高二数学条件概率综合测试题

合集下载

高中数学条件概率综合测试题(含答案)

高中数学条件概率综合测试题(含答案)

高中数学条件概率综合测试题(含答案)选修2-3 2.2.1 条件概率一、选择题1.下列式子成立的是()A.P(A|B)=P(B|A)B.0P(B|A)1C.P(AB)=P(A)P(B|A)D.P(AB|A)=P(B)[答案] C[解析] 由P(B|A)=P(AB)P(A)得P(AB)=P(B|A)P(A).2.在10个形状大小均相同的球中有6个红球和4个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率为()A.35B.25C.110D.59[答案] D[解析] 设第一次摸到的是红球(第二次无限制)为事件A,则P(A)=69109=35,第一次摸得红球,第二次也摸得红球为事件B,则P(B)=65109=13,故在第一次摸得红球的条件下第二次也摸得红球的概率为P=P(B)P(A)=59,选D. 3.已知P(B|A)=13,P(A)=25,则P(AB)等于()A.56B.910C.215D.115[答案] C[解析] 本题主要考查由条件概率公式变形得到的乘法公式,P(AB)=P(B|A)P(A)=1325=215,故答案选C.4.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是()A.14B.13C.12D.35[答案] B[解析] 抛掷红、黄两颗骰子共有66=36个基本事件,其中红色骰子的点数为4或6的有12个基本事件,两颗骰子点数之积包含46,64,65,66共4个基本事件.所以其概率为4361236=13.5.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是()A.56B.34C.23D.13[答案] C6.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830.则在吹东风的条件下下雨的概率为()A.911B.811C.25D.89[答案] D[解析] 设事件A表示“该地区四月份下雨”,B表示“四月份吹东风”,则P(A)=1130,P(B)=930,P(AB)=830,从而吹东风的条件下下雨的概率为P(A|B)=P(AB)P(B)=830930=89.7.一个口袋中装有2个白球和3个黑球,则先摸出一个白球后放回,再摸出一个白球的概率是()A.23B.14C.25D.15[答案] C[解析] 设Ai表示第i次(i=1,2)取到白球的事件,因为P(A1)=25,P(A1A2)=2525=425,在放回取球的情况P(A2|A1)=252525=25.8.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为()A.1 B.12C.13D.14[答案] B[解析] 设Ai表示第i次(i=1,2)抛出偶数点,则P(A1)=1836,P(A1A2)=1836918,故在第一次抛出偶数点的概率为P(A2|A1)=P(A1A2)P(A1)=183********=12,故选B.二、填空题9.某人提出一个问题,甲先答,答对的概率为0.4,如果甲答错,由乙答,答对的概率为0.5,则问题由乙答对的概率为________.[答案] 0.310.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为________.[答案] 9599[解析] 设“第一次抽到次品”为事件A,“第二次抽到正品”为事件B,则P(A)=5100,P(AB)=51009599,所以P(B|A)=P(AB)P(A)=9599.准确区分事件B|A与事件AB的意义是关键.11.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则这时另一个小孩是男孩的概率是________.[答案] 12[解析] 一个家庭的两个小孩只有3种可能:{两个都是男孩},{一个是女孩,另一个是男孩},{两个都是女孩},由题目假定可知这3个基本事件的发生是等可能的.12.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为________.[答案] 3350[解析] 根据题意可知取出的一个数是不大于50的数,则这样的数共有50个,其中是2或3的倍数共有33个,故所求概率为3350.三、解答题13.把一枚硬币任意掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,求P(B|A).[解析] P(B)=P(A)=12,P(AB)=14,P(B|A)=P(AB)P(A)=1412=12.14.盒中有25个球,其中10个白的、5个黄的、10个黑的,从盒子中任意取出一个球,已知它不是黑球,试求它是黄球的概率.[解析] 解法一:设“取出的是白球”为事件A,“取出的是黄球”为事件B,“取出的是黑球”为事件C,则P(C)=1025=25,P(C)=1-25=35,P(BC)=P(B)=525=15P(B|C)=P(BC)P(C)=13.解法二:已知取出的球不是黑球,则它是黄球的概率P=55+10=13.15.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少?(2)从2号箱取出红球的概率是多少?[解析] 记事件A:最后从2号箱中取出的是红球;事件B:从1号箱中取出的是红球.P(B)=42+4=23,P(B-)=1-P(B)=13.(1)P(A|B)=3+18+1=49.(2)∵P(A|B-)=38+1=13,P(A)=P(AB)+P(AB-)=P(A|B)P(B)+P(A|B-)P(B-)=4923+1313=1127.16.某校高三(1)班有学生40人,其中共青团员15人.全班分成4个小组,第一组有学生10人,共青团员4人.从该班任选一个作学生代表.(1)求选到的是第一组的学生的概率;(2)已知选到的是共青团员,求他是第一组学生的概率.[解析] 设事件A表示“选到第一组学生”,事件B表示“选到共青团员”.(1)由题意,P(A)=1040=14.(2)要求的是在事件B发生的条件下,事件A发生的条件概率P(A|B).不难理解,在事件B发生的条件下(即以所选到的学生是共青团员为前提),有15种不同的选择,其中属于第一组的有4种选择.因此,P(A|B)=415.。

高二数学 条件概率练习题 试题

高二数学 条件概率练习题 试题

高二数学条件概率练习题班级某某1、袋中共有5个球,其中3个新球,2个旧球,每次取1个,无放回地取2次,则第二次取到新球的概率是( ). A.53 B.43 C.21 D.103 2、设A 、B 是两个随机事件,且,0)(,1)(0><<B P A P )|()|(A B P A B P =,则必有( ). A.)|()|(B A P B A P = B.)|()|(B A P B A P ≠C.)()()(B P A P AB P =D.)()()(B P A P AB P ≠3、已知p(AB)=103, P(A)=53, 则P(B|A)=( ) A.509 B.21 C.109 D.41 4、已知P(B|A) =21, P(A)=53, 则p(AB)=( ) A.65 B.109 C. 103 D.101 5、下列正确的是( )A.)|()|(A B P B A P =B.)()|(B P A B A P ≠C.)|()())A B P B P AB P =D.)()()|(B n AB n B A P = 6、在10个球中有6个红球和4个白球(各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第二次也摸到红球的概率为( )A.53B.52C.101D.95 7、把一枚硬币任意掷两次,事件A={第一次出现正面},事件B={第二次出现正面},则P(BA)=( )A.41B.21C.61D.81 8、当掷五枚硬币时,已知至少出现两个正面向上,则正好出现3个正面向上的概率为( ) A.135B.136C.261 D.41 9、设有10件产品,其中有4件次品,依次从中不放回地抽取一件产品,直到将次品取完为止.则抽取次数为7的概率为.10、甲、乙两班共有70名同学,其中女同学40名.设甲班有30名同学,而女生15名,问在碰到甲班同学时,正好碰到一名女同学的概率是。

11、从1—100个整数中,任取一数,已知取出的—数是不大于50的数,求它是2或3的倍数的概率是.12、袋中装有2n —1个白球,2n 个黑球,一次取出n 个球,发现都是同一种颜色的,问这种颜色是黑色的概率是。

