9313-+). 【点睛】 此题考查了二次函数的综合应用,综合考查了翻折变换、相似三角形的判定与性质,解答此类题目要求我们能将所学的知识融会贯通,属于中考常涉及的题目.9.在平面直角坐标系xOy 中(如图),已知二次函数2y ax bx c =++(其中a 、b 、c 是常数,且a ≠0)的图像经过点A (0,-3)、B (1,0)、C (3,0),联结AB 、AC . (1)求这个二次函数的解析式;(2)点D 是线段AC 上的一点,联结BD ,如果:3:2ABD BCD S S ∆∆=,求tan ∠DBC 的值; (3)如果点E 在该二次函数图像的对称轴上,当AC 平分∠BAE 时,求点E 的坐标.【答案】(1)243y x x =-+-;(2)32;(3)E (2,73-) 【解析】【分析】(1)直接利用待定系数法,把A 、B 、C 三点代入解析式,即可得到答案;(2)过点D 作DH ⊥BC 于H ,在△ABC 中,设AC 边上的高为h ,利用面积的比得到32AD DC =,然后求出DH 和BH ,即可得到答案; (3)延长AE 至x 轴,与x 轴交于点F ,先证明△OAB ∽△OFA ,求出点F 的坐标,然后求出直线AF 的方程,即可求出点E 的坐标.【详解】解:(1)将A (0,-3)、B (1,0)、C (3,0)代入20y ax bx c a =++≠()得,03,0934,300a b a b c =+-⎧⎪=+-⎨⎪-=++⎩解得143abc=-⎧⎪=⎨⎪=-⎩,∴此抛物线的表达式是:243y x x=-+-.(2)过点D作DH⊥BC于H,在△ABC中,设AC边上的高为h,则11:():():3:222ABD BCDS S AD h DC h AD DC∆∆=⋅⋅==,又∵DH//y轴,∴25CH DC DHOC AC OA===.∵OA=OC=3,则∠ACO=45°,∴△CDH为等腰直角三角形,∴26355CH DH==⨯=.∴64255BH BC CH=-=-=.∴tan∠DBC=32DHBH=.(3)延长AE至x轴,与x轴交于点F,∵OA=OC=3,∴∠OAC=∠OCA=45°,∵∠OAB=∠OAC -∠BAC=45°-∠BAC ,∠OFA=∠OCA -∠FAC=45°-∠FAC ,∵∠BAC=∠FAC ,∴∠OAB=∠OFA .∴△OAB ∽△OFA , ∴13OB OA OA OF ==. ∴OF=9,即F (9,0);设直线AF 的解析式为y=kx+b (k≠0),可得093k b b =+⎧⎨-=⎩ ,解得133k b ⎧=⎪⎨⎪=-⎩, ∴直线AF 的解析式为:133y x =-, 将x=2代入直线AF 的解析式得:73y =-, ∴E (2,73-). 【点睛】 本题考查了相似三角形的判定和性质,二次函数的性质,求二次函数的解析式,等腰直角三角形的判定和性质,求一次函数的解析式,解题的关键是掌握二次函数的图像和性质,以及正确作出辅助线构造相似三角形.10.如图,经过原点的抛物线2y ax x b =-+与直线2y =交于A ,C 两点,其对称轴是直线2x =,抛物线与x 轴的另一个交点为D ,线段AC 与y 轴交于点B .(1)求抛物线的解析式,并写出点D 的坐标;(2)若点E 为线段BC 上一点,且2EC EA -=,点(0,)P t 为线段OB 上不与端点重合的动点,连接PE ,过点E 作直线PE 的垂线交x 轴于点F ,连接PF ,探究在P 点运动过程中,线段PE ,PF 有何数量关系?并证明所探究的结论;(3)设抛物线顶点为M ,求当t 为何值时,DMF ∆为等腰三角形?【答案】(1)214y x x =-;点D 的坐标为(4,0);(2)5PF PE =,理由见解析;(3)512t =或98t = 【解析】【分析】(1)先求出a 、b 的值,然后求出解析式,再求出点D 的坐标即可;(2)由题意,先求出点E 的坐标,然后证明Rt Rt PBE FHE ∆∆∽,得到2EF PE =,结合勾股定理,即可得到答案;(3)根据题意,可分为三种情况进行分析:FM FD =或DF DM =或FM MD =,分别求出三种情况的值即可.【详解】解:(1)∵抛物线2y ax x b =-+经过原点, ∴0b =.又抛物线的对称轴是直线2x =,∴122a --=,解得:14a =. ∴抛物线的解析式为:214y x x =-. 令2104y x x =-=, 解得:10x =,24x =.∴点D 的坐标为(4,0).(2)线段PE 、PF 的数量关系为:5PF PE =.证明:由抛物线的对称性得线段AC 的中点为(2,2)G ,如图①,AE EG GC +=,∴EG GC AE =-,∴EG EG EG GC AE EC EA +=+-=-,∵2EC EA -=,∴1EG =,∴(1,2)E ,过点E 作EH x ⊥轴于H ,则2EH OB ==.∵PE EF ⊥,∴90PEF ∠=︒,∵BE EH ⊥,∴90BEH ∠=︒.∴PEB HEF ∠=∠.在Rt PBE ∆与Rt FHE ∆中,∵PEB HEF ∠=∠,90EHF EBP ∠=∠=︒,∴Rt Rt PBE FHE ∆∆∽,∴12PE BE EF HE ==, ∴2EF PE =. 在Rt PEF ∆中,由勾股定理得:222222(2)5PF PE EF PE PE PE =+=+=,∴5PF PE =.(3)由2211(2)144y x x x =-=--, ∴顶点M 坐标为(2,1)-.若DMF ∆为等腰三角形,可能有三种情形:(I )若FM FD =.如图②所示:连接MG 交x 轴于点N ,则90MNF ∠=︒,∵(4,0)D ,∴2222125MD MN ND =+=+=. 设FM FD k ==,则2NF k =-.在Rt MNF ∆中,由勾股定理得:222NF MN MF +=,∴22(2)1k k -+=,解得:54k =, ∴54FM =,34NF =, ∴1MN =,即点M 的纵坐标为1-;令1y =-,则2114x x -=-, ∴2x =,即ON=2,∴OF=114, ∴11,04F ⎛⎫ ⎪⎝⎭. ∵(1,2)E ,∴1,2BE BP t ==-,∴221(2)PE t =+-,∴251(2)PF t =•+-,在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴22211()55(2)4t t +=+-, ∴98t =. (II )若DF DM =.如图③所示:此时5FD DM ==∴45OF =,∴(45,0)F ,由(I )知,PE =,PF =在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴222(455(2)t t +-=+-∴12t =. (III )若FM MD =.由抛物线对称性可知,此时点F 与原点O 重合.∵PE EF ⊥,点P 在直线AC 上方,与点P 在线段OB 上运动相矛盾,故此种情形不存在.【点睛】本题考查的是二次函数综合运用,涉及到相似三角形的判定和性质,一次函数的性质,等腰三角形的性质,全等三角形的判定和性质,以及勾股定理等知识,其中(3),要注意分类求解,避免遗漏.。
九年级数学上册 二次函数易错题(Word版 含答案)
九年级数学上册二次函数易错题(Word版含答案)一、初三数学二次函数易错题压轴题(难)1.如图1,抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB 于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出抛物线和直线AB的函数表达式;(2)设△PMN的面积为S1,△AEN的面积为S2,当1236 25SS=时,求点P的坐标;(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转的到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E'A+23E'B的最小值.【答案】(1)抛物线y=﹣34x2+94x+3,直线AB解析式为y=﹣34x+3;(2)P(2,3 2);(3410【解析】【分析】(1)由题意令y=0,求出抛物线与x轴交点,列出方程即可求出a,根据待定系数法可以确定直线AB解析式;(2)根据题意由△PNM∽△ANE,推出65PNAN=,以此列出方程求解即可解决问题;(3)根据题意在y轴上取一点M使得OM′=43,构造相似三角形,可以证明AM′就是E′A+23E′B的最小值.【详解】解:(1)∵抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),则有330 nm m n⎧⎨⎩++==,解得433mn⎧⎪⎨⎪-⎩==,∴抛物线239344y x x=-++,令y=0,得到239344x x-++=0,解得:x=4或﹣1,∴A(4,0),B(0,3),设直线AB解析式为y=kx+b,则340bk b+⎧⎨⎩==,解得334kb⎧-⎪⎨⎪⎩==,∴直线AB解析式为y=34-x+3.(2)如图1中,设P(m,239344m m-++),则E(m,0),∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∵△PMN的面积为S1,△AEN的面积为S2,123625SS=,∴65PNAN=,∵NE∥OB,∴AN AEAB OA=,∴AN=54545454(4﹣m),∵抛物线解析式为y =239344x x -++, ∴PN =239344m m -++﹣(34-m+3)=34-m 2+3m , ∴2336455(4)4m mm -+=-, 解得m =2或4(舍弃), ∴m =2, ∴P (2,32). (3)如图2中,在y 轴上 取一点M′使得OM′=43,连接AM′,在AM′上取一点E′使得OE′=OE .∵OE′=2,OM′•OB =43×3=4, ∴OE′2=OM′•OB , ∴OE OBOM OE '='', ∵∠BOE′=∠M′OE′, ∴△M′OE′∽△E′OB ,∴M E OE BE OB '''='=23, ∴M′E′=23BE′,∴AE′+23BE′=AE′+E′M′=AM′,此时AE′+23BE′最小(两点间线段最短,A 、M′、E′共线时),最小值=AM′2244()3+410. 【点睛】本题属于二次函数综合题,考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM ′就是AE′+23BE′的最小值,属于中考压轴题.2.在平面直角坐标系中,二次函数22y ax bx =+-的图象与x 轴交于点(4,0)A -,(1,0)B ,与y 轴交于点C .(1)求此抛物线的解析式;(2)点P 是抛物线22y ax bx =+-上的任意一点,过点P 作x 轴的垂线PD ,直线PD交直线AC 于点D .①是否存在点P ,使得PAC ∆的面积是ABC ∆面积的45?若存在,求出点P 的坐标;若不存在,请说明理由.②点Q 是坐标平面内的任意一点,若以O ,C ,Q ,D 为顶点的四边形是菱形时,请直接写出点Q 的坐标. 【答案】(1)213222y x x =+- (2)①存在,点P 的坐标为(22,12)-+-,(222,12)--+,(2,3)--②1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525Q ⎝⎭,44525Q ⎛ ⎝⎭【解析】 【分析】(1)将(4,0)A -,(1,0)B 两点坐标代入解析式中求解即可; (2)①先求出△PAC 的面积为4,再求出直线AC 的解析式为122y x =--.设点P 的横坐标为(t ,213222t t +-),利用21442∆∆∆=-=⋅=+=PAC PDC PDA S S S OA PD t t 即可求解; ②先设出D 点坐标,然后再按对角线分成三种情况讨论即可求解. 【详解】解:(1)由题意得,将(4,0)A -,(1,0)B 两点坐标代入解析式中:1642020a b a b --=⎧⎨+-=⎩,解得:1232a b ⎧=⎪⎪⎨⎪=⎪⎩. ∴此抛物线的解析式为213222y x x =+-, 故答案为213222y x x =+-. (2)①存在点P ,使得PAC ∆的面积是ABC ∆面积的45.理由如下: 作出如下所示示意图:∵点(4,0)A -,(1,0)B , ∴4OA =,5AB =, 令0x =,则2y =-, ∴(0,2)C -,∴2OC =, ∴1152522ABC S AB OC ∆=⋅=⨯⨯=, ∴445545PAC ABC S S ∆∆==⨯=, 设直线AC 的解析式为y mx n =+,则有402m n n -+=⎧⎨=-⎩,解得:122m n ⎧=-⎪⎨⎪=-⎩,∴直线AC 的解析式为122y x =--. 设点P 的横坐标为t ,则其纵坐标为213222t t +-, 即213,222P t t t ⎫⎛+- ⎪⎝⎭. ∵PD x ⊥轴,则点D 的坐标为1,22t t ⎫⎛-- ⎪⎝⎭. ∴2213112222222PD t t t t t ⎫⎛=+----=+ ⎪⎝⎭. ∵22111424222PAC PDC PDA S S S OA PD t t t t ∆∆∆=-=⋅=⨯⨯+=+. ∴244t t +=,即2440t t +-=或2440t t ++=,解得:12t =-+22t =--32t =-.∴点P的坐标为(2-+-,(2--+,(2,3)--,故答案为:(2-+-或(2--+或(2,3)--. ②分类讨论:情况一:当OC 为菱形的对角线时,此时DO=DC ,即D 点在线段OC 的垂直平分线, ∴D 点坐标(-2,-1),将△OCD 沿y 轴翻折,此时四边形ODCQ 为菱形,故此时Q 点坐标为(2,-1),如下图一所示,情况二:当OQ 为对角线时,DO=DQ ,如下图二所示,DQ=OC=OD=2,设D 点坐标1,22⎛⎫-- ⎪⎝⎭x x ,则EO=-x ,DE=122x +,在Rt △EDO 中,由勾股定理可知:EO²+ED²=DO², 故221(2)42++=x x ,解得80(),5舍==-x x ,此时Q 点坐标为816,55⎛⎫-- ⎪⎝⎭,情况三:当OD 为对角线时,OC=OQ=2,如下图三所示:设D 点坐标1,22⎛⎫-- ⎪⎝⎭m m ,则EO=|m|,DE=122m +,QE=2-(122m +)=12m , 在Rt △QDO 中,由勾股定理可知:QE²+EO²=QO²,故221()()42+=m m ,解得124545==m m ,此时Q 点坐标为4525⎝⎭或4525⎛ ⎝⎭, 综上所述,Q 点的坐标为1816,55Q ⎫⎛--⎪⎝⎭,2(2,1)Q -,3452555Q ⎛- ⎝⎭,4452555Q ⎛- ⎝⎭.故答案为1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525Q ⎝⎭,44525Q ⎛ ⎝⎭. 【点睛】本题考查了待定系数法求二次函数解析式,三角形的面积问题,菱形的存在性问题等,属于综合题,具有一定的难度,熟练掌握二次函数的图形及性质是解决本题的关键.3.如图,抛物线2y ax 2x c =++经过,,A B C 三点,已知()()1,0,0,3.A C -()1求此抛物线的关系式;()2设点P 是线段BC 上方的抛物线上一动点,过点P 作y 轴的平行线,交线段BC 于点,D 当BCP 的面积最大时,求点D 的坐标;()3点M 是抛物线上的一动点,当()2中BCP 的面积最大时,请直接写出使45PDM ∠=︒的点M 的坐标【答案】(1)2y x 2x 3=-++;(2)点33,22D ⎛⎫ ⎪⎝⎭;(3)点M 的坐标为()0,3或113113,22⎛⎫++ ⎪ ⎪⎝⎭【解析】 【分析】(1)由2y ax 2x c =++经过点()(),1,00,3A C -,利用待定系数法即可求得此抛物线的解析式.(2)首先设点()2,23,P t t t -++令2230x x -++=,求得()3,0B ,然后设直线BC 的关系式为y kx b =+,由待定系数法求得BC 的解析式为3y x =-+,可得()()22,3,2333D t t PD t t t t t -+=-++--+=-+,BCP 的面积为()21333,22S PD t t =⨯=-+利用二次函数的性质即可求解; (3)根据PD y 轴,45PDM ∠=︒,分别设DM y x b =+,DM y x b =-+,根据点33D(22,)坐标即可求出b ,再与抛物线联系即可得出点M 的坐标. 【详解】()1将()(),1,00,3A C -分别代入22,y ax x c =++可解得1,3,a c =-=即抛物线的关系式为2y x 2x 3=-++.()2设点()2,23,P t t t -++令2230,x x -++=解得121,3,x x =-=则点()3,0B .设直线BC 的关系式为(y kx b k =+为常数且0k ≠), 将点,B C 的坐标代入,可求得直线BC 的关系式为3y x =-+.∴点()()22,3,2333D t t PD t t t t t -+=-++--+=-+设BCP 的面积为,S 则()21333,22S PD t t =⨯=-+ ∴当32t =时,S 有最大值,此时点33,22D ⎛⎫ ⎪⎝⎭.()3∵PD y 轴,45PDM ∠=︒第一种情况:令DM y x b =+,33D(22,) 解得:b=0∴223y x y x x =⎧⎨=-++⎩解得:113x 2=∴11M 22+(, 第二种情况:令DM y x b =-+,33D(22,) 解得:b=3∴2323y x y x x =-+⎧⎨=-++⎩解得:x=0或x=3(舍去) ∴M 03(,)满足条件的点M 的坐标为()0,3或⎝⎭【点睛】此题主要考查待定系数法求函数解析式和二次函数的性质,熟练掌握二次函数的性质是解题关键.4.在平面直角坐标系中,将函数y =x 2﹣2mx+m (x≤2m ,m 为常数)的图象记为G ,图象G 的最低点为P(x 0,y 0). (1)当y 0=﹣1时,求m 的值.(2)求y0的最大值.(3)当图象G与x轴有两个交点时,设左边交点的横坐标为x1,则x1的取值范围是.(4)点A在图象G上,且点A的横坐标为2m﹣2,点A关于y轴的对称点为点B,当点A不在坐标轴上时,以点A、B为顶点构造矩形ABCD,使点C、D落在x轴上,当图象G 在矩形ABCD内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.【答案】(1)512+或﹣1;(2)14;(3)0<x1<1;(4)m=0或m>43或23≤m<1【解析】【分析】(1)分m>0,m=0,m<0三种情形分别求解即可解决问题;(2)分三种情形,利用二次函数的性质分别求解即可;(3)由(1)可知,当图象G与x轴有两个交点时,m>0,求出当抛物线顶点在x轴上时m的值,利用图象法判断即可;(4)分四种情形:①m<0,②m=0,③m>1,④0<m≤1,分别求解即可解决问题.【详解】解:(1)如图1中,当m>0时,∵y=x2﹣2mx+m=(x﹣m)2﹣m2+m,图象G是抛物线在直线y=2m的左侧部分(包括点D),此时最底点P(m,﹣m2+m),由题意﹣m2+m=﹣1,解得m 51+51-+当m=0时,显然不符合题意,当m<0时,如图2中,图象G是抛物线在直线y=2m的左侧部分(包括点D),此时最底点P是纵坐标为m,∴m=﹣1,综上所述,满足条件的m 51或﹣1;(2)由(1)可知,当m>0时,y0=﹣m2+m=﹣(m﹣12)2+14,∵﹣1<0,∴m=12时,y0的最大值为14,当m=0时,y0=0,当m<0时,y0<0,综上所述,y0的最大值为14;(3)由(1)可知,当图象G与x轴有两个交点时,m>0,当抛物线顶点在x轴上时,4m2﹣4m=0,∴m=1或0(舍弃),∴观察观察图象可知,当图象G与x轴有两个交点时,设左边交点的横坐标为x1,则x1的取值范围是0<x1<1,故答案为0<x1<1;(4)当m<0时,观察图象可知,不存在点A满足条件,当m=0时,图象G在矩形ABCD内的部分所对应的函数值y随x的增大而减小,满足条件,如图3中,当m>1时,如图4中,设抛物线与x轴交于E,F,交y轴于N,观察图象可知当点A在x轴下方或直线x=﹣m和y轴之间时(可以在直线x=﹣m上)时,满足条件.则有(2m﹣2)2﹣2m(2m﹣2)+m<0,解得m>43,或﹣m≤2m﹣2<0,解得23≤m<1(不合题意舍弃),当0<m≤1时,如图5中,当点A在直线x=﹣m和y轴之间时(可以在直线x=﹣m上)时,满足条件.即或﹣m≤2m﹣2<0,解得23≤m<1,综上所述,满足条件m的值为m=0或m>43或23≤m<1.【点睛】本题属于二次函数综合题,考查了二次函数的性质,矩形的性质,最值问题,不等式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考压轴题.5.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.【答案】(1) y=x2﹣4x+3;(2) P1(1,0),P2(2,﹣1);(3) F1(22,1),F2(22,1).【解析】【分析】(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的C点坐标代入上式中,即可求出抛物线的解析式;(2)由于PD∥y轴,所以∠ADP≠90°,若△ADP是直角三角形,可考虑两种情况:①以点P为直角顶点,此时AP⊥DP,此时P点位于x轴上(即与B点重合),由此可求出P点的坐标;②以点A为直角顶点,易知OA=OC,则∠OAC=45°,所以OA平分∠CAP,那么此时D、P关于x轴对称,可求出直线AC的解析式,然后设D、P的横坐标,根据抛物线和直线AC的解析式表示出D、P的纵坐标,由于两点关于x轴对称,则纵坐标互为相反数,可据此求出P 点的坐标;(3)很显然当P、B重合时,不能构成以A、P、E、F为顶点的四边形,因为点P、F都在抛物线上,且点P为抛物线的顶点,所以PF与x轴不平行,所以只有(2)②的一种情况符合题意,由②知此时P、Q重合;假设存在符合条件的平行四边形,那么根据平行四边形的性质知:P、F的纵坐标互为相反数,可据此求出F点的纵坐标,代入抛物线的解析式中即可求出F 点的坐标.【详解】(1)∵抛物线的顶点为Q (2,﹣1),∴设抛物线的解析式为y=a (x ﹣2)2﹣1,将C (0,3)代入上式,得:3=a (0﹣2)2﹣1,a=1;∴y=(x ﹣2)2﹣1,即y=x 2﹣4x+3;(2)分两种情况:①当点P 1为直角顶点时,点P 1与点B 重合;令y=0,得x 2﹣4x+3=0,解得x 1=1,x 2=3;∵点A 在点B 的右边,∴B (1,0),A (3,0);∴P 1(1,0);②当点A 为△AP 2D 2的直角顶点时;∵OA=OC ,∠AOC=90°,∴∠OAD 2=45°;当∠D 2AP 2=90°时,∠OAP 2=45°,∴AO 平分∠D 2AP 2;又∵P 2D 2∥y 轴,∴P 2D 2⊥AO ,∴P 2、D 2关于x 轴对称;设直线AC 的函数关系式为y=kx+b (k≠0).将A (3,0),C (0,3)代入上式得:303k b b +=⎧⎨=⎩, 解得13k b =-⎧⎨=⎩; ∴y=﹣x+3;设D 2(x ,﹣x+3),P 2(x ,x 2﹣4x+3),则有:(﹣x+3)+(x 2﹣4x+3)=0,即x 2﹣5x+6=0;解得x 1=2,x 2=3(舍去);∴当x=2时,y=x 2﹣4x+3=22﹣4×2+3=﹣1;∴P 2的坐标为P 2(2,﹣1)(即为抛物线顶点).∴P 点坐标为P 1(1,0),P 2(2,﹣1);(3)由(2)知,当P 点的坐标为P 1(1,0)时,不能构成平行四边形;当点P 的坐标为P 2(2,﹣1)(即顶点Q )时,平移直线AP 交x 轴于点E ,交抛物线于F ;∵P (2,﹣1),∴可设F (x ,1);∴x 2﹣4x+3=1,解得x 1=2﹣2,x 2=2+2;∴符合条件的F 点有两个,即F 1(2﹣2,1),F 2(2+2,1).【点睛】此题主要考查了二次函数的解析式的确定、直角三角形的判定、平行四边形的判定与性质等重要知识点,同时还考查了分类讨论的数学思想,能力要求较高,难度较大.6.如图,抛物线2(0)y ax bx c a =++≠与坐标轴的交点为()30A -,,()10B ,,()0,3C -,抛物线的顶点为D .(1)求抛物线的解析式.(2)若E 为第二象限内一点,且四边形ACBE 为平行四边形,求直线CE 的解析式. (3)P 为抛物线上一动点,当PAB ∆的面积是ABD ∆的面积的3倍时,求点P 的坐标.【答案】(1)223y x x =+-;(2)33y x =--;(3)点P 的坐标为()5,12-或()3,12.【解析】【分析】(1)本题考查二次函数解析式的求法,可利用待定系数法,将点带入求解;(2)本题考查二次函数平行四边形存在性问题,可根据题干信息结合平行四边形性质确定动点位置,进一步利用待定系数法求解一次函数解析式;(3)本题考查二次函数与三角形面积问题,可先根据题干面积关系假设动点坐标,继而带入二次函数,列方程求解.【详解】(1)∵抛物线2y ax bx c=++与坐标轴的交点为()30A-,,()10B,,()0,3C-,∴9303a b ca b cc-+=⎧⎪++=⎨⎪=-⎩,解得123abc=⎧⎪=⎨⎪=-⎩∴抛物线的解析式为223y x x=+-.(2)如图,过点E作EH x⊥轴于点H,则由平行四边形的对称性可知1AH OB==,3EH OC==.∵3OA=,∴2OH=,∴点E的坐标为()2,3-.∵点C的坐标为()0,3-,∴设直线CE的解析式为()30y kx k=-<将点()2,3E-代入,得233k--=,解得3k=-,∴直线CE的解析式为33y x=--.(3)∵2223(1)4y x x x=+-=+-,∴抛物线的顶点为()1,4D--.∵PAB∆的面积是ABD∆的面积的3倍,∴设点P为(),12t.将点(),12P t代入抛物线的解析式223y x x=+-中,得22312t t+-=,解得3t=或5t=-,故点P的坐标为()5,12-或()3,12.【点睛】本题考查二次函数与几何的综合,利用待定系数法求解解析式时还可以假设交点式,几何图形存在性问题求解往往需要利用其性质,假设动点坐标,列方程求解.7.如图,在平面直角坐标系中,二次函数y=﹣x2+6x﹣5的图象与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.(1)P的坐标,C的坐标;(2)直线1上是否存在点Q,使△PBQ的面积等于△PAC面积的2倍?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)(3,4),(0,﹣5);(2)存在,点Q的坐标为:(92,﹣5)或(212,﹣5)【解析】【分析】(1)利用配方法求出顶点坐标,令x=0,可得y=-5,推出C(0,-5);(2)直线PC的解析式为y=3x-5,设直线交x轴于D,则D(53,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,分两种情形分别求解即可解决问题.【详解】解:(1)∵y=﹣x2+6x﹣5=﹣(x﹣3)2+4,∴顶点P(3,4),令x=0得到y=﹣5,∴C(0,﹣5).故答案为:(3,4),(0,﹣5);(2)令y=0,x2﹣6x+5=0,解得:x=1或x=5,∴A(1,0),B(5,0),设直线PC的解析式为y=kx+b,则有534 bk b=-⎧⎨+=⎩,解得:35 kb=⎧⎨=-⎩,∴直线PC的解析式为:y=3x﹣5,设直线交x轴于D,则D(53,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,∵AD=23,∴BE=43,∴E(113,0)或E′(193,0),则直线PE的解析式为:y=﹣6x+22,∴Q(92,﹣5),直线PE′的解析式为y=﹣65x+385,∴Q′(212,﹣5),综上所述,满足条件的点Q的坐标为:(92,﹣5)或(212,﹣5);【点睛】本题考查抛物线与x轴的交点、二次函数的性质等知识,解题的关键是熟练掌握待定系数法,学会用转化的思想思考问题,属于中考常考题型.8.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A 在点B的左侧.(1)如图1,当k=1时,直接写出A ,B 两点的坐标;(2)在(1)的条件下,点P 为抛物线上的一个动点,且在直线AB 下方,试求出△ABP 面积的最大值及此时点P 的坐标;(3)如图2,抛物线y=x 2+(k ﹣1)x ﹣k (k >0)与x 轴交于点C 、D 两点(点C 在点D 的左侧),在直线y=kx+1上是否存在唯一一点Q ,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.【答案】(1)A(-1,0) ,B(2,3)(2)△ABP 最大面积s=1927322288⨯=; P (12,﹣34) (3)存在;25 【解析】【分析】(1) 当k=1时,抛物线解析式为y=x 2﹣1,直线解析式为y=x+1,然后解方程组211y x y x ⎧=⎨=+⎩﹣即可; (2) 设P (x ,x 2﹣1).过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1),所以利用S △ABP =S △PFA +S △PFB ,,用含x 的代数式表示为S △ABP=﹣x 2+x+2,配方或用公式确定顶点坐标即可.(3) 设直线AB :y=kx+1与x 轴、y 轴分别交于点E 、F ,用k 分别表示点E 的坐标,点F 的坐标,以及点C 的坐标,然后在Rt △EOF 中,由勾股定理表示出EF 的长,假设存在唯一一点Q ,使得∠OQC=90°,则以OC 为直径的圆与直线AB 相切于点Q ,设点N 为OC 中点,连接NQ ,根据条件证明△EQN ∽△EOF ,然后根据性质对应边成比例,可得关于k 的方程,解方程即可.【详解】解:(1)当k=1时,抛物线解析式为y=x 2﹣1,直线解析式为y=x+1.联立两个解析式,得:x 2﹣1=x+1,解得:x=﹣1或x=2,当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3,∴A (﹣1,0),B (2,3).(2)设P (x ,x 2﹣1).如答图2所示,过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1).∴PF=y F ﹣y P =(x+1)﹣(x 2﹣1)=﹣x 2+x+2.S △ABP =S △PFA +S △PFB =PF (xF ﹣xA )+PF (xB ﹣xF )=PF (xB ﹣xA )=PF∴S △ABP=(﹣x 2+x+2)=﹣(x ﹣12)2+278 当x=12时,yP=x 2﹣1=﹣34. ∴△ABP 面积最大值为,此时点P 坐标为(12,﹣34). (3)设直线AB :y=kx+1与x 轴、y 轴分别交于点E 、F ,则E (﹣1k ,0),F (0,1),OE=1k,OF=1. 在Rt △EOF 中,由勾股定理得:EF=22111=k k +⎛⎫+ ⎪⎝⎭.令y=x 2+(k ﹣1)x ﹣k=0,即(x+k )(x ﹣1)=0,解得:x=﹣k 或x=1.∴C (﹣k ,0),OC=k .假设存在唯一一点Q ,使得∠OQC=90°,如答图3所示,则以OC 为直径的圆与直线AB 相切于点Q ,根据圆周角定理,此时∠OQC=90°. 设点N 为OC 中点,连接NQ ,则NQ ⊥EF ,NQ=CN=ON=2k . ∴EN=OE ﹣ON=1k ﹣2k . ∵∠NEQ=∠FEO ,∠EQN=∠EOF=90°,∴△EQN ∽△EOF , ∴NQ EN OF EF =,即:1221k k k k-=, 解得:k=±25, ∵k >0,∴k=25. ∴存在唯一一点Q ,使得∠OQC=90°,此时k=25. 考点:1.二次函数的性质及其应用;2.圆的性质;3.相似三角形的判定与性质.9.如图,已知抛物线2y x bx c =-++与x 轴交于A ,B 两点,过点A 的直线l 与抛物线交于点C ,其中点A 的坐标是()1,0,点C 的坐标是()2,3-,抛物线的顶点为点D .(1)求抛物线和直线AC 的解析式.(2)若点P 是抛物线上位于直线AC 上方的一个动点,求APC ∆的面积的最大值及此时点P 的坐标.(3)若抛物线的对称轴与直线AC 相交于点E ,点M 为直线AC 上的任意一点,过点M 作//MN DE 交抛物线于点N ,以D ,E ,M ,N 为顶点的四边形能否为平行四边形?若能,求出点M 的坐标;若不能,请说明理由.【答案】(1)y=-x 2-2x+3,y=-x+1;(2)最大值为278,此时点P(12-,154);(3)能,(0,1),(1172-+,3172)或(1172--,3172) 【解析】【分析】(1)直接利用待定系数法进行求解,即可得到答案;(2)设点P(m ,-m 2-2m+3),则Q(m ,-m+1),求出PQ 的长度,结合三角形的面积公式和二次函数的性质,即可得到答案;(3)根据题意,设点M(t ,-t+1),则点N(t ,-t 2-2t+3),可分为两种情况进行分析:①当点M 在线段AC 上时,点N 在点M 上方;②当点M 在线段AC (或CA )延长线上时,点N 在点M 下方;分别求出点M 的坐标即可.【详解】解:(1)∵抛物线y=-x 2+bx+c 过点A(1,0),C(-2,3),∴10423b c b c -++=⎧⎨--+=⎩,,解得:23b c =-⎧⎨=⎩,. ∴抛物线的解析式为y=-x 2-2x+3.设直线AC 的解析式为y=kx+n .将点A ,C 坐标代入,得023k n k n +=⎧⎨-+=⎩,,解得11k n =-⎧⎨=⎩,. ∴直线AC 的解析式为y=-x+1.(2)过点P 作PQ ∥y 轴交AC 于点Q .设点P(m ,-m 2-2m+3),则Q(m ,-m+1).∴PQ=(-m 2-2m+3)-(-m+1)=-m 2-m+2.∴S △APC =S △PCQ +S △APQ =12PQ·(x A -x C )=12(-m 2-m+2)×3=23127()228m -++. ∴当m=12-时,S △APC 最大,最大值为278,此时点P(12-,154). (3)能.∵y=-x 2-2x+3,点D 为顶点,∴点D(-1,4),令x=-1时,y=-(-1)+1=2,∴点E(-1,2).∵MN ∥DE ,∴当MN=DE=2时,以D ,E ,M ,N 为顶点的四边形是平行四边形.∵点M 在直线AC 上,点N 在抛物线上,∴设点M(t ,-t+1),则点N(t ,-t 2-2t+3).①当点M 在线段AC 上时,点N 在点M 上方,则MN=(-t 2-2t+3)-(-t+1)=-t 2-t+2.∴-t 2-t+2=2,解得:t=0或t=-1(舍去).∴此时点M 的坐标为(0,1).②当点M 在线段AC (或CA )延长线上时,点N 在点M 下方,则MN=(-t+1)-(-t 2-2t+3)=t 2+t-2.∴t 2+t-2=2,解得:或.∴此时点M 的坐标为(1172-+,3172-)或(1172--,3172+). 综上所述,满足条件的点M 的坐标为:(0,1),(117-+,317-)或(117--,317+). 【点睛】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC 的函数关系式;(2)利用三角形的面积公式和二次函数的性质解题;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M 的位置.10.如图,已知顶点为M (32,258)的抛物线过点D (3,2),交x 轴于A ,B 两点,交y 轴于点C ,点P 是抛物线上一动点.(1)求抛物线的解析式;(2)当点P 在直线AD 上方时,求△PAD 面积的最大值,并求出此时点P 的坐标; (3)过点P 作直线CD 的垂线,垂足为Q ,若将△CPQ 沿CP 翻折,点Q 的对应点为Q '.是否存在点P ,使Q '恰好落在x 轴上?若存在,求出点P 的坐标;若不存在,说明理由.【答案】(1)213222y x x =-++;(2)最大值为4,点P (1,3);(3)存在,点P 139313-+). 【解析】【分析】 (1)用待定系数法求解即可;(2)由△PAD 面积S =S △PHA +S △PHD ,即可求解;(3)结合图形可判断出点P 在直线CD 下方,设点P 的坐标为(a ,213222a a -++),当P 点在y 轴右侧时,运用解直角三角形及相似三角形的性质进行求解即可.【详解】 解:(1)设抛物线的表达式为:y =a (x ﹣h )2+k =a (x ﹣32)2+258, 将点D 的坐标代入上式得:2=a (3﹣32)2+258, 解得:a =﹣12, ∴抛物线的表达式为:213222y x x =-++; (2)当x =0时,y =﹣12x 2+32x +2=2, 即点C 坐标为(0,2), 同理,令y =0,则x =4或﹣1,故点A 、B 的坐标分别为:(﹣1,0)、(4,0),过点P 作y 轴的平行线交AD 于点H ,由点A 、D 的坐标得,直线AD 的表达式为:y =12(x +1), 设点P (x ,﹣12x 2+32x +2),则点H (x ,12x +12), 则△PAD 面积为:S =S △PHA +S △PHD =12×PH ×(x D ﹣x A )=12×4×(﹣12x 2+32x +2﹣12x 12-)=﹣x 2+2x +3, ∵﹣1<0,故S 有最大值,当x =1时,S 有最大值,则点P (1,3);(3)存在满足条件的点P ,显然点P 在直线CD 下方,设直线PQ 交x 轴于F ,点P 的坐标为(a ,﹣12a 2+32a +2),当P 点在y 轴右侧时(如图2),CQ =a ,PQ =2﹣(﹣12a 2+32a +2)=12a 2﹣32a , 又∵∠CQ ′O +∠FQ ′P =90°,∠COQ ′=∠Q ′FP =90°,∴∠FQ ′P =∠OCQ ′,∴△COQ ′∽△Q ′FP ,'''Q C Q P CO FQ =,即213222'a a a Q F-=, ∴Q ′F =a ﹣3,∴OQ ′=OF ﹣Q ′F =a ﹣(a ﹣3)=3,CQ =CQ ′22223213CO OQ +=+= 此时a 13P 1393132-+). 【点睛】此题考查了二次函数的综合应用,综合考查了翻折变换、相似三角形的判定与性质,解答此类题目要求我们能将所学的知识融会贯通,属于中考常涉及的题目.。
(易错题)初中数学九年级数学上册第二单元《二次函数》检测题(包含答案解析)
一、选择题1.对于二次函数()()2140y ax a x a =+->,下列说法正确的是( )①抛物线与x 轴总有两个不同的交点;②对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点; ③若该函数图象的对称轴为直线0x x =,则必有012x <<; ④当2x ≥时,y 随x 的增大而增大,则102a <≤ A .①②B .②③C .①④D .③④2.将二次函数221y x x =+-化为2()y x h k =-+的形式时,结果正确的是( )A .2(1)2y x =+-B .2(1)2y x =--C .2(1)2y x =-+D .2(1)3y x =++3.如图,一条抛物线与x 轴相交于M ,N 两点(点M 在点N 的左侧),其顶点P 在线段AB 上移动,点A ,B 的坐标分别为(﹣2,﹣3),(1,﹣3),点N 的横坐标的最大值为4,则点M 的横坐标的最小值为( )A .﹣1B .﹣3C .﹣5D .﹣74.一次函数y =ax +c 与二次函数y =ax 2+bx +c 在同一个平面坐标系中图象可能是( ) A .B .C .D .5.如图所示,二次函数2y ax bx c =++的图象中,对称轴是直线1x =,王刚同学观察得出了下面四条信息:①1c >;②若()12,y ,()24,y 是抛物线上两点,则12y y >;③420a b c -+<;④方程20ax bx c ++=的两根是11x =-,23x =.其中说法正确的有( )A .①②③④B .②④C .①②④D .①③④ 6.抛物线2(2)3y x =-+的对称轴是( )A .直线2x =-B .直线3x =C .直线1x =D .直线2x =7.已知抛物线y =ax 2+bx +c 上部分点的横坐标与纵坐标的对应值如下表,给出下列结论:①抛物线y =ax 2+bx +c 经过原点;②2a +b =0;③当y >0时,x 的取值范围是x <0或x >2;④若点P (m ,n )在该抛物线上,则am 2+bm ≤a +b .其中正确结论的个数是( ) x … ﹣1 0 1 2 3 … y…3﹣13…A .4个B .3个C .2个D .1个8.如图,已知抛物线2(0)y ax bx c a =++≠的部分图象如图所示,则下列结论:①0abc >;②关于x 的一元二次方程20ax bx c ++=的根是-1,3;③2a b c +=;④y 最大值43c =;其中正确的有( )个.A .4B .3C .2D .19.表格对应值:x 1 2 3 4 2ax bx c ++0.5-512.522判断关于的方程的一个解的范围是( )A .01x <<B .12x <<C .23x <<D .34x <<10.把函数2(1)2y x =-+图象向右平移1个单位长度,平移后图象的函数解析式为( ) A .22y x =+B .2(1)1y x =-+C .2(2)2y x =-+D .2(1)3y x =-+11.在西宁市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间满足函数解析式y 112=-x 223+x 53+,由此可知该生此次实心球训练的成绩为( ) A .6米B .8米C .10米D .12米12.对于二次函数2(2)7y x =---,下列说法正确的是( ) A .图象开口向上B .对称轴是直线2x =-C .当2x >时,y 随x 的增大而减小D .当2x <时,y 随x 的增大而减小二、填空题13.已知二次函数2y ax bx c =++的图象过点(1,2)A ,(3,2)B ,(5,7)C .若点1(2,)M y ,2(1,)N y -,3(8,)K y 也在二次函数2y ax bx c =++的图象上,则1y ,2y ,2y 的从小到大的关系是___.14.如图,在平面直角坐标系中,菱形ABCD 的顶点A 的坐标为(5,0),顶点B 在y 轴正半轴上,顶点D 在x 轴负半轴上.若抛物线y =-x 2-13x +c 经过点B 、C ,则菱形ABCD 的面积为________.15.如图,平面直角坐标系中,桥孔抛物线对应的二次函数关系式是y =﹣13x 2,桥下的水面宽AB 为6m ,当水位上涨2m 时,水面宽CD 为_____m (结果保留根号).16.如图,抛物线()()13y a x x =+-与x 轴交于A ,B 两点(点A 在B 的左侧),点C为抛物线上任意一点....(不与A ,B 重合),BD 为ABC 的AC 边上的高线,抛物线顶点E 与点D 的最小距离为1,则抛物线解析式为______.17.已知二次函数()232y x m x m =-+-+的顶点在y 轴上,则其顶点坐标为___________.18.在平面直角坐标系中,点A 是抛物线()24y a x k =-+与y 轴的交点,点B 是这条抛物线上的另一点,且//AB x 轴,则以AB 为边的等边三角形ABC 的周长为_____.19.二次函数2y x bx =+的对称轴为直线2x =,若关于x 的一元二次方程20x bx t +-=(t 为实数)在1-<x <4的范围内有解,则t 的取值范围是________. 20.设A (-3,y 1),B (-2,y 2),C (12,y 3)是抛物线y =(x+1)2-m 上的三点,则y 1,y 2,y 3的大小关系为_______.(用“>”连接)三、解答题21.已知抛物线的解析式为y =﹣3x 2+6x+9. (1)求它的对称轴;(2)求它与x 轴,y 轴的交点坐标.22.情境阅读:小敏同学期中复习时,再读九年级上册一本辅导书“一元二次方程”的“数学活动”时,重新思考了“活动围长方形”.下面呈现的是“活动内容”及“小敏反思”的部分:问题解决:请根据“小敏发现”,应用二次函数解决“能围出面积大于900cm 2的长方形吗?” 23.如图,直线:33l y x =-+与x 轴,y 轴分别相交于A,B 两点,抛物线224(0)y ax ax a a =-++<经过点B .(1)求该抛物线的解析式及顶点坐标;(2)连结BD,以AB,BD 为一组邻边的平行四边形ABDE,顶点E 是否在抛物线上?(3)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 横坐标为m,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值.24.若二次函数y =x 2-x-2的图象与x 轴交于A ,B 两点(点A 在点B 的左侧). (1)求A ,B 两点的坐标;(2)若P(m ,-2)为二次函数y =x 2-x-2图象上一点,求m 的值.25.在平面直角坐标系xOy 中,抛物线2223y x nx n n =-++-与y 轴交于点C ,与x 轴交于点,A B ,点A 在B 的左边,x 轴正半轴上一点D ,满足.OD OA OB =+ (1)①当2n =时,求点D 的坐标和抛物线的顶点坐标; ②当2AB BD =时,求n 的值;(2)过点D 作x 轴的垂线交抛物线于P ,作射线CP ,若射线CP 与x 轴没有公共点,直接写出n 的取值范围.26.如图,已知二次函数21y ax bx =+-的图象经过点D (-1,0)和C (4,5). (1)求二次函数的解析式;(2)在同一坐标系中画出直线1y x =+,并写出当x 在什么范围内时,一次函数的值大于二次函数的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】①由y=0,一元二次方程()214=0ax a x +-,判别式()2=14a ∆-=0即可判断①;②抛物线中c=0,恒过原点,当x=4,函数值为4即可判断②;③抛物线对称轴为:122x a =-当11222a<-<时,解得102a <<,求出12a >即可判断③;④0a >,对称轴为:1222x a=-<,由抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大即可判断④. 【详解】①由y=0,()214=0ax a x +-,()2=14a ∆-,当1=04a >时,()2=14=0a ∆-有一个交点,为此抛物线与x 轴总有两个不同的交点不正确;②由()()2140y ax a x a =+->中c=0,抛物线恒过原点(0,0),当x=4,()4=1166144416y a a a a ⨯-=++=-,抛物线恒过(4,4),为此对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点正确; ③()()2140y ax a x a =+->对称轴为:1441122222b a a x a a a a--=-=-==-, 当11222a<-<时,解得102a <<,∴12a >,为此当12a >,若该函数图象的对称轴为直线0x x =,则必有012x <<正确; ④()()2140y ax a x a =+->对称轴为:122x a=-, ∵0a >,抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大, 由此1222x a=-≤, 解得10a>即0a >, 为此当2x ≥时,y 随x 的增大而增大,则102a <≤不正确. 故选择:B . 【点睛】本题考查抛物线与一元二次方程的关系,抛物线过定点,抛物线的对称轴,抛物线的增减性等问题,掌握抛物线的性质以及一元二次方程根的判别式是解题关键.2.A解析:A 【分析】加上一次项系数的一半的平方凑成完全平方式,把一般式化为顶点式. 【详解】221y x x =+-=22111x x ++--=2(1)2y x =+-,故选:A . 【点睛】此题考查二次函数的一般式转化为顶点式,掌握方法是解题的关键.3.C解析:C 【分析】当图象顶点在点B 时,点N 的横坐标的最大值为4,求出a =13;当顶点在点A 时,M 点的横坐标为最小,此时抛物线的表达式为:y =13(x +2)2﹣3,令y =0,求出x 值,即可求解. 【详解】当图象顶点在点B 时,点N 的横坐标的最大值为4, 则此时抛物线的表达式为:y =a (x ﹣1)2﹣3, 把点N 的坐标代入得:0=a (4﹣1)2﹣3, 解得:a =13, 当顶点在点A 时,M 点的横坐标为最小,此时抛物线的表达式为:y=13(x+2)2﹣3,令y=0,则x=﹣5或1,即点M的横坐标的最小值为﹣5,故选:C.【点睛】本题考查的是二次函数与x轴的交点,涉及到函数基本性质和函数的最值,其中确定坐标取得最值时,图象所处的位置是本题的关键.4.B解析:B【分析】根据两个函数图象与y轴交于同一点可排除选项A,再根据抛物线的开口方向和对应一次函数的增减性即可做出选择.【详解】解:∵一次函数和二次函数都经过y轴上的(0,c),∴两个函数图象交于y轴上的同一点,故A不符合题意;当a>0时,二次函数y=ax2+bx+c的图象开口向上,一次函数y=ax+c中y值随x值的增大而增大,故D不符合题意;当a<0时,二次函数y=ax2+bx+c的图象开口向上,一次函数y=ax+c中y值随x值的增大而减小,故C不符合题意.故选:B.【点睛】本题考查二次函数及一次函数的图象与性质,熟练掌握两个函数图象与系数的关系是解答的关键.5.A解析:A【分析】由OC与OA的大小对①进行判断;利用二次函数的性质对②进行判断;利用x=-2时,y <0可对③进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点为(3,0),然后根据抛物线与x轴的交点问题可对④进行判断.【详解】∵抛物线与y轴的交点在x轴的上方,且OC>1,∴c>1,所以①正确;∵抛物线的对称轴为直线x=1,而点(2,y1)到直线x=1的距离小于点(4,y2)到直线x=1的距离相等,∴y1>y2,所以②正确;∵x=-2时,y<0,∴4a-2b+c<0,所以③正确;∵抛物线的对称轴为直线x=1,而抛物线与x轴的一个交点为(-1,0),∴抛物线与x轴的另一个交点为(3,0),∴方程ax2+bx+c=0的两根是x1=-1,x2=3,所以④正确.故选:A.【点睛】考查了二次函数图象与系数的关系,解题关键是熟记二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.6.D解析:D【分析】直接利用二次函数对称轴求法得出答案.【详解】解:抛物线y=(x-2)2+3的对称轴是:直线x=2.故选:D.【点睛】此题主要考查了二次函数的性质,正确掌握对称轴确定方法是解题关键.7.B解析:B【分析】根据二次函数的性质和表格中的数据,可以判断各个小题中的结论是否成立,本题得以解决.【详解】解:由表格数据可知:当x=0时,y=0,∴抛物线y=ax2+bx+c经过原点;①正确;抛物线对称轴为:直线0212x+==,即12ba-=,∴2a+b=0,②正确;当y=0时,x=0或x=2且抛物线顶点坐标为(1,-1)∴抛物线开口向上,当y>0时,x的取值范围是x<0或x>2;③正确由以上分析可知当x=1时,y取得最小值为a+b+c若点P(m,n)在该抛物线上,则am2+bm+c≥a+b+c.即am2+bm≥a+b,④错误故选:B【点睛】本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.8.C解析:C【分析】利用抛物线开口方向得到a<0,利用抛物线的对称轴方程得到b=-2a>0,利用抛物线与y 轴的交点在x轴上方得到c>0,则可对①进行判断;利用抛物线的对称性得到抛物线与x 轴的另一个交点坐标为(-1,0),则根据抛物线与x轴的交点问题可对②进行判断;由于x=-1时,a-b+c=0,再利用b=-2a得到c=-3a,则可对③④进行判断.【详解】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣b=1,2a∴b=-2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线的对称轴为直线x=1,抛物线与x轴的一个交点坐标为(3,0),∴抛物线与x轴的另一个交点坐标为(-1,0),∴关于x的一元二次方程ax2+bx+c=0的根是-1,3,所以②正确;∵当x=-1时,y=0,∴a-b+c=0,而b=-2a,∴a+2a+c=0,即c=-3a,∴a+2b-c=a-4a+3a=0,即a+2b=c,所以③正确;a+4b-2c=a-8a+6a=-a,所以④错误;故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.9.B解析:B【分析】利用x=1和x=2所对应的函数值可判断抛物线y=ax2+bx+c与x轴的一个交点在(1,0)和(2,0)之间,则根据抛物线于x轴的交点问题可判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围.