合肥工业大学第二学期《高等数学》试卷A试题
2018-2019湖工大高等数学-2
收敛,其中
常数 0 .
3
(D) f (0,1) f (1, 0)
8.曲面 x 1 sin y z 1在点 (1, 1, 0) 处的法线方程为(
);
(A) x 1 y 1 z 1 1 1
(B) x 1 y 1 z 1 1 1
(C) x 1 y 1 z 1 1 1
(D) x 1 y 1 z 1 1 1
9. 已知曲线 L 为抛物线 y x2 的一部分( 0 x 1),则对弧长的曲线积分
注意
四三二一
、 试
、考意、姓:
、 密
卷生名封
印在、线
刷答准内 不题考不 清前证准
18.计算曲面积分 I (2x z)dydz zdxdy 其中 为有向曲面
楚应号答 。先不题
z x2 y2 (0 z 1) ,其法向量与 z 轴正向的夹角为锐角;
可将许。
举姓涂
手名改
向、, 监学否
封
考号则
;
(x, y)(0,0)
3.函数 z ln1 xy 在点 (0,1) 处的全微分 dz =
;
4.空间曲面 : x2 y2 z 2 1,则 (x3 z2 )dS =
;
5.
( 1)n1
n 1
n 2n
=
.
二、选择题(本题共 5 小题,每小题 3 分,共 15 分)
6.已知向量 b 与 a 共线,方向相反,且 | b | 5 | a | ,则 a+b 由 a 表示为(
教、试
师年卷
询级无
问和效
。 班。
级
填
写
在
指
定
的
方
框
内
。
19.将函数 f (x) 1 展开成 (x 2) 的幂级数,并指出其收敛域. 3 x
合肥工业大学第二学期高等数学试卷A试题
合肥工业大学第二学期高等数学试卷A试题 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】一、填空题(每小题3分,共15分) 1、椭球面∑:222216x y z ++=在点0(2,2,2)P 处的切平面方程是___________.2、设曲线L 的方程为221x y +=,则2[()]Lx y y ds +-=⎰ .3、设()21,0,1,0,x f x x x ππ--<≤⎧=⎨+<≤⎩ 则其以2π为周期的傅里叶级数在点x π=处收敛于 . 4、微分方程220y y y '''++=的通解为 . 5、设23(,,)2f x y z x y z =++,则(1,1,1)grad f = .二、选择题(每小题3分,共15分) 1、设222z x y ze ++=,则11x y dz ===( ) 2、二次积分20(,)dx f x y dy ⎰ 化为极坐标下累次积分为( )3、微分方程sin y y x x '''+=+的特解形式可设为( ).(A )*()sin cos y x ax b A x B x =+++ (B )*(sin cos )y ax b x A x B x =+++ (C )*(sin cos )y x ax b A x B x =+++ (D )*sin cos y ax b A x B x =+++ 4、直线1121410214x y z x y z -+-==-++=-与平面2的位置关系是( ))(A l ∥π但l 不在π上 )(B l 在平面π上 )(C l ⊥π )(D l 与π斜交5、设曲面∑的方程为222,x y z z ++=,1∑为∑在第一卦限的部分,则下列结论不正确...的是( ).(A )0xdS ∑=⎰⎰(B )0zdS ∑=⎰⎰(C )1224z dS z dS ∑∑=⎰⎰⎰⎰(D )22x dS y dS ∑∑=⎰⎰⎰⎰三、(本题满分10分)设(,)sin xz f xy y y=+,其中f 具有二阶连续偏导数,求2,z z x x y ∂∂∂∂∂. 四、(本题满分12分)求22(,)2f x y x y =-+在椭圆域D :2214y x +≤上的最大值和最小值.五、(本题满分10分)计算二重积分:2DI y x d σ=-⎰⎰,其中:11,02D x y -≤≤≤≤.六、(本题满分12分)已知积分22(5())()x xLy ye f x dx e f x d ---+⎰与路径无关,且6(0)5f = .求()f x ,并计算(2,3)22(1,0)(5())()x x I y ye f x dx e f x dy--=-+⎰.七、(本题满分12分)计算积分2232222()(2)xz dydz x y z dzdx xy y z dxdy I x y z ∑+-++=++⎰⎰,其中∑是上半球面z =,取上侧.八、(本题满分10分).求幂级数∑∞=---12112)1(n nn x n 的收敛域及和函数,并求数项级数∑∞=---1112)1(n n n 的和.九、(本题满分4分)设0(1,2,3,...)n u n ≠=,且lim 1n nnu →∞=,则级数11111(1)()n n n n u u ∞+=+-+∑是否收敛如果是收敛的,是绝对收敛还是条件收敛。
合工大高数历年统考题
学年第 二 学期 课程名称 高等数学(下)一、填空题(每小题3分,满分15分) 1.设函数ln(32)xy z x y e =-+,则(1,0)dz =3144dx dy -。
2.=⎰⎰dy yydx x sin 0ππ2。
3.设V 为柱体:10,122≤≤≤+z y x ,则=⎰⎰⎰υυd e z(1)e π-。
4.设()1f x x =+,ππ≤≤-x ,则其以2π为周期的傅立叶级数在点x π=处收敛于1。
二、选择题(每小题3分,共15分) 1.设⎪⎩⎪⎨⎧=+≠++=,0,0,0,,),(2222,y x y x y x xy y x f 则( .C ).A ),(lim 0y x f y x →→存在 .B ),(y x f 在点(0,0)处连续.C )0,0(),0,0(y x f f ''都存在 .D ),(y x f 在点(0,0)处可微2.曲线⎩⎨⎧=-+=+-632,922222z y x z e x y 在点(3,0,2)处的切线方程为(.B ) .A 32x y z -==- .B 326yx z -==- .C 32214x y z --==- .D {3(2)0x z y -=--= 3.设L 为圆周,122=+y x 则⎰=+Lds y x)(33( .A ).A 0 .B 1 .C 2 .D 34.设常数0a >,则级数1111(1)ln n an n n∞++=-∑( .C )。
.A 发散 .B 条件收敛 .C 绝对收敛 .D 敛散性与a 有关。
三、设),)((2xy y x f z -=,其中f 具有二阶连续偏导数,求2zx y∂∂∂。
(本题10分)解:122()zx y f yf x∂=-+∂, 2121111222122(2())22()[2()][2()]z x y f yf f x y x y f xf f y y x f xf x y y∂∂=-+=-+---+++-+∂∂∂ 221111222224()2()f x y f x y f xyf f =---+-++ 四(10分)、求函数)1(),(-=y x y x f 在由上半圆周)0(322≥=+y y x 与x 轴所围成的闭区域D 上的最大值和最小值。
高等数学A(下册)期末考试试题
高等数学A(下册)期末考试试题大题 一 二 三 四 五 六 七 小题1 234 5得分一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量a r 、b r满足0a b +=r r r ,2a =r ,2b =r ,则a b ⋅=r r .2、设ln()z x xy =,则32zx y∂=∂∂ . 3、曲面229x y z ++=在点(1,2,4)处的切平面方程为 .4、设()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为()f x x =,则()f x 的傅里叶级数 在3x =处收敛于 ,在x π=处收敛于 .5、设L 为连接(1,0)与(0,1)两点的直线段,则()Lx y ds +=⎰ .※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级. 二、解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线2222222393x y z z x y⎧++=⎪⎨=+⎪⎩在点0M (1,1,2)-处的切线及法平面方程. 2、求由曲面2222z x y =+及226z x y =--所围成的立体体积.3、判定级数11(1)lnn n n n∞=+-∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 4、设(,)sin x z f xy y y =+,其中f 具有二阶连续偏导数,求2,z zx x y∂∂∂∂∂. 5、计算曲面积分,dS z ∑⎰⎰其中∑是球面2222x y z a ++=被平面(0)z h h a =<<截出的顶部. 三、(本题满分9分) 抛物面22z x y =+被平面1x y z ++=截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.(本题满分10分)计算曲线积分(sin )(cos )x x Le y m dx e y mx dy -+-⎰,其中m 为常数,L 为由点(,0)A a 至原点(0,0)O 的上半圆周22(0)x y ax a +=>.四、(本题满分10分)求幂级数13nn n x n∞=⋅∑的收敛域及和函数.五、(本题满分10分)计算曲面积分332223(1)I x dydz y dzdx zdxdy ∑=++-⎰⎰,其中∑为曲面221(0)z x y z =--≥的上侧.六、(本题满分6分)设()f x 为连续函数,(0)f a =,222()[()]t F t z f xy z dv Ω=+++⎰⎰⎰,其中t Ω是由曲面z =与z =所围成的闭区域,求 3()lim t F t t +→.-------------------------------------备注:①考试时间为2小时;②考试结束时,请每位考生按卷面→答题纸→草稿纸由表及里依序对折上交; 不得带走试卷。
合肥工业大学高数下部分课后习题参考答案
AB 7 , AC 7 , BC 7 2 ; 等腰直角三角形.
14 3. M 0, 0, . 9
4. 5.
