复变函数期末试卷A

合集下载

【复变函数期末考卷】复变函数试题

【复变函数期末考卷】复变函数试题
2.设 是单位脉冲函数,则 .
3.复变函数 的周期为.
4.曲线积分 .
5.已知复变函数 ,若 ,则 关于变量 的
表达式为.
6.复变函数 的周期为.
7. 若 可导,则 .
8.计算乘幂 .
9.曲线积分 .
10.已知 ,若 ,则复变函数 关于变
量 的表达式为.
三.计算题
1.若复数 满足 ,试求 的取值范围.
2..对于映射 ,求出圆周 的像
3.设 ,求 .
4.已知 ,试确定解析函数 .
5、计算积分 .
6.利用留数计算积分1.
2. 3.
7.设 ,在复数集 中解方程 。
8.解方程 .
四.解下列方程
1.利用Fourier变换,解积分方程
2.应用拉氏变换解满足初始条件 的微分方程
3.求如下微分方程组 满足初始条件: 的解。
14.设 为负向, 正向,则 ( )
(C) (B) (C) (D)
15.若 ,则双边幂级数 的收敛域为( )
(A) (B)
(C) (D)
16.积分 ( )
(A) (B) (C) (D)
17.积分 ( )
(A) (B) (C) (D)
18.函数 在 内的奇点个数为( )
(A)1 (B)2 (C)3 (D)4
(B)若 是函数 的奇点,则 在点 不可导
(C)若 在区域 内满ຫໍສະໝຸດ 柯西-黎曼方程,则 在 内解析(D)若 在区域 内解析,则 在 内也解析
5.设 为负向, 正向,则 ( )
(A) (B) (C) (D)
6.下列级数中,绝对收敛的级数为( )
(B) (B)
(C) (D)
7.若幂级数 在 处收敛,那么该级数在 处的敛散性为( )

最新复变函数与积分变换期末考试试卷(A卷)

最新复变函数与积分变换期末考试试卷(A卷)

复变函数与积分变换期末考试试卷(A 卷)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列复数中,位于第四象限的复数是( )A. 4+3iB. -3-3iC.-1+3iD.5-3i 2.下列等式中,不成立的等式是( ) A. z·z =Re (z·z ).arg(3)arg()B i i -=- .rg(3)arg(3)C A =2.||D z z z ⋅=3.不等式 ||3z > 所表示的区域为( ) A. 圆的外部B.上半平面C. 角形区域D.圆的内部4.积分||322z dz z =-⎰的值为( )A. 8i πB.2C. 2i πD. 4i π 5.下列函数中,在整个复平面上解析的函数是( ).z A z e +.sin z B z e + .tan z C z e + .R e ()s i n D z z+6.在复平面上,下列命题中,错误..的是( )A. cosz 是周期函数B. ze 是解析函数.cos sin iz C e z i z =+.||D z =7.在下列复数中,使得ze =成立的是( ).ln 224iA z i ππ=++.ln 424iB z i ππ=++.ln 22C z i π=+.l n 42D z iπ=+ 8.设C 为正向圆周1||=z , 则积分 cos z c e dzz⎰等于( )A .2πB .2πiC .0D .-2π 9.设C 为正向圆周||2z =, 则21(1)C dz z i --⎰等于( )A.i21π B. 0 C.i 2πD.2i π-10.以下关于级数的命题不正确的是( )A.级数0327nn i ∞=+⎛⎫⎪⎝⎭∑是绝对收敛的B.级数212(1)n n in n ∞=⎛⎫+ ⎪-⎝⎭∑是收敛的 C.级数01(1)2n n n i n ∞=⎛⎫-+ ⎪⎝⎭∑是收敛的D.级数212n n i n ∞=⎛⎫+ ⎪⎝⎭∑是收敛的11.已知31z i =+,则下列正确的是( )12.iA z π=34.iB z eπ=712.i C z π=3.iD z π=12.下列关于幂级数的叙述,不正确 的是( ) A.在收敛圆内,幂级数绝对收敛 B.在收敛圆外,幂级数发散 C.在收敛圆周上,可能收敛,也可能发散 D.在收敛圆周上,条件收敛13.0=z 是函数sin z e z z的( )A.本性奇点B.一级极点C.二级极点D.可去奇点14.cos z zz π-在点 z π= 处的留数为( ) A. π-.B πC.1D. -115.关于0Im lim z zzω→=下列命题正确的是( )A.0ω=B. ω不存在C.1ω=-D.1ω=二、填空题(本大题共5小题,每小题2分,共10分)16.sincos 33z i ππ=+复数的三角形式为____________. 17. 已知22()()()f z x ay x i bxy y =++++在复平面上可导,则a b +=_________. 18. 设函数)(z f =3zt te dt ⎰,则)(z f 等于____________.19. 幂极数n n2n 1(-1)z n∞=∑的收敛半径为_______.20.设121,1z i z =-+=,求12z z ⎛⎫=⎪⎝⎭____________.三、计算题(本大题共4小题,每题7分,共28分) 21.设C 为从原点到2+3i 的直线段,计算积分[(2)]CI x y ixy dz =-+⎰22. 设2()cos 4ze f z z z=+-. (1)求)(z f 的解析区域,(2)求).(z f '23. 将函数1()(1)(2)f z z z =--在点0=z 处展开为泰勒级数.24. 将函数112()(1)z ef z z -=-在圆环0|1|z <-<∞内展开成洛朗级数.四、综合题(共4小题,每题8分,共32分)25.已知22(,)2u x y x y x =-+,求一解析函数()(,)(,)f z u x y iv x y =+,并使(0)2f i =。

