2020中考数学专题练习:三角形的边角关系 (含答案)

合集下载

2020-2021全国中考数学直角三角形的边角关系的综合中考模拟和真题汇总含答案解析

2020-2021全国中考数学直角三角形的边角关系的综合中考模拟和真题汇总含答案解析

2020-2021全国中考数学直角三角形的边角关系的综合中考模拟和真题汇总含答案解析一、直角三角形的边角关系1.如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为1θ,且在水平线上的射影AF 为1.4m .现已测量出屋顶斜面与水平面夹角为2θ,并已知1tan 1.082θ=,2tan 0.412θ=.如果安装工人确定支架AB 高为25cm ,求支架CD 的高(结果精确到1cm )?【答案】【解析】过A 作AF CD ⊥于F ,根据锐角三角函数的定义用θ1、θ2表示出DF 、EF 的值,又可证四边形ABCE 为平行四边形,故有EC=AB=25cm ,再再根据DC=DE+EC 进行解答即可.2.问题背景:如图(a ),点A 、B 在直线l 的同侧,要在直线l 上找一点C ,使AC 与BC 的距离之和最小,我们可以作出点B 关于l 的对称点B′,连接A B′与直线l 交于点C ,则点C 即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.【答案】解:(1)22.(2)如图,在斜边AC上截取AB′=AB,连接BB′.∵AD平分∠BAC,∴点B与点B′关于直线AD对称.过点B′作B′F⊥AB,垂足为F,交AD于E,连接BE.则线段B′F的长即为所求 (点到直线的距离最短) .在Rt△AFB/中,∵∠BAC=450, AB/="AB=" 10,∴.∴BE+EF的最小值为【解析】试题分析:(1)找点A或点B关于CD的对称点,再连接其中一点的对称点和另一点,和MN的交点P就是所求作的位置,根据题意先求出∠C′AE,再根据勾股定理求出AE,即可得出PA+PB的最小值:如图作点B关于CD的对称点E,连接AE交CD于点P,此时PA+PB最小,且等于A.作直径AC′,连接C′E,根据垂径定理得弧BD=弧DE.∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°.∴∠AOE=90°.∴∠C′AE=45°.又AC为圆的直径,∴∠AEC′=90°.∴∠C′=∠C′AE=45°.∴C′E=AE=AC′=22.∴AP+BP的最小值是22.(2)首先在斜边AC上截取AB′=AB,连接BB′,再过点B′作B′F⊥AB,垂足为F,交AD于E,连接BE,则线段B′F的长即为所求.3.如图,某公园内有一座古塔AB,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD.中午12时太阳光线与地面的夹角为45°,此时塔尖A在地面上的影子E与墙角C的距离为15米(B、E、C在一条直线上),求塔AB的高度.(结果精确到0.01米)参考数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249,2 1.4142.【答案】塔高AB约为32.99米.【解析】【分析】过点D作DH⊥AB,垂足为点H,设AB=x,则AH=x﹣3,解直角三角形即可得到结论.【详解】解:过点D作DH⊥AB,垂足为点H.由题意,得HB = CD = 3,EC = 15,HD = BC,∠ABC =∠AHD = 90°,∠ADH = 32°.设AB = x ,则 AH = x – 3.在Rt △ABE 中,由 ∠AEB = 45°,得 tan tan451ABAEB EB∠=︒==. ∴ EB = AB = x .∴ HD = BC = BE + EC = x + 15. 在Rt △AHD 中,由 ∠AHD = 90°,得 tan AHADH HD∠=. 即得 3tan3215x x -︒=+. 解得 15tan32332.991tan32x ⋅︒+=≈-︒.∴ 塔高AB 约为32.99米. 【点睛】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.4.某条道路上通行车辆限速60千米/时,道路的AB 段为监测区,监测点P 到AB 的距离PH 为50米(如图).已知点P 在点A 的北偏东45°方向上,且在点B 的北偏西60°方向上,点B 在点A 的北偏东75°方向上,那么车辆通过AB 段的时间在多少秒以内,可认定为超速?(参考数据:3≈1.7,2≈1.4).【答案】车辆通过AB 段的时间在8.1秒以内,可认定为超速 【解析】分析:根据点到直线的距离的性质,构造直角三角形,然后利用解直角三角形的应用,解直角三角形即可.详解:如图,由题意知∠CAB=75°,∠CAP=45°,∠PBD=60°,∴∠PAH=∠CAB –∠CAP=30°,∵∠PHA=∠PHB=90°,PH=50,∴AH=tan PH PAH∠=33=503,∵AC∥BD,∴∠ABD=180°–∠CAB=105°,∴∠PBH=∠ABD–∠PBD=45°,则PH=BH=50,∴AB=AH+BH=503+50,∵60千米/时=503米/秒,∴时间t=50350503+=3+33≈8.1(秒),即车辆通过AB段的时间在8.1秒以内,可认定为超速.点睛:该题考查学生通过构建直角三角形,利用某个度数的三角函数值求出具体边长,即实际路程,并进行判断相关的量。

(全国通用)中考数学几何专项突破:三角形的边角关系(含答案)

(全国通用)中考数学几何专项突破:三角形的边角关系(含答案)
18.如图,在△ 中,AD⊥BC,垂足为D.
尺规作图(不写作法,保留作图痕迹):作△ 的外接圆⊙O,作直径AE,连接BE.
若AB=8,AC=6,AD=5,求直径AE的长.
19.如图,△ABC中,∠A=60°,∠C=40°,延长CB到D ,则∠ABD=度.
20.在△ABC中,若∠C=2(∠A+∠B),则∠C=度。
参考答案
例1答案:D
【解析】根据等腰三角形的性质等边对等角得到∠C=∠B=70°,再根据三角形内角和定理得∠A=180°-∠C-∠B=180°-70°-70°=40°.故选D.
例2答案:D
例3答案:B
【详解】三角形任意两边之和大于第三边、任意两边之差小于第三边,只有B符合.
巩固练习
1.【答案】D;2.【答案】D;3.【答案】D;4.【答案】C;5.【答案】B
A.2 B.4 C.6 D.8
巩固练习
1.下列命题中,错误的是: ( )
A.三角形两边之差小于第三边.
B.三角形的外角和是360°.
C.三角形的一条中线能将三角形分成面积相等的两部分.
D.等边三角形即是轴对称图形,又是中心对称图形.
2. 下面四个结论中,正确的是( )
A. 三角形的三个内角中最多有一个锐角 B. 等腰三角形的底角一定大于顶角
B.4cm, 5cm, 9cm
C.5cm,8cm, 15cm
D.6cm,8cm, 9cm
10.如图,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°.求∠DAC的度数.
11.在△ABC中,∠A=39º,∠B41 º,则∠C的外角度数为( )
A 80度 B 100度 C 90度 D 70度
12.如图,已知△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC边上的中线BD的长为cm