2x 6 y 6z 3 0 .
a b a b a b a b ; ; ; . 2 2 2 2
1 2 1 , cos ; 7. AB 2 ; cos , cos 2 2 2
5. 8x 9 y 22 z 59 0 . 6.
3 2 . 2
习题 8-5
1. (1)直线,平面; (2)抛物线,抛物柱面; (3)圆,圆柱面; (4)双曲线,双曲柱面. 2. (1)将 xOy 平面上双曲线 x2 y2 1绕 x 轴旋转一周;
(2)将 yOz 平面上直线 z y a 绕 z 轴旋转一周.
12. (1)见图 8-9;
(2)见图 8-10;
图 8-9
图 8-10
(3)见图 8-11;
(4)见图 8-12.
图 8-11 习题 9-1
图 8-12
1. ( 1 )为有界开区域;聚点为集合 {(x, y ) | x 2 + y 2 1} ,边界点为集合 {(x, y ) | x 2 + y 2 =1} {(0, 0)} ;
4
x2 y 2 1, ( 2 ) 在 xOy 面 投 影 曲 线 方 程 : 在 yOz 面 投 影 曲 线 方 程 : z 0;
z z y sin , x cos , 2 在 zOx 面投影曲线方程: 2 y 0. x 0;
3020max21minminmaxmax上的点到原点的距离的最大值与最小值分别为15max16总复习题九11122sincoscossincos10
高数题目及答案
2006~2007-2高等数学A 2试题A 卷一、填空题(每小题3分,共15分)1.函数),(y x f 在点),(y x 可微分是),(y x f 在该点连续的 条件.2.半径为a 的均匀半圆薄片(面密度为ρ)对其直径边的转动惯量为 . 3.L 为圆周222a y x =+,则()⎰+Lnds y x22= .4.函数 0,,)(⎩⎨⎧<≤<≤--=ππx x x x x f 的傅里叶级数展开式为()()⎪⎪⎭⎫ ⎝⎛+++++++-= x n n x x x x f 12cos 1215cos 513cos 31cos 42)(222ππ)(ππ≤≤-x ,则级数()++++++22212151311n 的和等于 . 5.方程0ln =-'y y y x 的通解是 . 二、选择题(每小题3分,共15分)6.函数()22,y xy x y x f +-=在点)1,1(P 处沿方向⎭⎬⎫⎩⎨⎧=41,41l 的方向导数( )。
(A) 最大; (B) 最小; (C) 1; (D) 0.7.设区域D 是由0,42=-=y x y 围成,则=+=⎰⎰Ddxdy y ax I )(( )。
(A) 0>I ;(B) 0=I ;(C) 0<I ;(D) I 的符号与a 有关.8.下列各式中正确的是( ) (A)022=+-⎰L y x ydx xdy ,其中1:22=+y x L ,沿逆时针方向; (B)⎰⎰⎰⎰∑∑⎪⎪⎭⎫ ⎝⎛++=++dS R Q P dxdy z y x R dzdx z y x Q dydz z y x P 5325253),,(),,(),,(;其中∑是平面63223=++z y x 在第一卦限的部分的上侧。
(C)⎰⎰⎰Γ∑⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=++dz y P x Q dy x R z P dx z Q y R Rdxdy Qdzdx Pdydz 其中Γ是∑的边界曲线,且Γ的方向与∑侧符合右手法则;(D) 向量场k z y x R j z y x Q i z y x P z y x A),,(),,(),,(),,(++=的散度k y P x Q j x R z P i z Q y R A div ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=.9.级数∑∞=+-12)1(n nnnb 为( )。
07-08高数A2答案(A卷)
安徽工业大学高等数学A2期末试卷(A卷)参考答案与评分标准一、单项选择题(本题共8小题,每小题3分,共24分)二、填空题(本题共6小题,每小题3分,共18分)9.7 10. π411. 4 12.π813.2e14. 1三、判断题(本题共5小题,每小题2分, 共10分)22222(1)(1))11(1)11n n nn nn nnnn nnn n∞∞==∞=∞∞===---=-=----∑∑∑∑∑四、解答题(本题共6小题,满分48分,解答应写出文字说明、证明过程和演算步骤.)20. (本题满分8分)解:设c o s,s i nx r y rθθ==, ------------------------------------ 2分222222)0,0(),(lnlim)ln()(limrryxyxryx+→→=++---------------------------------------------5分由洛必达法则原式22lim1ln2lim32=-==+→+→rrrrrr------------------------------------- 8分说明:本题解法较多,可参照上述标准给分,如令22r x y=+代换与洛必达法则结合使用。
21. (本题满分8分)解:解法一:由题意得121/212000x yxV dx dy dz---=⎰⎰⎰-----------------------------------2分1/21200(12)xdx x y dy-=--⎰⎰-----------------------------------4分dxyxyyx21212)212(-⎰--=----------------------------------6分⎰+-=212)2122(dxxx121)2132(2123=+-=xxx--------------- -------------------8分解:解法二:由题意得⎰⎰---=xdyyxdxV212/1)21(-----------------------------------3分dxyxyyx21212)212(-⎰--=----------------------------------6分⎰+-=212)2122(dxxx121)2132(2123=+-=xxx--------------- -------------------8分说明:其它形式的二重三重积分表达式也对。
合肥工业大学2014-2015第一学期《高等数学》试卷A试题
一、填空题(每小题3分,共15分) 1、极限2sin 0lim(13)x x x →+= .2、设2arctan()y x x =,则y ' . 3、设()f x 的一个原函数为2x e-,则()________xf x dx '=⎰.4、曲线xe y =过原点的切线方程为____________. 5、曲线2r eθ=从0=θ至2πθ=的一段弧长=l ____________.二、选择题(每小题3分,共15分) 1、当1x →-时,31x +与3(1)x +为()(A) 高阶无穷小 (B) 低阶无穷小(C) 等价无穷小 (D) 同阶但不等价无穷小2、若()f x 的导函数为sin ,x 则()f x 的一个原函数是( )(A) 1sin x + (B) 1sin x - (C) 1cos x + (D) 1cos x -3、设()f x 在0x =处连续,且0()lim 11cos x f x x→=-,则在点0x =处( ). (A) (0)f '不存在 (B) (0)0f '=,且(0)f 为()f x 的极小值 (C) (0)f '存在,且(0)0f '≠ (D) (0)0f '=,且(0)f 为()f x 的极大值4、下列广义积分发散的是( )(A)1+∞⎰(B)111sin dx x -⎰ (C)221ln dx x x+∞⎰(D) 2x xe dx +∞--∞⎰5、曲线2211x x e y e--+=-()(A) 没有渐近线 (B) 仅有水平渐近线 (C) 仅有铅直渐近线 (D) 既有水平渐近线又有铅直渐近线三、计算下列各题(每小题6分,共36分)1、222111lim ()2n n n n n n πππ→∞++++++L . 2、)cos 1)(1(1cossin 3lim 20x e x x x xx +---→. 3、求sin (0)xy xx =>的导数()y x '. 4、已知()2ln 1,arctan ,x t y t ⎧=+⎪⎨=⎪⎩求22d d ,d d y yx x . 5、2arctan x dx x ⎰. 6、设2ln(1)0()101x x f x x x +≥⎧⎪=⎨<⎪+⎩,求20(1)f x dx -⎰. 四、(本题满分10分)设 ()()22021cos , 0, 1, 0,1cos d , 0,xx x x f x x t t x x ⎧-<⎪⎪==⎨⎪⎪>⎩⎰ 讨论()f x 在0x =处的连续性和可导性.五、(本题满分10分)设曲线2xe y =,切线2ey x =及y 轴围成的平面图形为D ,求D 绕y 轴旋转一周所得旋转体体积V .六、(本题满分8分)证明不等式:0>x 时,有11ln ≥+xx . 七、(本题满分6分)设函数)(x f 在]1,0[上连续,在)1,0(内可导,0)(≠x f (01x <<),且0)1()0(==f f ,证明:在)1,0(内至少存在一点ξ,使()2015()f f ξξ'=.。
合肥工业大学第二学期《高等数学》试卷A试题