【详解】解:∵x=2时,y=5,即ax2+bx+c>0;x=1时,y=-0.5,即ax2+bx+c<0,∴抛物线y=ax2+bx+c与x轴的一个交点在(1,0)和(2,0)之间,∴关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是1<x<2.故选:B.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标问题转化为解关于x的一元二次方程.10.C解析:C【分析】先求出y=(x-1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.【详解】解:二次函数y=(x-1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x-2)2+2.故选:C.【点睛】本题主要考查的是函数图象的平移,求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.11.C解析:C【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x的值即可.【详解】解:当y=0时,即y112=-x223+x53+=0,解得:x=﹣2(舍去),x=10.∴该生此次实心球训练的成绩为10米.故选:C.【点睛】本题考查了二次函数的应用中函数式中变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.12.C解析:C【分析】由抛物线解析式可求得开口方向、对称轴、顶点坐标,可求得答案.【详解】解:∵2(2)7y x =---,∵a <0,∴抛物线开口向下,对称轴为x=2,顶点坐标为(2,-7),当2x >时,y 随x 的增大而减小,当2x <时,y 随x 的增大而增大,∴A 、B 、D 都不正确,C 正确,故选:C .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).二、填空题13.【分析】根据点ABC 的坐标可得二次函数的对称轴和增减性由此即可得【详解】点在二次函数的图象上此二次函数的对称轴为点BC 的横坐标大小关系为纵坐标大小关系为当时y 随x 的增大而增大;当时y 随x 的增大而减小 解析:123y y y <<【分析】根据点A 、B 、C 的坐标可得二次函数的对称轴和增减性,由此即可得.【详解】点(1,2)A ,(3,2)B ,(5,7)C 在二次函数2y ax bx c =++的图象上, ∴此二次函数的对称轴为1322+=, 点B 、C 的横坐标大小关系为532>>,纵坐标大小关系为72,∴当2x ≥时,y 随x 的增大而增大;当2x <时,y 随x 的增大而减小,由二次函数的对称性得:1x =-时的函数值与5x =时的函数值相等,即为27y =, 又点1(2,)M y ,3(8,)K y 在二次函数2y ax bx c =++的图象上,且258, 137y y ,即123y y y <<,故答案为:123y y y <<.【点睛】本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.14.156【分析】由题意可得:结合已知条件求解再求解的坐标再代入抛物线的解析式求解即可得到答案【详解】解:在抛物线上菱形ABCD >故答案为:【点睛】本题考查的是抛物线的性质菱形的性质勾股定理的应用掌握以解析:156【分析】由题意可得:()0B c ,,结合已知条件求解AB = 再求解C 的坐标,再代入抛物线的解析式求解c 即可得到答案.【详解】解:B 在抛物线上,()0B c ∴,()5,0A ,AB ∴=菱形ABCD ,BC AB ∴==()C c ∴()(2225+1325,c c c c ∴=-+++225c ∴+=2250,c +≠13,=2144,c ∴=c >0,12,c ∴=1312=156.ABCD S ∴=⨯菱形故答案为:156.【点睛】本题考查的是抛物线的性质,菱形的性质,勾股定理的应用,掌握以上知识是解题的关键.15.2【分析】首先求出B 点纵坐标进而得出D 点纵坐标即可求出D 点横坐标进而得出CD 的长【详解】解:由题意可得:当AB =6m 则B 点横坐标为3故此时y =﹣×32=﹣3当水位上涨2m 时此时D 点纵坐标为:﹣3+2解析:【分析】首先求出B 点纵坐标,进而得出D 点纵坐标,即可求出D 点横坐标,进而得出CD 的长.【详解】解:由题意可得:当AB =6m ,则B 点横坐标为3,故此时y =﹣13×32=﹣3, 当水位上涨2m 时,此时D 点纵坐标为:﹣3+2=﹣1,则﹣1=﹣13x 2, 解得:x =±3.故当水位上涨2m 时,水面宽CD 为23m .故答案为:23【点睛】此题主要考查了二次函数的应用,求出D 点横坐标是解题关键.16.【分析】根据题意可确定出AB 两点的坐标从而求出对称轴为x=1依题意要使DE 最小则D 点必在对称轴上从而根据题意画出图形求解即可【详解】解:如图所示使DE 最小则D 点必在对称轴x=1上过点E 作EF ⊥AB 则解析:2339424y x x =-- 【分析】根据题意可确定出A ,B 两点的坐标,从而求出对称轴为x=1,依题意要使DE 最小则D 点必在对称轴上,从而根据题意画出图形求解即可.【详解】解:如图所示,使DE 最小则D 点必在对称轴x=1上,过点E 作EF ⊥AB ,则AF=BF ,∴AD=BD ,∵BD 为ABC 的AC 边上的高线,∴∠ADB=90°,∴∠DBF=∠BDF=45°,∴DF=BF=2.当x=1时,y=-4a ,∵抛物线开口向上,∴a>0,∴EF=4a .∵DE=1,∴4a-2=1解得:a=34. ∴抛物线解析式为3(1)(3)4y x x =+- 即2339424y x x =-- 故答案为:2339424y x x =--. 【点睛】本题考查了二次函数的综合题,结图象求最值问题,利用好数形结合找出最小值的点是解题的关键.17.【分析】先根据二次函数的顶点在y 轴上可得其对称轴为y 轴从而求出m 的值再根据二次函数的解析式即可得出答案【详解】二次函数的顶点在y 轴上此二次函数的对称轴为y 轴即解得二次函数的解析式为其顶点坐标为故答案 解析:()0,2【分析】先根据二次函数的顶点在y 轴上可得其对称轴为y 轴,从而求出m 的值,再根据二次函数的解析式即可得出答案.【详解】二次函数()232y x m x m =-+-+的顶点在y 轴上, ∴此二次函数的对称轴为y 轴,即()2023m x -=-=⨯-, 解得2m =,∴二次函数的解析式为232y x =-+,∴其顶点坐标为()0,2,故答案为:()0,2.【点睛】本题考查了二次函数的顶点坐标和对称轴,熟练掌握二次函数的对称性是解题关键. 18.24【分析】根据抛物线的解析式即可确定对称轴则可以确定AB 的长度然后根据等边三角形的周长公式即可求解【详解】抛物线的对称轴是过点作于点如下图所示则则则以为边的等边的周长为故答案为24【点睛】此题考查 解析:24【分析】根据抛物线的解析式即可确定对称轴,则可以确定AB 的长度,然后根据等边三角形的周长公式即可求解.【详解】抛物线2(4)y a x k =-+的对称轴是4x =过C 点作CD AB ⊥于点D ,如下图所示则4=AD ,则28AB AD ==则以AB 为边的等边ABC 的周长为2483=⨯.故答案为24.【点睛】此题考查了二次函数的性质,根据抛物线的解析式确定对称轴,从而求得AB 的长是关键.19.-4≤t<5【分析】先由对称轴求b 的值则二次函数关于的一元二次方程(为实数)在<<的范围内有解△=16+4t≥0在<<在x=-1时y=5当x=4时y=0用y=t 与有交点t 的范围即可求出【详解】∵二次解析:-4≤t<5.【分析】先由对称轴求b 的值,则二次函数2-4y x x =,关于x 的一元二次方程240x x t --=(t 为实数)在1-<x <4的范围内有解,△=16+4t≥0,在1-<x <4()22-424y x x x ==--在x=-1时,y=5,当x=4时,y=0,用y=t 与()22-424y x x x ==--有交点,t 的范围即可求出.【详解】∵二次函数2y x bx =+的对称轴为直线2x =, ∴222b b x a =-=-=, ∴b =-4,∴二次函数2-4y x x =,∵关于x 的一元二次方程240x x t --=(t 为实数)在1-<x <4的范围内有解, ∴△=16+4t≥0,∴t≥-4,∵()22-424y x x x ==--,在x=-1时,y=5,当x=4时,y=0,∴y=t 与()22-424y x x x ==--有交点,t 满足条件为-4≤t<5, 则t 的取值范围是-4≤t<5.故答案为:-4≤t<5.【点睛】本题考查二次函数与一元二次方程的关系,掌握二次函数的性质,与一元二次方程的解的条件,利用对称轴会求b 的值,关于x 的一元二次方程240x x t --=(t 为实数)有解,会用△=16+4t≥0,会用y=t 与()22-424y x x x ==--有交点,求t 满足条件是解决问题的关键. 20.【分析】根据题目中的函数解析式和二次函数图像性质即可得到答案【详解】解:∵二次函数的解析式为∴抛物线的对称轴是直线∴当时随的增大而减小;当时随的增大而增大∵是抛物线上的三个点∴∴∴故答案是:【点睛】 解析:132y y y >>【分析】根据题目中的函数解析式和二次函数图像性质即可得到答案.【详解】解:∵二次函数的解析式为()21y x m =+-∴抛物线的对称轴是直线1x =- ,10a =>∴当1x <-时,y 随x 的增大而减小;当1x >-时,y 随x 的增大而增大∵()13,A y -、()22,B y -、31,2C y ⎛⎫ ⎪⎝⎭是抛物线()21y x m =+-上的三个点 ∴()132---=,()121---=,()13122--= ∴3212>> ∴132y y y >>.故答案是:132y y y >>【点睛】本题考查了二次函数图像与系数的关系、二次函数图像上点的坐标特征,解答本题的关键是明确题意,能利用图像的增减性进行解答.三、解答题21.(1)x =1;(2)与x 轴的交点坐标为(﹣1,0),(3,0),与y 轴的交点坐标为(0,9)【分析】(1)根据对称轴公式,可以求得该抛物线的对称轴;(2)令x=0求出相应的y 值,再令y=0,求出相应的x 的值,即可得到该抛物线与x 轴,y 轴的交点坐标.解:(1)∵抛物线的解析式为y =﹣3x 2+6x+9,∴该抛物线的对称轴为直线x =﹣2b a =﹣62(3)⨯-=1, 即该抛物线的对称轴为直线x =1;(2)∵抛物线的解析式为y =﹣3x 2+6x+9,∴当x =0时,y =9,当y =0时,x =﹣1或x =3,即该抛物线与x 轴的交点坐标为(﹣1,0),(3,0),与y 轴的交点坐标为(0,9)【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答. 22.不能围出,理由见解析.【分析】设长方形的长为xcm ,围成的面积为2ycm ,再根据长方形的面积公式可得y 与x 之间的函数关系式,然后利用二次函数的性质即可得.【详解】不能围出,理由如下:设长方形的长为xcm ,围成的面积为2ycm , 则12022x y x ,即()60y x x =-, 将其化成顶点式为()230900y x =--+,由二次函数的性质可知,当30x =时,y 取得最大值,最大值为900,即用长度为120cm 长的细绳围成的长方形的面积最大为2900cm ,故不能围出面积大于2900cm 的长方形.【点睛】本题考查了二次函数的几何应用,熟练掌握二次函数的性质是解题关键.23.(1) 2y x 2x 3=-++,顶点坐标为(1,4);(2)不在,理由见解析;(3)S=21522m m +,S 的最大值为:258. 【分析】(1)求出A 、B 两点坐标,把B 点坐标代入抛物线的解析式即可解决问题.(2)首先求出BD 和BD 所在直线解析式,再过A 作//AE BD 交抛物线于点F ,联立方程组2123y x y x x =-⎧⎨=-++⎩求出点F 的坐标,进而得出AF 的长,从而可判断出AF 和BD 的关系,故可得结; (3)如图2中,连接OM ,设M (m ,-m 2+2m+3),根据S=S △BOM +S △AOM -S △AOB 计算即可.再利用二次函数的性质求出最大值.解:(1)∵直线l :y=-3x+3与x 轴、y 轴分别相交于A 、B 两点,∴A (1,0),B (0,3),把点B (0,3)代入y=ax 2-2ax+a+4得a=-1,∴抛物线的解析式为y=-x 2+2x+3.顶点D 的坐标为(1,4)(2)不在,如图1,∵(0,3),(1,4)B D∴BD 的解析式为3y x , 22(01)(34)2,BD =-+-=过A 作//AE BD 交抛物线于点F设AE 的解析式为y x b =+将(1,0)A 代入得1b =-,∴AE 的解析式为1y x =-,∵直线AE 与抛物线相交,联立方程组得,2123y x y x x =-⎧⎨=-++⎩∴在第一象限的交点坐标为F 117117(,)+-+ ∴3422AF -=≠ ∴点E 不在抛物线上; (3)如图2中,连接OM ,设M (m ,-m 2+2m+3),∴BOM AOM AOB S S S S ∆∆∆=+-211331(23)222m m m =⨯⨯+⨯⨯-++- 215,(03)22m m m =-+<<. ∵22151525()22228S m m m =-+=--+, ∵-12<0, ∴m=52时,S 有最大值为258. 【点睛】 本题考查二次函数的综合题,三角形的面积、二元二次方程组、平行四边形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,学会构建二次函数,解决最值问题,属于中考常考题型.24.(1)A (-1,0),B(2,0);(2)0或1【分析】(1)解方程x 2-x-2=0可得A ,B 两点的坐标;(2)把P (m ,-2)代入y=x 2-x-2得m 2-m-2=-2,然后解关于m 的方程即可.【详解】解:(1)当y =0时,x 2-x-2=0,解得x 1=-1,x 2=2,∴A (-1,0),B (2,0);(2)把P (m ,-2)代入y =x 2-x-2得m 2-m-2=-2,解得m 1=0,m 2=1,∴m 的值为0或1.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.25.(1)①()4,0D ,顶点为()2,1-;②2n =或0n =;(2)3n n <<<或【分析】(1)①把n=2代入2223y x nx n n =-++-求得243y x x =-+经过配方即可求得顶点坐标;再令y=0,求出x 的值,可得A ,B 的坐标,根据OD OA OB =+可求出点D 的坐标;②设点A 的坐标为(x 1,0),点B 的坐标为(x 2,0),根据2AB BD =列式求解即可; (2)首先求出点P 的坐标,再根据抛物线与x 轴有两个交点以及点P 的纵坐标大于0求出n 的取值范围即可.【详解】(1)①把2n =代入2223y x nx n n =-++-,得243y x x =-+ 配方得,()221y x =--∴顶点为()2,1-令0y =,则()221=0x --解得,1x =或3,即点()()1,0,3,0,A B∴OA=1,OB=3∵.OD OA OB =+∴OD=4∴()4,0D ②设点A 的坐标为(x 1,0),点B 的坐标为(x 2,0),则有,12=2bx x n α+=,2123b x n n ax ==+-, 2222121212()24x x x x x x n +=++=,2222224226226x x n n n n n +=--+=-+22222121212()2226226124x x x x x x n n n n n -=+-=-+--+=-∴21AB x x =-=122OA OB x x n +=+=222BD OD OB n x n n n =-=-=-=∵2AB BD = ∴2(n =解得,n=2,n=-6当n=-6时,点D 在点B 的左侧,不合题意,舍去,∴n=2;当点A 在x 轴负半轴,B 在x 轴正半轴上时,2AB OA =即OB OA =所以,抛物线对称轴为y 轴,此时0n =综上所述,2n =或0n =(3)∵CP 与x 轴没有公共点,∴CP//x 轴或CP 斜向上,当x=0时,23y n n =+-∴点P 的纵坐标为23n n +-,代入2223y x nx n n =-++-得 220-=x nx ,解得,0x =(舍去),2x n =,∴2(2,3)P n n n +-∴23n n +->0, ∴2113()24n +>解得,12n +>12n +<,即,n >或n < ∵抛物线2223y x nx n n =-++-与x 轴交于点,A B ,∴△=22(2)4(3)0n n n --+->,解得,3n <,∴n 的取值范围为:11322n n <<<-或 【点睛】本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用函数图象,从而求出相关字母的取值. 26.(1)211122y x x =--;(2)-1<x <4. 【分析】(1)根据二次函数21y ax bx =+-的图象过D (-1,0)和C (4,5)两点,代入得出关于a ,b 的二元一次方程组,求得a ,b ,从而得出二次函数的解析式;(2)设二次函数的图象与x 轴的另一个交点为D ,令y=0,解一元二次方程,求得x 的值,从而得出与x 轴的另一个交点坐标;画出图象,再根据图象直接得出答案.【详解】(1)∵二次函数21y ax bx =+-的图象过D (-1,0)和C (4,5)两点,∴1016415a b a b --=⎧⎨+-=⎩, ∴12a =,12b =-, ∴二次函数的解析式为211122y x x =--; (2)当0y =时,得:01x =+,解得1x =-,当4x =时,得:5y =,解得1x =-,∴直线1y x =+经过点D (-1,0)和C (4,5)两点,∴图象如图,观察图象,当-1<x <4时,直线1y x =+在抛物线的上方,∴当一次函数的值大于二次函数的值时,x 的取值范围是-1<x <4.【点睛】本题考查了用待定系数法求二次函数的解析式以及一次函数的图象、抛物线与x 轴的交点问题,数形结合是解题的关键.。
人教版九年级上册数学第二十二章 二次函数含答案(易错题)
人教版九年级上册数学第二十二章二次函数含答案一、单选题(共15题,共计45分)1、对于抛物线,下列说法正确的是()A.开口向下,顶点坐标B.开口向上,顶点坐标C.开口向下,顶点坐标D.开口向上,顶点坐标2、抛物线的顶点坐标是().A. B. C. D.3、下列二次函数所对应的抛物线中,开口程度与其它不一样的是()A.y=x 2+2x﹣7B.C.D.4、对于二次函数y=﹣(x﹣1)2+2的图象与性质,下列说法正确的是()A.对称轴是直线x=1,最小值是2B.对称轴是直线x=1,最大值是2 C.对称轴是直线x=﹣1,最小值是2 D.对称轴是直线x=﹣1,最大值是25、如图为二次函数y=ax2+bx+c的图象,在下列说法中正确的是,()① ac>0 ②方程ax2+bx+c=0的根是x1=-1,x2=3③a+b+c<0④当x>1时,y随x的增大而增大A.①③B.②④C.①②④D.②③④6、如图,是抛物线y=ax2+bx+c(a≠0)图象的一部分,已知抛物线的对称轴为x=2,与x轴的一个交点是(﹣1,0).下列结论:①ac<0;②4a﹣2b+c>0;③抛物线与x轴的另一个交点是(4,0);④点(﹣3,y1),(6,y2)都在抛物线上,则有y1<y2.其中正确的个数为()A.1B.2C.3D.47、如图是有相同对称轴的两条抛物线,则下列关系中正确的是()A.h=m,k=nB.h=m,k>nC.h=m,k<nD.h>m,k>n8、在平面直角坐标系中,将抛物线y=x2-4先向右平移两个单位,再向上平移两个单位,得到的抛物线的解析式是( )A. B. C. D.9、抛物线的对称轴是直线()A. B. C. D.10、已知二次函数y=(m﹣2)x2+2mx+m﹣3的图象与x轴有两个交点,(x1,0),(x2, 0),则下列说法正确是( )①该函数图象一定过定点(﹣1,﹣5);②若该函数图象开口向下,则m的取值范围为:m<2;③当m>2,且1≤x≤2时,y的最大值为:4m﹣5;④当m>2,且该函数图象与x轴两交点的横坐标x1, x2满足﹣3<x1<﹣2,﹣1<x2<0时,m的取值范围为:m<11.A.①②③④B.①②④C.①③④D.②③④11、将抛物线y=x2+3先向左平移2个单位,再向下平移1个单位,所得新抛物线的解析式为()A.y=(x+2)2+2B.y=(x﹣1)2+5C.y=(x+2)2+4D.y =(x﹣2)2+212、二次函数的图象可以由二次函数的图象平移而得到,下列平移正确的是()A.先向右平移2个单位,再向上平移1个单位B.先向右平移2个单位,再向下平移1个单位C.先向左平移2个单位,再向上平移1个单位 D.先向左平移2个单位,再向下平移1个单位13、已知抛物线y=x2﹣2x+1与x轴的一个交点为(m,0),则代数式m2﹣2m+2013的值为()A.2011B.2012C.2013D.201414、抛物线y=x2+2x+2的对称轴是()A.直线x=1B.直线x=﹣1C.直线y=﹣1D.直线y=115、已知关于x的二次函数y=(x-h)2+3,当1≤x≤3时,函数有最小值2h,则h的值为()A. B. 或2 C. 或6 D. 或2或6二、填空题(共10题,共计30分)16、已知二次函数y=x2+2x﹣7的一个函数值是8,那么对应的自变量x的值是________.17、已知关于的二次函数的图象与轴的一个交点坐标为.若,则的取值范围是________18、二次函数y=﹣x2+2x+3,当x=________时,y有最________值为________.19、某水果店销售一批水果,平均每天可售出,每kg盈利4元,经调查发现,每kg降价0.5元,商店平均每天可多售出水果,则商店平均每天的最高利润为________元20、二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x …-5 -4 -3 -2 -1 0 …y …4 0 -2 -2 0 4 …下列说法:①抛物线的开口向下;②当x>-3时,y随x的增大而增大;③二次函数的最小值是-2;④抛物线的对称轴是x=-2.5.其中正确的是________.(填序号)21、对于一个函数,当自变量x取n时,函数值y等于4-n,我们称n为这个函数的“二合点”,如果二次函数y=mx2+x+1有两个相异的二合点x1, x2,且x1<x2<1,则m的取值范围是________.22、如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB 的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是________.23、已知关于x的一元二次方程x2+bx﹣c=0无实数解,则抛物线y=﹣x2﹣bx+c经过________象限.24、已知二次函数的图象经过原点及点(﹣3,﹣2),且图象与x轴的另一交点到原点的距离为1,则该二次函数的解析式为________.25、若二次函数的图像上有,,三点,则,,的大小关系是________.三、解答题(共5题,共计25分)26、已知抛物线的顶点坐标是(3,-1),与y轴的交点是(0,-4),求这个二次函数的解析式.27、用配方法把二次函数y=﹣2x2+6x+4化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.28、已知二次函数y=ax2+k(a≠0),当x=2时,y=4;当x=﹣1时,y=﹣3,求这个二次函数解析式.29、求二次函数y=﹣2x2+8x﹣6的对称轴、顶点坐标.30、抛物线的图象如图,求这条抛物线的解析式.(结果化成一般式)参考答案一、单选题(共15题,共计45分)1、A2、D3、A4、B5、D6、B7、B8、E9、D10、B11、A13、B14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
二次函数易错题(Word版 含答案)
二次函数易错题(Word版含答案)一、初三数学二次函数易错题压轴题(难)1.图①,二次函数y=ax2+bx+c(a≠0)的图象经过点A(﹣1,0),并且与直线y=1 2 x﹣2相交于坐标轴上的B、C两点,动点P在直线BC下方的二次函数的图象上.(1)求此二次函数的表达式;(2)如图①,连接PC,PB,设△PCB的面积为S,求S的最大值;(3)如图②,抛物线上是否存在点Q,使得∠ABQ=2∠ABC?若存在,则求出直线BQ的解析式及Q点坐标;若不存在,请说明理由.【答案】(1)y=12x2﹣32x﹣2;(2)﹣1<0,故S有最大值,当x=2时,S的最大值为4;(3)Q的坐标为(53,﹣289)或(﹣113,929).【解析】【分析】(1)根据题意先求出点B、C的坐标,进而利用待定系数法即可求解;(2)由题意过点P作PH//y轴交BC于点H,并设点P(x,12x2﹣32x﹣2),进而根据S=S△PHB+S△PHC=12PH•(x B﹣x C),进行计算即可求解;(3)根据题意分点Q在BC下方、点Q在BC上方两种情况,利用解直角三角形的方法,求出点H的坐标,进而分析求解.【详解】解:(1)对于直线y=12x﹣2,令x=0,则y=﹣2,令y=0,即12x﹣2=0,解得:x=4,故点B、C的坐标分别为(4,0)、(0,﹣2),抛物线过点A、B两点,则y=a(x+1)(x﹣4),将点C的坐标代入上式并解得:a=12,故抛物线的表达式为y=12x2﹣32x﹣2①;(2)如图2,过点P作PH//y轴交BC于点H,设点P(x,12x2﹣32x﹣2),则点H(x,12x﹣2),S=S△PHB+S△PHC=12PH•(x B﹣x C)=12×4×(12x﹣2﹣12x2+32x+2)=﹣x2+4x,∵﹣1<0,故S有最大值,当x=2时,S的最大值为4;(3)①当点Q在BC下方时,如图2,延长BQ交y轴于点H,过点Q作QC⊥BC交x轴于点R,过点Q作QK⊥x轴于点K,∵∠ABQ=2∠ABC,则BC是∠ABH的角平分线,则△RQB为等腰三角形,则点C是RQ的中点,在△BOC中,tan∠OBC=OCOB=12=tan∠ROC=RCBC,则设RC=x=QB,则BC=2x,则RB22(2)x x5=BQ,在△QRB中,S△RQB=12×QR•BC=12BR•QK,即122x•2x=125,解得:KQ5∴sin∠RBQ=KQBQ55x=45,则tanRBH=43,在Rt △OBH 中,OH =OB•tan ∠RBH =4×43=163,则点H (0,﹣163), 由点B 、H 的坐标得,直线BH 的表达式为y =43(x ﹣4)②, 联立①②并解得:x =4(舍去)或53, 当x =53时,y =﹣289,故点Q (53,﹣289); ②当点Q 在BC 上方时,同理可得:点Q 的坐标为(﹣113,929); 综上,点Q 的坐标为(53,﹣289)或(﹣113,929). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质、解直角三角形、面积的计算等,注意分类讨论思维的应用,避免遗漏.2.在平面直角坐标系中,O 为坐标原点,抛物线L :y =ax 2﹣4ax (a >0)与x 轴正半轴交于点A .抛物线L 的顶点为M ,对称轴与x 轴交于点D . (1)求抛物线L 的对称轴.(2)抛物线L :y =ax 2﹣4ax 关于x 轴对称的抛物线记为L ',抛物线L '的顶点为M ',若以O 、M 、A 、M '为顶点的四边形是正方形,求L '的表达式.(3)在(2)的条件下,点P 在抛物线L 上,且位于第四象限,点Q 在抛物线L '上,是否存在点P 、点Q 使得以O 、D 、P 、Q 为顶点的四边形是平行四边形,若存在,求出点P 坐标,若不存在,请说明理由.【答案】(1)2x =;(2)2122y x x =-+ ;(3)存在,P 点的坐标为(33,3或(33,3-或(13,3或(13,3+-或31,2⎛⎫- ⎪⎝⎭【解析】 【分析】(1)根据抛物线的对称轴公式计算即可.(2)利用正方形的性质求出点M,M′的坐标即可解决问题.(3)分OD是平行四边形的边或对角线两种情形求解即可.【详解】解:(1)∵抛物线L:y=ax2﹣4ax(a>0),∴抛物线的对称轴x=﹣42aa=2.(2)如图1中,对于抛物线y=ax2﹣4ax,令y=0,得到ax2﹣4ax=0,解得x=0或4,∴A(4,0),∵四边形OMAM′是正方形,∴OD=DA=DM=DM′=2,∴M((2,﹣2),M′(2,2)把M(2,﹣2)代入y=ax2﹣4ax,可得﹣2=4a﹣8a,∴a=12,∴抛物线L′的解析式为y=﹣12(x﹣2)2+2=﹣12x2+2x.(3)如图3中,由题意OD=2.当OD 为平行四边形的边时,PQ =OD =2,设P (m ,12m 2﹣2m ),则Q [m ﹣2,﹣12(m ﹣2)2+2(m ﹣2)]或[m +2,﹣12(m +2)2+2(m +2)], ∵PQ ∥OD , ∴12m 2﹣2m =﹣12(m ﹣2)2+2(m ﹣2)或12m 2﹣2m =﹣12(m +2)2+2(m +2), 解得m =33,∴P 33或(333或(133和33, 当OD 是平行四边形的对角线时,点P 的横坐标为1,此时P (1,﹣32), 综上所述,满足条件的点P 的坐标为33或(333或(133)和33)或(1,﹣32). 【点睛】本题属于二次函数综合题,考查了二次函数的性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题3.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 20x +(b+1)x 0+b ﹣2=x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围;(3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2121a 是线段AB 的垂直平分线,求实数b 的取值范围.【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b 的取值范围是﹣b <0. 【解析】 【分析】(1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围;(3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121a 是线段AB 的垂直平分线,从而可以求得b 的取值范围. 【详解】解:(1)当a =2,b =﹣2时, 函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0,∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点, ∴△=b 2﹣4a (b ﹣2)>0,设t =b 2﹣4a (b ﹣2)=b 2﹣4ab+8a ,对于任何实数b ,t >0, 故(﹣4a )2﹣4×1×8a <0, 解得,0<a <2,即a 的取值范围是0<a <2; (3)由题意可得, 点A 和点B 在直线y =x 上, 设点A (x 1,x 1),点B (x 2,x 2),∵A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点, ∴x 1,x 2是方程ax 2+bx+b ﹣2=0的两个根, ∴x 1+x 2=﹣b a,∵线段AB 中点坐标为(122x x +,122x x+), ∴该中点的坐标为(2b a -,2b a-), ∵直线y =﹣x+2121a +是线段AB 的垂直平分线,∴点(2b a -,2ba -)在直线y =﹣x+2121a +上, ∴2ba -=21221b a a ++∴﹣b =222122a a a ≤+=2,(当a =22时取等号) ∴0<﹣b ≤24, ∴﹣2≤b <0, 即b 的取值范围是﹣24≤b <0. 【点睛】本题是一道二次函数综合题、主要考查新定义、二次函数的性质、二次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.4.如图1,抛物线21:C y x b =+交y 轴于()0,1A .(1)直接写出抛物线1C 的解析式______________.(2)如图1,x 轴上两动点,M N 满足:m n X X n -==.若,B C (B 在C 左侧)为线段MN 上的两个动点,且满足:B 点和C 点关于直线:1l x =对称.过B 作BB x '⊥轴交1C于B ',过C 作CC x '⊥轴交1C 于C ',连接B C ''.求B C ''的最大值(用含n 的代数式表示).(3)如图2,将抛物线1C 向下平移78个单位长度得到抛物线2C .2C 对称轴左侧的抛物线上有一点M ,其横坐标为m .以OM 为直径作K ,记⊙K 的最高点为Q .若Q 在直线2y x =-上,求m 的值.【答案】(1)21y x =+;(2)1|n -;(3)14m =-或12m =- 【解析】 【分析】(1)将()0,1A 带入抛物线1C 解析式,求得b 的值,即可得到抛物线1C 的解析式; (2)设(),0B q ,则()2,0C q -,求()2B C ''并进行化简,由1n q -≤<且12,qn <-得21n q -<,则当()2maxB C''⎡⎤⎢⎥⎣⎦时,取min 2q q n ==-,带入()2B C '',即可求得()maxB C '';(3)依题意将抛物线1C 向下平移78个单位长度得到抛物线2C ,求得2C 解析式,根据解析式特点设21,8M m m ⎛⎫+ ⎪⎝⎭,得到222218OM m m ⎛⎫=++ ⎪⎝⎭,由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭,设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭,化简得到22211084k m k m ⎛⎫++-= ⎪⎝⎭,由Q 点在2y x =-上,得2Q k x m =-=-,继而得到231048m m -+=,解得14m =-或12m =-. 【详解】解:(1)将()0,1A 带入抛物线21:C y x b =+,得b=1, 则21:1C y x =+,(2)设(),0B q ,则()2,0C q -, ∴()22222(2)(2)B C q q q q ''⎡⎤=--+--⎣⎦2204020q q =-+()2201q =-,∵1n q -≤<且12,q n <-21n q -<∴,∴()2maxB C''⎡⎤⎢⎥⎣⎦时,min 2q q n ==-,即()22220(21)20(1)B C n n ''=--=-,∴()max1|B C n ''=-,(3)根据题意,将抛物线1C 向下平移78个单位长度得到抛物线2C , ∴221:8C y x =+, ∴21,8M m m ⎛⎫+⎪⎝⎭, ∴222218OM m m ⎛⎫=++ ⎪⎝⎭,∴由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭, 设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭, ∴222111428OM k m ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦, 化简上式得:22211084k m k m ⎛⎫++-= ⎪⎝⎭, ∵Q 点在2y x =-上,则2Q k x m =-=-, ∴k m =-为上述方程的一个解, ∴分析可知1()04k m k m ⎛⎫+-= ⎪⎝⎭, 21148m m m -=+∴,∴231048m m -+=, 解得:114m =-,212m =-(经检验114m =-,212m =-是方程231048m m -+=的解), 故14m =-或12m =-.【点睛】本题主要考查二次函数的图像及性质、图像平移的性质、及二次函数与一元二次方程的综合应用、最值求法等知识.解题关键是熟练掌握二次函数的性质,充分利用数形结合的思想.5.定义:对于已知的两个函数,任取自变量x 的一个值,当0x ≥时,它们对应的函数值相等;当0x <时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y x =,它的相关函数为(0)(0)x x y x x ≥⎧=⎨-<⎩. (1)已知点()5,10A -在一次函数5y ax =-的相关函数的图像上,求a 的值; (2)已知二次函数2142y x x =-+-. ①当点3,2B m ⎛⎫ ⎪⎝⎭在这个函数的相关函数的图像上时,求m 的值; ②当33x -≤≤时,求函数2142y x x =-+-的相关函数的最大值和最小值. (3)在平面直角坐标系中,点M 、N 的坐标分别为1,12⎛⎫-⎪⎝⎭、9,12⎛⎫⎪⎝⎭,连结MN .直接写出线段MN 与二次函数24y x x n =-++的相关函数的图像有两个公共点时n 的取值范围.【答案】(1)1;(2)①22- ;②max 432y =,min 12y =-;(3)31n -<≤-,514n <≤【解析】 【分析】(1)先求出5y ax =-的相关函数,然后代入求解,即可得到答案;(2)先求出二次函数的相关函数,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可; ②当-3≤x <0时,y=x 2-4x+12,然后可 此时的最大值和最小值,当0≤x≤3时,函数y=-x 2+4x-12,求得此时的最大值和最小值,从而可得到当-3≤x≤3时的最大值和最小值; (3)首先确定出二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围. 【详解】解:(1)根据题意,一次函数5y ax =-的相关函数为5,(0)5,(0)ax x y ax x -≥⎧=⎨-+<⎩, ∴把点()5,10A -代入5y ax =-+,则(5)510a -⨯-+=,∴1a =;(2)根据题意,二次函数2142y x x =-+-的相关函数为2214,(0)214,(0)2x x x y x x x ⎧-+-≥⎪⎪=⎨⎪-+<⎪⎩, ①当m <0时,将B (m ,32)代入y=x 2-4x+12得m 2-4m+1322=, 解得:m=2当m≥0时,将B (m ,32)代入y=-x 2+4x-12得:-m 2+4m-12=32, 解得:或m=2.综上所述:m=2-或m=2+或m=2-②当-3≤x <0时,y=x 2-4x+12,抛物线的对称轴为x=2,此时y 随x 的增大而减小, ∴当3x =-时,有最大值,即2143(3)4(3)22y =--⨯-+=, ∴此时y 的最大值为432. 当0≤x≤3时,函数y=-x 2+4x 12-,抛物线的对称轴为x=2, 当x=0有最小值,最小值为12-, 当x=2时,有最大值,最大值y=72. 综上所述,当-3≤x≤3时,函数y=-x 2+4x 12-的相关函数的最大值为432,最小值为12-; (3)如图1所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有1个公共点.∴当x=2时,y=1,即-4+8+n=1,解得n=-3.如图2所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=x2-4x-n与y轴交点纵坐标为1,∴-n=1,解得:n=-1.∴当-3<n≤-1时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=-x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x 2-4x-n 经过点M (12-,1), ∴14+2-n=1,解得:n=54. ∴1<n≤54时,线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有2个公共点. 综上所述,n 的取值范围是-3<n≤-1或1<n≤54. 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值是解题的关键.6.如图,抛物线2(0)y ax bx c a =++≠与坐标轴的交点为()30A -,,()10B ,,()0,3C -,抛物线的顶点为D .(1)求抛物线的解析式.(2)若E 为第二象限内一点,且四边形ACBE 为平行四边形,求直线CE 的解析式. (3)P 为抛物线上一动点,当PAB ∆的面积是ABD ∆的面积的3倍时,求点P 的坐标.【答案】(1)223y x x =+-;(2)33y x =--;(3)点P 的坐标为()5,12-或()3,12.【解析】【分析】(1)本题考查二次函数解析式的求法,可利用待定系数法,将点带入求解;(2)本题考查二次函数平行四边形存在性问题,可根据题干信息结合平行四边形性质确定动点位置,进一步利用待定系数法求解一次函数解析式;(3)本题考查二次函数与三角形面积问题,可先根据题干面积关系假设动点坐标,继而带入二次函数,列方程求解.【详解】(1)∵抛物线2y ax bx c=++与坐标轴的交点为()30A-,,()10B,,()0,3C-,∴9303a b ca b cc-+=⎧⎪++=⎨⎪=-⎩,解得123abc=⎧⎪=⎨⎪=-⎩∴抛物线的解析式为223y x x=+-.(2)如图,过点E作EH x⊥轴于点H,则由平行四边形的对称性可知1AH OB==,3EH OC==.∵3OA=,∴2OH=,∴点E的坐标为()2,3-.∵点C的坐标为()0,3-,∴设直线CE的解析式为()30y kx k=-<将点()2,3E-代入,得233k--=,解得3k=-,∴直线CE的解析式为33y x=--.(3)∵2223(1)4y x x x=+-=+-,∴抛物线的顶点为()1,4D--.∵PAB∆的面积是ABD∆的面积的3倍,∴设点P为(),12t.将点(),12P t代入抛物线的解析式223y x x=+-中,得22312t t+-=,解得3t=或5t=-,故点P的坐标为()5,12-或()3,12.【点睛】本题考查二次函数与几何的综合,利用待定系数法求解解析式时还可以假设交点式,几何图形存在性问题求解往往需要利用其性质,假设动点坐标,列方程求解.7.如图,抛物线2y x bx c=-++的图象与x轴交于A、B两点(点A在点B的左边),与y 轴交于点C ,点D 为抛物线的顶点.点A 坐标的为3,0,点C 的坐标为()0,3.(Ⅰ)求抛物线的解析式;(Ⅱ)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作i 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作//PQ AB 交抛物线于点Q ,过点Q 作QN x ⊥轴于点N .若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求AEM △的面积;(Ⅲ)在(Ⅱ)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若=22FG DQ ,求点F 的坐标.【答案】(Ⅰ)223y x x =--+;(Ⅱ)12;(Ⅲ)()4,5F --或()1,0 【解析】【分析】(Ⅰ)将点A ,点C 坐标代入解析式可求解;(Ⅱ)设M (x ,0),P (x ,-x 2-2x+3),利用对称性可求点Q (-2-x ,-x 2-2x+3),可求MP=-x 2-2x+3,PQ=-2-x-x=-2-2x ,则可用x 表示矩形PMNQ 的周长,由二次函数的性质可求当矩形PMNQ 的周长最大时,点P 的坐标,即可求点E ,点M 的坐标,由三角形面积公式可求解;(Ⅲ)先求出点D 坐标,即可求2FG=4,设F (m ,-m 2-2m+3),则G (m ,m+3),用含有m 的式子表示FG 的长度即可求解.【详解】 解:(Ⅰ)依题意()()2330{3b c c --+⨯-+== 解得2{3b c =-= 所以223y x x =--+(Ⅱ)2223(1)4y x x x抛物线的对称轴是直线1x =-(,0)M x ,()2,23P x x x --+,其中31x -<<-∵P 、Q 关于直线1x =-对称设Q 的横坐标为a则()11a x --=--∴2a x =--∴()22,23Q x x x ----+∴223MP x x =--+,222PQ x x x =---=--∴周长()222222232822(2)10d x x x x x x =----+=--+=-++当2x =-时,d 取最大值,此时,(2,0)M -∴2(3)1AM =---=设直线AC 的解析式为y kx b =+ 则303k b b -+=⎧⎨=⎩,解得13k b =⎧⎨=⎩∴设直线AC 的解析式为3yx 将2x =-代入3yx ,得1y = ∴(2,1)E -,∴1EM = ∴11111222AEM S AM ME ∆=⋅=⨯⨯= (Ⅲ)由(Ⅱ)知,当矩形PMNQ 的周长最大时,2x =-此时点()0,3Q ,与点C 重合,∴3OQ =∵2223(1)4y x x x∴()1,4D -过D 作DK y ⊥轴于K ,则1DK =,4OK =∴431OK OK OQ =-=-=∴DKQ 是等腰直角三角形,2DQ =∴224FG DQ ==设()2,23F m m m --+,则(,3)G m m + ()223233FG m m m m m =+---+=+∴234m m +=,解得14m =-,21m =当4m =-时,2235m m --+=-当1m =时,2230m m --+=.∴()4,5F --或()1,0【点睛】本题是二次函数综合题,考查了二次函数的性质,矩形的性质,等腰直角三角形的性质等,利用参数表示线段的长度是本题的关键.8.如图,已知抛物线2y x bx c =-++与x 轴交于A ,B 两点,过点A 的直线l 与抛物线交于点C ,其中点A 的坐标是()1,0,点C 的坐标是()2,3-,抛物线的顶点为点D .(1)求抛物线和直线AC 的解析式.(2)若点P 是抛物线上位于直线AC 上方的一个动点,求APC ∆的面积的最大值及此时点P 的坐标.(3)若抛物线的对称轴与直线AC 相交于点E ,点M 为直线AC 上的任意一点,过点M 作//MN DE 交抛物线于点N ,以D ,E ,M ,N 为顶点的四边形能否为平行四边形?若能,求出点M 的坐标;若不能,请说明理由.【答案】(1)y=-x 2-2x+3,y=-x+1;(2)最大值为278,此时点P(12-,154);(3)能,(0,1),)或【解析】【分析】(1)直接利用待定系数法进行求解,即可得到答案;(2)设点P(m ,-m 2-2m+3),则Q(m ,-m+1),求出PQ 的长度,结合三角形的面积公式和二次函数的性质,即可得到答案;(3)根据题意,设点M(t ,-t+1),则点N(t ,-t 2-2t+3),可分为两种情况进行分析:①当点M 在线段AC 上时,点N 在点M 上方;②当点M 在线段AC (或CA )延长线上时,点N 在点M 下方;分别求出点M 的坐标即可.【详解】解:(1)∵抛物线y=-x 2+bx+c 过点A(1,0),C(-2,3),∴10423b c b c -++=⎧⎨--+=⎩,,解得:23b c =-⎧⎨=⎩,. ∴抛物线的解析式为y=-x 2-2x+3.设直线AC 的解析式为y=kx+n .将点A ,C 坐标代入,得023k n k n +=⎧⎨-+=⎩,,解得11k n =-⎧⎨=⎩,. ∴直线AC 的解析式为y=-x+1.(2)过点P 作PQ ∥y 轴交AC 于点Q .设点P(m ,-m 2-2m+3),则Q(m ,-m+1).∴PQ=(-m 2-2m+3)-(-m+1)=-m 2-m+2.∴S △APC =S △PCQ +S △APQ =12PQ·(x A -x C )=12(-m 2-m+2)×3=23127()228m -++. ∴当m=12-时,S △APC 最大,最大值为278,此时点P(12-,154). (3)能.∵y=-x 2-2x+3,点D 为顶点,∴点D(-1,4),令x=-1时,y=-(-1)+1=2,∴点E(-1,2).∵MN ∥DE ,∴当MN=DE=2时,以D ,E ,M ,N 为顶点的四边形是平行四边形.∵点M 在直线AC 上,点N 在抛物线上,∴设点M(t,-t+1),则点N(t,-t2-2t+3).①当点M在线段AC上时,点N在点M上方,则MN=(-t2-2t+3)-(-t+1)=-t2-t+2.∴-t2-t+2=2,解得:t=0或t=-1(舍去).∴此时点M的坐标为(0,1).②当点M在线段AC(或CA)延长线上时,点N在点M下方,则MN=(-t+1)-(-t2-2t+3)=t2+t-2.∴t2+t-2=2,解得:t=1172-+或t=1172--.∴此时点M的坐标为(117-+,317-)或(117--,317+).综上所述,满足条件的点M的坐标为:(0,1),(117-+,317-)或(1172--,3172+).【点睛】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式和二次函数的性质解题;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M的位置.9.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)求直线AC的函数解析式;(3)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;【答案】(1)y=﹣2 3 x2﹣43x+2;(2)223y x=+;(3)存在,(35,22-)【解析】【分析】(1)直接用待定系数法即可解答;(2)先确定C点坐标,设直线AC的函数解析式y=kx+b,最后用待定系数法求解即可;(3)连接PO,作PM⊥x轴于M,PN⊥y轴于N,然后求出△ACP面积的表达式,最后利用二次函数的性质求最值即可.【详解】解:(1)∵抛物线y=ax2+bx+2过点A(﹣3,0),B(1,0),∴093202a ba b=-+⎧⎨=++⎩解得2343ab⎧=-⎪⎪⎨⎪=-⎪⎩,∴二次函数的关系解析式为y=﹣23x2﹣43x+2;(2)∵当x=0时,y=2,∴C(0,2)设直线AC的解析式为y kx b=+,把A、C两点代入得0=32k bb-+⎧⎨=⎩解得232kb⎧=⎪⎨⎪=⎩∴直线AC的函数解析式为223y x=+;(3)存在.如图: 连接PO,作PM⊥x轴于M,PN⊥y轴于N设点P坐标为(m,n),则n=224233m m--+),PN=-m,AO=3当x=0时,y=22400233-⨯-⨯+=2,∴点C 的坐标为(0,2),OC=2 ∵PAC PAO PCO ACO S S S S =+-212411322()3223322m m m ⎛⎫=⨯⋅--++⨯⋅--⨯⨯ ⎪⎝⎭ =23m m --∵a=-1<0∴函数S △PAC =-m 2-3m 有最大值∴b 当m=()33212-=--⨯- ∴当m=32-时,S △PAC 有最大值n=222423435223332322m m ⎛⎫--+=-⨯-⨯+= ⎪⎝⎭ ∴当△ACP 的面积最大时,P 的坐标为(35,22-). 【点睛】 本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、二次函数极值等知识点,根据题意表示出△PAC 的面积是解答本题的关键.10.如图,已知二次函数22(0)y ax ax c a 的图象与x 轴负半轴交于点A (-1,0),与y 轴正半轴交与点B ,顶点为P ,且OB=3OA ,一次函数y=kx+b 的图象经过A 、B .(1) 求一次函数解析式;(2)求顶点P 的坐标;(3)平移直线AB 使其过点P ,如果点M在平移后的直线上,且3tan 2OAM ∠=,求点M 坐标;(4)设抛物线的对称轴交x 轴与点E ,联结AP 交y 轴与点D ,若点Q 、N 分别为两线段PE 、PD 上的动点,联结QD 、QN ,请直接写出QD+QN 的最小值.【答案】(1) 一次函数的解析式为:y=3x+3(2)顶点P 的坐标为(1,4)(3) M 点的坐标为:15,2(,39⎛⎫- ⎪⎝⎭或 23-)(4)最小值为5【解析】【分析】 (1)根据抛物线的解析式即可得出B (0,3),根据OB=3OA ,可求出OA 的长,也就得出了A 点的坐标,然后将A 、B 的坐标代入直线AB 的解析式中,即可得出所求;(2)将(1)得出的A 点坐标代入抛物线的解析式中,可求出a 的值,也就确定了抛物线的解析式进而可求出P 点的坐标;(3)易求出平移后的直线的解析式,可根据此解析式设出M 点坐标(设横坐标,根据直线的解析式表示出纵坐标).然后过M 作x 轴的垂线设垂足为E ,在构建的直角三角形AME 中,可用M 点的坐标表示出ME 和AE 的长,然后根据∠OAM 的正切值求出M 的坐标.(本题要分M 在x 轴上方和x 轴下方两种情况求解.方法一样.)(4)作点D 关于直线x=1的对称点D′,过点D′作D′N ⊥PD 于点N ,根据垂线段最短求出QD+QN 的最小值.【详解】(1)∵A (-1,0),∴OA=1∵OB=3OA ,∴B (0,3)∴图象过A 、B 两点的一次函数的解析式为:y=3x+3(2)∵二次函数22(0)y ax ax c a =-+<的图象与x 轴负半轴交与点A (-1,0),与y 轴正半轴交与点B (0,3),∴c=3,a=-1∴二次函数的解析式为:223y x x =-++∴抛物线223y x x =-++的顶点P (1,4)(3)设平移后的直线的解析式为:3y x b =+∵直线3y x b =+过P (1,4)∴b=1∴平移后的直线为31y x =+∵M 在直线31y x =+,且3tan 2OAM ∠=设M (x,3x+1)① 当点M 在x 轴上方时,有31312x x +=+,∴13x = ∴11,23M ⎛⎫ ⎪⎝⎭②当点M 在x 轴下方时,有31312x x +-=+,∴59x =- ∴25(,9M - 23-)(4)作点D关于直线x=1的对称点D’,过点D’作D’N⊥PD于点N当-x2+2x+3=0时,解得,x=-1或x=3,∴A(-1,0),P点坐标为(1,4),则可得PD解析式为:y=2x+2,令x=0,可得y=2,∴D(0,2),∵D与D′关于直线x=1对称,∴D′(2,2).根据ND′⊥PD,设ND′解析式为y=kx+b,则k=-12,即y=-12x+b,将D′(2,2)代入,得2=-12×2+b,解得b=3,可得函数解析式为y=-12x+3,将两函数解析式组成方程组得:13222y xy x⎧=-+⎪⎨⎪=+⎩,解得25145xy⎧=⎪⎪⎨⎪=⎪⎩,故N(214 ,) 55,由两点间的距离公式:d=2221445 2255⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭,∴所求最小值为45【点睛】本题主要考查了一次函数解析式的确定、二次函数解析式的确定、函数图象的平移等知识点.同时考查了应用轴对称和垂线段最短解决线段和的最小值问题.。