2020-2021中考数学综合题专练∶直角三角形的边角关系附详细答案

2020-2021中考数学综合题专练∶直角三角形的边角关系附详细答案

2020-2021中考数学综合题专练∶直角三角形的边角关系附详细答案一、直角三角形的边角关系1.已知在平面直角坐标系中,点()()()3,0,3,0,3,8A B C --,以线段BC 为直径作圆,圆心为E ,直线AC 交E e 于点D ,连接OD . (1)求证:直线OD 是E e 的切线;(2)点F 为x 轴上任意一动点,连接CF 交E e 于点G ,连接BG : ①当1an 7t ACF ∠=时,求所有F 点的坐标 (直接写出); ②求BGCF的最大值. 【答案】(1)见解析;(2)①143,031F ⎛⎫⎪⎝⎭,2(5,0)F ;② BG CF 的最大值为12.【解析】 【分析】(1)连接DE ,证明∠EDO=90°即可;(2)①分“F 位于AB 上”和“F 位于BA 的延长线上”结合相似三角形进行求解即可; ②作GM BC ⊥于点M ,证明1~ANF ABC ∆∆,得12BG CF ≤,从而得解. 【详解】(1)证明:连接DE ,则:∵BC 为直径 ∴90BDC ∠=︒ ∴90BDA ∠=︒ ∵OA OB = ∴OD OB OA == ∴OBD ODB ∠=∠∵EB ED =∴EBD EDB ∠=∠∴EBD OBD EDB ODB ∠+∠=∠+∠ 即:EBO EDO ∠=∠ ∵CB x ⊥轴 ∴90EBO ∠=︒ ∴90EDO ∠=︒ ∴直线OD 为E e 的切线.(2)①如图1,当F 位于AB 上时: ∵1~ANF ABC ∆∆∴11NF AF AN AB BC AC== ∴设3AN x =,则114,5NF x AF x ==∴103CN CA AN x =-=- ∴141tan 1037F N x ACF CN x ∠===-,解得:1031x = ∴150531AF x ==1504333131OF =-=即143,031F ⎛⎫⎪⎝⎭如图2,当F 位于BA 的延长线上时: ∵2~AMF ABC ∆∆∴设3AM x =,则224,5MF x AF x == ∴103CM CA AM x =+=+ ∴241tan 1037F M x ACF CM x ∠===+ 解得:25x =∴252AF x ==2325OF =+=即2(5,0)F②如图,作GM BC ⊥于点M , ∵BC 是直径∴90CGB CBF ∠=∠=︒ ∴~CBF CGB ∆∆∴8BG MG MGCF BC == ∵MG ≤半径4=∴41882BG MG CF =≤= ∴BG CF的最大值为12.【点睛】本题考查了圆的综合题:熟练掌握切线的判定定理、解直角三角形;相似三角形的判定和性质和相似比计算线段的长;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.2.已知:如图,在Rt△ABC中,∠ACB=90°,点M是斜边AB的中点,MD∥BC,且MD=CM,DE⊥AB于点E,连结AD、CD.(1)求证:△MED∽△BCA;(2)求证:△AMD≌△CMD;(3)设△MDE的面积为S1,四边形BCMD的面积为S2,当S2=175S1时,求cos∠ABC的值.【答案】(1)证明见解析;(2)证明见解析;(3)cos∠ABC=5 7 .【解析】【分析】(1)易证∠DME=∠CBA,∠ACB=∠MED=90°,从而可证明△MED∽△BCA;(2)由∠ACB=90°,点M是斜边AB的中点,可知MB=MC=AM,从而可证明∠AMD=∠CMD,从而可利用全等三角形的判定证明△AMD≌△CMD;(3)易证MD=2AB,由(1)可知:△MED∽△BCA,所以2114ACBS MDS AB⎛⎫==⎪⎝⎭V,所以S△MCB=12S△ACB=2S1,从而可求出S△EBD=S2﹣S△MCB﹣S1=25S1,由于1EBDS MES EB=V,从而可知52MEEB=,设ME=5x,EB=2x,从而可求出AB=14x,BC=72,最后根据锐角三角函数的定义即可求出答案.【详解】(1)∵MD∥BC,∴∠DME=∠CBA,∵∠ACB=∠MED=90°,∴△MED∽△BCA;(2)∵∠ACB=90°,点M是斜边AB的中点,∴MB=MC=AM,∴∠MCB=∠MBC,∵∠DMB=∠MBC,∴∠MCB=∠DMB=∠MBC,∵∠AMD=180°﹣∠DMB,∠CMD=180°﹣∠MCB ﹣∠MBC+∠DMB=180°﹣∠MBC , ∴∠AMD=∠CMD , 在△AMD 与△CMD 中,MD MD AMD CMD AM CM =⎧⎪∠=∠⎨⎪=⎩, ∴△AMD ≌△CMD (SAS ); (3)∵MD=CM , ∴AM=MC=MD=MB , ∴MD=2AB ,由(1)可知:△MED ∽△BCA , ∴2114ACB S MD S AB ⎛⎫== ⎪⎝⎭V , ∴S △ACB =4S 1, ∵CM 是△ACB 的中线, ∴S △MCB =12S △ACB =2S 1, ∴S △EBD =S 2﹣S △MCB ﹣S 1=25S 1, ∵1EBDS MES EB=V , ∴1125S MEEB S =,∴52ME EB =, 设ME=5x ,EB=2x , ∴MB=7x , ∴AB=2MB=14x ,∵12MD ME AB BC ==, ∴BC=10x ,∴cos ∠ABC=105147BC x AB x ==. 【点睛】本题考查相似三角形的综合问题,涉及直角三角形斜边中线的性质,全等三角形的性质与判定,相似三角形的判定与性质,三角形面积的面积比,锐角三角函数的定义等知识,综合程度较高,熟练掌握和灵活运用相关的性质及定理进行解题是关键.3.某条道路上通行车辆限速60千米/时,道路的AB段为监测区,监测点P到AB的距离PH为50米(如图).已知点P在点A的北偏东45°方向上,且在点B的北偏西60°方向上,点B在点A的北偏东75°方向上,那么车辆通过AB段的时间在多少秒以内,可认定为超速?(参考数据:3≈1.7,2≈1.4).【答案】车辆通过AB段的时间在8.1秒以内,可认定为超速【解析】分析:根据点到直线的距离的性质,构造直角三角形,然后利用解直角三角形的应用,解直角三角形即可.详解:如图,由题意知∠CAB=75°,∠CAP=45°,∠PBD=60°,∴∠PAH=∠CAB–∠CAP=30°,∵∠PHA=∠PHB=90°,PH=50,∴AH=tanPHPAH∠333,∵AC∥BD,∴∠ABD=180°–∠CAB=105°,∴∠PBH=∠ABD–∠PBD=45°,则PH=BH=50,∴3,∵60千米/时=503米/秒,∴时间t=503505033≈8.1(秒),即车辆通过AB段的时间在8.1秒以内,可认定为超速.点睛:该题考查学生通过构建直角三角形,利用某个度数的三角函数值求出具体边长,即实际路程,并进行判断相关的量。