一、填空题(每小题3分,共15分)1、椭球面∑:222216x y z ++=在点0(2,2,2)P 处的切平面方程是___________. 2、设曲线L 的方程为221x y +=,则2[()]Lx y y ds +-=⎰.3、设()21,0,1,0,x f x x x ππ--<≤⎧=⎨+<≤⎩ 则其以2π为周期的傅里叶级数在点x π=处收敛于 .4、微分方程220y y y '''++=的通解为 .5、设23(,,)2f x y z x y z =++,则(1,1,1)grad f =u u u u u r.二、选择题(每小题3分,共15分) 1、设222zx y ze ++=,则11x y dz===( ))(A 2(dx dy)-+ )(B 22(z 1)e (z 1)e z zdx dy --+++)(C 22dx dy + )(D 22dx dy -+2、二次积分2(,)dx f x y dy ⎰化为极坐标下累次积分为( )drr F d D drr F d C drr F d B dr r F d A ),(2)(),()(),()(),()(cos 202cos 2022cos 20cos 200θθθθθθθθθπθππθππθπ⎰⎰⎰⎰⎰⎰⎰⎰--3、微分方程sin y y x x '''+=+的特解形式可设为( ).(A )*()sin cos y x ax b A x B x =+++ (B )*(sin cos )y ax b x A x B x =+++ (C )*(sin cos )y x ax b A x B x =+++ (D )*sin cos y ax b A x B x =+++ 4、直线1121410214x y z x y z -+-==-++=-与平面2的位置关系是( ) )(A l ∥π但l 不在π上 )(B l 在平面π上 )(C l ⊥π )(D l 与π斜交5、设曲面∑的方程为222,x y z z ++=,1∑为∑在第一卦限的部分,则下列结论不正确...的是( ).(A )0xdS ∑=⎰⎰ (B )0zdS ∑=⎰⎰(C )1224zdS z dS ∑∑=⎰⎰⎰⎰ (D )22x dS y dS ∑∑=⎰⎰⎰⎰三、(本题满分10分)设(,)sin xz f xy y y=+,其中f 具有二阶连续偏导数,求2,z z x x y ∂∂∂∂∂. 四、(本题满分12分)求22(,)2f x y x y =-+在椭圆域D :2214y x +≤上的最大值和最小值.五、(本题满分10分)计算二重积分:2D I y xd σ=-⎰⎰,其中:11,02D x y -≤≤≤≤.六、(本题满分12分)已知积分22(5())()xx Ly yef x dx e f x dy ---+⎰与路径无关,且6(0)5f =.求()f x ,并计算(2,3)22(1,0)(5())()x x I y ye f x dx e f x dy --=-+⎰.七、(本题满分12分)计算积分2232222()(2)xz dydz x y z dzdx xy y z dxdyI x y z ∑+-++=++⎰⎰,其中∑是上半球面z =,取上侧.八、(本题满分10分).求幂级数∑∞=---12112)1(n n n x n 的收敛域及和函数,并求数项级数∑∞=---1112)1(n n n 的和.九、(本题满分4分)设0(1,2,3,...)n u n ≠=,且lim1n nnu →∞=,则级数11111(1)()n n n n u u ∞+=+-+∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛?。
合肥工业大学第二学期《高等数学》试卷A试题
一、填空题(每小题3分,共15分) 1、椭球面∑:222216x y z ++=在点0(2,2,2)P 处的切平面方程是___________.2、设曲线L 的方程为221x y +=,则2[()]Lx y y ds +-=⎰ .3、设()21,0,1,0,x f x x x ππ--<≤⎧=⎨+<≤⎩则其以2π为周期的傅里叶级数在点x π=处收敛于 . 4、微分方程220y y y '''++=的通解为 . 5、设23(,,)2f x y z x y z =++,则(1,1,1)grad f = .二、选择题(每小题3分,共15分) 1、设222z x y ze ++=,则11x y dz ===( )2、二次积分20(,)dx f x y dy ⎰ 化为极坐标下累次积分为( )3、微分方程sin y y x x '''+=+的特解形式可设为( ).(A )*()sin cos y x ax b A x B x =+++ (B )*(sin cos )y ax b x A x B x =+++ (C )*(sin cos )y x ax b A x B x =+++ (D )*sin cos y ax b A x B x =+++ 4、直线1121410214x y z x y z -+-==-++=-与平面2的位置关系是( ))(A l ∥π但l 不在π上 )(B l 在平面π上 )(C l ⊥π )(D l 与π斜交5、设曲面∑的方程为222,x y z z ++=,1∑为∑在第一卦限的部分,则下列结论不正确...的是( ).(A )0xdS ∑=⎰⎰ (B )0zdS ∑=⎰⎰(C )1224z dS z dS ∑∑=⎰⎰⎰⎰ (D )22x dS y dS ∑∑=⎰⎰⎰⎰三、(本题满分10分)设(,)sin xz f xy y y =+,其中f 具有二阶连续偏导数,求2,z zx x y∂∂∂∂∂.四、(本题满分12分)求22(,)2f x y x y =-+在椭圆域D :2214y x +≤上的最大值和最小值.五、(本题满分10分)计算二重积分:2DI y x d σ=-⎰⎰,其中:11,02D x y -≤≤≤≤.六、(本题满分12分)已知积分22(5())(x xLy ye f x dx e f x ---+⎰与路径无关,且6(0)5f = .求()f x ,并计算(2,3)22(1,0)(5())()x x I y ye f x dx e f x dy--=-+⎰.七、(本题满分12分)计算积分2232222()(2)xz dydz x y z dzdx xy y z dxdy I x y z ∑+-++=++⎰⎰,其中∑是上半球面z =,取上侧.八、(本题满分10分).求幂级数∑∞=---12112)1(n nn x n 的收敛域及和函数,并求数项级数∑∞=---1112)1(n n n 的和.九、(本题满分4分)设0(1,2,3,...)n u n ≠=,且lim 1n nnu →∞=,则级数11111(1)()n n n n u u ∞+=+-+∑是否收敛如果是收敛的,是绝对收敛还是条件收敛。
合肥工业大学第一学期高等数学试卷A试题
合肥工业大学第一学期高等数学试卷A试题Happy childhood is the best, June 12, 2023一、填空题每小题3分,共15分 1、极限2sin 0lim(13)xx x →+= .2、设2arctan()y x x =,则y ' .3、设()f x 的一个原函数为2x e -,则()________xf x dx '=⎰. 4、曲线x e y =过原点的切线方程为____________. 5、曲线2r e θ=从0=θ至2πθ=的一段弧长=l ____________.二、选择题每小题3分,共15分 1、当1x →-时,31x +与3(1)x +为A 高阶无穷小B 低阶无穷小C 等价无穷小D 同阶但不等价无穷小2、若()f x 的导函数为sin ,x 则()f x 的一个原函数是 A 1sin x + B 1sin x - C 1cos x + D 1cos x -3、设()f x 在0x =处连续,且0()lim 11cos x f x x→=-,则在点0x =处 .A (0)f '不存在B (0)0f '=,且(0)f 为()f x 的极小值C (0)f '存在,且(0)0f '≠D (0)0f '=,且(0)f 为()f x 的极大值4、下列广义积分发散的是A 1+∞⎰111sin dx x -⎰ C 221ln dx x x +∞⎰ D 2x xe dx +∞--∞⎰ 5、曲线2211x x e y e--+=-A 没有渐近线B 仅有水平渐近线C 仅有铅直渐近线D 既有水平渐近线又有铅直渐近线三、计算下列各题每小题6分,共36分1、222111lim ()2n n n n n n πππ→∞++++++. 2、)cos 1)(1(1cossin 3lim 20x e x x x xx +---→. 3、求sin (0)xy xx =>的导数()y x '. 4、已知()2ln 1,arctan ,x t y t ⎧=+⎪⎨=⎪⎩求22d d ,d d y yx x .5、2arctan x dx x ⎰. 6、设2ln(1)0()101x x f x x x +≥⎧⎪=⎨<⎪+⎩,求2(1)f x dx -⎰.四、本题满分10分设 ()()22021cos , 0, 1, 0,1cos d , 0,xx x x f x x t t x x ⎧-<⎪⎪==⎨⎪⎪>⎩⎰ 讨论()f x 在0x =处的连续性和可导性.五、本题满分10分设曲线2x e y =,切线2ey x =及y 轴围成的平面图形为D ,求D 绕y 轴旋转一周所得旋转体体积V .六、本题满分8分证明不等式:0>x 时,有11ln ≥+xx . 七、本题满分6分设函数)(x f 在]1,0[上连续,在)1,0(内可导,0)(≠x f 01x <<,且0)1()0(==f f ,证明:在)1,0(内至少存在一点ξ,使()2015()f f ξξ'=.。
高等数学(下)历试题解答
