数学建模课程设计

合集下载

数学建模教案设计

数学建模教案设计

数学建模教案设计一、教学内容本节课选自《数学建模》教材第四章第一节,详细内容为多变量线性规划及其应用。

主要包括多变量线性规划模型的建立、求解方法以及实际应用案例。

二、教学目标1. 理解多变量线性规划的概念,掌握其数学表达形式。

2. 学会使用单纯形法求解多变量线性规划问题。

3. 能够将实际问题抽象为多变量线性规划模型,并运用所学知识解决实际问题。

三、教学难点与重点教学难点:多变量线性规划模型的建立与求解。

教学重点:单纯形法的应用以及实际问题的建模。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:数学建模教材、练习本、计算器。

五、教学过程1. 实践情景引入(5分钟)利用多媒体展示一个实际生产问题,引导学生思考如何优化生产方案。

2. 知识讲解(15分钟)讲解多变量线性规划的基本概念、数学表达形式及求解方法。

3. 例题讲解(20分钟)通过一个具体例题,演示如何将实际问题抽象为多变量线性规划模型,并运用单纯形法求解。

4. 随堂练习(15分钟)学生独立完成一道类似例题的练习,教师巡回指导。

6. 课堂小结(5分钟)回顾本节课所学内容,强调重点、难点。

六、板书设计1. 多变量线性规划概念及数学表达形式2. 单纯形法求解步骤3. 实际问题建模过程4. 例题解答过程七、作业设计1. 作业题目:(1)求解下列多变量线性规划问题:max z = 2x1 + 3x2s.t. x1 + 2x2 ≤ 4x1 + x2 ≤ 3x1, x2 ≥ 0某工厂生产两种产品,产品A和产品B。

生产一个A产品需要2小时工时和3小时机器时,生产一个B产品需要1小时工时和2小时机器时。

工厂每天有8小时工时和12小时机器时可用,问如何安排生产计划,才能使每天生产的A产品和B产品总价值最大?答案:(1)max z = 4x1 = 2, x2 = 0(2)max z = 18x1 = 3, x2 = 2八、课后反思及拓展延伸1. 反思:本节课学生对多变量线性规划的建模和求解掌握程度,以及课堂互动情况。

什么是数学建模课程设计

什么是数学建模课程设计

什么是数学建模课程设计一、课程目标知识目标:1. 理解数学建模的基本概念,掌握数学建模的主要方法。

2. 学会运用数学知识解决实际问题,提高数学应用能力。

3. 了解数学建模在自然科学、社会科学等领域的应用,拓展知识视野。

技能目标:1. 培养学生运用数学语言进行逻辑推理和分析问题的能力。

2. 提高学生运用数学软件和工具进行数据分析和模型构建的技能。

3. 培养学生团队协作和沟通表达能力,提高解决问题的综合素质。

情感态度价值观目标:1. 培养学生对数学建模的兴趣和热情,激发学生主动探索的精神。

2. 培养学生面对复杂问题时,保持积极的心态,勇于克服困难。

3. 增强学生的创新意识,培养将数学知识应用于实际问题的责任感。

课程性质分析:本课程为选修课程,旨在提高学生的数学应用能力和综合素质。

通过数学建模的学习,使学生掌握运用数学知识解决实际问题的方法,培养创新意识和团队协作能力。

学生特点分析:本课程面向初中年级学生,学生在数学基础知识和逻辑思维能力方面有一定基础,但对数学建模的了解相对较少。

因此,课程设计需注重激发学生兴趣,引导学生主动参与。

教学要求:1. 注重理论与实践相结合,让学生在实际问题中感受数学建模的魅力。

2. 创设生动活泼的课堂氛围,鼓励学生提问、讨论,培养学生的创新思维。

3. 加强团队合作,提高学生沟通协作能力,使学生在合作中共同成长。

二、教学内容1. 数学建模基本概念:介绍数学建模的定义、意义和分类,使学生了解数学建模的广泛应用。

教材章节:第一章 数学建模简介2. 数学建模方法:讲解线性规划、非线性规划、整数规划等基本建模方法,以及差分方程、微分方程等在数学建模中的应用。

教材章节:第二章 数学建模方法3. 数据分析与处理:学习如何收集数据、整理数据、分析数据,掌握利用数学软件进行数据处理的方法。

教材章节:第三章 数据分析与处理4. 数学建模实例分析:分析实际案例,让学生了解数学建模在自然科学、社会科学等领域的具体应用。

数学建模教案设计

数学建模教案设计

数学建模教案设计第一章:数学建模概述1.1 数学建模的定义与意义1.2 数学建模的方法与步骤1.3 数学建模的应用领域1.4 数学建模的基本技能要求第二章:数学建模的基本技能2.1 数学符号与表达式的应用2.2 数学模型的构建与分析2.3 数学模型的求解与优化2.4 数学建模软件的使用技巧第三章:数学建模实例解析3.1 线性规划模型的构建与求解3.2 非线性规划模型的构建与求解3.3 微分方程模型的构建与求解3.4 差分方程模型的构建与求解第四章:数学建模竞赛与实践4.1 数学建模竞赛的类型与规则4.2 数学建模竞赛的准备与策略4.3 数学建模竞赛的案例分析4.4 数学建模实践项目的选择与实施第五章:数学建模在实际问题中的应用5.2 数学建模在工程学中的应用5.3 数学建模在生物学中的应用5.4 数学建模在社会科学中的应用第六章:数学建模的软件工具6.1 MATLAB 在数学建模中的应用6.2 Python 编程在数学建模中的应用6.3 R 语言在数学建模中的应用6.4 MAThematica 在数学建模中的应用第七章:数学建模的策略与技巧7.1 构建数学模型的策略7.2 模型求解的技巧与方法7.3 模型验证与误差分析7.4 模型优化与调整策略第八章:数学建模竞赛案例分析8.1 国内外数学建模竞赛经典案例8.2 数学建模竞赛案例的解析与评价8.3 数学建模竞赛案例的启示与建议8.4 数学建模竞赛案例的实践与反思第九章:数学建模在科研中的应用9.1 数学建模在自然科学中的应用9.2 数学建模在工程技术中的应用9.4 数学建模在跨学科研究中的应用第十章:数学建模的未来发展趋势10.1 数学建模与的融合10.2 大数据背景下的数学建模10.3 数学建模在生物信息学中的应用10.4 数学建模在其他领域的创新应用重点和难点解析一、数学建模的定义与意义重点:理解数学建模的概念,掌握数学建模在实际问题解决中的应用价值。

