第四章 刚体的转动讲解
合集下载
第4章刚体的定轴转动剖析
I 2r3dr 1 MR2 2
质量dm=dS
ω
R r dr M
常用的几个刚体的转动惯量
质点: I Mr2
rM
均匀圆环: Ic mR 2
CR M
均匀圆盘:
J c垂 直
1 2
mR 2
CR M
均匀杆:
Ic
1 12
ML2
I
A
1 3
ML2
C A
M
ll 22
关于转动惯量的性质
可加
I Ii
i
平行轴定理
4.1刚体的运动
刚体:任何情况下形状和体积都不改变的物体 (理想化模型)。 说明:
*刚体是特殊的质点系,其上各质点间的相对 位置保持不变。
*有关质点系的规律均可用于刚体,且表达 形式较一般的质点系简单。
4.1刚体的运动
刚体的平动
在运动中,连接刚体内任意两点的直线在各个 时刻的位置都彼此平行
平动时,刚体上所有点运动都相同。
d( dt
ri mi vi )
d dt
(ri
mi vi
)
ri
ddt(mi
vi
)
ri Fi//
Miz M z
z
vi
O ri
Fi //
i
mi
刚体
刚体角动量定理
Mz
dLz dt
Lz=Iz
刚体定轴转动定理
Mz
dLz dt
d (I z)
dt
Iz
对于确定的刚体角加速度与合力矩成正比
[例4-5]在图示的装置中求 :T1, T2, a, β.
列方程
m1g T1 =m1a T2 m 2g = m2 a
质量dm=dS
ω
R r dr M
常用的几个刚体的转动惯量
质点: I Mr2
rM
均匀圆环: Ic mR 2
CR M
均匀圆盘:
J c垂 直
1 2
mR 2
CR M
均匀杆:
Ic
1 12
ML2
I
A
1 3
ML2
C A
M
ll 22
关于转动惯量的性质
可加
I Ii
i
平行轴定理
4.1刚体的运动
刚体:任何情况下形状和体积都不改变的物体 (理想化模型)。 说明:
*刚体是特殊的质点系,其上各质点间的相对 位置保持不变。
*有关质点系的规律均可用于刚体,且表达 形式较一般的质点系简单。
4.1刚体的运动
刚体的平动
在运动中,连接刚体内任意两点的直线在各个 时刻的位置都彼此平行
平动时,刚体上所有点运动都相同。
d( dt
ri mi vi )
d dt
(ri
mi vi
)
ri
ddt(mi
vi
)
ri Fi//
Miz M z
z
vi
O ri
Fi //
i
mi
刚体
刚体角动量定理
Mz
dLz dt
Lz=Iz
刚体定轴转动定理
Mz
dLz dt
d (I z)
dt
Iz
对于确定的刚体角加速度与合力矩成正比
[例4-5]在图示的装置中求 :T1, T2, a, β.
列方程
m1g T1 =m1a T2 m 2g = m2 a
大学物理第四章刚体转动
进动和章动在自然界中实例
陀螺仪
地球极移
陀螺仪的工作原理即为进动现象。当 陀螺仪受到外力矩作用时,其自转轴 将绕某固定点作进动,通过测量进动 的角速度可以得知外力矩的大小和方 向。
地球极移是指地球自转轴在地球表面 上的移动现象,其产生原因与章动现 象类似。地球极移的周期约为18.6年 ,且极移的幅度会受到地球内部和外 部因素的影响。
天体运动
许多天体的运动都涉及到进动和章动 现象。例如,月球绕地球运动时,其 自转轴会发生进动,导致月球表面的 某些特征(如月海)在地球上观察时 会发生周期性的变化。同时,行星绕 太阳运动时也会发生章动现象,导致 行星的自转轴在空间中的指向发生变 化。
感谢观看
THANKS
02
刚体定轴转动动力学
转动惯量定义及计算
转动惯量定义
刚体绕定轴转动时,其惯性大小的量度称为转动惯量,用字母$J$表示。它是一个与刚体质量分布和转轴位置有 关的物理量。
转动惯量计算
对于形状规则的均质刚体,可以直接套用公式计算其转动惯量;对于形状不规则的刚体,则需要采用间接方法, 如分割法、填补法等,将其转化为规则形状进行计算。
刚体性质
刚体是一个理想模型,它在力的作用 下,只会发生平动和转动,不会发生 形变。
转动运动描述方式
01
02
03
定轴转动
平面平行运动
ห้องสมุดไป่ตู้
定点转动
物体绕一固定直线(轴)作转动。
物体上各点都绕同一固定直线作 不同半径的圆周运动,同时物体 又沿该固定直线作平动。
物体绕一固定点作转动。此时物 体上各点的运动轨迹都是绕该固 定点的圆周。
非惯性系下刚体转动描述方法
欧拉角描述法
第四部分刚体的转动教学-
y
y
dA
x
dy
hy
x
O
Q
O
解 设水深h,坝长L,在坝面上取面积元 dA Ldy
作用在此面积元上的力
dFpdApLdy
h100m
L1000m
y
令大气压为 p 0 ,则
pp0g(hy) h y
d F [p 0 g (h y)]L d y O
dA dy
x
F 0 h [p 0g (h y )]L d yp 0 L h 1 2g L h 2
解 (1)0 5πrads1, t = 30 s 时, 0.