2020-2021中考数学直角三角形的边角关系综合试题附详细答案

2020-2021中考数学直角三角形的边角关系综合试题附详细答案

2020-2021中考数学 直角三角形的边角关系综合试题附详细答案一、直角三角形的边角关系1 .图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图 2所示,两 支脚OC= OD=10分米,展开角 Z COD= 60°,晾衣臂 OA= OB= 10分米,晾衣臂支架 HG = FE= 6分米,且 HO=FO= 4分米.当/ AOC= 90°时,点 A 离地面的距离 AM 为 分米;当OB 从水平状态旋转到 OB (在CO 延长线上)时,点 E 绕点F 随之旋转至OB 上 的点E 处,则B' E 2BE 为 分米.【答案】5 5,3 4【解析】【分析】如图,作 OP ,CD 于P, OQ± AM 于Q, FK ,OB 于K, FJL OC 于J,解直角三角形求出 MQ, AQ 即可求出AM,再分别求出 BE, B'即可.【详解】解:如图,作 OPXCDT P, OQ±AM 于 Q, FK±OB 于 K, FJLOC 于 J.• . AM XCD,/ QMP= / MPO= ZOQM = 90 °,••・四边形OQMP 是矩形,.•.QM = OP,• . OC= OD= 10, /COD= 60 °,・•.△COD 是等边三角形,• .OPXCD,___ 1 _____/ COP= - / COD= 30 ,.•.Q M = OP=OC?COS 30 = 5 73 (分米),• •• / AOC= / QOP= 90 °,/ AOQ= ZCOP= 30 ;- 1 一1 .AQ= -OA= 5 (分米),22 .AM=AQ+MQ = 5+5 石.*月3. OB// CD,/ BOD= / ODC= 60 °在Rt^OFK中,KO= OF?cos60=2 (分米),FK= OF?sin60 = 2百(分米),在R「pKE中,EK= J E F2~FK2=2 娓(分米),4•.BE= 10-2-2 6Q=(8-2 76)(分米),在Rt^OFJ中,OJ= OF?cos60=2 (分米),FJ= 2J3 (分米),在Rt^FJE 中,E T,62(2 向2=2J6,5.B' =E10- (276-2)= 12-2 娓,・•.B' E' =4E故答案为:5+5 J3, 4.-V C D水平地面【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.2.如图,在平行四边形ABCD中,猴平分〃?成交限于点月,而平分〃交仞于点与""交于点「,连接W, P".(1)求证:四边形是菱形;⑵若他=狐叩=6。