合肥工业大学高等数学<下)试卷参考解答2001-2002学年第二学期一、填空题<每小题3分,满分15分) 1.设12zxez y ,则0,1dz2edx dy .2.空间曲面1532:222zyx 在点(1,1,2)处的法线方程为1122412x y z .二、选择题<每小题3分,满分15分)1.考虑二元函数),(y x f 的下面4条性质:①),(y x f 在点00(,)x y 处连续,②),(y x f 在点00(,)x y 处的两个偏导数连续,③),(y x f 在点00(,)x y 处可微,④),(y x f 在点00(,)x y 处的两个偏导数存在. 若用“Q p”表示可由性质P推出性质Q ,则有< .A ).A ②③① .B ③②① .C ③④① .D ③①④2.设函数(,)zf x y 在点00(,)x y 处的两个偏导数存在,则),(00y x f x =0,),(00y x f y =0是),(y x f 在点00(,)x y 处取得极值的<.B ).A 充分但非必要条件.B 必要但非充分条件.C 充分必要条件.D 既不是必要,也不是充分条件4.0)(22yx y 是<.C )微分方程.A 一阶.B 二阶.C 三阶.D 四阶5.微分方程xe x y y y 2)13(6的特解形式为< .B ).A xeb ax y 2)(*.B xeb ax x y 2)(*.C xeb ax x y 22)(*.D xxeC eC y 3221*三、<8分)设),(22yxy xf z,其中f 具有二阶连续偏导数,求2z x y. 解:1212z xf f xy,2111222122222112[2()][2()]z x x x yf f f f y f x yyyyy21112222232214(2)xx xyf f f f y y y.七、<10分)求微分方程0)(22y x y 满足初始条件(0)0,(0)1y y 的特解.解:令yp ,原方程化为220pxp,即212dpxdx p,积分得:21xCp,21pxC.又(0)1y ,得1C.211yx,12111ln 211x ydx C x x,将(0)0y 代入得10C ,所以特解为11ln 21x yx .八<10分)求函数(,,)ln ln 3ln f x y z x y z 在球面2225xyz(0,0,0)x y z 上的最大值.解:令222(,,)ln ln 3ln (5)F x y z x y zxyz.由2220,0,0, 5.xyzF F F xy z 得222120,120,320, 5.x x y y z z x y z ,解得1,1,3.x y z 由于问题的解是唯一存在的.所以此驻点就是所求的最大值点(1,1,3).此时最大值为3ln 32. 合肥工业大学试卷高等数学<下)参考解答2002-2003学年第二学期一、填空题<每小题3分,满分15分)1.设函数ln(32)xyz xye ,则(1,0)dz 3144dxdy .5.微分方程0yyx 的通解为12ln yC x C .二、选择题<每小题3分,共15分)1.设,0,0,0,,),(222222,yxy x y xxy y x f 则<.C ).A ),(lim 0y x f yx 存在.B ),(y x f 在点(0,0)处连续.C )0,0(),0,0(y x f f 都存在.D ),(y x f 在点(0,0)处可微2.曲线632,922222zyxzex y 在点(3,0,2)处的切线方程为<.B ).A 32x yz .B 326y x z .C 32214x y z .D 3(2)0x z y5.设xxxxxe ey e x y xe y 2321,)1(,为某二阶线性非齐次微分方程的三个特解,则该方程的通解为< .D ),其中321,,C C C 为任意常数..A 332211y C y C y C.B 11223C y C y y .C xxxxe eeC eC 2221.D xxxxeeC eC 221三、设),)((2xy y xf z,其中f 具有二阶连续偏导数,求2zx y.<本题10分)解:122()z xy f yf x,212(2())z x y f yf x yy1111222()[2()]f xy xy f xf 22122[2()]f y yx f xf 221111222224()2()f xy f xy f xyf f .四<10分)、求函数)1(),(y x y x f 在由上半圆周)0(322yyx与x 轴所围成的闭区域D 上的最大值和最小值. 解:在闭区域D 内,由10x y f y f x 得驻点(0,1),(0,1)0f .在D 的边界)0(322y yx 上,令22(,,)(1)(3)F x y x y xy,由22120,20,3.xy F y xF x yx y 得2,1,xy(2,1)0f . 在D 的边界x 轴上,3,0,3,0,3,03f,3,03f,比较以上各函数值,知最大值为3,03f,最小值为3,03f.合肥工业大学试卷高等数学<下)参考解答2003-2004学年第二学期一、填空题 <每小题3分,满分15分) 1.微分方程02)(3xdydx x y满足56|1xy 的特解为315yx x .5.曲面22y xz与平面042zyx平行的切平面方程是245xyz.二、选择题<每小题3分,满分15分) 1.函数),(y x f 在点),(00y x 处连续是函数),(y x f 在该点处存在偏导数的< .D ).A 充分但非必要条件.B 必要但非充分条件.C 充分必要条件.D 既不是必要,也不是充分条件2.微分方程xe xy y y 2323的特解形式为< .D ).A ()xax b e.B ()xax b xe.C ()xaxb ce .D ()xax b cxe4..若),(y x f 函数在),(00y x 的某邻域内具有二阶连续偏导数,且满足2000000[(,)](,)(,)0xy xx yy f x y f x y f x y ,则),(00y x (.A >.A 必不为),(y x f 的极值点.B 必为),(y x f 的极大值点.C 必为),(y x f 的极小值点.D 可能不是),(y x f 的极值点。
高数下期末考试试题及答案解析
WORD 格式整理⋯⋯⋯⋯⋯⋯⋯名⋯姓⋯⋯⋯⋯.⋯号⋯学⋯⋯封号序密超号班要学教不卷答⋯学⋯大峡.三⋯⋯⋯⋯⋯⋯⋯⋯2017 学年春季学期《高等数学Ⅰ(二)》期末考试试卷(A)注意:1、本试卷共3页;2、考试时间110 分钟; 3 、姓名、学号必须写在指定地方题号一二三四总分得分阅卷人得分一、单项选择题( 8 个小题,每小题 2 分,共 16 分)将每题的正确答案的代号A、 B、 C或 D 填入下表中.号12345678答案1.已知 a 与b都是非零向量,且满足a b a b ,则必有().(A)a b 0(B)a b0(C) a b0(D)a b02. 极限lim( x2y2 )sin12().x0x2yy0(A) 0(B) 1(C) 2(D)不存在3.下列函数中,df f 的是().( A)f (x, y)xy( B)f (x, y)x y c0 ,c0为实数( C)f (x, y)x2y2( D)f (x, y)e x y4.函数f ( x, y)xy (3x y) ,原点 (0,0)是 f ( x, y) 的().( A)驻点与极值点( B)驻点,非极值点( C)极值点,非驻点( D)非驻点,非极值点5 .设平面区域D : (x1)2( y 1)22,若I1x y d, I 2x yd ,D4D4I 33x y,则有() .dD4(A)I1I 2I 3(B)I1I 2I 3(C)I2I1I 3(D)I3I1I 26.设椭圆L:x2y 21的周长为l,则(3x2 4 y2 )ds() .43L(A)l(B)3l(C)4l(D)12l7.设级数a n为交错级数,a n0 (n) ,则().n 1(A) 该级数收敛(B)该级数发散(C) 该级数可能收敛也可能发散(D)该级数绝对收敛8. 下列四个命题中,正确的命题是().( A)若级数a n发散,则级数a n2也发散n 1n 1( B)若级数a n2发散,则级数a n也发散n 1n 1( C)若级数a n2收敛,则级数a n也收敛n 1n 1( D)若级数| a n |收敛,则级数a n2也收敛n 1n 1阅卷人得分二、填空题 (7 个小题,每小题2分,共 14分).3x 4 y2z60a 为.1. 直线3y z a与 z 轴相交,则常数x02.设f ( x, y)ln( xy), 则f y(1,0)___________.x3.函数f (x, y)x y 在 (3, 4) 处沿增加最快的方向的方向导数为.4.设D : x2y22x ,二重积分( x y)d=.D5.设f x是连续函数,{( x, y ,z) | 0z9x2y2 } , f ( x2y2 )dv 在的三次积分为.6. 幂级数( 1)n 1x n的收敛域是.n!n 17. 将函数 f ( x)1,x01x2,0 x以 2为周期延拓后,其傅里叶级数在点于.⋯⋯⋯⋯⋯⋯⋯名⋯姓⋯⋯⋯⋯.⋯号⋯学⋯⋯封号序密超号班要学教不卷答⋯学⋯大峡.三⋯⋯⋯⋯⋯⋯⋯⋯阅卷人得分三、综合解答题一( 5 个小题,每小题7 分,共 35 分,解答题应写出文字说明、证明过程或演算步骤)1.设 u xf ( x,x) ,其中 f 有连续的一阶偏导数,求u ,u.y x y解:4.设是由曲面z xy, y x, x 1及z0 所围成的空间闭区域,求 I解:2.求曲面 e z z xy 3 在点 (2,1,0) 处的切平面方程及法线方程.解:5.求幂级数nx n 1的和函数 S(x) ,并求级数nn的和.n 1n 12解:3. 交换积分次序,并计算二次积分dxxsin y dy.0y解:⋯⋯⋯⋯⋯⋯⋯名⋯姓⋯⋯⋯⋯.⋯号⋯学⋯⋯封号序密超号班要学教不卷答⋯学⋯大峡.三⋯⋯⋯⋯⋯⋯⋯⋯阅卷人得分四、综合解答题二( 5 个小题,每小题7 分,共 35 分,解答题应写出文字说明、证明过程或演算步骤)1.从斜边长为 1 的一切直角三角形中,求有最大周长的直角三角形.解4.计算xdS ,为平面x y z 1在第一卦限部分.解:2.计算积分( x2y2 )ds ,其中L为圆周 x2y2ax (a0 ).L解:5.利用高斯公式计算对坐标的曲面积分蝌dxdy + dydz + dzdx,S其中为圆锥面 z2x2y2介于平面z0 及 z 1 之间的部分的下侧.解:3.利用格林公式,计算曲线积分I(x2y2)dx (x 2xy)dy ,其中 L 是由抛物线y x2和Lx y2所围成的区域D的正向边界曲线.y y x2x y22017 学年春季学期《高等数学Ⅰ(二)》期末考试试卷(A)答案及评分标准一、单项选择题(8 个小题,每小题 2 分,共 16 分)题号12345678答案D A B B A D C D1.已知a 与b都是非零向量,且满足a b a b ,则必有(D)(A) a b0 ;(B)a b 0 ;(C) a b0 ;(D)a b0 .2. 极限lim( x2y2 )sin212( A )x0x yy0(A) 0;(B) 1;(C) 2;(D)不存在 . 3.下列函数中,df f 的是( B );( A) f ( x, y)xy ;( B)f ( x, y)x y c0 , c0为实数;( C) f (x, y)x2y2;( D)f (x, y)e x y .4.函数f ( x, y)xy (3x y) ,原点 (0,0)是 f ( x, y) 的( B).(A)驻点与极值点;(B)驻点,非极值点;(C)极值点,非驻点;( D)非驻点,非极值点 .5 .设平面区域 D:( x 1)2( y 1)22,若I1x yd ,I2x y dD4D4WORD 格式整理3xyd,则有( A)I 34D(A)I1I 2I3;(B) I1I 2I 3;(C)I2I1I3;(D)I36.设椭圆L:x2y 21的周长为l,则(3x24y2 )ds( D)43L(A) l;(B)3l;(C)4l ;(D)127.设级数a n为交错级数, a n0 (n) ,则(C)n 1(A) 该级数收敛;(B)该级数发散;(C) 该级数可能收敛也可能发散;(D)该级数绝对收敛.8. 下列四个命题中,正确的命题是(D)( A)若级数a n发散,则级数a n2也发散;n1n 1( B)若级数n1a n2发散,则级数n 1a n也发散;( C)若级数a n2收敛,则级数a n也收敛;n1n 1( D)若级数| a n |收敛,则级数a n2也收敛.n1n1二、填空题 (7 个小题,每小题 2 分,共14 分).3x 4 y2z60a 为31. 直线3y z a与 z 轴相交,则常数。