设 t = 0 s 时, 0 0 .飞轮做匀减速运动
0 0 5 π ra d s 1 π ra d s 2
t 3 0
6
飞轮 30 s 内转过的角度
22 0 22 ((5 π π)26)75πrad
mB B
FT1
FT2
mAmBg mA mB
(2) B由静止出发作匀加速直线运动,下落的速率
v 2ay
2mBgy
mAmBmC/2
(3) 考虑滑轮与轴承间的摩
擦力矩 M f ,转动定律
RF T2RF T1M f J
F T1
结合(1)中其它方程
Mf
F T2
FT 1mAa
m BgF T2 m Ba
NmR 784N
0
解:飞轮匀减速制动时有角加速度
0
t
01000r/m in2000/60104.7rad/s
0 t5s 0020.9rad/s2
t
fr
N
外力矩是摩擦阻力矩,
角加速度为负值。
第4章 刚体的转动01
o
d
C
Jc—对通过质心C的轴的转动惯量 d—两平行轴间的距离
m
推论:平行轴中对质心的转动惯量最小。
1.垂直轴定理(perpendicular axis theorem)
若平面型物体(如薄板、圆盘等)绕与平 面垂直的轴的转动惯量为Jz,轴与平面的交点为 O,物体绕平面内通过0点相互垂直的两轴的转 动惯量分别为Jx和Jy,则有: Z
特点:1.刚体平动时各质点的轨迹相同。
2.任一时刻刚体上各质点的速度和加速 度都相同。故可用质心的运动代表;
2.定轴转动:刚体运动时各质元绕同一条固定的直 线作圆周运动。这条直线叫固定转轴。
特点:1.描述各质元的角量(角位移、角速度、 角加速度)都相同。 2.各质元运动的线速度、加速度一般不同。 3.刚体一般运动:可看成是随质心的平动和绕 通过质心轴转动的合成。
一、力矩 1.刚体对定轴的力矩
z
F
P r
MZ r F
大小:
M rF sin
方向:右手定则
刚体对定轴的合力矩:
M Z r1 F1 r2 F2
二、转动惯量 1.定义 DEF: 刚体对定轴的转动惯量等于每个 质元的质量与该质元到定轴距离平方的 乘积之总和。 刚体对定轴的转动惯量为
dm dmg
X
在角时,整个棒的重力矩为:
M= xgdm g xdm
据质心定义: xC
xdm
m
xc
O
M=g xdm mgx C
= xdm mx C
C mg
dm
X
dmg
重力对整个棒的合力矩与全部重力 集中作用在质心所产生的力矩一样。
大学物理第四章 刚体的转动(3课时)讲解
c
2
t2
2 600π 3002
π 75
rad s3
1 ct 2 π t 2
2 150
4-1 刚体的定轴转动
由 dq π t 2
dt 150
得
q
dq
π
t t 2dt
0
150 0
q π t 3 rad
450
在 300 s 内转子转过的转数
N q π (300)3 3104
第四章 刚体的转动
物理学
第五版
4-0 教学基本要求
四 理解刚体定轴转动的转动动能概 念,能在有刚体绕定轴转动的问题中正确 地应用机械能守恒定律.
能运用以上规律分析和解决包括质点 和刚体的简单系统的力学问题.
第四章 刚体的转动
物理学
第五版
第一节
第四章 刚体的转动
4-1 刚体的定轴转动
刚体:在外力作用下,形状和大小都不 发生变化的物体.(任意两质点间距离保持 不变的特殊质点组.)