高中数学高二专题14条件概率与全概率公式

高中数学高二专题14条件概率与全概率公式

专题14条件概率与全概率公式一、单选题1.某地的中学生中有60%的同学爱好滑冰,50%的同学爱好滑雪,70%的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为( ) A .0.8B .0.6C .0.5D .0.42.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 A .0.8B .0.75C .0.6D .0.45二、填空题3.52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A 的概率为;已知第一次抽到的是A ,则第二次抽取A 的概率为4.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以12,A A 和3A 表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号). ①()25P B =; ②()15|11P B A =; ③事件B 与事件1A 相互独立; ④123,,A A A 是两两互斥的事件;⑤()P B 的值不能确定,因为它与123,,A A A 中哪一个发生有关三、解答题5.在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表); (2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).四、单选题6.现随机安排甲、乙等4位同学参加校运会跳高、跳远、投铅球比赛,要求每位同学参加一项比赛,每项比赛至少一位同学参加,事件A =“甲参加跳高比赛”,事件B =“乙参加跳高比赛”,事件C =“乙参加跳远比赛”,则( ) A .事件A 与B 相互独立 B .事件A 与C 为互斥事件 C .()512P C A =D .()19P B A =7.甲罐中有5个红球,2个白球和3个黑球, 乙罐中有4个红球,3个白球和3个黑球(球除颜色外,大小质地均相同).先从甲罐中随机取出一球放入乙罐,分别以12,A A 和3A 表示由甲罐中取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐中取出的球是红球的事件.下列结论正确的个数是( ) ①事件1A 与2A 相互独立;②1A ,2A ,3A 是两两互斥的事件; ③24(|)11P B A =;④()922P B =; ⑤14(|)9P A B = A .5B .4C .3D .2五、多选题8.设A ,B 是一个随机试验中的两个事件,且()13P A =,()34P B =,()12P A B +=,则( ) A .()16P AB =B .()34P B A =C .()()P B P B A =D .()712P AB AB +=9.随着春节的临近,小王和小张等4位同学准备互相送祝福.他们每人写了一个祝福的贺卡,这四张贺卡收齐后让每人从中随机抽取一张作为收到的新春祝福,则( ) A .小王和小张恰好互换了贺卡的概率为16B .已知小王抽到的是小张写的贺卡的条件下,小张抽到小王写的贺卡的概率为13C .恰有一个人抽到自己写的贺卡的概率为13D .每个人抽到的贺卡都不是自己写的概率为5810.有3台车床加工同一型号的零件,第1台加工的次品率为8%,第2台加工的次品率为3%,第3台加工的次品率为2%,加工出来的零件混放在一起.已知第1,2,3台车床加工的零件数分别占总数的10%,40%,50%,从混放的零件中任取一个零件,则下列结论正确的是( )A .该零件是第1台车床加工出来的次品的概率为0.08B .该零件是次品的概率为0.03C .如果该零件是第3台车床加工出来的,那么它不是次品的概率为0.98D .如果该零件是次品,那么它不是第3台车床加工出来的概率为13六、解答题11.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是…,2t X -,1t X -,t X ,1t X +,…,那么1t X +时刻的状态的条件概率仅依赖前一状态t X ,即()()1211,,,t t t t t t P X X X X P X X +--+⋅⋅⋅=. 现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型.假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为50%,且每局赌赢可以赢得1元,每一局赌徒赌输的概率为50%,且赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:一种是手中赌金为0元,即赌徒输光;一种是赌金达到预期的B 元,赌徒停止赌博.记赌徒的本金为()*N ,A A A B ∈<,赌博过程如下图的数轴所示.当赌徒手中有n 元(0n B ≤≤,N n ∈)时,最终输光的概率为........()P n ,请回答下列问题: (1)请直接写出()0P 与()P B 的数值.(2)证明(){}P n 是一个等差数列,并写出公差d .(3)当100A =时,分别计算200B =,1000B =时,()P A 的数值,并结合实际,解释当B →∞时,()P A 的统计含义.12.某游戏中的角色“突击者”的攻击有一段冷却时间(即发动一次攻击后需经过一段时间才能再次发动攻击).其拥有两个技能,技能一是每次发动攻击后有12的概率使自己的下一次攻击立即冷却完毕并直接发动,该技能可以连续触发,从而可能连续多次跳过冷却时间持续发动攻击;技能二是每次发动攻击时有12的概率使得本次攻击以及接下来的攻击的伤害全部变为原来的2倍,但是多次触发时效果不可叠加(相当于多次触发技能二时仅得到第一次触发带来的2倍伤害加成).每次攻击发动时先判定技能二是否触发,再判定技能一是否触发.发动一次攻击并连续多次触发技能一而带来的连续攻击称为一轮攻击,造成的总伤害称为一轮攻击的伤害.假设“突击者”单次攻击的伤害为1,技能一和技能二的各次触发均彼此独立: (1)当“突击者”发动一轮攻击时,记事件A 为“技能一和技能二的触发次数之和为2”,事件B 为“技能一和技能二各触发1次”,求条件概率()P B A(2)设n是正整数,“突击者”一轮攻击造成的伤害为2n的概率记为n P,求n P.13.假设有两个密闭的盒子,第一个盒子里装有3个白球2个红球,第二个盒子里装有2个白球4个红球,这些小球除颜色外完全相同.(1)每次从第一个盒子里随机取出一个球,取出的球不再放回,经过两次取球,求取出的两球中有红球的条件下,第二次取出的是红球的概率;(2)若先从第一个盒子里随机取出一个球放入第二个盒子中,摇匀后,再从第二个盒子里随机取出一个球,求从第二个盒子里取出的球是红球的概率.14.为丰富学生的课外活动,学校羽毛球社团举行羽毛球团体赛,赛制采取5局3胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且上场顺序是随机的,每局比赛结果互不影响,经过小组赛后,最终甲乙两队进入最后的决赛,根据前期比赛的数据统计,甲队明星队员M对乙队的每名队员的胜率均为34,甲队其余4名队员对乙队每名队员的胜率均为12.(注:比赛结果没有平局)(1)求甲队明星队员M在前四局比赛中不出场的前提下,甲乙两队比赛4局,甲队最终获胜的概率;(2)求甲乙两队比赛3局,甲队获得最终胜利的概率;(3)若已知甲乙两队比赛3局,甲队获得最终胜利,求甲队明星队员M上场的概率.15.人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为12(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.①求选到的袋子为甲袋的概率,②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案;方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.参考答案:1.A【分析】先算出同时爱好两项的概率,利用条件概率的知识求解. 【详解】同时爱好两项的概率为0.50.60.70.4+-=, 记“该同学爱好滑雪”为事件A ,记“该同学爱好滑冰”为事件B , 则()0.5,()0.4P A P AB ==, 所以()0.4()0.8()0.5P AB P BA P A ===∣. 故选:A . 2.A【详解】试题分析:记A =“一天的空气质量为优良”,B =“第二天空气质量也为优良”,由题意可知()()0.75,0.6P A P AB ==,所以()()()4|5P AB P B A P A ==,故选A. 考点:条件概率. 3.1221117【分析】由题意结合概率的乘法公式可得两次都抽到A 的概率,再由条件概率的公式即可求得在第一次抽到A 的条件下,第二次抽到A 的概率.【详解】由题意,设第一次抽到A 的事件为B ,第二次抽到A 的事件为C , 则()()()()1431411221,(),|1525122152131713BC P BC P B P C B P B P =⨯======. 故答案为:1221;117. 4.②④【分析】根据互斥事件的定义即可判断④;根据条件概率的计算公式分别得出123,,A A A 事件发生的条件下B 事件发生的概率,即可判断②;然后由()()()123()P B P A B P A B P A B =++,判断①和⑤;再比较11()()()P A B P A P B ,的大小即可判断③.【详解】由题意可知事件123,,A A A 不可能同时发生,则123,,A A A 是两两互斥的事件,则④正确;由题意得()()()123544|,|,|111111P B A P B A P B A ===,故②正确; ()()()()()()()()()123133122()|||P B P A B P A B P A B P A P B A P A P B A P A P B A =++=++552434910111011101122=⨯+⨯+⨯=,①⑤错; 因为11559()()()104492222P A B P A P B ==⨯=,,所以事件B 与事件A 1不独立,③错;综上选②④故答案为:②④【点睛】本题主要考查了判断互斥事件,计算条件概率以及事件的独立性,属于中档题.5.(1)47.9岁; (2)0.89; (3)0.0014.【分析】(1)根据平均值等于各矩形的面积乘以对应区间的中点值的和即可求出; (2)设A ={一人患这种疾病的年龄在区间[20,70)},根据对立事件的概率公式()1()P A P A =-即可解出;(3)根据条件概率公式即可求出.【详解】(1)平均年龄(50.001150.002250.012350.017450.023x =⨯+⨯+⨯+⨯+⨯ 550.020650.017750.006850.002)1047.9+⨯+⨯+⨯+⨯⨯=(岁). (2)设A ={一人患这种疾病的年龄在区间[20,70)},所以()1()1(0.0010.0020.0060.002)1010.110.89P A P A =-=-+++⨯=-=.(3)设B =“任选一人年龄位于区间[40,50)”,C =“从该地区中任选一人患这种疾病”, 则由已知得:()()16%0.16,0.1%0.001,(|)0.023100.23P B P C P B C =====⨯=,则由条件概率公式可得从该地区中任选一人,若此人的年龄位于区间[40,50),此人患这种疾病的概率为()(|)()()0.0010.23(|)0.00143750.0014()0.16P BC P C P B C C B P B B P P ⨯====≈.6.C【分析】根据条件求出(),(),(),()P A P B P AB P AC ,由互斥事件的定义、相互独立事件的判定和条件概率公式进行逐一判断即可【详解】对于A ,每项比赛至少一位同学参加,则有2113421322C C C A 36A ⋅=不同的安排方法, 事件A =“甲参加跳高比赛”,若跳高比赛安排2人,则有33A 6=种方法;若跳高比赛安排1人,则有212312C C A 6=种方法,所以安排甲参加跳高比赛的不同安排方法共有6612+=种,则121()363P A ==,同理121()363P B ==, 若安排甲、乙同时参加跳高比赛,则跳高比赛安排2人为甲和乙,跳远、投铅球比赛各安排1人,有22A 2=种不同的安排方法,所以21()3618P AB ==, 因为()()()P AB P A P B ≠,事件A 与B 不相互独立故A 错误;对于B ,在一次试验中,不可能同时发生的两个事件称为互斥事件,事件A 与C 可以同时发生,故事件A 与C 不是互斥事件,故B 错误;对于C ,在安排甲参加跳高比赛的同时安排乙参加跳远比赛的不同安排方法有1132C +C 5=种,所以5()36P AC =,所以()5()5361()123P AC P C A P A ===,故C 正确; 对于D ,()1()1181()63P AB P B A P A ===,故D 错误. 故选:C 7.C【分析】先判断出1A ,2A ,3A 是两两互斥的事件,且不满足()()()1212P A A P A P A =⋅,①错误,②正确,用条件概率求解③⑤,用全概率概率求解④,得出结论. 【详解】显然,1A ,2A ,3A 是两两互斥的事件,且 ()1515232P A ==++,()2215235P A ==++,而()()()12120P A A P A P A =≠⋅,①错误,②正确;()2215235P A ==++,()214451155P A B =⨯=,所以24(|)11P B A =,③正确;()()()()()()()1122331541349211115101122P B P B A P A P B A P A P B A P A =⋅+⋅+⋅=⨯+⨯+⨯=④正确;()()()111552119922P A B P A B P B ⨯===,⑤错误,综上:结论正确个数为3.故选:C 8.BCD【分析】利用和事件的概率公式和条件概率公式可得. 【详解】对于A :()()()()P A B P A P B P AB +=+-,()111234P AB =+-, 所以()112P AB =,故A 错误; 对于B :()()()P AB P AB P A +=Q ,()11123P AB ∴+=,∴()14P AB =, ()()()134143P AB P B A P A ===,故B 正确;对于C :1()112()1()43P AB P B A P A ===,()14P B =,∴()()P B A P B =,故C 正确. 对于D :()()()()112P AB AB P AB P AB P AB +=+=+, ()()()P B P AB P AB =+Q ,∴()3144P AB =+,∴()12P AB =,∴()11712212P AB AB +=+=,所以D 正确. 故选:BCD. 9.BC【分析】计算出四个人每人从中随机抽取一张共有111432C C C 种抽法,根据古典概型的概率公式以及条件概率的概率公式计算各选项,可得答案.【详解】对于A,四个人每人从中随机抽取一张共有111432C C C 种抽法, 其中小王和小张恰好互换了贺卡的抽法有12C 种,故小王和小张恰好互换了贺卡的概率为12111432C 1C C C 12= ,A 错误; 对于B,设小王抽到的是小张写的贺卡为事件A , 则1132111432C C 1()C C C 4P A ==,小张抽到小王写的贺卡为事件B ,则已知小王抽到的是小张写的贺卡的条件下,小张抽到小王写的贺卡的概率为1()112(|)1()34P AB P B A P A === ,B 正确; 对于C, 恰有一个人抽到自己写的贺卡的抽法有14C 2⨯种,故恰有一个人抽到自己写的贺卡的概率为14111432C 21C C C 3⨯= ,C 正确;对于D, 每个人抽到的贺卡都不是自己写的抽法共有13C (12)9+=种,故每个人抽到的贺卡都不是自己写的概率为13111432C (12)93C C C 248+==,D 错误, 故选:BC 10.BC【分析】利用乘法公式、互斥事件加法求概率即可判断A ,B ;利用条件概率公式、对立事件即可判断C ,D .【详解】记事件A :车床加工的零件为次品,记事件i B :第i 台车床加工的零件,则1(|)8%P A B =,2(|)3%P A B =,3(|)2%P A B =,1()10%P B =,2()40%P B =,3()50%P B =, 对于A ,任取一个零件是第1台生产出来的次品概率为111()(|)()8%10%0.008P AB P A B P B ==⨯=,故A 错误;对于B ,任取一个零件是次品的概率为123()()()()8%10%3%40%2%50%0.03P A P AB P AB P AB =++=⨯+⨯+⨯=,故B 正确;对于C ,如果该零件是第3台车床加工出来的,那么它不是次品的概率为33()1()12%0.98P A B P A B =-=-=,故C 正确;对于D ,如果该零件是次品,那么它不是第3台车床加工出来的概率为()()()()3333(|)2%50%21(|)1110.033P AB P A B P B P B A P A P A ⨯-=-=-=-=,故D 错误.故选:BC .11.(1)()01P =,()0P B = (2)证明见解析;1d B=-(3)200B =时,()50%P A =,当1000B =时,()90%P A =,统计含义见解析【分析】(1)明确0n =和n B =的含义,即可得答案; (2)由全概率公式可得11()(1)(1)22P n P n P n =-++,整理为()()()()11P n P n P n P n --=+-,即可证明结论;(3)由(2)结论可得()1AP A B=-,即可求得200B =,1000B =时,()P A 的数值,结合概率的变化趋势,即可得统计含义.【详解】(1)当0n =时,赌徒已经输光了,因此()01P =.当n B =时,赌徒到了终止赌博的条件,不再赌了,因此输光的概率()0P B =. (2)记M :赌徒有n 元最后输光的事件,N :赌徒有n 元且下一场赢的事件, ()()(|)()(|)P M P N P M N P N P M N =+,即11()(1)(1)22P n P n P n =-++, 所以()()()()11P n P n P n P n --=+-, 所以(){}P n 是一个等差数列,设()()1P n P n d --=,则()()()()12,10P n P n d P P d ---=-=L ,, 累加得()(0)P n P nd -=,故()(0)P B P Bd -=,得1d B=-, (3)100A =,由()()0P n P nd -=得()()0P A P Ad -=,即()1A P A B=-, 当200B =时,()50%P A =, 当1000B =时,()90%P A =,当B →∞时,()1P A →,因此可知久赌无赢家, 即便是一个这样看似公平的游戏,只要赌徒一直玩下去就会100%的概率输光.【点睛】关键点睛:此题很新颖,题目的背景设置的虽然较为陌生复杂,但解答并不困难,该题将概率和数列知识综合到了一起,解答的关键是要弄明白题目的含义,即审清楚题意,明确11()(1)(1)22P n P n P n =-++,即可求解, 12.(1)89;(2)141118227n n ++⎡⎤⎛⎫⎛⎫-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.【分析】(1)分析试验过程,分别求出()P A 和()P AB ,利用条件概率的公式直接计算; (2)分析 “突击者”一轮攻击造成的伤害为2n ,分为:i.进行2n 次,均不触发技能二;前面的21n -次触发技能一,最后一次不触发技能一;ii.第一次触发技能二,然后的n 1-次触发技能一,第n 次未触发技能一;iii. 前面的()2,1,2,1k k n =-次未触发技能二,然后接着的第21k +次触发技能二;前面的1n k +-触发技能一,第n k +次未触发技能一. 分别求概率.即可求出n P .【详解】(1)两次攻击,分成下列情况:i.第一次攻击,技能一和技能二均触发,第二次攻击,技能一和技能二均未触发;ii .第一次攻击,技能一触发,技能二未触发,第二次攻击,技能二触发,技能一未触发;iii. 第一、二次攻击,技能一触发,技能二未触发,第三次攻击,技能一、二未触发;所以()111111*********2222222222222264P A =⨯⨯⨯+⨯⨯⨯+⨯⨯⨯⨯⨯=. ()111111111222222228P AB =⨯⨯⨯+⨯⨯⨯=.所以()1889964P B A ==.(2)“突击者”一轮攻击造成的伤害为2n ,分为:i. 记事件D :进行2n 次,均不触发技能二;前面的21n -次触发技能一,最后一次不触发技能一.其概率为:()221411112222n n nP D -⎛⎫⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ii. 记事件E :第一次触发技能二,然后的n 1-次触发技能一,第n 次未触发技能一.其概率为:()1111112222n n P E -+⎛⎫⎛⎫=⨯⨯= ⎪⎪⎝⎭⎝⎭iii. 记事件k F :前面的()2,1,2,1k k n =-次未触发技能二,然后接着的第21k +次触发技能二;前面的1n k +-触发技能一,第n k +次未触发技能一. 其概率为: ()21311111122222kn k n k k P F +-++⎛⎫⎛⎫⎛⎫=⨯⨯⨯= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,则事件121,n F F F -L 彼此互斥,记121n F F F F -=+++L , 所以()()()()121n F F F P P P F P -=++L ()31321311111222n n n n +++⨯++-+⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L()131131311112222112n n n n ++-++⎛⎫⎛⎫⎛⎫-⨯ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭=- ⎪⎝⎭⎛⎫- ⎪⎝⎭141111822172n n n +++⎡⎤⎛⎫⎛⎫-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎛⎫⎣⎦=- ⎪⎝⎭. 所以()()()n F P P D P E P =++141411118221112272n n n n n ++++⎡⎤⎛⎫⎛⎫-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎣⎦=++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭141411822127n n n++⎡⎤⎛⎫⎛⎫-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎛⎫⎣⎦=+⎪⎝⎭1481317272n n+⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭【点睛】关键点睛:这道题关键的地方是题意的理解,文字较多,要明白一轮攻击中含多次攻击,每次攻击判断技能的触发,在第二问中需要分多种情况进行讨论,然后用互斥事件的概率计算公式进行求解 13.(1)47(2)2235【分析】(1)利用对立事件的概率公式与条件概率公式,结合古典概型求解即可; (2)利用全概率公式,结合古典概型求解即可.【详解】(1)依题意,记事件i A 表示第i 次从第一个盒子里取出红球,记事件B 表示两次取球中有红球,则()()3237111541010P B P B =-=-⨯=-=,()()()()()()1212222132454547710P A A P A A P A B P A B P B P B ⨯⨯++⨯⨯====. (2)记事件1C 表示从第一个盒子里取出红球,记事件2C 表示从第一个盒子里取出白球,记事件D 表示从第二个盒子里取出红球,则()()()()()1122253422575735P D P C P D C P C P D C =+=⨯+⨯=. 14.(1)316(2)1380(3)913【分析】(1)事件B =“甲乙两队比赛4局甲队最终获胜”,事件j A =“甲队第j 局获胜”,利用互斥事件的概率求法求概率即可;(2)讨论M 上场或不上场两种情况,应用全概率公式求甲队获得最终胜利的概率; (3)利用贝叶斯公式求甲队明星队员M 上场的概率. 【详解】(1)事件B =“甲乙两队比赛4局甲队最终获胜”, 事件jA =“甲队第j 局获胜”,其中1,2,3,4,j =j A 相互独立.又甲队明星队员M 前四局不出场,故()1,1,2,3,42j P A j ==,123412341234B A A A A A A A A A A A A =++,所以()41313C 216P B ⎛⎫== ⎪⎝⎭.(2)设C 为甲3局获得最终胜利,D 为前3局甲队明星队员M 上场比赛, 由全概率公式知,()()()()()||P C P C D P D P C D P D =⋅+⋅,因为每名队员上场顺序随机,故()234335C A 3A 5PD ==,()321,55P D =-= ()()2313311|,|241628P C D P C D ⎛⎫⎛⎫⎛⎫=⨯=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()3312131658580P C =⨯+⨯=. (3)由(2),()()()()()()33|9165|131380P CD P C D P D P D C P C P C ⨯⋅====. 15.(1)1120(2)①19;②方案二中取到红球的概率更大.【分析】(1)根据全概率公式,解决抽签问题; (2)利用条件概率公式计算,根据数据下结论.【详解】(1)设试验一次,“取到甲袋”为事件1A ,“取到乙袋”为事件2A ,“试验结果为红球”为事件1B ,“试验结果为白球”为事件2B ,(1)()()()()()111121219121121021020P B P A P B A P A P B A =+=⨯+⨯=. 所以试验一次结果为红球的概率为1120. (2)①因为1B ,2B 是对立事件,()()219120P B P B =-=, 所以()()()()()()2111212221111029920P B A P A P A B P A B P B P B ⨯====, 所以选到的袋子为甲袋的概率为19.②由①得()()2212181199P A B P A B =-=-=, 所以方案一中取到红球的概率为:()()()()1121122121982591091018P P A B P B A P A B P B A =+=⨯+⨯=, 方案二中取到红球的概率为:()()()()22211121289123791091045P P A B P B A P A B P B A =+=⨯+⨯=,因为3754518>,所以方案二中取到红球的概率更大.。