大学高等数学A-2试卷答案
《高等数学》考试试卷A-2参考答案及评分标准一、单项选择题(每小题3分, 共15分)1.B 2.C 3.C 4.D 5.B二、填空题(每小题3分,共15分)1.12dx dy + 2.533.2(,)x f a b ' 4.230+-=y z 5.18π三、计算题(每题7分;共56分)1.解: 设平面方程为 0+++=Ax By Cz D根据题意有000+++=⎧⎪-+=⎨⎪++=⎩A B C D B C D A B C (4分)所以有0=D ;::2:1:1=-A B C所求平面方程为 20--=x y z (3分)2.解:21212()2()4,z z u z v u v x y x y x x u x v x∂∂∂∂∂∂∂∂∂∂=+=⋅+⋅=++-= (3分) ()21212()2()4.z z u z v u v x y x y y y u y v y∂∂∂∂∂∂∂∂∂∂=+=⋅+⋅-=+--= (4分)3解:D 是由22y x =及21y x =+所围成的闭区域也就是{}22(,)11,21=-≤≤≤≤+D x y x x y x (3分)(){}22221111120212240(2)(2)223221415++-+=+==+-=⎰⎰⎰⎰⎰⎰⎰x x x x D x y dxdyD dx x y dy dx ydyx x dx (4分)4.解:计算三重积分:zdxdydz Ω⎰⎰⎰,其中Ω是由旋转抛物面221()2z x y =+及平面1z =所围成的闭区域. 解: {}(,,)(,),01z x y z x y D z Ω=∈≤≤,其中z D :222x y z +≤ (+2分)故10z D zdxdydz zdz dxdy Ω=⎰⎰⎰⎰⎰⎰12022 3z dz ππ==⎰ (+5分) 5.解: 设2222(,),(,)y x P x y Q x y x y x y ==-++,因为()()22:111L x y -+-=, 所以220x y +≠,而且有()22222Q x y P x y x y ∂-∂==∂∂+, .(3分) 故由格林公式得22 L ydx xdy I x y -=+⎰0xy D Q P dxdy x y ⎛⎫∂∂=-= ⎪∂∂⎝⎭⎰⎰ .(4分) 6.解:计算⎰⎰∑++dxdy z dzdx y dydz x 222,∑是抛物面22y x z +=被平面1=z 所截下的有限部分的下侧。
2011-2012学年合肥工业大学第二学期《高等数学》试卷和参考答案
2011----2012学年第二学期期末考题解答一.填空题(每小题3分, 满分15分)1. 过直线L:x-1y+2z-2==且垂直于平面3x+2y-z=5的平面方程是2-32_________.【解】应填:x-8y-13z+9=0.直线L的方向向量s={2,-3,2}.已知平面的法向量n1={3,2,-1},设所求平面的法向量为n,由题意知n⊥s且n⊥n1,故可取ijk n=s⨯n1=2-32={-1,8,13},32-由条件知,所求平面过点P0(1,-2,2)于是所求平面方程为,-(x-1)+8(y+2)+13(z-2)=0,即x-8y-13z+9=0.2. 设x2+2xy+y+zez=1,则dz【解】应填:-2dx-dy.由x+2xy+y+ze=1,两边求全微分,得 2z(0,1)=2xdx+2ydx+2xdy+dy+(1+z)ezdz=0,当x=0,y=1时,代入原方程得z=0,所以dz(0,1)=-2dx-dy.3. 椭圆抛物面∑:z=2x+y在点P0(1,-1,3)处的法线方程是___________.【解】应填:22x-1y+1z-3==. 4-2-1曲面∑在点P0(1,-1,3)处的法向量可取为n={4x,2y,-1}(1,-1,3)={4,-2,-1},于是曲面∑在点P0(1,-1,3)处的法线方程为x-1y+1z-4=-2=3-1.4.曲面z=与z=x2+y2所围立体的体积为.【解】应填:6. V=⎰⎰⎰dv=2π0dθ1rπΩ⎰⎰0rdr⎰r2dz=6.5. 设L为上半圆周y=⎰(xL-xy+y2)ds=____________.【解】应填:π.由对称性,代入技巧及几何意义可得⎰2L(x-xy+y2)ds=⎰Lds+0=π二.选择题(每小题3分, 满分15分)1.方程y''-3y'+2y=1+2x-3ex的特解形式为(). (A)(ax+b)ex (B) (ax+b)xex(C) ax+b+cex(D) ax+b+cxex【解】选(D)2.设unn=(-1),则级数().(A)∑∞∞∞u2n与∑un都收敛(B)n=1n=1∑u2n与n=1∑un都发散n=1 (C)∑∞∞∞∞u2n收敛,而n发散(D)u2n发散,而n收敛n=1∑un=1∑n=1∑u【解】选(C)3.二元函数f(x,y)的两个偏导数fx¢(x,y),fy¢(x,y)在点P0(x0,y0)处都连续是f(x,y)在点P0(x0,y0)处可微分的()(A) 充分条件 (B) 必要条件(C) 充要条件 (D) 既非充分也非必要条件【解】若fx¢(x,y),fy¢(x,y)在点P0(x0,y0)都连续,则f(x,y)在点P0(x0,y0)处可微分,选(A)4.⎰10dx⎰2x1=()(A)121 (B))131 (C)(D【解】原积分=⎰dy0101121==⎰231.选(B) )⎧x2-π≤x<05. 设f(x)=⎨,则周期为2π的函数f(x)的傅立叶级数在x=2π处⎩x-π0≤x<π收敛于.(A)-π2 (B)-π (C)0 (D)π 2【解】选(A)三. (10分) 设z=f(xy,xy)+g(),其中f有二阶连续偏导数,g有二阶导yx∂2z数,求.∂x∂y【解】根据复合函数求偏导公式得∂z1y=f1'⋅y+f2'⋅+g'⋅(-2), ∂xyx∂2z∂⎛∂z⎫∂⎛1y⎫= ⎪= f1'⋅y+f2'⋅+g'⋅(-2)⎪∂x∂y∂y⎝∂x⎭∂y⎝yx⎭x11xy1=f1'+y[f11''x+f12''⋅(-2)]-2f2'+[f21''x+f22''⋅(-2)]-g''⋅3-g'⋅2yyyyxx1xy1=f1'+xyf11''-2f2'-3f22''-3g''-2g'yyxxx2四. (10分) 求z=f(x,y)=x-y在闭区域D:+y2≤1上的最大值和最小值.22【解】在D的内部,⎧fx'=2x=0⇒(0,0)为驻点,且f(0,0)=0 ⎨'f=-2y=0⎩y在D的边界上,x2x25x22222+y=1⇒y=1-⇒z=x-y=-1由444(-2≤x≤2)dz5x==0⇒x=0,此时,y=±1,,则有f(0,±1)=-1,dx2比较上述函数值知,f(±2,0)=4函数z=f(x,y)=x-y在D上的最大值为4,最小值为-1.五. (10分) 求微分方程y''=22y'+xex的通解. x1p=xex, x【解】不显含y,故令y'=p,则y''=p',代入原方程得p'-利用通解公式求得通解为p=x(ex+C1),积分得原方程通解为1y=(x-1)ex+C1x2+C2.2六. (12分)(Ⅰ)试确定可导函数f(x),使在右半平面内,y[2-f(x)]dx+xf(x)dy为某函数u(x,y)的全微分,其中f(1)=2;(Ⅱ)求u(x,y);【解】(Ⅰ)P=y[2-f(x)],Q=xf(x).因为y[2-f(x)]dx+xf(x)dy是函数u(x,y)的全微分,所以有即∂Q∂P, =∂x∂yf(x)+xf'(x)=2-f(x),故xf'(x)+2f(x)=2.上述微分方程的通解为f(x)=1+所以C.由f(1)=2得C=1, x21. x2f(x)=1+(Ⅱ)在右半平面内取(x0,y0)=(1,0),则11u(x,y)=⎰P(x,0)dx+⎰Q(x,y)dy=⎰0(x+)dy=y(x+).10xxxyy七. (12分) 求幂级数∞∑n(n+1)xn=1∞n的收敛域及和函数.【解】易求得其收敛域为(-1,1),令S(x)=∑n(n+1)x=x∑n(n+1)xnn=1n=1∞n-1=x⋅S1(x),其中S1(x)=∑n(n+1)xn-1,n=1∞∞两边积分⎰再积分xS1(x)dx=∑⎰n(n+1)xn=1∞xn-1dx=∑(n+1)xn,n=1⎰(⎰xxS1(x)dx)dx=∑⎰(n+1)xdx=∑xnn=1∞x∞n+1n=1x2. =1-x因此x22S1(x)=()''=,1-x(1-x)3故原级数的和S(x)=2x,x∈(-1,1).(1-x)3八. (12分) 计算积分I=⎰⎰(y-z)dzdx+(x+2z)dxdy∑,其中∑是抛物面z=x2+y2(0≤z≤1),取下侧.【解】补S0:z=1(x2+y2 1),取上侧,设∑与∑0围成空间区域Ω, Ω及∑0在xOy平面上的投影区域Dxy:x+y≤1.由Gauss公式,I=22∑+∑0 ⎰⎰(y-z)dzdx+(x+2z)dxdy-⎰⎰(y-z)dzdx+(x+2z)dxdy ∑0=⎰⎰⎰[Ω∂∂(y-z)+(x+2z)]dv-⎰⎰(y-z)dzdx+(x+2z)dxdy ∂y∂z∑0∑0=3⎰⎰⎰dv-⎰⎰(y-z)dzdx+(x+2z)dxdy. Ω因为∑0垂直于zOx平面,∑0在zOx平面上的投影区域面积为零,所以⎰⎰(y-z)dzdx=0.∑0I=3⎰⎰[⎰2Dxy1x+y2dz]dxdy-⎰⎰[x+2(x2+y2)]dxdy Dxy2π1=⎰⎰(3-5x2-5y2)dxdy=⎰dθ⎰(3-5r2)rdr=Dxy00π.2九. (4分) 设函数ϕ(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分ϕ(y)dx+2xydy2x+y24L的值恒为同一常数.证明:对右半平面x>0内的任意分段光滑简单闭曲线C,有ϕ(y)dx+2xydy2x+y24C=0;【证明】将C分解为:C=l1+l2,另作一条曲线l3围绕原点且与C相接,则ϕ(y)dx+2xydy2x+y24C=ϕ(y)dx+2xydy2x+y24l1+l3-ϕ(y)dx+2xydy2x+y24l2+l3=0.。