18 000 r·min-1 .转子的角加速度与时间成正
比.问在这段时间内,转子转过多少转?
解 令 ct,即 d ct ,积分
dt
t
d c tdt
得 1 ct 2
0
0
2
4-1 刚体的定轴转动
1 ct 2
2
当 t =300 s 时
18 000 r min 1 600 π rad s1
位置及方向 不变。
பைடு நூலகம்
该平面且通 过质心
刚体上 各质点都 以某一定 点为球心 的各个球 面上运动
复杂 的运动 与平动 的混合。
第四章 刚体转动解析
4 – 1 刚体的定轴转动
第四章 刚体的转动
4-1 刚体的定轴转动
4 §– 14.刚1体刚的体定定轴轴转转动动
第四章 刚体的转动
刚体:a. 在外力作用下,形状和大小都不发生变化的 物体(考虑大小、形状,忽略形变)
b. 任意两质点间距离保持不变的质点组
说明:⑴ 刚体是理想模型 ⑵ 刚体模型是为简化问题引进的.
v,
a
不同;
3) 运动描述仅需一个坐标 .
4 ➢–
1 刚刚体体的定定轴轴转转动动的角量描述:
角坐标 (t)
角位移 (t t)
(t)
第四章
刚体的转动
角速度 lim d
t t0 dt
角加速度 d
dt
方向:沿转轴,右手螺旋法则,习惯上取为正方向
方向:沿转轴, 与 同向为正,反之为负
质量为体分布时, dm dV
、、分别为质量的线密度、面密度和体密度。
4 – 1 刚体的定轴转动
第四章 刚体的转动
例1 长 l、质量m 的均匀细棒绕垂直轴的转动惯量。
解: 取一小段 dx ,则 dm dx m dx J r 2dm l
轴位于端点A:
JA
l x2 m dx 1 ml2
0l
J mi ri2 m1r12 m2r22
i
(2)质量连续分布刚体的转动惯量
r
dm
O
J miri2 r2dm i
r 质量元:dm 转动半径:
4
–➢1
刚体的定轴转动
连续分布刚体转动惯量的计算:J
第四r章2dm刚体的转动
dl
ds
线分布
面分布
体分布
质量为线分布时,dm dl
第四章 刚体的转动
4-1 刚体的定轴转动
4 §– 14.刚1体刚的体定定轴轴转转动动
第四章 刚体的转动
刚体:a. 在外力作用下,形状和大小都不发生变化的 物体(考虑大小、形状,忽略形变)
b. 任意两质点间距离保持不变的质点组
说明:⑴ 刚体是理想模型 ⑵ 刚体模型是为简化问题引进的.
v,
a
不同;
3) 运动描述仅需一个坐标 .
4 ➢–
1 刚刚体体的定定轴轴转转动动的角量描述:
角坐标 (t)
角位移 (t t)
(t)
第四章
刚体的转动
角速度 lim d
t t0 dt
角加速度 d
dt
方向:沿转轴,右手螺旋法则,习惯上取为正方向
方向:沿转轴, 与 同向为正,反之为负
质量为体分布时, dm dV
、、分别为质量的线密度、面密度和体密度。
4 – 1 刚体的定轴转动
第四章 刚体的转动
例1 长 l、质量m 的均匀细棒绕垂直轴的转动惯量。
解: 取一小段 dx ,则 dm dx m dx J r 2dm l
轴位于端点A:
JA
l x2 m dx 1 ml2
0l
J mi ri2 m1r12 m2r22
i
(2)质量连续分布刚体的转动惯量
r
dm
O
J miri2 r2dm i
r 质量元:dm 转动半径:
4
–➢1
刚体的定轴转动
连续分布刚体转动惯量的计算:J
第四r章2dm刚体的转动
dl
ds
线分布
面分布
体分布
质量为线分布时,dm dl
第4章刚体转动
T2
时受到了摩擦阻力矩 的作用。M设阻 绳
m
不可伸长且与滑轮间无相对滑动,求物
M
体的加速度及绳中的张力。
a2
Pm
PM
第四章 刚体转动
4 – 2 力矩 转动定律 转动惯量
解 受力分析如图所示.对于上下作平动
的两物体,可以视为质点,由牛顿 第二运动定律得
m:-T1 mg ma1 M:Mg T2 Ma2
特伍德机.