复变期末考试试卷

复变期末考试试卷

复变期末考试试卷复变函数是数学中的一个重要分支,它在工程学、物理学以及许多其他科学领域中有着广泛的应用。

本期末考试试卷旨在测试学生对复变函数理论的理解和应用能力。

以下是复变期末考试的题目:一、选择题(每题2分,共20分)1. 复数 \( z = 3 + 4i \) 的模是:A. 5B. 7C. 8D. 102. 如果 \( f(z) = z^2 + 2z + 1 \),那么 \( f(2 - i) \) 的值是:A. 3B. 4C. 5D. 63. 以下哪个是解析函数的必要条件?A. 可微B. 可积C. 连续D. 有界...二、填空题(每空2分,共20分)1. 如果 \( z = x + yi \),那么 \( \overline{z} \) 是 ______ 。

2. 复数的乘法满足 \( (z_1 z_2) \overline{z_1} = \) ______ 。

3. Cauchy-Riemann 方程是 ______ 的必要条件。

...三、简答题(每题10分,共20分)1. 解释什么是解析函数,并给出一个解析函数的例子。

2. 描述复平面上的共轭曲线,并给出一个具体的例子。

四、计算题(每题15分,共30分)1. 计算下列积分:\[\int_{|z|=2} \frac{1}{z-1} dz\]2. 给定 \( f(z) = \frac{z^2 - 1}{z^2 + 4z + 3} \),求 \( f(z) \) 在 \( z = -1 \) 处的留数。

五、证明题(每题10分,共10分)证明:如果 \( f(z) \) 在 \( z_0 \) 的某个邻域内解析,并且\( |f(z)| \leq M \) 对所有 \( z \) 都成立,那么 \( f(z) \) 在\( z_0 \) 处的留数存在。

六、应用题(每题10分,共10分)考虑一个简单的 RLC 电路,其阻抗 \( Z(z) \) 可以表示为复数函数。

复变函数期末试卷及答案

复变函数期末试卷及答案

20**-20** 1 复变函数与积分变换(A 卷)(答案写在答题纸上,写在试题纸上无效)一、单项选择题(每小题3分,共30分) 1.设 复数1z i =-,则arg z =( )A .4π-B .4πC .34πD .54π 2.设z 为非零复数,,a b 为实数且z a bi z=+,则22a b +( )A .等于0B .等于1C .小于1D .大于1 3.函数()f z z =在0z =处( )A .解析B .可导C .不连续D .连续 4.设z x iy =+,则下列函数为解析的是( )A 22()2f z x y i xy =-+ B ()f z x iy =- C ()2f z x i y =+ D ()2f z x iy =+ 5.设C 为正向圆周||1z =,则积分Czdz =⎰( )A .6i πB .4i πC .2i πD .0 6. 设C 为正向圆周||1z =,则积分(2)Cdzz z =-⎰( ).A .i π-B .i πC .0D .2i π7. 设12,C C 分别是正向圆周||1z =与|2|1z -=,则积分121sin 222z C C e z dz dz i z z π⎛⎫+= ⎪--⎝⎭⎰⎰ A .2i π B .sin 2 C .0 D .cos2 8.幂级数1(1)nnn z i ∞=+∑的收敛半径为 ( ) A.0 B.12C. 2D. 2课程考试试题学期 学年 拟题人:校对人: 拟题学院(系): 适 用 专 业:9. 0z =是函数2(1)sin ()(1)z e zf z z z -=-的( ) A .本性奇点 B .可去奇点 C .一级极点 D .二级极点10.已知210(1)sin (21)!n n n z z n ∞+=-=+∑,则4sin Re [,0]zs z =( )A .1B .13!C .13!-D .1-二、填空题(每空3分,共15分)1 复数1i -+,的指数形式为__________。

复变函数期末考试及答案(珍藏版)

复变函数期末考试及答案(珍藏版)

一、填空题1、设12z =,则||z = 1 ,Argz =2,0,1,3k k ππ-+=± . 2、曲线422=+y x 在映射z1=ω下的象为2214u v +=.(写出象曲线的方程) 3、设(1)(1,2,)4n n ni n n α-+==+ 则lim n n α→∞=i . 4、=Z k k i k ∈+),32sin()32cos(ππ.5、函数()f z 在z 点可导是()f z 在z 点解析的 必要不充分 条件.(填充分必要性)6、若幂级数0n nn c z ∞=∑在12z i =+处收敛,则该级数在2z =处的敛散性为绝对收敛 .7、|2|12zz e dz z -==-⎰22ie π. 8、0=z 是函数5sin )(z z z z f -=的 2 阶极点。

9、若1()sin f z z =,则0Res ()z f z == 1 。

二、计算题1、设C 为连接0到2a π的摆线,(sin ),(1cos )x a y a θθθ=-=-,求积分2(281)C z z dz ++⎰.解:由于函数2281z z ++在整个z 平面上解析,故 2220(281)(281)a C z z dz z z dz π++=++⎰⎰3223320216(4)|16233a a z z z a a a ππππ=++=++2、判别级数∑∞=1n nn i 是否绝对收敛,是否收敛.解:因为:∑∑∞=∞==111||n n n n n i 发散,故级数 ∑∞=1n n n i 不绝对收敛.由于∑∑∑∞=∞=∞=+==11212sin 2cos )(n n n in n n n i n n e n i πππ ∑∑∞=∞=+=112s i n 2c o s n n n n i n n ππ 而∑∞=12cos n n n π,∑∞=12sin n n n π都为收敛级数,所以原级数收敛, 故原级数条件收敛。