九年级数学上册 二次函数易错题(Word版 含答案)
九年级数学上册 二次函数易错题(Word 版 含答案)一、初三数学 二次函数易错题压轴题(难)1.在平面直角坐标系中,将函数2263,(y x mx m x m m =--≥为常数)的图象记为G .(1)当1m =-时,设图象G 上一点(),1P a ,求a 的值;(2)设图象G 的最低点为(),o o F x y ,求o y 的最大值;(3)当图象G 与x 轴有两个交点时,设右边交点的横坐标为2,x 则2x 的取值范围是 ;(4)设1112,,2,16816A m B m ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,当图象G 与线段AB 没有公共点时,直接写出m 的取值范围.【答案】(1)0a =或3a =-;(2)118;(3)21136x -<<-;(4)18m <-或116m >- 【解析】【分析】(1)将m=-1代入解析式,然后将点P 坐标代入解析式,从而求得a 的值;(2)分m >0和m ≤0两种情况,结合二次函数性质求最值;(3)结合二次函数与x 轴交点及对称轴的性质确定取值范围;(4)结合一元二次方程根与系数的关系确定取值范围.【详解】解:(1)当1m =-时,()22613y x x x =++≥ 把(),1P a 代入,得22611a a ++=解得0a =或3a =-(2)当0m >时,,(3)F m m -此时,0o y m =-<当0m ≤时,2223926=2()22y x mx m x m m m =----- ∴239,22F m m m ⎛⎫-- ⎪⎝⎭此时,229911=()22918m m m ---++ ∴0y 的最大值118=综上所述,0y 的最大值为118(3)由题意可知:当图象G 与x 轴有两个交点时,m >0 当抛物线顶点在x 轴上时,22=4(6)42()=0b ac m m -=--⨯⨯-△解得:m=0(舍去)或29m =- 由题意可知抛物线的对称轴为直线x=32m 且x ≥3m ∴当图象G 与x 轴有两个交点时,设右边交点的横坐标为x 2,则x 2的取值范围是21136x -<<- (4)18m <-或116m >- 【点睛】本题属于二次函数综合题,考查了二次函数的性质,不等式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考压轴题.2.如图,直线l :y =﹣3x +3与x 轴,y 轴分别相交于A 、B 两点,抛物线y =﹣x 2+2x +b 经过点B .(1)该抛物线的函数解析式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值; (3)在(2)的条件下,当S 取得最大值时,动点M 相应的位置记为点M '.①写出点M '的坐标;②将直线l 绕点A 按顺时针方向旋转得到直线l ',当直线l ′与直线AM '重合时停止旋转,在旋转过程中,直线l '与线段BM '交于点C ,设点B ,M '到直线l '的距离分别为d 1,d 2,当d 1+d 2最大时,求直线l '旋转的角度(即∠BAC 的度数).【答案】(1)2y x 2x 3=-++;(2)21525228S m ⎛⎫=--+ ⎪⎝⎭ ,258;(3)①57,24M ⎛⎫' ⎪⎝⎭;②45°【解析】【分析】(1)利用直线l的解析式求出B点坐标,再把B点坐标代入二次函数解析式即可求出b的值.(2)设M的坐标为(m,﹣m2+2m+3),然后根据面积关系将△ABM的面积进行转化.(3)①由(2)可知m=52,代入二次函数解析式即可求出纵坐标的值.②可将求d1+d2最大值转化为求AC的最小值.【详解】(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B(0,3)代入y=﹣x2+2x+b并解得:b=3,∴二次函数解析式为:y=﹣x2+2x+3.(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为-1和3,∵M在抛物线上,且在第一象限内,∴0<m<3,令y=0代入y=﹣3x+3,∴x=1,∴A的坐标为(1,0),由题意知:M的坐标为(m,﹣m2+2m+3),∴S=S四边形OAMB﹣S△AOB=S△OBM+S△OAM﹣S△AOB=12×m×3+12×1×(-m2+2m+3)-12×1×3=﹣12(m﹣52)2+258,∴当m =52时,S 取得最大值258. (3)①由(2)可知:M′的坐标为(52,74). ②设直线l′为直线l 旋转任意角度的一条线段,过点M′作直线l 1∥l′,过点B 作BF ⊥l 1于点F ,根据题意知:d 1+d 2=BF ,此时只要求出BF 的最大值即可,∵∠BFM′=90︒,∴点F 在以BM′为直径的圆上,设直线AM′与该圆相交于点H ,∵点C 在线段BM′上,∴F 在优弧'BM H 上,∴当F 与M′重合时,BF 可取得最大值,此时BM′⊥l 1,∵A (1,0),B (0,3),M′(52,74), ∴由勾股定理可求得:AB 10,M′B 55M′A =854, 过点M′作M′G ⊥AB 于点G ,设BG =x ,∴由勾股定理可得:M′B 2﹣BG 2=M′A 2﹣AG 2,∴851610﹣x )2=12516﹣x 2, ∴x =5108, cos ∠M′BG ='BG BM 2,∠M′BG= 45︒此时图像如下所示,∵l 1∥l′,F 与M′重合,BF ⊥l 1∴∠B M′P=∠BCA =90︒,又∵∠M′BG=∠CBA= 45︒∴∠BAC =45︒.【点睛】本题主要考查了一次函数与二次函数的综合以及一次函数旋转求角度问题,正确掌握一次函数与二次函数性质及综合问题的解法是解题的关键.3.二次函数22(0)63m m y x x m m =-+>的图象交y 轴于点A ,顶点为P ,直线PA 与x 轴交于点B .(1)当m =1时,求顶点P 的坐标;(2)若点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上,且0b m ->,试求a 的取值范围;(3)在第一象限内,以AB 为边作正方形ABCD .①求点D 的坐标(用含m 的代数式表示);②若该二次函数的图象与正方形ABCD 的边CD 有公共点,请直接写出符合条件的整数m 的值.【答案】(1)P (2,13);(2)a 的取值范围为:a <0或a >4;(3)①D (m ,m +3); ②2,3,4.【解析】【分析】(1)把m =1代入二次函数22(0)63m m y x x m m =-+>解析式中,进而求顶点P 的坐标即可;(2)把点Q (a ,b )代入二次函数22(0)63m m y x x m m =-+>解析式中,根据0b m ->得到关于a 的一元二次不等式即一元一次不等式组,解出a 的取值范围即可; (3)①过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,求出二次函数与y 轴的交点A 的坐标,得到OA 的长,再根据待定系数法求出直线AP 的解析式,进而求出与x 轴的交点B 的坐标,得到OB 的长;通过证明△ADF ≌△ABO ,得到AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,求出点D 的坐标;②因为二次函数的图象与正方形ABCD 的边CD 有公共点,由①同理可得:C (m+3,3),分当x 等于点D 的横坐标时与当x 等于点C 的横坐标两种情况,进行讨论m 可能取的整数值即可.【详解】解:(1)当m =1时,二次函数为212163y x x =-+, ∴顶点P 的坐标为(2,13); (2)∵点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上, ∴2263m m b a a m =-+, 即:2263m m b m a a -=- ∵0b m ->, ∴2263m m a a ->0, ∵m >0, ∴2263a a ->0, 解得:a <0或a >4,∴a 的取值范围为:a <0或a >4;(3)①如下图,过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,∵二次函数的解析式为2263m m y x x m =-+, ∴顶点P (2,3m ), 当x=0时,y=m ,∴点A (0,m ),∴OA=m ;设直线AP 的解析式为y=kx+b(k≠0),把点A (0,m ),点P (2,3m )代入,得: 23m b m k b =⎧⎪⎨=+⎪⎩, 解得:3m k b m⎧=-⎪⎨⎪=⎩,∴直线AP 的解析式为y=3m -x+m , 当y=0时,x=3,∴点B (3,0);∴OB=3;∵四边形ABCD 是正方形,∴AD=AB ,∠DAF+∠FAB=90°,且∠OAB+∠FAB =90°,∴∠DAF=∠OAB ,在△ADF 和△ABO 中,DAF OAB AFD AOB AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△ABO (AAS ),∴AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,∴点D 的坐标为:(m ,m+3);②由①同理可得:C (m+3,3),∵二次函数的图象与正方形ABCD 的边CD 有公共点,∴当x =m 时,3y m ≤+,可得322363m m m m -+≤+,化简得:32418m m -≤. ∵0m >,∴2184m m m -≤,∴218(2)4m m--≤, 显然:m =1,2,3,4是上述不等式的解,当5m ≥时,2(2)45m --≥,18 3.6m ≤,此时,218(2)4m m-->, ∴符合条件的正整数m =1,2,3,4; 当x = m +3时,y ≥3,可得2(3)2(3)363m m m m m ++-+≥, ∵0m >,∴21823m m m ++≥,即218(1)2m m++≥, 显然:m =1不是上述不等式的解,当2m ≥时,2(1)211m ++≥,189m ≤,此时,218(1)2m m++>恒成立, ∴符合条件的正整数m =2,3,4;综上:符合条件的整数m 的值为2,3,4.【点睛】本题考查二次函数与几何问题的综合运用,熟练掌握二次函数的图象和性质、一次函数的图象和性质、正方形的性质是解题的关键.4.如图1.在平面直角坐标系xOy 中,抛物线2:C y ax bx c =++与x 轴相交于,A B 两点,顶点为()0,4D AB =,(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180︒,得到新的抛物线'C .()1求抛物线C 的函数表达式:()2若抛物线'C 与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围. ()3如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线'C 上的对应点P',设M 是C 上的动点,N 是'C 上的动点,试探究四边形'PMP N 能否成为正方形?若能,求出m 的值;若不能,请说明理由.【答案】()12142y x =-+;()2222m <<()3四边形'PMP N 可以为正方形,6m = 【解析】【分析】(1)由题意得出A,B 坐标,并代入,,A B D 坐标利用待定系数法求出抛物线C 的函数表达式;(2)根据题意分别求出当C '过点()0,4D 时m 的值以及当C '过点()22,0B 时m 的值,并以此进行分析求得;(3)由题意设(),P n n ,代入解出n ,并作HK OF ⊥,PH HK ⊥于H ,利用正方形性质以及全等三角形性质得出M 为()2,2m m --,将M 代入21: 42C y x =-+即可求得答案.【详解】解:()142AB =(), 22,0)2,0(2A B ∴-将,,A B D 三点代入得2 y ax bx c =++8220.8220.4a b ca b cc⎧-+=⎪⎪++=⎨⎪=⎪⎩解得124abc⎧=-⎪⎪=⎨⎪=⎪⎩2142y x∴=-+;()2如图21:42C y x=-+.关于(),0F m对称的抛物线为()21:242C y x m'=--当C'过点()0,4D时有()2140242m=--解得:2m=当C'过点()2,0B时有()21022242m=-解得:22m=222m∴<<;()3四边形'PMP N可以为正方形由题意设(),P n n,P是抛物线C第一象限上的点2142n n∴-+=解得:122,2n n==-(舍去)即()2,2P如图作HK OF⊥,PH HK⊥于H,MK HK ⊥于K四边形PMP N '为正方形 易证PHK FKM ≌2FK HP m ∴==-2MK HF ==M ∴为()2,2m m --∴将M 代入21: 42C y x =-+得()212242m m -=--+ 解得:126,0m m ==(舍去)∴当6m =时四边形PMP N ''为正方形.【点睛】本题考查二次函数综合题、中心对称变换、正方形的性质、全等三角形的判定和性质、一元二次方程的根与系数的关系等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题,难度大.5.已知抛物线2(0)y ax bx c a =++≠过点(0,2)A -. (1)若点(2,0)-也在该抛物线上,请用含a 的关系式表示b ;(2)若该抛物线上任意不同两点()11,M x y 、()22,N x y 都满足:当120x x <<时,()()12120x x y y --<;当120x x <<时,()()12120x x y y -->;若以原点O 为圆心,OA 为半径的圆与抛物线的另两个交点为B 、C (点B 在点C 左侧),且ABC ∆有一个内角为60,求抛物线的解析式;(3)在(2)的条件下,若点P 与点O 关于点A 对称,且O 、M 、N 三点共线,求证:PA 平分MPN ∠.【答案】(1)21b a =-;(2)22y x =-;(3)见解析.【解析】 【分析】(1)把点()0,2-、()2,0-代入抛物线解析式,然后整理函数式即可得到答案. (2)根据二次函数的性质可得出抛物线的对称轴为y 轴、开口向上,进而可得出0b =,由抛物线的对称性可得出ABC ∆为等腰三角形,结合其有一个60︒的内角可得出ABC ∆为等边三角形,设线段BC 与y 轴交于点D ,根据等边三角形的性质可得出点C 的坐标,再利用待定系数法可求出a 值,此题得解;(3)由(1)的结论可得出点M 的坐标为1(x ,212)x -+、点N 的坐标为2(x ,222)x -+,由O 、M 、N 三点共线可得出212x x =-,进而可得出点N 及点'N 的坐标,由点A 、M 的坐标利用待定系数法可求出直线AM 的解析式,利用一次函数图象上点的坐标特征可得出点'N 在直线PM 上,进而即可证出PA 平分MPN ∠. 【详解】解:(1)把点()0,2-、()2,0-分别代入,得2420c a b c =-⎧⎨-+=⎩. 所以21b a =-.(2),如图1,当120x x <<时,()()12120x x y y --<,120x x ∴-<,120y y ->, ∴当0x <时,y 随x 的增大而减小;同理:当0x >时,y 随x 的增大而增大,∴抛物线的对称轴为y 轴,开口向上,0b ∴=.OA 为半径的圆与拋物线的另两个交点为B 、C , ABC ∴∆为等腰三角形,又ABC ∆有一个内角为60︒, ABC ∴∆为等边三角形.设线段BC 与y 轴交于点D ,则BD CD =,且30OCD ∠=︒, 又2OB OC OA ===,·303CD OC cos ∴=︒=,·301OD OC sin =︒=. 不妨设点C 在y 轴右侧,则点C 的坐标为(3,1). 点C 在抛物线上,且2c =-,0b =,321a ∴-=,1a ∴=,∴抛物线的解析式为22y x =-.(3)证明:由(1)可知,点M 的坐标为1(x ,212)x -,点N 的坐标为2(x ,222)x -.如图2,直线OM 的解析式为()110y k x k =≠.O 、M 、N 三点共线,10x ∴≠,20x ≠,且22121222x x x x --=,121222x x x x ∴-=-, ()1212122x x x x x x -∴-=-,122x x ∴=-,即212x x =-, ∴点N 的坐标为12(x -,2142)x -. 设点N 关于y 轴的对称点为点'N ,则点'N 的坐标为12(x ,2142)x -. 点P 是点O 关于点A 的对称点,24OP OA ∴==,∴点P 的坐标为()0,4-.设直线PM 的解析式为24y k x =-,点M 的坐标为1(x ,212)x -,212124x k x ∴-=-,21212x k x +∴=,∴直线PM 的解析式为21124x y x x +=-.()222111221111224224·42x x x x x x x +-+-==-, ∴点'N 在直线PM 上,PA ∴平分MPN ∠. 【点睛】本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质、等边三角形的性质以及一次(二次)函数图象上点的坐标特征,解题的关键是:(1)利用二次函数图象上点的坐标特征求出a 、b 满足的关系式;(2)①利用等边三角形的性质找出点C 的坐标;②利用一次函数图象上点的坐标特征找出点'N 在直线PM 上.6.已知二次函数y =ax 2+bx +c (a ≠0).(1)若b =1,a =﹣12c ,求证:二次函数的图象与x 轴一定有两个不同的交点; (2)若a <0,c =0,且对于任意的实数x ,都有y ≤1,求4a +b 2的取值范围;(3)若函数图象上两点(0,y 1)和(1,y 2)满足y 1•y 2>0,且2a +3b +6c =0,试确定二次函数图象对称轴与x 轴交点横坐标的取值范围. 【答案】(1)见解析;(2)240a b +≤ ;(3)12323b a <-< 【解析】 【分析】(1)根据已知条件计算一元二次方程的判别式即可证得结论; (2)根据已知条件求得抛物线的顶点纵坐标,再整理即可;(3)将(0,y 1)和(1,y 2)分别代入函数解析式,由y 1•y 2>0,及2a +3b +6c =0,得不等式组,变形即可得出答案. 【详解】解:(1)证明:∵y =ax 2+bx+c (a≠0), ∴令y =0得:ax 2+bx+c =0 ∵b =1,a =﹣12c ,∴△=b 2﹣4ac =1﹣4(﹣12c )c =1+2c 2, ∵2c 2≥0,∴1+2c 2>0,即△>0,∴二次函数的图象与x 轴一定有两个不同的交点; (2)∵a <0,c =0,∴抛物线的解析式为y =ax 2+bx ,其图象开口向下, 又∵对于任意的实数x ,都有y≤1,∴顶点纵坐标214b a-≤,∴﹣b 2≥4a , ∴4a+b 2≤0;(3)由2a+3b+6c =0,可得6c =﹣(2a+3b ), ∵函数图象上两点(0,y 1)和(1,y 2)满足y 1•y 2>0, ∴c (a+b+c )>0, ∴6c (6a+6b+6c )>0,∴将6c =﹣(2a+3b )代入上式得,﹣(2a+3b )(4a+3b )>0, ∴(2a+3b )(4a+3b )<0, ∵a≠0,则9a 2>0, ∴两边同除以9a 2得,24()()033b b a a ++<, ∴203403b a b a ⎧+<⎪⎪⎨⎪+>⎪⎩或203403b a b a ⎧+>⎪⎪⎨⎪+<⎪⎩,∴4233b a -<<-, ∴二次函数图象对称轴与x 轴交点横坐标的取值范围是:12323b a <-<. 【点睛】本题考查了抛物线与x 轴的交点、抛物线与一元二次方程的关系及抛物线与不等式的关系等知识点,熟练掌握二次函数的性质是解题的关键.7.如图①抛物线y =ax 2+bx +4(a ≠0)与x 轴,y 轴分别交于点A (﹣1,0),B (4,0),点C 三点.(1)试求抛物线的解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.【答案】(1)y=﹣x2+3x+4;(2)存在.P(﹣34,1916).(3)1539(,)24M--21139 (,) 24M-3521 (,) 24M【解析】【分析】(1)将A,B,C三点代入y=ax2+bx+4求出a,b,c值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139 (,) 24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴322 2m∴m=5 2∴﹣m2+3m+4=21 4∴3521 (,) 24M综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为1539 (,)24M--21139 (,) 24M-3521 (,) 24M.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.8.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A 在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.【答案】(1)A(-1,0) ,B(2,3)(2)△ABP最大面积s=1927322288⨯=; P(12,﹣34)(3)存在;25【解析】【分析】(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1,然后解方程组211y xy x⎧=⎨=+⎩﹣即可;(2)设P(x,x2﹣1).过点P作PF∥y轴,交直线AB于点F,则F(x,x+1),所以利用S△ABP=S△PFA+S△PFB,,用含x的代数式表示为S△ABP=﹣x2+x+2,配方或用公式确定顶点坐标即可.(3)设直线AB:y=kx+1与x轴、y轴分别交于点E、F,用k分别表示点E的坐标,点F的坐标,以及点C的坐标,然后在Rt△EOF中,由勾股定理表示出EF的长,假设存在唯一一点Q,使得∠OQC=90°,则以OC为直径的圆与直线AB相切于点Q,设点N为OC中点,连接NQ,根据条件证明△EQN∽△EOF,然后根据性质对应边成比例,可得关于k的方程,解方程即可.【详解】解:(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1.联立两个解析式,得:x2﹣1=x+1,解得:x=﹣1或x=2,当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3,∴A (﹣1,0),B (2,3). (2)设P (x ,x 2﹣1).如答图2所示,过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1).∴PF=y F ﹣y P =(x+1)﹣(x 2﹣1)=﹣x 2+x+2.S △ABP =S △PFA +S △PFB =PF (xF ﹣xA )+PF (xB ﹣xF )=PF (xB ﹣xA )=PF ∴S △ABP=(﹣x 2+x+2)=﹣(x ﹣12)2+278当x=12时,yP=x 2﹣1=﹣34. ∴△ABP 面积最大值为,此时点P 坐标为(12,﹣34). (3)设直线AB :y=kx+1与x 轴、y 轴分别交于点E 、F , 则E (﹣1k ,0),F (0,1),OE=1k,OF=1. 在Rt △EOF 中,由勾股定理得:EF=22111=k k +⎛⎫+ ⎪⎝⎭.令y=x 2+(k ﹣1)x ﹣k=0,即(x+k )(x ﹣1)=0,解得:x=﹣k 或x=1. ∴C (﹣k ,0),OC=k .假设存在唯一一点Q ,使得∠OQC=90°,如答图3所示,则以OC 为直径的圆与直线AB 相切于点Q ,根据圆周角定理,此时∠OQC=90°. 设点N 为OC 中点,连接NQ ,则NQ ⊥EF ,NQ=CN=ON=2k.∴EN=OE﹣ON=1k﹣2k.∵∠NEQ=∠FEO,∠EQN=∠EOF=90°,∴△EQN∽△EOF,∴NQ ENOF EF=,即:1221kkkk-=,解得:k=±25,∵k>0,∴k=25.∴存在唯一一点Q,使得∠OQC=90°,此时k=25.考点:1.二次函数的性质及其应用;2.圆的性质;3.相似三角形的判定与性质.9.如图,已知二次函数1L:()22311y mx mx m m=+-+≥和二次函数2L:()2341y m x m=--+-()1m≥图象的顶点分别为M、N,与x轴分别相交于A、B 两点(点A在点B的左边)和C、D两点(点C在点D的左边),(1)函数()22311y mx mx m m=+-+≥的顶点坐标为______;当二次函数1L,2L的y 值同时随着x的增大而增大时,则x的取值范围是_______;(2)判断四边形AMDN的形状(直接写出,不必证明);(3)抛物线1L,2L均会分别经过某些定点;①求所有定点的坐标;②若抛物线1L位置固定不变,通过平移抛物线2L的位置使这些定点组成的图形为菱形,则抛物线2L应平移的距离是多少?【答案】(1)()1,41m--+,13x;(2)四边形AMDN是矩形;(3)①所有定点的坐标,1L经过定点()3,1-或()1,1,2L经过定点()5,1-或()1,1-;②抛物线2L应平移的距离是423+423-.【解析】【分析】(1)将已知抛物线解析式转化为顶点式,直接得到点M的坐标;结合函数图象填空;(2)利用抛物线解析式与一元二次方程的关系求得点A 、D 、M 、N 的横坐标,可得AD 的中点为(1,0),MN 的中点为(1,0),则AD 与MN 互相平分,可证四边形AMDN 是矩形;(3)①分别将二次函数的表达式变形为1:(3)(1)1L y m x x =+-+和2:(1)(5)1L y m x x =----,通过表达式即可得出所过定点;②根据菱形的性质可得EH 1=EF=4即可,设平移的距离为x ,根据平移后图形为菱形,由勾股定理可得方程即可求解.【详解】解:(1)12b x a=-=-,顶点坐标M 为(1,41)m --+, 由图象得:当13x 时,二次函数1L ,2L 的y 值同时随着x 的增大而增大. 故答案为:(1,41)m --+;13x ;(2)结论:四边形AMDN 是矩形.由二次函数21:231(1)L y mx mx m m =+-+和二次函数22:(3)41(1)L y m x m m =--+-解析式可得:A 点坐标为41(1m m ---,0),D 点坐标为41(3m m -+,0), 顶点M 坐标为(1,41)m --+,顶点N 坐标为(3,41)m -,AD ∴的中点为(1,0),MN 的中点为(1,0),AD ∴与MN 互相平分,∴四边形AMDN 是平行四边形,又AD MN =,∴□AMDN 是矩形;(3)①二次函数21:231(3)(1)1L y mx mx m m x x =+-+=+-+,故当3x =-或1x =时1y =,即二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41(1)(5)1L y m x m m x x =--+-=----,故当1x =或5x =时1y =-,即二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,②二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,如图:四个定点分别为(3,1)E -、(1,1)F ,(1,1)H -、(5,1)G -,则组成四边形EFGH 为平行四边形,∴FH ⊥HG ,FH=2,HM=4-x ,设平移的距离为x ,根据平移后图形为菱形,则EH 1=EF=H 1M=4,由勾股定理可得:FH 2+HM 2=FM 2,即22242(4)x =+-,解得:423x =±,抛物线1L 位置固定不变,通过左右平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是423+或423-.【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.10.如图,经过原点的抛物线2y ax x b =-+与直线2y =交于A ,C 两点,其对称轴是直线2x =,抛物线与x 轴的另一个交点为D ,线段AC 与y 轴交于点B .(1)求抛物线的解析式,并写出点D 的坐标;(2)若点E 为线段BC 上一点,且2EC EA -=,点(0,)P t 为线段OB 上不与端点重合的动点,连接PE ,过点E 作直线PE 的垂线交x 轴于点F ,连接PF ,探究在P 点运动过程中,线段PE ,PF 有何数量关系?并证明所探究的结论;(3)设抛物线顶点为M ,求当t 为何值时,DMF ∆为等腰三角形?【答案】(1)214y x x =-;点D 的坐标为(4,0);(2)PF =,理由见解析;(3)t =98t = 【解析】【分析】(1)先求出a 、b 的值,然后求出解析式,再求出点D 的坐标即可;(2)由题意,先求出点E 的坐标,然后证明Rt Rt PBE FHE ∆∆∽,得到2EF PE =,结合勾股定理,即可得到答案;(3)根据题意,可分为三种情况进行分析:FM FD =或DF DM =或FM MD =,分别求出三种情况的值即可.【详解】解:(1)∵抛物线2y ax x b =-+经过原点, ∴0b =.又抛物线的对称轴是直线2x =, ∴122a --=,解得:14a =. ∴抛物线的解析式为:214y x x =-. 令2104y x x =-=, 解得:10x =,24x =.∴点D 的坐标为(4,0).(2)线段PE 、PF 的数量关系为:PF =.证明:由抛物线的对称性得线段AC 的中点为(2,2)G ,如图①,AE EG GC +=,∴EG GC AE =-,∴EG EG EG GC AE EC EA +=+-=-,∵2EC EA -=,∴1EG =,∴(1,2)E ,过点E 作EH x ⊥轴于H ,则2EH OB ==.∵PE EF ⊥,∴90PEF ∠=︒,∵BE EH ⊥,∴90BEH ∠=︒.∴PEB HEF ∠=∠.在Rt PBE ∆与Rt FHE ∆中,∵PEB HEF ∠=∠,90EHF EBP ∠=∠=︒,∴Rt Rt PBE FHE ∆∆∽,∴12PE BE EF HE ==, ∴2EF PE =. 在Rt PEF ∆中,由勾股定理得:222222(2)5PF PE EF PE PE PE =+=+=, ∴5PF PE =.(3)由2211(2)144y x x x =-=--, ∴顶点M 坐标为(2,1)-.若DMF ∆为等腰三角形,可能有三种情形:(I )若FM FD =.如图②所示:连接MG 交x 轴于点N ,则90MNF ∠=︒,∵(4,0)D ,∴2222125MD MN ND =+=+=设FM FD k ==,则2NF k =-.在Rt MNF ∆中,由勾股定理得:222NF MN MF +=,∴22(2)1k k -+=,解得:54k =, ∴54FM =,34NF =, ∴1MN =,即点M 的纵坐标为1-;令1y =-,则2114x x -=-, ∴2x =,即ON=2,∴OF=114, ∴11,04F ⎛⎫ ⎪⎝⎭. ∵(1,2)E ,∴1,2BE BP t ==-,∴221(2)PE t =+-,∴251(2)PF t =•+-,在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴22211()55(2)4t t +=+-, ∴98t =. (II )若DF DM =.如图③所示:此时5FD DM ==∴45OF =,∴(45,0)F ,由(I )知,221(2)PE t =+-,251(2)PF t =+-在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴222(45)55(2)t t +-=+-∴12t=.(III)若FM MD=.由抛物线对称性可知,此时点F与原点O重合.∵PE EF⊥,点P在直线AC上方,与点P在线段OB上运动相矛盾,故此种情形不存在.【点睛】本题考查的是二次函数综合运用,涉及到相似三角形的判定和性质,一次函数的性质,等腰三角形的性质,全等三角形的判定和性质,以及勾股定理等知识,其中(3),要注意分类求解,避免遗漏.。
九年级数学二次函数的专项培优 易错 难题练习题(含答案)含答案解析
九年级数学二次函数的专项培优 易错 难题练习题(含答案)含答案解析一、二次函数1.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B . (1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)﹣3;(2)y 13=x 2﹣3;(3)M 的坐标为(3632). 【解析】 【分析】(1)把C (0,﹣3)代入直线y =x +m 中解答即可;(2)把y =0代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可; (3)分M 在BC 上方和下方两种情况进行解答即可. 【详解】(1)将C (0,﹣3)代入y =x +m ,可得: m =﹣3;(2)将y =0代入y =x ﹣3得: x =3,所以点B 的坐标为(3,0),将(0,﹣3)、(3,0)代入y =ax 2+b 中,可得:390b a b =-⎧⎨+=⎩, 解得:133a b ⎧=⎪⎨⎪=-⎩,所以二次函数的解析式为:y 13=x 2﹣3;(3)存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D , 则∠ODC =45°+15°=60°, ∴OD =OC •tan30°3=设DC 为y =kx ﹣33,0),可得:k 3=联立两个方程可得:233133y x y x ⎧=-⎪⎨=-⎪⎩, 解得:121203336x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩, 所以M 1(36);②若M 在B 下方,设MC 交x 轴于点E , 则∠OEC =45°-15°=30°, ∴OE =OC •tan60°=3设EC 为y =kx ﹣3,代入(30)可得:k 3=联立两个方程可得:233133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩, 解得:12120332x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩, 所以M 23,﹣2).综上所述M 的坐标为(3,63,﹣2). 【点睛】此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.2.如图,已知二次函数的图象过点O (0,0).A (8,4),与x 轴交于另一点B ,且对称轴是直线x =3.(1)求该二次函数的解析式;(2)若M 是OB 上的一点,作MN ∥AB 交OA 于N ,当△ANM 面积最大时,求M 的坐标;(3)P 是x 轴上的点,过P 作PQ ⊥x 轴与抛物线交于Q .过A 作AC ⊥x 轴于C ,当以O ,P ,Q 为顶点的三角形与以O ,A ,C 为顶点的三角形相似时,求P 点的坐标.【答案】(1)21342y x x =-;(2)当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0). 【解析】 【分析】(1)先利用抛物线的对称性确定B (6,0),然后设交点式求抛物线解析式;(2)设M (t ,0),先其求出直线OA 的解析式为12y x =直线AB 的解析式为y=2x-12,直线MN 的解析式为y=2x-2t ,再通过解方程组1222y xy x t⎧=⎪⎨⎪=-⎩得N (42t,t 33),接着利用三角形面积公式,利用S △AMN =S △AOM -S △NOM 得到AMN 112S 4t t t 223∆=⋅⋅-⋅⋅然后根据二次函数的性质解决问题;(3)设Q 213m,m m 42⎛⎫- ⎪⎝⎭,根据相似三角形的判定方法,当PQ PO OC AC =时,△PQO ∽△COA ,则213m m 2|m |42-=;当PQ PO AC OC=时,△PQO ∽△CAO ,则2131m m m 422-=,然后分别解关于m 的绝对值方程可得到对应的P 点坐标. 【详解】解:(1)∵抛物线过原点,对称轴是直线x =3, ∴B 点坐标为(6,0),设抛物线解析式为y =ax (x ﹣6), 把A (8,4)代入得a•8•2=4,解得a =14, ∴抛物线解析式为y =14x (x ﹣6),即y =14x 2﹣32x ; (2)设M (t ,0),易得直线OA 的解析式为y =12x , 设直线AB 的解析式为y =kx+b ,把B (6,0),A (8,4)代入得6084k b k b +=⎧⎨+=⎩,解得k 2b 12=⎧⎨=-⎩,∴直线AB 的解析式为y =2x ﹣12, ∵MN ∥AB ,∴设直线MN 的解析式为y =2x+n , 把M (t ,0)代入得2t+n =0,解得n =﹣2t , ∴直线MN 的解析式为y =2x ﹣2t ,解方程组1222y x y x t ⎧=⎪⎨⎪=-⎩得4323x t y t ⎧=⎪⎪⎨⎪=⎪⎩,则42N t,t 33⎛⎫ ⎪⎝⎭, ∴S △AMN =S △AOM ﹣S △NOM1124t t t 223=⋅⋅-⋅⋅ 21t 2t 3=-+21(t 3)33=--+,当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0); (3)设213m,m m 42⎛⎫- ⎪⎝⎭, ∵∠OPQ =∠ACO , ∴当PQ PO OC AC =时,△PQO ∽△COA ,即PQ PO 84=, ∴PQ =2PO ,即213m m 2|m |42-=, 解方程213m m 2m 42-=得m 1=0(舍去),m 2=14,此时P 点坐标为(14,0); 解方程213m m 2m 42-=-得m 1=0(舍去),m 2=﹣2,此时P 点坐标为(﹣2,0);∴当PQ PO AC OC =时,△PQO ∽△CAO ,即PQ PO48=, ∴PQ =12PO ,即2131m m m 422-=,解方程2131m m m 422=-=得m 1=0(舍去),m 2=8,此时P 点坐标为(8,0); 解方程2131m m m 422=-=-得m 1=0(舍去),m 2=4,此时P 点坐标为(4,0); 综上所述,P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0). 【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.3.如图,抛物线y =x 2+bx +c 与x 轴交于A 、B 两点,B 点坐标为(3,0),与y 轴交于点C (0,3).(1)求抛物线y =x 2+bx +c 的表达式;(2)点D 为抛物线对称轴上一点,当△BCD 是以BC 为直角边的直角三角形时,求点D 的坐标;(3)点P 在x 轴下方的抛物线上,过点P 的直线y =x +m 与直线BC 交于点E ,与y 轴交于点F ,求PE +EF 的最大值.【答案】(1)y=x 2﹣4x+3;(2)(2,﹣1);(3)42 【解析】试题分析:(1)利用待定系数法求抛物线解析式;(2)如图1,设D (2,y ),利用两点间的距离公式得到BC 2=32+32=18,DC 2=4+(y ﹣3)2,BD 2=(3﹣2)2+y 2=1+y 2,然后讨论:当BD 为斜边时得到18+4+(y ﹣3)2=1+y 2;当CD为斜边时得到4+(y ﹣3)2=1+y 2+18,再分别解方程即可得到对应D 的坐标;(3)先证明∠CEF =90°得到△ECF 为等腰直角三角形,作PH ⊥y 轴于H ,PG ∥y 轴交BC 于G ,如图2,△EPG 、△PHF 都为等腰直角三角形,则PE 2,PF 2,设P (t ,t 2﹣4t +3)(1<t <3),则G (t ,﹣t +3),接着利用t 表示PF 、PE ,这样PE +EF =2PE +PF =﹣2t 22,然后利用二次函数的性质解决问题.试题解析:解:(1)把B(3,0),C(0,3)代入y=x2+bx+c得:9303b cc++=⎧⎨=⎩,解得:43bc=-⎧⎨=⎩,∴抛物线y=x2+bx+c的表达式为y=x2﹣4x+3;(2)如图1,抛物线的对称轴为直线x=﹣42-=2,设D(2,y),B(3,0),C(0,3),∴BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,当△BCD是以BC为直角边,BD为斜边的直角三角形时,BC2+DC2=BD2,即18+4+(y﹣3)2=1+y2,解得:y=5,此时D点坐标为(2,5);当△BCD是以BC为直角边,CD为斜边的直角三角形时,BC2+DB2=DC2,即4+(y﹣3)2=1+y2+18,解得:y=﹣1,此时D点坐标为(2,﹣1);(3)易得BC的解析式为y=﹣x+3.∵直线y=x+m与直线y=x平行,∴直线y=﹣x+3与直线y=x+m垂直,∴∠CEF=90°,∴△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图2,△EPG、△PHF都为等腰直角三角形,PE=22PG,PF=2PH,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),∴PF=2PH=2t,PG=﹣t+3﹣(t2﹣4t+3)=﹣t2+3t,∴PE=22PG=﹣22t2+322t,∴PE+EF=PE+PE+PF=2PE+PF=﹣2t2+32t+2t=﹣2t2+42t=﹣2(t﹣2)2+42,当t=2时,PE+EF的最大值为42.点睛:本题考查了二次函数的综合题.熟练掌握等腰直角三角形的性质、二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,记住两点间的距离公式.4.二次函数y=x2-2mx+3(m>)的图象与x轴交于点A(a,0)和点B(a+n,0)(n >0且n为整数),与y轴交于C点.(1)若a=1,①求二次函数关系式;②求△ABC的面积;(2)求证:a=m-;(3)线段AB(包括A、B)上有且只有三个点的横坐标是整数,求a的值.【答案】(1)y=x2-4x+3;3;(2)证明见解析;(3)a=1或a=−.【解析】试题分析:(1)①首先根据a=1求得A的坐标,然后代入二次函数的解析式,求得m的值即可确定二次函数的解析式;②根据解析式确定抛物线与坐标轴的交点坐标,从而确定三角形的面积;(2)将原二次函数配方后即可确定其对称轴为x=m,然后根据A、B两点关于x=m对称得到a+n-m=m-a,从而确定a、m、n之间的关系;(3)根据a=m-得到A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,求得m 的值即可确定a的值.试题解析:(1)①∵a=1,∴A(1,0),代入y=x2-2mx+3得1-2m+3=0,解得m=2,∴y=x2-4x+3;②在y=x2-4x+3中,当y=0时,有x2-4x+3=0可得x=1或x=3,∴A(1,0)、B(3,0),∴AB=2再根据解析式求出C点坐标为(0,3),∴OC=3,△ABC的面积=×2×3=3;(2)∵y=x2-2mx+3=(x-m)2-m2+3,∴对称轴为直线x=m,∵二次函数y=x2-2mx+3的图象与x轴交于点A和点B∴点A和点B关于直线x=m对称,∴a+n-m=m-a,∴a=m-;(3)y=x2-2mx+3(m>)化为顶点式为y=(x-m)2-m2+3(m>)①当a为整数,因为n>0且n为整数所以a+n是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=2,∴a=m-1,∴A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,∴m2-4=0,∴m=2,m=-2(舍去),∴a=2-1=1,②当a不是整数,因为n>0且n为整数所以a+n不是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=3,∴a=m-∴A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,∴m2=,∴m=,m=-(舍去),∴a=−,综上所述:a=1或a=−.考点:二次函数综合题.5.如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.6.如图1,在平面直角坐标系中,直线122y x =+与x 轴交于点A ,与y 轴交于点C ,抛物线212y x bx c =++经过A 、C 两点,与x 轴的另一交点为点B .(1)求抛物线的函数表达式;(2)点D 为直线AC 上方抛物线上一动点, ①连接BC 、CD 、BD ,设BD 交直线AC 于点E ,△CDE 的面积为S 1,△BCE 的面积为S 2.求:12S S 的最大值; ②如图2,是否存在点D ,使得∠DCA =2∠BAC ?若存在,直接写出点D 的坐标,若不存在,说明理由.【答案】(1)213222y x x =--+;(2)①当2a =-时,12S S 的最大值是45;②点D的坐标是(2,3)- 【解析】 【分析】(1)根据题意得到A (-4,0),C (0,2)代入y=-12x 2+bx+c ,于是得到结论; (2)①如图,令y=0,解方程得到x 1=-4,x 2=1,求得B (1,0),过D 作DM ⊥x 轴于M ,过B 作BN ⊥x 轴交于AC 于N ,根据相似三角形的性质即可得到结论;②根据勾股定理的逆定理得到△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,求得P (-32,0),得到PA=PC=PB=52,过D 作x 轴的平行线交y 轴于R ,交AC 的延线于G ,∠DCF=2∠BAC=∠DGC+∠CDG ,解直角三角形即可得到结论. 【详解】解:(1)根据题意得A (-4,0),C (0,2),∵抛物线y=-12x 2+bx+c 经过A .C 两点, ∴1016422b c c⎧-⨯-+⎪⎨⎪⎩==,∴3 b=-2 c=2⎧⎪⎨⎪⎩,抛物线解析式为:213222y x x=--+ ;(2)①令0y=,∴2132022x x--+=解得:14x=- ,21x=∴B(1,0)过点D作DM x⊥轴交AC于M,过点B作BN x⊥轴交AC于点N,∴DM∥BN∴DME BNE∆∆∽∴12S DE DMS BE BN==设:213222D a a a⎛⎫--+⎪⎝⎭,∴122M a a⎛⎫+⎪⎝⎭,∵()10B,∴51,2N⎛⎫⎪⎝⎭∴()22121214225552a aS DMaS BN--===-++∴当2a=-时,12SS的最大值是45;②∵A(-4,0),B(1,0),C(0,2),∴AC=25,BC=5,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB为直角的直角三角形,取AB的中点P,∴P(-32,0),∴PA=PC=PB=52,∴∠CPO=2∠BAC,∴tan∠CPO=tan(2∠BAC)=43,过D作x轴的平行线交y轴于R,交AC的延长线于G,如图,∴∠DCF=2∠BAC=∠DGC+∠CDG,∴∠CDG=∠BAC,∴tan∠CDG=tan∠BAC=12,即RC:DR=12,令D(a,-12a2-32a+2),∴DR=-a,RC=-12a2-32a,∴(-12a2-32a):(-a)=1:2,∴a1=0(舍去),a2=-2,∴x D=-2,∴-12a2-32a+2=3,∴点D的坐标是()2,3-【点睛】本题是二次函数综合题,涉及待定系数法求函数的解析式,相似三角形的判定和性质,解直角三角形等知识点,正确的作出辅助线是解题的关键,难度较大.7.如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2-4x+3.(2)当m=52时,四边形AOPE面积最大,最大值为758.(3)P点的坐标为:P13+515-),P2(35-1+5P35+51+5P455-15-.【解析】分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P 的坐标;同理可得其他图形中点P的坐标.详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2-4x+3;(2)如图2,设P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四边形AOPE=S△AOE+S△POE,=12×3×3+12PG•AE,=92+12×3×(-m2+5m-3),=-32m2+152m,=32(m-52)2+758, ∵-32<0, ∴当m=52时,S 有最大值是758; (3)如图3,过P 作MN ⊥y 轴,交y 轴于M ,交l 于N ,∵△OPF 是等腰直角三角形,且OP=PF ,易得△OMP ≌△PNF ,∴OM=PN ,∵P (m ,m 2-4m+3),则-m 2+4m-3=2-m ,解得:m=5+5或55-, ∴P 的坐标为(5+5,1+5)或(55-,15-); 如图4,过P 作MN ⊥x 轴于N ,过F 作FM ⊥MN 于M ,同理得△ONP ≌△PMF ,∴PN=FM ,则-m2+4m-3=m-2,解得:x=3+5或35 -;P的坐标为(3+5,15-)或(35-,1+52);综上所述,点P的坐标是:(5+52,1+52)或(552-,152-)或(3+5,15-)或(35-,1+5).点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.8.如图:在平面直角坐标系中,直线l:y=13x﹣43与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=32.(1)求抛物线的解析式;(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x2﹣3x﹣4;(2)证明见解析;(3)点Q的坐标为(﹣2,6)或(2,﹣6).【解析】【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可; (2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y y Q P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可.【详解】(1)当y=0时,14033x -=,解得x=4,即A (4,0),抛物线过点A ,对称轴是x=32,得161203322a c a -+=⎧⎪-⎨-=⎪⎩, 解得14a c =⎧⎨=-⎩,抛物线的解析式为y=x 2﹣3x ﹣4; (2)∵平移直线l 经过原点O ,得到直线m ,∴直线m 的解析式为y=13x . ∵点P 是直线1上任意一点, ∴设P (3a ,a ),则PC=3a ,PB=a .又∵PE=3PF ,∴PC PB PF PE=. ∴∠FPC=∠EPB .∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP ⊥PE .(3)如图所示,点E 在点B 的左侧时,设E (a ,0),则BE=6﹣a .∵CF=3BE=18﹣3a ,∴OF=20﹣3a .∴F (0,20﹣3a ).∵PEQF 为矩形, ∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=4或a=8(舍去).∴Q (﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18,∴OF=3a ﹣20.∴F (0,20﹣3a ).∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a . 将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去).∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.9.已知二次函数的图象以A (﹣1,4)为顶点,且过点B (2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x 2﹣2x+3;(2)抛物线与x 轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y 轴的交点坐标;令y=0,可求得抛物线与x 轴交点坐标;(3)由(2)可知:抛物线与x 轴的交点分别在原点两侧,由此可求出当抛物线与x 轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a (x+1)2+4,将B (2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x 2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y 轴的交点为:(0,3),令y=0,﹣x 2﹣2x+3=0,解得:x 1=﹣3,x 2=1,即抛物线与x 轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x 轴的交点为M 、N (M 在N 的左侧),由(2)知:M (﹣3,0),N (1,0),当函数图象向右平移经过原点时,M 与O 重合,因此抛物线向右平移了3个单位, 故A'(2,4),B'(5,﹣5),∴S △OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.10.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。