高二数学概率综合试题答案及解析

高二数学概率综合试题答案及解析

高二数学概率综合试题答案及解析1.在一次口试中,要从10道题中随机抽出3道题进行回答,答对其中两道或两道以上的题可获得及格.某考生会回答10道题中的6道题,那么他(她)获得及格的概率是________.【答案】【解析】N=10,M=6,n=3,P=P(X=3)+P(X=2)=+==.2.为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从三个区中抽取6个工厂进行调查.已知区中分别有27,18,9个工厂.(Ⅰ)求从区中应分别抽取的工厂个数;(Ⅱ)若从抽得的6个工厂中随机地抽取2个进行调查结果的对比,求这2个工厂中至少有1个来自区的概率.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)由分层抽样的含义即可得总共有54个工厂,所以抽取的6个工厂占总数的,所以每个区域的工厂的个数即可求出.(Ⅱ)因为6个被抽到的工厂中,A区有3个工厂,B区有2个,C区有1个.从中抽取两个工厂共有15种情况,一一列举出来.通过数2个工厂中都没来自区的共有3种情况,所以符合2个工厂中至少有1个来自区的共有12种,即可求得结论.试题解析:解:(Ⅰ)由题可知,每个个体被抽取到得概率为;设三个区被抽到的工厂个数为,则所以,故三个区被抽到的工厂个数分别为(Ⅱ)设区抽到的工厂为,区抽到的工厂为,区抽到的工厂为则从6间工厂抽取2个工厂,基本事件有:,,,,,,,,,,,,,共15种情况;2个都没来自区的基本事件有,,共3种情况设事件“至少一个工厂来自区”为事件,则事件为“2个都没来自区”所以所以,至少有一个工厂来自区的概率为【考点】1.分层抽样的思想.2.概率的计算中含至少通常考虑从对立面出发.3.先后抛掷2枚均匀的一分、二分的硬币,观察落地后硬币的正、反面情况,则下列事件包含3个基本事件的是 ()A.“至少一枚硬币正面向上”;B.“只有一枚硬币正面向上”;C.“两枚硬币都是正面向上”;D.“两枚硬币一枚正面向上,另一枚反面向上”.【答案】A【解析】先后抛掷2枚均匀的一分、二分的硬币的基本事件有{正,正}、{正,反}、{反,正}、{反,反},故“至少一枚硬币正面向上”的目标事件有{正,正}、{正,反}、{反,正},故选A.【考点】做一次试验的基本事件个数.4.有甲、乙两个班,进行数学考试,按学生考试及格与不及格统计成绩后,得到如下的列联表根据表中数据,你有多大把握认为成绩及格与班级有关?附表:k【答案】没有理由认为成绩合格与班级有关【解析】解:由列联表中的数据,得所以,我们没有理由认为成绩合格与班级有关。

条件概率高中练习题及讲解及答案

条件概率高中练习题及讲解及答案

条件概率高中练习题及讲解及答案### 条件概率高中练习题及讲解#### 练习题一某班级有50名学生,其中男女生各半。

已知该班级有10名学生近视。

若随机抽取一名学生,该学生是男生的概率为P(A)=0.5,是近视的概率为P(B)=0.2。

求以下概率:1. 抽取的学生是男生且近视的概率P(AB)。

2. 抽取的学生是男生,给定他是近视的情况下的概率P(A|B)。

#### 解题步骤及讲解首先,我们需要理解条件概率的定义:P(A|B) = P(AB) / P(B)。

1. 计算P(AB):已知班级中男生和女生各半,近视学生占20%,那么男生中近视的学生比例为20%。

计算P(AB),即男生且近视的学生数占总学生数的比例,即:\[ P(AB) = \frac{10}{50} = 0.2 \]2. 计算P(A|B):根据条件概率公式,我们需要已知P(B)和P(AB)。

