(完整版)解一元二次方程练习题汇编
(完整版)一元二次方程经典复习题(含答案),推荐文档
试卷第1页,总7页一元二次方程测试题考试范围: 一元二次方程;考试时间:100分钟;命题人:刘笑天题号一二三总分得分第Ⅰ卷(选择题)评卷人得 分一.选择题(共12小题)1.方程x (x ﹣2)=3x 的解为( )A .x=5B .x 1=0,x 2=5C .x 1=2,x 2=0D .x 1=0,x 2=﹣52.下列方程是一元二次方程的是( )A .ax 2+bx +c=0B .3x 2﹣2x=3(x 2﹣2)C .x 3﹣2x ﹣4=0D .(x ﹣1)2+1=03.关于x 的一元二次方程x 2+a 2﹣1=0的一个根是0,则a 的值为( )A .﹣1B .1C .1或﹣1D .34.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x ,则下列方程中正确的是( )A .12(1+x )=17B .17(1﹣x )=12C .12(1+x )2=17D .12+12(1+x )+12(1+x )2=175.如图,在△ABC 中,∠ABC=90°,AB=8cm ,BC=6cm .动点P ,Q 分别从点A ,B 同时开始移动,点P 的速度为1cm/秒,点Q 的速度为2cm/秒,点Q 移动到点C 后停止,点P 也随之停止运动.下列时间瞬间中,能使△PBQ 的面积为15cm 2的是( )A .2秒钟B .3秒钟C .4秒钟D .5秒钟6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x 米,可列方程为( )试卷第2页,总7页A .x (x +12)=210B .x (x ﹣12)=210C .2x +2(x +12)=210D .2x +2(x ﹣12)=2107.一元二次方程x 2+bx ﹣2=0中,若b <0,则这个方程根的情况是( )A .有两个正根B .有一正根一负根且正根的绝对值大C .有两个负根D .有一正根一负根且负根的绝对值大8.x 1,x 2是方程x 2+x +k=0的两个实根,若恰x 12+x 1x 2+x 22=2k 2成立,k 的值为( )A .﹣1B .或﹣1C .D .﹣或19.一元二次方程ax 2+bx +c=0中,若a >0,b <0,c <0,则这个方程根的情况是( )A .有两个正根B .有两个负根C .有一正根一负根且正根绝对值大D .有一正根一负根且负根绝对值大10.有两个一元二次方程:M:ax 2+bx +c=0;N :cx 2+bx +a=0,其中a ﹣c ≠0,以下列四个结论中,错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根B .如果方程M 有两根符号相同,那么方程N 的两根符号也相同C .如果5是方程M 的一个根,那么是方程N 的一个根D .如果方程M 和方程N 有一个相同的根,那么这个根必是x=111.已知m ,n 是关于x 的一元二次方程x 2﹣2tx +t 2﹣2t +4=0的两实数根,则(m +2)(n +2)的最小值是( )A .7B .11C .12D .1612.设关于x 的方程ax 2+(a +2)x +9a=0,有两个不相等的实数根x 1、x 2,且x 1<1<x 2,那么实数a 的取值范围是( )A .B .C .D .第Ⅱ卷(非选择题)评卷人 得 分试卷第3页,总7页二.填空题(共8小题)13.若x 1,x 2是关于x 的方程x 2﹣2x ﹣5=0的两根,则代数式x 12﹣3x 1﹣x 2﹣6的值是 .14.已知x 1,x 2是关于x 的方程x 2+ax ﹣2b=0的两实数根,且x 1+x 2=﹣2,x 1•x 2=1,则b a 的值是 .15.已知2x |m |﹣2+3=9是关于x 的一元二次方程,则m= .16.已知x 2+6x=﹣1可以配成(x +p )2=q 的形式,则q= .17.已知关于x 的一元二次方程(m ﹣1)x 2﹣3x +1=0有两个不相等的实数根,且关于x 的不等式组的解集是x <﹣1,则所有符合条件的整数m 的个数是 .18.关于x 的方程(m ﹣2)x 2+2x +1=0有实数根,则偶数m 的最大值为 .19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为 米.20.如图是一次函数y=kx +b 的图象的大致位置,试判断关于x 的一元二次方程x 2﹣2x +kb +1=0的根的判别式△ 0(填:“>”或“=”或“<”). 评卷人得 分三.解答题(共8小题)21.解下列方程.(1)x 2﹣14x=8(配方法)(2)x 2﹣7x ﹣18=0(公式法)试卷第4页,总7页(3)(2x+3)2=4(2x+3)(因式分解法)(4)2(x﹣3)2=x2﹣9.22.关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.23.关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.24.关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.试卷第5页,总7页25.某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y (千克)与销售单价x (元/千克)之间存在如图所示的变化规律.(1)求每月销售量y 与销售单价x 之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x 为多少元.26.如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米.(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.试卷第6页,总7页27.某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元.请根据以上信息,解答下列问题:(1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m(m>0)元.在不考虑其他因素的条件下,当m为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元?28.已知关于x的一元二次方程x2﹣(m+6)x+3m+9=0的两个实数根分别为x1,x2.(1)求证:该一元二次方程总有两个实数根;(2)若n=4(x1+x2)﹣x1x2,判断动点P(m,n)所形成的函数图象是否经过点A(1,16),并说明理由.试卷第7页,总7页本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
一元二次方程计算题及答案(汇编)
6X²-7X+1=06X²-7X=-1X²-﹙7/6﹚X+﹙7/12﹚²=-1/6﹢﹙7/12﹚²﹙X-7/12﹚²=25/144∴X-7/12=±5/12∴X1=1,X2=1/65X²-18=9X5X²-9X=18X²-1.8X=3.6﹙X-0.9﹚²=4.41∴X-.9=±2.1∴X1=3,X2=-1.24X²-3X=52解:X²-﹙3/4﹚X=13﹙X-3/8﹚²=13∴X-3/8=±29/8∴X1=4,X2 =-13/45X²=4-2X5X²+2X=4X²+0.2X=0.8﹙X+0.1﹚²=0.81X+0.1=±0.9X1=-1,X2=0.8 就这么几道,最好去百度搜索,那多1)x^2-9x+8=0 答案:x1=8 x2=1(2)x^2+6x-27=0 答案:x1=3 x2=-9(3)x^2-2x-80=0 答案:x1=-8 x2=10(4)x^2+10x-200=0 答案:x1=-20 x2=10(5)x^2-20x+96=0 答案:x1=12 x2=8(6)x^2+23x+76=0 答案:x1=-19 x2=-4(7)x^2-25x+154=0 答案:x1=14 x2=11(8)x^2-12x-108=0 答案:x1=-6 x2=18(9)x^2+4x-252=0 答案:x1=14 x2=-18(10)x^2-11x-102=0 答案:x1=17 x2=-6(11)x^2+15x-54=0 答案:x1=-18 x2=3(12)x^2+11x+18=0 答案:x1=-2 x2=-9(13)x^2-9x+20=0 答案:x1=4 x2=5(14)x^2+19x+90=0 答案:x1=-10 x2=-9(15)x^2-25x+156=0 答案:x1=13 x2=12(16)x^2-22x+57=0 答案:x1=3 x2=19(17)x^2-5x-176=0 答案:x1=16 x2=-11(18)x^2-26x+133=0 答案:x1=7 x2=19(19)x^2+10x-11=0 答案:x1=-11 x2=1(20)x^2-3x-304=0 答案:x1=-16 x2=19(21)x^2+13x-140=0 答案:x1=7 x2=-20(22)x^2+13x-48=0 答案:x1=3 x2=-16(24)x^2+28x+171=0 答案:x1=-9 x2=-19(25)x^2+14x+45=0 答案:x1=-9 x2=-5(26)x^2-9x-136=0 答案:x1=-8 x2=17(27)x^2-15x-76=0 答案:x1=19 x2=-4(28)x^2+23x+126=0 答案:x1=-9 x2=-14(29)x^2+9x-70=0 答案:x1=-14 x2=5(30)x^2-1x-56=0 答案:x1=8 x2=-7(31)x^2+7x-60=0 答案:x1=5 x2=-12(32)x^2+10x-39=0 答案:x1=-13 x2=3(33)x^2+19x+34=0 答案:x1=-17 x2=-2(34)x^2-6x-160=0 答案:x1=16 x2=-10(35)x^2-6x-55=0 答案:x1=11 x2=-5(36)x^2-7x-144=0 答案:x1=-9 x2=16(37)x^2+20x+51=0 答案:x1=-3 x2=-17(38)x^2-9x+14=0 答案:x1=2 x2=7(39)x^2-29x+208=0 答案:x1=16 x2=13(40)x^2+19x-20=0 答案:x1=-20 x2=1(41)x^2-13x-48=0 答案:x1=16 x2=-3(42)x^2+10x+24=0 答案:x1=-6 x2=-4(43)x^2+28x+180=0 答案:x1=-10 x2=-18(44)x^2-8x-209=0 答案:x1=-11 x2=19(46)x^2+7x+6=0 答案:x1=-6 x2=-1(47)x^2+16x+28=0 答案:x1=-14 x2=-2(48)x^2+5x-50=0 答案:x1=-10 x2=5(49)x^2+13x-14=0 答案:x1=1 x2=-14(50)x^2-23x+102=0 答案:x1=17 x2=6(51)x^2+5x-176=0 答案:x1=-16 x2=11(52)x^2-8x-20=0 答案:x1=-2 x2=10(53)x^2-16x+39=0 答案:x1=3 x2=13(54)x^2+32x+240=0 答案:x1=-20 x2=-12(55)x^2+34x+288=0 答案:x1=-18 x2=-16(56)x^2+22x+105=0 答案:x1=-7 x2=-15(57)x^2+19x-20=0 答案:x1=-20 x2=1(58)x^2-7x+6=0 答案:x1=6 x2=1(59)x^2+4x-221=0 答案:x1=13 x2=-17(60)x^2+6x-91=0 答案:x1=-13 x2=7(61)x^2+8x+12=0 答案:x1=-2 x2=-6(62)x^2+7x-120=0 答案:x1=-15 x2=8(63)x^2-18x+17=0 答案:x1=17 x2=1(64)x^2+7x-170=0 答案:x1=-17 x2=10(65)x^2+6x+8=0 答案:x1=-4 x2=-2(66)x^2+13x+12=0 答案:x1=-1 x2=-12(68)x^2+11x-42=0 答案:x1=3 x2=-14(69)x^20x-289=0 答案:x1=17 x2=-17(70)x^2+13x+30=0 答案:x1=-3 x2=-10(71)x^2-24x+140=0 答案:x1=14 x2=10(72)x^2+4x-60=0 答案:x1=-10 x2=6(73)x^2+27x+170=0 答案:x1=-10 x2=-17(74)x^2+27x+152=0 答案:x1=-19 x2=-8(75)x^2-2x-99=0 答案:x1=11 x2=-9(76)x^2+12x+11=0 答案:x1=-11 x2=-1(77)x^2+17x+70=0 答案:x1=-10 x2=-7(78)x^2+20x+19=0 答案:x1=-19 x2=-1(79)x^2-2x-168=0 答案:x1=-12 x2=14(80)x^2-13x+30=0 答案:x1=3 x2=10(81)x^2-10x-119=0 答案:x1=17 x2=-7(82)x^2+16x-17=0 答案:x1=1 x2=-17(83)x^2-1x-20=0 答案:x1=5 x2=-4(84)x^2-2x-288=0 答案:x1=18 x2=-16(85)x^2-20x+64=0 答案:x1=16 x2=4(86)x^2+22x+105=0 答案:x1=-7 x2=-15(87)x^2+13x+12=0 答案:x1=-1 x2=-12(88)x^2-4x-285=0 答案:x1=19 x2=-15(90)x^2-17x+16=0 答案:x1=1 x2=16(91)x^2+3x-4=0 答案:x1=1 x2=-4(92)x^2-14x+48=0 答案:x1=6 x2=8(93)x^2-12x-133=0 答案:x1=19 x2=-7(94)x^2+5x+4=0 答案:x1=-1 x2=-4(95)x^2+6x-91=0 答案:x1=7 x2=-13(96)x^2+3x-4=0 答案:x1=-4 x2=1(97)x^2-13x+12=0 答案:x1=12 x2=1(98)x^2+7x-44=0 答案:x1=-11 x2=4(99)x^2-6x-7=0 答案:x1=-1 x2=7 (100)x^2-9x-90=0 答案:x1=15 x2=-6 (101)x^2+17x+72=0 答案:x1=-8 x2=-9 (102)x^2+13x-14=0 答案:x1=-14 x2=1 (103)x^2+9x-36=0 答案:x1=-12 x2=3 (104)x^2-9x-90=0 答案:x1=-6 x2=15 (105)x^2+14x+13=0 答案:x1=-1 x2=-13 (106)x^2-16x+63=0 答案:x1=7 x2=9 (107)x^2-15x+44=0 答案:x1=4 x2=11 (108)x^2+2x-168=0 答案:x1=-14 x2=12 (109)x^2-6x-216=0 答案:x1=-12 x2=18 (110)x^2-6x-55=0 答案:x1=11 x2=-5。
九年级数学解一元二次方程专项练习题(带答案)【40道】
解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。
人教版九年级上第21章 一元二次方程精题汇编(包含答案)
人教版九年级上一元二次方程精题汇编一选择题(每题3分共36分)满分120分1、若一元二次方程x²-2x-3599=0的两根分别为a,b,且a>b,则2a-b的值为( )A.-57B.63C.179D.1812、如果x²-x-1=(x+1)°,那么x的值为( )A2或-1 B.0或1 C.2 D.-13 、定义一种新运算:a*b=a(a-b),例如,4*3=4(4-3)=4x*2=3,则x的值是( )A.3B.-1C.3或1D.3或-14、已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax²+bx+c=0根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断5、已知三角形两边长分别为2和9,第三边的长为一元二次方程x²-14x+48=0的根,则这个三角形周长为() A.11 B.17 C.17或19 D.196、设是方程x²-4x+m=0的两个根,且 + - =1,则 m的值)() A 2 B 3 C-1 D 47、在△ABC中,BC=2,AB=2,AC=b,且关于x的方程x²-4x+b=0有两个相等的实数根,则AC边上的中线长为 ( )A.1B.2C. 4. D8、用“整体法”求得方程(2x+5)²-4(2x+5)+3=0的解为( )A.=1,=3B.=-2,=3 C=-3 =-1 D.=-2 =-19、要使方程(a-3)x²+(b+1)x+c=0是关于x的一元二次方程,则( )A.a≠0B.a≠3C.a≠1且b≠-1D.a≠3且b≠-1且c≠010、若x=-1是关于x的一元二次方程ax²-bx-2018=0的一个解,则1+a+b的值是( )A.2016B.2017C.2018D.201911、一位同学将方程x²-4x-3=0化成了(x+m)²=n的形式,则m,n的值应为()A.m=-2,n=7B.m=2,n=7C.m=-2,n=1D.m=2,n=-712、已知关于x的一元二次方程a(1+x²)+2bx=c(1-x²),其中a,b,c分别为△ABC三边的长,如果方程有两个相等的实数根,则△ABC的形状为( )A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形二填空题(每题3分共21分)13、方程3x(x-1)=2(x-1)的根为 ______________14、设等腰三角形一腰与底边的长分别方程x-6x+a=0的两根,当这样的三角形只有一个时,a的取值范围是_______15 、若关于x的一元二次方程x²+2mx-4m+1=0有两个相等的实数根,则(m-2)²-2m(m-1)的值为 __________16、在一元二次方程ax²+bx+c=0(a≠0)中,下列说法正确的是___ (填序号)①若a+b+c=0,则b²-4ac≥0;②若方程两根为-1和3,则3a+2c=0;③若方程ax²+c=0有两个不相等的实数根,则方程ax²+bx+c=0必有两个不相等的实数根;④若a=1,c=-1,且方程的两根的平方和为6,则b只能等于2。
一元二次方程练习题 (含答案)
一元二次方程练习题题号一、填空题二、选择题三、多项选择四、简答题五、计算题总分得分一、填空题(每空5分,共30分)1、关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个解是0,则m= .2、已知关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是.3、已知圆锥底面圆的半径为6cm,它的侧面积为60πcm2,则这个圆锥的高是4、已知m、n是关于x的一元二次方程x2﹣2ax+a2+a﹣2=0的两实根,那么m+n的最大值是5、若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2= .6、一元二次方程x2+mx+2m=0(m≠0)的两个实根分别为x1,x2,则= .二、选择题(每空5 分,共35分)7、下列选项中一元二次方程的是()A.x=2y﹣3 B.2(x+1)=3 C.2x2+x﹣4 D.5x2+3x﹣4=0 8、一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2B.x1=1,x2=2C.x1=1,x2=﹣2D.x1=0,x2=29、将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm10、某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,两次连续降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为()A.8%B.18%C.20%D.25%11、如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为()A.1米 B.2米 C.3米 D.4米12、已知直角三角形的两条直角边的长恰好是方程的两根,则此直角三角形的斜边长为( ).A. B.3 C. D.1313、要组织一次篮球邀请赛,参赛的每个队之间都要比赛一场,计划安排15场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=15 B.x(x﹣1)=15 C.x(x+1)=15 D.x(x﹣1)=1514、由一元二次方程x2+px+q=0的两个根为p、q,则p、q等于()A.0B.1C.1或-2D.0或1评卷人得分评卷人得分三、多项选择(每空5 分,共5分)15、方程的两根分别为,,且,则的取值范围是.四、简答题(每题10 分,共110 分)16、试求实数(≠1),使得方程的两根都是正整数.17、已知关于的一元二次方程有两个实数根和.(1)求实数的取值范围;(2)当时,求的值.18、如图,在矩形ABCD中,AB=4cm,BC=cm,点P从点A出发以1cm/s的速度移动到点B;点P出发几秒后,点P、A的距离是点P、C距离的倍?19、某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)20、某花圃用花盆培育某种花苗,经试验发现每盆花的盈利与每盆花中花苗的株数有如下关系:每盆植入花苗4株时,平均单株盈利5元;以同样的栽培条件,若每盆每增加1株花苗,平均单株盈利就会减少0.5元.要使每盆花的盈利为24元,且尽可能地减少成本,则每盆花应种植花苗多少株?21、一个足球被从地面向上踢出,它距地面高度可以用二次函数刻画,其中表示足球被踢出后经过的时间.(1)解方程,并说明其根的实际意义;(2)求经过多长时间,足球到达它的最高点?最高点的高度是多少?22、随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2014年底拥有家庭轿车64辆,2016年底家庭轿车的拥有量达到100辆.(1)若该小区2014年底到2016年底家庭轿车拥有量的年平均增长率都相同,求该小区到2017年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,求该小区最多可建室内车位多少个?23、某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售价每涨价1元,月销售量就减少10千克.评卷人得分评卷人得分(1) 写出月销售利润y(单位:元) 与售价x(单位:元/千克)之间的函数解析式.(2)当售价定为多少时会获得最大利润?求出最大利润.(3) 商店想在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少?24、.要制作一个如图所示(图中阴影部分为底与盖,且SⅠ=SⅡ)的钢盒子,在钢片的四个角上分别截去两个相同的正方形与两个相同的小长方形,然后折合起来既可,求有盖盒子的高x.25、如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解答下列问题.