中考数学直角三角形的边角关系综合题及答案

中考数学直角三角形的边角关系综合题及答案

中考数学直角三角形的边角关系综合题及答案一、直角三角形的边角关系1.已知:如图,在四边形 ABCD 中, AB ∥CD , ∠ACB =90°, AB=10cm , BC=8cm , OD 垂直平分 A C .点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s ;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s ;当一个点停止运动,另一个点也停止运动.过点 P 作 PE ⊥AB ,交 BC 于点 E ,过点 Q 作 QF ∥AC ,分别交 AD , OD 于点 F , G .连接 OP ,EG .设运动时间为 t ( s )(0<t <5) ,解答下列问题:(1)当 t 为何值时,点 E 在 BAC 的平分线上?(2)设四边形 PEGO 的面积为 S(cm 2) ,求 S 与 t 的函数关系式;(3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;(4)连接 OE , OQ ,在运动过程中,是否存在某一时刻 t ,使 OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)4s t =;(2)PEGO S 四边形2315688t t =-++ ,(05)t <<;(3)52t =时,PEGO S 四边形取得最大值;(4)165t =时,OE OQ ⊥. 【解析】【分析】 (1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE=EC ,由此构建方程即可解决问题.(2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )构建函数关系式即可. (3)利用二次函数的性质解决问题即可.(4)证明∠EOC=∠QOG ,可得tan ∠EOC=tan ∠QOG ,推出EC GQ OC OG=,由此构建方程即可解决问题.【详解】(1)在Rt △ABC 中,∵∠ACB=90°,AB=10cm ,BC=8cm ,∴22108-=6(cm ),∵OD 垂直平分线段AC ,∴OC=OA=3(cm ),∠DOC=90°,∵CD ∥AB ,∴∠BAC=∠DCO ,∵∠DOC=∠ACB ,∴△DOC ∽△BCA , ∴AC AB BC OC CD OD ==, ∴61083CD OD==, ∴CD=5(cm ),OD=4(cm ),∵PB=t ,PE ⊥AB , 易知:PE=34t ,BE=54t , 当点E 在∠BAC 的平分线上时,∵EP ⊥AB ,EC ⊥AC ,∴PE=EC ,∴34t=8-54t , ∴t=4. ∴当t 为4秒时,点E 在∠BAC 的平分线上.(2)如图,连接OE ,PC .S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )=1414153154338838252524524t t t t t ⎡⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯⨯-+⨯-⨯-⨯⨯- ⎪ ⎪ ⎪ ⎪⎢⎝⎭⎝⎭⎝⎭⎝⎭⎣ =281516(05)33t t t -++<<. (3)存在. ∵28568(05)323S t t ⎛⎫=--+<< ⎪⎝⎭, ∴t=52时,四边形OPEG 的面积最大,最大值为683. (4)存在.如图,连接OQ .∵OE ⊥OQ ,∴∠EOC+∠QOC=90°,∵∠QOC+∠QOG=90°,∴∠EOC=∠QOG,∴tan∠EOC=tan∠QOG,∴EC GQOC OG=,∴358544345ttt-=-,整理得:5t2-66t+160=0,解得165t =或10(舍弃)∴当165t=秒时,OE⊥OQ.【点睛】本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题.2.如图,PB为☉O的切线,B为切点,过B作OP的垂线BA,垂足为C,交☉O于点A ,连接PA,AO.并延长AO交☉O于点E,与PB的延长线交于点D.(1)求证:PA是☉O的切线;(2)若=,且OC=4,求PA的长和tan D的值.【答案】(1)证明见解析;(2)PA =3,tan D=.【解析】试题分析: (1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线;(2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值.试题解析:(1)连接OB,则OA=OB,∵OP ⊥AB ,∴AC=BC ,∴OP 是AB 的垂直平分线,∴PA=PB ,在△PAO 和△PBO 中,∵,∴△PAO ≌△PBO (SSS )∴∠PBO=∠PAO ,PB=PA , ∵PB 为⊙O 的切线,B 为切点,∴∠PBO=90°,∴∠PAO=90°,即PA ⊥OA ,∴PA 是⊙O 的切线;(2)连接BE ,∵,且OC=4,∴AC=6,∴AB=12,在Rt △ACO 中,由勾股定理得:AO=,∴AE=2OA=4,OB=OA=2,在Rt △APO 中,∵AC ⊥OP ,∴AC 2=OC PC ,解得:PC=9,∴OP=PC+OC=13, 在Rt △APO 中,由勾股定理得:AP==3. 易证,所以,解得, 则,在中,. 考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.解直角三角形.3.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点A 、点B ,且ABO ∆的面积为8.(1)求k 的值;(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.【答案】(1)1k =;(2)4m t =+;(3)32BOCM S =Y .【解析】【分析】(1)先求出A 的坐标,然后利用待定系数法求出k 的值;(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证POD OCE ∆≅∆可得OE PD =,进一步得出m 与t 的函数关系式;(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出QTB PTO ∆≅∆;再证出KPB BPN ∠=∠;设KPB x ∠=︒,通过计算证出PO PM =;再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到OD BO PD MO =,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32.【详解】解:(1)把0x =代入4y kx =+,4y =,∴4BO =,又∵4ABO S ∆=, ∴142AO BO ⋅=,4AO =, ∴(4,0)A -,把4x =-,0y =代入4y kx =+,得044k =-+,解得1k =.故答案为1;(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,∴90PDO CEO ∠=∠=︒,∴90POD OPD ∠+∠=︒,∵线段OP 绕点O 顺时针旋转90°至线段OC ,∴90POC ∠=︒,OP OC =,∴90POD EOC ∠+∠=︒,∴OPD EOC ∠=∠,∴POD OCE ∆≅∆,∴OE PD =,4m t =+.故答案为4m t =+.