数学建模课教学设计

数学建模课教学设计

数学建模课教学设计在数学建模课的教学设计中,教师需要综合考虑学生的实际情况,灵活运用不同的教学方法,激发学生的学习兴趣和动力。

以下是一个针对数学建模课的教学设计方案,旨在帮助教师更好地开展教学工作。

一、课程背景分析1.1 课程目标数学建模课是培养学生分析问题、解决问题的能力,提高数学应用技能的重要途径。

因此,教学目标应该明确,包括培养学生的数学建模意识、提高数学建模能力、促进学生综合运用数学知识解决实际问题的能力等。

1.2 学生特点在进行数学建模课的教学设计时,需要充分考虑学生的年龄特点、认知水平、数学基础等方面因素。

针对不同年级的学生,可以采取不同的教学方法和策略,以便更好地激发他们的学习兴趣和潜能。

二、教学内容安排2.1 理论知识讲解在数学建模课的教学过程中,教师首先要对数学建模的基本理论知识进行讲解,包括建模的概念、建模的基本步骤、常用的数学建模方法等。

通过系统的理论知识讲解,可以帮助学生建立起对数学建模的整体认识。

2.2 实例分析与实践操作除了理论知识讲解外,数学建模课的教学设计中还需要包括实例分析和实践操作环节。

通过对实际问题的案例分析,可以帮助学生将抽象的数学概念与实际问题相联系,培养他们的问题解决能力和创新思维。

2.3 小组合作与讨论数学建模是一个复杂的过程,需要团队协作和集体智慧。

因此,在教学设计中,可以设置小组合作与讨论环节,让学生在团队中相互交流、互相学习,共同解决给定的数学建模问题。

三、教学评估与反馈3.1 定期测验与考核为了及时检测学生的学习情况,教学设计中可以设置定期测验与考核环节。

通过考核,可以评估学生对数学建模知识的掌握程度,及时发现问题并进行调整。

3.2 作业批改与评价学生的作业是了解他们学习情况的重要依据。

因此,在教学设计中需要考虑作业批改与评价环节,及时给予学生反馈,指导他们改进学习方法,提高学习效果。

四、教学反思与优化在进行数学建模课的教学设计和实施过程中,教师需要不断进行反思和总结,发现问题、解决问题,不断优化教学策略和方法,提高教学效果。

数学建模课程设计学什么

数学建模课程设计学什么

数学建模课程设计学什么一、课程目标知识目标:1. 理解数学建模的基本概念和原理,掌握建模的基本方法和步骤。

2. 能够运用所学数学知识解决实际问题,建立数学模型,并运用模型进行分析和预测。

3. 掌握数学软件在数学建模中的应用,能够运用软件工具进行数据处理和模型求解。

技能目标:1. 培养学生的观察能力和问题发现能力,能够从现实问题中抽象出数学模型。

2. 培养学生的数据分析能力,能够运用数学方法对实际问题进行合理假设和简化。

3. 培养学生的团队协作能力,学会与他人合作共同解决问题。

情感态度价值观目标:1. 培养学生对数学建模的兴趣和热情,激发学生主动探索和创新的欲望。

2. 培养学生面对问题的积极态度,敢于挑战困难,善于从失败中吸取经验。

3. 培养学生的科学素养,认识到数学建模在解决实际问题中的重要作用,增强社会责任感。

本课程针对的是高年级学生,他们在数学知识储备和逻辑思维能力方面具备一定的基础。

课程性质为理论与实践相结合,注重培养学生的实际操作能力和创新意识。

在教学过程中,教师应关注学生的个体差异,引导他们运用所学知识解决实际问题,并通过多元化的教学手段激发学生的学习兴趣,确保课程目标的实现。

通过本课程的学习,学生将能够具备运用数学建模方法解决实际问题的能力,为未来的学术研究和职业发展打下坚实基础。

二、教学内容本课程教学内容主要包括以下几部分:1. 数学建模基本概念:介绍数学建模的定义、作用和基本步骤,使学生了解数学建模的整体框架。

2. 数学建模方法:学习线性规划、非线性规划、差分方程、概率统计等数学建模方法,并结合实际案例进行分析。

3. 数学软件应用:学习数学建模软件(如MATLAB、Lingo等)的基本操作,掌握软件在数据处理、模型求解等方面的应用。

4. 实践案例分析:分析典型的数学建模案例,使学生了解数学建模在各个领域的应用,并学会运用所学知识解决实际问题。

5. 数学建模竞赛:组织学生参加数学建模竞赛,锻炼学生的团队协作能力和实际操作能力。

《数学建模》课程教案

《数学建模》课程教案

《数学建模》课程教案一、教学内容本节课的教学内容选自《数学建模》教材的第五章,主要内容包括线性规划模型的建立、图与网络模型的建立、整数规划模型的建立以及非线性规划模型的建立。

通过本节课的学习,使学生掌握数学建模的基本方法和技巧,培养学生解决实际问题的能力。

二、教学目标1. 让学生掌握线性规划、图与网络、整数规划和非线性规划模型的建立方法。

2. 培养学生运用数学知识解决实际问题的能力。

3. 提高学生的团队协作能力和创新意识。

三、教学难点与重点1. 教学难点:线性规划、图与网络、整数规划和非线性规划模型的建立及求解。

2. 教学重点:线性规划模型的建立和求解。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:教材、笔记本、文具。

五、教学过程1. 实践情景引入:以一个工厂生产安排的问题为例,引入线性规划模型的建立和求解。

2. 知识点讲解:(1)线性规划模型的建立:讲解目标函数的设定、约束条件的确定以及线性规划模型的标准形式。

(2)图与网络模型的建立:讲解图的概念、图的表示方法以及网络模型的建立。

(3)整数规划模型的建立:讲解整数规划的概念和建立方法。

(4)非线性规划模型的建立:讲解非线性规划的概念和建立方法。

3. 例题讲解:选取具有代表性的例题,讲解模型建立和求解的过程。

4. 随堂练习:让学生分组讨论并解决实际问题,巩固所学知识。

六、板书设计板书设计如下:1. 线性规划模型:目标函数约束条件标准形式2. 图与网络模型:图的概念图的表示方法网络模型的建立3. 整数规划模型:整数规划的概念整数规划的建立方法4. 非线性规划模型:非线性规划的概念非线性规划的建立方法七、作业设计1. 作业题目:(1)根据给定的条件,建立线性规划模型,并求解。