(1)问:在第6个图中,黑色瓷砖有__________块,白色瓷砖有__________块;(2)某商铺要装修,准备使用边长为1米的正方形白色瓷砖和长为1米、宽为0.5米的长方形黑色瓷砖来铺地面.且该商铺按照此图案方式进行装修,瓷砖无须切割,恰好能完成铺设.已知白色瓷砖每块100元,黑色瓷砖每块50元,贴瓷砖的费用每平方米15元.经测算总费用为15180元.请问两种瓷砖各需要买多少块?26、已知:平行四边形ABCD的两边AB、BC的长是关于的方程的两个实数根.(1)试说明:无论取何值方程总有两个实数根(2)当为何值时,四边形ABCD是菱形?求出这时菱形的边长;(3)若AB的长为2,那么平行四边形ABCD的周长是多少?五、计算题(每题5分,共35 分)27、用恰当的方法解下列方程:28、解方程:29、x2﹣7x﹣18=0.30、2x2+12x﹣6=031、解方程:.评卷人得分参考答案一、填空题1、﹣2 .【考点】一元二次方程的解.【分析】一元二次方程的解就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.将x=0代入方程式即得.【解答】解:把x=0代入一元二次方程(m﹣2)x2+3x+m2﹣4=0,得m2﹣4=0,即m=±2.又m﹣2≠0,m≠2,取m=﹣2.故答案为:m=﹣2.【点评】此题要注意一元二次方程的二次项系数不得为零.2、k<3 .【考点】根的判别式.【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【解答】解:∴a=1,b=﹣2,c=k,方程有两个不相等的实数根,∴△=b2﹣4ac=12﹣4k>0,∴k<3.故填:k<3.3、8 cm.【考点】圆锥的计算.【专题】计算题.【分析】设圆锥的母线长为l,由于圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,则l•2π•6=60π,然后利用勾股定理计算圆锥的高.【解答】解:设圆锥的母线长为l,根据题意得l•2π•6=60π,解得l=10,所以圆锥的高==8(cm).故答案为8.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了勾股定理.4、4 .【考点】根与系数的关系;根的判别式.【专题】计算题.【分析】先根据判别式的意义确定a≤2,再根据根与系数的关系得到m+n=2a,然后利用a的取值范围确定m+n的最大值.【解答】解:根据题意得△=4a2﹣4(a2+a﹣2)≥0,解得a≤2,因为m+n=2a,所以m+n≤4,所以m+n的最大值为4.故答案为4.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程根的判别式.5、16 .【考点】根与系数的关系.【分析】利用根与系数的关系可得出α+β和αβ,且α2+β2=(α+β)2﹣2αβ,代入计算即可.【解答】解:∵α、β是一元二次方程x2+2x﹣6=0的两根,∴α+β=﹣2,αβ=﹣6,∴α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=4+12=16,故答案为:16.【点评】本题主要考查一元二次方程根与系数的关系,把α2+β2化成(α+β)2﹣2αβ是解题的关键.6、﹣.【考点】根与系数的关系.【分析】由根与系数的关系可得x1+x2=﹣m,x1•x2=2m,继而求得答案.【解答】解:∵一元二次方程x2+mx+2m=0(m≠0)的两个实根分别为x1,x2,∴x1+x2=﹣m,x1•x2=2m,∴==﹣.二、选择题7、D【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、是二元一次方程,故此选项错误;B、是一元一次方程,故此选项错误;C、不是方程,故此选项错误;D、符合一元二次方程的定义,故此选项正确;故选:D.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.8、D【考点】解一元二次方程-因式分解法.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选D.9、D【考点】一元二次方程的应用.【分析】设正方形铁皮的边长应是x厘米,则做成没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据长方体的体积计算公式列方程解答即可.【解答】解:正方形铁皮的边长应是x厘米,则没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据题意列方程得,(x﹣3×2)(x﹣3×2)×3=300,解得x1=16,x2=﹣4(不合题意,舍去);答:正方形铁皮的边长应是16厘米.故选:D.10、C【分析】设每次降价的百分率为x,则第一次降价后的售价为200(1﹣x)元,第二次降价后的售价为200(1﹣x)(1﹣x)元,根据第二降价后的售价为128元建立方程求出其解即可.【解答】解:设每次降价的百分率为x,由题意,得200(1﹣x)2=128,解得:x1=0.2,x2=1.8(不符合题意,舍去).答:每次降价的百分率为20%.故选C.【点评】本题考查了列一元二次方程解降低率的问题的运用,一元二次方程的解法的运用,解答时根据降低率的数量关系建立方程是关键,检验根是否符合题意是容易忘记的过程.11、C【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设道路的宽为x,利用“道路的面积”作为相等关系可列方程20x+33x﹣x2=20×33﹣510,解方程即可求解.解题过程中要根据实际意义进行x的值的取舍.【解答】解:设道路的宽为x,根据题意得20x+33x﹣x2=20×33﹣510整理得x2﹣53x+150=0解得x=50(舍去)或x=3所以道路宽为3米.故选C.【点评】本题考查的是一元二次方程的实际运用.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.12、C13、B【考点】由实际问题抽象出一元二次方程.【分析】关系式为:球队总数×每支球队需赛的场数÷2=15,把相关数值代入即可.【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=15.故选B.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.14、C三、多项选择15、.四、简答题16、解:因式分解得:,………….5分所以或. ………….7分因为,所以,,………….9分因为两根都是正整数,所以,. ………….12分17、解:(1)一元二次方程x2+(2m-1)x+m2=0有两个实数根,∴△=(2m-1)2-4×1×m2=-4m+1≥0,∴m ≤;(2)当x12-x22=0时,即(x1+x2)(x1-x2)=0,∴x1-x2=0或x1-x2=0当x1+x2=0,依据一元二次方程根与系数的关系可得x1+x2=-(2m-1)∴-(2m-1)=0,∴m=又∵由(1)一元二次方程x2+(2m-1)x+m2=0有两个实数根时的取值范围是m ≤,∴m=不成立,故m无解;当时x1-x2=0,x1=x2,方程有两个相等的实数根,∴△=(2m-1)2-4×1×m2=-4m+1=0,∴m=综上所述,当x1-x2=0时,m=。
(完整版)九年级数学中考复习专题一元二次方程练习题及答案
中考数学复习专题一元二次方程一、选择题:1、若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0的常数项为0,则m的值等于( )A.﹣2 B.2 C.﹣2或2 D.02、方程x2+6x﹣5=0的左边配成完全平方后所得方程为( )A.(x+3)2=14 B.(x﹣3)2=14 C.(x+3)2=4 D.(x﹣3)2=43、关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0,常数项为0,则m值等于( )A.1 B.2 C.1或2 D.04、某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是( )A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=1965、若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围( )A.k<1且k≠0 B.k≠0 C.k<1 D.k>16、关于x的一元二次方程x2+2x﹣m=0有两个实数根,则m的取值范围是( )A.m≥﹣1 B.m>﹣1 C.m≤﹣1且m≠0 D.m≥﹣1且m≠07、已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为( )A.﹣10 B.4 C.﹣4 D.108、若m、n是一元二次方程x2﹣5x﹣2=0的两个实数根,则m+n﹣mn的值是( )A.﹣7 B.7 C.3 D.﹣39、有一人患了流感,经过两轮穿然后共有49人患了流感,设每轮传染中平均一个人传染了x人,则x值为( )A.5 B.6 C.7 D.810、毕业之际,某校九年级数学兴趣小组的同学相约到同一家礼品店购买纪念品,每两个同学都相互赠送一件礼品,礼品店共售出礼品30件,则该兴趣小组的人数为( )A.5人 B.6人 C.7人 D.8人11、某市2013年生产总值(GDP)比2012年增长了12%,由于受到国际金融危机的影响,预计今年比2013年增长7%.若这两年GDP年平均增长率为x%,则x%满足的关系是( )A.12%+7%=x%B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)212、设x1、x2是方程x2+3x﹣3=0的两个实数根,则的值为( )A.5 B.﹣5 C.1 D.﹣1二、填空题:13、方程2x2﹣1=的二次项系数是 ,一次项系数是 ,常数项是 .14、若关于x的方程(a+3)x|a|-1-3x+2=0是一元二次方程,则a的值为________________.15、把方程(2x+1)(x—2)=5-3x整理成一般形式后,得,其中二次项系数是,一次项系数是,常数项是。
2024年全国各省市数学中考真题汇编 专题6一元二次方程及其应用(11题)含详解
专题06一元二次方程及其应用(11题)一、单选题1.(2024·四川自贡·中考真题)关于x 的一元二次方程220x kx +-=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根2.(2024·山东泰安·中考真题)关于x 的一元二次方程2230x x k -+=有实数根,则实数k 的取值范围是()A .98k <B .98k ≤C .98k ≥D .98k <-3.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =()A .9-B .4C .1-D .14.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A .17或13B .13或21C .17D .13二、填空题5.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =.6.(2024·四川巴中·中考真题)已知方程220x x k -+=的一个根为2-,则方程的另一个根为.7.(2024·甘肃临夏州·中考真题)若关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根,则m 的值为.三、解答题8.(2024·黑龙江齐齐哈尔·中考真题)解方程:x 2﹣5x +6=09.(2024·安徽·中考真题)解方程:223x x -=10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.11.(2024·辽宁·中考真题)某商场出售一种商品,经市场调查发现,日销售量y (件)与每件售价x (元)满足一次函数关系,部分数据如下表所示:每件售价x /元⋅⋅⋅455565⋅⋅⋅日销售量y /件⋅⋅⋅554535⋅⋅⋅(1)求y 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)该商品日销售额能否达到2600元?如果能,求出每件售价:如果不能,请说明理由.专题06一元二次方程及其应用(11题)一、单选题1.(2024·四川自贡·中考真题)关于x 的一元二次方程220x kx +-=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根【答案】A【分析】本题考查的是一元二次方程根的判别式,熟知一元二次方程20(0)ax bx c a ++=≠中,当0∆>时,方程有两个不相等的实数根是解题的关键.根据一元二次方程根的判别式解答即可.【详解】解: △()2241280k k =-⨯⨯-=+>,∴方程有两个不相等的实数根.故选:A .2.(2024·山东泰安·中考真题)关于x 的一元二次方程2230x x k -+=有实数根,则实数k 的取值范围是()A .9k <B .98k ≤C .98k ≥D .98k <-【答案】B【分析】本题考查了判别式与一元二次方程根的情况,熟知一元二次方程有实数根的条件是解题的关键.根据一元二次方程有实数根的条件是0∆≥,据此列不等式求解即可.【详解】解:∵关于x 的一元二次方程2230x x k -+=有实数根,∴()2Δ3420k =--⨯≥,解得98k ≤.故选B .3.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =()A .9-B .4C .1-D .1【答案】D【分析】此题考查了根的判别式,根据根的情况确定参数k 的取值,解题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠根的判别式24b ac ∆=-,当方程有两个不相等的实数根时,0∆>;当方程有两个相等的实数根时,Δ0=;当方程没有实数根时,Δ0<.【详解】解:∵关于x 的一元二次方程2960x x c -+=有两个相等的实数根,∴()2Δ64936360c c =--⨯⨯=-=,解得:1c =,故选:D .4.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A .17或13B .13或21C .17D .13【答案】C【分析】本题考查了解一元二次方程,等腰三角形的定义,三角形的三边关系及周长,由方程可得13x =,27x =,根据三角形的三边关系可得等腰三角形的底边长为3,腰长为7,进而即可求出三角形的周长,掌握等腰三角形的定义及三角形的三边关系是解题的关键.【详解】解:由方程210210x x -+=得,13x =,27x =,∵337+<,∴等腰三角形的底边长为3,腰长为7,∴这个三角形的周长为37717++=,故选:C .二、填空题5.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =.【答案】1【分析】由220x x c ++=有两个相等的实数根,可得240b ac ∆=-=进而可解答.【详解】解:∵220x x c ++=有两个相等的实数根,∴24440b ac c ∆=-=-=,∴1c =.故答案为:1.【点睛】本题主要考查根据一元二次方程根的情况求参数,掌握相关知识是解题的关键.6.(2024·四川巴中·中考真题)已知方程220x x k -+=的一个根为2-,则方程的另一个根为.7.(2024·甘肃临夏州·中考真题)若关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根,则m 的值为.【答案】-1【分析】根据关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根可知△=0,求出m 的取值即可.【详解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.三、解答题8.(2024·黑龙江齐齐哈尔·中考真题)解方程:x 2﹣5x +6=0【答案】x 1=2,x 2=3【分析】利用因式分解的方法解出方程即可.【详解】利用因式分解法求解可得.解:∵x 2﹣5x +6=0,∴(x ﹣2)(x ﹣3)=0,则x ﹣2=0或x ﹣3=0,解得x 1=2,x 2=3.【点睛】本题考查解一元二次方程因式分解法,关键在于熟练掌握因式分解的方法步骤.9.(2024·安徽·中考真题)解方程:223x x -=【答案】13x =,21x =-【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.11.(2024·辽宁·中考真题)某商场出售一种商品,经市场调查发现,日销售量(件)与每件售价x (元)满足一次函数关系,部分数据如下表所示:每件售价x /元⋅⋅⋅455565⋅⋅⋅日销售量y /件⋅⋅⋅554535⋅⋅⋅(1)求y 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)该商品日销售额能否达到2600元?如果能,求出每件售价:如果不能,请说明理由.【答案】(1)100=-+y x ;(2)该商品日销售额不能达到2600元,理由见解析。
2024年深圳市中考数学模拟题汇编:一元二次方程(附答案解析)
2024年深圳市中考数学模拟题汇编:一元二次方程一.选择题(共10小题)1.方程(x+1)2=0的根是()A.x1=x2=1B.x1=x2=﹣1C.x1=﹣1,x2=1D.无实根2.用配方法解方程x2﹣4x+2=0时,配方后所得的方程是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=1D.(x﹣2)2=﹣2 3.4月23日是世界读书日,据有关部门统计,某市2021年人均纸质阅读量约为4本,2023年人均纸质阅读量约为4.84本,设人均纸质阅读量年均增长率为x,则根据题意可列方程()A.4(1+2x)=4.84B.4.84(1+x)2=4C.4(1+x)2=4.84D.4+4(1+x)+4(1+x)2=4.844.已知x=1是一元二次方程x2+ax﹣3=0的一个根,则a的值为()A.2B.﹣2C.1D.﹣15.关于x的一元二次方程x2﹣2x﹣6=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.一元二次方程2x2+1﹣4x=0的一次项系数是()A.2B.1C.﹣4D.47.一元二次方程(x+3)(x﹣1)=2x﹣4化为一般形式是()A.x2﹣1=0B.x2﹣7=0C.x2+4x+1=0D.x2+1=08.已知x1、x2是一元二次方程2x2﹣4x+1=0的两个实数根,则x1•x2等于()A.﹣2B.−12C.12D.29.已知关于x的方程(m﹣1)x2+3x﹣1=0是一元二次方程,则m的取值范围是()A.m<1B.m≠0C.m>1D.m≠110.要为一幅长60cm,宽40cm的照片配一个相框,要求相框的四条边宽度相等,若要使整个带框后照片的面积是3500cm2(相框和照片重叠部分忽略不计),设相框的宽度为xcm,则x满足的方程是()A.(60+2x)(40+2x)=3500B.(60+x)(40+x)=3500C.(60﹣x)(40﹣x)=3500D.(60﹣2x)(40﹣2x)=3500二.填空题(共5小题)11.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一根为0,则m=.12.写出下列一元二次方程的根(2x﹣7)(x+2)=0.13.为建设美丽句容,改造老旧小区,我市2020年投入资金1000万元,2022年投入资金1440万元,现假定每年投入资金的增长率相同.求我市改造老旧小区投入资金的年平均增长率.14.如图,矩形绿地的长为4m,宽为3m,将此绿地的长、宽各增加相同的长度后,绿地面积增加了18m2,则绿地的长、宽增加的长度为m.15.某校截止到2022年底,校园绿化面积为1000平方米.为美化环境,该校计划2024年底绿化面积达到1440平方米.利用方程思想,设这两年绿化面积的年平均增长率为x,则依题意列方程为.三.解答题(共5小题)16.解方程:(1)x2+3x﹣2=0;(2)x(2x﹣5)=4x﹣10.17.已知关于x的一元二次方程2x2+x+m=0(m为常数).(1)若x=1是该方程的一个实数根,求m的值和该方程的另一个实数根;(2)若该方程有两个不相等的实数根,求m的取值范围.18.某景区六月份的游客人数为50万人,七、八两月游客人数持续增加,八月份的人数达到72万.(1)求该景区七、八月游客人数的月平均增长率;(2)景区内某商店销售一种纪念品,已知每件纪念品的成本是30元.如果销售价定为每件40元,那么日销售量将达到100件.八月份库存不足的情况下,店主提价销售,若销售价每提高5元,日销售量将减少10件.要使每天销售这种纪念品盈利1600元,同时又利于游客,那么该纪念品的销售价应定为多少元?19.山西某县玉露香梨汁多、酥脆、含糖高,享誉全国.某水果店销售玉露香梨,进价为2元/斤,按4.5元/斤出售,每天可卖出200斤.经市场调查发现,这种玉露香梨每斤的售价每降低0.1元,每天可多卖出20斤,若该水果店想要每天销售玉露香梨盈利600元,且尽可能让利于顾客,售价应定为多少?20.惠农商行以7200元的成本收购某种农产品800kg,目前可以以12元/kg的售价全部售出,如果储存起来待涨价后销售,则每周会损耗10kg,且每周须支付其他费用1000元,但每周每千克会涨价2元.根据往年市场行情可知售价不能超过40元.请解答下列问题.(1)当前直接出售可获利元;(2)储存几周后出售利润可达到4960元?2024年深圳市中考数学模拟题汇编:一元二次方程参考答案与试题解析一.选择题(共10小题)1.方程(x+1)2=0的根是()A.x1=x2=1B.x1=x2=﹣1C.x1=﹣1,x2=1D.无实根【考点】解一元二次方程﹣直接开平方法.【专题】常规题型;运算能力.【答案】B【分析】根据一元二次方程的解法即可求出答案.【解答】解:由于(x+1)2=0,∴x+1=0,∴x1=x2=﹣1故选:B.【点评】本题考查一元二次方程的解法,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.2.用配方法解方程x2﹣4x+2=0时,配方后所得的方程是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=1D.(x﹣2)2=﹣2【考点】解一元二次方程﹣配方法.【专题】一元二次方程及应用;运算能力.【答案】A【分析】方程变形后,配方得到结果,即可做出判断.