【复变函数期末考卷】复变函数考试试题

【复变函数期末考卷】复变函数考试试题

【复变函数期末考卷】复变函数考试试题《复变函数》练习题⼀.单项选择题.1. 函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是()(A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续(C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续 2.函数23)(z z f =在点0=z 处是( )(A )解析的(B )可导的(C )不可导的(D )既不解析也不可导 3.函数)(z f 在点z 可导是)(z f 在点z 解析的( )(A )充分不必要条件(B )必要不充分条件(C )充分必要条件(D )既⾮充分条件也⾮必要条件 4.下列命题中,正确的是( )(A )设y x ,为实数,则1)cos(≤+iy x(B )若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C )若v u ,在区域D 内满⾜柯西-黎曼⽅程,则iv u z f +=)(在D 内解析(D )若)(z f 在区域D 内解析,则)(z if 在D 内也解析5. 使得22z z =成⽴的复数z 是()(A )不存在的(B )唯⼀的(C )纯虚数(D )实数 6. z e 在复平⾯上( )(A )⽆可导点(B )有可导点,但不解析(C )有可导点,且在可导点集上解析(D )处处解析 7. 设z z f sin )(=,则下列命题中,不正确的是( )(A ))(z f 在复平⾯上处处解析(B ))(z f 以π2为周期(C )2)(iziz e e z f --= (D ))(z f 是⽆界的8. 设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc+-2)1)(1(为( ) (A )2i π(B )2i π- (C )0 (D )(A)(B)(C)都有可能9. 设1:1=z c 为负向,3:2=z c 正向,则=?+=dz z zc c c 212sin ( ) (A ) i π2- (B )0 (C )i π2 (D )i π410. 10. 复数ii+=1z 位于复平⾯第( ) 象限. A .⼀ B .⼆ C .三 D .四11. 下列等式成⽴的是( ).A .Lnz Lnz 77=; B .)1arg()1(r =g A ;C .112=i; D .)z z Re(z z =。

吉林师范成人教育《复变函数与积分变换试题》期末考试复习题及参考答案

吉林师范成人教育《复变函数与积分变换试题》期末考试复习题及参考答案

吉林师范成人教育期末考试试卷《复变函数与积分变换》A 卷年级 专业 姓名 分数一、填空题(每空2分,共16分)1.复数-2是复数________的一个平方根。

2.设y 是实数,则sin(iy)的模为________。

3.设a>0,则Lna=________。

4.记号Res z=af(z)表示________。

5.设f(z)=u(x,y)+iv(x,y),如果________,则称f(z)满足柯西—黎曼条件。

6.方程z=t+i t(t 是实参数)给出的曲线为________。

7.设幂级数∑c z a n n n ()-=+∞∑0,在圆K:|z-a|<R 上收敛于f(z),则c n =______(n=0,1,…)。

8.cosz 在z=0的幂级数展式为________。

二、判断题(判断下列各题,正确的在题干后面的括号内打“√”,错误的打“×”。

每小题2分,共14分)1.lim z 0→e z =∞.( ) 2.设z 0为围线C 内部的一点,则∫c dz z z -0=2πi.( ) 3.若函数f(z)在围线C 上解析,则∫c f(z)dz=0.( )4.z=0是函数124-e z x的4级极点。

( )5.若z 0是f(z)的本性奇点,则z 0是f(z)的孤立奇点。

( )6.若f(z)在|z|≤1上连续,在|z|<1内解析,而在|z|=1上取值为1,则当|z|≤1时f(z)≡1.( )7.若f(z)与f(z)都在区域D 内解析,则f(z)在D 内必为常数。

( )三、完成下列各题(每小题5分,共30分)1.求复数z=1-i 1+i的实部、虚部、模和辐角。

2.试证:复平面上三点a+bi,0,1-a +bi 共直线。

3.计算积分∫c (x-y+ix 2)dz,积分路径C 是连接由0到1+i 的直线段。

4.说明函数f(z)=|z|在z 平面上任何点都不解析。

5.将函数z +1z (z -1)2在圆环1<|z|<+∞内展为罗朗级数。

复变函数期末考试试卷及答案详解

复变函数期末考试试卷及答案详解

复变函数期末考试试卷及答案详解《复变函数》考试试题(一) 三.计算题(40分):dz1,1、 __________.(为自然数)nn,f(z),|z,z|,10(zz),0D,{z:0,|z|,1}(z,1)(z,2)f(z),求在1. 设22sinz,cosz,2. _________. 内的罗朗展式.1sinz3.函数的周期为___________. dz.,|z|,1cosz2. 12f(z),,,,,3712,f(z)fzd,()z,1C,{z:|z|,3}f'(1,i).,C4.设,则的孤立奇点有__________. ,z,3. 设,其中,试求,z,1nw,nz5.幂级数的收敛半径为__________. ,z,14. 求复数的实部与虚部. n0,6.若函数f(z)在整个平面上处处解析,则称它是__________. 四. 证明题.(20分)zzz,,...,1. 函数在区域D内解析. 证明:如果在D内为常数,f(z)|f(z)|12n,limlimz,,n,,nnn,,7.若,则______________.D那么它在内为常数. zesRe(,0),n0Re1,,z2. 试证: 在割去线段的平面内能分出两zfzzz()(1),,z8.________,其中n为自然数.z,,10Re1,,z个单值解析分支, 并求出支割线上岸取正值的那支在sinz的值.9. 的孤立奇点为________ .《复变函数》考试试题(二) z二. 填空题. (20分)limf(z),___zf(z)z,z0010.若是的极点,则.13sin(2z)1. 设,则 z,,i|z|,__,argz,__,z,__的幂级数展开式. 1. 求函数2222.设,则f(z),(x,2xy),i(1,sin(x,y),,z,x,iy,C2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数在正z实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点________. limf(z),z,1,i处的值. z,idz,3. _________.(为自然数) inn,|z,z|,10(zz),0I,|z|dz3. 计算积分:,积分路径为(1)单位圆()|z|,1,,i,nnz4. 幂级数的收敛半径为__________ . 的右半圆. ,n0,sinzdz,z,25. 若z是f(z)的m阶零点且m>0,则z是的_____零点. ,f'(z)002(,)z24. 求 .z6. 函数e的周期为__________.四. 证明题. (20分) 537. 方程在单位圆内的零点个数为________. 2z,z,3z,8,0f(z)1. 设函数f(z)在区域D内解析,试证:f(z)在D内为常数的充要条件是1f(z),8. 设,则的孤立奇点有_________. f(z)2在D内解析. 1,z2. 试用儒歇定理证明代数基本定理. 9. 函数的不解析点之集为________.f(z),|z|《复变函数》考试试题(三)二. 填空题. (20分) z,1110. . Res(,1),____f(z),1. 设,则f(z)的定义域为___________. 42z,1zz三. 计算题. (40分) 2. 函数e的周期为_________.2n,21n,,z,,i(1,)3. 若,则__________. limz,nnn!n,,1,nnn的收敛半径.2. 试求幂级数z,n22n4. ___________. sinz,cosz,n,dzzedz,5. _________.(为自然数) nn,|z,z|,13. 算下列积分:,其中是.C|z|,10(zz),22,0Cz(z,9),nnx6. 幂级数的收敛半径为__________. ,962n,0z,2z,z,8z,2,04. 求在|z|<1内根的个数.四. 证明题. (20分) 1f(z),7. 设,则f(z)的孤立奇点有__________. 21. 函数在区域D内解析. 证明:如果在D内为常f(z)|f(z)|z,1z数,那么它在D内为常数. 8. 设,则. z,___e,,12. 设是一整函数,并且假定存在着一个正整数n,以及两个正数f(z)z9. 若是的极点,则. f(z)limf(z),___0z,z0R及M,使得当时 |z|,Rzen10. Res(,0),____. n|f(z)|,M|z|, z三. 计算题. (40分) 证明是一个至多n次的多项式或一常数。