九年级数学二次函数的专项培优 易错 难题练习题(含答案)及答案
九年级数学二次函数的专项培优 易错 难题练习题(含答案)及答案一、二次函数1.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值. 【答案】(1)点B 的坐标为(1,0). (2)①点P 的坐标为(4,21)或(-4,5). ②线段QD 长度的最大值为94. 【解析】 【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解. 【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0),∴2a 1b12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=, ∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3). 又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭.∵a 10<=-,-3302<<- ∴线段QD 长度的最大值为94.2.某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y (千克)与销售单价x (元)之间的函数关系如图所示. (1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少? (3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?【答案】(1)y =﹣20x +500,(x ≥6);(2)当x =15.5时,w 的最大值为1805元;(3)当x =13时,w =1680,此时,既能销售完又能获得最大利润. 【解析】【分析】(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 即可求解; (2)由题意得:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,即可求解;(3)当x =15.5时,y =190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;由50(500﹣20x )≥12000,解得:x ≤13,当x =13时,既能销售完又能获得最大利润. 【详解】解:(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 得:2001530010k bk b=+⎧⎨=+⎩, 解得:20500k b =-⎧⎨=⎩,即:函数的表达式为:y =﹣20x +500,(x ≥6);(2)设:该品种蜜柚定价为x 元时,每天销售获得的利润w 最大, 则:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6), ∵﹣20<0,故w 有最大值, 当x =﹣2b a =312=15.5时,w 的最大值为1805元; (3)当x =15.5时,y =190, 50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完; 设:应定销售价为x 元时,既能销售完又能获得最大利润w , 由题意得:50(500﹣20x )≥12000,解得:x ≤13, w =﹣20(x ﹣25)(x ﹣6), 当x =13时,w =1680,此时,既能销售完又能获得最大利润. 【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).3.如图,在平面直角坐标系中,抛物线y=ax 2+bx ﹣3(a≠0)与x 轴交于点A (﹣2,0)、B (4,0)两点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.【答案】(1)y=38x2﹣34x﹣3(2)运动1秒使△PBQ的面积最大,最大面积是9 10(3)K1(1,﹣278),K2(3,﹣158)【解析】【详解】试题分析:(1)把点A、B的坐标分别代入抛物线解析式,列出关于系数a、b的解析式,通过解方程组求得它们的值;(2)设运动时间为t秒.利用三角形的面积公式列出S△PBQ与t的函数关系式S△PBQ=﹣9 10(t﹣1)2+910.利用二次函数的图象性质进行解答;(3)利用待定系数法求得直线BC的解析式为y=34x﹣3.由二次函数图象上点的坐标特征可设点K的坐标为(m,38m2﹣34m﹣3).如图2,过点K作KE∥y轴,交BC于点E.结合已知条件和(2)中的结果求得S△CBK=94.则根据图形得到:S△CBK=S△CEK+S△BEK=12EK•m+12•EK•(4﹣m),把相关线段的长度代入推知:﹣34m2+3m=94.易求得K1(1,﹣278),K2(3,﹣158).解:(1)把点A(﹣2,0)、B(4,0)分别代入y=ax2+bx﹣3(a≠0),得423016430a b a b --=⎧⎨+-=⎩, 解得3834ab ⎧=⎪⎪⎨⎪=-⎪⎩,所以该抛物线的解析式为:y=38x 2﹣34x ﹣3; (2)设运动时间为t 秒,则AP=3t ,BQ=t . ∴PB=6﹣3t .由题意得,点C 的坐标为(0,﹣3).在Rt △BOC 中,BC=2234+=5. 如图1,过点Q 作QH ⊥AB 于点H .∴QH ∥CO , ∴△BHQ ∽△BOC , ∴HB OC BGBC=,即Hb 35t=,∴HQ=35t . ∴S △PBQ =12PB•HQ=12(6﹣3t )•35t=﹣910t 2+95t=﹣910(t ﹣1)2+910.当△PBQ 存在时,0<t <2 ∴当t=1时,S △PBQ 最大=910. 答:运动1秒使△PBQ 的面积最大,最大面积是910; (3)设直线BC 的解析式为y=kx+c (k≠0). 把B (4,0),C (0,﹣3)代入,得403k c c +=⎧⎨=-⎩,解得3 k4 c3⎧=⎪⎨⎪=-⎩,∴直线BC的解析式为y=34x﹣3.∵点K在抛物线上.∴设点K的坐标为(m,38m2﹣34m﹣3).如图2,过点K作KE∥y轴,交BC于点E.则点E的坐标为(m,34m﹣3).∴EK=34m﹣3﹣(38m2﹣34m﹣3)=﹣38m2+32m.当△PBQ的面积最大时,∵S△CBK:S△PBQ=5:2,S△PBQ=910.∴S△CBK=94.S△CBK=S△CEK+S△BEK=12EK•m+12•EK•(4﹣m)=12×4•EK=2(﹣38m2+32m)=﹣34m2+3m.即:﹣34m2+3m=94.解得 m1=1,m2=3.∴K1(1,﹣278),K2(3,﹣158).点评:本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式和三角形的面积求法.在求有关动点问题时要注意该点的运动范围,即自变量的取值范4.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用. 设每个房间每天的定价增加x 元.求:(1)房间每天的入住量y (间)关于x (元)的函数关系式; (2)该宾馆每天的房间收费p (元)关于x (元)的函数关系式;(3)该宾馆客房部每天的利润w (元)关于x (元)的函数关系式;当每个房间的定价为每天多少元时,w 有最大值?最大值是多少?【答案】(1)y=60-10x;(2)z=-110x 2+40x+12000;(3)w=-110x 2+42x+10800,当每个房间的定价为每天410元时,w 有最大值,且最大值是15210元. 【解析】试题分析:(1)根据题意可得房间每天的入住量=60个房间﹣每个房间每天的定价增加的钱数÷10;(2)已知每天定价增加为x 元,则每天要(200+x )元.则宾馆每天的房间收费=每天的实际定价×房间每天的入住量;(3)支出费用为20×(60﹣10x ),则利润w =(200+x )(60﹣10x )﹣20×(60﹣10x),利用配方法化简可求最大值. 试题解析:解:(1)由题意得:y =60﹣10x (2)p =(200+x )(60﹣10x )=﹣2110x +40x +12000 (3)w =(200+x )(60﹣10x )﹣20×(60﹣10x ) =﹣2110x +42x +10800 =﹣110(x ﹣210)2+15210 当x =210时,w 有最大值.此时,x +200=410,就是说,当每个房间的定价为每天410元时,w 有最大值,且最大值是15210元.点睛:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题主要考查的是二次函数的应用,难度一般.5.一座拱桥的轮廓是抛物线型(如图所示),拱高6m ,跨度20m ,相邻两支柱间的距离均(1)将抛物线放在所给的直角坐标系中(如图所示),其表达式是2y ax c =+的形式.请根据所给的数据求出a ,c 的值. (2)求支柱MN 的长度.(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.【答案】(1)y=-350x 2+6;(2)5.5米;(3)一条行车道能并排行驶这样的三辆汽车. 【解析】试题分析:(1)根据题目可知A .B ,C 的坐标,设出抛物线的解析式代入可求解. (2)设N 点的坐标为(5,y N )可求出支柱MN 的长度.(3)设DN 是隔离带的宽,NG 是三辆车的宽度和.做GH 垂直AB 交抛物线于H 则可求解.试题解析: (1) 根据题目条件,A 、B 、C 的坐标分别是(-10,0)、(0,6)、(10,0). 将B 、C 的坐标代入2y ax c =+,得 6,0100.c a c =⎧⎨=+⎩解得3,650a c =-=. ∴抛物线的表达式是23650y x =-+. (2) 可设N (5,N y ), 于是2356 4.550N y =-⨯+=. 从而支柱MN 的长度是10-4.5=5.5米.(3) 设DE 是隔离带的宽,EG 是三辆车的宽度和, 则G 点坐标是(7,0)(7=2÷2+2×3).过G 点作GH 垂直AB 交抛物线于H ,则23176335050H y =-⨯+=+>.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.6.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B,交x轴正半轴于点C.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M 的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M的坐标;(3)将点A绕原点旋转得点A′,连接CA′、BA′,在旋转过程中,一动点M从点B出发,沿线段BA′以每秒3个单位的速度运动到A′,再沿线段A′C以每秒1个单位长度的速度运动到C后停止,求点M在整个运动过程中用时最少是多少?【答案】(1)y=﹣x2+2x+3;(2)S与m的函数表达式是S=252m m--,S的最大值是25 8,此时动点M的坐标是(52,74);(3)点M82秒.【解析】【分析】(1)首先求出B点的坐标,根据B点的坐标即可计算出二次函数的a值,进而即可计算出二次函数的解析式;(2)计算出C点的坐标,设出M点的坐标,再根据△ABM的面积为S=S四边形OAMB﹣S△AOB =S△BOM+S△OAM﹣S△AOB,化简成二次函数,再根据二次函数求解最大值即可.(3)首先证明△OHA′∽△OA′B,再结合A′H+A′C≥HC即可计算出t的最小值.【详解】(1)将x=0代入y=﹣3x+3,得y=3,∴点B的坐标为(0,3),∵抛物线y=ax2﹣2ax+a+4(a<0)经过点B,∴3=a+4,得a=﹣1,∴抛物线的解析式为:y=﹣x2+2x+3;(2)将y=0代入y=﹣x2+2x+3,得x1=﹣1,x2=3,∴点C的坐标为(3,0),∵点M 是抛物线上的一个动点,并且点M 在第一象限内,点M 的横坐标为m , ∴0<m <3,点M 的坐标为(m ,﹣m 2+2m +3), 将y =0代入y =﹣3x +3,得x =1, ∴点A 的坐标(1,0), ∵△ABM 的面积为S ,∴S =S 四边形OAMB ﹣S △AOB =S △BOM +S △OAM ﹣S △AOB =()2123313222m m m ⨯-++⨯⨯+-, 化简,得S =252m m --=21525228m ⎛⎫--+ ⎪⎝⎭,∴当m =52时,S 取得最大值,此时S =258,此时点M 的坐标为(52,74), 即S 与m 的函数表达式是S =252m m--,S 的最大值是258,此时动点M 的坐标是(52,74); (3)如右图所示,取点H 的坐标为(0,13),连接HA ′、OA ′, ∵∠HOA ′=∠A ′OB ,13OH OA '=,13OA OB '=, ∴△OHA ′∽△OA ′B ,∴3BA A H''=, 即3BA A H ''=,∵A ′H +A ′C ≥HC =,∴t ,即点M 在整个运动过程中用时最少是3秒.【点睛】本题主要考查抛物线的性质,关键在于设元,还有就是(3)中利用代替法计算t的取值范围,难度系数较大,是中考的压轴题.7.如图①,在平面直角坐标系xOy 中,抛物线y=ax2+bx+3经过点A(-1,0) 、B(3,0) 两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、 Q两点(点P在点Q的左侧),连接PQ,在线段PQ 上方抛物线上有一动点D,连接DP、DQ.①若点P的横坐标为12,求△DPQ面积的最大值,并求此时点D 的坐标;②直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.【答案】(1)抛物线y=-x2+2x+3;(2)①点D(31524,);②△PQD面积的最大值为8【解析】分析:(1)根据点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I)由点P的横坐标可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,过点D作DE∥y轴交直线PQ于点E,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+54),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x 2+6x+72,再利用二次函数的性质即可解决最值问题; (II )假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,进而可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-2(t+1)x+t 2+4t+3),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =-2x 2+4(t+2)x-2t 2-8t ,再利用二次函数的性质即可解决最值问题. 详解:(1)将A (-1,0)、B (3,0)代入y=ax 2+bx+3,得:309330a b a b -+⎧⎨++⎩==,解得:12a b -⎧⎨⎩==, ∴抛物线的表达式为y=-x 2+2x+3. (2)(I )当点P 的横坐标为-12时,点Q 的横坐标为72,∴此时点P 的坐标为(-12,74),点Q 的坐标为(72,-94).设直线PQ 的表达式为y=mx+n , 将P (-12,74)、Q (72,-94)代入y=mx+n ,得:17247924m n m n ⎧-+⎪⎪⎨⎪+-⎪⎩==,解得:154m n -⎧⎪⎨⎪⎩==,∴直线PQ 的表达式为y=-x+54. 如图②,过点D 作DE ∥y 轴交直线PQ 于点E ,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-x+54), ∴DE=-x 2+2x+3-(-x+54)=-x 2+3x+74, ∴S △DPQ =12DE•(x Q -x P )=-2x 2+6x+72=-2(x-32)2+8.∴当x=32时,△DPQ的面积取最大值,最大值为8,此时点D的坐标为(32,154).(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,∴点P的坐标为(t,-t2+2t+3),点Q的坐标为(4+t,-(4+t)2+2(4+t)+3),利用待定系数法易知,直线PQ的表达式为y=-2(t+1)x+t2+4t+3.设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-2(t+1)x+t2+4t+3),∴DE=-x2+2x+3-[-2(t+1)x+t2+4t+3]=-x2+2(t+2)x-t2-4t,∴S△DPQ=12DE•(x Q-x P)=-2x2+4(t+2)x-2t2-8t=-2[x-(t+2)]2+8.∵-2<0,∴当x=t+2时,△DPQ的面积取最大值,最大值为8.∴假设成立,即直尺在平移过程中,△DPQ面积有最大值,面积的最大值为8.点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I)利用三角形的面积公式找出S△DPQ=-2x2+6x+72;(II)利用三角形的面积公式找出S△DPQ=-2x2+4(t+2)x-2t2-8t.8.如图1,抛物线经过平行四边形的顶点、、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动点,设点的横坐标为.(1)求抛物线的解析式;(2)当何值时,的面积最大?并求最大值的立方根;(3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;(2)当t=时,△PEF的面积最大,其最大值为×,最大值的立方根为=;(3)存在满足条件的点P,t的值为1或试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由A、C坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E点坐标,从而可求得直线EF的解析式,作PH⊥x轴,交直线l于点M,作FN⊥PH,则可用t表示出PM的长,从而可表示出△PEF的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x 轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.试题解析:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(﹣1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=﹣x+,联立直线l和抛物线解析式可得,解得或,∴F(﹣,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,﹣t2+2t+3),M(t,﹣t+),∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,∴S△PEF=S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t 2+2t+3,AQ=t ,KE=3﹣t ,PQ=﹣t 2+2t+3﹣3=﹣t 2+2t , ∵∠APQ+∠KPE=∠APQ+∠PAQ=90°, ∴∠PAQ=∠KPE ,且∠PKE=∠PQA , ∴△PKE ∽△AQP , ∴,即,即t 2﹣t ﹣1=0,解得t=或t=<﹣(舍去),综上可知存在满足条件的点P ,t 的值为1或.考点:二次函数综合题9.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值. 【答案】(1)点B 的坐标为(1,0). (2)①点P 的坐标为(4,21)或(-4,5). ②线段QD 长度的最大值为94.【解析】 【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解. 【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0),∴2a 1b12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩. ∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=, ∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3). 又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭.∵a 10<=-,-3302<<- ∴线段QD 长度的最大值为94.10.如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.11.如图1,已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,抛物线2y x bx c=-++过A、B两点,且与x轴交于另一点C.(1)求b、c的值;(2)如图1,点D为AC的中点,点E在线段BD上,且BE=2ED,连接CE并延长交抛物线于点M,求点M的坐标;(3)将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,如图2,P为△ACG内以点,连接PA、PC、PG,分别以AP、AG为边,在他们的左侧作等边△APR,等边△AGQ,连接QR①求证:PG=RQ;②求PA+PC+PG的最小值,并求出当PA+PC+PG取得最小值时点P的坐标.【答案】(1)b=﹣2,c=3;(2)M (125-,5125);(3)①证明见解析;②PA+PC+PG 的最小值为19P 的坐标(﹣919,12319). 【解析】试题分析:(1)把A (﹣3,0),B (0,3)代入抛物线2y x bx c =-++即可解决问题.(2)首先求出A 、C 、D 坐标,根据BE=2ED ,求出点E 坐标,求出直线CE ,利用方程组求交点坐标M .(3)①欲证明PG=QR ,只要证明△QAR ≌△GAP 即可.②当Q 、R 、P 、C 共线时,PA+PG+PC 最小,作QN ⊥OA 于N ,AM ⊥QC 于M ,PK ⊥OA 于K ,由sin ∠ACM=AM AC =NQQC求出AM ,CM ,利用等边三角形性质求出AP 、PM 、PC ,由此即可解决问题.试题解析:(1)∵一次函数y=x+3的图象与x 轴、y 轴分别交于A 、B 两点,∴A (﹣3,0),B (0,3),∵抛物线2y x bx c =-++过A 、B 两点,∴3{930c b c =--+=,解得:2{3b c =-=,∴b=﹣2,c=3. (2),对于抛物线223y x x =--+,令y=0,则2230x x --+=,解得x=﹣3或1,∴点C 坐标(1,0),∵AD=DC=2,∴点D 坐标(﹣1,0),∵BE=2ED ,∴点E 坐标(23-,1),设直线CE 为y=kx+b ,把E 、C 代入得到:21{30k b k b -+=+=,解得:35{35k b =-=,∴直线CE 为3355y x =-+,由233{5523y x y x x =-+=--+,解得10x y =⎧⎨=⎩或125{5125x y =-=,∴点M 坐标(125-,5125). (3)①∵△AGQ ,△APR 是等边三角形,∴AP=AR ,AQ=AG ,∠QAC=∠RAP=60°,∴∠QAR=∠GAP ,在△QAR 和△GAP 中,∵AQ=AG ,∠QAR=∠GAP ,AR=AP ,∴△QAR≌△GAP,∴QR=PG.②如图3中,∵PA+PB+PC=QR+PR+PC=QC,∴当Q、R、P、C共线时,PA+PG+PC最小,作QN⊥OA于N,AM⊥QC于M,PK⊥OA于K.∵∠GAO=60°,AO=3,∴AG=QG=AQ=6,∠AGO=30°,∵∠QGA=60°,∴∠QGO=90°,∴点Q坐标(﹣6,33),在RT△QCN中,QN=33,CN=7,∠QNC=90°,∴QC=22QN NC+=219,∵sin∠ACM=AMAC=NQQC,∴AM=657,∵△APR是等边三角形,∴∠APM=60°,∵PM=PR,cos30°=AMAP,∴AP=121919,PM=RM=61919,∴MC=22AC AM-=141919,∴PC=CM﹣PM=81919,∵PK CP CKQN CQ CN==,∴CK=2819,PK=12319,∴OK=CK﹣CO=919,∴点P坐标(﹣919,123),∴PA+PC+PG的最小值为219,此时点P的坐标(﹣919,123).考点:二次函数综合题;旋转的性质;最值问题;压轴题.12.如图,抛物线与x轴交于点A(,0)、点B(2,0),与y轴交于点C(0,1),连接BC.(1)求抛物线的函数关系式;(2)点N为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t (),求△ABN的面积S与t的函数关系式;(3)若且时△OPN∽△COB,求点N的坐标.【答案】(1);(2);(3)(,)或(1,2).【解析】试题分析:(1)可设抛物线的解析式为,用待定系数法就可得到结论;(2)当时,点N在x轴的上方,则NP等于点N的纵坐标,只需求出AB,就可得到S与t的函数关系式;(3)由相似三角形的性质可得PN=2PO.而PO=,需分和0<t<2两种情况讨论,由PN=2PO得到关于t的方程,解这个方程,就可得到答案.试题解析:(1)设抛物线的解析式为,把C(0,1)代入可得:,∴,∴抛物线的函数关系式为:,即;(2)当时,>0,∴NP===,∴S=AB•PN==;(3)∵△OPN∽△COB,∴,∴,∴PN=2PO.①当时,PN===,PO==,∴,整理得:,解得:=,=,∵>0,<<0,∴t=,此时点N的坐标为(,);②当0<t<2时,PN===,PO==t,∴,整理得:,解得:=,=1.∵<0,0<1<2,∴t=1,此时点N的坐标为(1,2).综上所述:点N的坐标为(,)或(1,2).考点:1.二次函数综合题;2.待定系数法求二次函数解析式;3.相似三角形的性质.13.如图,在平面直角坐标系中,已知抛物线y=12x2+32x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.(1)求直线l的解析式;(2)若直线x=m(m<0)与该抛物线在第三象限内交于点E,与直线l交于点D,连接OD.当OD⊥AC时,求线段DE的长;(3)取点G(0,﹣1),连接AG,在第一象限内的抛物线上,是否存在点P,使∠BAP=∠BCO﹣∠BAG?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)y=122x--;(2)DE=3225;(3)存在点P(139,9881),使∠BAP=∠BCO﹣∠BAG,理由见解析.【解析】【分析】(1)根据题目中的函数解析式可以求得点A和点C的坐标,从而可以求得直线l的函数解析式;(2)根据题意作出合适的辅助线,利用三角形相似和勾股定理可以解答本题;(3)根据题意画出相应的图形,然后根据锐角三角函数可以求得∠OAC=∠OCB,然后根据题目中的条件和图形,利用锐角三角函数和勾股定理即可解答本题.【详解】(1)∵抛物线y=1 2 x2+32x-2,∴当y=0时,得x1=1,x2=-4,当x=0时,y=-2,∵抛物线y=12x2+32x-2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,∴点A的坐标为(-4,0),点B(1,0),点C(0,-2),∵直线l经过A,C两点,设直线l的函数解析式为y=kx+b,402k bb-+⎧⎨-⎩==,得122kb⎧-⎪⎨⎪-⎩==,即直线l的函数解析式为y=−12x−2;(2)直线ED与x轴交于点F,如图1所示,由(1)可得,AO=4,OC=2,∠AOC=90°,∴5∴4525=,∵OD⊥AC,OA⊥OC,∠OAD=∠CAO,∴△AOD∽△ACO,∴AD AOAO AC=,即425AD=,得AD=855,∵EF⊥x轴,∠ADC=90°,∴EF∥OC,∴△ADF∽△ACO,∴AF DF AD AO OC AC==, 解得,AF=165,DF=85, ∴OF=4-165=45, ∴m=-45, 当m=-45时,y=12×(−45)2+32×(-45)-2=-7225,∴EF=7225, ∴DE=EF-FD=7225−85=3225; (3)存在点P ,使∠BAP=∠BCO-∠BAG ,理由:作GM ⊥AC 于点M ,作PN ⊥x 轴于点N ,如图2所示,∵点A (-4,0),点B (1,0),点C (0,-2), ∴OA=4,OB=1,OC=2,∴tan ∠OAC=2142OC OA ==,tan ∠OCB=12OB OC =,5, ∴∠OAC=∠OCB ,∵∠BAP=∠BCO-∠BAG ,∠GAM=∠OAC-∠BAG , ∴∠BAP=∠GAM ,∵点G (0,-1),5OA=4, ∴OG=1,GC=1, ∴17,••22AC GM CG OA =,即51422GM ⨯=, 解得,25, ∴22AG GM -222595(17)()55-=,∴tan∠GAM=2525995GMAM==,∴tan∠PAN=29,设点P的坐标为(n,12n2+32n-2),∴AN=4+n,PN=12n2+32n-2,∴21322 2249n nn+-+=,解得,n1=139,n2=-4(舍去),当n=139时,12n2+32n-2=9881,∴点P的坐标为(139,9881),即存在点P(139,9881),使∠BAP=∠BCO-∠BAG.【点睛】本题是一道二次函数综合题,解答本题的关键是明确题意,作出合适的辅助线,找出所求问题需要的条件,利用三角形相似、锐角三角函数和二次函数的性质解答.14.如图,△ABC的顶点坐标分别为A(﹣6,0),B(4,0),C(0,8),把△ABC沿直线BC翻折,点A的对应点为D,抛物线y=ax2﹣10ax+c经过点C,顶点M在直线BC 上.(1)证明四边形ABCD是菱形,并求点D的坐标;(2)求抛物线的对称轴和函数表达式;(3)在抛物线上是否存在点P ,使得△PBD 与△PCD 的面积相等?若存在,直接写出点P 的坐标;若不存在,请说明理由. 【答案】(1)详见解析(2)22y x 4x 85=-+ (3)详见解析 【解析】 【分析】(1)根据勾股定理,翻折的性质可得AB=BD=CD=AC ,根据菱形的判定和性质可得点D 的坐标.(2)根据对称轴公式可得抛物线的对称轴,设M 的坐标为(5,n ),直线BC 的解析式为y=kx+b ,根据待定系数法可求M 的坐标,再根据待定系数法求出抛物线的函数表达式. (3)分点P 在CD 的上面下方和点P 在CD 的上方两种情况,根据等底等高的三角形面积相等可求点P 的坐标:设P 22x,x 4x 85⎛⎫-+ ⎪⎝⎭,当点P 在CD 的上面下方,根据菱形的性质,知点P 是AD 与抛物线22y x 4x 85=-+的交点,由A,D 的坐标可由待定系数法求出AD 的函数表达式:1y x 32=+,二者联立可得P 1(529,48); 当点P 在CD 的上面上方,易知点P 是∠D 的外角平分线与抛物线22y x 4x 85=-+的交点,此时,∠D 的外角平分线与直线AD 垂直,由相似可知∠D 的外角平分线PD 的斜率等于-2,可设其为y 2x m =-+,将D (10,8)代入可得PD 的函数表达式:y 2x 28=-+,与抛物线22y x 4x 85=-+联立可得P 2(﹣5,38). 【详解】(1)证明:∵A (﹣6,0),B (4,0),C (0,8),∴AB=6+4=10,AC 10==.∴AB=AC .由翻折可得,AB=BD ,AC=CD .∴AB=BD=CD=AC .∴四边形ABCD 是菱形. ∴CD ∥AB .∵C (0,8),∴点D 的坐标是(10,8).(2)∵y=ax 2﹣10ax+c ,∴对称轴为直线10ax 52a-=-=. 设M 的坐标为(5,n ),直线BC 的解析式为y=kx+b ,∴4k b0b8+=⎧⎨=⎩,解得k2b8=-⎧⎨=⎩.∴直线BC的解析式为y=﹣2x+8.∵点M在直线y=﹣2x+8上,∴n=﹣2×5+8=﹣2.∴M(5,,-2).又∵抛物线y=ax2﹣10ax+c经过点C和M,∴25a50a c2c8-+=-⎧⎨=⎩,解得2a5c8⎧=⎪⎨⎪=⎩.∴抛物线的函数表达式为22y x4x85=-+.(3)存在.点P的坐标为P1(529,48),P2(﹣5,38)15.如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+23分别与y轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值;(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为:y=228233x x+-,BD解析式为y=﹣2233x+;(2)t的值为4915129±、233.(3)N点坐标为(﹣2,﹣2),M点坐标为(﹣32,﹣54),213【解析】分析:(1)利用待定系数法求解可得;(2)先求得点D的坐标,过点D分别作DE⊥x轴、DF⊥y轴,分P1D⊥P1C、P2D⊥DC、P3C⊥DC三种情况,利用相似三角形的性质逐一求解可得;(3)通过作对称点,将折线转化成两点间距离,应用两点之间线段最短.详解:(1)把A(﹣4,0),B(1,0)代入y=ax2+2x+c,得168020a ca c-+=⎧⎨++=⎩,解得:2383 ac⎧=⎪⎪⎨⎪=-⎪⎩,∴抛物线解析式为:y=228233x x+-,∵过点B的直线y=kx+23,∴代入(1,0),得:k=﹣23,∴BD解析式为y=﹣2233x+;(2)由2282332233y x xy x﹣⎧=+-⎪⎪⎨⎪=+⎪⎩得交点坐标为D(﹣5,4),如图1,过D作DE⊥x轴于点E,作DF⊥y轴于点F,当P1D⊥P1C时,△P1DC为直角三角形,则△DEP1∽△P1OC,∴DEPO=PEOC,即4t=523t-,解得t=151296±,。
九年级上册 二次函数易错题(Word版 含答案)
九年级上册二次函数易错题(Word版含答案)一、初三数学二次函数易错题压轴题(难)1.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,其中A(3,0),B(﹣1,0),与y轴交于点C,抛物线的对称轴交x轴于点D,直线y=kx+b1经过点A,C,连接CD.(1)求抛物线和直线AC的解析式:(2)若抛物线上存在一点P,使△ACP的面积是△ACD面积的2倍,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使线段AQ绕Q点顺时针旋转90°得到线段QA1,且A1好落在抛物线上?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)2y x2x3=-++;3y x=-+;(2)(﹣1,0)或(4,﹣5);(3)存在;(1,2)和(1,﹣3)【解析】【分析】(1)将点A,B坐标代入抛物线解析式中,求出b,c得出抛物线的解析式,进而求出点C 的坐标,再将点A,C坐标代入直线AC的解析式中,即可得出结论;(2)利用抛物线的对称性得出BD=AD,进而判断出△ABC的面积和△ACP的面积相等,即可得出结论;(3)分点Q在x轴上方和在x轴下方,构造全等三角形即可得出结论.【详解】解:(1)把A(3,0),B(﹣1,0)代入y=﹣x2+bc+c中,得93010b cb c-++=⎧⎨--+=⎩,∴23bc=⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3,当x=0时,y=3,∴点C的坐标是(0,3),把A(3,0)和C(0,3)代入y=kx+b1中,得11303k bb+=⎧⎨=⎩,∴113kb=-⎧⎨=⎩∴直线AC的解析式为y=﹣x+3;(2)如图,连接BC,∵点D是抛物线与x轴的交点,∴AD=BD,∴S△ABC=2S△ACD,∵S△ACP=2S△ACD,∴S△ACP=S△ABC,此时,点P与点B重合,即:P(﹣1,0),过B点作PB∥AC交抛物线于点P,则直线BP的解析式为y=﹣x﹣1①,∵抛物线的解析式为y=﹣x2+2x+3②,联立①②解得,1xy=-⎧⎨=⎩或45xy=⎧⎨=-⎩,∴P(4,﹣5),∴即点P的坐标为(﹣1,0)或(4,﹣5);(3)如图,①当点Q在x轴上方时,设AC与对称轴交点为Q',由(1)知,直线AC的解析式为y=﹣x+3,当x=1时,y=2,∴Q'坐标为(1,2),∵Q'D=AD=BD=2,∴∠Q'AB=∠Q'BA=45°,∴∠AQ'B=90°,∴点Q'为所求,②当点Q在x轴下方时,设点Q(1,m),过点A1'作A1'E⊥DQ于E,∴∠A1'EQ=∠QDA=90°,∴∠DAQ+∠AQD=90°,由旋转知,AQ=A1'Q,∠AQA1'=90°,∴∠AQD+∠A1'QE=90°,∴∠DAQ=∠A1'QE,∴△ADQ≌△QEA1'(AAS),∴AD=QE=2,DQ=A1'E=﹣m,∴点A1'的坐标为(﹣m+1,m﹣2),代入y=﹣x2+2x+3中,解得,m=﹣3或m=2(舍),∴Q的坐标为(1,﹣3),∴点Q的坐标为(1,2)和(1,﹣3).【点睛】本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,三角形“k”字型全等,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.2.如图1,抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB 于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出抛物线和直线AB的函数表达式;(2)设△PMN的面积为S1,△AEN的面积为S2,当1236 25SS时,求点P的坐标;(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转的到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E'A+23E'B的最小值.【答案】(1)抛物线y =﹣34 x 2+94 x +3,直线AB 解析式为y =﹣34x +3;(2)P (2,32);(3【解析】 【分析】(1)由题意令y =0,求出抛物线与x 轴交点,列出方程即可求出a ,根据待定系数法可以确定直线AB 解析式;(2)根据题意由△PNM ∽△ANE ,推出65PN AN =,以此列出方程求解即可解决问题; (3)根据题意在y 轴上 取一点M 使得OM′=43,构造相似三角形,可以证明AM′就是E′A+23E′B 的最小值. 【详解】解:(1)∵抛物线y =mx 2﹣3mx+n (m≠0)与x 轴交于点C (﹣1,0)与y 轴交于点B (0,3),则有330n m m n ⎧⎨⎩++==,解得433m n ⎧⎪⎨⎪-⎩==, ∴抛物线239344y x x =-++, 令y =0,得到239344x x -++=0, 解得:x =4或﹣1, ∴A (4,0),B (0,3),设直线AB 解析式为y =kx+b ,则340b k b +⎧⎨⎩==,解得334k b ⎧-⎪⎨⎪⎩==, ∴直线AB 解析式为y =34-x+3. (2)如图1中,设P (m ,239344m m -++),则E (m ,0),∵PM ⊥AB ,PE ⊥OA , ∴∠PMN =∠AEN , ∵∠PNM =∠ANE , ∴△PNM ∽△ANE ,∵△PMN 的面积为S 1,△AEN 的面积为S 2,123625S S =, ∴65PN AN =, ∵NE ∥OB , ∴AN AEAB OA=, ∴AN =54545454(4﹣m ),∵抛物线解析式为y =239344x x -++, ∴PN =239344m m -++﹣(34-m+3)=34-m 2+3m , ∴2336455(4)4m mm -+=-, 解得m =2或4(舍弃), ∴m =2, ∴P (2,32). (3)如图2中,在y 轴上 取一点M′使得OM′=43,连接AM′,在AM′上取一点E′使得OE′=OE .∵OE′=2,OM′•OB =43×3=4, ∴OE′2=OM′•OB , ∴OE OBOM OE '='', ∵∠BOE′=∠M′OE′, ∴△M′OE′∽△E′OB ,∴M E OE BE OB '''='=23, ∴M′E′=23BE′,∴AE′+23BE′=AE′+E′M′=AM′,此时AE′+23BE′最小(两点间线段最短,A 、M′、E′共线时),最小值=AM′2244()3+410. 【点睛】本题属于二次函数综合题,考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM ′就是AE′+23BE′的最小值,属于中考压轴题.3.如图,直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,抛物线y =ax 2﹣32x+c 经过A ,B 两点,与x 轴的另一交点为C . (1)求抛物线的解析式;(2)M 为抛物线上一点,直线AM 与x 轴交于点N ,当32MN AN =时,求点M 的坐标; (3)P 为抛物线上的动点,连接AP ,当∠PAB 与△AOB 的一个内角相等时,直接写出点P 的坐标.【答案】(1)y=12x2﹣32x﹣2;(2)点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)点P的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2).【解析】【分析】(1)根据题意直线y=12x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,-2)、(4,0),即可求解;(2)由题意直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN=32时,则NHON=32,即4343mmm---=32,进行分析即可求解;(3)根据题意分∠PAB=∠AOB=90°、∠PAB=∠OAB、∠PAB=∠OBA三种情况,分别求解即可.【详解】解:(1)直线y=12x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,﹣2)、(4,0),则c=﹣2,将点B的坐标代入抛物线表达式并解得:a=12,故抛物线的表达式为:y=12x2﹣32x﹣2①;(2)设点M(m,12m2﹣32m﹣2)、点A(0,﹣2),将点M、A的坐标代入一次函数表达式:y=kx+b并解得:直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN=32时,则NHON=32,即:4343mmm---=32,解得:m=5或﹣2或2或1,故点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)①∠PAB=∠AOB=90°时,则直线AP的表达式为:y=﹣2x﹣2②,联立①②并解得:x=﹣1或0(舍去0),故点P(﹣1,0);②当∠PAB=∠OAB时,当点P在AB上方时,无解;当点P在AB下方时,将△OAB沿AB折叠得到△O′AB,直线OA交x轴于点H、交抛物线为点P,点P为所求,则BO=OB=4,OA=OA=2,设OH=x,则sin∠H=BO OAHB HA'=,即:2444x x=++,解得:x=83,则点H(﹣83,0),.则直线AH的表达式为:y=﹣34x﹣2③,联立①③并解得:x=32,故点P(32,﹣258);③当∠PAB=∠OBA时,当点P在AB上方时,则AH=BH,设OH=a,则AH=BH=4﹣a,AO=2,故(4﹣a)2=a2+4,解得:a=32,故点H(32,0),则直线AH的表达式为:y=43x﹣2④,联立①④并解得:x=0或173(舍去0),故点P(173,509);当点P在AB下方时,同理可得:点P(3,﹣2);综上,点P的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、勾股定理的运用等,要注意分类讨论,解题全面.4.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.【答案】(1)抛物线的解析式为:y=﹣x2+x+2(2)存在,P1(,4),P2(,),P3(,﹣)(3)当点E运动到(2,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.【解析】试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;(2)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P2,P3;作CH 垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.试题解析:(1)∵抛物线y=﹣x2+mx+n经过A(﹣1,0),C(0,2).解得:,∴抛物线的解析式为:y=﹣x2+x+2;(2)∵y=﹣x2+x+2,∴y=﹣(x﹣)2+,∴抛物线的对称轴是x=.∴OD=.∵C(0,2),∴OC=2.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=CP2=CP3=CD.作CH⊥x轴于H,∴HP1=HD=2,∴DP1=4.∴P1(,4),P2(,),P3(,﹣);(3)当y=0时,0=﹣x2+x+2∴x1=﹣1,x2=4,∴B(4,0).设直线BC的解析式为y=kx+b,由图象,得,解得:,∴直线BC 的解析式为:y=﹣x+2.如图2,过点C 作CM ⊥EF 于M ,设E (a ,﹣a+2),F (a ,﹣a 2+a+2), ∴EF=﹣a 2+a+2﹣(﹣a+2)=﹣a 2+2a (0≤x≤4). ∵S 四边形CDBF =S △BCD +S △CEF +S △BEF =BD•OC+EF•CM+EF•BN , =+a (﹣a 2+2a )+(4﹣a )(﹣a 2+2a ), =﹣a 2+4a+(0≤x≤4).=﹣(a ﹣2)2+∴a=2时,S 四边形CDBF 的面积最大=, ∴E (2,1).考点:1、勾股定理;2、等腰三角形的性质;3、四边形的面积;4、二次函数的最值5.定义:对于已知的两个函数,任取自变量x 的一个值,当0x ≥时,它们对应的函数值相等;当0x <时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y x =,它的相关函数为(0)(0)x x y x x ≥⎧=⎨-<⎩. (1)已知点()5,10A -在一次函数5y ax =-的相关函数的图像上,求a 的值; (2)已知二次函数2142y x x =-+-. ①当点3,2B m ⎛⎫ ⎪⎝⎭在这个函数的相关函数的图像上时,求m 的值;②当33x -≤≤时,求函数2142y x x =-+-的相关函数的最大值和最小值. (3)在平面直角坐标系中,点M 、N 的坐标分别为1,12⎛⎫-⎪⎝⎭、9,12⎛⎫ ⎪⎝⎭,连结MN .直接写出线段MN 与二次函数24y x x n =-++的相关函数的图像有两个公共点时n 的取值范围.【答案】(1)1;(2)①22- ;②max 432y =,min 12y =-;(3)31n -<≤-,514n <≤【解析】【分析】 (1)先求出5y ax =-的相关函数,然后代入求解,即可得到答案;(2)先求出二次函数的相关函数,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可;②当-3≤x <0时,y=x 2-4x+12,然后可 此时的最大值和最小值,当0≤x≤3时,函数y=-x 2+4x-12,求得此时的最大值和最小值,从而可得到当-3≤x≤3时的最大值和最小值; (3)首先确定出二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围.【详解】解:(1)根据题意,一次函数5y ax =-的相关函数为5,(0)5,(0)ax x y ax x -≥⎧=⎨-+<⎩, ∴把点()5,10A -代入5y ax =-+,则(5)510a -⨯-+=,∴1a =;(2)根据题意,二次函数2142y x x =-+-的相关函数为2214,(0)214,(0)2x x x y x x x ⎧-+-≥⎪⎪=⎨⎪-+<⎪⎩, ①当m <0时,将B (m ,32)代入y=x 2-4x+12得m 2-4m+1322=, 解得:m=2当m≥0时,将B (m ,32)代入y=-x 2+4x-12得:-m 2+4m-12=32, 解得:或m=2.