我们已经计算出P(AB)为0.2,而P(B)为0.2。

代入公式得:\[ P(A|B) = \frac{P(AB)}{P(B)} = \frac{0.2}{0.2} = 1 \]#### 练习题二在一个装有红球和蓝球的箱子中,红球有30个,蓝球有20个。

随机抽取一个球,求以下概率:1. 抽到红球的概率P(A)。

2. 若已知抽到的球是红球,再抽一个球,抽到蓝球的概率P(B|A)。

#### 解题步骤及讲解1. 计算P(A):红球总数占总球数的比例即为抽到红球的概率:\[ P(A) = \frac{30}{30+20} = \frac{30}{50} = 0.6 \]2. 计算P(B|A):已知抽到红球后,箱子中剩余的球数为49(30个红球和20个蓝球)。

此时抽到蓝球的概率为:\[ P(B|A) = \frac{20}{49} \]#### 练习题三某地区有两家医院,A医院和B医院。

A医院的诊断准确率为90%,B医院的诊断准确率为95%。

某患者分别在两家医院进行了检查,两家医院都诊断为阳性。

高二数学概率综合试题答案及解析

高二数学概率综合试题答案及解析

高二数学概率综合试题答案及解析1.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则()A.n=5,p=0.32B.n=4,p=0.4C.n=8,p=0.2D.n=7,p=0.45【答案】C【解析】因为随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,所以.【考点】随机变量的期望方差.2.从一副不含大小王的52张扑克牌中不放回地抽取2次,每次抽一张,已知第一次抽到A,则第二次也抽到A的概率为_________ .【答案】.【解析】由于第一次抽到A,则第二次抽牌时,还有3张A,共51张牌,而每张牌被抽到的概率是相等的,故第二次也抽到A的概率为.【考点】相互独立事件的概率乘法公式.3.抛掷一个骰子,若掷出5点或6点就说试验成功,则在3次试验中恰有2次成功的概率为__________。

【答案】【解析】抛掷一个骰子,若掷出5点或6点就说试验成功,则成功的概率为,则在3次试验中恰有2次成功的概率为。

【考点】等可能事件的概率4.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:喜爱打篮球不喜爱打篮球合计已知在全部50人中随机抽取1人,抽到喜爱打篮球的学生的概率为.(1)请将上表补充完整(不用写计算过程);(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;下面的临界值表供参考:(参考公式:,其中)【答案】(1)详见解析;(2)在犯错误的概率不超过0.005的前提下,认为喜爱打篮球与性别有关.【解析】(1)根据在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为,可得喜爱打篮球的学生,即可得到列联表;(2)利用公式求得K2,与临界值比较,即可得到结论.试题解析:列联表补充如下: 3分喜爱打篮球不喜爱打篮球合计(2)∵∴在犯错误的概率不超过0.005的前提下,认为喜爱打篮球与性别有关. 12分【考点】独立性检验..5.某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为,中将可以获得2分;方案乙的中奖率为,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,求的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?【答案】(1)(2)选择方案甲进行抽奖时,累计得分的数学期望最大【解析】解:(Ⅰ)由已知得:小明中奖的概率为,小红中奖的概率为,两人中奖与否互不影响,记“这2人的累计得分”的事件为A,则A事件的对立事件为“”,,这两人的累计得分的概率为. 6分(Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为,都选择方案乙抽奖中奖的次数为,则这两人选择方案甲抽奖累计得分的数学期望为,选择方案乙抽奖累计得分的数学期望为由已知:,,,他们都在选择方案甲进行抽奖时,累计得分的数学期望最大. 12分【考点】独立事件的概率以及期望点评:主要是考查了独立事件的概率以及期望值的运用,属于中档题。

高二数学概率综合试题

高二数学概率综合试题

高二数学概率综合试题1.从一副不含大小王的52张扑克牌中不放回地抽取2次,每次抽一张,已知第一次抽到A,则第二次也抽到A的概率为_________ .【答案】.【解析】由于第一次抽到A,则第二次抽牌时,还有3张A,共51张牌,而每张牌被抽到的概率是相等的,故第二次也抽到A的概率为.【考点】相互独立事件的概率乘法公式.2.若随机变量,则.【答案】10.【解析】因为,所以;由数学方差的性质,得.【考点】二项分布、数学方差的性质.3.有5支竹签,编号分别为1,2,3,4,5,从中任取3支,以X表示取出竹签的最大号码,则EX的值为 .【答案】4.5【解析】解:从中任取3支共有10种不同的取法,由题意可得:X可能取得数值为:3,4,5,当X=3时表示取出竹签的最大号码为3,其包含的事件有1个,所以P(X=3)=,当X=4时表示取出竹签的最大号码为4,其包含的事件有3个,所以P(X=4)=,当X=5时表示取出竹签的最大号码为5,其包含的事件有6个,所以P(X=5)=,所以EX=3×+4×5×=4.5.故答案为4.5【考点】离散型随机变量点评:本题主要考查离散型随机变量的期望,以及古典概率模型.4.下列五个命题:①对于回归直线方程,时,.②频率分布直方图中各小长方形的面积等于相应各组的频数.③若单调递增,则.④样本的平均值为,方差为,则的平均值为,方差为.⑤甲、乙两个乒乓球运动员进行乒乓球比赛,已知每一局甲胜的概率为0.6,乙胜的概率为0.4,比赛时可以用三局二胜或五局三胜制,相对于用五局三胜制,三局二胜制乙获胜的可能性更大. 其中正确结论的是(填上你认为正确的所有序号).【答案】③④⑤【解析】根据题意,对于①对于回归直线方程,时,.,不是准确值,是估计值,错误。

对于②频率分布直方图中各小长方形的面积等于相应各组的频数,应该是频率和为1.错误对于③若单调递增,则.成立。

对于④样本的平均值为,方差为,则的平均值为,方差为.成立。

高二数学条件概率练习题

高二数学条件概率练习题

高二数学条件概率练习题1. Alex有4件红色T恤和6件蓝色T恤,他每天都随机选择一件衣服穿。

已知当他穿上红色T恤时,下一次他选择蓝色T恤的概率是0.4;而当他穿上蓝色T恤时,下一次他选择红色T恤的概率是0.6。

现在已经确定,在第一天Alex穿了一件红色T恤。

求第三天Alex选择红色T恤的概率。

解析:设事件A为第一天Alex穿红色T恤,事件B为第二天Alex选择红色T恤,事件C为第三天Alex选择红色T恤。

首先,我们可以得到以下概率:P(B|A) = 0.6,即当第一天Alex穿红色T恤时,第二天选择红色T恤的概率为0.6;P(B|A') = 0.4,即当第一天Alex穿蓝色T恤时,第二天选择红色T恤的概率为0.4。

现在我们需要求解P(C|A),即当第一天Alex穿红色T恤时,第三天选择红色T恤的概率。

根据条件概率公式:P(C|A) = P(C∩A) / P(A)其中,P(C∩A)表示事件C和事件A同时发生的概率,即第一天Alex穿红色T恤且第三天选择红色T恤的概率。

要计算P(C∩A),我们可以将其表示为以下形式:P(C∩A) = P(B|A) * P(C|B∩A)其中,P(C|B∩A)表示当第二天选择红色T恤且第一天穿红色T恤时,第三天选择红色T恤的概率。

根据题目给出的条件,我们可以将P(C|B∩A)表示为:0.6 * P(C|A) + 0.4 * P(C|A')因为第一天Alex选择红色T恤,所以P(C|A') = 0,我们可以将上述式子简化为:P(C∩A) = 0.6P(C|A)然后,我们需要计算P(A),即第一天Alex选择红色T恤的概率。

根据题目给出的信息,Alex有4件红色T恤和6件蓝色T恤,所以:P(A) = 4 / (4 + 6) = 4 / 10 = 0.4将计算得到的P(C∩A)和P(A)代入条件概率公式,我们可以求解P(C|A):P(C|A) = P(C∩A) / P(A) = (0.6P(C|A)) / 0.4 = 1.5P(C|A)根据概率的性质,所有可能事件的概率之和为1,即P(C|A) +P(C|A') = 1。

高中2-3条件概率练习题及讲解

高中2-3条件概率练习题及讲解

高中2-3条件概率练习题及讲解在高中数学课程中,条件概率是一个重要的概念,它描述了在某个事件已经发生的情况下,另一个事件发生的概率。

以下是一些条件概率的练习题以及相应的讲解。

### 练习题1:假设在一个班级中有30名学生,其中20名男生和10名女生。

如果随机选择一名学生,他是男生的概率是2/3。

现在,如果我们知道这名被选中的学生参加了学校的篮球队,那么他是男生的概率是多少?解答:首先,我们设事件A为“学生是男生”,事件B为“学生参加了篮球队”。

根据题目,P(A) = 20/30 = 2/3。

我们需要计算的是P(A|B),即在事件B发生的条件下事件A发生的概率。

假设班级中有x名男生和y名女生参加了篮球队,那么P(B|A) = x/20(男生参加篮球队的概率),P(B|¬A) = y/10(女生参加篮球队的概率)。

根据全概率公式,P(B) = P(A)P(B|A) + P(¬A)P(B|¬A)。

由于我们不知道x和y的具体数值,我们无法直接计算P(A|B)。

但是,如果题目提供了这些信息,我们可以使用贝叶斯定理来求解。

### 练习题2:在一个袋子里有5个红球和3个蓝球。

第一次随机抽取一个球,记录颜色后放回。

第二次再次抽取一个球。

求第二次抽取红球的条件概率,条件是第一次抽取的也是红球。

解答:设事件A为“第一次抽取红球”,事件B为“第二次抽取红球”。

根据题目,P(A) = 5/8。

由于球被放回,抽取两次是独立的,所以P(B|A) = P(B) = 5/8。

### 练习题3:在一个小镇上,有两家医院。

医院A有70%的新生儿是男孩,医院B有60%的新生儿是男孩。

如果一个新生儿是男孩,那么他是在医院A出生的概率是多少?解答:设事件A为“新生儿在医院A出生”,事件B为“新生儿是男孩”。

根据题目,P(A) = 1/2(假设小镇上只有两家医院,且新生儿在两家医院出生的概率相等),P(B|A) = 0.7,P(B|¬A) = 0.6。

11 12学年高二数学:2. 2. 1 条件概率 同步练习(人教A版选修2 3)

11 12学年高二数学:2. 2. 1 条件概率 同步练习(人教A版选修2 3)