合肥工业大学数学二模拟2010-2014五年16套试题
绝密*启用前2010年全国硕士研究生入学统一考试数学(二)试卷(模拟一)考生注意:本试卷共二十三题,满分150分,考试时间为3小时.一、选择题:1~8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个符合要求,把所选项前的字母填在题后的括号里.(1)设数列{}{},n n a b 对任意的正整数n 满足1n n n a b a +≤≤,则().(A)数列{}{},n n a b 均收敛,且lim lim n nn n a b →∞→∞=(B)数列{}{},n n a b 均发散,且lim lim n n n n a b →∞→∞==+∞(C)数列{}{},n n a b 具有相同的敛散性(D)数列{}{},n n a b 具有不同的敛散性(2)设()f x 满足(0)0f '=,32()[()]f x f x x '+=,则有().(A)(0)f 是()f x 的极大值(B)(0)f 是()f x 的极小值(C)(0,(0))f 是()y f x =的拐点(D)(0)f 不是()f x 的极值,且(0,(0))f 也不是()y f x =的拐点(3)下列直线中,不是..曲线1(1)x xy e =+的渐近线的为().(A)0y =(B)1y =(C)y e=(D)0x =(4)设410sin x I dx x π=⎰,420tan x I dx x π=⎰,4301cos I dx xπ=⎰,则有().(A)123I I I <<(B)321I I I <<(C)213I I I <<(D)312I I I <<(5)设函数(,)f x y 在点000(,)P x y 处的两个偏导数00(,)x f x y ',00(,)y f x y '都存在,则().(A)(,)f x y 在点0P 处必连续(B)(,)f x y 在点0P 处必可微(C)000lim (,)lim (,)x x y y f x y f x y →→=(D)00lim (,)x x y y f x y →→存在(6)设()f x 为任一连续函数,a 是非零常数,则下列结论正确的是().(A)若()f t 为奇函数,则0()xya dy f t dt ⎰⎰是x 的奇函数(B)若()f t 为偶函数,则0()xyady f t dt ⎰⎰是x 的奇函数(C)若()f t 为奇函数,则0()xaydy f t dt ⎰⎰是x 的奇函数(D)若()f t 为偶函数,则()xydy f t dt ⎰⎰是x 的奇函数(7)设B A ,为n 阶方阵,且)()(B r AB r <,则必有().(A)0||=B (B)0||=A (C)0||≠B (D)0||≠A (8)若0=x A 的解都是0 =x B 的解,则下列命题中正确的是().(A)B A ,的行向量组等价(B)B A ,的列向量组等价(C)A 的行向量组可由B 的行向量组线性表示(D)B 的行向量组可由A 的行向量组线性表示二、填空题:9~14小题,每小题4分,共24分.把答案填在题中的横线上.(9)44412lim 12n nnnn n →∞⎡⎤+++=⎢⎥+++⎣⎦ .(10)23221(cos )422x x x dx -+-=⎰.(11)函数222()2()()u x y y z z x =---+-在点0(1,2,2)M 处方向导数的最大值是.(12)微分方程10x y y xe x'''--=的通解为.(13)由半圆21x y =-与三条直线1y =-,1y =,2x =所围成的平面图形D 的形心坐标为.(14)设,A B 均为三阶方阵,且3,4A B ==,则*10(2)(3)A B -=.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.(15)设23,310x t t y ty ⎧=-⎨++=⎩确定函数()y y x =,求202|t d ydx =.(16)设函数(),()f x g x 在[,]a b 上有连续二阶导数,若()()f a g a =,()()f b g b =,00()()f x g x >,其中0(,)x a b ∈,证明:在(,)a b 内至少存在一点ξ,使()()f g ξξ''''<.(17)利用变换t x =化简微分方程23242(1)6xd y dyx x y e dx dx+--=(0)x >,并求出原方程的通解.(18)计算不定积分arctan 1xdx x +⎰.(19)设()f x 在[0,]a 上非负,(0)0f =,()0f x ''>,求证:2()()3aaxf x dx a f x dx >⎰⎰.(20)设(,)f u v 有二阶连续偏导数,()u ϕ有二阶导数,令22[,()]z f x y xy ϕ=-,求2zx y∂∂∂.(21)计算二重积分{}2max ,DI x x y d σ=⎰⎰,其中:01D x ≤≤,11y -≤≤.(22)(Ⅰ)设n 维向量组12,,,,s αααβ 线性相关,证明:β可唯一地由12,,,s ααα 线性表示的充要条件是12,,,s ααα 线性无关;(Ⅱ)设4维向量组1122334(1,,0,0),(1,,1,0),(1,,1,1),(1,,0,1)TTTTb b b b αααβ====,且β可唯一地由123,,ααα线性表示,求常数1234,,,b b b b 满足的条件.(23)设三阶实对称矩阵A 的秩为2,且AB C =,其中⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=110011,110011C B ,求A 的所有特征值与特征向量,并求矩阵A 及9999A .绝密*启用前2010年全国硕士研究生入学统一考试数学(二)试卷(模拟二)考生注意:本试卷共二十三题,满分150分,考试时间为3小时.一、选择题:1~8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个符合要求,把所选项前的字母填在题后的括号里.(1)已知当x →0时,22(11)ln(1)x x --+是比ln(1)nx +高阶的无穷小,而ln(1)nx +是比ln cos x 高阶的无穷小,则正整数n 等于().(A)4(B)3(C)2(D)1(2)设极限3()()lim1x af x f a x a→-=-,则函数()f x 在点x a =处必().(A)取极大值(B)取极小值(C)可导(D)不可导(3)设()f x 是(,)a b 区间上的连续函数,()F x 是()f x 在(,)a b 上的一个原函数,则().(A)当()f x 在(,)a b 内无界时,()F x 在(,)a b 内也无界(B)当()f x 在(,)a b 内有界时,()F x 在(,)a b 内也有界(C)当()f x 在(,)a b 内单调上升时,()F x 在(,)a b 内也单调上升(D)当()f x 在(,)a b 内单调下降时,()F x 在(,)a b 内也单调下降(4)设1,0,()0,0xe xf x x -⎧⎪≠=⎨⎪=⎩则下列结论不正确的是().(A)()f x 在点0x =处连续(B)()f x 在点0x =处可导(C)()f x 在点0x =处取极值(D)点(0,0)为曲线()y f x =的拐点(5)设(,)f x y 在区域D 内具有二阶偏导数,则().(A)必有22f fx y y x∂∂=∂∂∂∂(B)(,)f x y 在D 内必连续(C)(,)f x y 在D 内必可微分(D)以上三个结论都不正确(6)将极坐标系下的二次积分2sin 24(cos ,sin )I d f r r rdr πθπθθθ=⎰⎰,化为直角坐标系下的二次积分,则I =()(A)2110(,)x x dx f x y dy -⎰⎰(B)21011(,)xx dx f x y dy--⎰⎰(C)2122001(,)(,)yy y dy f x y dx dy f x y dx-+⎰⎰⎰⎰(D)2120(,)y y ydy f x y dx-⎰⎰(7)A 为m n ⨯矩阵,m E 为m 阶单位阵,,()m n r A m <=,则下列命题①A 经初等行变换为(,0)m E ;②A 经初等列变换为(,0)m E ;③TA A 正定;④TAA 正定;⑤Ax b =必有解;⑥0Ax =仅有零解中正确的个数有()个.(A)1(B)2(C)3(D)4(8)设四阶方阵100000101000010,0010010000011000A B ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,则以下结论正确的是().(A)0A B +=(B)A 与B 相似(C)A 与B 合同但不相似(D)A 与B 等价但不合同二、填空题:9~14小题,每小题4分,共24分.把答案填在题中的横线上.(9)设函数3()f x x x =,则使得()(0)n f 存在的最大自然数n =.(10)设1()(1)f x x x =-,求高阶导数(2010)1()2f =.(11)曲线(1)y x x =-与x 轴所围图形绕y 轴旋转一周所得旋转体的体积为.(12)微分方程,,,y y y =满足初始条件,(0)0,(0)2y y ==的特解为y =.(13)设D 是由曲线sin ()22y x x ππ=-≤≤和直线,12x y π=-=所围成的区域,f 是连续函数,则3231()Dx y f x y dxdy ⎡⎤++=⎣⎦⎰⎰.(14)设三阶矩阵122212304A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,三维列向量11t α⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦。