(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,由(1)知,4AO BO ==,90BOA ∠=︒,∴ABO ∆为等腰直角三角形,∴45ABO BAO ∠=∠=︒,9045BOT ABO ABO ∠=︒-∠=︒=∠,∴BT TO =,∵90BTO ∠=︒,∴90TPO TOP ∠+∠=︒,∵PO BM ⊥,∴90BNO ∠=︒,∴BQT TPO ∠=∠,∴QTB PTO ∆≅∆,∴QT TP =,PO BQ =,∴PQT QPT ∠=∠,∵PO PK KB =+,∴QB PK KB =+,QK KP =,∴KQP KPQ ∠=∠,∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠,∴KPB BPN ∠=∠,设KPB x ∠=︒,∴BPN x ∠=︒,∵2PMB KPB ∠=∠,∴2PMB x ∠=︒,45POM PAO APO x ∠=∠+∠=︒+︒,9045NMO POM x ∠=︒-∠=︒-︒, ∴45PMO PMB NMO x POM ∠=∠+∠=︒+︒=∠,∴PO PM =,过点P 作PD x ⊥轴,垂足为点D ,∴22OM OD t ==,9045OPD POD x BMO ∠=︒-∠=︒-︒=∠,tan tan OPD BMO ∠=∠,OD BO PD MO =,442t t t=+, 14t =,22t =-(舍)∴8OM =,由(2)知,48m t OM =+==,∴CM y P 轴,∵90PNM POC ∠=∠=︒,∴BM OC P ,∴四边形BOCM 是平行四边形,∴4832BOCM S BO OM =⨯=⨯=Y .故答案为32.【点睛】本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.4.在正方形ABCD中,AC是一条对角线,点E是边BC上的一点(不与点C重合),连接AE,将△ABE沿BC方向平移,使点B与点C重合,得到△DCF,过点E作EG⊥AC于点G,连接DG,FG.(1)如图,①依题意补全图;②判断线段FG与DG之间的数量关系与位置关系,并证明;(2)已知正方形的边长为6,当∠AGD=60°时,求BE的长.【答案】(1)①见解析,②FG=DG,FG⊥DG,见解析;(2)3BE=【解析】【分析】(1)①补全图形即可,②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于点H.由等腰直角三角形的性质得出DH=AH=2FG=DG=2GH=6,得出DF2DG=3Rt△DCF中,由勾股定理得出CF=3得出结果.【详解】解:(1)①补全图形如图1所示,②FG=DG,FG⊥DG,理由如下,连接BG,如图2所示,∵四边形ABCD是正方形,∴∠ACB=45°,∵EG⊥AC,∴∠EGC=90°,∴△CEG是等腰直角三角形,EG=GC,∴∠GEC=∠GCE=45°,∴∠BEG=∠GCF=135°,由平移的性质得:BE=CF,在△BEG和△GCF中,BE CFBEG GCF EG CG=⎧⎪∠=∠⎨⎪=⎩,∴△BEG ≌△GCF (SAS ),∴BG =GF ,∵G 在正方形ABCD 对角线上,∴BG =DG ,∴FG =DG ,∵∠CGF =∠BGE ,∠BGE+∠AGB =90°,∴∠CGF+∠AGB =90°,∴∠AGD+∠CGF =90°,∴∠DGF =90°,∴FG ⊥DG.(2)过点D 作DH ⊥AC ,交AC 于点H .如图3所示,在Rt △ADG 中,∵∠DAC =45°,∴DH =AH =32, 在Rt △DHG 中,∵∠AGD =60°,∴GH =3=323=6,∴DG =2GH =26,∴DF =2DG =43,在Rt △DCF 中,CF =()22436-=23,∴BE =CF =23.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.5.如图,AB是⊙O的直径,PA、PC与⊙O分别相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E.(1)求证:∠EPD=∠EDO;(2)若PC=3,tan∠PDA=34,求OE的长.【答案】(1)见解析;(25.【解析】【分析】(1)由切线的性质即可得证.(2)连接OC,利用tan∠PDA=34,可求出CD=2,进而求得OC=32,再证明△OED∽△DEP,根据相似三角形的性质和勾股定理即可求出OE的长.【详解】(1)证明:∵PA,PC与⊙O分别相切于点A,C,∴∠APO=∠CPO, PA⊥AO,∵DE⊥PO,∴∠PAO=∠E=90°,∵∠AOP=∠EOD,∴∠APO=∠EDO,∴∠EPD=∠EDO.(2)连接OC,∴PA=PC=3,∵tan∠PDA=34,∴在Rt△PAD中,AD=4,22PA AD,∴CD=PD-PC=5-3=2,∵tan∠PDA=34,∴在Rt△OCD中,OC=32, OD=22OC CD +=52, ∵∠EPD=∠ODE ,∠OCP=∠E=90°, ∴△OED ∽△DEP ,∴PD DO =PE DE =DEOE =2, ∴DE=2OE,在Rt △OED 中,OE 2+DE 2=OD 2,即5OE 2=252⎛⎫ ⎪⎝⎭=254,∴OE=52.【点睛】本题考查了切线的性质;锐角三角函数;勾股定理和相似三角形的判定与性质,充分利用tan ∠PDA=34,得线段的长是解题关键.6.如图,在ABC △中,10AC BC ==,3cos 5C =,点P 是BC 边上一动点(不与点,A C 重合),以PA 长为半径的P e 与边AB 的另一个交点为D ,过点D 作DE CB ⊥于点E .()1当P e 与边BC 相切时,求P e 的半径;()2联结BP 交DE 于点F ,设AP 的长为x ,PF 的长为y ,求y 关于x 的函数解析式,并直接写出x 的取值范围;()3在()2的条件下,当以PE 长为直径的Q e 与P e 相交于AC 边上的点G 时,求相交所得的公共弦的长.【答案】(1)409;(2)()25880010320x x xy xx-+=<<+;(3)1025-【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=R10R-=45,即可求解;(2)PD∥BE,则EBPD=BFPF,即:2248805x x x yx y--+-=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=GP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=35,sinC=HPCP=R10R-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8,同理可得:CH=6,HA=4,AB=45,则:tan∠CAB=2BP=()2284x+-=2880x x-+,DA=255x,则BD=45-255x,如下图所示,PA=PD,∴∠PAD=∠CAB=∠CBA=β,tanβ=2,则cosβ=5,sinβ=5,EB=BDcosβ=(45-25x)×5=4-25x,∴PD∥BE,∴EBPD=BFPF,即:2248805x x x yx--+-=,整理得:y=()25x x8x800x10-+<<;(3)以EP为直径作圆Q如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q时弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP∥BD,由(2)知,PD∥BC,∴四边形PDBE为平行四边形,∴AG=EP=BD,∴AB=DB+AD=AG+AD=45,设圆的半径为r,在△ADG中,AD=2rcosβ=5,DG=5,AG=2r,5+2r=45,解得:2r=51,则:DG=5=10-25,相交所得的公共弦的长为10-25.【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.7.已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.(1)如图1,求证:KE=GE;(2)如图2,连接CABG,若∠FGB=12∠ACH,求证:CA∥FE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若sin E=35,AK=10,求CN的长.【答案】(1)证明见解析;(2)△EAD是等腰三角形.