西北工大复变函数试题

西北工大复变函数试题

考试题1复变函数 (A 卷)一、填空题(每题4分,共20分)1 12i +=______________2 |z|=21d ()(4)z z i z =+-⎰ 3 幂级数1n n nz ∞=∑的收敛半径R=______________4 1Re [,]sin s z zπ=____________________ 5 函数1zω=将z 平面上的曲线1x =变为ω平面上的(,z x iy u iv ω=+=+)二、单项选择题(每题4分,共20分).1 设1()sin(1)f z z=-,则0z =是()f z 的 【 】A .可去奇点B .本性奇点C .极点D .非孤立奇点.2 设1n > 为正整数,则||21d 1n z z z =-⎰ 为 【 】 A .0 B . 2i π C. i π D. 2n i π3 级数1nn z n∞=∑在||1z =上 【 】A .收敛B .发散C .既有收敛点也有发散点D .不确定4 0cos limsin x z z zz z→-=- 【 】 A .3- B. ∞ C. 0 D. 35 设1328()(1)(1)z f z z z =-+, 则()f z 在复平面上所有有限奇点处的留数之和等于 【 】 A . 1- B. 1 C. 10 D. 0三 (10分) 讨论函数2()f z x iy =-的可微性与解析性。

四 (10分) 设()f z 在||(1)z R R <>内解析,且(0)1f =,(0)2f '=,试计算积分22||1()(1)d z f z z z z =+⎰ 并由此得出22cos ()2i f e d πθθθ⎰之值。

五 (10分) 已知调和函数22(,)u x y x y xy =-+。

求共轭调和函数(,)v x y 及解析函数()(,)(,)f z u x y iv x y =+。

六 (12分) 求函数21()()f z z z i =-在以下圆环域内的Laurent 展式: (1) 0|1z i <-<; (2) 1|z i <-<∞。

2020-2021大学《复变函数与积分变换》期末课程考试试卷A(含答案)

2020-2021大学《复变函数与积分变换》期末课程考试试卷A(含答案)

2020-2021大学《复变函数与积分变换》期末课程考试试卷A考试时间: 类型:闭卷 时间:120分钟 总分:100分 专业:信工一、填空题(3'824'⨯=)1、幂级数()1nn i ∞=+∑的敛散性是____________(绝对收敛、条件收敛、发散)。

2、i 22+的三角形式____________________。

3、z=0是f(z)=[ln(l+z)]/z 的奇点,其类型为_____4、11z -在z=0处的幂级数是_______。

5、0z=为函数()81cos zf z z -=的_____阶极点;在该点处的留数为_____6、ln(1)=_______。

7、25_____(2)zz e z ==-⎰。

8、21nn z n∞=∑的收敛半径为_______。

二、选择题 (3'515'⨯=)1、不等式4z arg 4π<<π-所表示的区域为( ) A.角形区域 B.圆环内部 C.圆的内部 D.椭圆内部2. 复数 8i z -= 的辐角主值 =z arg ( )(A) 2π ; (B)π; (C) 0; (D) 2π3. 设v(x ,y)=e ax siny 是调和函数,则常数a 可以取下列哪个值( ) (A )0 (B )1(C )2 (D )3 4. 0=z 是函数 zzz f sin )(=的 ( ) (A) 本性奇点; (B) 一级极点; (C) 零点 ; (D) 可去奇点5、下列积分值不为零的是 ( ) A 、z-1=22z+3)dz ⎰( B 、 z z-1=2e dz ⎰C 、z =1sin z dz z ⎰D 、z =1coszdz z⎰三、解答题(共7题,共计61分)1、(8分)已知f(z)=u+iv 是解析函数,且v=2xy 、f(1)=2, 求f(z)2、(1)(8分)计算积分(1)423z =5dz(z 2)(z-2)+⎰(2)(6分)21(21)(3)z z dz z z z =++-⎰院系: 专业班级: 姓名: 学号:装 订 线 内 不 准 答 题装 订 线3、(8分)设f(z)=x 3– 3xy 2+ i (3x 2y – y 3),问)(z f 在何处可导?何处解析?并在可导处求出导数值.4、(10分) (1)将函数()1(1)(2)f z z z =--在圆环2z <<+∞内展开为Laurent 级数。