综上所述:m=25-或m=22+或m=22-.②当-3≤x <0时,y=x 2-4x+12,抛物线的对称轴为x=2,此时y 随x 的增大而减小, ∴当3x =-时,有最大值,即2143(3)4(3)22y =--⨯-+=, ∴此时y 的最大值为432. 当0≤x≤3时,函数y=-x 2+4x 12-,抛物线的对称轴为x=2, 当x=0有最小值,最小值为12-, 当x=2时,有最大值,最大值y=72. 综上所述,当-3≤x≤3时,函数y=-x 2+4x 12-的相关函数的最大值为432,最小值为12-; (3)如图1所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有1个公共点.∴当x=2时,y=1,即-4+8+n=1,解得n=-3.如图2所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有3个公共点.∵抛物线y=x 2-4x-n 与y 轴交点纵坐标为1,∴-n=1,解得:n=-1.∴当-3<n≤-1时,线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有2个公共点. 如图3所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有3个公共点.∵抛物线y=-x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x2-4x-n经过点M(12,1),∴14+2-n=1,解得:n=54.∴1<n≤54时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.综上所述,n的取值范围是-3<n≤-1或1<n≤54.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=-x2+4x+n的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n的值是解题的关键.6.如图,抛物线y=ax2+bx+2经过点A(−1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=23S△ABD?若存在,请求出点D坐标;若不存在,请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.【答案】(1)213222y x x =-++(2)存在,D (1,3)或(2,3)或(5,3-)(3)10【解析】【分析】 (1)由A 、B 的坐标,利用待定系数法可求得抛物线解析式;(2)由条件可求得点D 到x 轴的距离,即可求得D 点的纵坐标,代入抛物线解析式可求得D 点坐标;(3)由条件可证得BC ⊥AC ,设直线AC 和BE 交于点F ,过F 作FM ⊥x 轴于点M ,则可得BF=BC ,利用平行线分线段成比例可求得F 点的坐标,利用待定系数法可求得直线BE 解析式,联立直线BE 和抛物线解析式可求得E 点坐标,则可求得BE 的长.【详解】解:(1)∵抛物线y=ax 2+bx+2经过点A (-1,0),B (4,0),∴2016420a b a b -+=⎧⎨++=⎩,解得:1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线解析式为:213222y x x =-++; (2)由题意可知C (0,2),A (-1,0),B (4,0),∴AB=5,OC=2,∴S △ABC =12AB•OC=12×5×2=5, ∵S △ABC =23S △ABD , ∴S △ABD =315522⨯=, 设D (x ,y ), ∴11155222AB y y •=⨯•=, 解得:3y =;当3y =时,2132322y x x =-++=, 解得:1x =或2x =,∴点D 的坐标为:(1,3)或(2,3);当3y =-时,2132322y x x =-++=-, 解得:5x =或2x =-(舍去),∴点D 的坐标为:(5,-3);综合上述,点D 的坐标为:(1,3)或(2,3)或(5,-3);(3)∵AO=1,OC=2,OB=4,AB=5,∴22125AC =+=,222425BC =+=,∴222AC BC AB +=,∴△ABC 为直角三角形,即BC ⊥AC ,如图,设直线AC 与直线BE 交于点F ,过F 作FM ⊥x 轴于点M ,由题意可知∠FBC=45°,∴∠CFB=45°,∴25CF BC ==∴AO AC OM CF =,即1525OM = 解得:2OM =, ∴OC AC FM AF =,即2535FM = 解得:6FM =,∴点F 为(2,6),且B 为(4,0),设直线BE 解析式为y=kx+m ,则2640k m k m +=⎧⎨+=⎩,解得312k m =-⎧⎨=⎩,∴直线BE解析式为:312y x =-+;联立直线BE 和抛物线解析式可得:231213222y x y x x =-+⎧⎪⎨=-++⎪⎩, 解得:40x y =⎧⎨=⎩或53x y =⎧⎨=-⎩, ∴点E 坐标为:(5,3)-, ∴22(54)(3)10BE =-+-=.【点睛】 本题为二次函数的综合应用,涉及待定系数法、三角形面积、勾股定理及其逆定理、平行线分线段成比例、函数图象的交点、等腰直角三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中求得D 点的纵坐标是解题的关键,在(3)中由条件求得直线BE 的解析式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,有一定的难度.7.如图①抛物线y =ax 2+bx +4(a ≠0)与x 轴,y 轴分别交于点A (﹣1,0),B (4,0),点C 三点.(1)试求抛物线的解析式;(2)点D (3,m )在第一象限的抛物线上,连接BC ,BD .试问,在对称轴左侧的抛物线上是否存在一点P ,满足∠PBC =∠DBC ?如果存在,请求出点P 点的坐标;如果不存在,请说明理由;(3)点N 在抛物线的对称轴上,点M 在抛物线上,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,请直接写出点M 的坐标.【答案】(1)y =﹣x 2+3x +4;(2)存在.P (﹣34,1916).(3)1539(,)24M -- 21139(,)24M - 3521(,)24M 【解析】【分析】(1)将A,B,C 三点代入y =ax 2+bx+4求出a,b,c 值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139 (,) 24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴322 2m∴m=5 2∴﹣m2+3m+4=21 4∴3521 (,) 24M综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为1539 (,)24M--21139 (,) 24M-3521 (,) 24M.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.8.如图,在平面直角坐标系中,二次函数y=﹣x2+6x﹣5的图象与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.(1)P的坐标,C的坐标;(2)直线1上是否存在点Q,使△PBQ的面积等于△PAC面积的2倍?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)(3,4),(0,﹣5);(2)存在,点Q的坐标为:(92,﹣5)或(212,﹣5)【解析】【分析】(1)利用配方法求出顶点坐标,令x=0,可得y=-5,推出C(0,-5);(2)直线PC的解析式为y=3x-5,设直线交x轴于D,则D(53,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,分两种情形分别求解即可解决问题.【详解】解:(1)∵y=﹣x2+6x﹣5=﹣(x﹣3)2+4,∴顶点P(3,4),令x=0得到y=﹣5,∴C(0,﹣5).故答案为:(3,4),(0,﹣5);(2)令y=0,x2﹣6x+5=0,解得:x=1或x=5,∴A(1,0),B(5,0),设直线PC的解析式为y=kx+b,则有534 bk b=-⎧⎨+=⎩,解得:35 kb=⎧⎨=-⎩,∴直线PC的解析式为:y=3x﹣5,设直线交x轴于D,则D(53,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,∵AD=23,∴BE=43,∴E(113,0)或E′(193,0),则直线PE的解析式为:y=﹣6x+22,∴Q(92,﹣5),直线PE ′的解析式为y =﹣65x +385, ∴Q ′(212,﹣5), 综上所述,满足条件的点Q 的坐标为:(92,﹣5)或(212,﹣5); 【点睛】本题考查抛物线与x 轴的交点、二次函数的性质等知识,解题的关键是熟练掌握待定系数法,学会用转化的思想思考问题,属于中考常考题型.9.如图,已知二次函数1L :()22311y mx mx m m =+-+≥和二次函数2L :()2341y m x m =--+-()1m ≥图象的顶点分别为M 、N ,与x 轴分别相交于A 、B 两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边),(1)函数()22311y mx mx m m =+-+≥的顶点坐标为______;当二次函数1L ,2L 的y 值同时随着x 的增大而增大时,则x 的取值范围是_______;(2)判断四边形AMDN 的形状(直接写出,不必证明);(3)抛物线1L ,2L 均会分别经过某些定点;①求所有定点的坐标;②若抛物线1L 位置固定不变,通过平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是多少?【答案】(1)()1,41m --+,13x ;(2)四边形AMDN 是矩形;(3)①所有定点的坐标,1L 经过定点()3,1-或()1,1,2L 经过定点()5,1-或()1,1-;②抛物线2L 应平移的距离是423+423-.【解析】【分析】(1)将已知抛物线解析式转化为顶点式,直接得到点M 的坐标;结合函数图象填空; (2)利用抛物线解析式与一元二次方程的关系求得点A 、D 、M 、N 的横坐标,可得AD 的中点为(1,0),MN 的中点为(1,0),则AD 与MN 互相平分,可证四边形AMDN 是矩形;(3)①分别将二次函数的表达式变形为1:(3)(1)1L y m x x =+-+和2:(1)(5)1L y m x x =----,通过表达式即可得出所过定点;②根据菱形的性质可得EH 1=EF=4即可,设平移的距离为x ,根据平移后图形为菱形,由勾股定理可得方程即可求解.【详解】解:(1)12b x a=-=-,顶点坐标M 为(1,41)m --+, 由图象得:当13x 时,二次函数1L ,2L 的y 值同时随着x 的增大而增大. 故答案为:(1,41)m --+;13x ;(2)结论:四边形AMDN 是矩形.由二次函数21:231(1)L y mx mx m m =+-+和二次函数22:(3)41(1)L y m x m m =--+-解析式可得:A 点坐标为41(1m m ---,0),D 点坐标为41(3m m -+,0), 顶点M 坐标为(1,41)m --+,顶点N 坐标为(3,41)m -,AD ∴的中点为(1,0),MN 的中点为(1,0),AD ∴与MN 互相平分,∴四边形AMDN 是平行四边形,又AD MN =,∴□AMDN 是矩形;(3)①二次函数21:231(3)(1)1L y mx mx m m x x =+-+=+-+,故当3x =-或1x =时1y =,即二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41(1)(5)1L y m x m m x x =--+-=----,故当1x =或5x =时1y =-,即二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,②二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,如图:四个定点分别为(3,1)E -、(1,1)F ,(1,1)H -、(5,1)G -,则组成四边形EFGH 为平行四边形, ∴FH ⊥HG ,FH=2,HM=4-x ,设平移的距离为x ,根据平移后图形为菱形,则EH 1=EF=H 1M=4,由勾股定理可得:FH 2+HM 2=FM 2,即22242(4)x =+-,解得:423x =±,抛物线1L 位置固定不变,通过左右平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是423+或423-.【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.10.在平面直角坐标系中,二次函数y =ax 2+bx +2的图象与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C .(1)求这个二次函数的关系解析式;(2)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使△ACP 的面积最大?若存在,求出点P 的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形?若存在,直接写出点Q 的坐标;若不存在,说明理由;【答案】(1)224233y x x =--+;(2)存在,点P 35,22⎛⎫- ⎪⎝⎭,使△PAC 的面积最大;(3)存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形.Q 点坐标为:Q 1(2,3),Q 2(3,1),Q 3(﹣1,﹣1),Q 4(﹣2,1).【解析】【分析】(1)直接把点A (﹣3,0),B (1,0)代入二次函数y =ax 2+bx+2求出a 、b 的值即可得出抛物线的解析式;(2)设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2,连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .根据三角形的面积公式得出△PAC 的表达式,再根据二次函数求最大值的方法得出其顶点坐标即可;(3)以BC 为边,在线段BC 两侧分别作正方形,正方形的其他四个顶点均可以使得“△BCQ 是以BC 为腰的等腰直角三角形”,因此有四个点符合题意要求,再过Q 1点作Q 1D ⊥y 轴于点D ,过点Q 2作Q 2E ⊥x 轴于点E ,根据全等三角形的判定定理得出△Q 1CD ≌△CBO ,△CBO ≌△BQ 2E ,故可得出各点坐标.【详解】(1)∵抛物线y =ax 2+bx+2过点A (﹣3,0),B (1,0),∴093202a b a b =-+⎧⎨=++⎩ 2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩解得 ∴二次函数的关系解析式为y =﹣23x 2﹣43x+2; (2)存在.∵如图1所示,设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2. 连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .则PM=﹣23m2﹣43m+2.,PN=﹣m,AO=3.∵当x=0时,y=﹣23×0﹣43×0+2=2,∴OC=2,∴S△PAC=S△PAO+S△PCO﹣S△ACO=12AO•PM+12CO•PN﹣12AO•CO=12×3×(﹣23m2﹣43m+2)+12×2×(﹣m)﹣12×3×2=﹣m2﹣3m∵a=﹣1<0∴函数S△PAC=﹣m2﹣3m有最大值∴当m=﹣2ba=﹣32时,S△PAC有最大值.∴n=﹣23m2﹣43m+2=﹣23×(﹣32)2﹣43×(﹣32)+2=52,∴存在点P(﹣32,52),使△PAC的面积最大.(3)如图2所示,以BC为边在两侧作正方形BCQ1Q2、正方形BCQ4Q3,则点Q1,Q2,Q3,Q4为符合题意要求的点.过Q1点作Q1D⊥y轴于点D,过点Q2作Q2E⊥x轴于点E,∵∠1+∠2=90°,∠2+∠3=90°,∠3+∠4=90°,∴∠1=∠3,∠2=∠4,在△Q1CD与△CBO中,∵11324Q C BC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△Q1CD≌△CBO,∴Q1D=OC=2,CD=OB=1,∴OD=OC+CD=3,∴Q1(2,3);同理可得Q4(﹣2,1);同理可证△CBO≌△BQ2E,∴BE=OC=2,Q2E=OB=1,∴OE=OB+BE=1+2=3,∴Q2(3,1),同理,Q3(﹣1,﹣1),∴存在点Q,使△BCQ是以BC为腰的等腰直角三角形.Q点坐标为:Q1(2,3),Q2(3,1),Q3(﹣1,﹣1),Q4(﹣2,1).【点睛】本题考查的是二次函数综合题,涉及到用待定系数法求二次函数解析式,二次函数极值、全等三角形的判定与性质,正方形及等腰直角三角形的性质等知识,涉及面较广,难度较大.。
第二十二章 二次函数 易错必考63题(13个考点)专练(解析版)
第二十二章二次函数易错必考63题(13个考点)专练易错必考题一、根据二次函数的定义求参数1.(2023·全国·九年级专题练习)若函数2221m m y m m x =(+)是二次函数,那么m 的值是()A .2B .1 或3C .3D .12【答案】C【分析】根据二次函数的定义: 20y ax bx c a ,进行计算即可.【详解】解:由题意得:221=2m m ,解得:1m 或=3m ;又∵2+0m m ,解得:1m 且0m ,∴=3m .故选C .【点睛】本题考查二次函数的定义.熟练掌握二次函数的定义是解题的关键.注意二次项系数不为零.2.(2023春·江苏南京·九年级校联考阶段练习)点 ,1m 是二次函数221y x x 图像上一点,则236m m 的值为【答案】6【分析】把点 ,1m 代入221y x x 即可求得22m m 值,将236m m 变形 232m m ,代入即可.【详解】解:∵点 ,1m 是二次函数221y x x 图像上,∴2121m m 则222m m .∴ 223632326m m m m 故答案为:6.【点睛】本题考查了二次函数图象上点的坐标特征,根据点坐标求待定系数是解题的关键.3(2023春·广东河源·九年级校考开学考试)已知函数21(1)3m y m x x 为二次函数,求m 的值.【答案】m=﹣1【分析】根据二次函数的定义,列出一个式子即可解决问题.【详解】解:由题意:21012m m ,解得1m ,1m 时,函数21(1)3m y m x x 为二次函数.【点睛】本题考查二次函数的定义,记住二次函数的定义是解题的关键,形如2(y ax bx c a 、b 、c 是常数,0)a 的函数,叫做二次函数.易错必考题二、二次函数与一次函数、反比例函数图象的综合判断4.(2023春·浙江杭州·八年级校考阶段练习)二次函数2y ax bx c 的图象如图所示,则一次函数24y ax b ac 与反比例函数a b cy x在同一坐标系内的图象大致为()A .B .C .D .【答案】C【分析】由抛物线的图象可知,横坐标为1的点,即 1a b c ,在第四象限可得0a b c ,从而得到反比例函数a b cy x的图象分布在二、四象限,由抛物线的开口方向和与x 的交点个数得到2040a b ac ,,从而得到一次函数24y ax b ac 的图象经过一、二、三象限,即可得到答案.【详解】解:由抛物线的图象可知,横坐标为1的点,即 1a b c ,在第四象限,0a b c ,反比例函数a b cy x的图象分布在二、四象限,∵抛物线的开口向上,0a ,∵抛物线与x 轴有两个交点,240b ac ,一次函数24y ax b ac 的图象经过一、二、三象限,故选:C .【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与系数的关系,熟练掌握一次函数、反比例函数、二次函数的图象与系数的关系,采用数形结合的思想解题,是解此题的关键.5.(2023秋·四川南充·九年级校考期末)在同一坐标系中,一次函数y ax c 与二次函数2y ax c 的图象可能是()A .B .C .D .【答案】B【分析】可先确定每一选项中的一次函数图象,得到a 、c 的符号,再验证二次函数图象是否一致即可.【详解】解:A 、由一次函数y ax c 的图象得0a ,0c ,则二次函数2y ax c 图象开口向上,故该选项不符合题意;B 、由一次函数y ax c 的图象得a<0,0c ,则二次函数2y ax c 图象开口向下,与y 轴正半轴相交,故该选项符合题意;C 、由一次函数y ax c 的图象得a<0,0c ,则二次函数2y ax c 图象开口向下,故该选项不符合题意;D 、由一次函数y ax c 的图象得a<0,0c ,则二次函数2y ax c 图象开口向下,故该选项不符合题意,故答案为:B .【点睛】本题考查一次函数、二次函数图象综合判断,熟知一次函数、二次函数的图象与系数的关系是解答的关键.6.(2023春·山东日照·九年级校考期中)在同一直角坐标系中,反比例函数ky x与二次函数2y x kx k 的大致图像可能是()A .B .C .D .【答案】B【分析】根据k 的取值范围分当0k 时和当0k 时两种情况进行讨论,根据反比例函数的图像与性质以及二次函数的图像与性质进行判断即可.【详解】解:当0k 时,反比例函数ky x的图像经过一、三象限,二次函数2y x kx k 的图像开口向上,其对称轴2kx在y 轴右侧,且与y 轴交于负半轴,故选项C 、D 不符合题意;当0k 时,反比例函数ky x的图像经过二、四象限,二次函数2y x kx k 的图像开口向上,其对称轴2kx在y 轴左侧,且与y 轴交于正半轴,故选项A 不符合题意,选项B 符合题意.故选:B .【点睛】本题主要考查了反比例函数的图像与性质以及二次函数的图像与性质,解题关键是根据k 的取值范围分当0k 时和当0k 时两种情况进行讨论.7.(2023春·安徽安庆·九年级校考阶段练习)二次函数2y ax bx 和反比例函数by x在同一平面直角坐标系中的大致图象可能是()A .B .C .D .【答案】B【分析】根据b 的取值范围分当0b 时和当0b 时两种情况进行讨论,根据反比例函数图象与性质,二次函数图象和性质进行判断即可.【详解】当0b 时,反比例函数by x的图象经过第一、三象限,当0a 时,二次函数2y ax bx 图象,开口向上,对称轴2bx a在y 轴左侧,则A 选项不符合题意,当a<0时,二次函数2y ax bx 图象,开口向下,对称轴2bx a在y 轴右侧,则C 选项不符合题意,B 选项符合题意;当0b 时,反比例函数by x的图象经过第二、四象限,当0a 时,二次函数2y ax bx 图象,开口向上,对称轴2bx a在y 轴右侧,则D 选项不符合题意;故选:B .【点睛】本题考查反比例函数的性质及二次函数的性质,解题的关键是根据题意对b 的取值进行分类讨论(当0b 时和当0b 时),注意运用数形结合的思想方法,充分观寻找图象中的关键点,结合函数解析式进行求解.易错必考题三、二次函数的图象与性质8.(2023春·陕西咸阳·九年级统考期中)已知二次函数2220y mx mx m ()在22x 时有最小值2 ,则m ()A .4 或12B .4或12C .4 或12D .4或12【答案】B【分析】先求出二次函数对称轴为直线1x ,再分0m 和0m 两种情况,利用二次函数的性质进行求解即可.【详解】解:∵二次函数 222212y mx mx m x m ,∴对称轴为直线1x ,①当0m ,抛物线开口向上,1x 时,有最小值22y m ,解得:4m ;②当0m <,抛物线开口向下,∵对称轴为直线1x ,在22x 时有最小值2 ,∴2x 时,有最小值922y m m ,解得:12m .故选:B .【点睛】本题主要考查了二次函数图像的性质,掌握分类讨论的思想是解题的关键.9.(2023春·江苏泰州·九年级校考阶段练习)已知点 12,P y , 24,Q y , 3,M m y 均在抛物线2y ax bx c 上,其中20am b .若321y y y ,则m 的取值范围是()A .2mB .1mC .21m D .14m 【答案】B【分析】由20am b 得到2bm a,此时3y y ,判断 3M m y ,为抛物线的顶点,且抛物线开口向下,然后分4m 和4m 两种情况分类讨论解题即可.【详解】解:∵20am b ,2b m a,∵直线2bx a是抛物线²y ax bx c 的对称轴,且此时3y y ,且321y y y ,∴ 3M m y ,为抛物线的顶点,且抛物线开口向下,①当4m 时,点P Q 、都在M 左侧(或Q 与M 重合),此时一定有321y y y 符合题意,②当4m 时,∵321y y y ,∴M 在点P 右侧,即2m ,且点P 到对称轴的距离大于点Q 到对称轴的距离,即 24m m ,解得:�>1,∴14m ,综上所述,m 的取值范围是1m 故选:B .【点睛】本题考查二次函数的图像和性质,掌握分类讨论的数学思想是解题的关键.10.(2023秋·全国·九年级专题练习)设0ab ,且函数 1²24f x x ax b 与 2²42f x x ax b 有相同的最小值u ;函数 3²24f x x bx a 与 4²42f x x bx a 有相同的最大值v ;则u v 的值()A .必为正数B .必为负数C .必为0D .符号不能确定【答案】C【分析】本题给出四个函数的解析式及两条重要信息 1f x 与有相同的最小值u ; 3f x 与 4f x 有相同的最大值v ,将函数化为顶点式,再根据条件列出等式即可求解此题.【详解】∵ 2221²2444f x x ax b x a b a b a , 2222²4222424f x x ax b x a b a b a ,则22424b a u b a ,得223b a ①∵0ab ,∴0b ,又∵ 2222234²4422424f x x b a b a b f x x b a b a b ,;则22424a b v a b ,得223a b ,②∵0ab ,∴ 0a ,∴3320a b ,∴②① 得, 2223a b b a ,解得0a b 或23b a (舍去),当0a b 时,2226565650u v b a a b a b b a ,∴ 0u v ,故选:C .【点睛】本题考查了二次函数的最值,难度较大,解题的关键是将函数的标准形式化为顶点形式.11.(2023秋·全国·九年级专题练习)已知抛物线243y x x 上两点 1122,,,A x y B x y ,且212x x ,则下列说法一定正确的是()A .若11x 时,则120y yB .若11x 时,则120y yC .若111x 时,则120y yD .若111x 时,则210y y 【答案】D【分析】求得抛物线的开口方向,对称轴以及抛物线与x 轴的交点,然后利用二次函数的性质判断即可;【详解】解:∵抛物线 22433121y x x x x x ,∴抛物线开口向上,对称轴为直线2x ,抛物线与x 轴的交点为 (3,0),1,0 ,若11x 时,212x x ∵,∴21x ,∴无法确定1y 、2y 的大小,故A 、B 不正确,不合题意;若111x 时,∵抛物线243y x x 上两点 1122,,,A x y B x y ,且212x x ,∴213x ,∴210y y ,故C 不正确,D 正确.故选:D .【点睛】本题考查了二次函数图象上点的坐标特征,抛物线与x 轴的交点,熟知二次函数的性质是解题的关键12.(2023秋·福建福州·九年级福建省福州第八中学校考开学考试)已知抛物线 220y ax ax b a 经过 13,A n y , 221, B n y 两点,若A ,B 分别位于抛物线对称轴的两侧,且12y y ,则n 的取值范围是.【答案】01n /10n 【分析】根据二次函数的增减性,进行求解即可.【详解】解:∵ 220y ax ax b a ,对称轴为直线212ax a,∴抛物线开口向下,抛物线上的点离对称轴越远,函数值越小;∵A ,B 分别位于抛物线对称轴的两侧,且12y y ,①当3121n n 时,此不等式无解,不符合题意;②2113n n ,即:21n 时,31121n n ,解得:0n ,综上:01n .故答案为:01n .【点睛】本题考查二次函数的图象和性质.解题的关键是掌握二次函数的增减性.13.(2023秋·湖北孝感·九年级校考开学考试)关于抛物线2y x ,给出下列说法:①抛物线开口向下,顶点是 0,4.②当1x 时,y 随x 的增大而减小.③当23x 时,50y .④若,m p ,n p 是该抛物线上两个不同的点,则0m n .其中正确的说法有.(填序号)【答案】②④/④②【分析】直接根据二次函数的图象和性质逐项判断即可.【详解】解:∵2y x ,∴①抛物线开口向下,顶点是原点,故该项错误;②对称轴为0x ,当1x 时,y 随x 的增大而减小,故该项正确;③当23x 时,0x 时取最大值0,3x 时取最小值9 ,因此90y ,故该项错误;④若 ,m p 、 ,n p 是该抛物线上两点,则两点关于直线0x 对称,因此0m n ,故该项正确.故答案为:②④.【点睛】本题主要考查二次函数的图象和性质,掌握该知识点并熟练运用数形结合思想是解题的关键.14.(2023秋·福建福州·九年级校考开学考试)若函数2y ax bx c (0a )图象过点(1,0) ,(0,2) 且抛物线的顶点位于第四象限,设35P a b c ,则P 的取值范围为.【答案】88P 【分析】根据(1,0) 和(0,2) 得到a ,b ,c 的关系,通过0a ,对称轴大于0,得到0b ,进而求出a 的准确范围,最终求出P 的取值范围.【详解】解:由题意可知,0a b c ,2c ,20a b ,2b a ,0a ∵,且对称轴bx 02a,0b ,20a ,02a ,353510288P a b c a a a ∵,8888a ,88P .故答案为:88P .【点睛】本题考查二次函数的性质,解题关键是掌握二次函数与方程的关系,掌握二次函数图象与系数的关系.15、(2023春·吉林长春·九年级校考期中)如图,在平面直角坐标系中,线段PQ 的端点坐标分别为(12)P ,,(13)Q ,,抛物线2223y x mx m (m 为常数,0m )和线段PQ 有公共点时,m 的取值范围是,【答案】1713m【分析】抛物线和线段PQ 有公共点可知23y ,当点(12)P ,在抛物线上时,可算出此时的m 的值,当点(13)Q ,在抛物线上时,算出此时的m 的值,由此即可求解.【详解】解:抛物线2223y x mx m (m 为常数,0m )和线段PQ 有公共点,(12)P ,,(13)Q ,,∴23y ,∴当点(12)P ,在抛物线上时,21232m m ,解得,11m ,213m ;当点(13)Q ,在抛物线上时,21233m m ,解得,3173m ,4173m ;∵当23y 时,有公共点,且0m ,∴m 的取值范围是1713m ,故答案为:1713m.【点睛】本题主要考查二次函数图像与线段的交点问题,掌握二次函数图像的性质,线段与图像的位置关系,数形结合分析是解题的关键.16.(2023春·浙江杭州·九年级校考阶段练习)已知二次函数 2220y x mx m m m .(1)若2m ,求该函数图象的顶点坐标.(2)若当1x 时,y 随x 的增大而减小;当2x 时,y 随x 的增大而增大,求m 的取值范围.(3)若函数1y y m ,点(2,),(,)M m s N n t 都在函数1y 的图象上,且s t ,求n 的取值范围.(用含m 的代数式表示)【答案】(1)2,2 (2)12m (3)2n m 或3n m 【分析】(1)把2m 代入 2220y x mx m m m 求出解析式,然后配方即可;(2)先求出 2220y x mx m m m 的对称轴,可得当x m 时,y 随x 的增大而减小;当x >m 时,y随x 的增大而增大,再结合条件即可求出;(3)根据代入法求出s t 、,结合s t 即可求出答案.【详解】(1)解:当2m 时,242y x x ,将242y x x 配方得:2(2)2y x ,∴该函数图象的顶点坐标是 2,2 ;(2)解:在 2220y x mx m m m 中,222b m x m a 轴,当x m 时,y 随x 的增大而减小;当x >m 时,y 随x 的增大而增大,∵当1x 时,y 随x 的增大而减小;当2x 时,y 随x 的增大而增大,∴12m ;(3)解:∵1y y m , 2220y x mx m m m ,∴221(12)y x m x m m ,∵点(2,),(,)M m s N n t 都在函数1y 的图象上,当2x m 时,6s ,当x n 时,22211(12)()24m t n m n m m n ,∵s t ,∴21216()24m n,∴212125()6244m n ,∴12522m n 或12522m n ,∴2n m 或3n m ;【点睛】本题是二次函数的一个综合题,主要考查了求顶点坐标,二次函数的性质,熟练掌握相关知识是关键.17.(2023秋·全国·九年级专题练习)已知抛物线2(0)y ax bx c a 经过(1)A t ,,(3)B t ,两点.(1)当1a 时,求b 的值;(2)当0 t ,且10x ≤≤时,y 的最大值为3.①求抛物线的解析式;②抛物线与y 轴交于点C ,直线(1)y kx k 与抛物线交于点D ,与直线BC 交于点F ,连接CD ,当:3:2COF CDF S S 时,求k 的值.【答案】(1)2b (2)①223y x x ;②32k =或4【分析】(1)根据(1)A t ,,(3)B t ,对称,写出对称轴方程1x ,根据对称轴是2b x a,且1a ,求出2b ;(2)①10x ≤≤在对称轴1x 的左侧,0x 时时,y 有最大值为3,得到0x 时,3y c ,根据0 t ,得到方程组,解方程组即可求解;②利用三角形的面积关系,得到点F 与点D 的横坐标的比为3:5,设点F 的横坐标为3t ,则点D 的横坐标为5t ,利用待定系数法用含t 的代数式求得直线OF 的解析式,进而得到点D 的坐标,将点D 坐标代入抛物线的解析式求得t 值即可求得结论.【详解】(1)解:抛物线2(0)y ax bx c a 经过(1)A t ,,(3)B t ,两点,1312x ,∵2b x a,1a ,2b ;(2)解:①∵(1)A t ,,(3)B t ,,0 t ,(10)A ,,(30)B ,,∵对称轴是直线1x ,0a ,当1x 时,y 随x 的增大而增大,∵10x ≤≤时,y 的最大值为3,当0x 时,3y c ,抛物线解析式为23y ax bx ,把(10)A ,,(30)B ,,代入得:309330a b a b, 12a b, 抛物线解析式为223y x x ;②由①得:(10)A ,,(30)B ,,(03)C ,,设直线BC 的解析式为 10y kx b k ,11330b k b,解得:13k b , 直线BC 的解析式为3y x ,∵:3:2COF CDF S S ,:3:5COF COD S S ,点F 与点D 的横坐标的比为3:5,设点F 的横坐标为3t ,则点D 的横坐标为5t ,∵点F 在直线BC 上,3,33F t t .∵点F 在直线(1)y kx k 上,333t k t ,解得:1t k t, 直线OF 的解析式为1t y x t,∵点D 在直线OF 上, 5,55D t t ,∵点D 在抛物线上,2525355t t t ,解得:15t 或25,当15t 时,115415k ,当25t 时,2135225x ,综上所述,32k =或4.【点拨】本题考查了二次函数性质,待定系数法求函数解析式,三角形面积,熟练掌握根据二次函数值随自变量变化情况确定二次函数的最值,待定系数法求二次函数的解析式,同高的两个三角形面积与底边成比例,是解决本题的关键.易错必考题四、二次函数图象的平移问题18.(2023秋·全国·九年级专题练习)将抛物线22y ax bx (a 、b 是常数,0a )向下平移2个单位长度后,得到的新抛物线恰好和抛物线2142y x x关于y 轴对称,则a 、b 的值为()A .1a ,2b B .12a ,1b =-C .12a ,1b =-D .1a ,2b 【答案】C【分析】先求出抛物线2142y x x 关于y 轴对称的抛物线为 219122y x ,再根据抛物线平移的性质得出抛物线22y ax bx 向下平移2个单位长度后为24y ax bx ,即可得出a 和b 的值.【详解】解:∵ 2211941222y x x x,∴抛物线2142y x x 关于y 轴对称的抛物线为 219122y x ,∵抛物线22y ax bx 向下平移2个单位长度后为24y ax bx ,∵24y ax bx 与2142y x x关于y 轴对称,∴ 22419122y ax bx x ,整理得:224412y x x a bx x,∴12a ,1b =-,故选:C .【点睛】本题主要考查了二次函数的平移规律,解题的关键是掌握将二次函数化为顶点式的方法和步骤,以及二次函数的平移规律:上加下减,左加右减.19.(2023春·浙江金华·九年级校考期中)如图,一条抛物线与x 轴相交于M ,N 点(点M 在点N 的左侧),其顶点P 在线段AB 上移动,点A ,B 的坐标分别为 2,3 , 1,3,点N 的横坐标的最大值为4,则点M 的横坐标的最小值为()A .1B .3C .5D .7【答案】C 【分析】其顶点P 在线段AB 上移动,点A ,B 的坐标分别为 2,3 , 1,3,分别求出对称轴过点A 和B 时的情况,即可判断出M 点横坐标的最小值.【详解】解:根据题意知,∵点N 的横坐标的最大值为4,此时点P 和点B 重合,即抛物线的对称轴为:1x ,N 点坐标为 4,0,则M 点坐标为 2,0 ,点P 和点A 重合,点M 的横坐标最小,此时抛物线的对称轴为:2x ,N 点坐标为 1,0,则M 点的坐标为 5,0 ,点M 的横坐标的最小值为5 ,故选:C .【点睛】本题考查了抛物线与x 轴的交点,二次函数的图象与性质,解答本题的关键是理解二次函数在平行于x 轴的直线上移动时,两交点之间的距离不变.20.(2023春·湖北恩施·九年级统考期中)在平面直角坐标系xOy 中,将抛物线223y x x 先绕原点O 旋转180 ,再向上平移3个单位,则平移后的抛物线解析式为.【答案】22y x x【分析】先把抛物线配方为顶点式,求出顶点坐标,求出旋转后的抛物线,再根据“上加下减,左加右减”的法则进行解答即可.【详解】解:∵ 2223=12y x x x ,∴抛物线的顶点为 12,,将抛物线223y x x 先绕原点旋转180 抛物线顶点为 12 ,-,旋转后的抛物线为 212y x ,再向上平移3个单位, 2212+32y x x x .故答案为:22y x x .【点睛】本题考查的是抛物线的图象与几何变换,解题的关键是熟知函数图象旋转与平移的法则.21.(2023秋·河北张家口·九年级统考期末)如图,坐标平面上有一透明片,透明片上有一抛物线L : 227y x .(1)写出L 的对称轴和y 的最小值;(2)点P 为透明片上一点,P 的坐标为 9,6.平移透明片,平移后,P 的对应点为P ,抛物线L 的对应抛物线为L ,其表达式恰为267y x x ,求PP 移动的最短路程.【答案】(1)对称轴为直线:7x ,y 的最小值为2(2)42PP 【分析】(1)直接根据解析式进行作答即可;(2)求出平移后的抛物线的顶点坐标,PP 移动的最短路程为两个顶点间的距离,进行求解即可.【详解】(1)解:∵ 222277y x x ,顶点坐标为 7,2,∴对称轴为直线7x ,y 的最小值为2;(2)∵ 226732y x x x ,顶点坐标为 3,2 ,∵抛物线L 的顶点坐标为 7,2,∴PP 移动的最短路程为 22732242 .【点睛】本题考查二次函数的图象与性质,二次函数图象的平移.熟练掌握二次函数的图象和性质,是解题的关键.22.(2023秋·陕西安康·九年级统考期末)已知二次函数 2420y ax x a 图像的对称轴为直线2x .(1)求a 的值;(2)将该二次函数的图像沿x 轴向右平移2个单位后得到一个新的二次函数,求新二次函数的解析式.【答案】(1)1a (2)2814y x x 【分析】(1)根据对称轴列式求解即可解答;(2)将a 的值代入,结合抛物线解析式求平移后图像所对应的二次函数的表达式即可.【详解】(1)解:∵二次函数 2420y ax x a 图像的对称轴为直线2x ∴422a,解得1a .(2)解:∵1a ,∴242y x x ,∴平移后为: 222422814y x x x x .∴新二次函数的解析式为2814y x x .【点睛】本题主要考查了二次根式的性质、二次根式的平移等知识点,掌握二次根式的性质是解答本题的关键.23.(2023·山东·九年级专题练习)如图,抛物线过点 0,0O , 10,0E ,矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上,设 ,0B t ,当2t 时,4BC .(1)求抛物线的函数表达式;(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持2t 时的矩形ABCD 不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G ,H ,且直线GH 平分矩形ABCD 的面积时,求抛物线平移的距离.【答案】(1)21542y x x (2)当1t 时,矩形ABCD 的周长有最大值,最大值为412(3)4【分析】(1)设抛物线的函数表达式为 100y ax x a ,求出点C 的坐标,将点C 的坐标代入即可求出该抛物线的函数表达式;(2)由抛物线的对称性得AE OB t ,则102AB t ,再得出21542BC t t ,根据矩形的周长公式,列出矩形周长的表达式,并将其化为顶点式,即可求解;(3)连接A C ,BD 相交于点P ,连接OC ,取OC 的中点Q ,连接PQ ,根据矩形的性质和平移的性质推出四边形OCHG 是平行四边形,则PQ CH ,12PQ OA .求出2t 时,点A 的坐标为 8,0,则142CH OA ,即可得出结论.【详解】(1)解:设抛物线的函数表达式为 100y ax x a .∵当2t 时,4BC ,∴点C 的坐标为 2,4 .将点C 坐标代入表达式,得 22104a ,解得14a .∴抛物线的函数表达式为21542y x x.(2)解:由抛物线的对称性得:AE OB t ,∴102AB t .当x t 时,21542BC t t .∴矩形ABCD 的周长为2152210242AB BC t t t21202t t 2141122t .∵102,∴当1t 时,矩形ABCD 的周长有最大值,最大值为412.(3)解:连接AC ,BD 相交于点P ,连接OC ,取OC 的中点Q ,连接PQ .∵直线GH 平分矩形ABCD 的面积,∴直线GH 过点P ..由平移的性质可知,四边形OCHG 是平行四边形,∴PQ CH .∵四边形ABCD 是矩形,∴P 是AC 的中点.∴12PQ OA .当2t 时,点A 的坐标为 8,0,∴142CH OA .∴抛物线平移的距离是4.【点睛】本题主要考查了求二次函数的解析式,二次函数的图象和性质,矩形的性质,平移的性质,解题的关键是掌握用待定系数法求解二次函数表达式的方法和步骤,二次函数图象上点的坐标特征,矩形的性质,以及平移的性质.易错必考题五、根据二次函数的图象判断式子符号24.(2023秋·全国·九年级专题练习)如图,抛物线 21y a x k 与x 轴交于 1,0A ,B 两点,下列判断正确的是()A .0a B .当0x 时,y 随x 的增大而减小C .点B 的坐标为3,0D .0a k 【答案】C 【分析】根据二次函数的图象和性质,逐一进行判断即可.【详解】解:A 、抛物线开口向下,a<0,选项错误,不符合题意;B 、 21y a x k ,对称轴为1x ,当1x 时,y 随x 的增大而减小,选项错误,不符合题意;C 、∵抛物线 21y a x k 与x 轴交于 1,0A ,对称轴为1x ,∴点B 的坐标为 3,0,选项正确,符合题意;D 、∵抛物线 21y a x k 与x 轴交于 1,0A ,∴ 2011a k ,∴4k a ,∴430a k a a a ,故选项D 错误,不符合题意;故选C .【点睛】本题考查二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解题的关键.25.(2023秋·全国·九年级专题练习)如图,根据二次函数2y ax bx c 的图象得到如下结论:①0abc ②20a b ③0a b c ④30a c ⑤当2x 时,y 随x 的增大而增大⑥一定存在实数0x ,使得200ax bx a b 成立.上述结论,正确的是()A .①②⑤B .②③④C .②③⑥D .③④⑤【答案】C 【分析】根据抛物线开口向上得出0a ,根据抛物线和y 轴的交点在y 轴的负半轴上得出0c ,根据图象关于=1x 对称,得到12b a,即2a b ,故0b ,根据图象与x 轴的一个交点为3x ,即可得到图象与x 轴的另一个交点为1x ,根据方程20ax bx c 的根,把1x 代入2y ax bx c 求出0a b c ,再将2a b 代入0a b c 得到30a c ,根据抛物线的对称轴和图象得出当1x 时,y 随x 的增大而增大,根据函数最小值为a b c ,当01x 时,则200ax bx c a b c ,即0ax bx a b ,故一定存在实数0x ,使得200ax bx a b 成立.【详解】解:∵抛物线开口向上、顶点在y 轴左侧、抛物线与y 轴交于负半轴,0a ,0c ,∵抛物线关于=1x 对称,12b a,即20a b , 0b ,<0abc ,故①错误,故②正确;∵抛物线过点 3,0 ,对称轴为直线=1x ,∴抛物线过点 1,0,把1x 代入2y ax bx c ,得到0a b c 0a b c ,故③正确;2b a ,0a b c ,30a c ,故④错误;∵抛物线开口向上,对称轴是直线=1x ,∴当1x 时,y 随x 的增大而增大;故⑤错误;∵函数最小值为a b c ,∴当01x 时,则200ax bx c a b c ,即0ax bx a b ,∴一定存在实数0x ,使得200ax bx a b 成立,故⑥正确;故选:C .【点睛】本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.26.(2023·黑龙江齐齐哈尔·统考模拟预测)如图,已知二次函数 20y ax bx c a 的图象如图所示,对于下列结论,其中正确结论的个数是()①0abc ;② 220a c b ;③30a c ;④若m 为任意实数;则26am bm b a ;⑤当22x k 时,y 随x 增大而先增大后减小.A .1B .2C .3D .4【答案】B【分析】根据二次函数的性质进行判断求解.【详解】解:由于图像开口向上,0a ,∵抛物线对称轴为12b x a,20b a ,∵抛物线与y 轴的交点在x 轴下方,0c ,<0abc ,①错误;有图像知,将1x 代入得0a b c ,将=1x 代入得<0a b c ,22()()0a c b a b c a c b ,②错误;有图像知,将1x 代入得0a b c ,2b a ∵,30a c ,③正确;当=1x 时,函数有最小值y a b c ,若m 为任意实数;则2am bm c a b c ,2am bm a b ,22am bm b a b ,2b a ∵,243am bm b a a a ,0a ∵,36a a ,26am bm b a ,④正确;20k ∵,222k ,根据图像可知,22x k 时,y 随x 增大而先减小后增大.⑤错误;故选:B .【点睛】本题主要考查二次函数的图像和性质,熟练掌握二次函数的性质是解题的关键.27.(2023·山东·九年级专题练习)如图,二次函数2(0)y ax bx c a 的图象与x 轴的正半轴交于点A ,对称轴为直线1x .下面结论:①<0abc ;②20a b ;③30a c ;④方程20(0)ax bx c a 必有一个根大于1 且小于0.其中正确的是.(只填序号)【答案】①②④【分析】根据题意和函数图象,可以判断各个小题中的结论是否成立,本题得以解决.【详解】解:由图象可得,000,,,a b c 则<0abc ,故①正确;∵12b a,∴2b a ,∴20a b ,故②正确;∵函数图象与x 轴的正半轴交点在点(2,0)和(3,0)之间,对称轴是直线1x ,∴函数图象与x 轴的另一个交点在点(0,0)和点 1,0 之间,故④正确;∴当=1x 时,0y a b c ,∴20y a a c ,∴30a c ,故③错误;故答案为:①②④.【点睛】本题考查二次函数图象与系数的关系、二次函数图象上点的坐标特征、抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.28.(2023秋·全国·九年级专题练习)已知二次函数 20y ax bx c a 的图像如图所示,有下列5个结论:①0abc ;②b a c ;③420a b c ;④23c b ;⑤ a b m am b (1m 的实数).其中正确的结论有(填序号)【答案】③④⑤【分析】由抛物线的开口方向可以得出a<0,由抛物线与y 轴的交点可以判断0c ,由抛物线的对称轴可以判断0b ,再根据抛物线与x 轴的交点情况以及抛物线的顶点进行推理即可得到答案.【详解】解:①∵二次函数 20y ax bx c a 的图象开口方向向下,与y 轴交于正半轴,对称轴为直线1x ,0002b a c a,,,>0b ,<0abc ,故①错误,不符合题意;②∵二次函数 20y ax bx c a 的图象与x 轴的交点在 10 ,的右边,图象开口方向向下, 当=1x 时,0y ,0a b c ,b ac ,故②错误,不符合题意;③∵二次函数 20y ax bx c a 的图象与x 轴的另一个交点在 20,的右边,图象开口方向向下, 当2x 时,0y ,420a b c ,故③正确,符合题意;④由①得:12b a,12a b ,由②得:<0a b c ,102b bc ,23c b ,故④正确,符合题意;⑤∵二次函数 20y ax bx c a 的图象的对称轴为直线1x ,当1x 时,y 取最大值,最大值为a b c ,当 1x m m 时,2am bm c a b c ,1a b m am b m ,故⑤正确,符合题意;综上所述:正确的结论有:③④⑤,故答案为:③④⑤.【点睛】本题主要考查了二次函数的图象与各项系数符号的关系,根据二次函数的图象判断式子的符号,熟练掌握二次函数的性质,采用数形结合的方法解题,是解此题的关键.29.(2023秋·全国·九年级专题练习)如图,二次函数2y ax bx c 的图象过点 3,0A ,对称轴为直线1x .给出以下结论:①0abc <;② 21a ax x b ;③若 211,M n y , 222,N n y 为函数图象上的两点,则12y y ;④若关于x 的一元二次方程 20ax bx c p p 有整数根,则对于a 的每一个值,对应的p 值有3个.其中正确的有.(写出所有正确结论的序号)【答案】①②③【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】∵抛物线开口向下,0a ;∵抛物线的对称轴为直线x 2b a10 ,0b ;∵抛物线与y 轴的交点在x 轴上方,0c ,0abc ,故①正确;∵当1x 时,函数有最大值,2a b c ax bx c ,即 21a ax x b故②正确;∵抛物线的对称轴是1x ,则2212(1,2,())M n y N n y ,在对称轴右侧,2212n n ,12y y ,。
九(上)数学《二次函数》经典易错题归纳,带答案
九(上)数学《二次函数》经典易错题归纳,带答案
《二次函数》章节包括的知识点有:二次函数的图像与性质、二次函数与一元二次方程、实际问题与二次函数。
很多同学都觉得很难,特别是一些压轴题,这期我们就来分享一下关于《二次函数》的一些经典易错题型,都是高频考点哦,同学们一定要下载下来做一做,需要完整电子版的朋友们,关注加转发获取!后面都配有详细的答案解析,可以独立完成后对照学习!
同学们在学习的过程中有任何的疑惑,都可以在评论区留言互动,也可以私信,我会挑选一些典型的题目录制视频解析,为同学们答疑解惑!