证明见解析;(32010 13【解析】试题分析:(1)连接OG,则由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,从而可得∠KGE=∠AKH=∠EKG,这样即可得到KE=GE;(2)设∠FGB=α,由AB是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE可得∠EKG=90°-α,这样在△GKE 中可得∠E=2α,由∠FGB=12∠ACH 可得∠ACH=2α,这样可得∠E=∠ACH ,由此即可得到CA ∥EF ; (3)如下图2,作NP ⊥AC 于P ,由(2)可知∠ACH=∠E ,由此可得sinE=sin ∠ACH=35AH AC =,设AH=3a ,可得AC=5a ,CH=4a ,则tan ∠CAH=43CH AH =,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC ,从而可得CK=AC=5a ,由此可得HK=a ,tan ∠AKH=3AHHK=,AK=10a ,结合AK=10可得a=1,则AC=5;在四边形BGKH 中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG 可得∠ACG=∠AKH , 在Rt △APN 中,由tan ∠CAH=43PN AP=,可设PN=12b ,AP=9b ,由tan ∠ACG=PN CP =tan ∠AKH=3可得CP=4b ,由此可得AC=AP+CP=13b =5,则可得b=513,由此即可在Rt △CPN 中由勾股定理解出CN 的长. 试题解析:(1)如图1,连接OG .∵EF 切⊙O 于G , ∴OG ⊥EF ,∴∠AGO+∠AGE=90°, ∵CD ⊥AB 于H , ∴∠AHD=90°, ∴∠OAG=∠AKH=90°, ∵OA=OG , ∴∠AGO=∠OAG , ∴∠AGE=∠AKH , ∵∠EKG=∠AKH , ∴∠EKG=∠AGE , ∴KE=GE . (2)设∠FGB=α, ∵AB 是直径, ∴∠AGB=90°,∴∠AGE =∠EKG=90°﹣α, ∴∠E=180°﹣∠AGE ﹣∠EKG=2α,∵∠FGB=12∠ACH , ∴∠ACH=2α, ∴∠ACH=∠E , ∴CA ∥FE .(3)作NP ⊥AC 于P . ∵∠ACH=∠E , ∴sin ∠E=sin ∠ACH=35AH AC =,设AH=3a ,AC=5a , 则224AC CH a -=,tan ∠CAH=43CH AH =, ∵CA ∥FE , ∴∠CAK=∠AGE , ∵∠AGE=∠AKH , ∴∠CAK=∠AKH ,∴AC=CK=5a ,HK=CK ﹣CH=4a ,tan ∠AKH=AHHK=3,2210AH HK a +=, ∵10 ∴1010a =∴a=1.AC=5, ∵∠BHD=∠AGB=90°, ∴∠BHD+∠AGB=180°,在四边形BGKH 中,∠BHD+∠HKG+∠AGB+∠ABG=360°, ∴∠ABG+∠HKG=180°, ∵∠AKH+∠HKG=180°, ∴∠AKH=∠ABG , ∵∠ACN=∠ABG , ∴∠AKH=∠ACN , ∴tan ∠AKH=tan ∠ACN=3, ∵NP ⊥AC 于P , ∴∠APN=∠CPN=90°, 在Rt △APN 中,tan ∠CAH=43PN AP =,设PN=12b ,则AP=9b , 在Rt △CPN 中,tan ∠ACN=PNCP=3, ∴CP=4b , ∴AC=AP+CP=13b ,∵AC=5,∴13b=5,∴b=513,∴CN=22PN CP+=410b⋅=2010 13.8.已知Rt△ABC,∠BAC=90°,点D是BC中点,AD=AC,BC=43,过A,D两点作⊙O,交AB于点E,(1)求弦AD的长;(2)如图1,当圆心O在AB上且点M是⊙O上一动点,连接DM交AB于点N,求当ON 等于多少时,三点D、E、M组成的三角形是等腰三角形?(3)如图2,当圆心O不在AB上且动圆⊙O与DB相交于点Q时,过D作DH⊥AB(垂足为H)并交⊙O于点P,问:当⊙O变动时DP﹣DQ的值变不变?若不变,请求出其值;若变化,请说明理由.【答案】(1)23(2)当ON等于13﹣1时,三点D、E、M组成的三角形是等腰三角形(3)不变,理由见解析【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半即可得到AD的长;(2)连DE、ME,易得当ED和EM为等腰三角形EDM的两腰,根据垂径定理得推论得OE⊥DM,易得到△ADC为等边三角形,得∠CAD=60°,则∠DAO=30°,∠DON=60°,然后根据含30°的直角三角形三边的关系得DN=1233;当MD=ME,DE为底边,作DH⊥AE,由于3∠DAE=30°,得到3,∠DEA=60°,DE=2,于是OE=DE=2,OH=1,又∠M=∠DAE=30°,MD=ME ,得到∠MDE=75°,则∠ADM=90°-75°=15°,可得到∠DNO=45°,根据等腰直角三角形的性质得到; (3)连AP 、AQ ,DP ⊥AB ,得AC ∥DP ,则∠PDB=∠C=60°,再根据圆周角定理得∠PAQ=∠PDB ,∠AQC=∠P ,则∠PAQ=60°,∠CAQ=∠PAD ,易证得△AQC ≌△APD ,得到DP=CQ ,则DP-DQ=CQ-DQ=CD ,而△ADC 为等边三角形,DP-DQ 的值. 【详解】解:(1)∵∠BAC =90°,点D 是BC 中点,BC = ∴AD =12BC = (2)连DE 、ME ,如图,∵DM >DE , 当ED 和EM 为等腰三角形EDM 的两腰, ∴OE ⊥DM , 又∵AD =AC ,∴△ADC 为等边三角形, ∴∠CAD =60°, ∴∠DAO =30°, ∴∠DON =60°,在Rt △ADN 中,DN =12AD ,在Rt △ODN 中,ON =3DN =1, ∴当ON 等于1时,三点D 、E 、M 组成的三角形是等腰三角形; 当MD =ME ,DE 为底边,如图3,作DH ⊥AE , ∵AD =∠DAE =30°,∴DH ∠DEA =60°,DE =2,∴△ODE 为等边三角形, ∴OE =DE =2,OH =1, ∵∠M =∠DAE =30°, 而MD =ME , ∴∠MDE =75°,∴∠ADM =90°﹣75°=15°, ∴∠DNO =45°,∴△NDH 为等腰直角三角形, ∴NH=DH ∴ON ﹣1;综上所述,当ON 等于11时,三点D 、E 、M 组成的三角形是等腰三角形;(3)当⊙O变动时DP﹣DQ的值不变,DP﹣DQ=23.理由如下:连AP、AQ,如图2,∵∠C=∠CAD=60°,而DP⊥AB,∴AC∥DP,∴∠PDB=∠C=60°,又∵∠PAQ=∠PDB,∴∠PAQ=60°,∴∠CAQ=∠PAD,∵AC=AD,∠AQC=∠P,∴△AQC≌△APD,∴DP=CQ,∴DP﹣DQ=CQ﹣DQ=CD=23.【点睛】本题考查了垂径定理和圆周角定理:平分弧的直径垂直弧所对的弦;在同圆和等圆中,相等的弧所对的圆周角相等.也考查了等腰三角形的性质以及含30°的直角三角形三边的关系.9.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).【答案】拦截点D处到公路的距离是(500+500)米.【解析】试题分析:过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.解Rt△BCE,求出BE=BC=×1000=500米;解Rt△CDF,求出CF=CD=500米,则DA=BE+CF=(500+500)米.试题解析:如图,过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.在Rt△BCE中,∵∠E=90°,∠CBE=60°,∴∠BCE=30°,∴BE=BC=×1000=500米;在Rt△CDF中,∵∠F=90°,∠DCF=45°,CD=BC=1000米,∴CF=CD=500米,∴DA=BE+CF=(500+500)米,故拦截点D处到公路的距离是(500+500)米.考点:解直角三角形的应用-方向角问题.10.如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P 处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:12.(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈43,tan63.4°≈2)【答案】(1)此人所在P的铅直高度约为14.3米;(2)从P到点B的路程约为127.1米【解析】分析:(1)过P作PF⊥BD于F,作PE⊥AB于E,设PF=5x,在Rt△ABC中求出AB,用含x 的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的长.详解:过P作PF⊥BD于F,作PE⊥AB于E,∵斜坡的坡度i=5:12,设PF=5x,CF=12x,∵四边形BFPE为矩形,∴BF=PEPF=BE.