第四章 刚体转动
4-3 角动量 角动量守恒定律 力的时间累积效应 冲量、动量、动量定理. 力矩的时间累积效应 冲量矩、角动量、角动量定理.
质点运动状态的描述 p mv Ek mv2 2
刚体定轴转动运动状态的描述 L J Ek J2 2
0, p 0
0, p 0
pi
pj
mR k
60 0.2520.9 392 N
0.8
第四章 刚体转动
4 – 2 力矩 转动定律 转动惯量
例 一绳跨过定滑轮,两端分别系有质量分
别为m和M的物体,且 M 。m滑轮可看
作是质量均匀分布的圆盘,其质量为 , 半径m为R ,转轴垂直于盘面通过盘心, a1
R
M阻mo
如图所示。由于轴上有摩擦,滑轮转动 T1
0
5
第四章 刚体转动
4 – 2 力矩 转动定律 转动惯量
作用于飞轮的对固定转轴的外力矩是摩擦力矩
M fR k NR
F
根据刚体定轴转动定律得 f
M J k NR
因为飞轮的质量均匀分布在轮的外 m 周上,所以飞轮对转轴的转动惯量 可视为圆环对轴的转动惯量
N
0
J mR2
N
J k R
mR2 k R
第四章 刚体力学的定轴转动
轴转动中它们的方向沿着转轴 , 可以用带正负号 的标量来表示。
3
三、刚体转动的角速度和角加速度 角速度 刚体在dt 时间内 的角位移dq 与dt 之比。 z
dq
dq w dt
(rad s )
1
r
θ
P
角速度的方向由右手定则确定。 角加速度 刚体在Dt时间内 角速度的增量Dw 与Dt 之比的极 限
2
式中JC 为刚体对通过质心的轴的转动惯量, m是刚 体的质量,d是两平行轴之间的距离 。 2. 垂直轴定理 若z 轴垂直于厚度为无限小的刚体薄板板面, xy 平 面与板面重合, 则此刚体薄板对三个坐标轴的转动惯 量有如下关系
Jz J x J y
15
例2:在上一例题中, 对于均匀细棒, 我们已求得 对通过棒心并与棒垂直的轴的转动惯量为
1 2 J ml 12
求对通过棒端并与棒垂直的轴的J。 1 解:两平行轴的距离 d l , 代入平行轴定理, 2 得
由定义得:
dw ct dt
dw ct dt
6
对上式两边积分
由条件知
w
0
dw c tdt
0
t
1 2 w ct 2
2π 1 1 t 300 s , w 18000 rad s 600 π rad s 60 2w 2 600 π π 3 3 c rad s rad s 所以 t2 300 2 75
由角速度定义 得到:
dq π w rad s 3 t 2 d t 75
π q rad s 3 t 3 150
7
q
0
π t 2 dq t dt 150 0
π 3 转子转数: N 300 3 104 2 π 2 π 450
3
三、刚体转动的角速度和角加速度 角速度 刚体在dt 时间内 的角位移dq 与dt 之比。 z
dq
dq w dt
(rad s )
1
r
θ
P
角速度的方向由右手定则确定。 角加速度 刚体在Dt时间内 角速度的增量Dw 与Dt 之比的极 限
2
式中JC 为刚体对通过质心的轴的转动惯量, m是刚 体的质量,d是两平行轴之间的距离 。 2. 垂直轴定理 若z 轴垂直于厚度为无限小的刚体薄板板面, xy 平 面与板面重合, 则此刚体薄板对三个坐标轴的转动惯 量有如下关系
Jz J x J y
15
例2:在上一例题中, 对于均匀细棒, 我们已求得 对通过棒心并与棒垂直的轴的转动惯量为
1 2 J ml 12
求对通过棒端并与棒垂直的轴的J。 1 解:两平行轴的距离 d l , 代入平行轴定理, 2 得
由定义得:
dw ct dt
dw ct dt
6
对上式两边积分
由条件知
w
0
dw c tdt
0
t
1 2 w ct 2
2π 1 1 t 300 s , w 18000 rad s 600 π rad s 60 2w 2 600 π π 3 3 c rad s rad s 所以 t2 300 2 75
由角速度定义 得到:
dq π w rad s 3 t 2 d t 75
π q rad s 3 t 3 150
7
q
0
π t 2 dq t dt 150 0
π 3 转子转数: N 300 3 104 2 π 2 π 450
大学物理一复习第四章刚体的转动
[A]
期中考题
8、在光滑的水平面上,一根长L=2m的绳子,一端固定于O点,另一端系一质量为m=0.5kg的物体,开始时,物体位于位置A,OA间距离d=0.5m,绳子处于松弛状态,现在使物体以初速度VA =4m /s垂直于OA向右滑动,设在以后的运动中物体到达位置B,此时物体速度的方向与绳垂直。
O
A
受力分析:
物体从静止下落时满足
m:
h
M:
稳定平衡状态,当其受到微小扰动时,细杆将在重力作用下由静止开始绕铰链O 转动.试计算细杆转动到与竖直线成 角时的角加速度和角速度.