(2)根据给定的条件,建立图与网络模型,并求解。

(3)根据给定的条件,建立整数规划模型,并求解。

(4)根据给定的条件,建立非线性规划模型,并求解。

2. 答案:(1)线性规划模型的目标函数为:Z = 2x + 3y,约束条件为:x + y ≤ 6,2x + y ≤ 8,x ≥ 0,y ≥ 0。

数学建模课程方案设计模板

数学建模课程方案设计模板

一、课程概述1. 课程名称:数学建模2. 课程性质:专业基础课、实践性课程3. 课程目标:通过本课程的学习,使学生掌握数学建模的基本理论、方法和技巧,培养学生的数学思维能力、创新能力和解决实际问题的能力。

4. 适用对象:理工科专业学生二、课程内容1. 基本概念与理论(1)数学建模的基本概念(2)数学建模的常用方法(3)数学建模的常用软件2. 数理方法(1)线性代数(2)概率论与数理统计(3)微分方程3. 案例分析(1)实际问题背景介绍(2)数学模型建立(3)模型求解与分析(4)模型验证与应用4. 实践与作业(1)课程实验(2)课程设计(3)课后作业三、教学方法1. 讲授法:系统讲解数学建模的基本理论、方法和技巧。

2. 案例分析法:通过分析实际问题,使学生掌握数学建模的思路和方法。

3. 实践操作法:通过课程实验、课程设计和课后作业,培养学生的实际操作能力。

4. 混合式教学法:结合线上与线下教学资源,提高学生的学习效果。

四、教学手段1. 多媒体课件:制作精美、内容丰富的多媒体课件,提高教学效果。

2. 网络教学平台:利用网络教学平台,实现线上教学资源共享和互动交流。

3. 实验室:提供实验设备,让学生进行实际操作,提高实践能力。

4. 校外资源:与相关企业、研究机构合作,为学生提供实习和就业机会。

五、考核方式1. 平时成绩:包括课堂表现、作业完成情况等,占总成绩的30%。

2. 实验成绩:包括实验报告、实验操作等,占总成绩的20%。

3. 课程设计成绩:包括设计报告、设计答辩等,占总成绩的30%。

4. 期末考试成绩:包括笔试、口试等,占总成绩的20%。

六、课程实施1. 制定教学计划:根据课程内容,制定详细的教学计划,确保教学进度和质量。

2. 教学组织:合理安排教学时间,确保教学任务顺利完成。

3. 教学评价:定期对教学效果进行评价,及时调整教学方法和手段。

4. 学生辅导:为学生提供必要的辅导,帮助学生解决学习中遇到的问题。

数学建模课程方案模板

数学建模课程方案模板

一、课程名称数学建模二、课程背景数学建模是现代科学研究和工程技术中一种重要的研究方法,它将实际问题转化为数学模型,通过数学方法求解模型,从而为实际问题提供解决方案。

随着我国科学技术的发展,数学建模在各个领域都得到了广泛应用。

为了培养学生的数学思维能力和解决实际问题的能力,特开设此课程。

三、课程目标1. 使学生掌握数学建模的基本概念、方法和步骤;2. 培养学生运用数学知识解决实际问题的能力;3. 提高学生的团队合作和沟通能力;4. 培养学生的创新意识和实践能力。

四、课程内容1. 数学建模的基本概念和步骤2. 常用数学模型及其应用3. 数值计算和计算机编程4. 数学软件的使用5. 案例分析6. 实践项目五、教学安排1. 理论教学:32课时2. 实践教学:32课时3. 总课时:64课时六、教学方法1. 讲授法:系统讲解数学建模的基本概念、方法和步骤;2. 案例分析法:通过实际案例,引导学生掌握数学建模的技巧;3. 实践教学:组织学生进行数学建模实践,培养学生的动手能力;4. 讨论法:鼓励学生积极参与课堂讨论,提高学生的思考能力和表达能力。

七、考核方式1. 平时成绩(40%):包括课堂表现、作业完成情况等;2. 实践项目成绩(40%):根据学生在实践项目中的表现进行评定;3. 期末考试(20%):考察学生对数学建模知识的掌握程度。

八、教材与参考资料1. 教材:《数学建模》2. 参考资料:- 《数学建模案例分析》- 《MATLAB数值计算与编程》- 《数学软件使用指南》九、课程特色1. 注重理论与实践相结合,提高学生的实际应用能力;2. 强调团队合作,培养学生的沟通能力和协作精神;3. 采用多种教学方法,激发学生的学习兴趣和积极性;4. 跟踪科技发展动态,关注数学建模在各个领域的应用。

十、课程预期效果通过本课程的学习,学生能够:1. 掌握数学建模的基本概念、方法和步骤;2. 具备运用数学知识解决实际问题的能力;3. 提高团队合作和沟通能力;4. 培养创新意识和实践能力。