专栏
九年级上学期数学模型和方法总结。
中考数学复习二次函数专项易错题附答案
中考数学复习二次函数专项易错题附答案一、二次函数1.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.【答案】(1)b=﹣2a,顶点D的坐标为(﹣12,﹣94a);(2)2732748aa--;(3)2≤t<94.【解析】【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.【详解】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=-2a,∴y=ax2+ax+b=ax2+ax-2a=a(x+12)2-94a,∴抛物线顶点D 的坐标为(-12,-94a ); (2)∵直线y=2x+m 经过点M (1,0), ∴0=2×1+m ,解得m=-2,∴y=2x-2, 则2222y x y ax ax a -⎧⎨+-⎩==, 得ax 2+(a-2)x-2a+2=0,∴(x-1)(ax+2a-2)=0,解得x=1或x=2a-2, ∴N 点坐标为(2a-2,4a -6), ∵a <b ,即a <-2a ,∴a <0, 如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为122a x a =-=-, ∴E (-12,-3), ∵M (1,0),N (2a-2,4a -6), 设△DMN 的面积为S , ∴S=S △DEN +S △DEM =12|( 2a -2)-1|•|-94a -(-3)|=274−3a −278a , (3)当a=-1时, 抛物线的解析式为:y=-x 2-x+2=-(x+12)2+94,由222y x x y x⎧=--+⎨=-⎩, -x 2-x+2=-2x ,解得:x 1=2,x 2=-1,∴G (-1,2),∵点G 、H 关于原点对称,∴H (1,-2),设直线GH 平移后的解析式为:y=-2x+t ,-x 2-x+2=-2x+t ,x 2-x-2+t=0,△=1-4(t-2)=0, t=94, 当点H 平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=-2x+t ,t=2,∴当线段GH 与抛物线有两个不同的公共点,t 的取值范围是2≤t <94.【点睛】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M 的坐标得到b 与a 的关系是解题的关键,在(2)中联立两函数解析式,得到关于x 的一元二次方程是解题的关键,在(3)中求得GH 与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.2.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。
初三数学二次函数的专项培优 易错 难题练习题(含答案)附详细答案
初三数学二次函数的专项培优 易错 难题练习题(含答案)附详细答案一、二次函数1.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B .(1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)﹣3;(2)y 13=x 2﹣3;(3)M 的坐标为(3632). 【解析】【分析】 (1)把C (0,﹣3)代入直线y =x +m 中解答即可;(2)把y =0代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可; (3)分M 在BC 上方和下方两种情况进行解答即可.【详解】(1)将C (0,﹣3)代入y =x +m ,可得:m =﹣3;(2)将y =0代入y =x ﹣3得:x =3,所以点B 的坐标为(3,0),将(0,﹣3)、(3,0)代入y =ax 2+b 中,可得:390b a b =-⎧⎨+=⎩, 解得:133a b ⎧=⎪⎨⎪=-⎩,所以二次函数的解析式为:y 13=x 2﹣3;(3)存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D ,则∠ODC =45°+15°=60°,∴OD =OC •tan30°3=设DC 为y =kx ﹣33,0),可得:k 3= 联立两个方程可得:233133y x y x ⎧=-⎪⎨=-⎪⎩, 解得:121203336x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩, 所以M 1(36);②若M 在B 下方,设MC 交x 轴于点E ,则∠OEC =45°-15°=30°,∴OE =OC •tan60°=3设EC 为y =kx ﹣3,代入(30)可得:k 3= 联立两个方程可得:233133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩, 解得:12120332x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩, 所以M 23,﹣2).综上所述M 的坐标为(3,63,﹣2).【点睛】此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.2.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。
数学九年级上册 二次函数易错题(Word版 含答案)
数学九年级上册二次函数易错题(Word版含答案)一、初三数学二次函数易错题压轴题(难)1.图①,二次函数y=ax2+bx+c(a≠0)的图象经过点A(﹣1,0),并且与直线y=1 2 x﹣2相交于坐标轴上的B、C两点,动点P在直线BC下方的二次函数的图象上.(1)求此二次函数的表达式;(2)如图①,连接PC,PB,设△PCB的面积为S,求S的最大值;(3)如图②,抛物线上是否存在点Q,使得∠ABQ=2∠ABC?若存在,则求出直线BQ的解析式及Q点坐标;若不存在,请说明理由.【答案】(1)y=12x2﹣32x﹣2;(2)﹣1<0,故S有最大值,当x=2时,S的最大值为4;(3)Q的坐标为(53,﹣289)或(﹣113,929).【解析】【分析】(1)根据题意先求出点B、C的坐标,进而利用待定系数法即可求解;(2)由题意过点P作PH//y轴交BC于点H,并设点P(x,12x2﹣32x﹣2),进而根据S=S△PHB+S△PHC=12PH•(x B﹣x C),进行计算即可求解;(3)根据题意分点Q在BC下方、点Q在BC上方两种情况,利用解直角三角形的方法,求出点H的坐标,进而分析求解.【详解】解:(1)对于直线y=12x﹣2,令x=0,则y=﹣2,令y=0,即12x﹣2=0,解得:x=4,故点B、C的坐标分别为(4,0)、(0,﹣2),抛物线过点A、B两点,则y=a(x+1)(x﹣4),将点C的坐标代入上式并解得:a=12,故抛物线的表达式为y=12x2﹣32x﹣2①;(2)如图2,过点P作PH//y轴交BC于点H,设点P(x,12x2﹣32x﹣2),则点H(x,12x﹣2),S=S△PHB+S△PHC=12PH•(x B﹣x C)=12×4×(12x﹣2﹣12x2+32x+2)=﹣x2+4x,∵﹣1<0,故S有最大值,当x=2时,S的最大值为4;(3)①当点Q在BC下方时,如图2,延长BQ交y轴于点H,过点Q作QC⊥BC交x轴于点R,过点Q作QK⊥x轴于点K,∵∠ABQ=2∠ABC,则BC是∠ABH的角平分线,则△RQB为等腰三角形,则点C是RQ的中点,在△BOC中,tan∠OBC=OCOB=12=tan∠ROC=RCBC,则设RC=x=QB,则BC=2x,则RB22(2)x x5=BQ,在△QRB中,S△RQB=12×QR•BC=12BR•QK,即122x•2x=125,解得:KQ5∴sin∠RBQ=KQBQ55x=45,则tanRBH=43,在Rt △OBH 中,OH =OB•tan ∠RBH =4×43=163,则点H (0,﹣163), 由点B 、H 的坐标得,直线BH 的表达式为y =43(x ﹣4)②, 联立①②并解得:x =4(舍去)或53, 当x =53时,y =﹣289,故点Q (53,﹣289); ②当点Q 在BC 上方时,同理可得:点Q 的坐标为(﹣113,929); 综上,点Q 的坐标为(53,﹣289)或(﹣113,929). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质、解直角三角形、面积的计算等,注意分类讨论思维的应用,避免遗漏.2.如图,抛物线()21y x a x a =-++与x 轴交于,A B 两点(点A 位于点B 的左侧),与y轴的负半轴交于点C .()1求点B 的坐标.()2若ABC 的面积为6.①求这条抛物线相应的函数解析式.②在拋物线上是否存在一点,P 使得POB CBO ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)(1,0);(2)①223y x x =+-;②存在,点P 的坐标为⎝⎭或⎝⎭. 【解析】 【分析】(1)直接令0y =,即可求出点B 的坐标;(2)①令x=0,求出点C 坐标为(0,a ),再由△ABC 的面积得到12(1−a)•(−a)=6即可求a 的值,即可得到解析式;②当点P 在x 轴上方时,直线OP 的函数表达式为y=3x ,则直线与抛物线的交点为P ;当点P 在x 轴下方时,直线OP 的函数表达式为y=-3x ,则直线与抛物线的交点为P ;分别求出点P 的坐标即可. 【详解】解:()1当0y =时,()210,x a x a -++=解得121,.x x a ==点A 位于点B 的左侧,与y 轴的负半轴交于点,C0,a ∴<∴点B 坐标为()1,0.()2①由()1可得,点A 的坐标为(),0a ,点C 的坐标为()0,,0,a a <1,AB a OC a ∴=-=-ABC 的面积为6,()()116,2a a ∴--⋅= 123,4a a ∴=-=.0,a <3a ∴=-22 3.y x x =+-②点B 的坐标为()1,0,点C 的坐标为()0,3-, ∴设直线BC 的解析式为3,y kx =-则03,k =-3k ∴=.,POB CBO ∠=∠∴当点P 在x 轴上方时,直线//OP 直线,BC ∴直线OP 的函数解析式3,y x =为则23,23,y x y x x =⎧⎨=+-⎩1111333132x y ⎧-=⎪⎪∴⎨-⎪=⎪⎩(舍去),2211333132x y ⎧+=⎪⎪⎨+⎪=⎪⎩∴点的P 坐标为1133313,⎛⎫++ ⎪ ⎪⎝⎭; 当点P 在x 轴下方时,直线'OP 与直线OP 关于x 轴对称,则直线'OP 的函数解析式为3,y x =- 则23,23,y x y x x =-⎧⎨=+-⎩115372153372x y ⎧--=⎪⎪∴⎨+⎪=⎪⎩(舍去),225372153372x y ⎧-+=⎪⎪⎨-⎪=⎪⎩ ∴点P'的坐标为53715337,⎛⎫-+- ⎪ ⎪⎝⎭综上可得,点P 的坐标为1133313,22⎛⎫++ ⎪ ⎪⎝⎭或53715337,22⎛⎫-+- ⎪ ⎪⎝⎭【点睛】本题考查二次函数的图象及性质,一次函数的性质,熟练掌握二次函数的图象及性质,结合数形结合的思想和分类讨论的思想解题是解本题的关键.3.如图,直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,抛物线y =ax 2﹣32x+c 经过A ,B 两点,与x 轴的另一交点为C . (1)求抛物线的解析式;(2)M 为抛物线上一点,直线AM 与x 轴交于点N ,当32MN AN =时,求点M 的坐标; (3)P 为抛物线上的动点,连接AP ,当∠PAB 与△AOB 的一个内角相等时,直接写出点P 的坐标.【答案】(1)y=12x2﹣32x﹣2;(2)点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)点P的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2).【解析】【分析】(1)根据题意直线y=12x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,-2)、(4,0),即可求解;(2)由题意直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN =32时,则NHON=32,即4343mmm---=32,进行分析即可求解;(3)根据题意分∠PAB=∠AOB=90°、∠PAB=∠OAB、∠PAB=∠OBA三种情况,分别求解即可.【详解】解:(1)直线y=12x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,﹣2)、(4,0),则c=﹣2,将点B的坐标代入抛物线表达式并解得:a=12,故抛物线的表达式为:y=12x2﹣32x﹣2①;(2)设点M(m,12m2﹣32m﹣2)、点A(0,﹣2),将点M、A的坐标代入一次函数表达式:y=kx+b并解得:直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN=32时,则NHON=32,即:4343mmm---=32,解得:m=5或﹣2或2或1,故点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)①∠PAB=∠AOB=90°时,则直线AP的表达式为:y=﹣2x﹣2②,联立①②并解得:x=﹣1或0(舍去0),故点P(﹣1,0);②当∠PAB=∠OAB时,当点P在AB上方时,无解;当点P在AB下方时,将△OAB沿AB折叠得到△O′AB,直线OA交x轴于点H、交抛物线为点P,点P为所求,则BO=OB=4,OA=OA=2,设OH=x,则sin∠H=BO OAHB HA'=,即:2444x x=++,解得:x=83,则点H(﹣83,0),.则直线AH的表达式为:y=﹣34x﹣2③,联立①③并解得:x=32,故点P(32,﹣258);③当∠PAB=∠OBA时,当点P在AB上方时,则AH=BH,设OH=a,则AH=BH=4﹣a,AO=2,故(4﹣a)2=a2+4,解得:a=32,故点H(32,0),则直线AH的表达式为:y=43x﹣2④,联立①④并解得:x=0或173(舍去0),故点P(173,509);当点P在AB下方时,同理可得:点P(3,﹣2);综上,点P的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、勾股定理的运用等,要注意分类讨论,解题全面.4.在平面直角坐标系中,将函数y=x2﹣2mx+m(x≤2m,m为常数)的图象记为G,图象G的最低点为P(x0,y0).(1)当y0=﹣1时,求m的值.(2)求y0的最大值.(3)当图象G与x轴有两个交点时,设左边交点的横坐标为x1,则x1的取值范围是.(4)点A在图象G上,且点A的横坐标为2m﹣2,点A关于y轴的对称点为点B,当点A不在坐标轴上时,以点A、B为顶点构造矩形ABCD,使点C、D落在x轴上,当图象G 在矩形ABCD内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.【答案】(1或﹣1;(2)14;(3)0<x1<1;(4)m=0或m>43或23≤m<1【解析】【分析】(1)分m>0,m=0,m<0三种情形分别求解即可解决问题;(2)分三种情形,利用二次函数的性质分别求解即可;(3)由(1)可知,当图象G与x轴有两个交点时,m>0,求出当抛物线顶点在x轴上时m的值,利用图象法判断即可;(4)分四种情形:①m<0,②m=0,③m>1,④0<m≤1,分别求解即可解决问题.【详解】解:(1)如图1中,当m>0时,∵y=x2﹣2mx+m=(x﹣m)2﹣m2+m,图象G是抛物线在直线y=2m的左侧部分(包括点D),此时最底点P(m,﹣m2+m),由题意﹣m2+m=﹣1,解得m=512+或512-+(舍弃),当m=0时,显然不符合题意,当m<0时,如图2中,图象G是抛物线在直线y=2m的左侧部分(包括点D),此时最底点P是纵坐标为m,∴m=﹣1,综上所述,满足条件的m 51+或﹣1;(2)由(1)可知,当m>0时,y0=﹣m2+m=﹣(m﹣12)2+14,∵﹣1<0,∴m=12时,y0的最大值为14,当m=0时,y0=0,当m<0时,y0<0,综上所述,y0的最大值为14;(3)由(1)可知,当图象G与x轴有两个交点时,m>0,当抛物线顶点在x轴上时,4m2﹣4m=0,∴m=1或0(舍弃),∴观察观察图象可知,当图象G与x轴有两个交点时,设左边交点的横坐标为x1,则x1的取值范围是0<x1<1,故答案为0<x1<1;(4)当m<0时,观察图象可知,不存在点A满足条件,当m=0时,图象G在矩形ABCD内的部分所对应的函数值y随x的增大而减小,满足条件,如图3中,当m>1时,如图4中,设抛物线与x轴交于E,F,交y轴于N,观察图象可知当点A在x轴下方或直线x=﹣m和y轴之间时(可以在直线x=﹣m上)时,满足条件.则有(2m﹣2)2﹣2m(2m﹣2)+m<0,解得m>43,或﹣m≤2m﹣2<0,解得23≤m<1(不合题意舍弃),当0<m≤1时,如图5中,当点A在直线x=﹣m和y轴之间时(可以在直线x=﹣m上)时,满足条件.即或﹣m≤2m﹣2<0,解得23≤m<1,综上所述,满足条件m的值为m=0或m>43或23≤m<1.【点睛】本题属于二次函数综合题,考查了二次函数的性质,矩形的性质,最值问题,不等式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考压轴题.5.如图,直线l:y=﹣3x+3与x轴,y轴分别相交于A、B两点,抛物线y=﹣x2+2x+b经过点B.(1)该抛物线的函数解析式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M 的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M'.①写出点M'的坐标;②将直线l绕点A按顺时针方向旋转得到直线l',当直线l′与直线AM'重合时停止旋转,在旋转过程中,直线l'与线段BM'交于点C,设点B,M'到直线l'的距离分别为d1,d2,当d1+d2最大时,求直线l'旋转的角度(即∠BAC的度数).【答案】(1)2y x 2x 3=-++;(2)21525228S m ⎛⎫=--+ ⎪⎝⎭ ,258;(3)①57,24M ⎛⎫'⎪⎝⎭;②45° 【解析】 【分析】(1)利用直线l 的解析式求出B 点坐标,再把B 点坐标代入二次函数解析式即可求出b 的值.(2)设M 的坐标为(m ,﹣m 2+2m +3),然后根据面积关系将△ABM 的面积进行转化. (3)①由(2)可知m =52,代入二次函数解析式即可求出纵坐标的值. ②可将求d 1+d 2最大值转化为求AC 的最小值. 【详解】(1)令x =0代入y =﹣3x+3, ∴y =3, ∴B (0,3),把B (0,3)代入y =﹣x 2+2x+b 并解得:b =3, ∴二次函数解析式为:y =﹣x 2+2x+3. (2)令y =0代入y =﹣x 2+2x+3,∴0=﹣x 2+2x+3, ∴x =﹣1或3,∴抛物线与x 轴的交点横坐标为-1和3, ∵M 在抛物线上,且在第一象限内, ∴0<m <3,令y =0代入y =﹣3x+3, ∴x =1,∴A 的坐标为(1,0),由题意知:M 的坐标为(m ,﹣m 2+2m+3), ∴S =S 四边形OAMB ﹣S △AOB =S △OBM +S △OAM ﹣S △AOB=12×m×3+12×1×(-m2+2m+3)-12×1×3=﹣12(m﹣52)2+258,∴当m=52时,S取得最大值258.(3)①由(2)可知:M′的坐标为(52,74).②设直线l′为直线l旋转任意角度的一条线段,过点M′作直线l1∥l′,过点B作BF⊥l1于点F,根据题意知:d1+d2=BF,此时只要求出BF的最大值即可,∵∠BFM′=90 ,∴点F在以BM′为直径的圆上,设直线AM′与该圆相交于点H,∵点C在线段BM′上,∴F在优弧'BM H上,∴当F与M′重合时,BF可取得最大值,此时BM′⊥l1,∵A(1,0),B(0,3),M′(52,74),∴由勾股定理可求得:AB10,M′B55M′A 85,过点M′作M′G⊥AB于点G,设BG=x,∴由勾股定理可得:M′B2﹣BG2=M′A2﹣AG2,∴851610﹣x)2=12516﹣x2,∴x =5108, cos ∠M′BG ='BG BM =2,∠M′BG= 45︒ 此时图像如下所示,∵l 1∥l′,F 与M′重合,BF ⊥l 1 ∴∠B M′P=∠BCA =90︒, 又∵∠M′BG=∠CBA= 45︒ ∴∠BAC =45︒. 【点睛】本题主要考查了一次函数与二次函数的综合以及一次函数旋转求角度问题,正确掌握一次函数与二次函数性质及综合问题的解法是解题的关键.6.如图1,抛物线21:C y x b =+交y 轴于()0,1A .(1)直接写出抛物线1C 的解析式______________.(2)如图1,x 轴上两动点,M N 满足:m n X X n -==.若,B C (B 在C 左侧)为线段MN 上的两个动点,且满足:B 点和C 点关于直线:1l x =对称.过B 作BB x '⊥轴交1C 于B ',过C 作CC x '⊥轴交1C 于C ',连接B C ''.求B C ''的最大值(用含n 的代数式表示).(3)如图2,将抛物线1C 向下平移78个单位长度得到抛物线2C .2C 对称轴左侧的抛物线上有一点M ,其横坐标为m .以OM 为直径作K ,记⊙K 的最高点为Q .若Q 在直线2y x =-上,求m 的值.【答案】(1)21y x =+;(2)1|n -;(3)14m =-或12m =- 【解析】 【分析】(1)将()0,1A 带入抛物线1C 解析式,求得b 的值,即可得到抛物线1C 的解析式; (2)设(),0B q ,则()2,0C q -,求()2B C ''并进行化简,由1n q -≤<且12,qn <-得21n q -<,则当()2maxB C ''⎡⎤⎢⎥⎣⎦时,取min 2q q n ==-,带入()2B C '',即可求得()maxB C '';(3)依题意将抛物线1C 向下平移78个单位长度得到抛物线2C ,求得2C 解析式,根据解析式特点设21,8M m m ⎛⎫+ ⎪⎝⎭,得到222218OM m m ⎛⎫=++ ⎪⎝⎭,由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭,设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭,化简得到22211084k m k m ⎛⎫++-= ⎪⎝⎭,由Q 点在2y x =-上,得2Q k x m =-=-,继而得到231048m m -+=,解得14m =-或12m =-. 【详解】解:(1)将()0,1A 带入抛物线21:C y x b =+,得b=1, 则21:1C y x =+,(2)设(),0B q ,则()2,0C q -, ∴()22222(2)(2)B C q q q q ''⎡⎤=--+--⎣⎦2204020q q =-+()2201q =-,∵1n q -≤<且12,q n <-21n q -<∴,∴()2maxB C ''⎡⎤⎢⎥⎣⎦时,min 2q q n ==-, 即()22220(21)20(1)B C n n ''=--=-,∴()max1|B C n ''=-,(3)根据题意,将抛物线1C 向下平移78个单位长度得到抛物线2C , ∴221:8C y x =+, ∴21,8M m m ⎛⎫+⎪⎝⎭, ∴222218OM m m ⎛⎫=++ ⎪⎝⎭,∴由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭, 设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭, ∴222111428OM k m ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦, 化简上式得:22211084k m k m ⎛⎫++-= ⎪⎝⎭, ∵Q 点在2y x =-上,则2Q k x m =-=-, ∴k m =-为上述方程的一个解, ∴分析可知1()04k m k m ⎛⎫+-= ⎪⎝⎭, 21148m m m -=+∴,∴231048m m -+=, 解得:114m =-,212m =-(经检验114m =-,212m =-是方程231048m m -+=的解),故14m=-或12m=-.【点睛】本题主要考查二次函数的图像及性质、图像平移的性质、及二次函数与一元二次方程的综合应用、最值求法等知识.解题关键是熟练掌握二次函数的性质,充分利用数形结合的思想.7.如图,若抛物线y=x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,直线y=x﹣3经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,过点P作PH⊥x轴于点H,交BC于点M,连接PC.①线段PM是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P运动的过程中,是否存在点M,恰好使△PCM是以PM为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【答案】(1)y=x2﹣2x﹣3;(2)①有,94;②存在,(2,﹣3)或(32,2﹣2)【解析】【分析】(1)由直线表达式求出点B、C的坐标,将点B、C的坐标代入抛物线表达式,即可求解;(2)①根据PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94即可求解;②分PM=PC、PM=MC两种情况,分别求解即可.【详解】解:(1)对于y=x﹣3,令x=0,y=﹣3,y=0,x=3,故点B、C的坐标分别为(3,0)、(0,﹣3),将点B、C的坐标代入抛物线表达式得:9303b cc++=⎧⎨=-⎩,解得:32c b =-⎧⎨=-⎩,故抛物线的表达式为:y =x 2﹣2x ﹣3;(2)设:点M (x ,x ﹣3),则点P (x ,x 2﹣2x ﹣3), ①有,理由:PM =(x ﹣3)﹣(x 2﹣2x ﹣3)=﹣(x ﹣32)2+94, ∵﹣1<0,故PM 有最大值,当x =32时,PM 最大值为:94; ②存在,理由:PM 2=(x ﹣3﹣x 2+2x+3)2=(﹣x 2+3x )2; PC 2=x 2+(x 2﹣2x ﹣3+3)2; MC 2=(x ﹣3+3)2+x 2;(Ⅰ)当PM =PC 时,则(﹣x 2+3x )2=x 2+(x 2﹣2x ﹣3+3)2, 解得:x =0或2(舍去0), 故x =2,故点P (2,﹣3);(Ⅱ)当PM =MC 时,则(﹣x 2+3x )2=(x ﹣3+3)2+x 2,解得:x =0或(舍去0和),故x =3,则x 2﹣2x ﹣3=2﹣,故点P (3,2﹣).综上,点P 的坐标为:(2,﹣3)或(3,2﹣). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质等,其中(2)②,要注意分类求解,避免遗漏.8.如图,已知抛物2(0)y ax bx c a =++≠经过点,A B ,与y 轴负半轴交于点C ,且OC OB =,其中B 点坐标为(3,0),对称轴l 为直线12x =. (1)求抛物线的解析式;(2) 在x 轴上方有一点P , 连接PA 后满足PAB CAB ∠=∠, 记PBC ∆的面积为S , 求当10.5S =时点P 的坐标(3)在(2)的条件下,当点P 恰好落在抛物线上时,将直线BC 上下平移,平移后的10.5S =时点P 的坐标;直线y x t =+与抛物线交于,C B ''两点(C '在B '的左侧),若以点,,C B P ''为顶点的三角形是直角三角形,求出t 的值.【答案】(1)211322y x x =--(2)(2,6)(3)19或32 【解析】 【分析】(1)确定点A 的坐标,再进行待定系数法即可得出结论;(2)确定直线AP 的解析式,用m 表示点P 的坐标,由面积关系求S 和m 的函数关系式即可求解;(3)先确定点P 的坐标,当'''90B PC ∠=,利用根与系数的关系确定'''B C 的中点E 的坐标,利用''2B C PE =建立方程求解,当''''90PC B ∠=时,确定点G 的坐标,进而求出直线''C G 的解析式,得出点''C 的坐标即可得出结论. 【详解】(1)∵OC OB =,且B 点坐标为(3,0), ∴C 点坐标为(0,3)-.设抛物线解析式为21()2y a x k =-+.将B 、C 两点坐标代入得2504134a k a k ⎧=+⎪⎪⎨⎪-=+⎪⎩,解得12258a k ⎧=⎪⎪⎨⎪=-⎪⎩.∴抛物线解析式为22112511()-322822y x x x =-=--. (2)如图1,设AP 与y 轴交于点'C .∵PAB CAB ∠=∠,OA OA =,90AOC AOC ∠'=∠=︒, ∴AOC ∆≌AOC ∆', ∴3OC OC ='=, ∴(0,3)C '. ∵对称轴l 为直线12x =,∴(2,0)A-, ∴直线AP 解析式为332y x =+, ∵(3,0)B ,(0,-3)C , ∴直线BC 解析式为-3y x =, ∴313(3)622PF x x x =+--=+, ∴13924PBC S OB PF x ∆=⨯⨯=+, ∵10.5S =,∴3910.54x +=, ∴2x =.此时P 点的坐标为(2,6).(3)如图2,由211-322332y x x y x ⎧=-⎪⎪⎨⎪=+⎪⎩得6,12P (),当90C PB ∠=''︒时,取''B C 的中点E ,连接PE . 则2B C PE ''=,即224B C PE =''. 设1122(,),(,)B x y C x y ''.由211-322y x x y x t⎧=-⎪⎨⎪=+⎩得23(26)0x x t --+=, ∴12123,(26)x x x x t +==-+, ∴点33(,)22E t +,222221212121212()()2()2()41666B C x x y y x x x x x x t⎡⎤=-+-=-+-=+⎣=⎦'',222233261(6)(1221222PE t t t=-+-=-+),∴226116664(21)2t t t+=-+,解得:19t=或6(舍去),当90PC B''''∠=︒时,延长C P''交BC于H,交x轴于G.则90,45BHG PGO∠=︒∠=︒,过点P作PG x⊥轴于点Q,则12GQ PQ==,∴(18,0)G,∴直线C G''的解析式为18y x=-+,由211-322-18y x xy x⎧=-⎪⎨⎪=+⎩得725xy=-⎧⎨=⎩或612xy=⎧⎨=⎩(舍去),∴(7,25)C'-',将(7,25)C'-'代入y x t=+中得32t=.综上所述,t的值为19或32.【点睛】本题主要考查了待定系数法、全等三角形的判定和性质、三角形面积的计算方法、根与系数的关系、直角三角形的性质,属于二次函数综合题.9.如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.(1)试求抛物线的解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.【答案】(1)y=﹣x2+3x+4;(2)存在.P(﹣34,1916).(3)1539(,)24M--21139 (,) 24M-3521 (,) 24M【解析】【分析】(1)将A,B,C三点代入y=ax2+bx+4求出a,b,c值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139 (,) 24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴322 2m∴m=5 2∴﹣m2+3m+4=21 4∴3521 (,) 24M综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为1539 (,)24M--21139 (,) 24M-3521 (,) 24M.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.10.如图,在平面直角坐标系中,抛物线y=﹣12x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y=﹣12x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN =7.(1)求此抛物线的解析式.(2)求点N的坐标.(3)过点A的直线与抛物线交于点F,当tan∠FAC=12时,求点F的坐标.(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC 以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t5S与t的函数关系式.【答案】(1)y=﹣12x2+32x+2;(2)点N的坐标为(5,-3);(3)点F的坐标为:(3,2)或(173,﹣509);(4)2535,043593535,(245435935(5)1044t tS tt⎧⎛≤≤⎪⎪⎝⎭⎪⎪=⎨-<≤⎪⎪⎪+<≤⎪⎩.【解析】【分析】(1)点A、C的坐标分别为(0,2)、(4,0),将点A、C坐标代入抛物线表达式即可求解;(2)抛物线的对称轴为:x=32,点N的横坐标为:37522+=,即可求解;(3)分点F在直线AC下方、点F在直线AC的上方两种情况,分别求解即可;(4)分0≤t≤355、当355<t3535<t5【详解】解:(1)直线y=﹣12x+2经过A,C两点,则点A、C的坐标分别为(0,2)、(4,0),则c=2,抛物线表达式为:y=﹣12x2+bx+2,将点C坐标代入上式并解得:b=32,故抛物线的表达式为:y=﹣12x2+32x+2…①;(2)抛物线的对称轴为:x=32,点N的横坐标为:37522+=,故点N的坐标为(5,-3);(3)∵tan∠ACO=2142AOCO===tan∠FAC=12,即∠ACO=∠FAC,①当点F在直线AC下方时,设直线AF交x轴于点R,∵∠ACO=∠FAC,则AR=CR,设点R(r,0),则r2+4=(r﹣4)2,解得:r=32,即点R的坐标为:(32,0),将点R、A的坐标代入一次函数表达式:y=mx+n得:232nm n=⎧⎪⎨+=⎪⎩,解得:432mn⎧=-⎪⎨⎪=⎩,故直线AR的表达式为:y=﹣43x+2…②,联立①②并解得:x =173,故点F (173,﹣509); ②当点F 在直线AC 的上方时,∵∠ACO =∠F ′AC ,∴AF ′∥x 轴,则点F ′(3,2); 综上,点F 的坐标为:(3,2)或(173,﹣509); (4)如图2,设∠ACO =α,则tanα=12AO CO =,则sinα=5,cosα=5; ①当0≤t ≤35时(左侧图), 设△AHK 移动到△A ′H ′K ′的位置时,直线H ′K ′分别交x 轴于点T 、交抛物线对称轴于点S ,则∠DST =∠ACO =α,过点T 作TL ⊥KH ,则LT =HH ′=t ,∠LTD =∠ACO =α,则DT ='52co 5c s 2os L HH T t αα===,DS =tan DT α, S =S △DST =12⨯DT ×DS =254t ; ②当355<t 35时(右侧图), 同理可得:S =''DGS T S 梯形=12⨯DG ×(GS ′+DT ′)=12⨯3+55﹣323594-; 35<t 5S=359104+;综上,S=25,029494t ttt⎧⎛≤≤⎪⎪⎝⎭-<≤+<≤.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形平移、图形的面积计算等,其中(3)、(4),要注意分类求解,避免遗漏.。
九年级数学二次函数易错题总结(含答案)
九年级数学二次函数易错题总结(含答案)一、选择题(本大题共10小题,共30.0分)1.已知二次函数y=ax2+2ax+3a−2(a是常数,且a≠0)的图象过点M(x1,−1),N(x2,−1),若MN的长不小于2,则a的取值范围是()A. a≥13B. 0<a≤13C. −13≤a<0 D. a≤−13【答案】B【解析】【分析】本题主要考查了二次函数与一元二次方程的关系及二次函数的性质,首先由点M(x1,−1),N(x2,−1),根据二次函数的性质可知M、N两点为对称点,将y=−1代入函数的解析式中得到关于x的一元二次方程,再根据一元二次方程的关于系数的关系建立关于a的不等式,解不等式即可.【解答】解:∵二次函数y=ax2+2ax+3a−2(a是常数,且a≠0)的图象过点M(x1,−1),N(x2,−1),∴−1=ax2+2ax+3a−2,则ax2+2ax+3a−1=0,设该方程的根为x1、x2,∵MN的长不小于2,∴|x1−x2|≥2,∵x1+x2=−2,x1x2=3a−2a,∴√(x1+x2)2−4x1x2≥2,∴当a<0时,无解,当x>0时,0<a≤13,故选B.2.已知二次函数y=(x+m−2)(x−m)+2,点A(x1,y1),B(x2,y2)(x1<x2)是其图象上两点,()A. 若x1+x2>2,则y1>y2B. 若x1+x2<2,则y1>y2C. 若x1+x2>−2,则y1>y2D. 若x1+x2<−2,则y1<y2【答案】B【解析】【分析】本题主要考查的是二次函数的性质,二次函数的图象上点的坐标特征的有关知识,首先确定抛物线的对称轴x=1,当x1+x2<2时,点A与点B在对称轴的左侧或点A在对称轴的左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离大,利用图象法即可判断.【解答】解:如图,当x=m或x=−m+2时,y=2,∴抛物线的对称轴x=m−m+22=1,∴当x1+x2<2时,点A与点B在对称轴的左侧或点A在对称轴的左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离大,观察图象可知,此时y1>y2,故选B.3.已知二次函数y=−x2+3mx−3n图象与x轴没有交点,则()A. 2m+n>43B. 2m+n<43C. 2m−n<43D. 2m−n>43【答案】C【解析】【试题解析】【分析】本题考查了二次函数的图象与系数的关系、抛物线与x轴的交点,解决本题的关键是抛物线与x轴没有交点时,判别式小于0的结论的熟练应用.根据二次函数y=−x2+3mx−3n图象与x轴没有交点可得判别式小于0,列出不等式求解即可.【解答】解:∵二次函数y=−x2+3mx−3n图象与x轴没有交点,∴△<0,即(3m)2−4×(−1)×(−3n)<0,9m2−12n<0,3m2<4n,∵抛物线开口向下,与x轴没有交点,∴−3n<0,∴n>0,当x=2时,y<0,即−4+6m−3n<0解得2m−n<43故选:C.4.已知二次函数y=−x²+3mx−3n,图像与x轴没有交点,则()A. 2m+n>43B. 2m+n<43C. 2m−n<43D. 2m−n>43【答案】C【解析】【分析】本题考查了以及二次函数的性质、二次函数图象与x轴的交点,关键是利用△=b2−4ac 和零之间的关系来确定图象与x轴交点的数目,即:当△>0时,函数与x轴有2个交点,当△=0时,函数与x轴有1个交点,当△<0时,函数与x轴无交点.函数y=−x2+3mx−3n的图象与x轴没有交点,用根的判别式:△<0,即可求出n>34m2,然后分别求解即可.【解答】解:∵二次函数y=−x2+3mx−3n,图像与x轴没有交点,令y=0,则0=−x2+3mx−3n,∴△=b2−4ac=9m2−12n<0,即:n>34m2,∴2m+n>2m+34m2=34(m+43)2−43≥−43,∴2m+n>−43,同理:2m−n<2m−34m2=−34(m−43)2+43≤43,即2m−n<43,故选:C.5.小明将如图两水平线l1、l2的其中一条当成x轴,且向右为正方向;两条直线l3、l4的其中一条当成y轴,且向上为正方向,并在此坐标平面中画出二次函数y=ax2−2a2x+1的图象,则()A. l1为x轴,l3为y轴B. l2为x轴,l3为y轴C. l1为x轴,l4为y轴D. l2为x轴,l4为y轴【答案】D【解析】解:∵抛物线的开口向下,∴a<0,∵抛物线的对称轴为:直线x=a<0,∴L4为y轴,∵抛物线与y轴的正半轴相交,∴L2为x轴;故选:D.根据抛物线的开口向下,可得a<0,求出对称轴为:直线x=a,则可确定L4为y轴,再根据图象与y轴交点,可得出L2为x轴,即可得出答案.本题考查了二次函数的性质,开口方向由a确定,与y轴的交点由c确定,左同右异确定b的符号.6.二次函数y=(x−1)(x−m+1)(m是常数),当−2≤x≤0时,y>0,则m的取值范围为()A. m<0B. m<1C. 0<m<1D. m>1【答案】D【解析】解:∵二次函数y =(x −1)(x −m +1)(m 是常数), ∴该函数的图象开口向上,与x 轴的交点为(1,0),(m −1,0), ∵当−2≤x ≤0时,y >0,∴当m −1≥1时,即m ≥2或当0<m −1<1,得1<m <2, 由上可得,m 的取值范围为m >1, 故选:D .根据二次函数y =(x −1)(x −m +1)(m 是常数),可以求得该函数与x 轴的交点,然后根据当−2≤x ≤0时,y >0和二次函数的性质即可得到m 的取值范围,本题得以解决. 本题考查抛物线与x 轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和分类讨论的方法解答.7. 已知y 关于x 的二次函数y =ax 2−6ax +1,当−1≤x ≤4,函数的最小值为−3,则a =( )A. −47B. −47或49C. 49D. −47或12【答案】B 【解析】 【分析】本题考查了二次函数的性质及最值,由y =ax 2−6ax +1=a (x −3)2−9a +1,可知当a >0时,最小值是−9a +1=−3,当a <0时,x =−1时,y 有最小值−3,则a +6a +1=−3,解关于a 的方程即可求得. 【解答】解:y =ax 2−6ax +1=a (x −3)2−9a +1, 其对称轴为直线x =3,当a >0时,最小值是−9a +1=−3,解得a =49;当a <0时,x =−1时,y 有最小值−3,则a +6a +1=−3,解得a =−47, 所以a 的值为49或−47, 故选:B .8. 二次函数y =(x −1)(x −m +1)(m 是常数),当−2≤x ≤0时,y >0,则m 的取值范围为( )A. m <0B. m <1C. 0<m <1D. m >1【答案】D【解析】解:∵二次函数y=(x−1)(x−m+1)(m是常数),∴该函数的图象开口向上,与x轴的交点为(1,0),(m−1,0),∵当−2≤x≤0时,y>0,∴当m−1≥1时,即m≥2或当0<m−1<1,得1<m<2,由上可得,m的取值范围为m>1,故选:D.根据二次函数y=(x−1)(x−m+1)(m是常数),可以求得该函数与x轴的交点,然后根据当−2≤x≤0时,y>0和二次函数的性质即可得到m的取值范围,本题得以解决.本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和分类讨论的方法解答.9.对于代数式ax2+bx+c(a≠0,x可取任意实数),下列说法正确的是()①存在实数p,q(p≠q),有ap2+bp+c=aq2+bq+c,则ax2+bx+c=a(x−p)(x−q)②存在实数m,n,s(m,n,s互不相等),使得am2+bm+c=an2+bn+c=as2+bs+c③如果ac>0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c④如果ac<0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+cA. ①④B. ②③C. ③④D. ④【答案】D【解析】【分析】本题考查代数式;将问题转化为函数思想求解是本题的解题关键.p,q不一定是以y=ax2+bx+c为函数与x轴的两个交点,故①错误;令y=ax2+ bx+c,根据二次函数的对称性,故②错误;若ac>0,当a>0,c>0时,且△≤0,故③错误.【解答】解:存在实数p、q(p≠q)有ap2+bp+c=aq2+bq+c,但是p,q不一定是以y=ax2+bx +c 为函数与x 轴的两个交点,故①错误;令y =ax 2+bx +c ,根据二次函数的对称性,只存在两个实数m 、n 、使am 2+bm +c =an 2+bn +c ;故②错误;若ac >0,当a >0,c >0时,且△≤0,不存在两个实数m <n ,使am 2+bm +c <0<an 2+bn +c ,故③错误; 故选:D .10. 二次函数y =(x −1)(x −m +1)(m 是常数),当−2≤x ≤0时,y >0,则m 的取值范围为( )A. m <0B. m <1C. 0<m <1D. m >1【答案】D【解析】解:∵二次函数y =(x −1)(x −m +1)(m 是常数), ∴该函数的图象开口向上,与x 轴的交点为(1,0),(m −1,0), ∵当−2≤x ≤0时,y >0,∴当m −1≥1时,即m ≥2,满足题意;或当0<m −1<1时,即1<m <2,也满足题意; 综上可得,m 的取值范围为m >1. 故选:D .根据二次函数y =(x −1)(x −m +1)(m 是常数),可以求得该函数与x 轴的交点,然后根据当−2≤x ≤0时,y >0和二次函数的性质即可得到m 的取值范围,本题得以解决. 本题考查抛物线与x 轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和分类讨论的方法解答.二、填空题(本大题共12小题,共36.0分)11. 当−3≤x ≤2时,函数y =ax²−4ax +2(a ≠0)的最大值是8,则a =_____.【答案】27或−32 【解析】 【分析】本题考查的是二次函数的性质,二次函数的最值,分类讨论有关知识,本题首先求得对称轴,根据x 的取值,分a >0和a <0两种情况讨论求得即可.【解答】解:∵函数y =ax 2−4ax +2(a ≠0)的对称轴为直线x =−−4a 2a=2,∴当a >0时,则x =−3时,函数y =ax 2−4ax +2(a ≠0)的最大值是8, ∴把x =−3代入得,9a +12a +2=8, 解得a =27;∴当a <0时,则x =2时,函数y =ax 2−4ax +2(a ≠0)的最大值是8, ∴把x =2代入得,4a −8a +2=8, 解得a =−32, 故答案为27或−32.12. 已知两点A(4,y 1),B(3,y 2)均在抛物线y =ax 2+bx +c(a ≠0)上,点C(x 0,y 0)是该抛物线的顶点,若y 1<y 2≤y 0,则x 0的取值范围是__________. 【答案】x 0<72 【解析】 【分析】本题考查了二次函数的性质,明确二次函数的对称性及函数值与对称轴远近的大小关系,是解题的关键.先判断出抛物线开口方向向下,进而按照A ,B 两点都在对称轴右侧或在对称轴两侧,分类讨论即可求解. 【解答】解:∵点C(x 0,y 0)是抛物线的顶点,y 1<y 2≤y 0, ∴抛物线有最大值,函数图象开口向下,∴当A(4,y 1),B(3,y 2)两点都在对称轴右侧时,x 0≤3;∴当A(4,y 1),B(3,y 2)两点在对称轴两侧时,则点B(3,y 2)离对称轴要近, ∴3<x 0<72,∴x 0的取值范围为:x 0<72 故答案为:x 0<72.13. 已知关于x 的二次函数y =ax 2+2ax +7a +3在−2≤x ≤5上的函数值始终是正的,则a 的取值范围_____________. 【答案】 a >0或−114<a <0 【解析】略14. 若二次函数y =ax 2+bx +c(a ≠0)的图象的顶点在第一象限,并且过点A(0,1)和点B(−1,0).设S =a +b +c ,则S 的取值范围是_______. 【答案】0<S <2 【解析】 【分析】本题考查了二次函数图象上点的坐标特点,二次函数的图像与性质, 需要灵活运用这些性质解题.将已知两点坐标代入二次函数解析式,得出c 的值及a 、b 的关系式,代入S =a +b +c 中消元,再根据对称轴的位置判断S 的取值范围即可. 【解答】解:将点(0,1)和(−1,0)分别代入抛物线解析式, 得c =1,a =b −1, ∴S =a +b +c =2b ,由题设知,对称轴x =−b2a >0且a <0, ∴2b >0.又由b =a +1及a <0可知2b =2a +2<2.∴0<S <2故本题答案为:0<S <2.15. 已知二次函数y =x 2−2(m −1)x +2m 2−m −2(m 为常数),若对于一切实数m和x 均有y ≥k ,则k 的最大值为 . 【答案】−134【解析】解:y =x 2−2(m −1)x +2m 2−m −2=(x −m +1)2+m 2+m −3, 当x =m −1时,y 有最小值m 2+m −3, 令w =m 2+m −3=(m +12)2−134≥−134,∵对于一切实数m 和x 均有y ≥k ,即k ≤w ,∵w ≥−134, ∴k ≤−134,故答案为−134.求出函数的最小值的取值范围即m 2+m −3=(m +12)2−134≥−134,由已知可知对于一切实数m 和x 均有y ≥k ,即k ≤w .本题考查二次函数的性质;熟练掌握二次函数的性质,能够将已知不等关系转化为函数的最值是解题的关键.16. 已知二次函数y =x 2−2(m −1)x +2m 2−m −2(m 为常数),若对于一切实数m和x 均有y ≥k ,则k 的最大值为____. 【答案】 −134 【解析】 【分析】本题主要考查二次函数的性质,根据二次函数的性质先将二次函数化为顶点式,求出最值,令w =m 2+m −3,根据对于一切实数m 和x 均有y ≥k ,即k ≤w ,和w 的取值范围可求解. 【解答】解:∵y =x 2−2(m −1)x +2m 2−m −2=(x −m +1)2+m 2+m −3, ∴当x =m −1时,y 有最小值m 2+m −3. 令w =m 2+m −3=(m +12)2−134≥−134,∵对于一切实数m 和x 均有y ≥k ,即k ≤w , ∵w ≥−134, ∴k ≤−134. 故答案为k ≤−134.17. 当−1≤a ≤14时,则抛物线y =−x 2+2ax +2−a 的顶点到x 轴距离的最小值为_______. 【答案】2916 【解析】 【分析】本题考查的是抛物线与x 轴的交点,熟知一元二次方程的根与抛物线与x 轴的交点之间的关系是解答此题的关键.得出抛物线y =−x 2+2ax +2−a 顶点的纵坐标表达式,把a 的取值代入即可. 