【解答】解:方程x2﹣4x+2=0,变形得:x2﹣4x=﹣2,配方得:x2﹣4x+4=﹣2+4,即(x﹣2)2=2,故选:A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.4月23日是世界读书日,据有关部门统计,某市2021年人均纸质阅读量约为4本,2023年人均纸质阅读量约为4.84本,设人均纸质阅读量年均增长率为x,则根据题意可列方程()A.4(1+2x)=4.84B.4.84(1+x)2=4C.4(1+x)2=4.84D.4+4(1+x)+4(1+x)2=4.84【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【答案】C【分析】利用该市2023年人均纸质阅读量=该市2021年人均纸质阅读量×(1+人均纸质阅读量年均增长率)2,即可列出关于x的一元二次方程,此题得解.【解答】解:根据题意得:4(1+x)2=4.84.故选:C.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.4.已知x=1是一元二次方程x2+ax﹣3=0的一个根,则a的值为()A.2B.﹣2C.1D.﹣1【考点】一元二次方程的解.【专题】一元二次方程及应用;推理能力.【答案】A【分析】根据一元二次方程的解的定义把x=1代入方程得到关于a的一次方程,然后解一次方程即可.【解答】解:∵x=1是一元二次方程x2+ax﹣3=0的一个根,∴1+a﹣3=0,∴a=2.故选:A.【点评】本题考查了一元二次方程的解,掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解是解决问题的关键.5.关于x的一元二次方程x2﹣2x﹣6=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【考点】根的判别式.【专题】判别式法;运算能力.【答案】A【分析】根据方程的系数结合根的判别式Δ=b2﹣4ac,可得出Δ=28>0,进而可得出原方程有两个不相等的实数根.【解答】解:∵a=1,b=﹣2,c=﹣6,∴Δ=b2﹣4ac=(﹣2)2﹣4×1×(﹣6)=28>0,∴关于x的一元二次方程x2﹣2x﹣6=0有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根”是解题的关键.6.一元二次方程2x2+1﹣4x=0的一次项系数是()A.2B.1C.﹣4D.4【考点】一元二次方程的一般形式.【专题】一元二次方程及应用;运算能力.【答案】C【分析】求出2x2﹣4x+1=0,再找出一次项系数即可.【解答】解:2x2+1﹣4x=0,2x2﹣4x+1=0,所以一元二次方程2x2+1﹣4x=0的一次项系数是﹣4.故选:C.【点评】本题考查了一元二次方程的一般形式,能熟记一元二次方程的一般形式(ax2+bx+c=0,其中a、b、c为常数,a≠0)是解此题的关键.7.一元二次方程(x+3)(x﹣1)=2x﹣4化为一般形式是()A.x2﹣1=0B.x2﹣7=0C.x2+4x+1=0D.x2+1=0【考点】一元二次方程的一般形式.【专题】一元二次方程及应用;运算能力.【答案】D【分析】根据多项式乘多项式的运算法则化简,再通过移项,合并同类项即可.【解答】解:(x+3)(x﹣1)=2x﹣4,x2+2x﹣3=2x﹣4,x2+2x﹣2x﹣3+4=0,x2+1=0,故选:D.【点评】此题主要考查了一元二次方程的一般形式,掌握多项式乘多项式的运算法则是解题关键.8.已知x1、x2是一元二次方程2x2﹣4x+1=0的两个实数根,则x1•x2等于()A.﹣2B.−12C.12D.2【考点】根与系数的关系.【专题】一元二次方程及应用;运算能力.【答案】C【分析】直接利用根与系数的关系求解.【解答】解:∵x1、x2是一元二次方程2x2﹣4x+1=0的两个实数根,∴x1•x2=12.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=−,x1•x2=.9.已知关于x的方程(m﹣1)x2+3x﹣1=0是一元二次方程,则m的取值范围是()A.m<1B.m≠0C.m>1D.m≠1【考点】一元二次方程的定义.【专题】一元二次方程及应用;运算能力.【答案】D【分析】根据一元二次方程的定义判断即可.【解答】解:∵关于x的方程(m﹣1)x2+3x﹣1=0是一元二次方程,∴m﹣1≠0,∴m≠1,故选:D.【点评】本题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解题的关键.10.要为一幅长60cm,宽40cm的照片配一个相框,要求相框的四条边宽度相等,若要使整个带框后照片的面积是3500cm2(相框和照片重叠部分忽略不计),设相框的宽度为xcm,则x满足的方程是()A.(60+2x)(40+2x)=3500B.(60+x)(40+x)=3500C.(60﹣x)(40﹣x)=3500D.(60﹣2x)(40﹣2x)=3500【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【答案】A【分析】如果设相框的宽度为xcm,那么整个带框后照片的长和宽应该为(60+2x)cm 和(40+2x)cm,根据总面积即可列出方程.【解答】解:设相框的宽度为xcm,那么整个带框后照片的长和宽应该为(60+2x)cm 和(40+2x)cm,根据题意可得出方程为:(60+2x)(40+2x)=3500,故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二.填空题(共5小题)11.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一根为0,则m=﹣1.【考点】一元二次方程的解.【答案】见试题解答内容【分析】根据一元二次方程的解的定义,将x=0代入原方程,列出关于m的方程,通过解关于m的方程即可求得m的值.【解答】解:∵关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一根为0,∴x=0满足关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0,且m﹣1≠0,∴m2﹣1=0,即(m﹣1)(m+1)=0且m﹣1≠0,∴m+1=0,解得,m=﹣1;故答案为:﹣1.【点评】本题考查了一元二次方程的解.注意一元二次方程的二次项系数不为零.12.写出下列一元二次方程的根(2x﹣7)(x+2)=0x1=72,x2=﹣2.【考点】解一元二次方程﹣因式分解法.【专题】一元二次方程及应用;运算能力.【答案】x1=72,x2=﹣2.【分析】利用因式分解法把方程转化为2x﹣7=0或x+2=0,然后解一次方程即可.【解答】解:(2x﹣7)(x+2)=0,2x﹣7=0或x+2=0,所以x1=72,x2=﹣2.故答案为:x1=72,x2=﹣2.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.13.为建设美丽句容,改造老旧小区,我市2020年投入资金1000万元,2022年投入资金1440万元,现假定每年投入资金的增长率相同.求我市改造老旧小区投入资金的年平均增长率20%.【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【答案】20%.【分析】设该市改造老旧小区投入资金的年平均增长率为x,利用2022年投入资金金额=2020年投入资金金额×(1+x)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设该市改造老旧小区投入资金的年平均增长率为x,依题意得:1000(1+x)2=1440,解得:x1=0.2=20%,x1=﹣2.2(不合题意,舍去),∴该市改造老旧小区投入资金的年平均增长率为20%.故答案为:20%.【点评】本题考查一元二次方程的应用.解题的关键是找准等量关系,正确列出一元二次方程.14.如图,矩形绿地的长为4m,宽为3m,将此绿地的长、宽各增加相同的长度后,绿地面积增加了18m2,则绿地的长、宽增加的长度为2m.【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【答案】2.【分析】设绿地的长、宽增加的长度为xm,根据绿地面积增加了18m2,可列出关于x 的一元二次方程,解之取其符合题意的值,即可得出结论.【解答】解:设绿地的长、宽增加的长度为xm,根据题意得:(4+x)(3+x)﹣4×3=18,整理得:x2+7x﹣18=0,解得:x1=2,x2=﹣9(不符合题意,舍去).答:绿地的长、宽增加的长度为2m.故答案为:2.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.15.某校截止到2022年底,校园绿化面积为1000平方米.为美化环境,该校计划2024年底绿化面积达到1440平方米.利用方程思想,设这两年绿化面积的年平均增长率为x,则依题意列方程为1000(1+x)2=1440.【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【答案】1000(1+x)2=1440.【分析】根据2022年底绿化面积×(1+年平均增长率)2=2024年底绿化面积,列出一元二次方程即可.【解答】解:根据题意得:1000(1+x)2=1440,故答案为:1000(1+x)2=1440.【点评】此题主要考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.三.解答题(共5小题)16.解方程:(1)x2+3x﹣2=0;(2)x(2x﹣5)=4x﹣10.【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣公式法.【专题】一元二次方程及应用;运算能力.【答案】(1)x1=x2=(2)x1=2,2=52.【分析】(1)方程利用公式法求出解即可;(2)方程整理后,利用因式分解法求出解即可.【解答】解:(1)∵a=1,b=3,c=﹣2,∴Δ=b2﹣4ac=32﹣4×1×(﹣2)=17,∴x==∴x1=x2=(2)移项得:x(2x﹣5)﹣2(2x﹣5)=0,分解因式得:(2x﹣5)(x﹣2)=0,∴2x﹣5=0或x﹣2=0,解得:x1=2,2=52.【点评】此题考查了解一元二次方程﹣因式分解法及公式法,熟练掌握各自的解法是解本题的关键.17.已知关于x的一元二次方程2x2+x+m=0(m为常数).(1)若x=1是该方程的一个实数根,求m的值和该方程的另一个实数根;(2)若该方程有两个不相等的实数根,求m的取值范围.【考点】根与系数的关系;一元二次方程的解;根的判别式.【专题】一元二次方程及应用;运算能力.【答案】(1)m=﹣3,另一实数根是−32;(2)m<18.【分析】(1)把x=1代入原方程,得到关于m的方程,即可求m的值,再利用根与系数的关系即可求另一根;(2)利用根的判别式进行求解即可.【解答】解:(1)∵x=1是该方程的一个实数根,∴2×12+1+m=0,解得:m=﹣3,∴原方程为:2x2+x﹣3=0,令方程的另一实数根为y,则有:1+y=−12,解得:y=−32;(2)∵方程有两个不相等的实数根,∴Δ=12﹣4×2m>0,解得:m<18.【点评】本题主要考查根与系数的关系,根的判别式,解答的关键是对相应的知识的掌握与灵活运用.18.某景区六月份的游客人数为50万人,七、八两月游客人数持续增加,八月份的人数达到72万.(1)求该景区七、八月游客人数的月平均增长率;(2)景区内某商店销售一种纪念品,已知每件纪念品的成本是30元.如果销售价定为每件40元,那么日销售量将达到100件.八月份库存不足的情况下,店主提价销售,若销售价每提高5元,日销售量将减少10件.要使每天销售这种纪念品盈利1600元,同时又利于游客,那么该纪念品的销售价应定为多少元?【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【答案】(1)20%;(2)50元.【分析】(1)设该景区七、八月游客人数的月平均增长率为x,利用该景区八月份的游客人数=该景区六月份的游客人数×(1+该景区七、八月游客人数的月平均增长率)2,可列出关于x的一元二次方程,解之取其符合题意的值,即可得出结论;(2)设该纪念品的销售价应定为y元,则每件的销售利润为(y﹣30)元,日销售量为(180﹣2y)件,利用每天销售这种纪念品获得的总利润=每件的销售利润×日销售量,可列出关于y的一元二次方程,解之取其符合题意的值,即可得出结论.【解答】解:(1)设该景区七、八月游客人数的月平均增长率为x,根据题意得:50(1+x)2=72,解得:x1=0.2=20%,x2=﹣2.2(不符合题意,舍去).答:该景区七、八月游客人数的月平均增长率为20%;(2)设该纪念品的销售价应定为y元,则每件的销售利润为(y﹣30)元,日销售量为100﹣10×K405=(180﹣2y)件,根据题意得:(y﹣30)(180﹣2y)=1600,整理得:y2﹣120y+3500=0,解得:y1=50,y2=70,又∵要利于游客,∴y=50.答:该纪念品的销售价应定为50元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.19.山西某县玉露香梨汁多、酥脆、含糖高,享誉全国.某水果店销售玉露香梨,进价为2元/斤,按4.5元/斤出售,每天可卖出200斤.经市场调查发现,这种玉露香梨每斤的售价每降低0.1元,每天可多卖出20斤,若该水果店想要每天销售玉露香梨盈利600元,且尽可能让利于顾客,售价应定为多少?【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【答案】售价应定为3.5元/斤.【分析】设每斤玉露香梨降价x元,根据题意得到方程,解方程即可得到结论.【解答】解;设每斤玉露香梨降价x元,根据题意得(4.5﹣2﹣x)(200+0.1×20)=600,解得x1=1,x2=0.5,因为要让利于顾客,所以x取1,∴4.5﹣1=3.5(元),答:售价应定为3.5元/斤.【点评】本题考查了一元二次方程的应用,正确地列出方程是解题的关键.20.惠农商行以7200元的成本收购某种农产品800kg,目前可以以12元/kg的售价全部售出,如果储存起来待涨价后销售,则每周会损耗10kg,且每周须支付其他费用1000元,但每周每千克会涨价2元.根据往年市场行情可知售价不能超过40元.请解答下列问题.(1)当前直接出售可获利2400元;(2)储存几周后出售利润可达到4960元?【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【答案】(1)2400;(2)储藏了8个星期后出售,利润可达到4960元.【分析】(1)根据题意列式计算即可;(2)设储藏了x个星期后出售,利润可达到4960元,根据题意列方程即可得到结论.【解答】解:(1)当前直接出售可获利800×12﹣7200=2400(元),故答案为:2400;(2)设储藏了x个星期后出售,利润可达到4960元,由题意得:(12+2x)(800﹣10x)﹣7200﹣1000x=4960,解得x1=16,x2=8,当x=16时,12+2x=44>40(不合题意舍去),当x=8时,12+2x=28,答:储藏了8个星期后出售,利润可达到4960元.【点评】本题考查了一元二次方程的应用,正确地理解题意,列出方程是解题的关键.。
专题10一元二次方程 专题训练 中考数学2023年真题 专项汇编(全国通用)(含答案)
专题10一元二次方程 专题训练 中考数学2023年真题 专项汇编(全国通用)(含答案)一、单选题A .B .3.(2023·山东聊城·统考中考真题)若一元二次方程取值范围是( )A .B .4.(2023·四川·统考中考真题)关于()4,41m ≥-A .B .8.(2023·四川泸州·统考中考真题)关于况是( )A .没有实数根C .有两个不相等的实数根(3,0)-A .0B .112.(2023·天津·统考中考真题)若A .B .126x x +=12x x +=①,②,③当线段长取最小值时,则④若点,则二、填空题23.(2023·重庆·统考中考真题)为了加快数字化城市建设,4124x x ⋅=-21242y y k +=+AB (0,1)N -AN BN⊥,三、解答题31.(2023·辽宁大连·统考中考真题)为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求年买书资金的平均增长率.32.(2023·福建·统考中考真题)已知抛物线交轴于两点,为抛物线的顶点,为抛物线上不与重合的相异两点,记中点为,直20202022-23y ax bx =++x ()()1,0,3,0A B M ,C D ,A B AB E(1)求这两个函数的解析式;(1)当___________时,(2)设2023年甲乙两种蔬菜总种植成本为最小?①求证:.x =2m y =23DO EO =等腰三角形的底边,在的同侧作等腰和等腰,且.在线段上取一点,使,连接.(1)如图1,求证:;(2)如图2,若的延长线恰好经过的中点,求的长.42.(2023·浙江宁波·统考中考真题)定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角.(1)如图1,在四边形中,,对角线平分.求证:四边形为邻等四边形.(2)如图2,在6×5的方格纸中,A ,B ,C 三点均在格点上,若四边形是邻等四边形,请画出所有符合条件的格点D .(3)如图3,四边形是邻等四边形,,为邻等角,连接,过B 作交的延长线于点E .若,求四边形的周长.43.(2023·云南·统考中考真题)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性、形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数(实数为常数)的图象为图象.(1)求证:无论取什么实数,图象与轴总有公共点;(2)是否存在整数,使图象与轴的公共点中有整点?若存在,求所有整数的值;若不存在,请说明理由.AB ACD V BCE V A CBE ∠=∠EC F EF AD =,BF DE DE BF =2AD BF =,DE G BE ABCD ,90AD BC A ∠=︒∥BD ADC ∠ABCD ABCD ABCD 90DAB ABC ∠=∠=︒BCD ∠AC BE AC ∥DA 8,10AC DE ==EBCD 2(42)(96)44y a x a x a =++--+a T a T x a T x a(1)求,的值;(2)平行于轴的动直线与和反比例函数的图象分别交于点为顶点的四边形为平行四边形,求点k m y l参考答案:1.C2.D3.D4.C5.B6.B7.D8.C9.B10.C11.C12.A13.D14.D15.D16.C17.A18.C19.C20.A21.22.10 23.24.3 25.5 26.27.28.2()2100011440x+=2301(1)500x+=5-2-。
(完整版)用因式分解法解一元二次方程(知识点+经典例题+综合练习)---详细答案
用因式分解法解一元二次方程【主体知识归纳】1.因式分解法 若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,x 2-9=0,这个方程可变形为(x +3)(x -3)=0,要(x +3)(x -3)等于0,必须并且只需(x +3)等于0或(x -3)等于0,因此,解方程(x +3)(x -3)=0就相当于解方程x +3=0或x -3=0了,通过解这两个一次方程就可得到原方程的解.这种解一元二次方程的方法叫做因式分解法.2.因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程.其理论根据是:若A ·B =0A =0或B =0.【基础知识讲解】1.只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程.分解因式时,要根据情况灵活运用学过的因式分解的几种方法.2.在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程.但对某些特殊形式的一元二次方程,有的用直接开平方法简便,有的用因式分解法简便.因此,在遇到一道题时,应选择适当的方法去解.配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法.而在以后的学习中,会常常用到因式分解法,所以要掌握这个重要的数学方法.【例题精讲】例1:用因式分解法解下列方程:(1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1.解:(1)方程可变形为(y +1)(y +6)=0,y +1=0或y +6=0,∴y 1=-1,y 2=-6.(2)方程可变形为t (2t -1)-3(2t -1)=0,(2t -1)(t -3)=0,2t -1=0或t -3=0,∴t 1=21,t 2=3.(3)方程可变形为2x 2-3x =0.x (2x -3)=0,x =0或2x -3=0.∴x 1=0,x 2=23. 说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解:原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2.(3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考?例2:用适当方法解下列方程: (1)3(1-x )2=27;(2)x 2-6x -19=0;(3)3x 2=4x +1;(4)y 2-15=2y ;(5)5x (x -3)-(x -3)(x +1)=0;(6)4(3x +1)2=25(x -2)2.剖析:方程(1)用直接开平方法,方程(2)用配方法,方程(3)用公式法,方程(4)化成一般式后用因式分解法,而方程(5)、(6)不用化成一般式,而直接用因式分解法就可以了.解:(1)(1-x )2=9,(x -1)2=3,x -1=±3,∴x 1=1+3,x 2=1-3.(2)移项,得x 2-6x =19,配方,得x 2-6x +(-3)2=19+(-3)2,(x -3)2=28,x -3=±27, ∴x 1=3+27,x 2=3-27.(3)移项,得3x 2-4x -1=0,∵a =3,b =-4,c =-1, ∴x =37232)1(34)4()4(2±=⨯-⨯⨯--±--, ∴x 1=372+,x 2=372-. (4)移项,得y 2-2y -15=0,把方程左边因式分解,得(y -5)(y +3)=0;∴y -5=0或y +3=0,∴y 1=5,y 2=-3.(5)将方程左边因式分解,得(x -3)[5x -(x +1)]=0,(x -3)(4x -1)=0,∴x -3=0或4x -1=0,∴x 1=3,x 2=41. (6)移项,得4(3x +1)2-25(x -2)2=0,[2(3x +1)]2-[5(x -2)]2=0,[2(3x +1)+5(x -2)]·[2(3x +1)-5(x -2)]=0,(11x -8)(x +12)=0,∴11x -8=0或x +12=0,∴x 1=118,x 2=-12. 说明:(1)对于无理系数的一元二次方程解法同有理数一样,只不过要注意二次根式的化简.(2)直接因式分解就能转化成两个一次因式乘积等于零的形式,对于这种形式的方程就不必要整理成一般式了.