11 12学年高二数学:2. 2. 1 条件概率同步练习(人教A版选修2 3)11-12学年高二数学:2.2.1条件概率同步练习(人教a版选修2-3)收集和整理个人数据,仅用于交流和学习,不用于商业目的选修2-32.2.1条件概率一、多项选择题1.下列式子成立的是(>a.p(a|b>=p(b|a>b.0<1c.p(ab>=p(a>p(b|a>d.p(a∩b|a>=p(b>[答案]c[解读]从…起p(b|a>=错误!得p(ab>=p(b|a>p(a>.b5e2rgbcap2.在10个形状大小均相同的球中有6个红球和4个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率为(>p1eanqfdpwa.错误!b.错误!c.错误!d.错误![答案]d[解释]假设第一次触到红球(第二个无限制>是事件a,然后是p(a>=错误!=错误!),第一次触到红球,第二次触到红球是B项,然后p(b>=error!=error!,所以在第一次接触红球的情况下,第二次接触红球的概率是p=error!=error!,选择d.dxdita9e3d3。

给定p(b | a>=error!,p(a>=error!),那么p(AB>等于(>rtcrpudgita.error!b.error!C.error!d.error![response]C1/6收集和整理个人数据,仅用于交流和学习,不用于商业目的[解读]本题主要考查由条件概率公式变形得到的乘法公式,p(ab>=p(b|a>p(a>=错误!×错误!=错误!,故答案选c.5pczvd7hxa4.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是(>a、错了!b、错了!c、错了!d、错了![答:]B[解读]抛掷红、黄两颗骰子共有6×6=36个基本事件,其中红色骰子的点数为4或6的有12个基本事件,两颗骰子点数之积包含4×6,6×4,6×5,6×6共4个基本事件.jlbhrnailg所以其概率为错误!=错误!.5.一个盒子里有20个大小和形状相同的小球,包括5个红色、5个黄色和10个绿色。

数学高二-选修2试题 条件概率

数学高二-选修2试题 条件概率

2.3.1条件概率同步练习一、选择题1.已知P (B |A )=12,P (AB )=38,则P (A )等于( ) A.316B.1316C.34D.142.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )A.18B.14C.25D.123.盒中有10支螺丝钉,其中3支是坏的,现在从盒中不放回地依次抽取两支,那么在第一支抽取为好的条件下,第二支是坏的概率为( )A.112B.13C.8384D.1844.盒中装有5个产品,其中3个一等品,2个二等品,从中不放回地取产品,每次1个,连取两次,已知第二次取得一等品,则第一次取得的是二等品的概率是( )A.310B.35C.12D.255.袋中有大小相同的3个红球,5个白球,从中不放回地依次摸取2球,在已知第一次取出白球的前提下,第二次取得红球的概率是( )A.15B.103C.38D.37二、填空题6.某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚上值班的概率为________.7.抛掷一枚骰子,观察出现的点数,若已知出现的点数不超过3,则出现的点数是奇数的概率为________.三、解答题8.设某种动物能活到20岁的概率为0.8,能活到25岁的概率为0.4,现有一只20岁的这种动物,问它能活到25岁的概率是多少?练习答案一、选择题1.解析:选C.由P (AB )=P (A )P (B |A )可得P (A )=34. 2.解析:选B.P (A )=C 23+C 22C 25=25,P (AB )=C 22C 25=110, P (B |A )=P (AB )P (A )=14. 3.解析:选B.设事件A 为“第一支抽取为好的”,事件B 为“第二支是坏的”,则P (A )=C 17C 19C 210,P (AB )=C 17C 13C 210,所以P (B |A )=13. 4.解析:选C.设事件A 表示:“第一次取得的是二等品”,B 表示:“第二次取得一等品”.则P (AB )=25×34=310,P (B )=35. 由条件概率公式P (A |B )=P (AB )P (B )=31035=12. 5.解析:选D.设事件A 为“第一次取白球”,事件B 为“第二次取红球”,则P (A )=C 15C 178×7=58,P (AB )=C 15C 138×7=1556,故P (B |A )=P (AB )P (A )=37. 二、填空题6.解析:设事件A 为“周日值班”,事件B 为“周六值班”,则P (A )=C 16C 27,P (AB )=1C 27,故P (B |A )=P (AB )P (A )=16.答案:167.解析:设事件A 表示:“点数不超过3”,事件B 表示:“点数为奇数”,则n (A )=3,n (AB )=2,所以P (B |A )=n (AB )n (A )=23. 答案:23 三、解答题8.解:设事件A 为“能活到20岁”,事件B 为“能活到25岁”, 则P (A )=0.8,P (B )=0.4,而所求概率为P (B |A ),由于B ⊆A ,故AB =B ,于是P (B |A )=P (AB )P (A )=P (B )P (A )=0.40.8=0.5, 所以一只20岁的这种动物能活到25岁的概率是0.5.。

高中数学 第二章 概率 2.2.1 条件概率学业分层测评 新

高中数学 第二章 概率 2.2.1 条件概率学业分层测评 新

2.2.1 条件概率(建议用时:45分钟)[学业达标]一、选择题1.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )A.18B.14 C.25D.12【解析】 ∵P (A )=C 22+C 23C 25=410,P (A ∩B )=C 22C 25=110,∴P (B |A )=P A ∩B P A =14.【答案】 B2.下列说法正确的是( ) A.P (B |A )<P (A ∩B ) B.P (B |A )=P BP A是可能的 C.0<P (B |A )<1D.P (A |A )=0【解析】 由条件概率公式P (B |A )=P A ∩BP A及0≤P (A )≤1知P (B |A )≥P (A ∩B ),故A 选项错误;当事件A 包含事件B 时,有P (A ∩B )=P (B ),此时P (B |A )=P BP A,故B 选项正确,由于0≤P (B |A )≤1,P (A |A )=1,故C ,D 选项错误.故选B.【答案】 B3.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A.0.8B.0.75C.0.6D.0.45【解析】 已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P =0.60.75=0.8.【答案】 A4.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是 ( )A. 815B. 18C.115D. 130 【解析】 根据古典概型的概率公式求解,∵Ω={(M,1), (M,2), (M,3), (M,4), (M,5), (I,1), (I,2), (I,3), (I,4), (I,5), (N,1), (N,2), (N,3), (N,4), (N,5)},∴事件总数有15种。

高中数学选择性必修三 7 1 条件概率及全概率(精练)(含答案)

高中数学选择性必修三 7 1 条件概率及全概率(精练)(含答案)