(完整)复变函数_期末试卷及答案,推荐文档

(完整)复变函数_期末试卷及答案,推荐文档

复变函数与积分变换 第 3 页共 6 页
23. 将函数 f (z)
1
在点 z 0 处展开为洛朗级数.
(z 1)(z 2)
dz
25. 计算 |z|3 (z 1)2 (z i)(z 4) .
四、综合题(共 4 小题,每题 8 分,共 32 分)
2
25. 计算
1
d .
0 5 4 cos
A. 3 4i 的主辐角为 arctan 4 3
C. a rg(3 4i)2 2 arg(3 4i)
B. arg(3i) arg(i) D. z z | z |2
3.下列命题中,正确的是( )
A. z 1表示圆的内部
B. Re(z) 0 表示上半平面
C. 0 arg z 表示角形区域 4
19.
( 2)n
幂极数
n2
n 1
zn
的收敛半径为_______.
复变函数与积分变换 第 2 页 共 6 页
20. 设 z3 ,则映射在 z0 1 i 处的旋转角为____________,伸缩率为____________. 20. 设函数 f (t) t 2 sin t ,则 f (t) 的拉氏变换等于____________.
15.已知 F () F[ f (t)] ,则下列命题正确的是( )
A. F[ f (t 2)] e2 j F ()
B. e2 j f (t) F 1[F ( 2)]
C. F[ f (2t)] 2F (2)
D. F[e2 jt f (t)] F ( 2)
二、填空题(本大题共 5 小题,每小题 2 分,共 10 分)
解:设曲线 C 的参数方程为 C : z (2 3i)t 0 t 1.

(完整版)《复变函数》期末试卷及答案(A卷)(可编辑修改word版)

(完整版)《复变函数》期末试卷及答案(A卷)(可编辑修改word版)

a - b1- abn (z -1) n (z -1) XXXX 学院 2016—2017 学年度第一学期期末考试复变函数 试卷7.幂级数∑(-1)n n =0z n2nn !的和函数是()学号和姓名务必正确清 A. e -zz B. e2- zC. e2dzD. sin z楚填写。

因填写错误或不清 8. 设C 是正向圆周 z = 2 ,则⎰C z2=()楚造成不良后果的,均由本 A. 0 B. - 2i C. iD. 2i人负责;如故意涂改、乱写 的,考试成绩 答一、单项选择题(本大题共 10 小题,每题 3 分,共 30 9. 设函数 f (z ) 在0 < z - z 0 < R (0 < R ≤ +∞) 内解析,那么 z 0 是 f (z ) 的极点的充要条件是()A. lim f (z ) = a ( a 为复常数)B. lim f (z ) = ∞视为无效。

题分,请从每题备选项中选出唯一符合题干要求的选项,z → z 0z → z 0请勿1.Re(i z ) =并将其前面的字母填在题中括号内。

)()10. 10. C. lim f (z ) 不存在D.以上都对z → z 0ln z 在 z = 1处的泰勒级数展开式为 ()超 A. - Re(i z )B. Im(i z )∞(z -1)n +1∞ (z -1)n A. ∑(-1)n, z -1 < 1B. ∑(-1)n, z -1 < 1过C. - Im z此 D. Im zn =1∞n +1n +1n =1 n∞n2. 函数 f (z ) =z 2在复平面上()C. ∑(-1) , z -1 < 1D. ∑(-1) , z -1 < 1密 封 A.处处不连续B.处处连续,处处不可导线 C.处处连续,仅在点 z = 0 处可导D.处处连续,仅在点 z = 0 处解析,3. 设复数 a 与b 有且仅有一个模为 1,则的值()n =0n +1 n =0n 否 则 A.大于 1 B.等于 1 C.小于 1D.无穷大视 4. 设 z = x + i y ,f (z ) = - y + i x ,则 f '(z ) = ()二、填空题(本大题共 5 小题,每题 3 分,共 15 分)为A.1+ i无B. isin zC. -1D. 011. z = 1+ 2i 的5. 设C 是正向圆周 z = 1 , ⎰C dz = 2i ,则整数n 等于 ()zn A. -1B. 0e z -1C.1D. 26. z = 0 是 f (z ) =的()z2A.1阶极点B. 2 阶极点C.可去奇点D.本性奇点∞系别专业姓名班级学号(最后两位)总分 题号 一 二 三四统分人 题分 30203030复查人得分得分评卷人复查人得分评卷人复查人⎰18.求在映射 w = z 2 下, z _ _ _ _ 平面上的直线 __ _z = (2 + i)t 被映射成 w 平面上的曲线的方程.12.设 z = (2 - 3i)(-2 + i) ,则arg z =.13.在复平面上,函数 f (z ) = x 2 - y 2 - x + i(2xy - y 2 ) 在直线上可导.cos 5z.19.求e z 在 z = 0 处的泰勒展开式.14. 设C 是正向圆周 z = 1 ,则 ⎰Cdz = .z∞ ∞∞15. 若级数∑ zn 收敛,而级数∑ zn 发散,则称复级数∑ zn 为.n =1n =1n =1三、计算题(本大题共 5 小题,每小题 8 分,共 40 分)16. 利用柯西-黎曼条件讨论函数 f (z ) = z 的解析性.20.计算积分1+iz 2dz .2017 + n i 17.判断数列 z n = n +1的收敛性. 若收敛,求出其极限.三、证明题(本大题共1 小题,每小题15 分,共15 分)nn !⎩ 21.试证明柯西不等式定理:设函数 f (z ) 在圆C : z - z 0 = R 所围的区域内解析,且在C因此在任何点(x , y ) 处, ∂u ≠∂v,所以 f (z ) 在复平面内处处不解析。

复变函数期末考试复习题及答案详解

复变函数期末考试复习题及答案详解

《复变函数》考试试题(一) 1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin_________.3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数n n nz ∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz es ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设Ciy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(l i m 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数nn nz∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________.8. 设211)(z z f +=,则)(z f 的孤立奇点有_________.9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=iiz z I d ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z的周期为_________.3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n nnx的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=z e ,则___=z . 9. 若0z是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze.三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn nz nn ∑+∞=!的收敛半径. 3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

《复变函数与积分变换》期末考试试卷A及答案

《复变函数与积分变换》期末考试试卷A及答案

《复变函数与积分变换》期末考试试卷A及答案六、(本题6分)求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos三.按要求完成下列各题(每小题10分,共40分)(1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xvy u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。