中学生数学建模课程设计

中学生数学建模课程设计

中学生数学建模课程设计一、课程目标知识目标:1. 让学生掌握数学建模的基本概念和原理,理解数学模型在解决实际问题中的应用。

2. 使学生掌握运用数学知识构建模型、分析问题和解决问题的方法。

3. 培养学生对数学符号、公式和图表的理解和运用能力。

技能目标:1. 培养学生运用数学软件或工具进行数据收集、处理和分析的能力。

2. 培养学生运用数学建模方法解决实际问题的能力,包括模型构建、求解和验证。

3. 培养学生团队合作和沟通协调能力,学会在小组合作中共同解决问题。

情感态度价值观目标:1. 培养学生对数学建模的兴趣和热情,增强其学习数学的自信心。

2. 培养学生严谨、求实的科学态度,使其认识到数学在解决实际问题中的价值。

3. 培养学生面对困难时勇于挑战、不断探索的精神,培养其创新意识和实践能力。

课程性质:本课程为选修课程,旨在提高学生对数学知识的运用能力,培养学生解决实际问题的综合素质。

学生特点:中学生已具备一定的数学基础和逻辑思维能力,但对数学建模的了解较少,需要引导和启发。

教学要求:教师应注重理论与实践相结合,引导学生运用所学知识解决实际问题,关注学生的学习过程和成果,提高学生的数学素养和综合能力。

通过本课程的学习,使学生能够达到以上所述的知识、技能和情感态度价值观目标。

二、教学内容本课程教学内容主要包括以下几部分:1. 数学建模基本概念:介绍数学建模的定义、意义和分类,使学生了解数学建模的广泛应用。

2. 模型构建方法:讲解线性规划、非线性规划、整数规划等数学规划方法,以及差分方程、微分方程等建模方法。

3. 数据收集与处理:教授学生如何收集、整理和分析实际数据,运用统计学方法进行数据处理。

4. 模型求解与验证:介绍求解数学模型的方法,如单纯形法、拉格朗日乘数法等,并教授学生如何验证模型的正确性。

5. 应用案例分析:分析典型的数学建模案例,如交通运输、经济预测、环境优化等问题,使学生了解数学建模在实际中的应用。

数学建模课程设计论文最新

数学建模课程设计论文最新

数学建模课程设计论文最新一、课程目标知识目标:1. 让学生掌握数学建模的基本概念,理解其在解决实际问题的中的应用价值;2. 使学生掌握数学建模的主要方法,包括建立模型、求解模型和验证模型;3. 引导学生运用所学的数学知识,如函数、方程、不等式等,进行数学建模。

技能目标:1. 培养学生运用数学语言表达实际问题的能力;2. 提高学生运用数学方法分析和解决实际问题的能力;3. 培养学生团队合作和沟通协调能力,学会在小组合作中共同推进数学建模任务的完成。

情感态度价值观目标:1. 培养学生对数学学科的兴趣和热爱,认识到数学在生活中的广泛应用;2. 增强学生面对实际问题时积极寻求解决方案的信心和勇气;3. 培养学生严谨、务实的科学态度,学会用数学的眼光观察世界。

课程性质:本课程为选修课程,旨在提高学生的数学应用能力和综合素质。

学生特点:学生具备一定的数学基础,具有较强的逻辑思维能力和好奇心。

教学要求:结合学生特点和课程性质,注重理论与实践相结合,充分调动学生的主观能动性,培养其创新精神和实践能力。

通过课程学习,使学生能够将所学的数学知识应用于解决实际问题,达到学以致用的目的。

教学过程中,注重分解课程目标为具体的学习成果,以便进行有效的教学设计和评估。

二、教学内容本课程教学内容主要包括以下几部分:1. 数学建模基本概念:介绍数学建模的定义、作用和一般步骤,使学生了解数学建模的整体框架。

2. 数学建模方法:讲解常见的数学建模方法,如线性规划、非线性规划、差分方程、微分方程等,并结合实际案例进行分析。

3. 数学建模应用:结合教材内容,选择与学生生活密切相关的实际问题进行建模分析,如人口增长、经济增长、环境污染等。

4. 数学建模软件应用:介绍数学建模软件(如MATLAB、Mathematica等)的基本操作,帮助学生熟练运用软件辅助建模和求解。

5. 数学建模实践:组织学生进行小组合作,针对具体实际问题,运用所学方法开展数学建模实践,提高学生解决实际问题的能力。

数学建模软件课程设计报告

数学建模软件课程设计报告

数学建模软件课程设计报告一、课程目标知识目标:1. 学生能够理解数学建模的基本概念和原理,掌握运用数学建模软件解决实际问题的基本步骤。

2. 学生能够运用数学建模软件进行数据输入、处理和分析,建立数学模型,并解释模型结果。

3. 学生能够运用所学的数学建模知识,结合实际问题,构建合适的数学模型,为决策提供依据。

技能目标:1. 学生能够熟练运用数学建模软件进行数据操作,包括数据导入、清洗、处理和可视化。

2. 学生能够运用数学建模软件进行模型构建、求解和优化,具备一定的模型分析能力。

3. 学生能够通过小组合作,有效沟通与协作,共同解决复杂问题,提高团队协作能力。

情感态度价值观目标:1. 学生能够培养对数学建模的兴趣,认识到数学建模在解决实际问题中的重要性。

2. 学生能够在数学建模过程中,培养勇于尝试、积极探究的精神,增强自信心和自主学习能力。

3. 学生能够通过数学建模课程,体会数学与现实生活的紧密联系,提高数学素养,形成正确的价值观。

本课程针对高年级学生,结合数学建模软件,以提高学生解决实际问题的能力为核心,注重培养学生的动手操作能力、团队协作能力和创新思维。

课程目标具体、可衡量,旨在使学生在掌握数学建模基本知识的基础上,能够运用所学技能解决实际问题,提升数学素养,为未来的学习和工作打下坚实基础。

二、教学内容本章节教学内容围绕数学建模软件的应用,结合以下教材章节进行组织:1. 数学建模基本概念与原理(教材第1章)- 数学模型的分类与构建方法- 数学建模的基本步骤和注意事项2. 数据处理与分析(教材第2章)- 数据导入、清洗、处理和可视化方法- 数据分析的基本技巧和软件操作3. 建立数学模型(教材第3章)- 线性规划模型、非线性规划模型及其应用- 微分方程模型、差分方程模型及其应用4. 模型求解与优化(教材第4章)- 模型求解的算法和软件实现- 模型优化的基本策略和方法5. 实际案例分析与讨论(教材第5章)- 结合实际问题,运用数学建模软件进行案例分析和讨论- 团队合作,展示和评价各组案例成果教学内容安排和进度如下:1. 第1周:数学建模基本概念与原理2. 第2周:数据处理与分析3. 第3周:建立数学模型4. 第4周:模型求解与优化5. 第5周:实际案例分析与讨论教学内容科学性和系统性较强,旨在使学生通过本章节学习,能够熟练运用数学建模软件解决实际问题,培养其创新能力和团队协作精神。