【解答】解:∵抛物线y =−x 2+2ax +2−a 的顶点纵坐标=−4(2−a )−4a 2−4=2−a +a 2=(a −12)2+74, 又∵−1≤a ≤14,当a =14时,(14−12)2+74=2916,∴顶点到x 轴距离的最小值是2916. 故答案为:2916.18. 已知y =ax 2+bx +c(a ≠0)的图象经过点A(−1,1)和B(1,−1),且当−1≤x ≤1时,有−1≤y ≤1,则a 的取值范围是____. 【答案】−12≤a <0或0<a ≤12 【解析】 【分析】本题考查了二次函数的图象和性质和二次函数图象上点的坐标特征,能灵活运用性质是解此题的关键.把A 、B 的坐标代入函数解析式,即可求出a +c =0,b =−1,代入得出抛物线表达式为y =ax 2−x −a(a ≠0),得出对称轴为x =12a ,再进行判断即可. 【解答】解:∵抛物线y =ax 2+bx +c(a ≠0)经过点A(−1,1)和点B(1,−1), ∴a −b +c =1 ①,a +b +c =−1 ②, ①+ ②得:a+c=0,即a与c互为相反数, ①− ②得:b=−1,所以抛物线表达式为y=ax2−x−a(a≠0),∴对称轴为直线x=12a,当a<0时,抛物线开口向下,且x=12a<0,∵抛物线y=ax2−x−a(a≠0)经过点A(−1,1)和点B(1,−1),画图可知,当12a ≤−1时符合题意,此时−12≤a<0,当−1<12a<0时,图象不符合−1≤y≤1的要求,舍去,同理,当a>0时,抛物线开口向上,且x=12a>0,画图可知,当12a ≥1时符合题意,此时0<a≤12,当0<12a<1时,图象不符合−1≤y≤1的要求,舍去,综上所述:a的取值范围是−12≤a<0或0<a≤12,故答案为−12≤a<0或0<a≤12.19.已知二次函数y=x2−2(m−1)x+2m2−m−2(m为常数),若对于一切实数m和x均有y≥k,则k的最大值为______.【答案】−134【解析】解:y=x2−2(m−1)x+2m2−m−2=(x−m+1)2+m2+m−3,当x=m−1时,y有最小值m2+m−3,令w =m 2+m −3=(m +12)2−134≥−134,∵对于一切实数m 和x 均有y ≥k ,即k ≤w , ∵w ≥−134,∴k ≤−134, 故答案为−134.求出函数的最小值的取值范围即m 2+m −3=(m +12)2−134≥−134,由已知可知对于一切实数m 和x 均有y ≥k ,即k ≤w .本题考查二次函数的性质;熟练掌握二次函数的性质,能够将已知不等关系转化为函数的最值是解题的关键.20. 如图所示,已知二次函数y =ax 2+bx +c 的图象与x 轴交于A ,B 两点,与y 轴交于点C ,对称轴为直线x =1.直线y =−x +c 与抛物线y =ax 2+bx +c 交于C ,D 两点,D 点在x 轴下方且横坐标小于3,则下列结论:①a −b +c <0;②2a +b +c >0;③x(ax +b)≤a +b ;④a <−1.其中正确的有____________. 【答案】①②③④ 【解析】【分析】本题考查了二次函数图象与系数的关系,也考查了二次函数与不等式的关系,关键是得出x =3时,一次函数值比二次函数值大,根据二次函数的性质,二次函数图象与系数的关系,二次函数与不等式的关系逐一判断即可. 【解答】解:∵抛物线与x 轴的一个交点在(3,0)左侧, 而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点在(−1,0)右侧, ∴当x =−1时,y <0, ∴a −b +c <0,所以①正确; ∵抛物线与y 轴的交点在x 轴上方, ∴c >0,∵抛物线的对称轴为直线x =−b2a =1,∴b=−2a,∴2a+b+c=2a−2a+c>0,所以②正确;∵x=1时,二次函数有最大值,∴ax2+bx+c≤a+b+c,∴x(ax+b)≤a+b,所以③正确;∵直线y=−x+c与抛物线y=ax2+bx+c交于C,D两点,D点在x轴下方且横坐标小于3,∴x=3时,一次函数值比二次函数值大,即9a+3b+c<−3+c,而b=−2a,∴9a−6a<−3,解得a<−1,所以④正确.故答案为①②③④.21.已知四个点的坐标分别为A(−4,2),B(−3,1),C(−1,1),D(−2,2),若抛物线y=ax2与四边形ABCD的边没有交点,则a的取值范围为____.【答案】a<0或a>1或0<a<19【解析】【分析】本题考查了二次函数的性质,二次函数图象上点的坐标特征和二次函数图象与系数的关系.解题的关键是熟练掌握和运用二次函数的有关知识,熟练运用数形结合.画出图象,分几种情况讨论:当抛物线开口向下,抛物线和四边形ABCD的边没有交点;当抛物线开口向上,把点的坐标分别代入二次函数的解析式,求出a的值,再根据二次函数的性质,即可求出的a取值范围.【解答】解:如图,当抛物线开口向下,抛物y=ax2与四边形ABCD的边没有交点,∴a<0;当抛物线开口向上,把点C(−1,1)代入y=ax2,得1=(−1)2a,解得a=1,∵|a|越大,抛物线开口越小,|a|越小,抛物线开口越大,若抛物y=ax2与四边形ABCD的边没有交点,则a>1;把点B(−3,1)代入y=ax2,得1=(−3)2a,解得a=19,把点A(−4,2)代入y=ax2,得2=(−4)2a,解得a=18,∵抛物y=ax2与四边形ABCD的边没有交点,∴{0<a<19 0<a<18,解得0<a<19,综上,a的取值范围为a<0或a>1或0<a<19.故答案为a<0或a>1或0<a<19.22.二次函数,y=(x−1m)(mx−6m)(其中m>0)下列命题:①该函数图象过(6,0),②该函数图像顶点在第三象限③若当x<n时,都有y随x的增大而减小,则,n≤3+12m,正确的序号是【答案】①③【解析】【分析】本题主要考查的是二次函数的性质的有关知识,先把二次函数化简为一般式,求得对称轴与根的判别式,再根据二次函数的性质进行判断即可.【解答】解:∵y=(x−1m)(mx−6m)=mx2−(6m+1)x+6,∴对称轴为x=−−(6m+1)2m =3+12m,△=[−(6m+1)]2−24m=(6m−1)2≥0,当x=6时,y=0,∴该函数图象过(6,0);故 ①正确;∵y=(x−1m)(mx−6m)=mx2−(6m+1)x+6,∴对称轴为x=−−(6m+1)2m =3+12m>0,该函数图象顶点不在第三象限,故 ②错误;当x<n时,y随x的增大而减小,即n≤3+12m,故③正确.故答案为①③.三、解答题(本大题共19小题,共152.0分)23.在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0).(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求y1的表达式.(2)设函数y1的图象经过点(m,n),函数y2的图象经过点(1m ,1n),其中mn≠0,求m,n满足的关系式.(3)当0<x<1时,比较y1和y2的函数值的大小.【答案】解:(1)由题意,得到−b2=3,解得b=−6,∵函数y1的图象经过(a,−6),∴a2−6a+a=−6,解得a=2或3,∴函数y1=x2−6x+2或y1=x2−6x+3.(2)将点(m,n)代入y1,点(1m ,1n)代入y2,得:n=m2+mb+a①,1n =am2+bm+1②,将①两边都除以m2,得:nm2=1+bm+am2③,∴由②和③,得:1n =nm2,∵mn≠0,∴m2=n2;(3)①当0<x<1,a=1时,y1=x2+bx+1,y2=x2+bx+1,此时y1=y2;②当0<x<1,a>1时,y1−y2=x2+bx+a−(ax2+bx+1)=x2+bx+a−ax2−bx−1=(1−a)x2+ a−1=(a−1)(1−x2),∵a>1,∴a−1>0,又∵0<x<1,∴0<x2<1,∴1−x2>0,∴(a−1)(1−x2)>0,∴y1>y2;③当0<x<1,a<1时,y1−y2=x2+bx+a−(ax2+bx+1)=x2+bx+a−ax2−bx−1=(1−a)x2+ a−1=(a−1)(1−x2),∵a<1,∴a−1<0,又∵0<x<1,∴0<x2<1,∴1−x2>0,∴(a−1)(1−x2)<0,∴y1<y2.【解析】此题考查的是二次函数的性质和二次函数图象上点的坐标特征.(1)根据对称轴直线求出b的值,再将点的坐标代入y1,求出a的值,即可确定y1的表达式;(2)将点(m,n)代入y1,点(1m ,1n)代入y2,得到两个含有m,n的等式,将其中一个变形后可得到1n =nm2,再次变形可得结论;(3)分情况讨论当0<x<1,a=1时;当0<x<1,a>1时;当0<x<1,a<1时,利用作差法列式计算后判断即可.24.已知一个二次函数y1的图像与x轴的交点为(−2,0),(4,0)形状与二次函数y2=ax2相同,且y1的图像顶点在函数y=2x+b的图像上(a,b为常数),则请用含有a的代数式表示b.【答案】解:由题意得:y1=±a(x+2)(x−4)=±a(x−1)2±9a,顶点坐标为:(1,±9a),将顶点坐标代入函数y=2x+b表达式得:±9a=2+b,解得:b=9a−2或b=−9a−2,用含有a的代数式表示b为b=9a−2或b=−9a−2.【解析】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.由题意得:y1=±a(x+2)(x−4)=±a(x−1)2±9a,则顶点坐标为:(1,±9a),将顶点坐标代入函数y=2x+b表达式,即可求解.25.在平面直角坐标系xOy中,已知抛物线y1=x2−4x+4的顶点为D,直线y2=kx−2k(k≠0).(1)点D是否在直线y2=kx−2k上?请说明理由;(2)过x轴上一点M(t,0)(0≤t≤2)作x轴上的垂线,分别交y1,y2于点P,点Q.小明同学借助图象性质探究:当k满足什么条件时,存在实数t使得PQ=3.他发现以下结论:①当k>0时,存在满足条件的t;②当−2<k<−0.5时,不存在满足条件的t.你认为小明的判断是否正确?请说明理由.【答案】解:(1)∵y1=x2−4x+4=(x−2)2,∴点D的坐标为(2,0).当x=2时,y2=2k−2k=0,∴点D在直线y2=kx−2k上.(2)∵点M(t,0),∴点P(t,t2−4t+4),点Q(t,kt−2k),∴PQ=|t2−4t+4−(kt−2k)|=|t2−(4+k)t+(4+2k)|.①当P在Q点上方时,k>0∵PQ=3∴t2−(4+k)t+(4+2k)=3整理得t2−(4+k)t+(1+2k)=0,∵Δ=b2−4ac=(4+k)2−4(1+2k)=k2+12>0,∴当k>0时,存在满足条件的t值.①正确.②当P在Q点下方时,k<0∵PQ=3∴t2−(4+k)t+(4+2k)=−3即t2−(4+k)t+(7+2k)=0∵Δ=b2−4ac=(4+k)2−4(7+2k)=k2−12∴当存在PQ=3时,k2−12≥0∴k≤−2√3或k≥2√3(舍去)∴当−2<k<−0.5时,不存在满足条件的t②正确.【解析】本题是代数综合题,综合考查了一次函数和二次函数图象性质.解答时注意随着k值的变化讨论PQ的相对位置关系.(1)将抛物线解析式整理成顶点式形式,然后将顶点D的坐标代入y2=kx−2k即可(2)根据M点坐标可以得出P,Q的坐标,进而得到PQ=|t2−4t+4−(kt−2k)|= |t2−(4+k)t+(4+2k)|,①当P在Q点上方时,k>0,可得t2−(4+k)t+(1+ 2k)=0,根据根的判别式判断即可;②当P在Q点下方时,k<0,可得t2−(4+k)t+(7+2k)=0,根据判别式即可求解.26.函数y=ax2+bx+c(a≠0)的部分图象如图所示:①当y<0时,x的取值范围是__________;②方程ax2+bx+c=3的解是_________.【答案】①x<−5或x>1;②x1=−4,x2=0.【解析】【分析】本题主要考查的是二次函数的图象,二次函数的图象与一元二次方程,二次函数的性质等有关知识.①利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(−5,0),然后写出抛物线在x轴下方所对应的自变量的范围即可;②抛物线与y轴的交点为(0,3),利用抛物线对称性得到抛物线过点(−4,0),从而得到方程ax2+bx+c=3的解.【解答】解:①∵抛物线与x轴的一个交点坐标为(1,0),而抛物线的对称轴为直线x=−2,∴抛物线与x轴的另一个交点坐标为(−5,0),∴当y<0时,x的取值范围是x<−5或x>1;故答案为x<−5或x>1;②方程ax2+bx+c=3的解为x1=−4,x2=0.故答案为x1=−4,x2=0.27.已知二次函数y1=ax²+bx+c(a≠0)的图象经过三点(1,0),(−6,0),(0,−3).(1)求该二次函数的解析式.(2)若反比例函数y2=4x(x>0)图象与二次函数y1=ax²+bx+c(a≠0)的图象在第一象限内交于点A(x0,y o),x0落在两个相邻的正整数之间,请求出这两个相邻的正整数.(3)若反比例函数y2=kx(k>0,x>0)的图象与二次函数y1=ax²+bx+c(a≠0)的图象在第一象限内的交点为B,点B的横坐标为m,且满足3<m<4,求实数k的取值范围.【答案】解:(1)设抛物线解析式为y=a(x−1)(x+6),将(0,−3)代入,解得a=12.∴抛物线解析式为y1=12x2+52x−3.(2)画出二次函数y1=12x2+52x−3的图象以及反比例函数y2=4x(x>0)在第一象限内的图象,由图象可知,交点的横坐标x0落在1和2之间,从而得出这两个相邻的正整数为1与2.(3)由函数图象和函数性质可知:当3<x<4时,对y1=12x2+52x−3,y1随着x增大而增大,对y2=kx(k>0,x>0),y2随着x的增大而减小.因为B为二次函数图象与反比例函数图象的交点,所以当m=3时,由反比例函数图象在二次函数上方得y2>y1,即k3>12×32+52×3−3,解得k>27.同理,当m=4时,由二次函数图象在反比例上方得y1>y2,即12×42+52×4−3>k4,解k<60,所以k的取值范围为27<k<60.【解析】(1)已知抛物线与x轴的交点,可用交点式来设二次函数的解析式.然后将另一点的坐标代入即可求出函数的解析式.(2)画出二次函数y1=12x2+52x−3的图象以及反比例函数y2=4x(x>0)在第一象限内的图象,由图象进而可写出所求的两个正整数.(3)点B的横坐标m满足3<m<4,可通过x=3,x=4两个点上抛物线与反比例函数的大小关系即可求出k的取值范围.本题主要考查了待定系数法求二次函数的解析式,二次函数的性质,反比例函数图象上点的坐标特征,反比例函数的性质,在直角坐标系中作图、读图的能力是解题的关键.28.如图所示,矩形ABCD的四个顶点在正三角形EFG的边上,已知△EFG的边长为2,设边长AB为x,矩形ABCD的面积为S.求:(1)S关于x的函数表达式和自变量x的取值范围.(2)S的最大值及此时x的值.【答案】解:(1)过E作EM⊥FG,交DC于点N,∵四边形ABCD是矩形,∴CD//FG,AB=CD=x,∴△EDC∽△EFG,,∵△EFG是等边三角形,EM⊥FG,∴FM=12FG=1,∴EM=√22−12=√3,∴x2=√3−MN√3,∴MN=2√3−√3x2,∴S=AB·MN=x·2√3−√3x2=−√32x2+√3x(0<x<2);(2)S=−√32x2+√3x=−√32(x−1)2+√32,当x=1时,S最大=√32.【解析】本题考查了相似三角形的判定和性质,矩形的性质,等边三角形的性质,二次函数的性质,正确的理解题意是解题的关键.(1)根据矩形的性质得到△EDC∽△EFG,则,用x表示出MN的长,根据矩形的面积公式即可得到结论;(2)根据二次函数的性质即可得到结论.29.已知二次函数y=ax2+bx−3(a≠0),且a+b=3.(1)若其图象经过点(−3,0),求此二次函数的表达式.(2)若(m,n)为(1)中二次函数图象在第三象限内的点,请分别求m,n的取值范围.(3)点P(x 1,y 1),Q(x 2,y 2)是函数图象上两个点,满足x 1+x 2=2且x 1<x 2,试比较y 1和y 2的大小关系.【答案】解:(1)由题意得:{a +b =39a −3b −3=0,解得:{a =1b =2,∴此二次函数的表达式为:y =x 2+2x −3;(2)如图,∵y =x 2+2x −3=(x +1)2−4,且(m,n)是二次函数图象在第三象限内的点,∴−4≤n <0,当y =0时,x 2+2x −3=0, x =−3或1,∴图象过(1,0)和(−3,0), ∴−3<m <0;(3)由条件可得:y 1=ax 12+(3−a)x 1−3,y 2=ax 22+(3−a)x 2−3,∴y 2−y 1=(x 2−x 1)[a(x 2+x 1)+3−a], ∵x 1+x 2=2且x 1<x 2, ∴y 2−y 1=(x 2−x 1)(a +3), ①当a >−3时,y 2>y 1, ②当a =−3时,y 2=y 1, ③当a <−3时,y 2<y 1.【解析】(1)依据待定系数法可求得二次函数的解析式;(2)利用配方法可得:y =x 2+2x −3=(x +1)2−4,图象过(1,0)和(−3,0),可得结论; (3)根据已知得:b =3−a ,并将P 和Q 的坐标分别代入抛物线的解析式,并计算y 2−y 1=(x 2−x 1)(a +3),分情况讨论可得结论.本题主要考查的是二次函数的性质,抛物线与x 轴的交点,利用数形结合思想求得m 和n 的取值范围是解题的关键.30. 已知抛物线y =x 2+bx +c(b >0)的顶点为A 点,(1)当A(−1,−2)时,求b 与c 的值. (2)若直线y =mx +n(n ≠0)经过A 点,①当直线与抛物线都与y 轴交于同一点,求b 与m 的关系式;②当直线与抛物线的另一个交点B 的横坐标是方程x 2−mx +14=0的一个根.求m 的最小值.【答案】解:(1)∵抛物线y =x 2+bx +c(b >0)的顶点为A(−1,−2),∴{−b2=−14c−b 24=−2, 解得b =2,c =−1; (2)①把(−b 2,4c−b 24)代入y =mx +n 得4c−b 24=−b2m +n ,∵直线与抛物线都与y 轴交于同一点, 所以c =n , 所以4n−b 24=−bm 2+n ,整理得b =2m ;②设点A 的横坐标为x 1,点B 的横坐标为x 2, 则x 1=−b2①,令mx +n =x 2+bx +c ,整理得x 2+(b −m)x +c −n =0, 由根与系数的关系得, x 1+x 2=m −b②, 将①代入②,得 x 2=m −b 2③,把③代入x 2−mx +14=0,得, b 2−2mb +1=0, ∵b >0, ∴{m >04m 2−4≥0,解得m ≥1, ∴m 的最小值为1.【解析】(1)根据定顶点坐标公式求解;(2)①把A 代入y =mx +n ,再根据直线与抛物线与y 轴同交点,可确定b ,m 关系; ②设点A 的横坐标为x 1,点B 的横坐标为x 2,根据根与系数的关系可得x 1与x 2的关系,然后用m ,b 的代数式表示x 2,再将其代入方程x 2−mx +14=0,可得m 与b 的关系,从而确定m 最小值.本题考查二次函数根与系数的关系、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.31.已知一个二次函数y1的图象与x轴的交点为(−2,0),(4,0),形状与二次函数y2=ax2相同且开口方向与之相反,且y1的图象顶点在函数y=2x+b的图象上(a,b为常数),则请用含有a的代数式表示b.【答案】解:由题意得:y1=−a(x+2)(x−4)=−a(x−1)2+9a,顶点坐标为:(1,9a),将顶点坐标代入函数y=2x+b表达式得:9a=2+b,故b=9a−2.【解析】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.由题意得:y1=−a(x+2)(x−4)=−a(x−1)2+9a,则顶点坐标为:(1,9a),将顶点坐标代入函数y=2x+b表达式,即可求解.32.已知一个二次函数y1的图象与x轴的交点为(−4,0),(8,0),形状与二次函数y2=ax2相同,且y1的图象顶点在函数y=4x+b的图象上(a,b为常数),则请用含有a的代数式表示b.【答案】解:由题意得:y1=a(x+4)(x−8)=a(x−2)2−36a,顶点坐标为:(2,−36a),将顶点坐标代入函数y=4x+b表达式得:−36a=8+b,故b=−36a−8.【解析】本题考查的是二次函数的性质,一次函数图象点的坐标特征有关知识,由题意得:y1=a(x+4)(x−8)=a(x−2)2−36a,则顶点坐标为:(2,−36a),将顶点坐标代入函数y=4x+b表达式,即可求解.33.已知二次函数y=−x2+2kx+1−k(k是常数)(1)求此函数的顶点坐标.(2)当x≥1时,y随x的增大而减小,求k的取值范围.(3)当0≤x≤1时,该函数有最大值3,求k的值.【答案】解:(1)∵抛物线的解析式为y=−x2+2kx+1−k=−(x−k)2+1−k+k2,∴抛物线的顶点坐标为(k,1−k+k2);(2)∵抛物线的解析式为y=−(x−k)2+1−k+k2,∴当x≥k时,y随x的增大而减小,∵当x≥1时,y随x的增大而减小,∴k≤1.(3)①当k<0时,x=0时,函数值最大,最大值为1−k,∴1−k=3,解得k=−2;②当0≤k≤1时,最大值为1−k+k2,则1−k+k2=3,解得k=2(舍去)或−1(舍去);③当k>1时,x=1时,函数值最大,最大值为−1+2k+1−k,∴−1+2k+1−k=3,解得k=3综上,当0≤x≤1时,该函数有最大值3,则k=−2或k=3.【解析】本题考查二次函数的性质,二次函数的最值,分类讨论是解题的关键.(1)配方得到顶点式,可确定顶点坐标;(2)根据二次函数的性质即可得到k的取值;(3)分三种情况讨论,关键题意得到关于k的方程,解方程即可求得.34.已知二次函数y=ax2−4ax+3+b(a≠0).(1)求出二次函数图象的对称轴;(2)若该函数的图象经过点(1,3),且整数a,b满足4<a+|b|<9,求二次函数的表达式;(3)在(2)的条件下且a>0,当t≤x≤t+1时有最小值3,求t的值.2=2;【答案】解:(1)二次函数图象的对称轴是x=−−4a2a(2)该二次函数的图象经过点(1,3),∴a−4a+3+b=3,∴b=3a,把b=3a代入4<a+|b|<9,得4<a +3|a|<9.当a >0时,4<4a <9,则1<a <94. 而a 为整数, ∴a =2,则b =6,∴二次函数的表达式为y =2x 2−8x +9; 当a <0时,4<−2a <9,则−92<a <−2. 而a 为整数,∴a =−3或−4,则对应的b =−9或−12,∴二次函数的表达式为y =−3x 2+12x −6或y =−4x 2+16x −9; (3)在(2)的条件下,且a >0,所以y =2x 2−8x +9, 开口向上,对称轴为直线x =2, ①当t +1<2时,即t <1.y 随着x 的增大而减少,当x =t +1时,y 取得最小值.即2(t +1)2−8(t +1)+9=32,解得t 1=12,t 2=32(舍去), 所以t =12, ②当t ≤2≤t +1时,即1≤t ≤2. 此时,x =2时,y 取最小为1≠32, ③当t >2时,y 随着x 的增大而增大,当x =t 时,y 取得最小值. 即2t 2−8t +9=32,解得t 1=32(舍去),t 2=52 ,所以t =52, 综上可得:t 的值为12或52.。
(易错题)初中数学九年级数学上册第二单元《二次函数》测试题(答案解析)
一、选择题1.在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )A .B .C .D .2.已知抛物线()20y ax bx c a =++<过()30A -,、()1,0O 、()15,B y -、()25,C y 四点,则1y 与2y 的大小关系是( ) A .12y y >B .12y y <C .12y y =D .不能确定3.一次函数y =ax +c 与二次函数y =ax 2+bx +c 在同一个平面坐标系中图象可能是( ) A .B .C .D .4.根据下列表格中的对应值:x1.98 1.992.00 2.01 2y ax bx c =++-0.06-0.05-0.030.01判断方程(,,,为常数)一个根的范围是()A .1.00 1.98x << B .1.98 1.99x << C .1.99 2.00x <<D .2.00 2.01x <<5.函数221y x x =--的自变量x 的取值范围为全体实数,其中0x ≥部分的图象如图所示,对于此函数有下列结论:①函数图象关于y 轴对称; ②函数既有最大值,也有最小值;③当1x <-时,y 随x 的增大而减小;④当21a -<<-时,关于x 的方程221x x a --=有4个实数根. 其中正确的结论个数是( ) A .3B .2C .1D .0 6.抛物线2(2)3y x =-+的对称轴是( )A .直线2x =-B .直线3x =C .直线1x =D .直线2x =7.若()14,A y -,()21,B y -,()30,C y 为二次函数2(2)3y x =-++的图象上的三点,则1y ,2y ,3y 的大小关系是( ) A .123y y y <=B .312y y y =<C .312 y y y <<D .123y y y =<8.二次函数y =ax 2+bx+c (a >0)的图象与x 轴的两个交点A (x 1,0),B (x 2,0),且x 1<x 2,点P (m ,n )是图象上一点,那么下列判断正确的是( ) A .当n <0时,m <0 B .当n >0时,m >x 2 C .当n <0时,x 1<m <x 2D .当n >0时,m <x 19.对于二次函数()2532y x =-+的图象,下列说法中不正确的是( ) A .顶点是()3,2 B .开口向上 C .与x 轴有两个交点D .对称轴是3x =10.如图所示的抛物线形构件为某工业园区的新厂房骨架,为了牢固起见,构件需要每隔0.4m 加设一根不锈钢的支柱,构件的最高点距底部0.5m ,则该抛物线形构件所需不锈钢支柱的总长度为( )A .0.8mB .1.6mC .2mD .2.2m11.关于抛物线223y x x =-+-,下列说法正确的是( ) A .开口方向向上 B .顶点坐标为()1,2- C .与x 轴有两个交点D .对称轴是直线1x =-12.在平面直角坐标系中,将函数22y x =-的图象先向右平移1个单位长度,再向上平移5个单位长度,得到图象的函数解析式是( ) A .22(1)5y x =-++ B .22(1)5y x =--+ C .22(1)5y x =-+-D .22(1)5y x =---第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.已知二次函数2y ax bx c =++的图象过点(1,2)A ,(3,2)B ,(5,7)C .若点1(2,)M y ,2(1,)N y -,3(8,)K y 也在二次函数2y ax bx c =++的图象上,则1y ,2y ,2y 的从小到大的关系是___.14.公园广场前有一喷水池,喷水头位于水池中央,从喷头喷出水珠的路径可近似看作抛物线.如图是根据实际情境抽象出的图象,水珠在空中划出的曲线恰好是抛物线26y x x =-+(单位:m )的一部分,则水珠落地点(点P )到喷水口(点O )的距离为________m .15.如图,平面直角坐标系中,桥孔抛物线对应的二次函数关系式是y =﹣13x 2,桥下的水面宽AB 为6m ,当水位上涨2m 时,水面宽CD 为_____m (结果保留根号).16.如图,在平面直角坐标系中,点A ,B 是一次函数y x =图像上两点,它们的横坐标分别为1,4,点E 是抛物线248y x x =-+图像上的一点,则ABE △的面积最小值是______.17.某种洒杯的轴截面是一条抛物线段,在酒杯中加酒,当酒水深为lcm 时,液面宽为2cm ,将酒杯装满酒后,再倾斜至与水平面成30°,此时酒杯中余下酒深度为2cm ,这个酒杯的杯口直径为______cm .18.已知抛物线243y x x =-+与x 轴交于A 、B 两点,P 为抛物线上一点,且1APB S ∆=,则P 的坐标为_______.19.如图,点A ,B 的坐标分别为(1,4)和(4,4),抛物线y=a (x ﹣m )2+n 的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为﹣3,则点D 的横坐标最大值为_____.20.如图,抛物线2yx 与直线y x =交于O ,A 两点,将抛物线沿射线OA 方向平移2个单位.在整个平移过程中,抛物线与直线3x =交于点D ,则点D 经过的路程为______.三、解答题21.已知二次函数y =ax 2与y =﹣2x 2+c .(1)随着系数a 和c 的变化,分别说出这两个二次函数图象的变与不变;(2)若这两个函数图象的形状相同,则a =;若抛物线y =ax 2沿y 轴向下平移2个单位就能与y =﹣2x 2+c 的图象完全重合,则c = ; (3)二次函数y =﹣2x 2+c 中x 、y 的几组对应值如表: x ﹣2 1 5 y mn p的大小关系为 (用“<”连接).22.已知抛物线 ()21y x m x m =-+-+经过点()23,(1)求m 的值及抛物线的顶点坐标;(2)当x 取什么值时,y 随着x 的增大而减小?23.已知抛物线2(0)y ax bx a =+≠经过点(4,8)A -和点(,0)(0)P m m ≠.(1)若点A 是抛物线的顶点,则m =______.(2)如图,若2m =,设此时抛物线的顶点为B ,求OAB 的面积. 24.阅读下列材料:我们知道,一次函数y kx b =+的图象是一条直线,而y kx b =+经过恒等变形可化为直线的另一种表达形式0Ax By C ++=(A 、B 、C 是常数,且A 、B 不同时为0).如图1,点()P m n ,到直线l :0Ax By C ++=的距离(d )计算公式是:22A mB n Cd A B⨯+⨯+=+例:求点()1,2P 到直线51126y x =-的距离d 时,先将51126y x =-化为51220x y --=,再由上述距离公式求得()()()225112222113512d ⨯+-⨯+-==+-. 解答下列问题: 如图2,已知直线443y x =--与x 轴交于点A ,与y 轴交于点B ,抛物线245y x x =-+上的一点()3,2M .(1)请将直线443y x =--化为“0Ax By C ++=”的形式; (2)求点M 到直线AB 的距离;(3)抛物线上是否存在点P ,使得PAB △的面积最小?若存在,求出点P 的坐标及PAB △面积的最小值;若不存在,请说明理由. 25.如图,□ABCD 中,AB=c ,AC=b ,BC=a .(1)若四边形ABCD 是正方形,求抛物线2y ax bx c =+-的对称轴; (2)若抛物线2y ax bx c =+-的对称轴为直线34x =-,抛物线2y ax bx c =+-与x 轴的一个交点为(),0c -.且1b c =+,求四边形ABCD 的面积.26.情境阅读:小敏同学期中复习时,再读九年级上册一本辅导书“一元二次方程”的“数学活动”时,重新思考了“活动围长方形”.下面呈现的是“活动内容”及“小敏反思”的部分:问题解决:请根据“小敏发现”,应用二次函数解决“能围出面积大于900cm2的长方形吗?”【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次函数的开口方向,与y轴的交点;一次函数经过的象限,与y轴的交点可得相关图象.【详解】解:∵一次函数和二次函数都经过y轴上的(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0,c<0时,二次函数开口向上,一次函数经过一、三、四象限,故C选项错误;当a<0,c>0时,二次函数开口向下,一次函数经过一、二、四象限,故A选项错误,D 选项正确;故选:D.【点睛】本题考查二次函数及一次函数的图象的性质;用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.2.A解析:A【分析】根据A(-3,0)、O(1,0)两点可确定抛物线的对称轴,再根据开口方向,B、C两点与对称轴的远近,判断y1与y2的大小关系.解:∵抛物线过A (-3,0)、O (1,0)两点, ∴抛物线的对称轴为x=312-+=-1, ∵a <0,抛物线开口向下,离对称轴越远,函数值越小,由()15,B y -、()25,C y 可知C 点离对称轴远,对应的纵坐标值小, 即y 1>y 2. 故选:A . 【点睛】此题主要考查了二次函数图象上点的坐标特征,比较抛物线上两点纵坐标的大小,关键是确定对称轴,开口方向,两点与对称轴的远近.3.B解析:B 【分析】根据两个函数图象与y 轴交于同一点可排除选项A ,再根据抛物线的开口方向和对应一次函数的增减性即可做出选择. 【详解】解:∵一次函数和二次函数都经过y 轴上的(0,c ), ∴两个函数图象交于y 轴上的同一点,故A 不符合题意;当a >0时,二次函数y =ax 2+bx +c 的图象开口向上,一次函数y =ax +c 中y 值随x 值的增大而增大,故D 不符合题意;当a <0时,二次函数y =ax 2+bx +c 的图象开口向上,一次函数y =ax +c 中y 值随x 值的增大而减小,故C 不符合题意. 故选:B . 【点睛】本题考查二次函数及一次函数的图象与性质,熟练掌握两个函数图象与系数的关系是解答的关键.4.D解析:D 【分析】根据二次函数的性质、二次函数与一元二次方程的联系即可得. 【详解】由表格可知,在1.98 2.01x ≤≤内,y 随x 的增大而增大, 当 2.00x =时,0.030y =-<, 当 2.01x =时,0.010y =>,∴在2.00 2.01x <<内,必有一个x 的值对应的函数值0y =,∴方程20ax bx c ++=(0a ≠,,,a b c 为常数)一个根x 的范围是2.00 2.01x <<,故选:D .本题考查了二次函数的性质、二次函数与一元二次方程的联系,熟练掌握二次函数的性质是解题关键.5.A解析:A 【分析】根据函数解析式画出函数图象,结合函数图象进行判断. 【详解】 解:如图:①如图所示,函数图象关于y 轴对称,故①符合题意. ②如图所示,函数没有最大值,有最小值,故②不符合题意. ③如图所示,当x <-1时,y 随x 的增大而减小,故③符合题意.④如图所示,当-2<a <-1时,关于x 的方程x 2-2|x|-1=a 有4个实数根,故④符合题意. 综上所述,正确的结论有3个. 故选:A . 【点睛】本题为函数图象探究题,考查了根据函数图象判断函数的对称性、增减性以及从函数的角度解决方程问题.6.D解析:D 【分析】直接利用二次函数对称轴求法得出答案. 【详解】解:抛物线y=(x-2)2+3的对称轴是:直线x=2. 故选:D . 【点睛】此题主要考查了二次函数的性质,正确掌握对称轴确定方法是解题关键.7.B解析:B 【分析】根据二次函数的解析式可得图象开口向下,对称轴为2x =-,故点()14,A y -与点()30,C y 关于对称轴对称,即13y y =,再根据点()21,B y -与点()30,C y 在对称轴右侧,y 随x 增大而减小即可得出结论. 【详解】解:二次函数2(2)3y x =-++的图象开口向下,对称轴为2x =-, ∴点()14,A y -与点()30,C y 关于对称轴对称, ∴13y y =,∵点()21,B y -与点()30,C y 在对称轴右侧,y 随x 增大而减小, ∴23y y >, ∴312y y y =<, 故选:B . 【点睛】本题考查二次函数的性质,根据二次函数解析式得到对称轴是解题的关键.8.C解析:C 【分析】首先根据a 判断二次函数图象的开口方向,再确定对称轴,根据图象和二次函数的性质分析得出结论. 【详解】 解:∵a >0,∴开口向上,以对称轴在y 轴左侧为例可以画图二次函数y =ax 2+bx+c 的图象与x 轴的两个交点A (x 1,0),B (x 2,0),且x 1<x 2, 无法确定x 1与x 2的正负情况,∴当n <0时,x 1<m <x 2,但m 的正负无法确定,故A 错误,C 正确; 当n >0时,m <x 1 或m >x 2,故B ,D 错误,均不完整 故选:C .【点睛】本题主要考查二次函数图象与x 轴交点的问题,熟练掌握二次函数图象及图像上的坐标特征是解题的关键.9.C解析:C【分析】根据函数图象和性质逐个求解即可.【详解】解:对于y =5(x ﹣3)2+2,则该函数的对称轴为直线x =3,顶点坐标为(3,2), A .二次函数y =5(x ﹣3)2+2的图象的顶点坐标为(3,2),故本选项不符合题意; B .由于a =5>0,所以抛物线开口向上,故本选项不符合题意;C .由于y =5(x ﹣3)2+2=5x 2﹣30x+47,则△=b 2﹣4ac =900﹣4×5×47=﹣40<0,所以该抛物线与x 轴没有交点,故本选项符合题意;D .对于y =5(x ﹣3)2+2,则该函数的对称轴为直线x =3,故本选项不符合题意. 故选:C .【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点,顶点等点坐标的求法,及这些点代表的意义及函数特征. 10.B解析:B【分析】根据题意建立平面直角坐标系,得出B 、C 的坐标,然后根据待定系数法求出抛物线解析式,然后求出当当0.2x =和0.6x =时y 的值,然后即可求解.【详解】如图,由题意得()0,0.5B ,()1,0C .设抛物线的解析式为2y ax c =+, 代入得12a =-,12c =, ∴抛物线的解析式为21122y x =-+. 当0.2x =时,0.48y =,当0.6x =时,0.32y =.∴()1122334420.480.32 1.6BC B C B C B C m +++=⨯+=,故选B .【点睛】本题考查了二次函数的拱桥问题,关键是要根据题意作出平面直角坐标系,并根据所建立的平面直角坐标系求出函数解析式.11.B解析:B【分析】根据抛物线的解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:∵抛物线y=-x 2+2x-3=-(x-1)2-2,∴该抛物线的开口向下,故选项A 错误;顶点坐标为()1,2-,故选项B 正确;当y=0时,△=22-4×(-1)×(-3)=-8<0,则该抛物线与x 轴没有交点,故选项C 错误; 对称轴是直线x=1,故选项D 错误;故选:B .【点睛】本题考查抛物线与x 轴的交点、二次函数的额性质,解答本题的关键是明确题意,利用二次函数的性质解答.12.B解析:B【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,抛物线y=2x 2的图象向右平移1个单位所得函数图象的关系式是:y=-2(x-1)2; 由“上加下减”的原则可知,抛物线y=-2(x-1)2的图象向上平移5个单位长度所得函数图象的关系式是:y=-2(x-1)2+5.故选:B .【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.二、填空题13.【分析】根据点ABC 的坐标可得二次函数的对称轴和增减性由此即可得【详解】点在二次函数的图象上此二次函数的对称轴为点BC 的横坐标大小关系为纵坐标大小关系为当时y 随x 的增大而增大;当时y 随x 的增大而减小 解析:123y y y <<【分析】根据点A 、B 、C 的坐标可得二次函数的对称轴和增减性,由此即可得.【详解】点(1,2)A ,(3,2)B ,(5,7)C 在二次函数2y ax bx c =++的图象上,∴此二次函数的对称轴为1322+=, 点B 、C 的横坐标大小关系为532>>,纵坐标大小关系为72,∴当2x ≥时,y 随x 的增大而增大;当2x <时,y 随x 的增大而减小,由二次函数的对称性得:1x =-时的函数值与5x =时的函数值相等,即为27y =, 又点1(2,)M y ,3(8,)K y 在二次函数2y ax bx c =++的图象上,且258, 137y y ,即123y y y <<,故答案为:123y y y <<.【点睛】本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.14.6【分析】根据题意可以得到水珠落地点(点P )到喷水口(点O )的距离就是OP 的长度利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案【详解】解:∵水在空中划出的曲线是抛物线y=-x2+6x ∴解析:6【分析】根据题意可以得到水珠落地点(点P )到喷水口(点O )的距离就是OP 的长度,利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案.【详解】解:∵水在空中划出的曲线是抛物线y=-x 2+6x ,∴y=-x 2+6x=-(x-3)2+9,∴顶点坐标为:(3,9),∴水珠落地点(点P )到喷水口(点O )的距离为OP=3×2=6(米),故答案为:6.【点睛】本题考查了二次函数的应用,解决此类问题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题.15.2【分析】首先求出B 点纵坐标进而得出D 点纵坐标即可求出D 点横坐标进而得出CD 的长【详解】解:由题意可得:当AB =6m 则B 点横坐标为3故此时y =﹣×32=﹣3当水位上涨2m 时此时D 点纵坐标为:﹣3+2解析:【分析】首先求出B 点纵坐标,进而得出D 点纵坐标,即可求出D 点横坐标,进而得出CD 的长.【详解】解:由题意可得:当AB =6m ,则B 点横坐标为3,故此时y=﹣13×32=﹣3,当水位上涨2m时,此时D点纵坐标为:﹣3+2=﹣1,则﹣1=﹣13x2,解得:x=±3.故当水位上涨2m时,水面宽CD为23m.故答案为:23【点睛】此题主要考查了二次函数的应用,求出D点横坐标是解题关键.16.【分析】设点E(mm2﹣4m+8)过E作EM垂直于x轴交AB于点M作BF⊥EMAG⊥EM垂足分别为FG由题意可得M(mm)从而可用含m的式子表示出EM的长根据二次函数的性质及三角形的面积公式可得答案解析:21 8【分析】设点E(m,m2﹣4m+8),过E作EM垂直于x轴交AB于点M,作BF⊥EM,AG⊥EM,垂足分别为F,G,由题意可得M(m,m),从而可用含m的式子表示出EM的长,根据二次函数的性质及三角形的面积公式可得答案.【详解】解:设点E(m,m2﹣4m+8),过E作EM垂直于x轴交AB于点M,作BF⊥EM,AG⊥EM,垂足分别为F,G,由题意得:M(m,m),∴EM=m2﹣4m+8﹣m=m2﹣5m+8=257()24m -+, ∴S △ABE =S △AEM +S △EMB =1122EM AG EM BF ⋅+⋅ 1()2EM AG BF =+ 12=(m 2﹣5m +8)×(4-1) 32=(m 2﹣5m +8) =23521()228m -+, 由302>,得S △ABE 有最小值. ∴当m =52时,S △ABE 的最小值为218. 故答案为:218. 【点睛】本题考查了二次函数的最值、一次函数与二次函数图象上的点与坐标的关系及三角形的面积计算等知识点,熟练掌握相关性质及定理并数形结合是解题的关键.17.【分析】建立如下图所示的平面直角坐标系相当于抛物线经过点(00)(11)求得解析式为y=x²设杯口直径为2d 设倒满酒时酒的高度为m 相当于抛物线经过(dm)再由倾斜30°时杯中酒深度为2cm 时将m 用d【分析】建立如下图所示的平面直角坐标系,相当于抛物线经过点(0,0),(1,1)求得解析式为y=x²,设杯口直径为2d ,设倒满酒时酒的高度为m ,相当于抛物线经过(d,m),再由倾斜30°时杯中酒深度为2cm 时将m 用d 代数式表示,再代入解析式中求出d 即可.【详解】解:如下图所示以酒杯内最低点为原点建立直角坐标系,故抛物线的顶点坐标为原点,设抛物线解析式为y=ax²,当酒水深为lcm 时,液面宽为2cm ,相当于抛物线且经过点(1,1),代入解析式中,a=1, 故抛物线解析式为:y=x²,设杯口直径为2d ,设倒满酒时酒的高度为m ,相当于抛物线经过(d,m),由“倾斜至与水平面成30°,此时酒杯中余下酒深度为2cm”,如下图所示:此时FH=EC=2,∠DEF=30°,DF=d ,在Rt △EDF 中,EF=2DF=2d ,3d ,在Rt △OEC 中,OE=2EC=4,∴OD=OE+ED=43d , ∴m=OD=43d , ∴将点(,43d d ),代入y=x², 即:243d d ,解得:3192d (负值舍去), 319【点睛】本题考查了二次函数的实际应用,读懂题目意思,学会建立直角坐标系并求出对应解析式是解决本题的关键.18.(2-1)或(2-1)或(2+1)【分析】当y=0时求得x 的值确定AB 的长设点P 坐标为根据三角形面积公式列方程求解即可【详解】解:当y=0时解得:∴AB=2设点P 坐标为∴∴当时解得x=2此时P 点坐标解析:(2,-1)或(1),或(,1).【分析】当y=0时,求得x 的值,确定AB 的长,设点P 坐标为2(,43)x x x -+,根据三角形面积公式列方程求解即可.【详解】解:当y=0时,243=0x x -+解得:121,3x x ==∴AB=2设点P 坐标为2(,43)x x x -+, ∴214312APB S AB x x ∆=-+= ∴2431x x -+=当2431x x -+=-时,解得x=2,此时P 点坐标为(2,-1)当2431x x -+=时,解得122x x =P 点坐标为(,1),或(,1)综上,P 的坐标为:(2,-1)或(1),或(,1)故答案为:(2,-1)或(,1),或(,1).【点睛】本题考查二次函数与图形,利用数形结合思想列方程求解是解题关键.19.8【分析】根据题意当点C 的横坐标取最小值时抛物线的顶点与点A 重合进而可得抛物线的对称轴则可求出此时点D 的最小值然后根据抛物线的平移可求解【详解】解:∵点AB 的坐标分别为(14)和(44)∴AB=3由解析:8【分析】根据题意当点C 的横坐标取最小值时,抛物线的顶点与点A 重合,进而可得抛物线的对称轴,则可求出此时点D 的最小值,然后根据抛物线的平移可求解.【详解】解:∵点A ,B 的坐标分别为(1,4)和(4,4),∴AB=3,由抛物线y=a (x ﹣m )2+n 的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),可得:当点C 的横坐标取最小值时,抛物线的顶点与点A 重合,∴抛物线的对称轴为:直线1x =,∵点()3,0C -,∴点D 的坐标为()5,0,∵顶点在线段AB 上移动,∴点D 的横坐标的最大值为:5+3=8;故答案为8.【点睛】本题主要考查二次函数的平移及性质,熟练掌握二次函数的性质是解题的关键. 20.【分析】根据函数图象平移的知识点判断即可;【详解】由题意可知将图形沿进行平移不妨设由题意可得:∵讨论时的运动路程∴将代入则有即讨论时y 值的变化当时的最小值为∴当时y 随x 增大而减小时∴y 从9运动至路程 解析:172【分析】根据函数图象平移的知识点判断即可;【详解】由题意可知将图形沿y x =进行平移,不妨设()2y x a a =-+,由题意可得:04a ≤≤,∵讨论3x =时的运动路程,∴将3x =代入则有()22359y a a a a =-+=-+, 即讨论04a ≤≤时,y 值的变化, 当52a =时,y 的最小值为114, ∴当50<2a ≤时,y 随x 增大而减小,0a =时,9y =, ∴y 从9运动至114,路程为1125944-=, 当542a ≤≤时,y 随x 的增大而增大,4a =时,5y =, y 从114运动至4,路程为119544-=, ∴总路程为25934174442+==; 故答案是:172. 【点睛】 本题主要考查了二次函数图象平移的应用,准确分析计算是解题的关键.三、解答题21.(1)二次函数y=ax2的图象随着a的变化,开口大小和开口方向都会变化,但是对称轴、顶点坐标不会改变;二次函数y=﹣2x2+c的图象随着c的变化,开囗大小和开口方向都没有改变,对称轴也没有改变,但是,顶点坐标会发生改变;(2)±2,﹣2;(3)p <m<n【分析】(1)根据二次函数的性质即可得到结论;(2)由函数图象的形状相同得到a=±2,根据上加下减的平移规律即可求得函数 y =ax2-2,根据完全重合,得到c =-2.(3)由二次函数的解析式得到开口方向和对称轴,然后根据点到对称轴的距离即可判断.【详解】解:(1)二次函数y=ax2的图象随着a的变化,开口大小和开口方向都会变化,但是对称轴、顶点坐标不会改变;二次函数y=﹣2x2+c的图象随着c的变化,开囗大小和开口方向都没有改变,对称轴也没有改变,但是,顶点坐标会发生改变;(2)∵函数y=ax2与函数y=﹣2x2+c的形状相同,∴a=±2,∵抛物线y=ax2沿y轴向下平移2个单位得到y=ax2﹣2,与y=﹣2x2+c的图象完全重合,∴c=﹣2,故答案为:±2,﹣2.(3)由函数y=﹣2x2+c可知,抛物线开口向下,对称轴为y轴,∵1﹣0<0﹣(﹣2)<5﹣0,∴p<m<n,故答案为:p<m<n.【点睛】本题考查了二次函数的性质,二次函数图象与几何变换,二次函数图象上点的坐标特征,熟知图形平移不变性的性质是解答此题的关键.22.(1)m=3,(1,4);(2)当x>1时,y随x的增大而减小.【分析】(1)将已知点的坐标代入函数解析式,建立关于m的方程,解方程求出m的值,再将函数解析式转化为顶点式,可得到抛物线的顶点坐标.(2)利用函数解析式可知a=-1<0,结合对称轴可得到y随x的增大而减小时自变量x的取值范围.【详解】(1)解:由题意得-4+2(m-1)+m=3解之:m=3,∴抛物线的解析式为y=-x2+2x+3∴y= -(x-1)2+4∴抛物线的顶点坐标为(1,4);(2)解:∵a=-1<0,∴当x >1时,y 随x 的增大而减小.【点睛】本题考查了二次函数的性质以及求二次函数的顶点坐标、二次函数的增减性,熟练掌握二次函数的性质是解题的关键.23.(1)8;(2)6.【分析】(1)先将点(4,8)A -代入抛物线的解析式可得1648a b +=-,再根据点A 是抛物线的顶点可得其对称轴42b x a=-=,从而可得8b a =-,求出a 、b 的值,然后将点P 的坐标代入抛物线的解析式即可得; (2)如图(见解析),先利用待定系数法求出抛物线的解析式,从而可得顶点B 的坐标,再利用待定系数法求出直线AB 的函数解析式,从而可得点C 的坐标,然后根据OAB 的面积等于OAC 与OBC 的面积之和即可得.【详解】(1)由题意,将点(4,8)A -代入抛物线的解析式得:1648a b +=-,点A 是抛物线的顶点,∴抛物线的对称轴为42b x a=-=,即8b a =-, 联立16488a b b a +=-⎧⎨=-⎩,解得124a b ⎧=⎪⎨⎪=-⎩, 则抛物线的解析式为2142y x x =-, 将(,0)(0)P m m ≠代入2142y x x =-得:21402m m -=, 解得8m =或0m =(不符题意,舍去),故答案为:8;(2)2m =,(2,0)P ∴, 将点(4,8),(2,0)A P -代入抛物线的解析式得:1648420a b a b +=-⎧⎨+=⎩, 解得12a b =-⎧⎨=⎩, 则此时抛物线的解析式为222(1)1y x x x =-+=--+, ∴顶点B 的坐标为(1,1)B ,设直线AB 的函数解析式为y kx c =+,将点(4,8),(1,1)A B -代入得:481k c k c +=-⎧⎨+=⎩,解得34k c =-⎧⎨=⎩, 则直线AB 的函数解析式为34y x =-+, 当0y =时,340x -+=,解得43x =,即4(,0)3C , 43OC ∴=, (4,8)(1),1,B A -,OAC ∴的OC 边上的高为8,OBC 的OC 边上的高为1, OAC OB B COA S S S ∴=+, 1414812323=⨯⨯+⨯⨯, 6=,即OAB 的面积为6.【点睛】本题考查了利用待定系数法求二次函数和一次函数的解析式、二次函数的性质等知识点,熟练掌握待定系数法是解题关键.24.(1)43120x y ++=;(2)点M 到直线AB 的距离为6;(3)存在,413,39P ⎛⎫ ⎪⎝⎭,△PAB 面积最小值为656. 【分析】(1)根据题意可直接进行化简;(2)根据题中所给公式可直接进行代值求解;(3)设点()2,45P a a a -+,根据题意可得点P 到直线AB 的距离,然后根据三角形面积计算公式可得2327422PAB Sa a =-+,最后根据二次函数的性质可进行求解. 【详解】 解:(1)由443y x =--可得:43120x y ++=; (2)由公式d =()3,2M 可得:点M 到直线AB的距离为:3065d ===; (3)存在点P ,使△PAB 的面积最小,理由如下:设点()2,45P a a a -+,则有:点P 到直线AB的距离为:238275a a d -+==,由图像可得当y>0时,x 的值为全体实数,∴238270a a -+>,∵直线443y x =--与x 轴交于点A ,与y 轴交于点B , ∴当x=0时,y=-4,当y=0时,x=-3, ∴()()3,0,0,4A B --,∴5AB =, ∴22132734654222236PAB S AB d a a a ⎛⎫=⋅=-+=-+ ⎪⎝⎭, ∴当43a =时,△PAB 的面积最小,即为656PAB S =, ∴此时点P 的坐标为413,39⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查二次函数的图像与性质及点到直线的距离公式,关键是根据题中所给点到直线的距离公式进行分析和求解问题即可.25.(1)x=2-;(2)ABCD 2S =四边形. 【分析】(1)由正方形推出a ,利用对称轴公式求对称轴(2)对称轴为直线34x =-利用公式得b=32a ,抛物线与x 轴交点为(),0c -代入得20ac bc c --=,1bc =+求出a b c 、、的值,由=a c 推出四边形ABCD 为菱形,利用菱形面积公式求出即可【详解】(1)∵四边形ABCD 是正方形,∴AB=BC ,AC=2BC ,b=2c=2a2y ax bx c =+-=a (x 2+2x-1)对称轴为x=222b a a --==- (2) 对称轴为直线34x =-, ∴利用对称轴公式得b=32a 抛物线2y ax bx c =+-与x 轴的一个交点为(),0c -代入抛物线20ac bc c --=由c>0、b>0、a>0,10ac b --=∴10132ac b b c b a ⎧⎪--=⎪=+⎨⎪⎪=⎩,解得232a b c =⎧⎪=⎨⎪=⎩(负值已舍去),∵ABCD ,=2a c =∴四边形ABCD 为菱形连BD 交AC 于O ,BO ⊥AO ,AO=OC=1.5在RtΔABO 中,由勾股定理2272OB AB AO =-=,AD=2OB=7 ∴ABCD 137732S =⨯⨯=四边形【点睛】本题考查正方形的性质与菱形的性质,掌握正方形的性质与菱形性质和菱形面积求法,会用正方形的性质推出a b c 、、之间关系,进而求对称轴,会利用对称轴推出a b 、关系,利用点C 在抛物线上,确定a b c 、、之间关系会解方程组解决问题26.不能围出,理由见解析.【分析】设长方形的长为xcm ,围成的面积为2ycm ,再根据长方形的面积公式可得y 与x 之间的函数关系式,然后利用二次函数的性质即可得.【详解】不能围出,理由如下:设长方形的长为xcm ,围成的面积为2ycm , 则12022x y x ,即()60y x x =-, 将其化成顶点式为()230900y x =--+,由二次函数的性质可知,当30x =时,y 取得最大值,最大值为900,即用长度为120cm 长的细绳围成的长方形的面积最大为2900cm ,故不能围出面积大于2900cm 的长方形.【点睛】本题考查了二次函数的几何应用,熟练掌握二次函数的性质是解题关键.。