例3:解关于x 的方程:(a 2-b 2)x 2-4abx =a 2-b 2.解:(1)当a 2-b 2=0,即|a |=|b |时,方程为-4abx =0.当a =b =0时,x 为任意实数.当|a |=|b |≠0时,x =0.(2)当a 2-b 2≠0,即a +b ≠0且a -b ≠0时,方程为一元二次方程.分解因式,得[(a +b )x +(a -b )][(a -b )x -(a +b )]=0,∵a +b ≠0且a -b ≠0,∴x 1=b a a b +-,x 2=ba b a -+. 说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不同情况分别求解.本题实际上是分三种情况,即①a =b =0;②|a |=|b |≠0;③|a |≠|b |.例4:已知x 2-xy -2y 2=0,且x ≠0,y ≠0,求代数式22225252y xy x y xy x ++--的值. 剖析:要求代数式的值,只要求出x 、y 的值即可,但从已知条件中显然不能求出,要求代数式的分子、分母是关于x 、y 的二次齐次式,所以知道x 与y 的比值也可.由已知x 2-xy -2y 2=0因式分解即可得x 与y 的比值.解:由x 2-xy -2y 2=0,得(x -2y )(x +y )=0,∴x -2y =0或x +y =0,∴x =2y 或x =-y . 当x =2y 时,135y13y 5y 5y y 22)y 2(y 5y y 22)y 2(y 5xy 2x y 5xy 2x 2222222222-=-=+⋅⋅+-⋅⋅-=++--. 当x =-y 时,21y 4y 2y 5y )y (2)y (y 5y )y (2)y (y 5xy 2x y 5xy 2x 222222222-=-=+⋅-⋅+--⋅-⋅--=++--2. 说明:因式分解法体现了“降次”“化归”的数学思想方法,它不仅可用来解一元二次方程,而且在解一元高次方程、二元二次方程组及有关代数式的计算、证明中也有着广泛的 应用.【同步达纲练习】1.选择题(1)方程(x -16)(x +8)=0的根是( )A .x 1=-16,x 2=8B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )A ..x =21B .x =2C .x =1D .x =-1(3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53C .x 1=-53,x 2=-3D .x 1=53,x 2=-3 (4)方程(y -5)(y +2)=1的根为( )A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对 (5)方程(x -1)2-4(x +2)2=0的根为( )A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5 (6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( )A .1B .2C .-4D .4 (7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( )A .5B .5或11C .6D .11 (8)方程x 2-3|x -1|=1的不同解的个数是( )A .0B .1C .2D .32.填空题(1)方程t (t +3)=28的解为_______.(2)方程(2x +1)2+3(2x +1)=0的解为__________.(3)方程(2y +1)2+3(2y +1)+2=0的解为__________.(4)关于x 的方程x 2+(m +n )x +mn =0的解为__________.(5)方程x (x -5)=5 -x 的解为__________.3.用因式分解法解下列方程:(1)x 2+12x =0;(2)4x 2-1=0; (3)x 2=7x ;(4)x 2-4x -21=0;(5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x2-x-3=0;(8)(x-1)2-4(x-1)-21=0.4.用适当方法解下列方程:(1)x2-4x+3=0;(2)(x-2)2=256;(3)x2-3x+1=0;(4)x2-2x-3=0;(5)(2t+3)2=3(2t+3);(6)(3-y)2+y2=9;(7)(1+2)x2-(1-2)x=0;(8)5x2-(52+1)x+10=0;(9)2x2-8x=7(精确到0.01);(10)(x+5)2-2(x+5)-8=0.5.解关于x的方程:(1)x2-4ax+3a2=1-2a;(2)x2+5x+k2=2kx+5k+6;(3)x2-2mx-8m2=0; (4)x2+(2m+1)x+m2+m=0.6.已知x 2+3xy -4y 2=0(y ≠0),试求yx y x +-的值.7.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.8.请你用三种方法解方程:x (x +12)=864.9.已知x 2+3x +5的值为9,试求3x 2+9x -2的值.10.一跳水运动员从10米高台上跳水,他跳下的高度h (单位:米)与所用的时间t (单位:秒)的关系式h =-5(t -2)(t +1).求运动员起跳到入水所用的时间.11.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则y 2=(x 2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,∴x =±2.当y =4时,x 2-1=4,x 2=5,∴x =±5.∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5.以上方法就叫换元法,达到了降次的目的,体现了转化的思想.(1)运用上述方法解方程:x 4-3x 2-4=0.(2)既然可以将x 2-1看作一个整体,你能直接运用因式分解法解这个方程吗参考答案【同步达纲练习】1.(1)B (2)C (3)D (4)D (5)B (6)A (7)A (8)D2.(1)t 1=-7,t 2=4(2)x 1=-21,x 2=-2(3)y 1=-1,y 2=-23(4)x 1=-m ,x 2=-n (5)x 1=5,x 2=-1 3.(1)x 1=0,x 2=-12;(2)x 1=-21,x 2=21;(3)x 1=0,x 2=7;(4)x 1=7,x 2=-3;(5)x 1=-5,x 2=3;(6)x 1=-1,x 2=31; (7)x 1=53,x 2=-21;(8)x 1=8,x 2=-2. 4.(1)x 1=1,x 2=3;(2)x 1=18,x 2=-14;(3)x 1=253+,x 2=253-;(4)x 1=3,x 2=-1; (5)t 1=0,t 2=-23;(6)y 1=0,y 2=3;(7)x 1=0,x 2=22-3; (8)x 1=55,x 2=10;(9)x 1≈7.24,x 2=-3.24;(10)x 1=-1,x 2=-7. 5.(1)x 2-4ax +4a 2=a 2-2a +1,(x -2a )2=(a -1)2,∴x -2a =±(a -1),∴x 1=3a -1,x 2=a +1.(2)x 2+(5-2k )x +k 2-5k -6=0, x 2+(5-2k )x +(k +1)(k -6)=0,[x -(k +1)][x -(k -6)]=0,∴x 1=k +1,x 2=(k -6).(3)x 2-2mx +m 2=9m 2,(x -m )2=(3m )2∴x 1=4m ,x 2=-2m(4)x 2+(2m +1)x +m (m +1)=0,(x +m )[x +(m +1)]=0,∴x 1=-m ,x 2=-m -16.(x +4y )(x -y )=0, x =-4y 或x =y当x =-4y 时,y x y x +-=3544=+---y y y y ; 当x =y 时,y x y x +-=y y y y +-=0. 7.(x 2+y 2)(x 2+y 2-1)-12=0,(x 2+y 2)2-(x 2+y 2)-12=0,(x 2+y 2-4)(x 2+y 2+3)=0,∴x 2+y 2=4或x 2+y 2=-3(舍去)8.x 1=-36,x 2=249.∵x 2+3x +5=9,∴x 2+3x =4,∴3x2+9x-2=3(x2+3x)-2=3×4-2=10 10.10=-5(t-2)(t+1),∴t=1(t=0舍去) 11.(1)x1=-2,x2=2(2)(x2-2)(x2-5)=0,(x+2)(x-2)(x+5)(x-5)=0。
一元二次方程100道
一元二次方程100道一元二次方程练习题1. 因式分解并求解:(a) x² - 5x + 6 = 0(b) x² - 8x + 15 = 0(c) x² + 5x - 14 = 0(d) x² - 12x + 32 = 0(e) x² + 7x + 10 = 02. 求解使用二次公式:(a) 2x² - 5x + 2 = 0(b) x² + 4x - 12 = 0(c) 3x² - 7x + 4 = 0(d) 4x² - 9x + 5 = 0(e) 5x² + 10x + 21 = 03. 应用一元二次方程:(a) 一块矩形场地的长为 x 米,宽为 x - 4 米。
该场地的周长为 56 米,求它的长和宽。
(b) 一辆汽车以每小时 x 千米的速度行驶 2 小时,然后再以每小时 (x + 10) 千米的速度行驶 1 小时。
汽车共行驶了 150 千米,求汽车最初的速度 x。
(c) 一个抛物体以每秒 y 米的速度向上投掷。
经过 t 秒后,它的高度为 h 米,h = -yt + 1/2gt² (其中 g 为重力加速度)。
已知 h = 45 米,t = 5 秒,求抛物体的初速度 y。
4. 根与系数的关系:(a) 若一元二次方程 ax² + bx + c = 0 的两个根为 r 和 s,求:r + s 和 rs。
(b) 若一元二次方程 ax² + bx + c = 0 的根为:±√5,求a、b、c。
5. 判别式与根的性质:(a) 若一元二次方程 ax² + bx + c = 0 的判别式为 b² -4ac > 0,求其根的性质。
(b) 若一元二次方程 ax² + bx + c = 0 的判别式为 b² -4ac = 0,求其根的性质。
2023年中考数学真题汇编:一元二次方程(含答案)
2023年中考数学真题汇编——一元二次方程一、选择题1. (2023·吉林省)一元二次方程x2―5x+2=0根的判别式的值是( )A. 33B. 23C. 17D. 172. (2023·天津市)若x1,x2是方程x2―6x―7=0的两个根,则( )A. x1+x2=6B. x1+x2=―6C. x1x2=76D. x1x2=73. (2023·甘肃省兰州市)关于x的一元二次方程x2+bx+c=0有两个相等的实数根,则b2―2(1+2c)=( )A. ―2B. 2C. ―4D. 44. (2023·江苏省无锡市)2020年―2022年无锡居民人均可支配收入由5.76万元增长至6.58万元,设人均可支配收入的平均增长率为x,下列方程正确的是( )A. 5.76(1+x)2=6.58B. 5.76(1+x2)=6.58C. 5.76(1+2x)=6.58D. 5.76x2=6.585. (2023·内蒙古自治区赤峰市)用配方法解方程x2―4x―1=0时,配方后正确的是( )A. (x+2)2=3B. (x+2)2=17C. (x―2)2=5D. (x―2)2=176. (2023·山东省菏泽市)一元二次方程x2+3x―1=0的两根为x1,x2,则1x1+1x2的值为( )A. 32B. ―3 C. 3 D. ―327. (2023·河南省)关于x的一元二次方程x2+mx―8=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根8. (2023·全国)据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x,依题意可列方程为( )A. 3.2(1―x)2=3.7B. 3.2(1+x)2=3.7C. 3.7(1―x)2=3.2D. 3.7(1+x)2=3.29. (2023·福建省)根据福建省统计局数据,福建省2020年的地区生产总值为43903.89亿元,2022年的地区生产总值为53109.85亿元.设这两年福建省地区生产总值的年平均增长率为x,根据题意可列方程( )A. 43903.89(1+x)=53109.85B. 43903.89(1+x)2=53109.85C. 43903.89x2=53109.85D. 43903.89(1+x2)=53109.8510. (2023·山东省聊城市)若一元二次方程mx2+2x+1=0有实数解,则m的取值范围是( )A. m≥―1B. m≤1C. m≥―1且m≠0D. m≤1且m≠011. (2023·四川省广元市)关于x的一元二次方程2x2―3x+3=0根的情况,下列说法中正确2的是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定12. (2023·山东省滨州市)一元二次方程x2+3x―2=0根的情况为( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 不能判定13. (2023·四川省乐山市)若关于x的一元二次方程x2―8x+m=0两根为x1、x2,且x1=3x2,则m的值为( )A. 4B. 8C. 12D. 1614. (2023·湖南省永州市)某2020年人均可支收入为2.36万元,2022年达到2.7万元,若2020年至2022年间每年人均可支配收入的增长率都为x,则下面所列方程正确的是( )A. 2.7(1+x)2=2.36B. 2.36(1+x)2=2.7C. 2.7(1―x)2=2.36D. 2.36(1―x)2=2.715. (2023·湖南省怀化市)下列说法错误的是( )A. 成语“水中捞月”表示的事件是不可能事件B. 一元二次方程x2+x+3=0有两个相等的实数根C. 任意多边形的外角和等于360°D. 三角形三条中线的交点叫作三角形的重心16. (2023·四川省广安市)已知a、b、c为常数,点P(a,c)在第四象限,则关于x的方程ax2+bx+c=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断17. (2023·四川省眉山市)关于x的一元二次方程x2―2x+m―2=0有两个不相等的实数根,则m的取值范围是( )A. m<32B. m>3C. m≤3D. m<318. (2023·四川省泸州市)若一个菱形的两条对角线长分别是关于x的一元二次方程x2―10x+m=0的两个实数根,且其面积为11,则该菱形的边长为( )A. 3B. 23C. 14D. 21419. (2023·四川省泸州市)关于x的一元二次方程x2+2ax+a2―1=0的根的情况是( )A. 没有实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 实数根的个数与实数a的取值有关二、填空题20. (2023·江苏省泰州市)关于x的一元二次方程x2+2x―1=0的两根之和为______ .21. (2023·辽宁省)若关于x的一元二次方程x2―6x+k=0有两个不相等的实数根,则k的取值范围是______ .22. (2023·四川省雅安市)已知关于x的方程x2+mx―4=0的一个根为1,则该方程的另一个根为______ .23. (2023·全国)方程x2―4x―m=0有两个相等的实数根,则m的值为______ .24. (2023·山东省泰安市)已知关于x的一元二次方程x2―4x―a=0有两个不相等的实数根,则a的取值范围是______ .25. (2023·辽宁省营口市)若关于x的方程x2+mx―12=0的一个根是3,则此方程的另一个根是______ .26. (2023·黑龙江省牡丹江市)张师傅去年开了一家超市,今年2月份开始盈利,3月份盈利5000元,5月份盈利达到7200元,从3月到5月,每月盈利的平均增长率都相同,则每月盈利的平均增长率是______ .27. (2023·湖北省鄂州市)若实数a、b分别满足a2―3a+2=0,b2―3b+2=0,且a≠b,则1a +1b=______ .28. (2023·贵州省)若一元二次方程kx2―3x+1=0有两个相等的实数根,则k的值是______ .29. (2023·江苏省徐州市)若关于x的方程x2―4x+m=0有两个相等的实数根,则实数m的值为______ .30. (2023·湖南省常德市)若关于x的一元二次方程x2―2x+a=0有两个不相等的实数根,则实数a的取值范围是______ .31. (2023·辽宁省)若关于x的一元二次方程x2―x+k+1=0有两个实数根,则k的取值范围是______ .32. (2023·湖南省张家界市)已知关于x的一元二次方程x2―2x―a=0有两个不相等的实数根,则a的取值范围是______ .33. (2023·黑龙江省绥化市)已知一元二次方程x2+x=5x+6的两根为x1与x2,则1x1+1x2的值为______ .34. (2023·湖南省岳阳市)已知关于x的方程x2+mx―20=0的一个根是―4,则它的另一个根是______ .35. (2023·湖南省岳阳市)已知关于x的一元二次方程x2+2mx+m2―m+2=0有两个不相等的实数根,且x1+x2+x1⋅x2=2,则实数m=______ .36. (2023·湖北省随州市)已知关于x的一元二次方程x2―3x+1=0的两个实数根分别为x1和x2,则x1+x2―x1x2的值为______ .37. (2023·湖南省邵阳市)某校截止到2022年底,校园绿化面积为1000平方米.为美化环境,该校计划2024年底绿化面积达到1440平方米.利用方程想想,设这两年绿化面积的年平均增长率为x,则依题意列方程为______ .38. (2023·四川省达州市)已知x1,x2是方程2x2+kx―2=0的两个实数根,且(x1―2)(x2―2)=10,则k的值______ .39. (2023·重庆市)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程______ .40. (2023·重庆市)某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个,设七、八两个月提供就业岗位数量的月平均增长率为x,根据题意,可列方程为______ .41. (2023·上海市)如果关于x的方程x2―4x+2c=0有实数根,那么实数c的取值范围是______ .三、解答题42. (2023·上海市)解方程:(x―2)2―4(x―2)=12.43. (2023·江苏省泰州市)某公司的化工产品成本为30元/千克.销售部门规定:一次性销售1000千克以内时,以50元/千克的价格销售;一次性销售不低于1000千克时,每增加1千克降价0.01元.考虑到降价对利润的影响,一次性销售不低于1750千克时,均以某一固定价格销售.一次性销售利润y(元)与一次性销售量x(千克)的函数关系如图所示.(1)当一次性销售800千克时利润为多少元?(2)求一次性销售量在1000~1750kg之间时的最大利润;(3)当一次性销售多少千克时利润为22100元?44. (2023·辽宁省)电商平台销售某款儿童组装玩具,进价为每件100元,在销售过程中发现,每周的销售量y(件)与每件玩具售价x(元)之间满足一次函数关系(其中100≤x≤160,且x为整数),当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件.(1)求y与x之间的函数关系式;(2)当每件玩具售价为多少元时,电商平台每周销售这款玩具所获的利润最大?最大周利润是多少元?45. (2023·江苏省无锡市)(1)解方程:2x2+x―2=0;(2)解不等式组:x+3>―2x2x―5<1.46. (2023·内蒙古自治区通辽市)阅读材料:材料1:关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根x1x2和系数a,b,c,有如下关系:x1+x2=―ba ,x1x2=ca.材料2:已知一元二次方程x2―x―1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵m,n是一元二次方程x2―x―1=0的两个实数根,∴m+n=1,mn=―1.则m2n+mn2=mn(m+n)=―1×1=―1.根据上述材料,结合你所学的知识,完成下列问题:(1)应用:一元二次方程2x2+3x―1=0的两个实数根为x1,x2,则x1+x2=______ ,x1x2 =______ .(2)类比:已知一元二次方程2x2+3x―1=0的两个实数根为m,n,求m2+n2的值;(3)提升:已知实数s,t满足2s2+3s―1=0,2t2+3t―1=0且s≠t,求1s ―1t的值.47. (2023·山东省东营市)如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.48. (2023·浙江省杭州市)设一元二次方程x2+bx+c=0.在下面的四组条件中选择其中一组b,c的值,使这个方程有两个不相等的实数根,并解这个方程.①b=2,c=1;②b=3,c=1;③b=3,c=―1;④b=2,c=2.注:如果选择多组条件分别作答,按第一个解答计分.49. (2023·湖南省郴州市)随旅游旺季的到来,某景区游客人数逐月增加,2月份游客人数为1.6万人,4月份游客人数为2.5万人.(1)求这两个月中该景区游客人数的月平均增长率;(2)预计5月份该景区游客人数会继续增长,但增长率不会超过前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?参考答案1.C2.A3.A4.A5.C6.C7.A8.B9.B10.D11.C12.A13.C14.B15.B16.A17.D18.C19.C20.―221.k<922.―423.―424.a>―425.―426.20%27.3228.9429.430.a<131.k≤―3432.a>―133.―2334.535.336.237.1000(1+x)2=144038.739.301(1+x)2=50040.1501(1+x)2=181541.c≤242.解:(x―2)2―4(x―2)=12,(x―2)2―4(x―2)―12=0,(x―2―6)(x―2+2)=0,x(x―8)=0,x=0或x―8=0,∴x1=0,x2=8.43.解:(1)根据题意,当x=800时,y=800×(50―30)=800×20=16000,∴当一次性销售800千克时利润为16000元;(2)设一次性销售量在1000~1750kg之间时,销售价格为50―30―0.01(x―1000)=―0.01x+30,∴y=x(―0.01x+30)=―0.01x2+30x=―0.01(x2―3000)=―0.01(x―1500)2+22500,∵―0.01<0,1000≤x≤1750,∴当x=1500时,y有最大值,最大值为22500,∴一次性销售量在1000~1750kg之间时的最大利润为22500元;(3)由(2)知,当x=1750时,y=―0.01(1750―1500)2+22500=16250<22100,∴当一次性销售量在1000~1750kg之间时,利润为22100元,∴―0.01(x ―1500)2+22500=22100,解得x 1=1700,x 2=1300,∴当一次性销售为1300或1700千克时利润为22100元.44.解:(1)设y 与x 之间的函数关系式为y =kx +b ,∵当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件,∴120k +b =80140k +b =40,解得k =―2b =320,即y 与x 之间的函数关系式为y =―2x +320;(2)设利润为w 元,由题意可得:w =(x ―100)(―2x +320)=―2(x ―130)2+1800,∴当x =130时,w 取得最大值,此时w =1800,答:当每件玩具售价为130元时,电商平台每周销售这款玩具所获的利润最大,最大周利润是1800元.45.解:(1)2x 2+x ―2=0,∵a =2,b =1,c =―2,∴b 2―4ac =12+4×2×(―2)=17,∴x =―b ±b 2―4ac 2a =―1±174,∴x 1=―1+ 174,x 2=―1― 174;(2)x +3>―2x①2x ―5<1②,解不等式①得x >―1,解不等式②得:x <3,∴不等式组的解集为:―1<x <3.46.―32 ―1247.解:(1)设矩形ABCD 的边AB =xm ,则边BC =70―2x +2=(72―2x)m .根据题意,得x(72―2x)=640,化简,得x 2―36x +320=0解得x 1=16x 2=20,当x =16时,72―2x =72―32=40;当x=20时,72―2x=72―40=32.答:当羊圈的长为40m,宽为16m或长为32m,宽为20m时,能围成一个面积为644m2的羊圈;(2)答:不能,理由:由题意,得x(72―2x)=650,化简,得x4―366+322=0,Δ=(―36)2―4×335=―4<0,∴一元二次方程没有实数根.∴羊圈的面积不能达到650m2.48.解:∵使这个方程有两个不相等的实数根,∴b2―4ac>0,即b2>4c,∴①②③均可,选①解方程,则这个方程为:x2+2x+1=0,∴(x+1)2=0,∴x1=x2=―1.49.解:(1)设这两个月中该景区游客人数的月平均增长率为x,由题意可得:1.6(1+x)2=2.5,(不合题意舍去),解得:x=25%,x=―94答:这两个月中该景区游客人数的月平均增长率为25%;(2)设5月份后10天日均接待游客人数是a万人,由题意可得:2.125+10a≤2.5(1+25%),解得:a≤0.1,答:5月份后10天日均接待游客人数最多是0.1万人.。