7.1 条件概率及全概率(精练)【题组一 条件概率】1.(2020·天津高二期末)一个医疗小队有3名男医生,4名女医生,从中抽出两个人参加一次医疗座谈会,则已知在一名医生是男医生的条件下,另一名医生也是男医生的概率是______ 【答案】15【解析】若A 为一位医生是男医生,B 为另一位医生也是男医生,∴23271()7C P A B C ⋅==,而211334275()7C C C P A C +==, ∴()1(|)()5P A B P B A P A ⋅==,故答案为:152.(2020·吕叔湘中学高二期末)已知一种元件的使用寿命超过1年的概率为0.8,超过2年的概率为0.6,若一个这种元件使用到1年时还未失效,则这个元件使用寿命超过2年的概率为_____. 【答案】0.75【解析】记使用寿命超过1年为事件B ,超过2年为事件A ,()()0.6,0.8P AB P B ==,()()()0.60.750.8P AB P A B P B === 故答案为:0.75.3.(2020·全国高三专题练习(理))小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A 为“4个人去的景点不相同”,事件B 为“小赵独自去一个景点”,则()P A B =________. 【答案】29【解析】小赵独自去一个景点共有4333108⨯⨯⨯=种情况,即()108n B =,4个人去的景点不同的情况有4424A =种,即()24n AB =,所以()()242()1089n AB P A B n B ===. 故答案为:29. 4.(2020·全国高二课时练习)有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取两瓶,若取的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率为____________. 【答案】67【解析】设事件A 为“一瓶是蓝色”,事件B 为“另一瓶是红色”,事件C 为“另一瓶是黑色”,事件D 为“另一瓶是红色或黑色”,则D B C =⋃,且B 与C 互斥,又()11223225710C C C P A C +==,()122515C P AB C ==,()11222525C C P AC C ==, 故()()()()()()()()()67P AB P AC P D A P B C A P B A P C A P A P A =⋃=+=+=. 故答案为:67. 5.(2020·全国高三其他模拟)伟大出自平凡,英雄来自人民.在疫情防控一线,北京某大学学生会自发从学生会6名男生和8名女生骨干成员中选出2人作为队长率领他们加入武汉社区服务队,用A 表示事件“抽到的2名队长性别相同”,B 表示事件“抽到的2名队长都是男生”,则()|P B A =______.【答案】1543【解析】由已知得()22682144391C C P A C +==,()262141591C P AB C ==, 则()()()151591|434391P AB P B A P A ===. 故答案为:15436(2020·全国高三专题练习(理))夏、秋两季,生活在长江口外浅海域的中华鱼洄游到长江,历经三千多公里的溯流搏击,回到金沙江一带产卵繁殖,产后待幼鱼长到15厘米左右,又携带它们旅居外海.一个环保组织曾在金沙江中放生一批中华鱼鱼苗,该批鱼苗中的雌性个体能长成熟的概率为0.15,雌性个体长成熟又能成功溯流产卵繁殖的概率为0.05,若该批鱼苗中的一个雌性个体在长江口外浅海域已长成熟,则其能成功溯流产卵繁殖的概率为_________. 【答案】13【解析】解析设事件A 为鱼苗中的一个雌性个体在长江口外浅海域长成熟,事件B 为该雌性个体成功溯流产卵繁殖,由题意可知()0.15P A =,()0.05P AB =,()0.051(|)()0.153P AB P B A P A ===. 故答案为:13. 7(2020·江西高二期末(文))口袋中装有大小形状相同的红球2个,白球3个,黄球1个,甲从中不放回的逐一取球,已知在第一次取得红球的条件下,第二次仍取得红球的概率为______. 【答案】15【解析】口袋中装有大小形状相同的红球2个,白球3个,黄球1个, 甲从中不放回的逐一取球,()2163P A ==,()2116515P AB =⨯=, ()()()1115153P AB P B A P A ===.故答案为:15.8.(2020·陕西西安市·交大附中高二期末(文))从标有1,2,3,4,5的五张卡中,依次抽出2张(取后不放回),则在第一次抽到偶数的情况下,第二次抽到奇数的概率为________; 【答案】34【解析】由题意,从标有1,2,3,4,5的五张卡中,依次抽出2张,第一次抽到偶数所包含的基本事件有()2,1,()2,3,()2,4,()2,5,()4,1,()4,2,()4,3,()4,5;共8个基本事件;第一次抽到偶数,第二次抽到奇数,所包含的基本事件有()2,1,()2,3,()2,5,()4,1,()4,3,()4,5;共6个基本事件,因此在第一次抽到偶数的情况下,第二次抽到奇数的概率为6384P ==. 故答案为:34. 9.(2020·全国高三专题练习)某班有6名班干部,其中男生4人,女生2人,任选3人参加学校的义务劳动.(1)求男生甲或女生乙被选中的概率;(2)设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,求()P A 和(|)P B A .【答案】(1)45;(2)1()2P A =,2(|)5P B A =. 【解析】(1)某班从6名班干部(男生4人、女生2人)中任选3人参加学校的义务劳动,总的选法有3620C =种,男生甲或女生乙都没有被选中的选法:344C =则男生甲或女生乙被选中的选法有20416-=种, ∴男生甲或女生乙被选中的概率为164205P ==; (2)总的选法有3620C =种,男生甲被选中的选法有121510C C ⋅=种,∴1()2P A =, 男生甲被选中、女生乙也被选中选法有1111144C C C ⋅⋅=种,∴1()5P AB =, ∴在男生甲被选中的前提下,女生乙也被选中的概率为()2(|)()5P AB P B A P A ==.10.(2020·全国高三专题练习)某单位有8名青年志愿者,其中男青年志愿者5人,记为12345,,,,a a a a a ,女青年志愿者3人,记为123,,b b b .现从这8人中选4人参加某项公益活动. (1)求男青年志愿者1a 或女青年志愿者1b 被选中的概率;(2)在男青年志愿者1a 被选中的情况下,求女青年志愿者1b 也被选中的概率. 【答案】(1)1114;(2)37. 【解析】(1)设“男青年志愿者1a 和女青年志愿者1b 都不被选中”为事件C ,则46483()14C P C C ==,所以所求概率为311()1()11414P C P C =-=-=.(2)记“男青年志愿者1a 被选中”为事件A ,“女青年志愿者1b 被选中”为事件B ,则3276448813(),()214C C P A P AB C C ====,所以()3()()7P AB P BA P A ==∣.所以在男青年志愿者1a 被选中的情况下,女青年志愿者1b 也被选中的概率为37. 11.(2020·河北高三月考)田忌赛马的故事出自《史记》中的《孙子吴起列传》.齐国的大将田忌很喜欢赛马,有一回,他和齐威王约定,要进行一场比赛.双方各自有三匹马,马都可以分为上,中,下三等.上等马都比中等马强,中等马都比下等马强,但是齐威王每个等级的马都比田忌相应等级的马强一些,比赛共三局,每局双方分别各派一匹马出场,且每匹马只赛一局,胜两局或三局的一方获得比赛胜利,在比赛之前,双方都不知道对方马的出场顺序. (1)求在第一局比赛中田忌胜利的概率:(2)若第一局齐威王派出场的是上等马,而田忌派出场的是下等马,求本场比赛田忌胜利的概率; (3)写出在一场比赛中田忌胜利的概率(直接写出结果). 【答案】(1)13;(2)12;(3)16.【解析】将田忌的三匹马按照上、中、下三等分别记为1T 、2T 、3T , 齐威王的三匹马按照上、中、下三等分别记为1W 、2W 、3W , 并且用马的记号表示该马上场比赛.(1)设事件Ω=“第一局双方参赛的马匹”,事件A =“在第一局比赛中田忌胜利”, 由题意得()()()()()()()(){()}111213212223313233,,,,,,,,TW TW TW T W T W T W T W T W T W Ω=,()()(){}121323,,A TW TW T W =,则在第一局比赛中田忌胜利的概率是()3193P A ==. (2)设事件B =“第一局齐威王派出场的是上等马,而田忌派出场的是下等马”, 事件C =“田忌获得本场比赛胜利”, 由题意得()()()(){}311223311322312213312312,,,,,,,,,,,B TW TW T W TW TW T W TW T W TW TW T W TW =,()(){}311223312312,,,,,BC TW TW T W TW T W TW =,则本场比赛田忌胜利的概率是()21|42P C B ==. (3)16. 12.(2020·公主岭市第一中学校高二期末(理))已知一个不透明的口袋中有4个白球和8个红球,球除颜色外完全相同.(1)若一个人从口袋中随机抽取一个球,求其抽取到白球的概率;(2)若一个人从口袋中随机不放回连续抽取球两次,每次抽取一个球,求在第一次抽取出白球的条件下第二次抽取出的也是白球的概率. 【答案】(1)13;(2)311. 【解析】(1)从口袋中随机抽取一个球,抽取到白球的概率41483p ==+. (2)记“第一次抽取出球是白球”为事件A ,“第二次抽取出球是白球”为事件B ,则第一次抽取出白球和第二次抽取出球也是白球的概率431()()()121111P AB P A P B ==⨯=,4()12P A =, 所以在第一次取出白球的条件下第二次取出的也是白球的概率1()311()4()1112P AB P B|A P A ===. 【题组二 全概率公式】1.(2021·北京高二期末)将一枚均匀的硬币连续抛掷n 次,以n P 表示没有出现连续3次正面的概率.给出下列四个结论:①378P =; ②41516P =;③当2n ≥时,1n n P P +<; ④123111(4)248n n n n P P P P n ---=++≥. 其中,所有正确结论的序号是__________. 【答案】①③④【解析】当3n =时,33171()28P =-=,①正确; 当4n =时,出现连续3次正面的情况可能是:正正正反、正正正正、反正正正, 所以4311313()216P =-⨯=,②错误; 要求n P ,即抛掷n 次没有出现连续3次正面的概率, 分类进行讨论,若第n 次反面向上,前n-1次未出现连续3此正面即可;若第n 次正面向上,则需要对第n-1进行讨论,依次类推,得到下表:所以123111(4)248n n n n P P P P n ---=++≥,④正确; 由上式可得112111248n n n n P P P P +--=++ 1121233111111111(2481)()22482216n n n n n n n n n n P P P P P P P P P P +------=+++-=+--,所以130,(114)6n n n P P P n +-<=--≥, 又13241,713,816P P P P ====,满足当2n ≥时,1n n P P +<,③正确. 故答案为:①③④.2.(2021·北京房山区·高二期末)袋中有10个大小、材质都相同的小球,其中红球3个,白球7个.每次从袋中随机摸出1个球,摸出的球不再放回.求: (Ⅰ)第一次摸到红球的概率;(Ⅱ)在第一次摸到红球的条件下,第二次也摸到红球的概率; (Ⅲ)第二次摸到红球的概率. 【答案】(Ⅰ)310;(Ⅱ)29;(Ⅲ)310.【解析】设事件A :第一次摸到红球;事件B :第二次摸到红球, 则事件A :第一次摸到白球.(Ⅰ)第一次从10个球中摸一个共10种不同的结果,其中是红球的结果共3种, 所以 3()10P A =. (Ⅱ)第一次摸到红球的条件下,剩下的9个球中有2个红球,7个白球,第二次从这9个球中摸一个共9种不同的结果,其中是红球的结果共2种.所以2 (|)9P B A=.(Ⅲ)32733 ()()(|)()(|)10910910 P B P A P B A P A P B A=+=⨯+⨯=.所以第二次摸到红球的概率3 ()10 P B=.。

高二数学概率综合试题

高二数学概率综合试题

高二数学概率综合试题1.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则()A.n=5,p=0.32B.n=4,p=0.4C.n=8,p=0.2D.n=7,p=0.45【答案】C【解析】因为随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,所以.【考点】随机变量的期望方差.2.设随机变量,则的值为_____.【答案】【解析】随机变量,则【考点】二项分布点评:在二项分布,n表示试验的次数,P表示试验成功的概率,。

3.甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为、、,且他们是否破译出密码互不影响,若三人中只有甲破译出密码的概率为.(1)求的值.(2)设甲、乙、丙三人中破译出密码的人数为,求的分布列和数学期望.【答案】(1)(2)0123【解析】(1)记事件=”只有甲破译出密码”,可解得 3分(2) 的可能取值为0、1,、2、3;分8分10分【考点】独立事件的概率点评:主要是考查了独立事件的概率的公式以及分布列的求解,属于基础题。

4.从含有5张假钞的20张百元钞票中任意抽取2张,在其中1张是假钞的条件下,2张都是假钞的概率是()A.B.C.D.【答案】A【解析】设事件A表示“抽到的两张都是假钞”,事件B表示“抽到的两张至少有一张假钞”,则所求的概率即 P(A︱B).又P(AB)=P(A)=,P(B)=,由公式P(A︱B)==,故选A.【考点】本题考查了条件概率的求法,考查等可能事件的概率点评:此类问题体现了转化的数学思想.注意准确理解题意,看是在什么条件下发生的事件,本题是求条件概率,而非古典概率,属于中档题.5.(本小题满分10分)已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(1)求取出的4个球均为黑球的概率;(2)求取出的4个球中恰有1个红球的概率;(3)设为取出的4个球中红球的个数,求的分布列,并求其数学期望E().【答案】略.【解析】(1)本小题主要考查互斥事件、相互独立事件等概率的基础知识,取出的4个球均为黑球表示从甲盒内各任取2个黑球,同时从乙盒中也取两个黑球,记出事件得到概率用相互独立事件同时发生的概率公式计算.(2)看清楚取出的4个球中恰有1个红球包含的情况,从甲盒内取出的2个球中,1个是红球,1个是黑球同时从乙盒内取出的2个红球为黑球,从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球.根据这两种情况计算结果即可.(3)先搞清可能取值有0,1,2,3,然后算出每个值对应的概率,列出分布列,再利用期望公式求解即可.6. .设随机变量—,且当二次方程无实根时,的取值概率为,则()A.1B.0.5C.0D.2【答案】A【解析】解:∵x2-2x+ξ=0无实根,∴得△<0.(-2)2-4ξ<0,∴ξ>1,结合正态分布的图象,它在x>μ时的概率为,故μ=1.故选A.7.(文科做)设集合,,且满足, 若.(Ⅰ) 求b = c的概率;(Ⅱ)求方程有实根的概率【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ) ∵, 当时,;当时,.基本事件总数为14.其中,b = c的事件数为7种.所以b=c的概率为.(Ⅱ)记“方程有实根”为事件A,若使方程有实根,则,即,共6种.∴8.如图所示,直线AB的方程为,向边长为2的正方形内随机地投飞镖,飞镖都能投入正方形内,且投到每个点的可能性相等,则飞镖落在阴影部分(三角形ABC的内部)的概率是()A.B.C.D.【答案】C【解析】略9.(本题满分12分)已知集合在平面直角坐标系中,点M的坐标为(x,y) ,其中。