课程设计数学建模

课程设计数学建模

课程设计数学建模一、教学目标本课程的教学目标是使学生掌握数学建模的基本概念、方法和技巧,培养学生运用数学知识解决实际问题的能力。

具体目标如下:知识目标:1. 理解数学建模的基本概念,包括模型、参数、方程等;2. 掌握数学建模的基本方法,如归纳法、假设法、建立方程组等;3. 了解数学建模在各领域的应用。

技能目标:1. 能够运用数学知识建立简单的数学模型;2. 能够运用数学软件或手工计算方法求解数学模型;3. 能够对数学模型的结果进行分析和解释。

情感态度价值观目标:1. 培养学生的团队合作意识,能够与他人共同解决问题;2. 培养学生的创新思维,敢于尝试新的方法和技术;3. 培养学生的责任感,对所解决问题的结果负责并进行反思。

二、教学内容本课程的教学内容主要包括数学建模的基本概念、方法和应用。

具体安排如下:第1-2节:数学建模的基本概念,包括模型、参数、方程等;第3-4节:数学建模的基本方法,如归纳法、假设法、建立方程组等;第5-6节:数学建模在各领域的应用,如物理、经济、生物等;第7-8节:数学建模实例讲解与分析。

三、教学方法本课程的教学方法包括讲授法、讨论法、案例分析法和实验法。

具体使用方法如下:1.讲授法:用于讲解数学建模的基本概念、方法和应用;2. 讨论法:用于引导学生主动思考和探讨数学建模问题;3. 案例分析法:用于分析数学建模实例,让学生学会分析问题和解决问题;4. 实验法:用于让学生动手实践,培养学生的实际操作能力。

四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备。

具体使用如下:1.教材:用于引导学生学习数学建模的基本知识和方法;2. 参考书:用于拓展学生的知识面,了解数学建模在各领域的应用;3. 多媒体资料:用于辅助教学,使学生更直观地了解数学建模的方法和应用;4. 实验设备:用于让学生动手实践,培养学生的实际操作能力。

五、教学评估本课程的评估方式包括平时表现、作业和考试等,以全面客观地评价学生的学习成果。

建模实践教学设计模板(3篇)

建模实践教学设计模板(3篇)

第1篇一、教学目标1. 知识目标:(1)使学生掌握建模的基本概念、原理和方法;(2)了解建模在各个领域的应用;(3)培养学生运用建模方法解决实际问题的能力。

2. 能力目标:(1)提高学生的数学建模能力;(2)培养学生分析问题、解决问题的能力;(3)提高学生的团队协作能力和沟通能力。

3. 情感目标:(1)激发学生对建模的兴趣,培养学生的学习热情;(2)培养学生严谨的学术态度和良好的职业道德;(3)增强学生的自信心和抗挫折能力。

二、教学内容1. 建模的基本概念和原理;2. 建模方法:线性规划、非线性规划、整数规划、动态规划、图论、排队论等;3. 建模软件:MATLAB、Lingo、SPSS等;4. 建模实例分析。

三、教学过程1. 导入新课(1)介绍建模的背景和意义;(2)提出本节课的学习目标和要求。

2. 理论教学(1)讲解建模的基本概念和原理;(2)介绍建模方法及其应用;(3)分析建模实例。

3. 实践教学(1)引导学生运用所学知识进行建模;(2)指导学生使用建模软件进行计算和分析;(3)组织学生进行团队协作,共同完成建模任务。

4. 课堂讨论(1)引导学生分析建模过程中遇到的问题;(2)讨论如何改进建模方法,提高建模效果;(3)分享建模经验,互相学习。

5. 作业布置(1)布置课后作业,巩固所学知识;(2)要求学生提交建模报告,包括建模过程、结果分析和总结。

6. 总结与反思(1)总结本节课的学习内容;(2)引导学生对建模实践过程进行反思,找出不足之处;(3)提出改进措施,为下一节课做好准备。

四、教学方法1. 讲授法:讲解建模的基本概念、原理和方法;2. 案例分析法:分析建模实例,提高学生的实践能力;3. 讨论法:组织课堂讨论,培养学生的团队协作能力和沟通能力;4. 演示法:使用建模软件进行演示,使学生直观地了解建模过程;5. 作业法:布置课后作业,巩固所学知识。

五、教学评价1. 课堂表现:观察学生在课堂上的学习态度、参与程度和团队协作能力;2. 作业完成情况:检查学生完成作业的质量,包括建模过程、结果分析和总结;3. 建模报告:评价学生的建模能力,包括建模方法的选择、建模过程、结果分析和总结;4. 课堂讨论:评价学生在课堂讨论中的表现,包括分析问题、解决问题和团队协作能力。

2024年数学建模活动教学设计完整版课件

2024年数学建模活动教学设计完整版课件

2024年数学建模活动教学设计完整版课件一、教学内容本节课的内容选自《数学建模》教材第五章第三节,详细内容主要包括数学建模的基本概念、建模方法及步骤、常用的数学建模软件等。

通过本节课的学习,使学生了解数学建模的实际意义,掌握数学建模的基本方法,并能运用所学知识解决实际问题。

二、教学目标1. 知识与技能:掌握数学建模的基本概念、方法及步骤,了解常用的数学建模软件。

2. 过程与方法:通过实践情景引入,培养学生运用数学知识解决实际问题的能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,提高学生的团队协作能力和创新精神。

三、教学难点与重点教学难点:数学建模方法及步骤的理解与应用。

教学重点:数学建模的基本概念、常用的数学建模软件。

四、教具与学具准备1. 教具:PPT课件、黑板、粉笔。

五、教学过程1. 导入:通过一个实际问题的引入,让学生了解数学建模的实际意义。

2. 新课内容:(1)数学建模的基本概念及分类。

(2)数学建模的方法及步骤。

(3)常用的数学建模软件及其应用。

3. 例题讲解:(1)以一个简单的实际问题为例,引导学生分析问题,建立数学模型。

(2)根据建立的数学模型,运用数学方法求解。

4. 随堂练习:(1)给出一个实际问题,让学生分组讨论,建立数学模型。

(2)针对建立的数学模型,运用所学方法求解。

(2)拓展数学建模在实际生活中的应用。

六、板书设计1. 数学建模的基本概念2. 数学建模的方法及步骤3. 常用的数学建模软件4. 例题解析七、作业设计1. 作业题目:(1)根据所学内容,选择一个实际问题,建立数学模型。