一元二次方程100道计算题练习(附答案)+一元二次方程经典练习题(6套)附带详细答案
一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x--xx x(x+1)-5x=0. 3x(x-3) =2(x-1) (x+1).23(=)2)(11应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少? 思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
一元二次方程(优选真题60道)中考数学真题(全国通用)(解析版)
三年(2021-2023)中考数学真题分项汇编【全国通用】一元二次方程(优选真题60道)一.选择题(共20小题)1.(2023•新疆)用配方法解一元二次方程x2﹣6x+8=0配方后得到的方程是()A.(x+6)2=28B.(x﹣6)2=28C.(x+3)2=1D.(x﹣3)2=1【分析】利用解一元二次方程﹣配方法,进行计算即可解答.【解答】解:x2﹣6x+8=0,x2﹣6x=﹣8,x2﹣6x+9=﹣8+9,(x﹣3)2=1,故选:D.【点评】本题考查了解一元二次方程﹣配方法,熟练掌握解一元二次方程﹣配方法是解题的关键.2.关于x的一元二次方程x2﹣2x+m﹣2=0有两个不相等的实数根,则m的取值范围是()A.m<32B.m>3C.m≤3D.m<3【分析】根据方程的系数结合根的判别式Δ>0,可得出关于m的一元一次不等式,解之即可得出m的取值范围,对照四个选项即可得出结论.【解答】解:∵关于x的一元二次方程x2﹣2x+m﹣2=0有两个不相等的实数根,∴Δ=(﹣2)2﹣4×1×(m﹣2)=12﹣4m>0,解得:m<3.故选:D.【点评】本题考查了根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根”是解题的关键.3.(2023•滨州)一元二次方程x2+3x﹣2=0根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能判定【分析】利用一元二次方程根的判别式求解即可.【解答】解:由题意得,Δ=32﹣4×1×(﹣2)=17>0,∴方程有两个不相等的实数根.故选:A.【点评】本题主要考查了一元二次方程根的判别式,对于一元二次方程ax2+bx+c=0(a≠0),若Δ=b2﹣4ac>0,则方程有两个不相等的实数根,若Δ=b2﹣4ac=0,则方程有两个相等的实数根,若Δ=b2﹣4ac<0,则方程没有实数根.4.(2023•天津)若x1,x2是方程x2﹣6x﹣7=0的两个根,则()A.x1+x2=6B.x1+x2=﹣6C.x1x2=76D.x1x2=7【分析】根据一元二次方程根与系数的关系进行判断即可.【解答】解:∵x1,x2是方程x2﹣6x﹣7=0的两个根,∴x1+x2=6,x1x2=﹣7,故选:A.【点评】本题考查了一元二次方程根与系数的关系,应掌握:设x1,x2是一元二次方程y=ax2+bx+c(a≠0)的两个实数根,则x1+x2=−ba,x1x2=ca.5.(2023•永州)某市2020年人均可支收入为2.36万元,2022年达到2.7万元,若2020年至2022年间每年人均可支配收入的增长率都为x,则下面所列方程正确的是()A.2.7(1+x)2=2.36B.2.36(1+x)2=2.7C.2.7(1﹣x)2=2.36D.2.36(1﹣x)2=2.7【分析】利用2022年间每年人均可支配收入=2020年间每年人均可支配收入×(1+每年人均可支配收入的增长率)2,即可得出关于x的一元二次方程,此题得解.【解答】解:根据题意得2.36(1+x)2=2.7.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.(2023•乐山)若关于x的一元二次方程x2﹣8x+m=0两根为x1、x2,且x1=3x2,则m的值为()A.4B.8C.12D.16【分析】首先根据根与系数的关系得出x1+x2=8,再根据x1=3x2,求得x1,x2,进一步得出x1x2=m求得答案即可.【解答】解:∵一元二次方程x2﹣8x+m=0的两根为x1,x2,∴x1+x2=8,∵x1=3x2,解得x1=6,x2=2,∴m=x1x2=6×2=12.故选:C.【点评】本题考查了根与系数的关系.二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.7.(2023•内江)对于实数a,b定义运算“⊗”为a⊗b=b2﹣ab,例如:3⊗2=22﹣3×2=﹣2,则关于x 的方程(k﹣3)⊗x=k﹣1的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【分析】根据运算“⊗”的定义将方程(k﹣3)⊗x=k﹣1转化为一般式,由根的判别式Δ=(k﹣1)2+4>0,即可得出该方程有两个不相等的实数根.【解答】解:∵(k﹣3)⊗x=k﹣1,∴x2﹣(k﹣3)x=k﹣1,∴x2﹣(k﹣3)x﹣k+1=0,∴Δ=[﹣(k﹣3)]2﹣4×1×(﹣k+1)=(k﹣1)2+4>0,∴关于x的方程(k﹣3)⊗x=k﹣1有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式和实数的运算,牢记“当Δ>0时,方程有两个不相等的实数根”是解决问题的关键.8.已知a、b、c为常数,点P(a,c)在第四象限,则关于x的方程ax2+bx+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断【分析】先利用第四象限点的坐标特征得到ac<0,则判断Δ>0,然后根据判别式的意义判断方程根的情况.【解答】解:∵点P(a,c)在第四象限,∴a>0,c<0,∴ac<0,∴方程ax2+bx+c=0的判别式Δ=b2﹣4ac>0,∴方程ax 2+bx +c =0有两个不相等的实数根.故选:A .【点评】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.9.关于x 的一元二次方程x 2+2ax +a 2﹣1=0的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .实数根的个数与实数a 的取值有关【分析】先计算一元二次方程根的判别式,根据根的判别式得结论.【解答】解:∵Δ=(2a )2﹣4×1×(a 2﹣1)=4a 2﹣4a 2+4=4>0.∴关于x 的一元二次方程x 2+2ax +a 2﹣1=0有两个不相等的实数根.故选:C .【点评】本题主要考查了一元二次方程根的判别式,掌握“根的判别式与方程的解的关系”是解决本题的关键.10.(2023•泸州)若一个菱形的两条对角线长分别是关于x 的一元二次方程x 2﹣10x +m =0的两个实数根,且其面积为11,则该菱形的边长为( )A .√3B .2√3C .√14D .2√14【分析】先设出菱形两条对角线的长,利用根与系数的关系及对角线与菱形面积的关系得等式,再根据菱形的边长与对角线的关系求出菱形的边长.【解答】解:设菱形的两条对角线长分别为a 、b ,由题意,得{a +b =10ab =22. ∴菱形的边长=√(a 2)2+(b 2)2=12√a 2+b 2=12√(a +b)2−2ab=12√100−44=12√56=√14.故选:C.【点评】本题主要考查了根与系数的关系及菱形的性质,掌握菱形对角线与菱形的面积、边长间的关系,根与系数的关系及等式的变形是解决本题的关键.11.(2023•台湾)利用公式解可得一元二次方程式3x2﹣11x﹣1=0 的两解为a、b,且a>b,求a值为何()A.−11+√1096B.−11+√1336C.11+√1096D.11+√1336【分析】利用公式法即可求解.【解答】解:3x2﹣11x﹣1=0,这里a=3,b=﹣11,c=﹣1,∴Δ=(﹣11)2﹣4×3×(﹣1)=133>0,∴x=11±√1332×3=11±√1336,∵一元二次方程式3x2﹣11x﹣1=0 的两解为a、b,且a>b,∴a的值为11+√1336.故选:D.【点评】本题考查了解一元二次方程﹣公式法,能熟练运用公式法解答方程是解此题的关键.12.(2022•淮安)若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的值可以是()A.﹣2B.﹣1C.0D.1【分析】根据根的判别式列出不等式求出k的范围即可求出答案.【解答】解:∵一元二次方程x2﹣2x﹣k=0没有实数根,∴Δ=(﹣2)2﹣4×1×(﹣k)=4+4k<0,∴k<﹣1,故选:A.【点评】本题考查了根的判别式,牢记“当Δ<0时,方程无实数根”是解题的关键.13.(2022•攀枝花)若关于x的方程x2﹣x﹣m=0有实数根,则实数m的取值范围是()A.m<14B.m≤14C.m≥−14D.m>−14【分析】根据判别式的意义得到Δ=1+4m≥0,解不等式即可.【解答】解:∵关于x的方程x2﹣x﹣m=0有实数根,∴Δ=(﹣1)2﹣4(﹣m)=1+4m≥0,解得m≥−1 4,故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.14.(2022•内蒙古)对于实数a,b定义运算“⊗”为a⊗b=b2﹣ab,例如3⊗2=22﹣3×2=﹣2,则关于x的方程(k﹣3)⊗x=k﹣1的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【分析】根据运算“⊗”的定义将方程(k﹣3)⊗x=k﹣1转化为一般式,由根的判别式Δ=(k﹣1)2+4>0,即可得出该方程有两个不相等的实数根.【解答】解:∵(k﹣3)⊗x=k﹣1,∴x2﹣(k﹣3)x=k﹣1,∴x2﹣(k﹣3)x﹣k+1=0,∴Δ=[﹣(k﹣3)]2﹣4×1×(﹣k+1)=(k﹣1)2+4>0,∴关于x的方程(k﹣3)⊗x=k﹣1有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式和实数的运算,牢记“当Δ>0时,方程有两个不相等的实数根”是解决问题的关键.15.(2022•巴中)对于实数a,b定义新运算:a※b=ab2﹣b,若关于x的方程1※x=k有两个不相等的实数根,则k的取值范围()A.k>−14B.k<−14C.k>−14且k≠0D.k≥−14且k≠0【分析】根据新定义运算法则列方程,然后根据一元二次方程的概念和一元二次方程的根的判别式列不等式求解即可.【解答】解:根据定义新运算,得x2﹣x=k,即x2﹣x﹣k=0,∵关于x的方程1※x=k有两个不相等的实数根,∴Δ=(﹣1)2﹣4×(﹣k)>0,解得:k>−1 4,故选:A.【点评】本题考查一元二次方程的根的判别式,新定义等,熟练掌握根的判别式Δ=b2﹣4ac与根的情况的关系是解题的关键.16.(2022•安顺)定义新运算a*b:对于任意实数a,b满足a*b=(a+b)(a﹣b)﹣1,其中等式右边是通常的加法、减法、乘法运算,例如3*2=(3+2)(3﹣2)﹣1=5﹣1=4.若x*k=2x(k为实数)是关于x的方程,则它的根的情况是()A.有一个实数根B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根【分析】已知等式利用题中的新定义化简,计算出根的判别式的值,判断即可.【解答】解:根据题中的新定义化简得:(x+k)(x﹣k)﹣1=2x,整理得:x2﹣2x﹣1﹣k2=0,∵Δ=4﹣4(﹣1﹣k2)=4k2+8>0,∴方程有两个不相等的实数根.故选:B.【点评】此题考查了根的判别式,方程的定义,以及实数的运算,弄清题中的新定义是解本题的关键.17.(2022•鄂尔多斯)下列说法正确的是()①若二次根式√1−x有意义,则x的取值范围是x≥1.②7<√65<8.③若一个多边形的内角和是540°,则它的边数是5.④√16的平方根是±4.⑤一元二次方程x2﹣x﹣4=0有两个不相等的实数根.A.①③⑤B.③⑤C.③④⑤D.①②④【分析】根据二次根式有意义的条件、估算无理数的大小、算术平方根、平方根和多边形的内角和定理,根的判别式判断即可.【解答】解:①若二次根式√1−x有意义,则1﹣x≥0,解得x≤1.故x的取值范围是x≤1,题干的说法是错误的.②8<√65<9,故题干的说法是错误的.③若一个多边形的内角和是540°,则它的边数是5是正确的.④√16=4的平方根是±2,故题干的说法是错误的.⑤∵Δ=(﹣1)2﹣4×1×(﹣4)=17>0,∴一元二次方程x2﹣x﹣4=0有两个不相等的实数根,故题干的说法是正确的.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.也考查了二次根式有意义的条件、估算无理数的大小、算术平方根、平方根和多边形.18.(2022•北京)若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m的值为()A.﹣4B.−14C.14D.4【分析】根据根的判别式的意义得到12﹣4m=0,然后解一次方程即可.【解答】解:根据题意得Δ=12﹣4m=0,解得m=1 4.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.19.(2022•呼和浩特)已知x1,x2是方程x2﹣x﹣2022=0的两个实数根,则代数式x13﹣2022x1+x22的值是()A.4045B.4044C.2022D.1【分析】把x=x1代入方程表示出x12﹣2022=x1,代入原式利用完全平方公式化简,再根据根与系数的关系求出所求即可.【解答】解:把x=x1代入方程得:x12﹣x1﹣2022=0,即x12﹣2022=x1,∵x1,x2是方程x2﹣x﹣2022=0的两个实数根,∴x1+x2=1,x1x2=﹣2022,则原式=x1(x12﹣2022)+x22=x12+x22=(x1+x2)2﹣2x1x2=1+4044=4045.故选:A.【点评】此题考查了根与系数的关系,熟练掌握一元二次方程根与系数的关系是解本题的关键.20.(2021•遵义)在解一元二次方程x2+px+q=0时,小红看错了常数项q,得到方程的两个根是﹣3,1.小明看错了一次项系数p,得到方程的两个根是5,﹣4,则原来的方程是()A.x2+2x﹣3=0B.x2+2x﹣20=0C.x2﹣2x﹣20=0D.x2﹣2x﹣3=0【分析】先设这个方程的两根是α、β,根据两个根是﹣3,1和两个根是5,﹣4,得出α+β=﹣p=﹣2,αβ=q=﹣20,从而得出符合题意的方程.【解答】解:设此方程的两个根是α、β,根据题意得:α+β=﹣p=﹣2,αβ=q=﹣20,则以α、β为根的一元二次方程是x2+2x﹣20=0.故选:B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−b a ,x1•x2=ca.二.填空题(共20小题)21.(2023•随州)已知关于x的一元二次方程x2﹣3x+1=0的两个实数根分别为x1和x2,则x1+x2﹣x1x2的值为.【分析】直接利用根于系数的关系x1+x2=−ba=3,x1x2=ca=1,再代入计算即可求解.【解答】解:∵关于x的一元二次方程x2﹣3x+1=0的两个实数根分别为x1和x2,∴x1+x2=−−31=3,x1x2=11=1,∴x1+x2﹣x1x2=3﹣1=2.故答案为:2.【点评】本题主要考查根与系数的关系,熟记根与系数的关系时解题关键.根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba,x1x2=ca.22.(2023•岳阳)已知关于x的方程x2+mx﹣20=0的一个根是﹣4,则它的另一个根是.【分析】设方程的另一个解为t,则利用根与系数的关系得﹣4t=﹣20,然后解一次方程即可.【解答】解:设方程的另一个解为t,根据根与系数的关系得﹣4t=﹣20,解得t=5,即方程的另一个根为5.故答案为:5.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则x1+x2=−ba,x1x2=ca.23.(2023•内江)已知a、b是方程x2+3x﹣4=0的两根,则a2+4a+b﹣3=.【分析】根据一元二次方程的解的定义得到a2+3a﹣4=0,a2=﹣3a+4,再根据根与系数的关系得到a+b =﹣3,然后把要求的式子进行变形,再代入计算即可.【解答】解:∵a是方程x2+3x﹣4=0的根,∴a2+3a﹣4=0,∴a2=﹣3a+4,∵a,b是方程x2+3x﹣4=0的两根,∴a+b=﹣3,∴a2+4a+b﹣3=﹣3a+4+4a+b﹣3=a+b+1=﹣3+1=﹣2.故答案为:﹣2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=−ba ,x1•x2=ca,也考查了一元二次方程的解.24.(2023•岳阳)已知关于x的一元二次方程x2+2mx+m2﹣m+2=0有两个不相等的实数根x1、x2,且x1+x2+x1•x2=2,则实数m=.【分析】根据方程的系数结合根的判别式Δ>0,可得出关于m的一元一次不等式,解之可得出m的取值范围,由根与系数的关系,可得出x1+x2=﹣2m,x1•x2=m2﹣m+2,结合x1+x2+x1•x2=2,可得出关于m的一元二次方程,解之取其符合题意的值,即可得出结论.【解答】解:∵原方程有两个不相等的实数根,∴Δ=(2m)2﹣4×1×(m2﹣m+2)>0,∴m>2.∵x1,x2是关于x的一元二次方程x2+2mx+m2﹣m+2=0的两个实数根,∴x1+x2=﹣2m,x1•x2=m2﹣m+2,∵x1+x2+x1•x2=2,∴﹣2m+m2﹣m+2=2,解得:m1=0(不符合题意,舍去),m2=3,∴实数m的值为3.故答案为:3.【点评】本题考查了根的判别式以及根与系数的关系,由根与系数的关系结合x1+x2+x1•x2=2,找出关于m的一元二次方程是解题的关键.25.(2023•上海)已知关于x的一元二次方程ax2+6x+1=0没有实数根,那么a的取值范围是.【分析】由方程根的情况,根据判别式可得到关于a的不等式,则可求得a的取值范围.【解答】解:∵关于x的一元二次方程ax2+6x+1=0没有实数根,∴Δ<0,即62﹣4a<0,解得:a>9,故答案为:a>9.【点评】本题主要考查根的判别式,掌握方程根的情况和根的判别式的关系是解题的关键.26.(2023•上海)已知关于x的方程√x−14=2,则x=.【分析】方程两边平方得出x﹣14=4,求出方程的解,再进行检验即可.【解答】解:√x−14=2,方程两边平方得:x﹣14=4,解得:x=18,经检验x=18是原方程的解.故答案为:18.【点评】本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键,注意:解无理方程一定要进行检验.27.(2023•枣庄)若x=3是关于x的方程ax2﹣bx=6的解,则2023﹣6a+2b的值为.【分析】把x=3代入方程求出3a﹣b的值,代入原式计算即可求出值.【解答】解:把x=3代入方程得:9a﹣3b=6,即3a﹣b=2,则原式=2023﹣2(3a﹣b)=2023﹣4=2019.故答案为:2019.【点评】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.28.(2023•金昌)关于x的一元二次方程x2+2x+4c=0有两个不相等的实数根,则c=(写出一个满足条件的值).【分析】根据方程的系数结合根的判别式,即可得出Δ=4﹣16c>0,解之即可得出c的取值范围,任取其内的一个数即可.【解答】解:∵方程x2+2x+4c=0有两个不相等的实数根,∴Δ=22﹣16c>0,解得:c<1 4.故答案为:0(答案不唯一).【点评】本题考查了根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根”是解题的关键.29.(2023•怀化)已知关于x的一元二次方程x2+mx﹣2=0的一个根为﹣1,则m的值为,另一个根为.【分析】将x=﹣1代入原方程,可得出关于m的一元一次方程,解之即可得出m的值,再结合两根之积等于﹣2,即可求出方程的另一个根.【解答】解:将x=﹣1代入原方程可得1﹣m﹣2=0,解得:m=﹣1,∵方程的两根之积为ca=−2,∴方程的另一个根为﹣2÷(﹣1)=2.故答案为:﹣1,2.【点评】本题考查了根与系数的关系以及一元二次方程的解,牢记“两根之和等于−ba,两根之积等于ca”是解题的关键.30.(2023•连云港)若W=5x2﹣4xy+y2﹣2y+8x+3(x、y为实数),则W的最小值为.