初三数学二次函数的专项培优 易错 难题练习题(含答案)附答案
初三数学二次函数的专项培优 易错 难题练习题(含答案)附答案一、二次函数1.如图1,抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (﹣1,0)、B (4,0)两点,与y 轴交于点C ,且OC=3OA .点P 是抛物线上的一个动点,过点P 作PE ⊥x 轴于点E ,交直线BC 于点D ,连接PC . (1)求抛物线的解析式;(2)如图2,当动点P 只在第一象限的抛物线上运动时,求过点P 作PF ⊥BC 于点F ,试问△PDF 的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由. (3)当点P 在抛物线上运动时,将△CPD 沿直线CP 翻折,点D 的对应点为点Q ,试问,四边形CDPQ 是否成为菱形?如果能,请求出此时点P 的坐标,如果不能,请说明理由.【答案】(1) y=﹣234x +94x+3;(2) 有最大值,365;(3) 存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为(73,256)或(173,﹣253).【解析】试题分析: (1)利用待定系数法求二次函数的解析式; (2)设P (m ,﹣34m 2+94m+3),△PFD 的周长为L ,再利用待定系数法求直线BC 的解析式为:y=﹣34x+3,表示PD=﹣2334m m ,证明△PFD ∽△BOC ,根据周长比等于对应边的比得:=PED PD BOC BC V V 的周长的周长,代入得:L=﹣95(m ﹣2)2+365,求L 的最大值即可;(3)如图3,当点Q 落在y 轴上时,四边形CDPQ 是菱形,根据翻折的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD ,又知Q 落在y 轴上时,则CQ ∥PD ,由四边相等:CD=DP=PQ=QC ,得四边形CDPQ 是菱形,表示P (n ,﹣23n 4 +94n+3),则D (n ,﹣34n+3),G (0,﹣34n+3),利用勾股定理表示PD 和CD 的长并列式可得结论. 试题解析:(1)由OC=3OA ,有C (0,3),将A (﹣1,0),B (4,0),C (0,3)代入y=ax 2+bx+c 中,得:016403a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得:34943a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,故抛物线的解析式为:y=﹣234x +94x+3; (2)如图2,设P (m ,﹣34m 2+94m+3),△PFD 的周长为L ,∵直线BC 经过B (4,0),C (0,3), 设直线BC 的解析式为:y=kx+b ,则403k b b +=⎧⎨=⎩解得:343k b ⎧=-⎪⎨⎪=⎩∴直线BC 的解析式为:y=﹣34x+3, 则D (m ,﹣334m +),PD=﹣2334m m +,∵PE ⊥x 轴,PE ∥OC , ∴∠BDE=∠BCO , ∵∠BDE=∠PDF , ∴∠PDF=∠BCO , ∵∠PFD=∠BOC=90°, ∴△PFD ∽△BOC ,∴=PED PDBOC BCV V 的周长的周长,由(1)得:OC=3,OB=4,BC=5, 故△BOC 的周长=12,∴2334125m mL -+=,即L=﹣95(m ﹣2)2+365,∴当m=2时,L 最大=365; (3)存在这样的Q 点,使得四边形CDPQ 是菱形,如图3, 当点Q 落在y 轴上时,四边形CDPQ 是菱形,理由是:由轴对称的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD , 当点Q 落在y 轴上时,CQ ∥PD , ∴∠PCQ=∠CPD , ∴∠PCD=∠CPD , ∴CD=PD , ∴CD=DP=PQ=QC , ∴四边形CDPQ 是菱形, 过D 作DG ⊥y 轴于点G , 设P (n ,﹣234n +94n+3),则D (n ,﹣34n+3),G (0,﹣334n +), 在Rt △CGD 中,CD 2=CG 2+GD 2=[(﹣34n+3)﹣3]2+n 2=22516n , 而|PD|=|(﹣239344n n ++ 3n ++)﹣(﹣34n+3)|=|﹣234n +3n|,∵PD=CD , ∴﹣235344n n n +=①, ﹣235344n n n +=-②, 解方程①得:n=73或0(不符合条件,舍去), 解方程②得:n=173或0(不符合条件,舍去), 当n=73时,P (73,256),如图3,当n=173时,P (173,﹣253),如图4,综上所述,存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为(73,256)或(173,﹣253).点睛: 本题是二次函数的综合题,考查了利用待定系数法求函数的解析式、菱形的性质和判定、三角形相似的性质和判定,将周长的最值问题转化为二次函数的最值问题,此类问题要熟练掌握利用解析式表示线段的长,并利用相似比或勾股定理列方程解决问题.2.如图所示,已知平面直角坐标系xOy ,抛物线过点A(4,0)、B(1,3)(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P(m,n)在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.【答案】(1)y=-224(2)4y x x x =-+=--+,对称轴为:x=2,顶点坐标为:(2,4)(2)m 、n 的值分别为 5,-5 【解析】(1) 将点A(4,0)、B(1,3) 的坐标分别代入y =-x 2+bx +c ,得: 4b+c-16=0,b+c-1="3" , 解得:b="4" , c=0.所以抛物线的表达式为:24y x x =-+. y=-224(2)4y x x x =-+=--+,所以 抛物线的对称轴为:x=2,顶点坐标为:(2,4). (2) 由题可知,E 、F 点坐标分别为(4-m ,n ),(m-4,n ). 三角形POF 的面积为:1/2×4×|n|= 2|n|, 三角形AOP 的面积为:1/2×4×|n|= 2|n|,四边形OAPF 的面积= 三角形POF 的面积+三角形AOP 的面积=20, 所以 4|n|=20, n=-5.(因为点P(m,n)在第四象限,所以n<0) 又n=-2m +4m ,所以2m -4m-5=0,m=5.(因为点P(m,n)在第四象限,所以m>0) 故所求m 、n 的值分别为 5,-5.3.在平面直角坐标系中,有两点(),A a b 、(),B c d ,若满足:当a b ≥时,c a =,2d b =-;当a b <时,c a <-,d b <,则称点为点的“友好点”.(1)点()4,1的“友好点”的坐标是_______.(2)点(),A a b 是直线2y x =-上的一点,点B 是点A 的“友好点”. ①当B 点与A 点重合时,求点A 的坐标.②当A 点与A 点不重合时,求线段AB 的长度随着a 的增大而减小时,a 的取值范围. 【答案】(1)()41-,;(2)①点A 的坐标是()2,0或()1,1-;②当1a <或322a ≤<时,AB 的长度随着a 的增大而减小; 【解析】 【分析】(1)直接利用“友好点”定义进行解题即可;(2)先利用 “友好点”定义求出B 点坐标,A 点又在直线2y x =-上,得到2b a =-;①当点A 和点B 重合,得2b b =-.解出即可,②当点A 和点B 不重合, 1a ≠且2a ≠.所以对a 分情况讨论,1°、当1a <或2a >时,()222313224AB b b a a a ⎛⎫=--=-+=-- ⎪⎝⎭,所以当a ≤32时,AB 的长度随着a 的增大而减小,即取1a <.2°当12a <<时,()22231+3224AB b b a a a ⎛⎫=--=--=--+ ⎪⎝⎭,当32a ≥时,AB 的长度随着a 的增大而减小,即取322a ≤<. 综上,当1a <或322a ≤<时,AB 的长度随着a 的增大而减小. 【详解】(1)点()4,1,4>1,根据“友好点”定义,得到点()4,1的“友好点”的坐标是()41-, (2)Q 点(),A a b 是直线2y x =-上的一点,∴2b a =-.Q 2a a >-,根据友好点的定义,点B 的坐标为()2,B a b -,①当点A 和点B 重合,∴2b b =-. 解得0b =或1b =-. 当0b =时,2a =;当1b =-时,1a =,∴点A 的坐标是()2,0或()1,1-.②当点A 和点B 不重合,1a ≠且2a ≠.当1a <或2a >时,()222313224AB b b a a a ⎛⎫=--=-+=-- ⎪⎝⎭. ∴当a ≤32时,AB 的长度随着a 的增大而减小, ∴取1a <.当12a <<时, ()22231+3224AB b b a a a ⎛⎫=--=--=--+ ⎪⎝⎭ .∴当32a ≥时,AB 的长度随着a 的增大而减小, ∴取322a ≤<. 综上,当1a <或322a ≤<时,AB 的长度随着a 的增大而减小. 【点睛】本题属于阅读理解题型,结合二次函数的基本性质进行解题,第二问的第二小问的关键是求出AB 的长用a 进行表示,然后利用二次函数基本性质进行分类讨论4.如图,已知二次函数的图象过点O (0,0).A (8,4),与x 轴交于另一点B ,且对称轴是直线x =3.(1)求该二次函数的解析式;(2)若M 是OB 上的一点,作MN ∥AB 交OA 于N ,当△ANM 面积最大时,求M 的坐标;(3)P 是x 轴上的点,过P 作PQ ⊥x 轴与抛物线交于Q .过A 作AC ⊥x 轴于C ,当以O ,P ,Q 为顶点的三角形与以O ,A ,C 为顶点的三角形相似时,求P 点的坐标.【答案】(1)21342y x x =-;(2)当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0).【解析】 【分析】(1)先利用抛物线的对称性确定B (6,0),然后设交点式求抛物线解析式; (2)设M (t ,0),先其求出直线OA 的解析式为12y x =直线AB 的解析式为y=2x-12,直线MN 的解析式为y=2x-2t ,再通过解方程组1222y x y x t ⎧=⎪⎨⎪=-⎩得N (42t,t 33),接着利用三角形面积公式,利用S △AMN =S △AOM -S △NOM 得到AMN 112S 4t t t 223∆=⋅⋅-⋅⋅然后根据二次函数的性质解决问题; (3)设Q 213m,m m 42⎛⎫- ⎪⎝⎭,根据相似三角形的判定方法,当PQ PO OC AC=时,△PQO ∽△COA ,则213m m 2|m |42-=;当PQ POAC OC=时,△PQO ∽△CAO ,则2131m m m 422-=,然后分别解关于m 的绝对值方程可得到对应的P 点坐标. 【详解】解:(1)∵抛物线过原点,对称轴是直线x =3, ∴B 点坐标为(6,0),设抛物线解析式为y =ax (x ﹣6), 把A (8,4)代入得a•8•2=4,解得a =14, ∴抛物线解析式为y =14x (x ﹣6),即y =14x 2﹣32x ; (2)设M (t ,0),易得直线OA 的解析式为y =12x , 设直线AB 的解析式为y =kx+b ,把B (6,0),A (8,4)代入得6084k b k b +=⎧⎨+=⎩,解得k 2b 12=⎧⎨=-⎩,∴直线AB 的解析式为y =2x ﹣12, ∵MN ∥AB ,∴设直线MN 的解析式为y =2x+n , 把M (t ,0)代入得2t+n =0,解得n =﹣2t , ∴直线MN 的解析式为y =2x ﹣2t ,解方程组1222y x y x t ⎧=⎪⎨⎪=-⎩得4323x t y t ⎧=⎪⎪⎨⎪=⎪⎩,则42N t,t 33⎛⎫ ⎪⎝⎭, ∴S △AMN =S △AOM ﹣S △NOM1124t t t 223=⋅⋅-⋅⋅ 21t 2t 3=-+21(t 3)33=--+,当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0); (3)设213m,m m 42⎛⎫- ⎪⎝⎭, ∵∠OPQ =∠ACO , ∴当PQ PO OC AC =时,△PQO ∽△COA ,即PQ PO 84=, ∴PQ =2PO ,即213m m 2|m |42-=, 解方程213m m 2m 42-=得m 1=0(舍去),m 2=14,此时P 点坐标为(14,0); 解方程213m m 2m 42-=-得m 1=0(舍去),m 2=﹣2,此时P 点坐标为(﹣2,0); ∴当PQ PO AC OC =时,△PQO ∽△CAO ,即PQ PO 48=, ∴PQ =12PO ,即2131m m m 422-=,解方程2131m m m 422=-=得m 1=0(舍去),m 2=8,此时P 点坐标为(8,0); 解方程2131m m m 422=-=-得m 1=0(舍去),m 2=4,此时P 点坐标为(4,0); 综上所述,P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0). 【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.5.已知:如图,抛物线y=ax 2+bx+c 与坐标轴分别交于点A (0,6),B (6,0),C (﹣2,0),点P 是线段AB 上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣12x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣12t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A(0,6)代入,得:﹣12a=6,解得:a=﹣12,所以抛物线解析式为y=﹣12(x﹣6)(x+2)=﹣12x2+2x+6;(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB解析式为y=kx+b,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩,则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6),∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN =12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t=﹣32(t ﹣3)2+272,∴当t=3时,△PAB 的面积有最大值; (3)如图2,∵PH ⊥OB 于H , ∴∠DHB=∠AOB=90°, ∴DH ∥AO , ∵OA=OB=6, ∴∠BDH=∠BAO=45°, ∵PE ∥x 轴、PD ⊥x 轴, ∴∠DPE=90°,若△PDE为等腰直角三角形,则∠EDP=45°,∴∠EDP与∠BDH互为对顶角,即点E与点A重合,则当y=6时,﹣12x2+2x+6=6,解得:x=0(舍)或x=4,即点P(4,6).【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.6.如图:在平面直角坐标系中,直线l:y=13x﹣43与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=32.(1)求抛物线的解析式;(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x2﹣3x﹣4;(2)证明见解析;(3)点Q的坐标为(﹣2,6)或(2,﹣6).【解析】【分析】(1)先求得点A的坐标,然后依据抛物线过点A,对称轴是x=32列出关于a、c的方程组求解即可;(2)设P(3a,a),则PC=3a,PB=a,然后再证明∠FPC=∠EPB,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y y Q P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可.【详解】(1)当y=0时,14033x -=,解得x=4,即A (4,0),抛物线过点A ,对称轴是x=32,得161203322a c a -+=⎧⎪-⎨-=⎪⎩, 解得14a c =⎧⎨=-⎩,抛物线的解析式为y=x 2﹣3x ﹣4; (2)∵平移直线l 经过原点O ,得到直线m ,∴直线m 的解析式为y=13x . ∵点P 是直线1上任意一点, ∴设P (3a ,a ),则PC=3a ,PB=a .又∵PE=3PF ,∴PC PB PF PE=. ∴∠FPC=∠EPB .∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP ⊥PE .(3)如图所示,点E 在点B 的左侧时,设E (a ,0),则BE=6﹣a .∵CF=3BE=18﹣3a ,∴OF=20﹣3a .∴F (0,20﹣3a ).∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a . 将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=4或a=8(舍去).∴Q (﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18,∴OF=3a ﹣20.∴F (0,20﹣3a ).∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去).∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.7.课本中有一道作业题:有一块三角形余料ABC ,它的边BC=120mm ,高AD=80mm .要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上.问加工成的正方形零件的边长是多少mm ?小颖解得此题的答案为48mm ,小颖善于反思,她又提出了如下的问题.(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算.(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.【答案】(1)2407mm,4807mm;(2)PN=60mm,40PQ mm.【解析】【分析】(1)、设PQ=y(mm),则PN=2y(mm),AE=80-y(mm),根据平行得出△APN和△ABC 相似,根据线段的比值得出y的值,然后得出边长;(2)、根据第一题同样的方法得出y与x的函数关系式,然后求出S与x的函数关系式,根据二次函数的性质得出最大值.【详解】(1)、设PQ=y(mm),则PN=2y(mm),AE=80-y(mm)∵PN∥BC,∴=,△APN∽△ABC∴=∴=∴=解得 y=∴2y=∴这个矩形零件的两条边长分别为mm,mm(2)、设PQ=x(mm),PN=y(mm),矩形面积为S ,则AE=80-x(mm)..由(1)知=∴=∴ y=则S=xy===∵∴ S 有最大值∴当x=40时,S 最大=2400(mm 2) 此时,y==60 .∴面积达到这个最大值时矩形零件的两边PQ 、PN 长分别是40 mm ,60 mm .考点:三角形相似的应用8.在平面直角坐标系中,抛物线2y ax bx c =++过点(1,0)A -,(3,0)B ,与y 轴交于点C ,连接AC ,BC ,将OBC V 沿BC 所在的直线翻折,得到DBC △,连接OD .(1)用含a 的代数式表示点C 的坐标.(2)如图1,若点D 落在抛物线的对称轴上,且在x 轴上方,求抛物线的解析式. (3)设OBD V 的面积为S 1,OAC V 的面积为S 2,若1223S S =,求a 的值.【答案】(1)(0,3)C a -;(2) 抛物线的表达式为:252535y x =++; (3) 22a =-22a =【解析】【分析】(1)根据待定系数法,得到抛物线的表达式为:()2(1)(3)23y a x x a x x =+-=--,即可求解;(2)根据相似三角形的判定证明CPD DQB V V ∽,再根据相似三角形的性质得到CP PD CD DQ BQ BD==,即可求解; (3)连接OD 交BC 于点H ,过点H 、D 分别作x 轴的垂线交于点N 、M ,由三角形的面积公式得到1223S S =,29m DM =,11299m HN DM OC ===,而22899m HN ON BN ⎛⎫=⨯== ⎪⎝⎭,即可求解.【详解】(1)抛物线的表达式为:()2(1)(3)23y a x x a x x =+-=--,即3c a =-,则点(0,3)C a -;(2)过点B 作y 轴的平行线BQ ,过点D 作x 轴的平行线交y 轴于点P 、交BQ 于点Q , ∵90CDP PDC ︒∠+∠=,90PDC QDB ︒∠+∠=,∴QDB DCP ∠=∠,设:(1,)D n ,点(0,3)C a -,90CPD BQD ︒∠=∠=,∴CPD DQB V V ∽, ∴CP PD CD DQ BQ BD ==, 其中:3CP n a =+,312DQ =-=,1PD =,BQ n =,3CD a =-,3BD =, 将以上数值代入比例式并解得:55a =±, ∵0a <,故55a =-, 故抛物线的表达式为:252535y x x =-++; (3)如图2,当点C 在x 轴上方时,连接OD 交BC 于点H ,则DO BC ⊥,过点H 、D 分别作x 轴的垂线交于点N 、M ,设:3OC m a ==-,11322OBD S S OB DM DM ∆==⨯⨯=,2112OAC S S m ∆==⨯⨯,而1223S S=, 则29m DM =,11299m HN DM OC ===, ∴1193BN BO ==,则18333ON =-=, 则DO BC ⊥,HN OB ⊥,则BHN HON ∠=∠,则tan tan BHN HON ∠=∠,则22899m HN ON BN ⎛⎫=⨯== ⎪⎝⎭, 解得:62m =±(舍去负值),|3|62CO a =-=,解得:22a =-(不合题意值已舍去),故:22a =-.当点C 在x 轴下方时,同理可得:22a =;故:22a =-或22a =【点睛】本题考查的是二次函数综合运用、一次函数、三角形相似、图形的面积计算,其中(3)用几何方法得出:22899m HN ON BN ⎛⎫=⨯== ⎪⎝⎭,是本题解题的关键.9.如图,抛物线y=﹣(x ﹣1)2+c 与x 轴交于A ,B (A ,B 分别在y 轴的左右两侧)两点,与y 轴的正半轴交于点C ,顶点为D ,已知A (﹣1,0).(1)求点B ,C 的坐标;(2)判断△CDB 的形状并说明理由;(3)将△COB 沿x 轴向右平移t 个单位长度(0<t <3)得到△QPE .△QPE 与△CDB 重叠部分(如图中阴影部分)面积为S ,求S 与t 的函数关系式,并写出自变量t 的取值范围.【答案】(Ⅰ)B(3,0);C(0,3);(Ⅱ)CDB ∆为直角三角形;(Ⅲ)22333(0)221933(3)222t t t S t t t ⎧-+<≤⎪⎪=⎨⎪=-+<<⎪⎩. 【解析】【分析】(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B ,C 的坐标. (2)分别求出△CDB 三边的长度,利用勾股定理的逆定理判定△CDB 为直角三角形. (3)△COB 沿x 轴向右平移过程中,分两个阶段:①当0<t≤32时,如答图2所示,此时重叠部分为一个四边形; ②当32<t <3时,如答图3所示,此时重叠部分为一个三角形. 【详解】解:(Ⅰ)∵点()1,0A -在抛物线()21y x c =--+上, ∴()2011c =---+,得4c = ∴抛物线解析式为:()214y x =--+, 令0x =,得3y =,∴()0,3C ;令0y =,得1x =-或3x =,∴()3,0B .(Ⅱ)CDB ∆为直角三角形.理由如下:由抛物线解析式,得顶点D 的坐标为()1,4.如答图1所示,过点D 作DM x ⊥轴于点M ,则1OM =,4DM =,2BM OB OM =-=.过点C 作CN DM ⊥于点N ,则1CN =,1DN DM MN DM OC =-=-=. 在Rt OBC ∆中,由勾股定理得:BC === 在Rt CND ∆中,由勾股定理得:CD == 在Rt BMD ∆中,由勾股定理得:BD ===.∵222BC CD BD +=,∴CDB ∆为直角三角形.(Ⅲ)设直线BC 的解析式为y kx b =+,∵()()3,0,0,3B C ,∴303k b b +=⎧⎨=⎩, 解得1,3k b =-=,∴3y x =-+,直线QE 是直线BC 向右平移t 个单位得到,∴直线QE 的解析式为:()33y x t x t =--+=-++; 设直线BD 的解析式为y mx n =+,∵()()3,0,1,4B D ,∴304m n m n +=⎧⎨+=⎩,解得:2,6m n =-=, ∴26y x =-+.连续CQ 并延长,射线CQ 交BD 交于G ,则3,32G ⎛⎫ ⎪⎝⎭. 在COB ∆向右平移的过程中:(1)当302t <≤时,如答图2所示:设PQ 与BC 交于点K ,可得QK CQ t ==,3PB PK t ==-. 设QE 与BD 的交点为F ,则:263y x y x t =-+⎧⎨=-++⎩. 解得32x t y t =-⎧⎨=⎩, ∴()3,2F t t -. 111222QPE PBKFBE F S S S S PE PQ PB PK BE y ∆∆∆=--=⋅-⋅-⋅ ()221113333232222t t t t t =⨯⨯---⋅=-+. (2)当332t <<时,如答图3所示:设PQ 分别与BC BD 、交于点K 、点J .∵CQ t =,∴KQ t =,3PK PB t ==-. 直线BD 解析式为26y x =-+,令x t =,得62y t =-, ∴(),62J t t -.1122PBJ PBK S S S PB PJ PB PK ∆∆=-=⋅-⋅ ()()()211362322t t t =---- 219322t t =-+. 综上所述,S 与t 的函数关系式为:2233302219333222t t t S t t t ⎧⎛⎫-+<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪=-+<< ⎪⎪⎝⎭⎩.10.已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP =25cm .如图①,动点M 从点A 出发,在矩形边上沿着A B C →→的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),APM ∆的面积为S (cm ²),S 与t 的函数关系如图②所示: (1)直接写出动点M 的运动速度为 /cm s ,BC 的长度为 cm ;(2)如图③,动点M 重新从点A 出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N 从点D 出发,在矩形边上沿着D C B →→的方向匀速运动,设动点N 的运动速度为()/v cm s .已知两动点M 、N 经过时间()x s 在线段BC 上相遇(不包含点C ),动点M 、N 相遇后立即停止运动,记此时APM DPN ∆∆与的面积为()()2212,S cm S cm . ①求动点N 运动速度()/v cm s 的取值范围;②试探究12S S ⋅是否存在最大值.若存在,求出12S S ⋅的最大值并确定运动速度时间x 的值;若不存在,请说明理由.【答案】(1)2,10;(2)①2/6/3cm s v cm s ≤<;②当154x =时,12S S ⋅取最大值2254. 【解析】 【分析】(1)由题意可知图像中0~2.5s 时,M 在AB 上运动,求出速度,2.5~7.5s 时,M 在BC 上运动,求出BC 长度;(2)①分别求出在C 点相遇和在B 点相遇时的速度,取中间速度,注意C 点相遇时的速度不能取等于;②过M 点做MH ⊥AC ,则125MH CM ==得到S 1,同时利用12()PAD CDM ABM N ABCD S S S S S S ∆∆∆+=---(N )矩形=15,得到S 2,再得到12S S ⋅关于x 的二次函数,利用二次函数性质求得最大值 【详解】(1)5÷2.5=2/cm s ;(7.5-2.5)×2=10cm (2)①解:在C 点相遇得到方程57.5v= 在B 点相遇得到方程152.5v=∴5=7.515=2.5 vv⎧⎪⎪⎨⎪⎪⎩解得23=5vv⎧=⎪⎨⎪⎩∵在边BC上相遇,且不包含C点∴2/6/3cm s v cm s≤<②如下图12()PAD CDM ABM NABCDS S S S S S∆∆∆+=---(N)矩形()()5152525751022x x⨯-⨯-=---=15过M点做MH⊥AC,则125MH CM==∴112152S MH AP x=⋅=-+∴22S x=()122152S S x x⋅=-+⋅=2430x x-+=215225444x⎛⎫--+⎪⎝⎭因为152.57.54<<,所以当154x=时,12S S⋅取最大值2254.【点睛】本题重点考查动点问题,二次函数的应用,求不规则图形的面积等知识点,第一问关键能够从图像中得到信息,第二问第一小问关键在理清楚运动过程,第二小问关键在能够用x 表示出S1和S211.如图,抛物线与x轴交于点A(,0)、点B(2,0),与y轴交于点C(0,1),连接BC.(1)求抛物线的函数关系式;(2)点N为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t (),求△ABN的面积S与t的函数关系式;(3)若且时△OPN∽△COB,求点N的坐标.【答案】(1);(2);(3)(,)或(1,2).【解析】试题分析:(1)可设抛物线的解析式为,用待定系数法就可得到结论;(2)当时,点N在x轴的上方,则NP等于点N的纵坐标,只需求出AB,就可得到S与t的函数关系式;(3)由相似三角形的性质可得PN=2PO.而PO=,需分和0<t<2两种情况讨论,由PN=2PO得到关于t的方程,解这个方程,就可得到答案.试题解析:(1)设抛物线的解析式为,把C(0,1)代入可得:,∴,∴抛物线的函数关系式为:,即;(2)当时,>0,∴NP===,∴S=AB•PN==;(3)∵△OPN ∽△COB ,∴,∴,∴PN=2PO . ①当时,PN===,PO==,∴,整理得:,解得:=,=,∵>0,<<0,∴t=,此时点N 的坐标为(,);②当0<t <2时,PN===,PO==t ,∴,整理得:,解得:=,=1.∵<0,0<1<2,∴t=1,此时点N 的坐标为(1,2).综上所述:点N 的坐标为(,)或(1,2).考点:1.二次函数综合题;2.待定系数法求二次函数解析式;3.相似三角形的性质.12.某大学生利用暑假40天社会实践参与了一家网店经营,了解到一种成本为20元/件的新型商品在第x 天销售的相关信息如下表所示. 销售量p (件)P=50—x销售单价q (元/件)当1≤x≤20时,1q 30x 2=+当21≤x≤40时,525q 20x=+(1)请计算第几天该商品的销售单价为35元/件? (2)求该网店第x 天获得的利润y 关于x 的函数关系式. (3)这40天中该网店第几天获得的利润最大?最大利润是多少? 【答案】(1)第10天或第35天该商品的销售单价为35元/件(2)()()21x 15x 5001x 202y {2625052521x 40x-++≤≤=-≤≤(3)这40天中该网店第21天获得的利润最大?最大利润是725元 【解析】 【分析】(1)分别将q=35代入销售单价关于x 的函数关系式,求出x 即可. (2)应用利润=销售收入-销售成本列式即可.(3)应用二次函数和反比例函数的性质,分别求出最大值比较即得所求. 【详解】解:(1)当1≤x≤20时,令1q 30x 352=+=,解得;x 10=; 当21≤x≤40时,令525q 2035x=+=,解得;x 35=. ∴第10天或第35天该商品的销售单价为35元/件.(2)当1≤x≤20时,()211y 30x 2050x x 15x 50022⎛⎫=+--=-++ ⎪⎝⎭; 当21≤x≤40时,()52526250y 202050x 525x x ⎛⎫=+--=- ⎪⎝⎭. ∴y 关于x 的函数关系式为()()21x 15x 5001x 202y {2625052521x 40x-++≤≤=-≤≤.(3)当1≤x≤20时,()2211y x 15x 500x 15612.522=-++=--+, ∵102-<,∴当x=15时,y 有最大值y 1,且y 1=612.5. 当21≤x≤40时,∵26250>0,∴26250x随着x 的增大而减小, ∴当x=21时,26250y 525x =-有最大值y 2,且226250y 52572521=-=. ∵y 1<y 2,∴这40天中该网店第21天获得的利润最大?最大利润是725元.13.综合与探究 如图,抛物线y=211433x x --与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC ,BC .点P 是第四象限内抛物线上的一个动点,点P 的横坐标为m ,过点P 作PM ⊥x 轴,垂足为点M ,PM 交BC 于点Q ,过点P 作PE ∥AC 交x 轴于点E ,交BC 于点F .(1)求A ,B ,C 三点的坐标;(2)试探究在点P 运动的过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.【答案】(1)C(0,﹣4);(2)Q点坐标为(522,522﹣4)或(1,﹣3);(3)当m=2时,QF有最大值.【解析】【分析】(1)解方程13x2−13x-4=0得A(-3,0),B(4,0),计算自变量为0时的二次函数值得C点坐标;(2)利用勾股定理计算出AC=5,利用待定系数法可求得直线BC的解析式为y=x-4,则可设Q(m,m-4)(0<m<4),讨论:当CQ=CA时,则m2+(m-4+4)2=52,当AQ=AC时,(m+3)2+(m-4)2=52;当QA=QC时,(m+3)2+(m-4)2=52,然后分别解方程求出m即可得到对应的Q点坐标;(3)过点F作FG⊥PQ于点G,如图,由△OBC为等腰直角三角形.可判断△FQG为等腰直角三角形,则FG=QG=22FQ,再证明△FGP~△AOC得到34FG PG=,则PG=223FQ,所以PQ=26FQ,于是得到FQ=327PQ,设P(m,13m2-13m-4)(0<m<4),则Q(m,m-4),利用PQ=-13m2+43m得到32-13m2+43m),然后利用二次函数的性质解决问题.【详解】(1)当y=0,13x2−13x-4=0,解得x1=-3,x2=4,∴A(-3,0),B(4,0),当x=0,y=13x2−13x-4=-4,∴C(0,-4);(2)2234=5+,易得直线BC的解析式为y=x-4,设Q (m ,m-4)(0<m <4),当CQ=CA 时,m 2+(m-4+4)2=52,解得m 1=522,m 2=-522(舍去),此时Q 点坐标为(522,522-4); 当AQ=AC 时,(m+3)2+(m-4)2=52,解得m 1=1,m 2=0(舍去),此时Q 点坐标为(1,-3);当QA=QC 时,(m+3)2+(m-4)2=52,解得m=252(舍去), 综上所述,满足条件的Q 点坐标为(522,522-4)或(1,-3); (3)解:过点F 作FG ⊥PQ 于点G ,如图,则FG ∥x 轴.由B (4,0),C (0,-4)得△OBC 为等腰直角三角形 ∴∠OBC=∠QFG=45 ∴△FQG 为等腰直角三角形, ∴FG=QG=22FQ , ∵PE ∥AC ,PG ∥CO , ∴∠FPG=∠ACO , ∵∠FGP=∠AOC=90°, ∴△FGP ~△AOC . ∴FG PG OA CO =,即34FG PG=, ∴PG=43FG=43222FQ , ∴PQ=PG+GQ=23FQ+22FQ=26FQ , ∴32PQ ,设P(m,13m2-13m-4)(0<m<4),则Q(m,m-4),∴PQ=m-4-(13m2-13m-4)=-13m2+43m,∴FQ=32(-13m2+43m)=-27(m-2)2+42∵-27<0,∴QF有最大值.∴当m=2时,QF有最大值.【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质,会利用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.14.抛物线,若a,b,c满足b=a+c,则称抛物线为“恒定”抛物线.(1)求证:“恒定”抛物线必过x轴上的一个定点A;(2)已知“恒定”抛物线的顶点为P,与x轴另一个交点为B,是否存在以Q为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形?若存在,求出抛物线解析式;若不存在,请说明理由.【答案】(1)证明见试题解析;(2),或.【解析】试题分析:(1)由“恒定”抛物线的定义,即可得出抛物线恒过定点(﹣1,0);(2)求出抛物线的顶点坐标和B的坐标,由题意得出PA∥CQ,PA=CQ;存在两种情况:①作QM⊥AC于M,则QM=OP=,证明Rt△QMC≌Rt△POA,MC=OA=1,得出点Q的坐标,设抛物线的解析式为,把点A坐标代入求出a的值即可;②顶点Q在y轴上,此时点C与点B重合;证明△OQC≌△OPA,得出OQ=OP=,得出点Q坐标,设抛物线的解析式为,把点C坐标代入求出a的值即可.试题解析:(1)由“恒定”抛物线,得:b=a+c,即a﹣b+c=0,∵抛物线,当x=﹣1时,y=0,∴“恒定”抛物线必过x轴上的一个定点A(﹣1,0);(2)存在;理由如下:∵“恒定”抛物线,当y=0时,,解得:x=±1,∵A(﹣1,0),∴B(1,0);∵x=0时,y=,∴顶点P的坐标为(0,),以PA,CQ为边的平行四边形,PA、CQ是对边,∴PA∥CQ,PA=CQ,∴存在两种情况:①如图1所示:作QM⊥AC于M,则QM=OP=,∠QMC=90°=∠POA,在Rt△QMC和Rt△POA中,∵CQ=PA,QM=OP,∴Rt△QMC≌Rt△POA(HL),∴MC=OA=1,∴OM=2,∵点A和点C是抛物线上的对称点,∴AM=MC=1,∴点Q的坐标为(﹣2,),设以Q为顶点,与x轴另一个交点为C的“恒定”抛物线的解析式为,把点A(﹣1,0)代入得:a=,∴抛物线的解析式为:,即;②如图2所示:顶点Q在y轴上,此时点C与点B重合,∴点C坐标为(1,0),∵CQ∥PA,∴∠OQC=∠OPA,在△OQC和△OPA中,∵∠OQC=∠OPA,∠COQ=∠AOP,CQ=PA,∴△OQC≌△OPA(AAS),∴OQ=OP=,∴点Q坐标为(0,),设以Q为顶点,与x轴另一个交点为C的“恒定”抛物线的解析式为,把点C(1,0)代入得:a=,∴抛物线的解析式为:;综上所述:存在以Q为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形,抛物线的解析式为:,或.考点:1.二次函数综合题;2.压轴题;3.新定义;4.存在型;5.分类讨论.15.如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM;(3)探究:①当k=0时,直线y=kx与x轴重合,求出此时的值;②试说明无论k取何值,的值都等于同一个常数.【答案】解:(1)y=x2﹣1(2)详见解析(3)详见解析【解析】【分析】(1)把点C、D的坐标代入抛物线解析式求出a、c,即可得解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴
综上所述, 点坐标为
故存在点Q,且这样的点有两个点.
【点睛】
(1)本题考查了利用待定系数法求二次函数解析式,根据已知条件选用顶点式较方便;
(2)本题是三角形面积的最值问题,解决这个问题应该在分析图形的基础上,引出自变量,再根据图形的特征列出面积的计算公式,用含自变量的代数式表示面积的函数式,然后求出最值.
则直线 的函数解析式为
则
(舍去),
点 的坐标为
综上可得,点 的坐标为 或
【点睛】
本题考查二次函数的图象及性质,一次函数的性质,熟练掌握二次函数的图象及性质,结合数形结合的思想和分类讨论的思想解题是解本题的关键.
2.如图所示,在平面直角坐标系中,抛物线 的顶点坐标为 ,并与 轴交于点 ,点 是对称轴与 轴的交点.
【答案】(1)(1,0);(2)① ;②存在,点 的坐标为 或 .
【解析】
【分析】
(1)直接令 ,即可求出点B的坐标;
(2)①令x=0,求出点C坐标为(0,a),再由△ABC的面积得到 (1−a)•(−a)=6即可求a的值,即可得到解析式;
②当点P在x轴上方时,直线OP的函数表达式为y=3x,则直线与抛物线的交点为P;当点P在x轴下方时,直线OP的函数表达式为y=-3x,则直线与抛物线的交点为P;分别求出点P的坐标即可.
【详解】
解: 抛物线顶点为
可设抛物线解析式为
将 代入 得
抛物线 ,即
连接 ,
设 点坐标为
当 时, 最大值为
存在,设点D的坐标为
过 作对称轴的垂线,垂足为 ,
则
在 中有
化简得
(舍去),
∴点D( ,-3)
连接 ,在 中
在以 为圆心, 为半径的圆与 轴的交点上
此时
设 点为(0,m), AQ为 的半径
则AQ²=OQ²+OA², 6²=m²+3²
(3)由(1)的结论可得出点 的坐标为 , 、点 的坐标为 , ,由 、 、 三点共线可得出 ,进而可得出点 及点 的坐标,由点 、 的坐标利用待定系数法可求出直线 的解析式,利用一次函数图象上点的坐标特征可得出点 在直线 上,进而即可证出 平分 .
【详解】
解:(1)把点 、 分别代入,得
.
所以 .
【详解】
解: 当 时,
解得
点 位于点 的左侧,与 轴的负半轴交于点
点 坐标为 .
由 可得,点 的坐标为 ,
设直线 的解析式为
则
.
当点 在 轴上方时,直线 直线
直线 的函数解析式 为
则
(舍去),
点的 坐标为 ;
当点 在 轴下方时,直线 与直线 关于 轴对称,
九年级数学 二次函数易错题(Word版 含答案)
一、初三数学二次函数易错题压轴题(难)
1.如图,抛物线 与 轴交于 两点(点 位于点 的左侧),与 轴的负半轴交于点 .
求点 的坐标.
若 的面积为 .
①求这条抛物线相应的函数解析式.
②在拋物线上是否存在一点 使得 ?若存在,请求出点 的坐标;若不存在,请说明理由.
(2),如图1,
当 时, ,
, ,
当 时, 随 的增大而减小;
同理:当 时, 随 的增大而增大,
抛物线的对称轴为 轴,开口向上,
.
为半径的圆与拋物线的另两个交点为 、 ,
为等腰三角形,
又 有一个内角为 ,
为等边三角形.
设线段 与 轴交于点 ,则 ,且 ,
又 ,
, .
不妨设点 在 轴右侧,则点 的坐标为 , .
(3)在(2)的条件下,若点 与点 关于点 对称,且 、 、 三点共线,求证: 平分 .
【答案】(1) ;(2) ;(3)见解析.
【解析】
【分析】
(1)把点 、 代入抛物线解析式,然后整理函数式即可得到答案.
(2)根据二次函数的性质可得出抛物线的对称轴为 轴、开口向上,进而可得出 ,由抛物线的对称性可得出 为等腰三角形,结合其有一个 的内角可得出 为等边三角形,设线段 与 轴交于点 ,根据等边三角形的性质可得出点 的坐标,再利用待定系数法可求出 值,此题得解;
点 在抛物线上,且 , ,
,
,
抛物线的解析式为 .
(3)证明:由(1)可知,点 的坐标为 , ,点 的坐标为 , .
如图2,直线 的解析式为 .
、 、 三点共线,
, ,且 ,
,
,
,即 ,
点 的坐标为 , .
设点 关于 轴的对称点为点 ,则点 的坐标为 , .
点 是点 关于点 的对称点,
,
点 的坐标为 .
(3)先求抛物线上点的坐标问题及符合条件的点是否存在.一般先假设这个点存在,再根据已知条件求出这个点.
3.已知抛物线 过点 .
(1)若点 也在该抛物线上,请用含 的关系式表示 ;
(2)若该抛物线上任意不同两点 、 都满足:当 时, ;当 时, ;若以原点 为圆心, 为半径的圆与抛物线的另两个交点为 、 (点 在点 左侧),且 有一个内角为 ,求抛物线的解析式;
【解析】
【分析】
(1)利用待定系数法可求出二次函数的解析式;
(2)求三角形面积的最值,先求出三角形面积的函数式.从图形上看S△PAB=S△BPO+S△APO-S△AOB,设P 求出关于n的函数式,从而求S△PAB的最大值.
(3)求点D的坐标,设D ,过D做DG垂直于AC于G,构造直角三角形,利用勾股定理或三角函数值来求t的值即得D的坐标;探究在y轴上是否存在点 ,使 ?根据以上条件和结论可知∠CAD=120°,是∠CQD的2倍,联想到同弧所对的圆周角和圆心角,所以以A为圆心,AO长为半径做圆交y轴与点Q,若能求出这样的点,就存在Q点.
(1)求抛物线的解析式;
(2)如图①所示, 是抛物线上的一个动点,且位于第一象限,连结BP、AP,求 的面积的最大值;
(3)如图②所示,在对称轴 的右侧作 交抛物线于点 ,求出 点的坐标;并探究:在 轴上是否存在点 ,使 ?若存在,求点 的坐标;若不存在,请说明理由.
【答案】(1) ;(2)当 时, 最大值为 ;(3)存在, 点坐标为 ,理由见解析
设直线 的解析式为 ,
点 的坐标为 , ,
,
,
直线 的解析式为 .
,
点 在直线 上,
平分 .
【点睛】
本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质、等边三角形的性质以及一次(二次)函数图象上点的坐标特征,解题的关键是:(1)利用二次函数图象上点的坐标特征求出 、 满足的关系式;(2)①利用等边三角形的性质找出点 的坐标;②利用一次函数图象上点的坐标特征找出点 在直线 上.