在RT△ABC中,BC=90,tan∠ACB=AB BC,∴AB=tan63.4°×BC≈2×90=180,∴AE=AB-BE=AB-PF=180-5x,EP=BC+CF≈90+120x.在RT△AEP中,tan∠APE=1805490123 AE xEP x-≈=+,∴x=207,∴PF=5x=10014.37≈.答:此人所在P的铅直高度约为14.3米.由(1)得CP=13x,∴CP=13×207≈37.1,BC+CP=90+37.1=127.1.答:从P到点B的路程约为127.1米.点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,构造直角三角形,用勾股定理或三角函数求相应的线段长.11.如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.(1)求证:四边形AGDH为菱形;(2)若EF=y,求y关于x的函数关系式;(3)连结OF,CG.①若△AOF为等腰三角形,求⊙O的面积;②若BC=3,则30CG+9=______.(直接写出答案).【答案】(1)证明见解析;(2)y=18x2(x>0);(3)①163π或8π或(17+2)π;21.【解析】【分析】(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;(2)只要证明△AEF∽△ACB,可得AE EFAC BC=解决问题;(3)①分三种情形分别求解即可解决问题;②只要证明△CFG∽△HFA,可得GFAF=CGAH,求出相应的线段即可解决问题;【详解】(1)证明:∵GH垂直平分线段AD,∴HA=HD,GA=GD,∵AB是直径,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四边形AGDH是菱形.(2)解:∵AB是直径,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AE EFAC BC=,∴124x yx=,∴y=18x2(x>0).(3)①解:如图1中,连接DF.∵GH垂直平分线段AD,∴FA=FD,∴当点D与O重合时,△AOF是等腰三角形,此时AB=2BC,∠CAB=30°,∴AB=83,∴⊙O的面积为163π.如图2中,当AF=AO时,∵AB22AC BC+216x+∴OA216x+,∵AF22EF AE+2221182x⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭∴2162x +=2221182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭, 解得x =4(负根已经舍弃),∴AB =42,∴⊙O 的面积为8π.如图2﹣1中,当点C 与点F 重合时,设AE =x ,则BC =AD =2x ,AB =2164x +,∵△ACE ∽△ABC ,∴AC 2=AE•AB ,∴16=x•2164x +,解得x 2=217﹣2(负根已经舍弃),∴AB 2=16+4x 2=817+8,∴⊙O 的面积=π•14•AB 2=(217+2)π 综上所述,满足条件的⊙O 的面积为163π或8π或(217+2)π; ②如图3中,连接CG .∵AC =4,BC =3,∠ACB =90°,∴AB =5,∴OH =OA =52,∴AE =32, ∴OE =OA ﹣AE =1, ∴EG =EH2, ∵EF =18x 2=98, ∴FG=2﹣98,AF158,AH2, ∵∠CFG =∠AFH ,∠FCG =∠AHF ,∴△CFG ∽△HFA , ∴GF CG AF AH=,∴9281582-= ∴CG=5﹣10,∴=.故答案为【点睛】本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.12.如图,△ABC 是边长为6cm 的等边三角形,点D 从B 点出发沿B→A 方向在线段BA 上以a cm/s 速度运动,与此同时,点E 从线段BC 的某个端点出发,以b cm/s 速度在线段BC 上运动,当D 到达A 点后,D 、E 运动停止,运动时间为t (秒).(1)如图1,若a=b=1,点E 从C 出发沿C→B 方向运动,连AE 、CD ,AE 、CD 交于F ,连BF .当0<t <6时:①求∠AFC 的度数;②求222AF FC BF AF FC+-⋅的值; (2)如图2,若a=1,b=2,点E 从B 点出发沿B→C 方向运动,E 点到达C 点后再沿C→B 方向运动.当t≥3时,连DE ,以DE 为边作等边△DEM ,使M 、B 在DE 两侧,求M 点所经历的路径长.【答案】(1)①120°;②1;(2)当3≤t≤6时,M点所经历的路径长为3.【解析】【分析】(1)①如图1,由题可得BD=CE=t,易证△BDC≌△CEA,则有∠BCD=∠CAE,根据三角形外角的性质可求得∠EFC=60°,即可得到∠AFC=120°;②延长FD到G,使得FG=FA,连接GA、GB,过点B作BH⊥FG于H,如图2,易证△FAG 是等边三角形,结合△ABC是等边三角形可证到△AGB≌△AFC,则有GB=FC,∠AGB=∠AFC=120°,从而可得∠BGF=60°.设AF=x,FC=y,则有FG=AF=x,BG=CF=y.在Rt△BHG中运用直角三角形的性质可得BH3,GH=12y,从而有FH=x﹣12y.在Rt△BHF中根据勾股定理可得BF2=x2﹣xy+y2,代入所求代数式就可解决问题;(2)过点E作EN⊥AB于N,连接MC,如图3,由题可得∠BEN=30°,BD=t,CE=2t﹣6,从而有BE=12﹣2t,BN=6﹣t,进而可得DN=EC.由△DEM是等边三角形可得DE=EM,∠DEM=60°,从而可得∠NDE=∠MEC,进而可证到△DNE≌△ECM,则有∠DNE=∠ECM=90°,故M点运动的路径为过点C垂直于BC的一条线段.然后只需确定点M的始点和终点位置,就可解决问题.【详解】(1)如图1,由题可得BD=CE=t.∵△ABC是等边三角形,∴BC=AC,∠B=∠ECA=60°.在△BDC和△CEA中,BD CEB ECABC AC=⎧⎪∠=∠⎨⎪=⎩,∴△BDC≌△CEA,∴∠BCD=∠CAE,∴∠EFC=∠CAE+∠ACF=∠BCD+∠ACF=∠ACB=60°,∴∠AFC=120°;②延长FD到G,使得FG=FA,连接GA、GB,过点B作BH⊥FG于H,如图2.∵∠AFG=180°﹣120°=60°,FG=FA,∴△FAG是等边三角形,∴AG=AF=FG,∠AGF=∠GAF=60°.∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∴∠GAF=∠BAC,∴∠GAB=∠FAC.在△AGB和△AFC中,AG AFGAB FACAB AC=⎧⎪∠=∠⎨⎪=⎩,∴△AGB≌△AFC,∴GB=FC,∠AGB=∠AFC=120°,∴∠BGF=60°,∴∠GBH=30°.设AF=x,FC=y,则有FG=AF=x,BG=CF=y.在Rt△BHG中,GH=12y,BH=3y,∴FH=FG﹣GH=x﹣12y.在Rt△BHF中,BF2=BH2+FH2=(3y)2+(x﹣12y)2=x2﹣xy+y2,∴222AF FC BFAF FC+-⋅=2222x y x xy yxy+--+()=1;(2)过点E作EN⊥AB于N,连接MC,如图3,由题可得:∠BEN=30°,BD=1×t=t,CE=2(t﹣3)=2t﹣6,∴BE=6﹣(2t﹣6)=12﹣2t,BN=12BE=6﹣t,∴DN=t﹣(6﹣t)=2t﹣6,∴DN=EC.∵△DEM是等边三角形,∴DE=EM,∠DEM=60°.∵∠NDE+∠NED=90°,∠NED+∠MEC=180°﹣30°﹣60°=90°,∴∠NDE=∠MEC.在△DNE和△ECM中,∵DN ECNDE CEMDE EM=⎧⎪∠=∠⎨⎪=⎩,∴△DNE≌△ECM,∴∠DNE=∠ECM=90°,∴M点运动的路径为过点C垂直于BC的一条线段.当t=3时,E在点B,D在AB的中点,此时CM=EN=CD=BC•sin B=6×32=33;当t=6时,E在点C,D在点A,此时点M在点C;∴当3≤t≤6时,M点所经历的路径长为33.【点睛】本题主要考查了等边三角形的判定与性质、全等三角形的判定与性质、锐角三角函数、特殊角的三角函数值、勾股定理、三角形外角的性质等知识,综合性比较强,有一定的难度;构造旋转型全等三角形(由共顶点的两个等边三角形组成)是解决第1(2)小题的关键,证到∠ECM=90°是解决第(2)小题的关键.。