【分析】将原式进行配方,然后根据偶次幂的非负性即可求得答案.【解答】解:W=5x2﹣4xy+y2﹣2y+8x+3=x2+4x2﹣4xy+y2﹣2y+8x+3=4x2﹣4xy+y2﹣2y+x2+8x+3=(4x2﹣4xy+y2)﹣2y+x2+8x+3=(2x﹣y)2﹣2y+x2+4x+4x+3=(2x﹣y)2+4x﹣2y+x2+4x+3=(2x﹣y)2+2(2x﹣y)+1﹣1+x2+4x+4﹣4+3=[(2x﹣y)2+2(2x﹣y)+1]+(x2+4x+4)﹣2=(2x﹣y+1)2+(x+2)2﹣2,∵x,y均为实数,∴(2x﹣y+1)2≥0,(x+2)2≥0,∴原式W≥﹣2,即原式的W的最小值为:﹣2,解法二:由题意5x2+(8﹣4y)x+(y2﹣2y+3﹣W)=0,∵x为实数,∴(8﹣4y)2﹣20(y2﹣2y+3﹣W)≥0,即5W≥(y+3)2﹣10≥﹣10,∴W≥﹣2,∴W的最小值为:﹣2,故答案为:﹣2.【点评】本题考查配方法的应用及偶次幂的非负性,利用配方法把原式整理为“平方+常数”的形式是解题的关键.31.已知方程x2﹣3x﹣4=0的根为x1,x2,则(x1+2)•(x2+2)的值为.【分析】直接利用根与系数的关系作答.【解答】解:∵方程x2﹣3x﹣4=0的根为x1,x2,∴x1+x2=3,x1•x2=﹣4,∴(x1+2)•(x2+2)=x1•x2+2x1+2x2+4=﹣4+2×3+4=6.故答案为:6.【点评】本题考查了一元二次方程根与系数的关系,一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=−ba,x1•x2=ca.32.(2023•重庆)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程.【分析】设该市新建智能充电桩个数的月平均增长率为x,根据第一个月新建了301个充电桩,第三个月新建了500个充电桩,即可得出关于x的一元二次方程.【解答】解:设该市新建智能充电桩个数的月平均增长率为x,依题意得:301(1+x)2=500.故答案为:301(1+x)2=500.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.33.(2023•重庆)某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个,设七、八两个月提供就业岗位数量的月平均增长率为x,根据题意,可列方程为.【分析】根据今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个,列一元二次方程即可.【解答】解:根据题意,得1501(1+x)2=1815,故答案为:1501(1+x)2=1815.【点评】本题考查了一元二次方程的应用,理解题意并根据题意建立等量关系是解题的关键.34.(2023•达州)已知x1,x2是方程2x2+kx﹣2=0的两个实数根,且(x1﹣2)(x2﹣2)=10,则k的值.【分析】先求出(x1+x2),x1x2的值,然后把(x1﹣2)(x2﹣2)=10的左边展开,将其代入该关于k的方程,通过解方程来求k的值.【解答】解:∵x1,x2是方程2x2+kx﹣2=0的两个实数根,∴x1+x2=−k2,x1•x2=﹣1,∴(x1﹣2)(x2﹣2)=x1•x2﹣2(x1+x2)+4=﹣1﹣2×(−k2)+4=10,解得k=7.故答案为:7.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个根为x1,x2,则x1+x2=−ba ,x1x2=ca,也考查了代数式的变形能力.35.(2023•扬州)若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则实数k的取值范围为.【分析】根据方程有两个不相等的实数根结合根的判别式即可得出关于k的一元一次不等式,解不等式即可得出结论.【解答】解:∵方程x2+2x+k=0有两个不相等的实数根,∴Δ=b2﹣4ac=22﹣4k=4﹣4k>0,解得:k<1.故答案为:k<1.【点评】本题考查了根的判别式,根据方程有两个不相等的实数根结合根的判别式得出4﹣4k>0是解题的关键.36.(2023•连云港)关于x的一元二次方程x2﹣2x+a=0有两个不相等的实数根,则a的取值范围是.【分析】根据根的判别式得到Δ=4﹣4a>0,然后解不等式即可.【解答】解:根据题意得Δ=4﹣4a>0,解得a<1.故答案为a<1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.37.(2022•巴中)α、β是关于x的方程x2﹣x+k﹣1=0的两个实数根,且α2﹣2α﹣β=4,则k的值为.【分析】α2﹣2α﹣β=α2﹣α﹣(α+β)=4,然后根据方程的解的定义以及一元二次方程根与系数的关系,得到关于k的一元一次方程,即可解得答案.【解答】解:∵α、β是方程x2﹣x+k﹣1=0的根,∴α2﹣α+k﹣1=0,α+β=1,∴α2﹣2α﹣β=α2﹣α﹣(α+β)=﹣k+1﹣1=﹣k=4,∴k=﹣4,故答案是:﹣4.【点评】本题考查了一元二次方程的解以及根与系数的关系,掌握根与系数的关系是解题的关键.38.(2022•鄂州)若实数a、b分别满足a2﹣4a+3=0,b2﹣4b+3=0,且a≠b,则1a+1b的值为.【分析】由实数a、b分别满足a2﹣4a+3=0,b2﹣4b+3=0,且a≠b,知a、b可看作方程x2﹣4x+3=0的两个不相等的实数根,据此可得a+b=4,ab=3,将其代入到原式=a+bab即可得出答案.【解答】解:∵实数a、b分别满足a2﹣4a+3=0,b2﹣4b+3=0,且a≠b,∴a、b可看作方程x2﹣4x+3=0的两个不相等的实数根,则a+b=4,ab=3,则原式=a+bab=43,故答案为:4 3.【点评】本题主要考查根与系数的关系,解题的关键是根据方程的特点得出a、b可看作方程x2﹣4x+3=0的两个不相等的实数根及韦达定理.39.(2021•南通)若m,n是一元二次方程x2+3x﹣1=0的两个实数根,则m3+m2n3m−1的值为.【分析】先根据一元二次方程的解的定义得到m2+3m﹣1=0,再根据根与系数的关系得到m+n=﹣3,再将其代入所求式子即可求解.【解答】解:m,n是一元二次方程x2+3x﹣1=0的两个实数根,∴m2+3m﹣1=0,∴3m﹣1=﹣m2,∴m+n=﹣3,∴m3+m2n3m−1=m2(m+n)3m−1=−3m2−m2=3,故答案为3.【点评】本题考查了根与系数的关系,熟练掌握一元二次方程的解与方程的关系得到3m﹣1=﹣m2是解题的关键.40.(2021•广东)若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,则符合条件的一个方程为.【分析】根据一元二次方程的定义解决问题即可,注意答案不唯一.【解答】解:∵若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,∴满足条件的方程可以为:x2﹣2=0(答案不唯一),故答案为:x2﹣2=0(答案不唯一).【点评】本题考查一元二次方程的定义,解题的关键是理解题意,灵活运用所学知识解决问题.三.解答题(共20小题)41.(2023•南充)已知关于x 的一元二次方程x 2﹣(2m ﹣1)x ﹣3m 2+m =0.(1)求证:无论m 为何值,方程总有实数根;(2)若x 1,x 2是方程的两个实数根,且x 2x 1+x 1x 2=−52,求m 的值. 【分析】(1)由判别式Δ=(4m ﹣1)2≥0,可得答案;(2)根据根与系数的关系知x 1+x 2=2m ﹣1,x 1x 2=﹣3m 2+m ,由x 2x 1+x 1x 2=−52进行变形直接代入得到5m 2﹣7m +2=0,求解可得.【解答】(1)证明:∵Δ=[﹣(2m ﹣1)]2﹣4×1×(﹣3m 2+m )=4m 2﹣4m +1+12m 2﹣4m=16m 2﹣8m +1=(4m ﹣1)2≥0,∴方程总有实数根;(2)解:由题意知,x 1+x 2=2m ﹣1,x 1x 2=﹣3m 2+m ,∵x 2x 1+x 1x 2=x 12+x 22x 1x 2=(x 1+x 2)2x 1x 2−2=−52, ∴(2m−1)2−3m 2+m −2=−52,整理得5m 2﹣7m +2=0, 解得m =1或m =25.【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a .也考查了根的判别式.42.(2023•遂宁)我们规定:对于任意实数a 、b 、c 、d 有[a ,b ]*[c ,d ]=ac ﹣bd ,其中等式右边是通常的乘法和减法运算,如:[3,2]*[5,1]=3×5﹣2×1=13.(1)求[﹣4,3]*[2,﹣6]的值;(2)已知关于x 的方程[x ,2x ﹣1]*[mx +1,m ]=0有两个实数根,求m 的取值范围.【分析】(1)用新定义运算法则列式计算;(1)先根据新定义得到x (mx +1)﹣m (2x ﹣1)=0,再把方程化为一般式,接着根据题意得到Δ=(1﹣2m )2﹣4m •m ≥0且m ≠0,解不等式即可.【解答】解:(1)[﹣4,3]*[2,﹣6]=﹣4×2﹣3×(﹣6)=10;(2)根据题意得x (mx +1)﹣m (2x ﹣1)=0,整理得mx 2+(1﹣2m )x +m =0,∵关于x 的方程[x ,2x ﹣1]*[mx +1,m ]=0有两个实数根,∴Δ=(1﹣2m )2﹣4m •m ≥0且m ≠0,解得m ≤14且m ≠0.【点评】本题属于新定义题型,考查一元二次方程根的判别式,解一元一次不等式,根据题意得到关于m 的不等式是解题的关键.43.(1)解方程:x 2﹣2x ﹣1=0;(2)解不等式组:{2x −1≥11+x 3<x −1. 【分析】(1)方程移项后,利用完全平方公式配方,开方即可求出解;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:(1)方程移项得:x 2﹣2x =1,配方得:x 2﹣2x +1=2,即(x ﹣1)2=2,开方得:x ﹣1=±√2,解得:x 1=1+√2,x 2=1−√2;(2){2x −1≥1①1+x 3<x −1②, 由①得:x ≥1,由②得:x >2,则不等式组的解集为x >2.【点评】此题考查了解一元一次不等式组,以及解一元二次方程﹣配方法,熟练掌握不等式组的解法及方程的解法是解本题的关键.44.如图,某小区矩形绿地的长宽分别为35m ,15m .现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.(1)若扩充后的矩形绿地面积为800m ,求新的矩形绿地的长与宽;(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.【分析】(1)设将绿地的长、宽增加xm,则新的矩形绿地的长为(35+x)m,宽为(15+x)m,根据扩充后的矩形绿地面积为800m,即可得出关于x的一元二次方程,解之即可得出x的值,将其正值分别代入(35+x)及(15+x)中,即可得出结论;(2)设将绿地的长、宽增加ym,则新的矩形绿地的长为(35+y)m,宽为(15+y)m,根据实地测量发现新的矩形绿地的长宽之比为5:3,即可得出关于y的一元一次方程,解之即可得出y值,再利用矩形的面积计算公式,即可求出新的矩形绿地面积.【解答】解:(1)设将绿地的长、宽增加xm,则新的矩形绿地的长为(35+x)m,宽为(15+x)m,根据题意得:(35+x)(15+x)=800,整理得:x2+50x﹣275=0解得:x1=5,x2=﹣55(不符合题意,舍去),∴35+x=35+5=40,15+x=15+5=20.答:新的矩形绿地的长为40m,宽为20m.(2)设将绿地的长、宽增加ym,则新的矩形绿地的长为(35+y)m,宽为(15+y)m,根据题意得:(35+y):(15+y)=5:3,即3(35+y)=5(15+y),解得:y=15,∴(35+y)(15+y)=(35+15)×(15+15)=1500.答:新的矩形绿地面积为1500m2.【点评】本题考查了一元二次方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)找准等量关系,正确列出一元一次方程.45.(2022•广州)已知T=(a+3b)2+(2a+3b)(2a﹣3b)+a2.(1)化简T;(2)若关于x的方程x2+2ax﹣ab+1=0有两个相等的实数根,求T的值.【分析】(1)根据完全平方公式和平方差公式化简T;(2)根据根的判别式可求a2+ab,再代入计算可求T的值.【解答】解:(1)T=(a+3b)2+(2a+3b)(2a﹣3b)+a2=a2+6ab+9b2+4a2﹣9b2+a2=6a2+6ab;(2)∵关于x的方程x2+2ax﹣ab+1=0有两个相等的实数根,∴Δ=(2a)2﹣4(﹣ab+1)=0,∴a2+ab=1,∴T=6×1=6.【点评】本题考查了整式的混合运算,根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:①当Δ>0时,方程有两个不相等的实数根;②当Δ=0时,方程有两个相等的实数根;③当Δ<0时,方程无实数根.46.(1)a,b两个实数在数轴上的对应点如图所示.用“<”或“>”填空:a b,ab0;(2)在初中阶段我们已经学习了一元二次方程的三种解法;它们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.①x2+2x﹣1=0;②x2﹣3x=0;③x2﹣4x=4;④x2﹣4=0.【分析】(1)先根据数轴确定a、b的正负,再利用乘法法则确定ab;(2)根据方程的系数特点,选择配方法、公式法或因式分解法.【解答】解:(1)由数轴上点的坐标知:a<0<b,∴a<b,ab<0.故答案为:<,<.(2)①利用公式法:x2+2x﹣1=0,Δ=22﹣4×1×(﹣1)=4+4=8,∴x=−2±√b2−4ac2=−2±√82=−2±2√22=﹣1±√2.∴x1=﹣1+√2,x2=﹣1−√2;②利用因式分解法:x2﹣3x=0,∴x(x﹣3)=0.∴x1=0,x2=3;③利用配方法:x2﹣4x=4,两边都加上4,得x2﹣4x+4=8,∴(x﹣2)2=8.∴x﹣2=±2√2.∴x1=2+2√2,x2=2﹣2√2;④利用因式分解法:x2﹣4=0,∴(x+2)(x﹣2)=0.∴x1=﹣2,x2=2.【点评】本题考查了数轴、一元二次方程的解法,掌握数轴的意义、一元二次方程的解法是解决本题的关键.47.(2022•齐齐哈尔)解方程:(2x+3)2=(3x+2)2.【分析】方程开方转化为一元一次方程,求出解即可.【解答】解:方程:(2x+3)2=(3x+2)2,开方得:2x+3=3x+2或2x+3=﹣3x﹣2,解得:x1=1,x2=﹣1.【点评】此题考查了解一元二次方程﹣直接开平方法,熟练掌握方程的解法是解本题的关键.48.(2022•泰州)如图,在长为50m、宽为38m的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1260m2,道路的宽应为多少?【分析】要求路宽,就要设路宽应为x米,根据题意可知:矩形地面﹣所修路面积=草坪面积,利用平移更简单,依此列出等量关系解方程即可.【解答】解:设路宽应为x米。
(完整版)一元二次方程解法练习题(四种方法)
一元二次方程解法练习题 姓名一、用直接开平方法解下列一元二次方程。
1、0142=-x2、2)3(2=-x3、()162812=-x二、 用配方法解下列一元二次方程。
1、.0662=--y y2、x x 4232=-3、9642=-x x4、0542=--x x5、01322=-+x x6、07232=-+x x三、 用公式解法解下列方程。
1、0822=--x x2、22314y y -=3、y y 32132=+4、01522=+-x x5、1842-=--x x6、02322=--x x四、 用因式分解法解下列一元二次方程。
1、x x 22=2、0)32()1(22=--+x x3、0862=+-x x4、22)2(25)3(4-=+x x5、0)21()21(2=--+x x6、0)23()32(2=-+-x x五、用适当的方法解下列一元二次方程。
(选用你认为最简单的方法)1、()()513+=-x x x x2、x x 5322=-3、2260x y -+=4、01072=+-x x5、()()623=+-x x6、()()03342=-+-x x x7、()02152=--x 8、0432=-y y 9、03072=--x x10、()()412=-+y y 11、()()1314-=-x x x 12、()025122=-+x13、22244a b ax x -=- 14、3631352=+x x 15、()()213=-+y y16、)0(0)(2≠=++-a b x b a ax 17、03)19(32=--+a x a x18、012=--x x19 、02932=+-x x 20、02222=+-+a b ax x21、 x 2+4x -12=022、030222=--x x 23、01752=+-x x24、1852-=-x x 25、3x 2+5(2x+1)=0 26、x x x 22)1)(1(=-+解答题:1、已知一元二次方程0132=-+-m x x .(1)若方程有两个不相等的实数根,求m 的取值范围.(2)若方程有两个相等的实数根,求此时方程的根2、已知方程2(m+1)x 2+4mx+3m=2,根据下列条件之一求m 的值.(1)方程有两个相等的实数根;(2)方程的一个根为0.3、无论m 为何值时,方程04222=---m mx x 总有两个不相等的实数根吗?给出答案并说明理由。
苏科版九年级数学上学期期末考试真题汇编 解一元二次方程
解一元二次方程一.选择题(共4小题)1.(2022春•惠山区校级期末)一元二次方程x 2﹣8x ﹣1=0,配方后可变形为( )A .(x ﹣4)2=17B .(x ﹣4)2=18C .(x ﹣8)2=1D .(x ﹣4)2=12.(2022春•如皋市期末)关于x 的一元二次方程x 2﹣6x +m =0有两个相等的实数根,则m 的值是( )A .9B .10C .11D .123.(2022春•吴江区期末)新定义运算:a ※b =a 2﹣ab +b ,例如2※1=22﹣2×1+1=3,则方程x ※2=5的根的情况为( )A .没有实数根B .有一个实数根C .有两个相等的实数根D .有两个不相等的实数根4.(2022春•宿豫区期末)下列关于x 的方程中,一定有两个不相等的实数根的是( )A .x 2﹣4x +4=0B .x 2﹣mx +4=0C .x 2﹣4x ﹣m =0D .x 2﹣4x ﹣m 2=0二.填空题(共4小题)5.(2022春•宝应县期末)一个直角三角形的两条边长分别是方程x 2﹣7x +12=0的两根,则该直角三角形的面积是 .6.(2022春•亭湖区校级期末)一元二次方程x 2﹣4x +3=0配方为(x ﹣2)2=k ,则k 的值是 .7.(2020秋•泰兴市期末)已知关于x 的一元二次方程(a ﹣2)x 2+2x +1=0有两个不相等的实数根,则a 的取值范围是 .8.(2021秋•溧阳市期末)若一元二次方程x 2﹣4x +k +2=0有两个不相等的实数根,则k 的取值范围是 .三.解答题(共4小题)9.(2022春•姜堰区期末)解下列方程:(1)x 2﹣6x ﹣4=0;(2)x+1x−1−4x 2−1=1.10.(2022春•玄武区期末)已知关于x 的一元二次方程2x 2﹣3mx +m 2+m ﹣3=0(m 为常数).(1)求证:无论m为何值,方程总有两个不相等的实数根:(2)若x=2是方程的根,则m的值为.11.(2022春•张家港市期末)利用我们学过的完全平方公式及不等式知识能解决方程或代数式的一些问题,请阅读下列材料:阅读材料:若m2﹣2mm+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+4ab+5b2+6b+9=0,求a=,b=;(2)已知△ABC的三边长a、b、c都是正整数,且满足a2﹣4a+2b2﹣4b+6=0,求c的值;(3)若A=3a2+3a﹣4,B=2a2+4a﹣6,试比较A与B的大小关系,并说明理由.12.(2021春•无锡期末)阅读材料:我们知道,利用完全平方公式可将二次三项式a2±2ab+b2分解成(a ±b)2,而对于a2+2a﹣3这样的二次三项式,则不能直接利用完全平方公式进行分解,但可先用“配方法”将其配成一个完全平方式,再利用平方差公式,就可进行因式分解,过程如下:a2+2a﹣3=a2+2a+1﹣1﹣3=(a+1)2﹣4=(a+1+2)(a+1﹣2)=(a+3)(a﹣1).请用“配方法”解决下列问题:(1)分解因式:a2﹣6a+5.(2)已知ab=34,a+2b=3,求a2﹣2ab+4b2的值.(3)若将4x2+12x+m分解因式所得结果中有一个因式为x+2,试求常数m的值.一.选择题(共4小题)1.(2021春•秦淮区期末)一元二次方程ax2+2x+1=0有两个相等的实数根,则a的值是()A.0B.1C.2D.32.(宿迁期末)若关于x的方程kx2﹣x+4=0有实数根,则k的取值范围是()A.k≤16B.k≤1 16C.k≤16,且k≠0D.k≤116,且k≠03.(常熟市期末)已知关于x的方程x2+kx+1=0和x2﹣x﹣k=0有一个根相同,则k的值为()A.﹣1B.0C.﹣1或2D.24.(如皋市校级期末)对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若b=2√ac,则方程ax2+bx+c=0一定有两个相等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则方程x2﹣bx+ac=0也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2﹣4ac=(2ax0+b)2,其中正确的()A.只有①②③B.只有①②④C.①②③④D.只有③④二.填空题(共4小题)5.(2020秋•新吴区期末)若关于x的一元二次方程x2﹣4x+m=0有两个不相等的实数根,则m的取值范围为.6.(鼓楼区期末)如果关于x的一元二次方程ax2=b(ab>0)的两个根分别是x1=m+1与x2=2m﹣4,那么ba的值为.7.(镇江期末)已知△ABC的三边分别是a、b、c,且满足√a−3+b2−4b+4=0,则c的取值范围是.8.(滨湖区期末)已知关于x的方程a(x+m)2+b=0(a、b、m为常数,a≠0)的解是x1=2,x2=﹣1,那么方程a(x+m+2)2+b=0的解.三.解答题(共4小题)9.(2021秋•盱眙县期末)已知关于x的方程x2﹣(k+2)x+2k=0.(1)求证:k取任何实数值,方程总有实数根;(2)若等腰△ABC的一边长为4,另两边长m,n恰好是这个方程的两个根,求△ABC的周长.10.(玄武区期末)已知:关于x的方程x2﹣2(k﹣2)x+k2﹣2k﹣2=0.(1)若这个方程有实数根,求k的取值范围.(2)若此方程有一个根是1,求k的值.11.(鼓楼区校级期末)学习了完全平方公式以后,小明有了下面的发现:因为x2﹣2x+2=(x2﹣2x+1)+1=(x﹣1)2+1,不论x取什么值,(x﹣1)2≥0,所以(x﹣1)2+1≥1.