高等数学(下)_合肥工业大学中国大学mooc课后章节答案期末考试题库2023年
高等数学(下)_合肥工业大学中国大学mooc课后章节答案期末考试题库2023年1.设【图片】为微分方程【图片】的特征方程的单根,则【图片】________.参考答案:12.若【图片】且【图片】则该方程通解中的常数【图片】________.参考答案:3.设有直线【图片】及平面【图片】则直线【图片】()参考答案:垂直于4.设【图片】当【图片】为奇数时,【图片】____________.参考答案:5.过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程是()参考答案:3x-7y+5z-4=06.若区域【图片】为【图片】则【图片】___________.参考答案:7.过以下三点(1,1,-1)、(-2,-2,2)、(1,-1,2)的平面方程是()参考答案:x-3y-2z=08.设向量【图片】则向量【图片】在【图片】轴上的投影为____________.参考答案:139.若级数【图片】收敛【图片】,则下列结论正确的是()参考答案:一定收敛10.已知【图片】且【图片】收敛,则【图片】()参考答案:绝对收敛11.设【图片】则级数()参考答案:收敛而发散12.若级数【图片】发散,【图片】收敛,则【图片】发散。
参考答案:正确13.若级数【图片】收敛,则【图片】也收敛()参考答案:错误14.若级数【图片】收敛,则级数【图片】收敛()参考答案:错误15.设【图片】则【图片】()参考答案:816.设【图片】是球面【图片】的外侧,且【图片】则曲面积分【图片】————.参考答案:1217.设【图片】是平面【图片】被圆柱面【图片】所截的有限部分,则曲面积分【图片】————.参考答案:18.设【图片】是锥面【图片】介于【图片】与【图片】之间的部分,则曲面积分【图片】____________.参考答案:19.设向量【图片】和【图片】则【图片】__________.参考答案:220.直线【图片】与直线【图片】的夹角余弦为__________.参考答案:21.已知【图片】且【图片】,则【图片】在点【图片】处().参考答案:连续,偏导数存在,且可微22.已知【图片】为某函数的全微分,则【图片】__________.参考答案:223.计算【图片】____________,其中【图片】是以【图片】为顶点的正方形围成.参考答案:24.设【图片】是由【图片】所围成的空间闭区域,则【图片】().参考答案:2425.一向量的终点在点B(2,-1,7),它在x轴、y轴、z轴上的投影依次为4,-4,7,则该向量的起点A的坐标为()参考答案:(-2,3,0)26.设【图片】是圆锥面【图片】的外侧,则【图片】————.参考答案:27.下列关于【图片】在点【图片】的性质说法正确的是().参考答案:在处连续,则在点可微;28.若函数【图片】满足【图片】则【图片】________.参考答案:129.设微分方程【图片】的特解形式为【图片】则【图片】________.参考答案:430.在过点【图片】和【图片】的曲线簇【图片】中,当【图片】()时,沿着该曲线从【图片】到【图片】的积分【图片】的值为最小.参考答案:131.下列关于【图片】在点【图片】的性质说法正确的是().参考答案:偏导数连续,则沿任意方向方向导数存在;32.设有下列命题:(1)若【图片】收敛,则【图片】收敛;(2)若【图片】收敛,则【图片】收敛;(3)若【图片】,则【图片】发散;(4)若【图片】收敛,则【图片】都收敛。
合工大高数下(复习)
注:① 两类曲线积分之间的联系
L
P ( x , y )d x Q( x , y )d y P ( x , y )cos Q( x , y )cos d s
② 运用积分曲线方程简化计算!
§3 格林公式
Q P P ( x , y )d x Q( x , y )d y d L x y D 注:① L 封闭正向(补) ;② P ( x , y ), Q ( x , y ) 在 D 内偏导连续(挖) !
f ( x , y )d y d y
c
d
2 ( y)
1 ( y)
f ( x , y )d x
注:选择积分次序(根据积分区域特点、被积函数特点) 交换积分次序! ② 利用极坐标:
f ( x , y )d f (r cos , r sin )r d r d
x x(t ) ① y y( t ) 在 M 0 x ( t 0 ), y ( t 0 ), z ( t 0 ) 的切向量: x ( t 0 ), y ( t 0 ), z ( t 0 ) z z( t ) x x F ( x, y, z ) 0 ② y y( x ) 在 M 0 ( x0 , y0 , z0 ) 的切向量: 1, y( x0 ), z ( x0 ) G( x, y, z ) 0 z z( x )
x x区域连续! §3 偏导数 分段函数在分段点处的偏导数:
f x ( x0 , y0 ) lim
f ( x 0 x , y0 ) f ( x 0 , y0 ) x 0 x f ( x 0 , y 0 y ) f ( x 0 , y0 ) f y ( x0 , y0 ) lim y 0 y
合肥学院高数下册试题库(按知识点分)
高等数学下册试题库一、填空题 1.平面01=+++kz y x 与直线112zy x =-=平行的直线方程是___________2. 过点)0,1,4(-M 且与向量)1,2,1(=a 平行的直线方程是________________3. 设k i b k j i aλ+=-+=2,4,且b a ⊥,则=λ__________4. 设1)(,2||,3||-===a b b a ,则=∧),(b a ____________5. 设平面0=+++D z By Ax 通过原点,且与平面0526=+-z x 平行,则__________________,_______,===D B A6.设直线)1(221-=+=-z y m x λ与平面025363=+++-z y x 垂直,则___________________,==λm7.直线⎩⎨⎧==01y x ,绕z 轴旋转一周所形成的旋转曲面的方程是_______________8. 过点)1,0,2(-M 且平行于向量)1,1,2(-=a 及)4,0,3(b 的平面方程是__________ 9. 曲面222y x z+=与平面5=z 的交线在xoy 面上的投影方程为__________10. 幂级数12nnn n x ∞=∑的收敛半径是____________ 11. 过直线1 3222x z y --=+=-且平行于直线 1 1 3023x y z +-+==的平面方程是_________________ 12. 设),2ln(),(xyx y x f +=则__________)0,1('=y f13. 设),arctan(xy z =则____________,__________=∂∂=∂∂yz x z 14. 设,),(22y x y x xy f +=+则=),('y x f x ____________________15. 设,yxz =则=dz _____________ 16. 设,),(32y x y x f =则=-)2,1(|dz ______________17. 曲线t t z t y t x cos sin ,sin ,cos +===,在对应的0=t 处的切线与平面0=-+z By x 平行,则=B __________18. 曲面22y x z +=在点)2,1,1(处的法线与平面01=+++z By Ax 垂直,则==B A ________,______________19. 设}2,0,1{-=a ,}1,1,3{-=b ,则b a ⋅=________, b a ⨯=____________ 20. 求通过点)4,1,2(0-M 和z 轴的平面方程为________________21. 求过点)0,1,0(0M 且垂直于平面023=+-y x 的直线方程为_______________22. 向量d 垂直于向量]1,3,2[-=a 和]3,2,1[-=b ,且与]1,1,2[-=c的数量积为6-,则向量d=___________________23. 向量b a 57-分别与b a 27-垂直于向量b a 3+与b a 4-,则向量a 与b的夹角为_______________24. 球面9222=++z y x 与平面1=+z x 的交线在xOy 面上投影的方程为______________25. 点)1,`1,2(0-M 到直线l :⎩⎨⎧=+-+=-+-032012z y x z y x 的距离d 是_________________26. 一直线l 过点)0,2,1(0M 且平行于平面π:042=-+-z y x ,又与直线l :122112-=-=-x y x 相交,则直线l 的方程是__________________ 27. 设____________b 3a 2则,3πb a 2,b 5,a =-=⎪⎪⎭⎫ ⎝⎛⋅==∧28. 设知量b ,a满足{}a b 3,a b 1,1,1⋅=⨯=-,则____________b ,a =⎪⎪⎭⎫ ⎝⎛∧29. 