(2).计算⎰-C zz zz e d )1(2其中C 是正向圆周: 解:本题可以用柯西公式\柯西高阶导数公式计算也可用留数计算洛朗展开计算,仅给出用前者计算过程因为函数z z e z f z2)1()(-=在复平面内只有两个奇点1,021==z z ,分别以21,z z 为圆心画互不相交互不包含的小圆21,c c 且位于c 内⎰⎰⎰-+-=-21d )1(d )1(d )1(222C z C z C zz z z e z zz e z z z e i z e iz e i z zz z πππ2)1(2)(2021=-+'===无论采用那种方法给出公式至少给一半分,其他酌情给分。

(3).⎰=++3342215d )2()1(z z z z z解:设)(z f 在有限复平面内所有奇点均在:3<z 内,由留数定理]),([Re 2d )2()1(3342215∞-=++⎰=z f s i z z z z z π -----(5分) ]1)1([Re 22z z f s i π= ----(8分)234221521))1(2()11()1(1)1(z z zz zz f ++=0,z )12()1(11)1(34222=++=有唯一的孤立奇点z z z z z f 1)12()1(11)1(]0,1)1([Re 34220202lim lim =++==→→z z z z zf z z f s z z⎰==++∴33422152d )2()1(z i z z z z π --------(10分)(4)函数2332)3()(sin )2)(1()(-+-=z z z z z z f π在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级. 解:∞±±±==-+-=,的奇点为 ,3,2,1,0,)(sin )3()2)(1()(3232k k z z z z z z z f π(1)的三级零点,)为(032103=±±±==z kk z πsin ,,,,,(2)的可去奇点,是的二级极点,为,)()(,z f z z f z z 210-=±== (3)的一级极点,为)(3z f z =(4)的三级极点;,为)(4,3,2z f z±-=(5)的非孤立奇点。

复变函数期末试卷及答案

复变函数期末试卷及答案

1.下列复数中,位于第三象限的复数是( )A. 12i +B. 12i --C. 12i -D. 12i -+ 2.下列等式中,不成立的等式是( )4.34arctan3A i π-+-的主辐角为.arg(3)arg()B i i -=-2.rg(34)2arg(34)C a i i -+=-+ 2.||D z z z ⋅=3.下列命题中,正确..的是( ) A. 1z >表示圆的内部B. Re()0z >表示上半平面C. 0arg 4z π<<表示角形区域D. Im()0z <表示上半平面4.关于0limz zz zω→=+下列命题正确的是( ) A.0ω=B. ω不存在C.1ω=-D. 1ω=5.下列函数中,在整个复平面上解析的函数是( ).z A z e +2sin .1z B z +.tan z C z e + .sin z D z e +6.在复平面上,下列命题中,正确..的是( )A. cos z 是有界函数B. 22Lnz Lnz = .cos sin iz C e z i z =+ .||D z =7.在下列复数中,使得z e i =成立的是( ).ln 223iA z i ππ=++.ln 423iB z i ππ=++.ln 226C z i ππ=++.ln 426D z i ππ=++8.已知31z i =+,则下列正确的是( )12.iA z π=34.iB z eπ=712.i C z π= 3.iD z π=9.积分||342z dz z =-⎰的值为( ) A. 8i πB.2C. 2i πD. 4i π10.设C 为正向圆周||4z =, 则10()zCe dz z i π-⎰等于( ) A.110!B.210!iπ C.29!iπ D.29!iπ- 11.以下关于级数的命题不正确的是( )A.级数0327nn i ∞=+⎛⎫⎪⎝⎭∑是绝对收敛的 B.级数212(1)nn in n ∞=⎛⎫+⎪-⎝⎭∑是收敛的 C. 在收敛圆内,幂级数绝对收敛D.在收敛圆周上,条件收敛12.0=z 是函数(1cos )ze z z -的( )A. 可去奇点B.一级极点C.二级极点D. 三级极点13.1(2)z z -在点 z =∞ 处的留数为( ) A. 0 .1B C. 12D. 12- 14.设C 为正向圆周1||=z , 则积分sin z c e dzz ⎰等于()A .2πB .2πiC .0D .-2π 15.已知()[()]F f t ω=F ,则下列命题正确的是( ) A. 2[(2)]()j f t e F ωω-=⋅F B. 21()[(2)]j e f t F ωω-⋅=+F C. [(2)]2(2)f t F ω=FD. 2[()](2)jt e f t F ω⋅=-F二、填空题(本大题共5小题,每小题2分,共10分) 16. 设121,1z i z =-=,求12z z ⎛⎫=⎪⎝⎭____________. 17. 已知22()()()f z bx y x i axy y =++++在复平面上可导,则a b +=_________.18. 设函数)(z f =0cos zt tdt ⎰,则)(z f 等于____________.19. 幂极数n n2n 1(2)z n ∞=-∑的收敛半径为_______.20. 设3z ω=,则映射在01z i =+处的旋转角为____________,伸缩率为____________. 20. 设函数2()sin f t t t =,则()f t 的拉氏变换等于____________. 三、计算题(本大题共4小题,每题7分,共28分)21.设C 为从原点到3-4i 的直线段,计算积分[()2]C I x y xyi dz =-+⎰22. 设2()cos ze f z z z i=+-. (1)求)(z f 的解析区域,(2)求).(z f '24.已知22(,)4u x y x y x =-+,求一解析函数()(,)(,)f z u x y iv x y =+,并使(0)3f =。

复变函数复习考卷及其答案好!

复变函数复习考卷及其答案好!