(2)根据建立的数学模型,求解问题,并给出详细的解答过程。

2. 答案:(1)数学模型建立:根据实际问题,选择合适的数学方法建立模型。

(2)求解过程:运用数学方法求解,给出详细的计算步骤。

八、课后反思及拓展延伸1. 反思:本节课学生对数学建模的基本概念、方法及步骤掌握程度,以及对实际问题的解决能力。

建模课程教案设计模板

建模课程教案设计模板

一、课程名称【课程名称】二、课程目标1. 知识目标:- 理解建模的基本概念、原理和方法。

- 掌握常用的建模软件和工具。

- 学习如何将实际问题转化为数学模型。

2. 能力目标:- 培养学生分析问题、解决问题的能力。

- 提高学生的计算机操作能力和编程能力。

- 增强学生的团队合作和沟通能力。

3. 素质目标:- 培养学生的创新意识和实践能力。

- 增强学生的科学精神和人文素养。

- 提高学生的社会责任感和职业道德。

三、教学内容1. 第一部分:建模基础- 建模的基本概念- 建模的方法与步骤- 常用的建模软件介绍2. 第二部分:数学建模方法- 线性规划- 非线性规划- 随机模型- 系统动力学模型3. 第三部分:建模软件应用- MATLAB软件的使用- Python编程语言的应用- 其他常用建模软件介绍4. 第四部分:案例分析与实践- 实际问题的建模与分析- 案例分析与讨论- 实践操作与报告撰写四、教学安排1. 总课时:40课时- 建模基础:8课时- 数学建模方法:16课时- 建模软件应用:8课时- 案例分析与实践:8课时2. 教学进度安排:- 第1-2周:介绍建模的基本概念、原理和方法,以及常用的建模软件。

- 第3-4周:讲解线性规划、非线性规划、随机模型和系统动力学模型。

- 第5-6周:教授MATLAB软件的使用和Python编程语言的应用。

- 第7-8周:分析案例,讨论建模方法,并进行实践操作。

- 第9-10周:撰写报告,总结所学知识,进行课程总结。

五、教学方法1. 讲授法:讲解建模的基本概念、原理和方法。

2. 案例分析法:通过实际案例讲解建模步骤和技巧。

3. 实践操作法:指导学生使用建模软件进行实际操作。

4. 小组讨论法:鼓励学生分组讨论,提高团队合作能力。

5. 问题引导法:引导学生主动思考,激发学习兴趣。

六、教学评价1. 课堂表现:观察学生在课堂上的学习态度、参与度和讨论积极性。

2. 实践操作:评估学生在建模软件应用和实践操作方面的能力。

2024年数学建模活动教学设计完整版课件

2024年数学建模活动教学设计完整版课件

2024年数学建模活动教学设计完整版课件一、教学内容本节课选自教材《数学建模》第四章第三节:线性规划及其应用。

主要内容包括线性规划的基本概念、数学模型、求解方法以及实际应用。

二、教学目标1. 理解线性规划的基本概念,掌握线性规划问题的数学模型。

2. 学会使用单纯形法解决线性规划问题,并了解其适用范围。

3. 能够将实际问题抽象为线性规划模型,并利用所学知识解决实际问题。

三、教学难点与重点教学难点:线性规划模型的构建及单纯形法的应用。

教学重点:线性规划的基本概念、数学模型及求解方法。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:教材、计算器、草稿纸。

五、教学过程1. 实践情景引入通过展示2024年数学建模活动的背景,引出线性规划在实际问题中的应用。

2. 知识讲解(1)线性规划的基本概念及数学模型。

(2)单纯形法的原理及步骤。

(3)线性规划在实际问题中的应用。

3. 例题讲解讲解线性规划的经典例题,引导学生理解并掌握线性规划模型的构建及求解方法。

4. 随堂练习布置与例题相似的练习题,让学生独立完成,巩固所学知识。

5. 互动讨论针对学生在练习中遇到的问题,进行互动讨论,共同解决疑惑。

7. 课堂小结对本节课的学习效果进行评价,了解学生对知识的掌握情况。

六、板书设计1. 线性规划的基本概念及数学模型。

2. 单纯形法的原理及步骤。

3. 线性规划在实际问题中的应用。

4. 例题及解答过程。

七、作业设计1. 作业题目:max z = 3x + 4ys.t. x + 2y ≤ 82x + y ≤ 6x, y ≥ 0某工厂生产甲、乙两种产品,生产甲产品需要2小时,乙产品需要3小时。

生产一个甲产品获利3元,生产一个乙产品获利4元。

工厂每天有8小时的工作时间,问如何安排生产计划,才能使工厂获利最大?2. 答案:(1)max z = 3x + 4y = 16x = 2, y = 3(2)max z = 3x + 4y = 28x = 3, y = 2八、课后反思及拓展延伸1. 反思:本节课学生对线性规划的基本概念、数学模型及求解方法掌握情况良好,但在实际问题中的应用能力有待提高。

数学建模课程设计实验目的

数学建模课程设计实验目的

数学建模课程设计实验目的一、课程目标知识目标:1. 让学生掌握数学建模的基本概念和原理,理解其在解决实际问题中的应用;2. 使学生能够运用所学的数学知识和方法,建立简单的数学模型,解决实际生活中的问题;3. 帮助学生了解数学建模的步骤和技巧,提高他们运用数学工具分析问题和解决问题的能力。

技能目标:1. 培养学生运用数学软件进行数据分析和模型构建的能力;2. 培养学生团队协作和沟通表达能力,能在小组合作中发挥各自优势,共同完成数学建模任务;3. 提高学生自主学习和解决问题的能力,培养创新思维和批判性思维。

情感态度价值观目标:1. 培养学生对数学建模的兴趣和热情,增强他们对数学学科的实际应用价值的认识;2. 培养学生面对实际问题时,敢于挑战、勇于探索的精神风貌;3. 培养学生具有合作、尊重、诚信的价值观,提高他们的社会责任感和公民素养。