因此,代数式x2﹣2x+2的值不小于1.这种把一个多项式或一个多项式中的某一部分化为一个完全平方式或几个完全平方式和的方法,称为配方法.请用配方法解决下列问题:(1)填空:①a2+6a+15=(a+3)2+ .②若(a﹣1)2+b2+4b+4=0,则a=,b=.(2)已知m2+4m+n2﹣6n+13=0,求m、n的值.(3)比较代数式3x3+2x2﹣4x﹣3与3x3+x2+2x﹣12的大小.12.(鼓楼区校级期末)先阅读后解题.已知m2+2m+n2﹣6n+10=0,求m和n的值.解:把等式的左边分解因式:(m2+2m+1)+(n2﹣6n+9)=0.即(m+1)2+(n﹣3)2=0.因为(m+1)2≥0,(n﹣3)2≥0.所以m+1=0,n﹣3=0即m=﹣1,n=﹣3.利用以上解法,解下列问题:(1)已知:x2﹣4x+y2+2y+5=0,求x和y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=12a+8b﹣52且△ABC为等腰三角形,求c.一.选择题(共4小题)1.(2022春•惠山区校级期末)一元二次方程x2﹣8x﹣1=0,配方后可变形为()A.(x﹣4)2=17B.(x﹣4)2=18C.(x﹣8)2=1D.(x﹣4)2=1【分析】方程移项后,利用完全平方公式配方得到结果,即可作出判断.【解答】解:方程x2﹣8x﹣1=0,整理得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17.故选:A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.2.(2022春•如皋市期末)关于x的一元二次方程x2﹣6x+m=0有两个相等的实数根,则m的值是()A.9B.10C.11D.12【分析】根据方程有两个相等的实数根,得到根的判别式等于0,求出m的值即可.【解答】解:∵关于x的一元二次方程x2﹣6x+m=0有两个相等的实数根,∴Δ=36﹣4m=0,解得:m=9.故选:A.【点评】此题考查了根的判别式,熟练掌握一元二次方程根的判别式的意义是解本题的关键.3.(2022春•吴江区期末)新定义运算:a※b=a2﹣ab+b,例如2※1=22﹣2×1+1=3,则方程x※2=5的根的情况为()A.没有实数根B.有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【分析】先利用新定义得到x2﹣2x+2=5,再把方程化为一般式,接着计算根的判别式的值,然后根据根的判别式的意义判断方程根的情况.【解答】解:∵x※2=5,∴x2﹣2x+2=5,即x2﹣2x﹣3=0,∵Δ=(﹣2)2﹣4×(﹣3)=16>0,∴方程有两个不相等的实数根.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.4.(2022春•宿豫区期末)下列关于x的方程中,一定有两个不相等的实数根的是()A.x2﹣4x+4=0B.x2﹣mx+4=0C.x2﹣4x﹣m=0D.x2﹣4x﹣m2=0【分析】先求出Δ的值,再比较出其与0的大小即可求解.【解答】解:A 、Δ=(﹣4)2﹣4×1×4=0,该方程有两个相等的实数根,不符合题意;B 、Δ=(﹣m )2﹣4×1×4=m 2﹣16,可能小于等于0,不一定有两个不相等的实数根,不符合题意;C 、Δ=(﹣4)2﹣4×1×(﹣m )=16+4m ,可能小于等于0,不一定有两个不相等的实数根,不符合题意;D 、Δ=(﹣4)2﹣4×1×(﹣m )2=16+4m 2>0,一定有两个不相等的实数根,符合题意.故选:D .【点评】本题考查的是根的判别式,熟知一元二次方程的根与△的关系是解答此题的关键.二.填空题(共4小题)5.(2022春•宝应县期末)一个直角三角形的两条边长分别是方程x 2﹣7x +12=0的两根,则该直角三角形的面积是 6或3√72. 【分析】先解出方程x 2﹣7x +12=0的两个根为3和4,再分长是4的边是直角边和斜边两种情况进行讨论,然后根据直角三角形的面积公式即可求解.【解答】解:∵x 2﹣7x +12=0,∴x =3或x =4.①当长是4的边是直角边时,该直角三角形的面积是12×3×4=6; ②当长是4的边是斜边时,第三边是√42−32=√7,该直角三角形的面积是12×3×√7=3√72. 故答案为:6或3√72.【点评】本题考查了一元二次方程的解法,三角形的面积,正确求解方程的两根,能够分两种情况进行讨论是解题的关键.6.(2022春•亭湖区校级期末)一元二次方程x 2﹣4x +3=0配方为(x ﹣2)2=k ,则k 的值是 1 .【分析】根据配方法可以将题目中方程变形,然后即可得到k 的值.【解答】解:∵x 2﹣4x +3=0,∴x 2﹣4x =﹣3,∴x 2﹣4x +4=﹣3+4,∴(x ﹣2)2=1,∵一元二次方程x 2﹣4x +3=0配方为(x ﹣2)2=k ,∴k =1,故答案为:1.【点评】本题考查解一元二次方程—配方法,解答本题的关键是明确题意,会用配方法将方程变形.7.(2020秋•泰兴市期末)已知关于x 的一元二次方程(a ﹣2)x 2+2x +1=0有两个不相等的实数根,则a 的取值范围是 a <3且a ≠2 .【分析】根据二次项系数非零结合根的判别式Δ>0,即可得出关于a 的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x 的一元二次方程(a ﹣2)x 2+2x +1=0有两个不相等的实数根,∴{a −2≠0△=22−4(a −2)×1>0, 解得:a <3且a ≠2.故答案为:a <3且a ≠2.【点评】本题考查了根的判别式,根据二次项系数非零结合根的判别式Δ>0,列出关于a 的一元一次不等式组是解题的关键.8.(2021秋•溧阳市期末)若一元二次方程x 2﹣4x +k +2=0有两个不相等的实数根,则k 的取值范围是 k<2 .【分析】根据根的判别式得出Δ=b 2﹣4ac =(﹣4)2﹣4×1×(k +2)>0,再求出不等式的解集即可.【解答】解:∵一元二次方程x 2﹣4x +k +2=0有两个不相等的实数根,∴Δ=b 2﹣4ac =(﹣4)2﹣4×1×(k +2)=8﹣4k >0,解得:k <2,故答案为:k <2.【点评】本题考查了根的判别式和解一元一次不等式,能根据根的判别式得出关于k 的不等式是解此题的关键.三.解答题(共4小题)9.(2022春•姜堰区期末)解下列方程:(1)x 2﹣6x ﹣4=0;(2)x+1x−1−4x 2−1=1.【分析】(1)移项后配方,开方,即可得出两个一元一次方程,再求出方程的解即可;(2)方程两边都乘(x +1)(x ﹣1)得出(x +1)2﹣4=(x +1)(x ﹣1),求出方程的解,再进行检验即可.【解答】解:(1)x 2﹣6x ﹣4=0,x 2﹣6x =4,配方,得x 2﹣6x +9=4+9,(x ﹣3)2=13,开方得:x ﹣3=±√13,解得:x 1=3+√13,x 2=3−√13;(2)x+1x−1−4x 2−1=1,x+1x−1−4(x+1)(x−1)=1,方程两边都乘(x +1)(x ﹣1),得(x +1)2﹣4=(x +1)(x ﹣1),解得:x =1,检验:当x =1时,(x +1)(x ﹣1)=0,所以x =1是增根,即原方程无解.【点评】本题考查了解一元二次方程和解分式方程,能正确配方是解(1)的关键,能把分式方程转化成整式方程是解(2)的关键.10.(2022春•玄武区期末)已知关于x 的一元二次方程2x 2﹣3mx +m 2+m ﹣3=0(m 为常数).(1)求证:无论m 为何值,方程总有两个不相等的实数根:(2)若x =2是方程的根,则m 的值为 5±√52. 【分析】(1)根据根的判别式求出Δ=(m ﹣4)2+8,再根据根的判别式得出答案即可;(2)把x =2代入方程,得出关于m 的一元二次方程,再求出方程的解即可.【解答】(1)证明:2x 2﹣3mx +m 2+m ﹣3=0,Δ=(﹣3m )2﹣4×2×(m 2+m ﹣3)=9m 2﹣8m 2﹣8m +24=m 2﹣8m +24=(m ﹣4)2+8,因为不论m 为何值,(m ﹣4)2≥0,即Δ>0,所以无论m 为何值,方程总有两个不相等的实数根:(2)解:把x =2代入方程2x 2﹣3mx +m 2+m ﹣3=0得:2×22﹣3m ×2+m 2+m ﹣3=0,整理得:m 2﹣5m +5=0,解得:m =5±√52, 故答案为:5±√52.【点评】本题考查了解一元二次方程,根的判别式,一元二次方程的解等知识点,能熟记根的判别式的内容和一元二次方程的解的定义是解此题的关键.11.(2022春•张家港市期末)利用我们学过的完全平方公式及不等式知识能解决方程或代数式的一些问题,请阅读下列材料:阅读材料:若m 2﹣2mm +2n 2﹣8n +16=0,求m 、n 的值.解:∵m 2﹣2mn +2n 2﹣8n +16=0,∴(m 2﹣2mn +n 2)+(n 2﹣8n +16)=0,∴(m ﹣n )2+(n ﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+4ab+5b2+6b+9=0,求a=6,b=﹣3;(2)已知△ABC的三边长a、b、c都是正整数,且满足a2﹣4a+2b2﹣4b+6=0,求c的值;(3)若A=3a2+3a﹣4,B=2a2+4a﹣6,试比较A与B的大小关系,并说明理由.【分析】(1)将a2+4ab+5b2+6b+9=0的左边分组配方,然后根据偶次方的非负性,可求出a,b的值;(2)将a2﹣4a+2b2﹣4b+6=0的左边分组配方,然后根据偶次方的非负性,可求出a,b的值,根据三角形的三边关系求出c;(3)让多项式3a2+3a﹣4与2a2+4a﹣6作差,结果配方,根据偶次方的非负性判断大小.【解答】解:(1)a2+4ab+5b2+6b+9=a2+4ab+4b2+b2+6b+9=(a+2b)2+(b+3)2=0,∴a+2b=0,b+3=0,解得a=6,b=﹣3.故答案为:6,﹣3;(2)a2﹣4a+2b2﹣4b+6=a2﹣4a+4+2b2﹣4b+2=(a﹣2)2+2(b﹣1)2=0,∴a﹣2=0,b﹣1=0,解得a=2,b=1,∵a、b、c是△ABC的三边长,∴1<c<3,∵c是正整数,∴c=2;(3)A>B,理由如下:∵A=3a2+3a﹣4,B=2a2+4a﹣6,A﹣B=3a2+3a﹣4﹣(2a2+4a﹣6)=3a2+3a﹣4﹣(2a2+4a﹣6)=3a2+3a﹣4﹣2a2﹣4a+6=a2﹣a+2=(a−1 2)2+74,∵(a−12)2≥0,∴(a−12)2+74>0,∴A>B.【点评】本题考查了配方法的应用,结合偶次方的非负性求值的问题,本题属于中档题.12.(2021春•无锡期末)阅读材料:我们知道,利用完全平方公式可将二次三项式a2±2ab+b2分解成(a ±b)2,而对于a2+2a﹣3这样的二次三项式,则不能直接利用完全平方公式进行分解,但可先用“配方法”将其配成一个完全平方式,再利用平方差公式,就可进行因式分解,过程如下:a2+2a﹣3=a2+2a+1﹣1﹣3=(a +1)2﹣4=(a +1+2)(a +1﹣2)=(a +3)(a ﹣1).请用“配方法”解决下列问题:(1)分解因式:a 2﹣6a +5.(2)已知ab =34,a +2b =3,求a 2﹣2ab +4b 2的值.(3)若将4x 2+12x +m 分解因式所得结果中有一个因式为x +2,试求常数m 的值.【分析】(1)利用已知结合完全平方公式以及平方差公式分解因式得出答案;(2)利用完全平方公式将a 2﹣2ab +4b 2进行因式分解,转化为含有ab =34,a +2b =3的式子即可求解;(3)设另一个因式为4x +n ,将(x +2)(4x +n )展开,得出一次项的系数,继而求出m 的值.【解答】解:(1)a 2﹣6a +5=a 2﹣6a +9﹣4=(a ﹣3)2﹣4=(a ﹣3+2)(a ﹣3﹣2)=(a ﹣1)(a ﹣5);(2)∵ab =34,a +2b =3,∴a 2﹣2ab +4b 2=a 2+4ab +4b 2﹣6ab =(a +2b )2﹣6ab =32﹣6×34=92;(3)4x 2+12x +m =4(x 2+3x +m 4)=4[(x +32)2−9−m 4], ∵有一个因式为x +2,∴9−m 4=(12)2=14, ∴9﹣m =1,∴m =8.【点评】本题考查了平方差公式,完全平方公式,配方法的应用等知识,掌握公式的应用是解题的关键.一.选择题(共4小题)1.(2021春•秦淮区期末)一元二次方程ax 2+2x +1=0有两个相等的实数根,则a 的值是( )A .0B .1C .2D .3【分析】根据方程有两个相等的实数根得出b 2﹣4ac =0,再求出a 即可.【解答】解:∵一元二次方程ax 2+2x +1=0有两个相等的实数根,∴Δ=b 2﹣4ac =22﹣4×a ×1=4﹣4a =0,解得:a =1,故选:B .【点评】本题考查了根的判别式,一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2﹣4ac 有如下关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.2.(宿迁期末)若关于x的方程kx2﹣x+4=0有实数根,则k的取值范围是()A.k≤16B.k≤1 16C.k≤16,且k≠0D.k≤116,且k≠0【分析】分类讨论:当k=0,方程变形为﹣x+4=0,此一元一次方程有解;当k≠0,Δ=(﹣1)2﹣4×k×4≥0,方程有两个实数解,得到k≤116且k≠0,然后综合两种情况即可得到实数k的取值范围.【解答】解:当k=0时,﹣x+4=0,此时x=4,有实数根;当k≠0时,∵方程kx2﹣x+4=0有实数根,∴Δ=(﹣1)2﹣4×k×4≥0,解得:k≤1 16,此时k≤116且k≠0;综上,k≤1 16.故选:B.【点评】本题主要考查根的判别式,解题的关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac间的关系:①当Δ>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根.3.(常熟市期末)已知关于x的方程x2+kx+1=0和x2﹣x﹣k=0有一个根相同,则k的值为()A.﹣1B.0C.﹣1或2D.2【分析】把两个方程相减,求出x的值,代入求出k的值.【解答】解:方程x2+kx+1=0减去x2﹣x﹣k=0,得(k+1)x=﹣k﹣1,当k+1≠0时,解得:x=﹣1.把x=﹣1代入方程x2﹣x﹣k=0,解得k=2.当k+1=0时,k=﹣1代入方程得x2﹣x+1=0在这个方程中Δ=1﹣4=﹣3<0,方程无解.故选:D.【点评】灵活求出方程的一个根,代入求出k的值.4.(如皋市校级期末)对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若b=2√ac,则方程ax2+bx+c=0一定有两个相等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则方程x2﹣bx+ac=0也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2﹣4ac=(2ax0+b)2,其中正确的()A.只有①②③B.只有①②④C.①②③④D.只有③④【分析】判断上述方程的根的情况,只要看根的判别式Δ=b2﹣4ac的值的符号就可以了.④难度较大,用到了求根公式表示x0.【解答】解:①若b=2√ac,方程两边平方得b2=4ac,即b2﹣4ac=0,所以方程ax2+bx+c=0一定有两个相等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则b2﹣4ac>0方程x2﹣bx+ac=0中根的判别式也是b2﹣4ac>0,所以也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac2+bc+c=0成立,当c≠0时ac+b+1=0成立;当c=0时ac+b+1=0不成立;④若x0是一元二次方程ax2+bx+c=0的根,可得x0=−b±√b2−4ac2a,把x0的值代入(2ax0+b)2,可得b2﹣4ac=(2ax0+b)2,综上所述其中正确的①②④.故选:B.【点评】此题主要考查了根的判别式及其应用.尤其是④难度较大,用到了求根公式表示x0,整体代入求b2﹣4ac=(2ax0+b)2.总结:一元二次方程根的情况与判别式△的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.二.填空题(共4小题)5.(2020秋•新吴区期末)若关于x的一元二次方程x2﹣4x+m=0有两个不相等的实数根,则m的取值范围为m<4.【分析】根据判别式的意义得到Δ=(﹣4)2﹣4m>0,然后解不等式即可.【解答】解:∵关于x的一元二次方程x2﹣4x+m=0有两个不相等的实数根,∴Δ=(﹣4)2﹣4m>0,解得:m<4.故答案为:m<4.【点评】此题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.6.(鼓楼区期末)如果关于x的一元二次方程ax2=b(ab>0)的两个根分别是x1=m+1与x2=2m﹣4,那么ba的值为4.【分析】先求出方程的根,得出关于m的不等式,求出m的值,代入后即可求出答案.【解答】解:解方程ax2=b得:x2=b a,∵关于x的一元二次方程ax2=b(ab>0)的两个根分别是x1=m+1与x2=2m﹣4,∴(m+1)2=ba,(2m﹣4)2=ba,∴b=a(m+1)2,b=a(﹣2m+4)2,∵关于x的一元二次方程ax2=b(ab>0)的两个根分别是x1=m+1与x2=2m﹣4,∴m+1=﹣2m+4(m+1和﹣2m+4互为相反数),解得:m=1,方程的两根为±2,即4=b a,b=4a,∴ba =4aa=4,故答案为:4.【点评】本题考查了解一元二次方程和解一元一次方程,能得出关于m的一元一次方程转是解此题的关键.7.(镇江期末)已知△ABC的三边分别是a、b、c,且满足√a−3+b2−4b+4=0,则c的取值范围是1<c<5.【分析】由两非负数之和为0,两非负数分别为0求出a与b的值,利用三角形的三边关系即可得出c 的范围.【解答】解:∵√a−3+(b﹣2)2=0,∴a﹣3=0,b﹣2=0,解得:a=3,b=2,则c的范围为3﹣2<c<3+2,即1<c<5.故答案为:1<c<5【点评】此题考查了配方法的应用,非负数的性质,以及三角形的三边关系,熟练掌握完全平方公式是解本题的关键.8.(滨湖区期末)已知关于x的方程a(x+m)2+b=0(a、b、m为常数,a≠0)的解是x1=2,x2=﹣1,那么方程a(x+m+2)2+b=0的解x3=0,x4=﹣3.【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【解答】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=2或x+2=﹣1,解得x=0或x=﹣3.故答案为:x3=0,x4=﹣3.【点评】此题主要考查了方程解的定义.注意由两个方程的特点进行简便计算.三.解答题(共4小题)9.(2021秋•盱眙县期末)已知关于x的方程x2﹣(k+2)x+2k=0.(1)求证:k取任何实数值,方程总有实数根;(2)若等腰△ABC的一边长为4,另两边长m,n恰好是这个方程的两个根,求△ABC的周长.【分析】(1)计算其判别式,得出判别式不为负数即可;(2)当边长为4的边为腰时,则可知方程有一个根为4,代入可求得k的值,则可求得方程的另一根,可求得周长;当边长为4的边为底时,可知方程有两个相等的实数根,可求得k的值,再解方程即可.【解答】(1)证明:∵Δ=(k+2)2﹣8k=k2+4k+4﹣8k=(k﹣2)2≥0,∴无论k取何值,方程总有实数根;(2)解:当边长为4的边为腰时,则可知方程有一个实数根为4,∴16﹣4(k+2)+2k=0,解得k=4,∴方程为x2﹣6x+8=0,解得x=4或x=2,∴m、n的值分别为2、4,∴△ABC的周长为10;当边长为4的边为底时,则m=n,即方程有两个相等的实数根,∴Δ=0,即(k﹣2)2=0,解得k=2,∴方程为x2﹣4x+4=0,解得m=n=2,此时2+2=4,不符合三角形的三边关系,舍去;综上可知△ABC的周长为10.【点评】本题主要考查根的判别式,掌握方程根的情况与判别式的关系是解题的关键.10.(玄武区期末)已知:关于x的方程x2﹣2(k﹣2)x+k2﹣2k﹣2=0.(1)若这个方程有实数根,求k的取值范围.(2)若此方程有一个根是1,求k的值.【分析】(1)根据方程有实数根结合根的判别式,即可得出Δ=﹣8k+24≥0,解之即可得出k的取值范围;(2)将x=1代入原方程,解之即可求出k值.【解答】解:(1)∵关于x的方程x2﹣2(k﹣2)x+k2﹣2k﹣2=0有实数根,∴Δ=[﹣2(k﹣2)]2﹣4(k2﹣2k﹣2)=﹣8k+24≥0,解得:k≤3.(2)将x=1代入原方程得1﹣2(k﹣2)+k2﹣2k﹣2=k2﹣4k+3=(k﹣1)(k﹣3)=0,解得:k1=1,k2=3.【点评】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)根据方程有实数根,找出Δ=﹣8k+24≥0;(2)将x=1代入原方程求出k值.11.(鼓楼区校级期末)学习了完全平方公式以后,小明有了下面的发现:因为x2﹣2x+2=(x2﹣2x+1)+1=(x﹣1)2+1,不论x取什么值,(x﹣1)2≥0,所以(x﹣1)2+1≥1.因此,代数式x2﹣2x+2的值不小于1.这种把一个多项式或一个多项式中的某一部分化为一个完全平方式或几个完全平方式和的方法,称为配方法.请用配方法解决下列问题:(1)填空:①a2+6a+15=(a+3)2+ 6.②若(a﹣1)2+b2+4b+4=0,则a=1,b=﹣2.(2)已知m2+4m+n2﹣6n+13=0,求m、n的值.(3)比较代数式3x3+2x2﹣4x﹣3与3x3+x2+2x﹣12的大小.【分析】利用配方法、偶次方的非负性计算即可.【解答】解:(1)①a2+6a+15=a2+6a+9+6=(a+3)2+6,故答案为:6;②(a﹣1)2+b2+4b+4=0,(a﹣1)2+(b+2)2=0,a﹣1=0,b=2=0,解得,a=1,b=﹣2,故答案为:1;﹣2;(2)m2+4m+n2﹣6n+13=0,m2+4m+4+n2﹣6n+9=0,(m+2)2+(n﹣3)2=0,m+2=0,n﹣3=0,解得,m=﹣2,n=3,(3)3x3+2x2﹣4x﹣3﹣(3x3+x2+2x﹣12)=3x3+2x2﹣4x﹣3﹣3x3﹣x2+2x+12=x2﹣6x+9=(x﹣3)2≥0,则3x3+2x2﹣4x﹣3≥3x3+x2+2x﹣12.【点评】本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键.12.(鼓楼区校级期末)先阅读后解题.已知m2+2m+n2﹣6n+10=0,求m和n的值.解:把等式的左边分解因式:(m2+2m+1)+(n2﹣6n+9)=0.即(m+1)2+(n﹣3)2=0.因为(m+1)2≥0,(n﹣3)2≥0.所以m+1=0,n﹣3=0即m=﹣1,n=﹣3.利用以上解法,解下列问题:(1)已知:x2﹣4x+y2+2y+5=0,求x和y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=12a+8b﹣52且△ABC为等腰三角形,求c.【分析】(1)先将等式左边化为两个完全平方式,根据非负数的和为零可得x和y的值;(2)同理可得a和b的值,再由三角形的三边关系可得c的值.【解答】解:(1)x2﹣4x+y2+2y+5=0,(x2﹣4x+4)+(y2+2y+1)=0,(x﹣2)2+(y+1)2=0,∵(x﹣2)2≥0,(y+1)2≥0,∴x﹣2=0,y+1=0,∴x=2,y=﹣1;(2)a2+b2=12a+8b﹣52,(a2﹣12a+36)+(b2﹣8b+16)=0,(a﹣6)2+(b﹣4)2=0,∵(a﹣6)2≥0,(b﹣4)2≥0,∴a﹣6=0,b﹣4=0,∴a=6,b=4,∵△ABC为等腰三角形,∴c=4或6.【点评】此题考查配方法的应用和非负数的性质,解题的关键是要学会拼凑出完全平方式.。