复变函数复习考卷一、选择题(每题4分,共40分)A. $e^z$B. $\frac{1}{z}$C. $\sqrt{z}$D. $\ln(z)$2. 复变函数在孤立奇点处的洛朗级数展开中,负幂项系数的含义是?()A. 函数在该点的留数B. 函数在该点的导数C. 函数在该点的极限D. 函数在该点的幅角3. 复变函数在解析区域内解析的充分必要条件是?()A. 柯西黎曼方程成立B. 洛朗级数展开存在C. 原函数存在D. 哈尔迪惠特尼定理成立A. 柯西积分定理B. 奇点定理C. 留数定理5. 复变函数在孤立奇点处的留数等于?()A. 奇点处的函数值B. 奇点处的导数C. 奇点处的极限D. 奇点处 Laurent 展开式中负幂项系数的和6. 复变函数的导数等于?()A. 实部关于 x 的偏导数B. 虚部关于 y 的偏导数C. 实部关于 x 的偏导数与虚部关于 y 的偏导数的和D. 实部关于 x 的偏导数与虚部关于 y 的偏导数的差7. 复变函数在区域 D 内解析,则其在 D 内的积分与路径无关的条件是?()A. D 为单连通区域B. D 为多连通区域C. D 为有界区域D. D 为无界区域8. 复变函数的泰勒级数展开式在收敛圆内的性质是?()A. 绝对收敛B. 条件收敛C. 无条件收敛D. 不能确定二、填空题(每题4分,共40分)1. 复变函数 $f(z) = e^z$ 在 $z=0$ 处的泰勒级数展开式为______。

2. 复变函数的导数 $f'(z)$ 满足______方程。

3. 若复变函数 $f(z)$ 在区域 D 内解析,则其在 D 内的积分与路径______。

4. 复变函数在孤立奇点处的留数等于该点______项系数的和。

5. 复变函数在解析区域内解析的充分必要条件是______。

6. 复变函数在区域 D 内解析,则其在 D 内的积分与路径无关的条件是 D 为______区域。

7. 复变函数的泰勒级数展开式在收敛圆内的性质是______。

复变函数期末考试试卷及答案详解

复变函数期末考试试卷及答案详解

复变函数期末考试试卷及答案详解复变函数期末考试试卷及答案详解《复变函数》考试试题(一) 三.计算题(40分):dz1,1、 __________.(为自然数)nn,f(z),|z,z|,10(zz),0D,{z:0,|z|,1}(z,1)(z,2)f(z),求在1. 设22sinz,cosz,2. _________. 内的罗朗展式.1sinz3.函数的周期为___________. dz.,|z|,1cosz2. 12f(z),,,,,3712,f(z)fzd,()z,1C,{z:|z|,3}f'(1,i).,C4.设,则的孤立奇点有__________. ,z,3. 设,其中,试求,z,1nw,nz5.幂级数的收敛半径为__________. ,z,14. 求复数的实部与虚部. n0,6.若函数f(z)在整个平面上处处解析,则称它是__________. 四. 证明题.(20分)zzz,,...,1. 函数在区域D内解析. 证明:如果在D内为常数,f(z)|f(z)|12n,limlimz,,n,,nnn,,7.若,则______________.D那么它在内为常数. zesRe(,0),n0Re1,,z2. 试证: 在割去线段的平面内能分出两zfzzz()(1),,z8.________,其中n为自然数.z,,10Re1,,z个单值解析分支, 并求出支割线上岸取正值的那支在sinz的值.9. 的孤立奇点为________ .《复变函数》考试试题(二) z二. 填空题. (20分)limf(z),___zf(z)z,z0010.若是的极点,则.13sin(2z)1. 设,则 z,,i|z|,__,argz,__,z,__的幂级数展开式. 1. 求函数2222.设,则f(z),(x,2xy),i(1,sin(x,y),,z,x,iy,C2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数在正z实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点________. limf(z),z,1,i处的值. z,idz,3. _________.(为自然数) inn,|z,z|,10(zz),0I,|z|dz3. 计算积分:,积分路径为(1)单位圆()|z|,1,,i,nnz4. 幂级数的收敛半径为__________ . 的右半圆. ,n0,sinzdz,z,25. 若z是f(z)的m阶零点且m>0,则z是的_____零点. ,f'(z)002(,)z24. 求 .z6. 函数e的周期为__________.四. 证明题. (20分) 537. 方程在单位圆内的零点个数为________. 2z,z,3z,8,0f(z)1. 设函数f(z)在区域D内解析,试证:f(z)在D内为常数的充要条件是1f(z),8. 设,则的孤立奇点有_________. f(z)2在D内解析. 1,z2. 试用儒歇定理证明代数基本定理. 9. 函数的不解析点之集为________.f(z),|z|《复变函数》考试试题(三)二. 填空题. (20分) z,1110. . Res(,1),____f(z),1. 设,则f(z)的定义域为___________. 42z,1zz三. 计算题. (40分) 2. 函数e的周期为_________.2n,21n,,z,,i(1,)3. 若,则__________. limz,nnn!n,,1,nnn的收敛半径.2. 试求幂级数z,n22n4. ___________. sinz,cosz,n,dzzedz,5. _________.(为自然数) nn,|z,z|,13. 算下列积分:,其中是.C|z|,10(zz),22,0Cz(z,9),nnx6. 幂级数的收敛半径为__________. ,962n,0z,2z,z,8z,2,04. 求在|z|<1内根的个数.四. 证明题. (20分) 1f(z),7. 设,则f(z)的孤立奇点有__________. 21. 函数在区域D内解析. 证明:如果在D内为常f(z)|f(z)|z,1z数,那么它在D内为常数. 8. 设,则. z,___e,,12. 设是一整函数,并且假定存在着一个正整数n,以及两个正数f(z)z9. 若是的极点,则. f(z)limf(z),___0z,z0R及M,使得当时 |z|,Rzen10. Res(,0),____. n|f(z)|,M|z|, z三. 计算题. (40分) 证明是一个至多n次的多项式或一常数。

复变函数期末考试卷-A-2011-2012-1-答案

复变函数期末考试卷-A-2011-2012-1-答案
6. 把函数
1 在 1 | z | 2 内展开成罗朗级数。 ( z 1)( z 2)
2
【解】
1 ( z 1)( z 2)
2
1 1 z2 2 5 z 2 z 1 1 1 1 1 ( z 2) 1 5 2 1 z z 2 (1 2 ) 2 z n 1 1 z ( z 2) n 1 ( 1) 5 z 2 n 0 z 2n 2 n 0 2 n 1 z 1 2 n 1 (1) n 2 n 1 (1) n 2 n 2 5 n0 2 z z n0 n0
(5 分)
4. 求积分 I 【解】设