书例3 一长为 l 、质量为 m 匀质细杆竖直放置,其下端与一固定铰链O相接,并可绕其转动.由于此竖直放置的细杆处于非
m,l
二、转动定律
三、转动定律应用举例
1. 矢量式(定轴转动中力矩只有两个方向);
2. 具有瞬时性且M、J、 是对同一轴而言的。
解题方法及应用举例
1.确定研究对象。
2.受力分析(只考虑对转动有影响的力矩)。
3.列方程求解(平动物体列牛顿定律方程,转动刚体列转动定律方程,并利用角量与线量关系)。
熟练掌握
角动量定理
03
角动量守恒定律
04
条件:M=0
05
熟练掌握
06
熟练掌握
07
二、基本定理、定律
1 如图:一定滑轮两端分别悬挂质量都是m的物块A和B,图中R和r,已知滑轮的转动惯量为J,求A、B两物体的加速度及滑轮的角加速度.
解
r
R
β
FT1
FT2
mg
mg
A
B
解得
例2:光滑斜面倾角为 ,顶端固定一半径为 R ,质量为 M 的定滑轮,质量为 m 的物体用一轻绳缠在定滑轮上沿斜面下滑,求:下滑的加速度 a 。 解:物体系中先以物体 m 研究对象,受力分析, 在斜面 x 方向上
刚体的转动一PPT课件
(3) 刚体内质点间的内力对转轴的合力矩为零, 即合内力矩为零。
(3) 刚体内质点间的内力对转轴的合力矩为零, 即合内力矩为零。
内力总是成对出现,内力矩也成对出现,
对i
,
j
两 个质点,内力矩之和为
ri fij rj f ji ri rj fij
rr
d
dt
o
r
d
dt
刚体匀变速转动与质点匀变速直线运动公式对比
质点匀变速直线运动 刚体绕定轴作匀变速转动
v v0 at
0 t
x
x0
v0t
1 2
at 2
0
0t
1 2
t
2
v2
v
2 0
2a(x
x0 )
2
2 0
2 (
0)
讨论
1. M J 与 F=ma 地位相当,m反映质点的平动惯
性,J反映刚体的转动惯性。
2.合外力矩、转动惯量和角加速度都是相对于同一转轴而言的。
3. 力矩和角加速度都是矢量,方向沿转轴,对定轴转动只有两 个方向,所 以都可用正负号表示方向。
三 、转动惯量的计算
n
定义 J miri2 i 1
(1) J 与刚体的总质量有关
例如两根等长的细木棒和细铁棒绕端点轴转动惯量
取轴处为原点建立一维坐标系如图所示,dm =λdx m
z
L
J L x2dx L x2 m dx 1 mL2
0
0L 3
L m dx,dm
第四章 刚体的转动
四、角量与线量的关系
v r 2 an r
11
例1 在高速旋转的微型电动机里,有一圆柱形转子可 绕垂直其横截面并通过中心的转轴旋转。开始起动时, 角速度为零。起动后其转速随时间变化关系为:
m (1 e
t /
1 式中 : 540 r s , 2.0 s ) m
平动与转动的叠加
5
随质心的平动
+
绕质心的转动
合成
6
5.刚体定轴转动的特点
(1)任一质点都是在某个垂直 转轴的平面内作圆周运动。 (2)各质点的轨迹是半径大小 不一的圆周。在同一时间内, 各质点转过的圆弧长度不相 同。
A
A
z
r1
O1B rFra bibliotek2 O2 B
(3)各质点半径所扫过的角度
z
0
z
0
8
2.角加速度
d lim dt t 0 t
1
O
2 1
0
2
O
1 1
O
2
2 1
0
2
O
1
2
9
3.角速度矢量和线速度矢量的关系
v r
v
O
O
v
10
三、匀变速转动公式
1 1 2 3 p0 Lh gLh 2 6
y
2.14 10 N m
12
h dF
O
dy
y
Q
22
二、转动定律
1.受力分析
Fi、Fi 均在与Oz轴相垂直 的平面内。 2.运动方程
大学物理 第四章 刚体的转动 4-2 力矩 转动定律 转动惯量
} ⇒ω
} ⇒θ
2、 M = Jα
F = ma
}⇒
17
m反映质点的平动惯性,J 反映刚体的转动惯性。 反映质点的平动惯性, 反映刚体的转动惯性。 反映质点的平动惯性
三 转动惯量
J 的计算方法 质量离散分布
J = ∑ ∆m r
j
2 j j
J = ∑ ∆m r = (∆m )r + (∆m2 )r + L+ (∆mN )r
质量为m,长为L的细棒绕其一端的 的细棒绕其一端的J 质量为 ,长为 的细棒绕其一端的
1 2 J c = mL 12
O1
O1’
L2 1 2 J = J c + m( ) = mL 2 3
d=L/2
O2 O2’
20
竿 子 长 些 还 是 短 些 较 安 全 ?