课程性质:本课程为实验课程,注重理论与实践相结合,强调学生在实践中掌握数学建模的方法和技巧。

学生特点:学生具备一定的数学基础,具有较强的逻辑思维能力和动手操作能力,但对数学建模的了解有限。

教学要求:教师需结合学生实际情况,采用启发式、探究式教学方法,引导学生主动参与,注重培养学生的实践能力和创新精神。

通过本课程的学习,使学生能够将数学知识应用于解决实际问题,提高数学素养和综合素质。

二、教学内容本课程教学内容主要包括以下几部分:1. 数学建模基本概念:介绍数学建模的定义、作用和分类,使学生了解数学建模的意义和在实际中的应用。

2. 数学建模方法与步骤:学习数学建模的基本方法,包括问题分析、假设建立、模型构建、模型求解和模型检验等步骤。

3. 数学建模软件应用:教授学生使用数学软件(如MATLAB、Mathematica 等)进行数据分析和模型构建的方法。

4. 实际案例分析与讨论:分析典型的数学建模案例,让学生了解数学建模在各个领域的应用,提高他们分析问题和解决问题的能力。

5. 小组合作与实践:组织学生进行小组合作,针对实际问题进行数学建模,培养学生的团队协作能力和实践操作能力。

数学建模简明教程课程设计

数学建模简明教程课程设计

数学建模简明教程课程设计一、课程设计概述本课程设计旨在为学生提供一个简明易懂的数学建模教程,帮助学生掌握数学建模的基本思想和方法。

本课程设计分为三个部分,分别是理论基础、建模实践和综合案例分析。

通过本课程的学习,学生能够理解数学建模的基本思想、掌握建模的方法以及应用建模解决实际问题的能力。

二、课程设计内容1. 理论基础部分•数学建模的基本概念和定义•数学建模的基本原理和方法•科学计算与数学建模•常见数学模型的建立方法•常见的数学模型实例分析•数学建模中的数学工具和软件工具2. 建模实践部分•数学建模的实践步骤和方法•实际问题的分析和解决方法•建模实例分析和解决方法•模型的评估和优化方法•模型的验证和应用方法3. 综合案例分析部分•实际问题的建模分析和解决方法•模型的构建和优化方法•模型的验证和应用方法•经济、管理、环境、生物等领域的数学建模案例三、课程设计要求1. 设计目标通过本课程的学习,学生应该能够:•理解数学建模的基本思想和方法•熟悉数学建模中常用的数学工具和软件工具•掌握数学建模实践中的分析、建模和解决方法•能够应用数学建模解决实际问题2. 设计要求•课程设计需要使用Markdown文本格式输出•课程设计文字数量不少于1500字•课程设计中不得出现图片、网址、下载链接、真实姓名等任何可能造成隐私泄漏的信息四、总结数学建模是一门非常重要的学科,它不仅具有理论意义,更是需求的实际应用。