条件概率与全概率公式常考题型训练 高二下学期数学 人教版(2019)选择性必修第三册

条件概率与全概率公式常考题型训练 高二下学期数学 人教版(2019)选择性必修第三册

《条件概率与全概率公式》常考题型一、条件概率题型一:求条件概率:1. 若8件产品中包含6件一等品,在这8件产品中任取2件,则在已知取出的2件中有1件不是一等品的条件下,另一件是一等品的概率为__________.2. 某班组织甲、乙、丙等5名同学参加演讲比赛,现采用抽签法决定演讲顺序,在“学生甲不是第一个出场,学生乙不是最后一个出场”的前提下,学生丙第一个出场的概率为________.3. 把一枚骰子连续抛掷两次,记事件M 为“两次所得点数均为奇数”,N 为“至少有一次点数是5”,则()M N P 等于___________.4. 甲、乙两人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获得胜利的概率均为43,各局比赛结果相互独立且没有平局,则在甲获得冠军的条件下,比赛进行了三局的概率为_________.5. 某人忘记了一个电话号码的最后一个数字,只好去试拨,他第一次失败、第二次成功的概率是_______.6.在某次考试中,要从20道题中随机抽出6道题,若考生至少能答对其中4道题则通过;若至少能答对其中5道题则获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,则他获得优秀的概率_________.题型二:正确区分条件概率与简单随机事件的概率1. 盒中装有5个产品,其中3个一等品,2个二等品,不放回地从中取产品,每次取1个,取两次.求:(1)两次都取得一等品的概率;(2)第二次取得一等品的概率;(3)已知在第二次取得一等品的条件下,第一次取得二等品的概率.2. 电视机的使用寿命与显像管开关的次数有关,某品牌的电视机的显像管开关了10000次后还能继续使用的概率是0.8,开关了15000次后还能继续使用的概率是0.6,则已经开关了10000次后还能继续使用到15000次的概率是________.3. 现从4名男医生和3名女医生中抽取两个加入某医疗队,用A 表示事件“抽到的两名医生性别相同”,B 表示事件“抽到的两名医生都是女医生”,则()=A B P ________.4.从编号为102,1,,⋅⋅⋅的10个大小相同的球中任取4个,在已知选出4号球的条件下,选出球的最大号码为6的概率为________.综合训练:1. 已知()31=A B P ,()52=A P ,则()=AB P _______. 2. 一次考试中,某班级数学成绩不及格的学生占20%,数学成绩和物理成绩都不及格的学生占15%,已知该班某学生数学成绩不及格,则该学生物理成绩也不及格的概率为________.3. 某电视台的夏日水上闯关节目的前三关的过关率分别为65,54,53,只有通过前一关才能进入下一关,且通过每关相互独立.一选手参加该节目,则该选手能进入第四关的概率为________.4. 已知箱中共有6个球,其中红球、黄球、蓝球各2个,每次从该箱中取出1个球(每个球取得的机会均等),取出后放回箱中,连续取三次.设事件A 为“第一次取到的球和第二次取到的球颜色不同”,事件B 为“三次取到的球颜色都不相同”,则()=A B P ________.5.一袋中共有10个大小相同的黑球和白球,若从袋中任意摸出2个球,至少有1个白球的概率为1513,现从中不放回地取球,每次取1球,取2次,若已知第2次取得白球的条件下,则第1次取得黑球的概率为__________.6.甲箱中有5个正品和3个次品,乙箱中有4个正品和3个次品.(1)从甲箱中任取2个产品,求这2个产品都是次品的概率;(2)若从甲箱中任取2个产品放入乙箱中,然后再从乙箱中任取1个产品,求取出的这个产品是正品的概率.二、全概率公式1. 设某工厂有两个车间生产同型号家用电器,第1车间的次品率为0.15,第2车间的次品率为0.12,两个车间的成品都混合堆放在一个仓库中,假设第1,2车间生产的成品比列为2∶3,今有一客户从成品仓库中随机提一台产品,求该产品合格的概率.2. 假设某市场供应的智能手机中,市场占有率和优质率的信息如下表所示. 品牌甲 乙 其它 市场占有率50% 30% 20% 优质率 95% 90% 70%3. 某次社会实践活动中,甲、乙两个班的同学共同在一个社区进行捡拾白色垃圾活动,参加活动的甲、乙两班的人数之比为3∶2,其中甲班中女生占31,乙班中女生占21,则该社区居民遇到一位进行捡拾白色垃圾活动的同学恰好是女生的概率是_________.4. 袋中有10个大小、材质都相同的小球,其中红球3个,白球7个.每次从袋中随机摸出1个小球,摸出的球不再放回.求:(1)第一次摸到红球的概率;(2)在第一次摸到红球的条件下,第二次也摸到红球的概率;第二次摸到红球的概率.。

人教新课标版(A)高二选修2-3 2.2.1条件概率同步训练题

人教新课标版(A)高二选修2-3 2.2.1条件概率同步训练题

人教新课标版(A)高二选修2-3:2.2.1条件概率同步训练题知识·能力练夯实基础,提升能力◆条件概率1. 一个盒子中有6只好晶体管,4只坏晶体管,任取两次,每次取一只,第一次取后不放回. 求若已知第一只是好的,第二只也是好的概率.2. 甲、乙两地都位于长江下游,根据一百多年的气象记录,知道甲、乙两地一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,问:(1)乙地为雨天时甲地也为雨天的概率是多少?(2)甲地为雨天时乙地也为雨天的概率是多少?方法·技巧练巧练方法,事半功倍难题巧解3. 一批晶体管元件,其中一等品占95%,二等品占4%,三等品占1%,它们能工作5000小时的概率分别为90%,80%,70%,求任取一个元件能工作5000小时以上的概率.发散创新探究4. 袋中有2个白球,3个黑球,从中依次取出2个,求取出两个都是白球的概率.5. 电报信号由“·”与“——”组成,设发报台传送“·”与“——”之比为3:2,由于通讯系统存在干扰,引起失真,传送“·”时,失真的概率为0.2(即发出“·”而收到“——”);又传送“——”时,失真的概率为0.1(即发出“——”而收到“·”). 若收报台收到信号“·”,求发报台确实发出“·”的概率.综合·拓展练综合运用,拓展知能创新设计题6. 掷两颗均匀的骰子,问(1)在已知它们点数不同的条件下,至少有一颗是6点的概率是多少?(2)至少有一颗是6点的概率又是多少?7. 在矩形区域Ω内随机取点,若已知点取自区域B内,求在此条件下点取自区域A内的概率. (如图2-2-1)【参考答案】1. 解:设=i A {第i 只是好的}(i=1,2),由题意知要求出).A |A (P 12 因为3191056)A A (P ,53106)A (P 211=⨯⨯===, 所以.95)A (P )A A (P )A |A (P 12112==2. 解:设A =“甲地为雨天”,B =“乙地为雨天”,则根据题意有P (A )=0.20,P(B )=0.18,P (A ∩B )=0.12,所以:(1)乙地为雨天时甲地也为雨天的概率是.67.018.012.0)B (P )AB (P )B |A (P === (2)甲地为雨天时乙地也为雨天的概率是.60.020.012.0)A (P )AB (P )A |B (P ===3. 解:令B i ={取到元件为i 等品}(i=1,2,3),A={取到的元件能工作5000小时以上},则)B (P )B |A (P )B (P )B |A (P )B (P )A (P 32211++=·)B |A (P 3=95%·90%+4%·80% +1%·70%=0.894.4. 解法1:用古典概型方法. 袋中有5个球,依次取出2个,包括25A 个基本事件,令A={2次都取得白球),包括2个基本事件,因此.101A 2)A (P 25==解法2:用概率乘法公式. 令A i ={第i 次取得白球)(i=1,2),则A=A 1A 2,由乘法公式,.1014152)A |A (P )A (P )A A (P )A (P 12121=⨯=⋅== 5. 解:令B 1={发送“·”},B 2={发送“——”),A ={收到“·”},则有P (B 1)=0.6,P (B 2)=0.4,P (A |B 1)=0.8,P (A |B 2)=0.1.所求概率为P (B 1|A ))B |A (P )B (P )B |A (P )B (P )B |A (P )B (P 221111+= .923.01.04.08.06.08.06.0≈⨯+⨯⨯= 6. 分析:此题(1)即为条件概率,条件是两颗骰子点数不同,可用条件概率计算公式求解.解:(1)对两颗骰子加以区别,则共有36种不同情况,它们是等可能的,令A=“至少有一颗是6点”,B =“两颗骰子点数不同”,事件n (AB )共有10种不同情况,事件B 有6×5=30种不同情况,因而所求的条件概率.3136/3036/10)B (P )AB (P )B |A (P === (2)事件A 有11种不同情况,故.3611)A (P =7. 略。

高二数学条件概率试题答案及解析

高二数学条件概率试题答案及解析

高二数学条件概率试题答案及解析1.抛掷一枚均匀的骰子所得的样本空间为Ω={1,2,3,4,5,6},令事件A={2,3,5},B={1,2,4,5,6},则P(A|B)等于()A. B. C. D.【答案】A【解析】方法一:在事件B发生的条件下研究事件A,总共有5种结果,而事件A只含其中的2种,所以P(A|B)=;方法二:条件概率的计算公式,答案选A.【考点】条件概率2.把一枚硬币连续抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则等于()A.B.C.D.【答案】A【解析】.【考点】条件概率.3.一个袋中装有6个红球和4个白球(这10个球各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第二次摸出红球的概率为________.【答案】【解析】设第一次摸出红球为事件A,第二次摸出红球为事件B,则P(A)=,P(AB)==.∴P(B|A)==.4.已知某种产品的合格率是95%,合格品中的一级品率是20%,则这种产品的一级品率为________.【答案】19%【解析】A=“产品为合格品”,B=“产品为一级品”,P(B)=P(AB)=P(B|A)P(A)=0.2×0.95=0.19.所以这种产品的一级品率为19%.5.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以,和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以表示由乙罐取出的球是红球的事件,则下列结论中正确的是__________(写出所有正确结论的序号).①;②;③事件与事件相互独立;④,,是两两互斥的事件;⑤的值不能确定,因为它与,,中究竟哪一个发生有关.【答案】②④⑤【解析】若从甲罐取出红球放入乙罐,则,,若从甲罐取出的不是红球放入乙罐,则,故①错误,②正确。