一元二次方程100道计算题汇编
(15) 5x -3x+2 =0 (16) 7x -4x-3 =0 (17) x -x+12 =0
x -6x+9 =0 2、
3、 4、
2、 3、 4、 5、
6、 4、
1、 2、 3、
4、 5、 6、
1、 2、 3、
1) ; (2) ;(3) ;
(4) .x2=4 (2)x2=16 (3)2x2=32
可是创业不是一朝一夕的事,在创业过程中会遇到很多令人难以想象的疑难杂症,对我们这些80年代出生的温室小花朵来说,更是难上加难。(4) x2=8 . (5)(x+1)2=0 (6)2(x-1)2= 7)(2x+1)2=0
精明的商家不失时机地打出“自己的饰品自己做”、“DIY(Do It Yourself)饰品、真我个性”的广告,推出“自制饰品”服务,吸引了不少喜欢标新立异、走在潮流前端的年轻女孩,成为上海的时尚消费市场。其市场现状特点具体表现为:
(8)(2x-1)2=1(9) (2x+1)2=3(10)(x+1)2-144=0
自制饰品一反传统的饰品消费模式,引导的是一种全新的饰品文化,所以非常容易被我们年轻的女生接受。
1.www。cer。net/artide/2004021313098897。shtml。
(2)文化优势
调研结论:综上分析,我们认为在学院内开发“DIY手工艺品”商店这一创业项目是完全可行的。
8、 9、 10、
小饰品店往往会给人零乱的感觉,采用开架陈列就会免掉这个麻烦。“漂亮女生”像是个小超市,同一款商品色彩丰富地挂了几十个任你挑,拿上东西再到收银台付款。这也符合女孩子精挑细选的天性,更保持了店堂长盛不衰的人气。
方程与不等式之一元二次方程真题汇编附答案
方程与不等式之一元二次方程真题汇编附答案一.选择题1.已知X】、X2是关于x的方程x2 - ax - 2=0的两根,下列结论一定正确的是( )A、Xi*x2 B. Xi+x2>0 C. Xi<x2>0 D. Xi<0, x2<0【答案】A【解析】分析:A、根据方程的系数结合根的判别式,可得出△>(),由此即可得出YX2,结论A正确;B、根据根与系数的关系可得出xi+x2=a,结合a的值不确定,可得出B结论不一定正确:C、根据根与系数的关系可得出X】・X2=-2,结论C错误;D、由xi*X2= - 2,可得出xi<0, X2>0,结论D错误.综上即可得出结论.详解:AVA=(・a) 2 - 4xlx ( -2) =a2+8>0,/.Xi#x2,结论A正确:B、5、X2是关于x的方程x2 - ax - 2=0的两根,:.Xi+X2=a,Ta的值不确定,・°・B结论不一定正确;C、Vxi. X2是关于x的方程x2 - ax - 2=0的两根,/.X1*X2= - 2,结论C 错误;D、*.*Xi*X2= - 2,Axi<0, X2>0,结论D 错误.故选A.点睛:本题考查了根的判别式以及根与系数的关系,牢记“当厶〉。
时,方程有两个不相等的实数根"是解题的关键.2.若关于x的一元二次方程%2 - 2x+m = 0没有实数根,则实数m的取值是()A.m<lB. m> - 1C. m>lD. m< - 1【答案】C【解析】试题解析:关于x的一元二次方程?-2x + m = 0没有实数根,△=-4<7C = (-2)~ -4xlx/n = 4-4/?? < 0,解得:m>l.故选C.3.上海世博会的某纪念品原价168元,连续两次降价a%后售价为128元,下面所列方程中正确的是()A.168(l + a%)2=128B. 168(l-a%)2 = 128C. 168(l-2a%) = 128D. 168(l-a2%) = 128【答案】B【解析】【分析】【详解】解:第一次降价a%后的售价是168 (1-a%)元,第二次降价a%后的售价是168 (l-a%)(l-a%)=168(l-a%)2;故选B.4.某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%,设平均每次增长的百分数为x,那么x应满足的方程是()40%+ 10%A.x= -------------------2B.100(1+40%)(1+10%) = (1+x)2C.(1+40%)(1+10%)=(1+X)2D・(100+40%)(100+10%) = 100(l+x)2【答案】C【解析】【分析】设平均每次增长的百分数为X,根据“某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%〃,得到商品现在的价格,根据“某商品原价为100元,经过两次涨价,平均每次增长的百分数为*',得到商品现在关于x的价格,整理后即可得到答案.【详解】设平均每次增长的百分数为X.•・•某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%, A商品现在的价格为:100 (1+40%) (1+10%).•・•某商品原价为100元,经过两次涨价,平均每次增长的百分数为X,・•.商品现在的价格为:100 (1+x) 2, 100 (1+40%) (1+10%) =100 (1+x) 2,整理得:(1+40%)(1+10%) = (1+x) 2.故选C.【点睛】本题考查了由实际问题抽象出一元二次方程,正确找出等量关系,列出一元二次方程是解题的关键.5.方程X2-5X = 0的解是()A.x = —5B. x = 5C.兀=0,兀2=—5D. ^=0,^ = 5【答案】D【解析】【分析】提取公因式X 进行计算.【详解】提取公因式x 得:x (x-5)=0,所以x, = 0,x 2 = 5 .故本题答案选D.【点睛】本题考查了一元二次方程的计算,掌握提取公因式这一知识点是解题的关键.6. 一列自然数0, 1, 2, 3,100.依次将该列数中的每一个数平方后除以100,得到 一列新数.则下列结论正确的是( )A. 原数与对应新数的差不可能等于零B. 原数与对应新数的差,随着原数的增人而增大C. 当原数与对应新数的差等于21时,原数等于30D. 当原数取50时,原数与对应新数的差最人【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解得“=30,加2 =70,则C 错误.故答案选:D.【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字 规律转化为数学符号・7•下列方程中,是一元二次方程的为()A. x 2+3x=0B. 2x+y=3C. — — X = 0D. x (x 2+2) =0解:设原数为m,则新数为 —m 2 ,100 设新数与原数的差为y则 y = in nr = ----------- w + m , 100 …易得,当m=0时, •••-- <0 100bm =-—— 100 y=0,则A 错误当y=21时,2x十 5 100; 时,y 有最大值.则B 错误,D 正确. _Lm 2 + f n =21100JC【答案】A【解析】【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)含有一个未知数;(2)未知数的最高次数是2;(3)二次项系数不为0;(4〉是整式方程.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A.符合一元二次方程定义,正确;B.含有两个未知数,错误;C.不是整式方程,错误;D.未知数的最高次数是3,错误.故选:A.【点睛】考查一元二次方程的定义,掌握一元二次方程的定义是解题的关键.&关于x的一元二次方程ax2+2x+l=0有两个不相等的实数根,那么a的取值范围是()A. a>lB. a=lC. a<lD. a<l 且a=0【答案】D【解析】【分析】由于原方程是一元二次方程,首先应该确定的是曲0;然后再根据原方程根的情况,利用根的判别式建立关于a的不等式,求出a的取值范围.【详解】解:由于原方程是二次方程,所以aHO:•・•原方程有两个不相等的实数根,A=b2-4ac=4-4a>0,解得a<l;综上,可得a=0,且a<l;故选D.【点睛】本题考查了一元二次方程根的情况与判别式△的关系:(l)A >0o方程有两个不相等的实数根;(2仏=00方程有两个相等的实数根;(3仏<0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程练习题1. 用直接开平方法解下列方程:(1)2225x =; (2)21440y -=.2. 解下列方程:(1)2(1)9x -=; (2)2(21)3x +=;(3)2(61)250x --=. (4)281(2)16x -=.3. 用直接开平方法解下列方程:(1)25(21)180y -=; (2)21(31)644x +=;(3)26(2)1x +=; (4)2()(00)ax c b b a -=≠,≥4. 填空(1)28x x ++( )=(x + )2. (2)223x x -+( )=(x - )2. (3)2b y y a -+( )=(y - )2. 5. 用适当的数(式)填空:23x x -+(x =- 2); 2x px -+=(x - 2)23223(x x x +-=+2)+ .6. 用配方法解下列方程 1).210x x +-= 2).23610x x +-= 3).21(1)2(1)02x x ---+=7. 方程22103x x -+=左边配成一个完全平方式,所得的方程是 .8. 用配方法解方程.23610x x --= 22540x x --=9. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = .10. 关于x 的方程22220x ax b a +-+=的解为11. 用配方法解方程(1)210x x --=; (2)23920x x -+=.12. 用适当的方法解方程(1)23(1)12x +=; (2)2410y y ++=;(3)2884x x -=; (4)2310y y ++=.13. 已知关于x 的一元二次方程22(21)10m x m x +-+=有两个不相等的实数根,则m 的取值范围是 .一元二次方程阶段测试一、填空题(每小题5分,计35分)1、()()023112=++++-m x m x m ,当m=________时,方程为关于x 的一元一次方程;当m__________时,方程为关于x 的一元二次方程2、方程02=-x x 的一次项系数是___________,常数项是__________3、方程062=--x x 的解是_______________________________4、关于x 的方程0132=+-x x _____实数根.(注:填写“有”或“没有”)5、方程12=-px x 的根的判别式是______________________6、若2365422--++x x x 与的值互为相反数,则x=___________7、若一个三角形的三边长均满足方程0862=+-x x ,则此三角形的周长为_____________二、选择题(每小题5分,计25分)8、方程()()104222=-+-x x x 化为一般形式为( ) A 、01422=--x x B 、01422=++x x C 、01422=-+x x D 、01422=+-x x9、关于x 的方程0232=+-x ax 是一元二次方程,则( )A 、0>aB 、0≠aC 、1=aD 、0≥a10、用配方法解下列方程,其中应在左右两边同时加上4的是( )A 、522=-x xB 、5422=-x xC 、542=+x xD 、522=+x x11、方程()x x x =-1的根是( ) A 、2=x B 、2-=x C 、0221=-=x x , D 、0221==x x , 12、若()0223233-+=+-x x x x ,则x 的值为( )A 、1或2B 、2C 、1D 、3-三、解答题13、用适当的方法解下列方程(每小题7分,计28分)(1)0342=+-x x ; (2)()()2465-=-+x x ;(3)()()03232=-+-x x x (4)06262=--x x14、(12分)已知一元二次方程0132=-+-m x x .(1)若方程有两个不相等的实数根,求m 的取值范围.(2)若方程有两个相等的实数根,求此时方程的根一元二次方程综合测试(一)一、填空题(每小题5分,计35分)1、()x x 6542=+-化成一般形式是___________________________________,其中一次项系数是___________2、()22________________3+=++x x x 3、若()()______________054==-+x x x ,则4、若代数式242-+x x 的值为3,则x 的值为_______________________________5、已知一元二次方程022=+-mx mx 有两个相等的实数根,则m 的值为____________________6、已知三角形的两边长分别为1和2,第三边的数值是方程03522=+-x x 的根,则这个三角形的周长为_______________________7、我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价,由每盒60元调至52元,若设每次平均降价的百分率为x ,则由题意可列方程为_______________________________________二、选择题(每小题5分,计20分)8、下列方程是一元二次方程的是( )A 、0523=-x xB 、()06122=--xC 、022312=-+x x D 、02122=-+xx 9、方程0562=--x x 左边配成一个完全平方式后,所得方程为( )A 、()4162=-xB 、()432=-xC 、()1432=-xD 、()3662=-x 10、要使方程()()0132=+++-c x b x a 是关于x 的一元二次方程,则( ) A 、0≠a B 、3≠a C 、13-≠≠b a ,且 D 、013≠-≠≠c b a ,且,11、某种商品因换季准备打折出售,如果按原价的七五折出售,将赔25元,二按原价的九折出售,将赚20元,则这种商品的原价是( )A 、500元B 、400元C 、300元D 、200元三、解答题12、用适当的方法解下列方程(每小题6分,计24分)(1)()9322=-x ; (2)162=-x x ;(3)051632=++x x ; (4)()()2231623-=+x x13、(10分)无论m 为何值时,方程04222=---m mx x 总有两个不相等的实数根吗? 给出答案并说明理由15、(10分)已知方程2(m+1)x 2+4mx+3m=2,根据下列条件之一求m 的值.(1)方程有两个相等的实数根;(2)方程有两个相反的实数根;(3)方程的一个根为0.一元二次方程综合测试(二)一、填空题(每小题5分,计40分)1、已知方程2(m+1)x 2+4mx+3m -2=0是关于x 的一元二次方程,那么m 的取值范围是 。
2、一元二次方程(1-3x)(x+3)=2x 2+1的一般形式是 它的二次项系数是 ;一次项系数是 ;常数项是 。
3、已知关于x 的一元二次方程(2m -1)x 2+3mx+5=0有一根是x=-1,则m= 。
4、 关于x 的方程2310x x -+= 实数根。
(注:填写“有”或“没有”)5、若代数式x 2-2x 与代数式 -9+4x 的值相等,则x 的值为 。
6、在实数范围内定义一种运算 “*” , 其规则为 22a b a b *=-, 根据这个规则, 方程(x+3)*2=0的解为 。
7、在参加足球世界杯预选赛的球队中,每两支队都要进行两次比赛,共要比赛30场,则参赛队有 支。
8、如右图,是一个正方体的展开图,标注了字母A 的面是正方体的正面,如果正方体的左面和右面所标注代数式的值相等,则x 的值是 。
二、选择题(每小题4分,计20分)9、下列方程,是一元二次方程的是( )①3x 2+x=20,②2x 2-3xy+4=0,③x 2-1x =4,④x 2=0,⑤x 2-3x +3=0 A .①② B .①②④⑤ C .①③④ D .①④⑤102(7)x -,则x 的取值范围是( )A .x ≥7B .x ≤7C .x>7D .x<711、方程(x-3)2=(x-3)的根为( )A .3B .4C .4或3D .-4或312、若c (c ≠0)为关于x 的一元二次方程x 2+bx+c=0的根,则c+b 的值为( )A .1B .-1C .2D .-213、从正方形铁片上截去2cm 宽的一个长方形,剩余矩形的面积为80cm 2,•则原来正方形的面积为( ) A .100cm 2 B .121cm 2 C .144cm 2 D .169cm 2三、解答题14、用适当的方法解下列方程(每小题6分,计24分)(1)(3)(1)5x x +-=; (2)231060x x -+=(3)2(3)2(3)x x x -=-; (4)2(3)2(1)7x x x --+=-15、(10分)已知方程2(m+1)x 2+4mx+3m=2,根据下列条件之一求m 的值.(1)方程有两个相等的实数根;(2)方程有两个相反的实数根;(3)方程的一个根为0.16、(11分)某农户在山上种了脐橙果树44株,现进入第三年收获。
收获时,先随意采摘5株果树上的脐橙,称得每株果树上的脐橙质量如下(单位:千克):35,35,34,39,37(1)根据样本平均数估计,这年脐橙的总产量约是多少?(2)若市场上的脐橙售价为每千克5元,则这年该农户卖脐橙的收入将达多少元?(3)已知该农户第一年卖脐橙的收入为5500元,根据以上估算,试求第二年、第三年卖脐橙收入的年平均增长率。
(四)一元一次方程的实际应用(1)与数字有关的问题例11:一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的乘积为736,求原来的两位数解:一元二次方程实际应用练习题11:1.一个两位数,个位数字比十位数字大3,个位数字的平方恰好等于这个两位数,则这个两位数是多少?2、某两位数的十位数字是082=-x x 的解,则其十位数字是多少;某两位数的个位数字是方程082=-x x 的解,则其个位数是多少?3、一个两位数,个位上数字比十位数字小4,且个位数字与十位数字的平方和比这两位数小4,设个位数字为x,求这个两位数?4、一个两位数,个位上的数字是十位数字的平方还多1,若把个位上的数字与十位上的数字对调,所得的两位数比原数大27,求原两位数?5、一个三位数,百位上数字为2,十位上数字比个位上数字小3,这个三位数个位、十位、百位上的数字之积的6倍比这个三位数小20,求这个三位数?例12:三个连续奇数,它们的平方和为251,求这三个数?解:一元二次方程实际应用练习题12:1、两个数的和为16,积为48,则这两个正整数各是多少?2、若两个连续正整数的平方和为313,则这两个正整数的和是多少?3、三个连续正整数中,前两个数的平方和等于第三个数的平方,则这三个数从小到大依次是多少?4、三个连续偶数,使第三个数的平方等于前两个数的平方和,求这三个数?5、有四个连续整数,已知它们的和等于其中最大的与最小的两个整数的积,求这四个数?(2)与几何图形面积有关的问题例13:一个直角三角形三边的长是三个连续整数,求这三条边的长和它的面积解:一元二次方程实际应用练习题13:1.直角三角形两直角边的比是8:15,而斜边的长等于6.8cm ,那么这个直角三角形的面积等于多少?2、直角三角形的面积为6,两直角边的和为7,则斜边长为多少?3、用一条长12厘米的铁丝折成一个斜边长是5厘米的直角三角形,则两直角边的长是多少?4、一个三角形的两边长为2和4,第三边长是方程0121022=+-x x 的解,则三角形的周长为多少6、 若三角形的三边长均满足方程0862=+-x x ,则此三角形的周长为多少?例14:一块长80cm ,宽60cm 的薄钢片,在四个角截去四个相同的小正方形,然后将四边折起,做成如图所示的底面积是15002cm 且无盖的长方体盒子. 求截去的小正方形的边长.解:一元二次方程实际应用练习题14:1.一块矩形的地,长是24米,宽是12米,要在它的中央划一块矩形的花坛,四周铺上草地,其宽都相同,花坛占大块矩形面积的95,求草地的宽?2、从一块正方形的木板上锯下2m 宽的长方形木条,剩下部分的面积是482m ,则这块木板的面积是多少?3、有一间长18m ,宽7m 的会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的31,四周未铺地毯处的宽度相同,则求所留宽度是多少?4、一根铁丝长48cm ,围成一个面积为140cm 2的矩形,求这个矩形的长和宽分别是多少?5、建一个面积为480平方米的长方形存车处,存车处的一面靠墙,另三面用铁栅栏围起来,已知铁栅栏的长是92米,求存车处的长和宽各是多少?(3)有关增长率的问题例15:将进货单价为30元的商品按40元售出时,每天能卖出500个. 已知这种商品每涨价1元,其每天销售量就减少10个,为了每天能赚取8000元的利润,且尽量减少库存,售价应定为多少?解:答:一元二次方程实际应用练习题15:1、 某商店的童装按标价的九折出售,仍可获利20%,若进价为每件21元,求每件标价为多少元?2、 一个小组有若干个人,新年互送贺卡一张,已知全组共送贺卡72张,求这个小组有多少人?3、生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共赠送了182件,求全组有多少名同学?4、有一种植物的主干长出了若干数目的支干,每个支干又长出同样数目的小分支,主干、分支和小分支的总数是111,每个支干长出多少小分支?例16:某工厂1月份产值为50万元,采用先进技术后,第一季度产值共为182万元,2月份和3月份的平均增长率为多少?解:一元二次方程实际应用练习题16:1、某农场的产量两年从50万公斤增加到60.5万公斤,平均每年增产百分之几??2、某化肥厂今年一月份的化肥产量为4万吨,第一季度共生产化肥13.2万吨,问2、3月份平均每月的增长率是多少?3、某超市一月份的营业额为200万元,一月、二月、三月的营业额共1000万元,求平均每月增长率为多少?4、某种粮大户今年产粮20万千克,计划后年产粮达到28.8万千克,若每年粮食增产的百分率相同,求平均每年增产的百分数?5、某钢厂今年一月份产量为4万吨,第一季度共生产13.24万吨,问二、三月份平均每月的增长率是多少?11。