C
zdz, C 为沿单位圆 (| z | 1) 的逆时针一周的曲线。
z ei (0 2 ), dz iei d , 则 I ei iei d (3分) 2 i
0 2
5. 求
C
z( z 1) d z ,其中 C 为 | z | 2 。
ux v ) ( x ) 1 ,即: 两族曲线互相正交。 uy vy
(2)
u v u 与 中有一个为零时,不妨设 u y 0 ,则由 C-R 方程,有 y y y
k1
u ux v , k2 x y 0 uy vy ux
即:两族曲线在交点处的切线一条是水平的,另一条是铅直的,它们仍互相正交。证毕。 2. 证明:当 C 为任何不通过原点的简单闭曲线时,有 【证明】分两种情况讨论: (1) 当 z 0 在 C 之外时,由 Cauchy-Gurssat 定理得, (2) 当 z 0 在 C 之内时,在高阶导数的 Cauchy 公式

最新复变函数与积分变换期末考试试卷(A卷)(1)

最新复变函数与积分变换期末考试试卷(A卷)(1)

复变函数与积分变换期末考试试卷(A 卷)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列复数中,位于第四象限的复数是( )A. 4+3iB. -3-3iC.-1+3iD.5-3i 2.下列等式中,不成立的等式是( ) A. z·z =Re (z·z ).arg(3)arg()B i i -=- .rg(3)arg(3)C A =2.||D z z z ⋅=3.不等式 ||3z > 所表示的区域为( ) A. 圆的外部B.上半平面C. 角形区域D.圆的内部4.积分||322z dz z =-⎰的值为( )A. 8i πB.2C. 2i πD. 4i π 5.下列函数中,在整个复平面上解析的函数是( ).z A z e +.sin z B z e + .tan z C z e + .R e ()s i n D z z+6.在复平面上,下列命题中,错误..的是( )A. cosz 是周期函数B. ze 是解析函数.cos sin iz C e z i z =+.||D z =7.在下列复数中,使得ze =成立的是( ).ln 224iA z i ππ=++.ln 424iB z i ππ=++.ln 22C z i π=+.l n 42D z iπ=+ 8.设C 为正向圆周1||=z , 则积分 cos z c e dzz⎰等于( )A .2πB .2πiC .0D .-2π 9.设C 为正向圆周||2z =, 则21(1)C dz z i --⎰等于( )A.i21π B. 0 C.i 2πD.2i π-10.以下关于级数的命题不正确的是( )A.级数0327nn i ∞=+⎛⎫⎪⎝⎭∑是绝对收敛的B.级数212(1)n n in n ∞=⎛⎫+ ⎪-⎝⎭∑是收敛的 C.级数01(1)2n n n i n ∞=⎛⎫-+ ⎪⎝⎭∑是收敛的D.级数212n n i n ∞=⎛⎫+ ⎪⎝⎭∑是收敛的11.已知31z i =+,则下列正确的是( )12.iA z π=34.iB z eπ=712.i C z π=3.iD z π=12.下列关于幂级数的叙述,不正确 的是( ) A.在收敛圆内,幂级数绝对收敛 B.在收敛圆外,幂级数发散 C.在收敛圆周上,可能收敛,也可能发散 D.在收敛圆周上,条件收敛13.0=z 是函数sin z e z z的( )A.本性奇点B.一级极点C.二级极点D.可去奇点14.cos z zz π-在点 z π= 处的留数为( ) A. π-.B πC.1D. -115.关于0Im lim z zzω→=下列命题正确的是( )A.0ω=B. ω不存在C.1ω=-D.1ω=二、填空题(本大题共5小题,每小题2分,共10分)16.sincos 33z i ππ=+复数的三角形式为____________. 17. 已知22()()()f z x ay x i bxy y =++++在复平面上可导,则a b +=_________. 18. 设函数)(z f =3zt te dt ⎰,则)(z f 等于____________.19. 幂极数n n2n 1(-1)z n∞=∑的收敛半径为_______.20.设121,1z i z =-+=,求12z z ⎛⎫=⎪⎝⎭____________.三、计算题(本大题共4小题,每题7分,共28分) 21.设C 为从原点到2+3i 的直线段,计算积分[(2)]CI x y ixy dz =-+⎰22. 设2()cos 4ze f z z z=+-. (1)求)(z f 的解析区域,(2)求).(z f '23. 将函数1()(1)(2)f z z z =--在点0=z 处展开为泰勒级数.24. 将函数112()(1)z ef z z -=-在圆环0|1|z <-<∞内展开成洛朗级数.四、综合题(共4小题,每题8分,共32分)25.已知22(,)2u x y x y x =-+,求一解析函数()(,)(,)f z u x y iv x y =+,并使(0)2f i =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7幂函数 的收敛范围为,和函数为.
※ 以下各题必须在答题纸上解答,并在每张答题纸上标明:班级、姓名、学号.
二、计算、证明题【共6小题,每小题12分,共72分】
1、讨论复变函数 的可导性与解析性.
3、求 的共轭调和函数 且使 .
4、把下列函数展开为级数
(1) 展开为在 的泰勒级数;
(2) 在圆环域 内展开为洛朗级数.
华侨大学本科考试卷
2012—2013学年第一学期(A卷)
学院课程名称复变函数考试日期2013.1.11
姓名专 业学 号
题 号


总分
得 分
一、填空题【共7小题,每题4分,共28分】将答案直接填在题中横线上.
1设 则 .
2计算复数 的值为.
3当 时, 为实数.
4 为半径的圆周,则积分 ( ,且为整数).
5、求 的值.(此题为留数计算)
6、设 在区域 内解析, 为 内的任意一条正向简单闭曲线,证明:对在 内但不在 上的任意一点 ,等式:
成立.
相关文档
最新文档