显然事件受事件的影响,故③错误。

由于事件,,不会同时出现,所以,,是两两互斥的事件,故④正确。

【数学】条件概率练习题-2023-2024学年高二下学期数学人教A版(2019)选择性必修第三册

【数学】条件概率练习题-2023-2024学年高二下学期数学人教A版(2019)选择性必修第三册

条件概率练习题1.某地的中学生中有60%的同学爱好滑冰,50%的同学爱好滑雪,70%的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为( )A .0.8B .0.4C .0.2D .0.12.将4个不同的小球装入4个不同的盒子,则在至少一个盒子为空的条件下,恰好有两个盒子为空的概率是A .2158 B .1229 C .2164 D .7273.将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率()P B A ,()P A B 分别等于A .12,6091B .6091,12C .12,2091D .2091,124.育人中学举行“学习党代会,奋进新征程”交流会,共有6位老师、4位学生进行发言.现用抽签的方式决定发言顺序,事件(110,)k A k k ≤≤∈N 表示“第k 位发言的是学生”,则( )A .()235P A =B .()12325P A A = C .()10213P A A =∣ D .()1245P A A +=5.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )A .甲与丙相互独立B .甲与丁相互独立C .乙与丙相互独立D .丙与丁相互独立6.某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为123,,p p p ,且3210p p p >>>.记该棋手连胜两盘的概率为p ,则( )A .p 与该棋手和甲、乙、丙的比赛次序无关B .该棋手在第二盘与甲比赛,p 最大C .该棋手在第二盘与乙比赛,p 最大D .该棋手在第二盘与丙比赛,p 最大(多选题)7.A ,B 为随机事件,已知()0.5,()0.3P A P B ==,下列结论中正确的是( ) A .若A ,B 为互斥事件,则()0.8P A B += B .若A ,B 为互斥事件,则()0.8P A B +=C .若A ,B 是相互独立事件,()0.65P A B +=D .若(|)0.5P B A =,则(|)0.1P B A =(多选题)8.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以1A 、2A 和3A 表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是( )A .()52=B P B .15(|)11P B A = C .事件B 与事件1A 相互独立D .1A 、2A 、3A 是两两互斥的事件(多选题)9.在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为(01)αα<<,收到0的概率为1α-;发送1时,收到0的概率为(01)ββ<<,收到1的概率为1β-. 考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输 是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A .采用单次传输方案,若依次发送1,0,1,则依次收到l ,0,1的概率为2(1)(1)αβ-- B .采用三次传输方案,若发送1,则依次收到1,0,1的概率为2(1)ββ-C .采用三次传输方案,若发送1,则译码为1的概率为23(1)(1)βββ-+-D .当00.5α<<时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率10.52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A的概率为;已知第一次抽到的是A,则第二次抽取A的概率为11.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是.12.设在n张彩票中有一张中奖彩票,则第二个人抽到该中奖彩票的概率是.13.一批产品共100件,其中有10件不合格品,从中一个一个取出,求(1)第三次才取得不合格品的概率是多少?(2)第三次取得不合格品的概率是多少?检测题1.假设有一批产品中一、二、三等品各占60%、30%,10%,从中随意取出一件,结果不是三等品,则取到的是一等品的概率为.2.有6道不同的数学题,其中有4道函数题,2道概率题,每次从中随机抽出1道题,抽出的题不再放回.在第一次抽到函数题的条件下,第二次还是抽到函数题的概率是.3.甲乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.5,现已知目标被击中,则它是被甲击中的概率为。

高中数学 第二章 随机变量及其分布 2.2.1 条件概率练习(含解析)新人教A版高二选修2-3数学试

高中数学 第二章 随机变量及其分布 2.2.1 条件概率练习(含解析)新人教A版高二选修2-3数学试

2.2.1 条件概率课后作业提升1.已知P(B|A)=,P(A)=,则P(AB)等于( )A. B. C. D.解析:由P(B|A)=得,P(AB)=P(B|A)·P(A)=.答案:C2.抛掷红、蓝两枚骰子,事件A=“红骰子出现4点”,事件B=“蓝骰子出现的点数是偶数”,则P(A|B)为( )A. B. C. D.解析:先求出P(B),P(AB),再利用条件概率公式P(A|B)=来计算.P(B)=,P(AB)=,则P(A|B)=.答案:D3.为考察某种药物预防疾病的效果,科研人员进行了动物试验,结果如下表,则在服药的前提下,未患病的概率为( )患病未患病总计服用药14555未服药235总计375105A. B. C. D.解析:在服药的前提下,未患病的概率P=.答案:C4.4张奖券中只有1张能中奖,现分别由4名同学无放回地抽取.若已知第一名同学没有抽到中奖券,则最后一名同学抽到中奖券的概率是( )A. B. C. D.1解析:因为第一名同学没有抽到中奖券已知,所以问题变为3张奖券,1张能中奖,最后一名同学抽到中奖券的概率显然是.答案:B5.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A=“三人去的景点不相同”,B=“甲独自去一个景点”,则概率P(A|B)等于( )A. B. C. D.解析:由已知P(B)=,P(AB)=,故P(A|B)=.答案:C6.分别用集合M={2,4,5,6,7,8,11,12}中的任意两个元素作分子与分母构成真分数,已知取出的一个元素是12,则取出的另一个元素与之构成可约分数的概率是.解析:设取出的两个元素中有一个是12为事件A,取出的两个元素构成可约分数为事件B,则n(A)=7,n(AB)=4,所以,P(B|A)=.答案:7.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为.解析:设种子发芽为事件A,种子成长为幼苗为事件AB(发芽,又成活为幼苗),出芽后的幼苗成活率为P(B|A)=0.8,P(A)=0.9.根据条件概率公式P(AB)=P(B|A)·P(A)=0.8×0.9=0.72,即这粒种子能成长为幼苗的概率为0.72.答案:0.728.从编号为1,2,…,10的10个大小相同的球中任选4个,在选出4号球的条件下,选出的球的最大号码为6的概率为.解析:记“选出4号球”为事件A,“选出的球的最大号码为6”为事件B,则P(A)=,P(AB)=,所以P(B|A)=.答案:9.如图,一个正方形被平均分成9个部分,向大正方形区域随机地投掷一点(每一次都能投中).将“投中最左侧3个小正方形区域”的事件记为A,“投中最上面3个小正方形或正中间的1个小正方形区域”的事件记为B,求P(A|B),P(AB).解:用μ(B)表示事件B区域的面积,μ(Ω)表示大正方形区域的面积,由题意可知:P(AB)=,P(B)=,P(A|B)=.10.在某次考试中,要从20道题中随机地抽出6道题,若考生至少能答对其中的4道题即可通过;若至少能答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=,P(E|D)=P(A∪B|D)=P(A|D) +P(B|D)=.即所求概率为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

条件概率练习题
一、选择题
1.下列式子成立的是( )
A .P (A |
B )=P (B |A ) B .0<P (B |A )<1
C .P (AB )=P (A )·P (B |A )
D .P (A ∩B |A )=P (B ) [答案] C [解析] 由P (B |A )=
P (AB )
P (A )
得P (AB )=P (B |A )·P (A ). 2.在10个形状大小均相同的球中有6个红球和4个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率为( )
A.3
5
B.25
C.1
10
D.5
9
[答案] D [解析] 设第一次摸到的是红球(第二次无限制)为事件A ,则P (A )=6×910×9=3
5,第一次摸得红
球,第二次也摸得红球为事件B ,则P (B )=6×510×9=1
3,故在第一次摸得红球的条件下第二次也摸得红球的概率为
P =P (B )P (A )=59
,选D.
3.已知P (B |A )=13,P (A )=2
5,则P (AB )等于( )
A.5
6
B.910
C.2
15
D.1
15
[答案] C [解析] 本题主要考查由条件概率公式变形得到的乘法公式,P (AB )=P (B |A )·P (A )=13×25=2
15,
故答案选C.
4.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( ) A.14
B.13
C.12
D.3
5
[答案] B [解析] 抛掷红、黄两颗骰子共有6×6=36个基本事件,其中红色骰子的点数为4或6的有12个基本事件,两颗骰子点数之积包含4×6,6×4,6×5,6×6共4个基本事件.
所以其概率为4361236
=1
3.
5.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是( )
A.56
B.34
C.23
D.1
3
[答案] C
6.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为8
30.
则在吹东风的条件下下雨的概率为( )
A.9
11
B.811
C.25
D.8
9
[答案] D [解析] 设事件A 表示“该地区四月份下雨”,B 表示“四月份吹东风”,则P (A )=11
30,P (B )
=930,P (AB )=830,从而吹东风的条件下下雨的概率为P (A |B )=P (AB )P (B )=8
30930
=89
. 7.一个口袋中装有2个白球和3个黑球,则先摸出一个白球后放回,再摸出一个白球的概率是( ) A.23
B.14
C.25
D.1
5
[答案] C [解析] 设A i 表示第i 次(i =1,2)取到白球的事件,因为P (A 1)=25,P (A 1A 2)=25×25=4
25,
在放回取球的情况P (A 2|A 1)=25×2
525
=2
5.
8.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为( ) A .1
B.12
C.1
3
D.1
4
[答案] B [解析] 设A i 表示第i 次(i =1,2)抛出偶数点,则P (A 1)=1836,P (A 1A 2)=1836×9
18,故在第一次抛出
偶数点的概率为P (A 2|A 1)=P (A 1A 2)P (A 1)=1836×
9
181836
=1
2
,故选B.
二、填空题
9.某人提出一个问题,甲先答,答对的概率为0.4,如果甲答错,由乙答,答对的概率为0.5,则问题由乙答对的概率为________.
[答案] 0.3
10.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出
正品的概率为________.
[答案] 9599[解析] 设“第一次抽到次品”为事件A ,“第二次抽到正品”为事件B ,则P (A )=5
100
,P (AB )=
5100×9599,所以P (B |A )=P (AB )P (A )=9599
.准确区分事件B |A 与事件AB 的意义是关键. 11.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则这时另一个小孩
是男孩的概率是________.
[答案] 1
2 [解析] 一个家庭的两个小孩只有3种可能:{两个都是男孩},{一个是女孩,另一个是男孩},{两
个都是女孩},由题目假定可知这3个基本事件的发生是等可能的.
12.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为________.
[答案]
33
50
[解析] 根据题意可知取出的一个数是不大于50的数,则这样的数共有50个,其中是2或3的倍数共有33个,故所求概率为33
50
.
三、解答题
13.把一枚硬币任意掷两次,事件A =“第一次出现正面”,事件B =“第二次出现正面”,求P (B |A ). [解析] P (B )=P (A )=12,P (AB )=14, P (B |A )=P (AB )P (A )=1
412
=1
2
.
14.盒中有25个球,其中10个白的、5个黄的、10个黑的,从盒子中任意取出一个球,已知它不是黑球,试求它是黄球的概率.
[解析] 解法一:设“取出的是白球”为事件A ,“取出的是黄球”为事件B ,“取出的是黑球”为事件C ,则P (C )=1025=25,∴P (C )=1-25=35,P (B C )=P (B )=525=1
5∴P (B |C )=P (B C )P (C )=13
.
解法二:已知取出的球不是黑球,则它是黄球的概率P =55+10=13
.
15.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:
(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少? (2)从2号箱取出红球的概率是多少?
[解析] 记事件A :最后从2号箱中取出的是红球;
事件B :从1号箱中取出的是红球.
P (B )=42+4=23,P (B -
)=1-P (B )=13. (1)P (A |B )=3+18+1=49
.
(2)∵P (A |B -)=38+1=13, ∴P (A )=P (A ∩B )+P (A ∩B -)=P (A |B )P (B )+P (A |B -)P (B -)=49×23+13×13=11
27.
16.某校高三(1)班有学生40人,其中共青团员15人.全班分成4个小组,第一组有学生10人,共青团员4人.从该班任选一个作学生代表.
(1)求选到的是第一组的学生的概率; (2)已知选到的是共青团员,求他是第一组学生的概率. [解析] 设事件A 表示“选到第一组学生”,事件B 表示“选到共青团员”. (1)由题意,P (A )=1040=1
4
.
(2)要求的是在事件B 发生的条件下,事件A 发生的条件概率P (A |B ).不难理解,在事件B 发生的条件下(即以所选到的学生是共青团员为前提),有15种不同的选择,其中属于第一组的有4种选择.因此,P (A |B )=
415。

相关文档
最新文档