飞轮的质量为什么 大都分布于外轮缘? 大都分布于外轮缘?
(3) )
1 2 对M: T2 r − T1r = J α = M r α : 2
4、运动学: 运动学:
rα = a
(4) )
26
解以上四个联立方程式, 解以上四个联立方程式 可得
1 T2 ' ≠ T 、
原因: 原因:
' 1
' (1)若:T2 ' = T T2 ' r −T ' r = Jα v 1 1 FN v 1 T 1 ⇒ J = mr2 = 0 ⇒m = 0 2 m
21
例1(补充例题):一个转动惯量为2.5 kg⋅m2 、 (补充例题) 一个转动惯量为 ⋅ 例题 直径为60cm 的飞轮,正以 的飞轮,正以130 rad⋅s−1 的角速度旋转。 直径为 ⋅ 的角速度旋转。 现用闸瓦将其制动, 现用闸瓦将其制动 如果闸瓦对飞轮的正压力为 500 N, 闸瓦与飞轮之间的摩擦系数为0.50。求: 闸瓦与飞轮之间的摩擦系数为 。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Δθ=ωt
4)角位置
=0+ t
2.匀变速转动(t=0,ω=ω0,θ=θ0)
1)角加速度 =const
2)角速度 =0 t
3)角位移 4)角位置
=
0
t
1 2
= 0+ 0
t
t2
1 2
t
2
四、角量与线量的关系
半径R,角位移
弧长 s R
线速度v: v lim
法向加速度:
an
t 0
v2
R
lim s
R
t t0 t
(R)2 R 2
R
R
切向加速度:
a
dv dt
d dt
(R)
R
d
dt
R
结论:刚体作定轴转动时,在某一时刻刚体上所有
各点的角位移、角速度和角加速度都是相同的;
而各点的线位移、线速度和线加速度均与r成正比。
M i
M F1r1 sin1 F2 r2 sin 2 F3r3 sin 3
单位: N.m
注意:力矩的单位和功的单位不是一回事,力矩的 单位不能写成焦耳。
与转动垂直但通过转轴的力对转动不产生力矩; 与转轴平行的力对转轴不产生力矩; 刚体内各质点间内力对转轴不产生力矩。 对于刚体的定轴转动,不同的力作用于刚体上的
轴的力矩。用M表示。
用矢量表示 M r F
或:
M=Fr sin
若力F不在垂直与转轴的平面内,则可把该力分解为两个
力,一个与转轴平行的分力,一个在垂直与转轴平面 内的分力,只有后者才对刚体的转动状态有影响。
合力M矩=对r于每F个分r 力的F力i 矩 之和r 。Fi
2.角位移Δθ:Δt时间内角位移增量。
规定:定轴转动的只有两个转动方向, 沿逆时针方向转动的角位移取正值 沿顺时针方向转动的角位移取负值
单位:rad
3.角速度ω 平均角速度 =
t
lim 瞬时角速度
=
t 0
t
d
dt
对定轴转动,ω的正负也是由转动方向确定。
ω=const 匀速转动;ω≠const 变速转动
推广:刚体的内力力矩之和为零。
3.刚体的情况
把刚体看成是由许多质点所组成的,对于质点i,假 设它的质量为Δmi,则
M i=mi ri 2
其中力矩为外力矩和内力矩之和。
对刚体的所有质点来说,都有同样的结论。把这些
式子相加,得
把合外力矩记作
M
=
i
M
mi ri 2
定义 J= miri 2 为转动惯量
则得 M J 写成矢量形式
M
J
转动定律:刚体所获得的角加速度
与它所受的合外力矩成正比,与刚
体的转动惯量成反比。
4.说明:
合外力矩和转动惯量都是相对于同一转轴 而言的;
转动定律是解决刚体定轴转动的基本定律, 它的地位与质点动力学中牛顿第二定律相 当。
三、转动惯量
1.定义
刚体的转动惯量等于刚体上各质点的质量与各质点到 转轴距离平方的乘积之和。它与刚体的形状、质量分 布以及转轴的位置有关,也就是说,它只与绕定轴转 动的刚体本身的性质和转轴的位置有关。
不同位置(或不同作用方向)可以产生相同的效 果。
二、转动定律
1.一个质点的情况 法向力通过转轴,力矩为零
切向力 Ft mat mr
对转轴的力矩为 所受的力矩成正比。 2.内力的力矩
刚体内任意两点之间的相互作用力,大小相等,方 向相反,在同一条直线上。两力的力臂相等,因而两 力的力矩相等,方向相反。故两个内力的和力矩为零。
单位rad·s-1
4.角加速度α
平均角加速度 =
t
lim 瞬时角加速度
=
t 0
t
d
dt
d 2
dt 2
α,ω同号:加速转动 α,ω异号:减速转动
单位rad·s-2
三、转动公式(与第一章相同)
1.匀速转动(t=0,θ=θ0)
1)角加速度 α=0
2)角速度
ω=const
3)角位移
2.物理意义
转动惯量是描述刚体在转动中的惯性大小的物理量。
第四章 刚体的转动
§4-1 刚体的定轴转动 一、刚体
定义:在外力作用下形状和大小保持不变的物体称为刚体。
说明: 刚体和质点一样是一个理想化的力学模型; 刚体内任何两点之间的距离在运动过程中保持不变; 刚体可以看成一个包含由大量质点、而各个质点间距 离保持不变的质点系。
研究刚体的方法:从质点和质点系的运动规律出发来研究刚体的 运动规律。把刚体看成是无数质点组成的质点系,先讨论每 个质点的运动规律,然后把构成刚体的全部质点的运动加以 综合,可以得到刚体的运动规律。
二、刚体的平动和转动
刚体的运动可分为平动和转动定轴转动和非定轴转动. 较复杂的运动可以看成是这两种基本运动的叠加, 或一种转动与另外一种转动的叠加。
1.平动:当刚体中所有点的运动轨迹都保持完全相同时, 或者说刚体内任意两点间的连线总是平行于它们的 初始位置间的连线时,刚体的运动叫作平动。
对于刚体的平动,各个质 点在同一时间内的位移相 同,同一时刻的速度和加 速度相等,因而刚体的平 动可用一个点的运动代表, 刚体可以视为质点。
例1 一转动的轮子由于摩擦力矩的作用, 在5s内角速度由15rad/s 匀减速地降到 10rad/s 。求:(1)角加速度;(2)在此5s 内转过的圈数;(3)还需要多少时间轮子停 止转动。
§4-2 力矩 转动定律 转动惯量
一、力矩
从转轴与截面的交点到力的作用线的垂直距离叫做力对 转轴的力臂。力的大小和力臂的乘积,就叫做力对转
2. 转动 刚体中所有的点都绕同一条直线作圆周运动,这条 直线叫作转轴.
瞬时转轴:转轴的位置或方向随时间变化. 固定转轴:转轴的位置或方向不随时间变化.
定轴转动的特点: 刚体上各质点都作圆周运动; 各质点圆周运动的平面垂直于轴线,圆心在轴线 上; 各质点的矢径在相同的时间内转过的角度相同。
三、描述刚体转动的物理量
参考系和坐标系的选择:在刚体内选取一个垂直于转 轴的平面作为参考平面,在此平面内取一个坐标系, 并把平面与转轴的交点作为坐标系的原点。坐标系 常选极坐标,把在参考平面中过原点的任一直线作 为参考线。
1.角位置(角坐标) θ :位置矢量与坐标轴(ox轴)
的夹角。单位:弧度,rad。