通过本课程设计,学生可以更好地掌握数学建模的基本思想和方法,提高分析问题、解决问题的能力。

希望学生在学习过程中认真思考并勇于尝试,树立实践创新的思维,成为科技创新的生力军。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模课程设计报告
题目:宾馆预定策略问题
院系:数学学院
专业:数学与应用数学
班级:08(2)班
姓名:
学号:
指导老师:黄有度
摘要
本题为宾馆的预定策略问题,涉及价格制定和经营策略问题。通过对题目中提供的数据,以及对所要求解的问题的分析,本小组认为符合时序预测问题的基本条件。
对于第一问,要求估计第九周和第十周参考标准间房价,属于短期预测。将对未来价格的预测问题分解为两个问题:对一周内各天价格所占一周内总价的比例,和各周价格变化趋势适。采用多段的、三次多项式趋势外推法解决第一个问题,模型的误差最大为0.39%,可见模型是十分精准的;同时采用三次多项式外推和一次移动平均法求解第二个问题,通过对比,一次移动平均法比趋势外推得到的数据,与已知数据更为符合。同时,其预测值比较符合经济规律,因而,其预测结果具有可靠性。
50.52
46.75
118.70
125.74
95.19
54.34
第十周
53.28
53.28
49.30
125.18
132.61
100.39
57.31
5.2求解第二问
5.2.1仅考虑赔偿现金的情况下:
宾馆标准客房、豪华套间、总统套房的实有数量分别为n1,n2,n3;
设宾馆接受预定的标准客房、豪华套间、总统套房的数量分别为m1,m2,m3;
设未来第k周的周均价值为 ,则
其对九、十周的预测结果为77.3929元,与81.6205元,比较符合均价整体走势。
5.1.3.综上,可得未来第k周,星期i的标准间价格的预测值yk,i得表达式:
根据以上公式计算出来的第九第十周标准间价格如下表:
星期一
星期二
星期三
星期四
星期五
星期六
星期日
第九周
50.52
一.问题重述
某著名的旅游城市的A级宾馆主要提供举办会议和游客使用的。客房通过电话或互联网预定,这种预定具有很大的不确定性,客户很可能由于各种原因取消预定。宾馆为了争取更大的利润,一方面要争取客户,另一方面要降低客户取消预定遭受的损失。为此,宾馆采用一些措施。首先,要求客户提供信用卡号,预付第一天房租作为定金。如果客户在前一天中午以前取消预定,定金将如数退还,否则定金将被没收。其次,宾馆采用变动价格,根据市场需求情况调整价格,一般来说周末价格比较高。
对于问题二,宾馆采用升级客房档次或赔款来解决超额接受客房预订的纠纷。采用独立重复试验概型可以得到k个客人取消订单的概率;在计算出宾馆利润的期望值,通过在赔偿和客房数量上的限制条件,和保证宾馆最大利润的目的,可以确定出宾馆超额提供预定的最大数。
对于问题三,要求为宾馆制定一个长期的经营策略,通过一二问的分析,可以得出合理的方案。
30.80%
7
76.14285714
78.3352
2.88%
8
67.57142857
60.9784
9.76%
拟合曲线见下图。可见,其误差以十分明显。其中,前6周误差都超过10%,最大的第三周甚至达到69.73%。而且根据它预测的第九、十周均价分别为42.2653,24.4082元。根据日常经验可知,均价随时间的推移是逐步上涨的,这与之不符。故,此时采用三次趋势外推是不合理的;若采用更高次的多项式外推法,可使前八周内误差减小,但其预测将变得更加不合常规。
通过matlab求解方程组(代码见附录代码一),得到趋势外推法的解如下
其模拟的效果如下:
星期一
星期二
星期三
星期四
星期五
星期六
星期日
均价
50.5
50.5
46.75
119
125.25
95.5
54.25
总价
541.75
541.75
541.75
541.75
541.75
541.75
541.75
比例
0.093216
设宾馆相应与每种gk的利润为LR,那么
那么宾馆的利润期望为
根据假设,除去客房开支以外,宾馆总的运营成本,等于至少六成的客房有人入住时所得的利润;即C=0.6nA。
显然,宾馆的n,D,A,p短期内都是已知常数。过可以通过数值模拟的方法取定m,使得Y(LR)最大。对Y(LR)进行等价变形得:
对标准间而言
假设取1-P=0.95。此时,宾馆为了取得最大期望利润率,根据前述计算结果可知,标准客房的预订水平因该取530、豪华套房的预订水平取100、总统套房的预订水平取20时,宾馆利润最大。
而其中,豪华套房、总统套房的最大利润分别在101和21处取得,m的数量太少,不适合超额预订,况且赔率较大,宾馆从经济的角度考虑,豪华套房、总统套房不应该接受超额预订。根据求出的数据可知,对于标准客房来说,当标准客房的超额预订水平为530时,最大可能超额入住5人,且概率为0.0796,即说明,最大可能赔偿5个人。
第二问:显然,预定了客房的客人取消预定的概率是相互独立的,则,m个预定中,有k个客人取消订单的事件符合独立重复试验概型;同时,由于k的不同导致宾馆利润的不同,
故先计算出宾馆利润对于某一个k值的函数,在通过概率加权的办法算出宾馆利润的期望,通过取定合适的m值,使得利润期望最大,从而得出合适的宾馆客房超额预定策略。
研究的问题是:
(1)试建立客房预定价格的数学模型,并对以下实例作分析。表1给出了某宾馆8周标准房价格(单位: 美元),用你的模型说明价格变动的规律,并据此估计第9周和第10周的标准房参考价格。你还可以收集更多的数据来验证你模型的价值(要求注明出处)。
(2)在旅游旺季,宾馆往往可以预定出超过实际套数的客房数, 以减低客户取消预定时宾馆的损失。当然这样做可能会带来新的风险, 因为万一届时有超出客房数的客户出现, 宾馆要通过升级客房档次或赔款来解决纠纷, 为此宾馆还会承担信誉风险. 某宾馆有总统套房20套,豪华套房100套,标准间500套。试为该宾馆制定合理的预定策略, 并论证你的理由。
(3)请为该宾馆制定一个长期的经营策略;并给总经理写一篇短文有关管理经营的建议书。
二、问题假设以及符号说明
A:假设
1,在求解第一问中,假设第一周至第十周处在一个稳定的市场状态(淡季或旺季);
2,假设标准间的价格总体走势仅由两方面分量合成,即,每一周内的7日价格变化走势,周均价走势;
2,假定所提供的数据与未来数据是连续的,不存在重大变故的干扰;
五、求解方法
5.1第一问的求解
5.1.1首先对标准间在每个周内的价格走势作分析,建立其周内变化模型。
对一周内各天的均价走势的研究,得到一周内的价格变动,可以反应标准间价格变动因素中的一个周期性因素。
通过对数据的分析得到前八周内,星期一至周日分别的标准间价格均值:
星期一
星期二
星期三
星期四
星期五
星期六
星期日
对豪华间而言
对总统包间而言
显然,随着p的增大,即1-p的减小,利润是逐渐增大的。
根据m和p取不同的值,利润的期望变化如下:
A.根据下图,标准间的最大利润在1-p=0.95时,在m1=530时取得。
B.根据模拟计算图,豪华间在所有情况下,都在m2=100左右取得最大利润。
C,根据模拟计算图,总统包间在所有情况下,都在m3=20左右取得最大利润
3,假设宾馆的三类客房比例与市场需求比例相同,不存在巨大的入住率差异;
4,假设客人取消预定都是在前一天中午以前;
5,假设宾馆除开客房开支以外,总的运营成本,等于至少六成的客房有人入住时所得的利润;
6,假设宾馆对为得到房间的以预定客人的赔偿为:同类房间利润的一倍。
7,假设客人订房没有批量预定的情况。
B:符说明
5.2.2在同时考虑升级客房档次或赔款的情况下
对于标准房间,由于没有更低级的房间升级到标准房间,故在不同的概率值P下,期望利润率随订房水平m的变化情况相似。
P一个已定客房的旅客在在前一天中午以前取消预定的概率
gkk人未按时入住的概率
LR(k)设宾馆相应与每种gk的利润
Y(LR)那么宾馆的利润期望为
三、问题分析
显然,从本题提供的数据和所要求解的问题来看,它是属于时间序列的预测问题,故考虑用多项式趋势外推和移动平均法等方法求解。
第一问:题目中给出了八周的标准间房价数据,要求预测第九、第十周的标准间房价,属于短期预测问题。显然,从所给数据来看,要建立单一时间变量的函数来确定房价是很难的,不过更具日常经验和经济学规律分析,可将影响标准间的房价变动的因素归纳到两方面:即,一周内房价的分布,和以周均价为代表的长期上涨规律。
那么,未来第k周,星期i的标准间的价格yk,i上述两种决定价格变动规律的因素共同决定的。由此可得yk,i的表达式:
4.2对于第二问,根据订房客人取消预定的变化,宾馆的利润也是变化的。为了确定一个最优的预定策略,将所有可能的情况根据其概率进行加权运算,最终得到具有代表性的总体利润的期望,从而确定一个合理的预定策略。k人未按时入住的概率为gk,宾馆相应与每种gk的利润为 ,那么宾馆利润的期望为:
于是,此处不能采用多项式趋势外推。接下了,本文将采用一次移动平均的方法对第九第十周预测。
采用一次移动平均法求解(代码见附录代码三)
为了使数据最终结果与原始数据比较符合,并减小统计数据中由于偶然因素较大的数据的影响,取移动平均的观测点数为8。其最终拟合结果如下(为了便于绘图,在原始数据中令第九十周均价为0,不过这不影响算法的准确度)
三次多项式外推
其拟合前后对比如下:
周次
每周价格走势
拟合函数值
偏差
1
43.57142857
30.1169
30.88%
2
49
67.3519
37.45%
3
53
89.9579
69.73%
相关文档
最新文档