已知两直线方程13z 02y 11x :L 1--=-=-,1z11y 22x L :2=-=+,则过1L 且平行2L 的平面方程是__________________ 30. 若2=b a ,π()2=a,b ,则=⨯b a 2 ,=⋅b a ____________31. =∂∂=xz,x z y则______________. y z ∂∂=_________________ 32. 设 ()()()____________2,1z ,x y x,sin x 11y z x 32='++-=则33. 设 ()1ylnx x lny y x ,u -+= 则 ______________________du = 34. 由方程2z y x xyz 222=+++确定()y x ,z z =在点()1,0,1-全微分=dz ______35. ()222yx f y z -+= ,其中()u f 可微,则 ___________yzx z y =∂∂+∂∂36. 曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为 _________________37. 过原点且垂直于平面022=+-z y 的直线为__________________ 38. 过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 _________________ 39. 与平面062=-+-z y x 垂直的单位向量为______________ 40. )yx(x z 2ϕ=,(u)ϕ可微,则 ____________yz y x z 2=∂∂+∂∂ 41. 已知22lny x z +=,则在点)1,2(处的全微分_________________=dz42. 曲面32=+-xy e z z在点)0,2,1(处的切平面方程为___________________43. 设()y x z z .= 由方程02=+--z xy e z e ,求xz∂∂=________________ 44. 设()()xy x g y x f z,2+-=,其中()t f 二阶可导,()v u g ,具有二阶连续偏导数 有yx z2∂∂∂=___________________45. 已知方程y zln z x =定义了()y x z z .=,求22xz∂∂=_____________46. 设()z y x f u..=,()0..2=Φz e x y ,x y sin =,其中f,Φ都具有一阶连续偏导数,且0z≠∂∂ϕ,求dx dz=______________________47. 交换积分次序=⎰⎰-221),(y ydx y x f dy _______________________________48. 交换积分次序dx y x f dy dx y x f dy y y⎰⎰⎰⎰-+2120100),(),(=___________________49. _________==⎰⎰dxdy xe I Dxy其中}10,10),({≤≤≤≤=y x y x D50.=I ________)23(=+⎰⎰dxdy y x D,其中D 是由两坐标轴及直线2=+y x 所围51. =I ________1122=++⎰⎰dxdy yx D,其中D 是由422≤+y x 所确定的圆域 52. =I ___________222=--⎰⎰dxdy y x a D,其中D :222a y x ≤+53. =I ________)6(=+⎰⎰dxdy y x D,其中D 是由1,5,===x x y x y 所围成的区域54.⎰⎰-2202xy dy edx = _____________________55. 设L 为922=+y x ,则→→→-+-=j x x i y xy F )4()22(2按L 的逆时针方向运动一周所作的功为.___________ 56. 曲线()⎩⎨⎧+==1,2,7y3x z 2xy 22在点处切线方程为______________________ 57. 曲面22y 2x z +=在(2,1,3)处的法线方程为_____________________ 58.∑∞=11n p n ,当p 满足条件 时收敛 59. 级数()∑∞=---1221n nn n 的敛散性是__________60.nn nx a∑∞=1在x=-3时收敛,则n n n x a ∑∞=1在3<x 时61. 若()∑∞=1ln n n a 收敛,则a 的取值范围是_________62. 级数)21)1(1(1nn n n -+∑∞=的和为63. 求出级数的和()()∑∞=+-112121n n n =___________ 64. 级数∑∞=02)3(ln n nn的和为 _____ 65. 已知级数∑∞=1n n u 的前n 项和1+=n ns n ,则该级数为____________ 66. 幂级数nn n x n∑∞=12的收敛区间为67. ∑∞=--11212n n n x 的收敛区间为 ,和函数)(x s 为68. 幂级数∑∞=≤<0)10(n p np nx 的收敛区间为69. 级数∑∞=+011n na当a 满足条件 时收敛 70. 级数()2124nnn x n ∞=-∑的收敛域为 ______71. 设幂级数nn n a x∞=∑的收敛半径为3,则幂级数11(1)n nn na x ∞+=-∑的收敛区间为 _____72. 231)(2++=x x x f 展开成x+4的幂级数为 ,收敛域为 73. 设函数)21ln()(2x x x f --=关于x 的幂级数展开式为 __________,该幂级数的收敛区间为 ________ 74. 已知1ln ln ln =++x z z y y x ,则=∂∂⋅∂∂⋅∂∂zyy x x z ______ 75. 设xy y x z )1(22++= y,那么=∂∂xz_____________,=∂∂y z _____________ 76. 设D 是由2=xy及3=+y x 所围成的闭区域,则=⎰⎰Ddxdy _______________77. 设D是由1||=+y x 及1||=-y x 所围成的闭区域,则=⎰⎰Ddxdy _______________78.=+⎰Cds y x )(22________________,其中C为圆周)20(sin ,cos π≤≤==t t a y t a x79.=-⎰Ldx y x )(22________________,其中L 是抛物线2x y =上从点()0,0到点()4,2的一段弧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题(每小题3分,共15分)
1、椭球面∑:222
216x y z ++=在点
0(2,2,2)P 处的切平面方程是___________.
2、设曲线L 的方程为2
21x
y +=,则
2
[()
]L
x y y ds +-=⎰ .
3、设
()2
1,
0,1,0,
x f x x x ππ--<≤⎧=⎨+<≤⎩ 则其以2π为周期的傅里叶级数在点x π=处收敛
于 .
4、微分方程220y y y '''++=的通解为 .
5、设2
3
(,,)2f x y z x y z
=++,则
(1,1,1)grad f = .
二、选择题(每小题3分,共15分) 1、设2
2
2z
x y ze ++=,则11
x y dz
===( )
2
、二次积分
2
(,)dx f x y dy ⎰
化为极坐
标下累次积分为( )
3、微分方程sin y y x x '''+=+的特解形式可设为( ).
(A )*()sin cos y x ax b A x B x =+++ (B )*(sin cos )y ax b x A x B x =+++ (C )*(sin cos )y x ax b A x B x =+++ (D )*sin cos y ax b A x B x =+++ 4、直线
1121
410214
x y z x y z -+-==-++=-与平面2的位置关系是( )
)(A l ∥π但l 不在π上 )(B l 在平面π上 )(C l ⊥π )(D l 与π斜交
5、设曲面∑的方程为2
22,x
y z z ++=,
1∑为∑
在第一卦限的部分,则下列结论不正
..
确.
的是( ).
(A )
0xdS ∑
=⎰⎰ (B )
0zdS ∑
=⎰⎰
(C )
1
224z dS z dS ∑
∑=⎰⎰⎰⎰ (D )2
2
x dS y dS ∑
∑
=⎰⎰⎰⎰
三、(本题满分10分)设
(,)sin x
z f xy y y =+,其中f 具有二阶连续偏
导数,求2,z z x x y
∂∂∂∂∂. 四、(本题满分12分)求
22(,)2f x y x y =-+在椭圆域D :
2
2
14
y x +≤上的最大值和最小值.
五、(本题满分10分)计算二重积分:
2D
I y x d σ=-⎰⎰,其中
:11,02D x y -≤≤≤≤.
六、(本题满分12分)已知积分
22(5())()x x
L
y ye f x dx e f x dy ---+⎰与路径无关,且
6
(0)5
f =
.求()f x ,并计算
(2,3)
22(1,0)
(5())(x x I y ye f x dx e f x
--=-+⎰
.
七、(本题满分12分)计算积分
223222
()(xz dydz x y z dzdx I x y z ∑
+-+=++⎰⎰
,其中∑是上半球
面
z =,取上侧.
八、(本题满分10分).求幂级数
∑∞
=---1
2112)1(n n
n x n 的收敛域及和函数,并求数项级数∑∞
=---1
1
12)1(n n n 的和.
九、(本题满分4分)设0(1,2,3,...)n u n ≠=,
且lim
1n n
n
u →∞=,则级数
11
1
11
(1)(
)n n n n u u ∞
+=+-+∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛?。