2020-2021全国各地中考数学分类:直角三角形的边角关系综合题汇编及答案

2020-2021全国各地中考数学分类:直角三角形的边角关系综合题汇编及答案

2020-2021全国各地中考数学分类:直角三角形的边角关系综合题汇编及答案一、直角三角形的边角关系1.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm.(1)求∠CAO'的度数.(2)显示屏的顶部B'比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?【答案】(1)∠CAO′=30°;(2)(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°.【解析】试题分析:(1)通过解直角三角形即可得到结果;(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得BD=OBsin∠BOD=24×=12,由C、O′、B′三点共线可得结果;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°.试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm,∴sin∠CAO′=,∴∠CAO′=30°;(2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=,∴BD=OBsin∠BOD,∵∠AOB=120°,∴∠BOD=60°,∴BD=OBsin∠BOD=24×=12,∵O′C⊥OA,∠CAO′=30°,∴∠AO′C=60°,∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°,∴O′B′+O′C﹣BD=24+12﹣12=36﹣12,∴显示屏的顶部B′比原来升高了(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°, 理由:∵显示屏O′B 与水平线的夹角仍保持120°, ∴∠EO′F=120°, ∴∠FO′A=∠CAO′=30°, ∵∠AO′B′=120°, ∴∠EO′B′=∠FO′A=30°,∴显示屏O′B′应绕点O′按顺时针方向旋转30°.考点:解直角三角形的应用;旋转的性质.2.如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为1θ,且在水平线上的射影AF 为1.4m .现已测量出屋顶斜面与水平面夹角为2θ,并已知1tan 1.082θ=,2tan 0.412θ=.如果安装工人确定支架AB 高为25cm ,求支架CD 的高(结果精确到1cm )?【答案】【解析】于F,根据锐角三角函数的定义用θ1、θ2表示出DF、EF的值,又可证过A作AF CD四边形ABCE为平行四边形,故有EC=AB=25cm,再再根据DC=DE+EC进行解答即可.3.如图,湿地景区岸边有三个观景台、、.已知米,米,点位于点的南偏西方向,点位于点的南偏东方向.(1)求的面积;(2)景区规划在线段的中点处修建一个湖心亭,并修建观景栈道.试求、间的距离.(结果精确到米)(参考数据:,,,,,,)【答案】(1)560000(2)565.6【解析】试题分析:(1)过点作交的延长线于点,,然后根据直角三角形的内角和求出∠CAE,再根据正弦的性质求出CE的长,从而得到△ABC的面积;(2)连接,过点作,垂足为点,则.然后根据中点的性质和余弦值求出BE、AE的长,再根据勾股定理求解即可.试题解析:(1)过点作交的延长线于点,在中,,所以米.所以(平方米).(2)连接,过点作,垂足为点,则.因为是中点,所以米,且为中点,米,所以米.所以米,由勾股定理得,米.答:、间的距离为米.考点:解直角三角形4.在平面直角坐标系中,四边形OABC 是矩形,点()0,0O ,点()3,0A ,点()0,4C,连接OB ,以点A 为中心,顺时针旋转矩形AOCB ,旋转角为()0360αα︒<<︒,得到矩形ADEF ,点,,O C B 的对应点分别为,,D E F . (Ⅰ)如图,当点D 落在对角线OB 上时,求点D 的坐标; (Ⅱ)在(Ⅰ)的情况下,AB 与DE 交于点H . ①求证BDE DBA ∆≅∆; ②求点H 的坐标.(Ⅲ)α为何值时,FB FA =.(直接写出结果即可).【答案】(Ⅰ)点D 的坐标为5472(,)2525;(Ⅱ)①证明见解析;②点H 的坐标为(3,258);(Ⅲ)60α=︒或300︒. 【解析】 【分析】(Ⅰ) 过A D 、分别作,AM OB DN OA ⊥⊥,根据点A 、点C 的坐标可得出OA 、OC 的长,根据矩形的性质可得AB 、OB 的长,在Rt △OAM 中,利用∠BOA 的余弦求出OM 的长,由旋转的性质可得OA=AD ,利用等腰三角形的性质可得OD=2OM ,在Rt △ODN 中,利用∠BOA 的正弦和余弦可求出DN 和ON 的长,即可得答案;(Ⅱ)①由等腰三角形性质可得∠DOA=∠ODA ,根据锐角互余的关系可得ABD BDE ∠∠=,利用SAS 即可证明△DBA ≌△BDE ;②根据△DBA ≌△BDE 可得∠BEH=∠DAH ,BE=AD ,即可证明△BHE ≌△DHA ,可得DH=BH ,设AH=x ,在Rt △ADH 中,利用勾股定理求出x 的值即可得答案;(Ⅲ)如图,过F 作FO ⊥AB ,由性质性质可得∠BAF=α,分别讨论0<α≤180°时和180°<α<360°时两种情况,根据FB=FA 可得OA=OB ,利用勾股定理求出FO 的长,由余弦的定义即可求出∠BAF 的度数. 【详解】(Ⅰ)∵点()30A ,,点()04C ,, ∴3,4OA OC ==. ∵四边形OABC 是矩形, ∴AB=OC=4,∵矩形DAFE 是由矩形AOBC 旋转得到的 ∴3AD AO ==.在Rt OAB ∆中,5OB =, 过A D 、分别作B,DN OA AM O ⊥⊥ 在Rt ΔOAM 中,OM OA 3cos BOA OA OB 5∠===, ∴9OM 5=∵AD=OA ,AM ⊥OB , ∴18OD 2OM 5==. 在Rt ΔODN 中:DN 4sin BOA OD 5∠==,cos ∠BOA=ON OD =35, ∴72DN 25=,54ON 25=. ∴点D 的坐标为5472,2525⎛⎫⎪⎝⎭.(Ⅱ)①∵矩形DAFE 是由矩形AOBC 旋转得到的, ∴OA AD 3,ADE 90,DE AB 4∠===︒==. ∴OD AD =.∴DOA ODA ∠∠=.又∵DOA OBA 90∠∠+=︒,BDH ADO 90∠∠+=︒ ∴ABD BDE ∠∠=.又∵BD BD =, ∴ΔBDE ΔDBA ≅.②由ΔBDE ΔDBA ≅,得BEH DAH ∠∠=,BE AD 3==, 又∵BHE DHA ∠∠=,∴ΔBHE ΔDHA ≅. ∴DH=BH ,设AH x =,则DH BH 4x ==-, 在Rt ΔADH 中,222AH AD DH =+, 即()222x 34x =+-,得25x 8=, ∴25AH 8=. ∴点H 的坐标为253,8⎛⎫ ⎪⎝⎭. (Ⅲ)如图,过F 作FO ⊥AB , 当0<α≤180°时,∵点B 与点F 是对应点,A 为旋转中心, ∴∠BAF 为旋转角,即∠BAF=α,AB=AF=4, ∵FA=FB ,FO ⊥AB , ∴OA=12AB=2, ∴cos ∠BAF=OA AF =12, ∴∠BAF=60°,即α=60°, 当180°<α<360°时,同理解得:∠BAF′=60°, ∴旋转角α=360°-60°=300°.综上所述:α60=︒或300︒. 【点睛】本题考查矩形的性质、旋转变换、全等三角形的判定与性质、锐角三角函数的定义等知识,正确找出对应边与旋转角并熟记特殊角的三角函数值是解题关键.5.如图,已知,在O e 中,弦AB 与弦CD 相交于点E ,且»»AC BD=. (1)求证:AB CD =;(2)如图,若直径FG 经过点E ,求证:EO 平分AED ∠;(3)如图,在(2)的条件下,点P 在»CG上,连接FP 交AB 于点M ,连接MG ,若AB CD ⊥,MG 平分PMB ∠,2MG =,FMG ∆的面积为2,求O e 的半径的长.【答案】(1)见解析;(2)见解析;(3)O e 的半径的长为10. 【解析】 【分析】(1) 利用相等的弧所对的弦相等进行证明;(2)连接AO 、DO ,过点O 作OJ AB ⊥于点J ,OQ CD ⊥于点Q ,证明AOJ DOQ ∆≅∆得出OJ OQ =,根据角平分线的判定定理可得结论;(3)如图,延长GM 交O e 于点H ,连接HF ,求出2FH =,在HG 上取点L ,使HL FH =,延长FL 交O e 于点K ,连接KG ,求出22FL =,设HM n =,则有22LK KG n ==,2222FK FL LK n =+=+,再证明KFG EMG HMF ∠=∠=∠,从而得到tan tan KFG HMF ∠=∠,KG HFFK HM=,再代入LK 和FK 的值可得n=4,再求得FG 的长,最后得到圆的半径为10. 【详解】解:(1)证明:∵»»AC BD =,∴»»»»AC CBBD CB +=+, ∴»»AB CD =, ∴AB CD =.(2)证明:如图,连接AO 、DO ,过点O 作OJ AB ⊥于点J ,OQ CD ⊥于点Q ,∴90AJO DQO ∠=∠=︒,1122AJ AB CD DQ ===, 又∵AO DO =, ∴AOJ DOQ ∆≅∆, ∴OJ OQ =,又∵OJ AB ⊥,OQ CD ⊥,∴EO 平分AED ∠.(3)解:∵CD AB ⊥,∴90AED ∠=︒,由(2)知,1452AEF AED ∠=∠=︒, 如图,延长GM 交O e 于点H ,连接HF ,∵FG 为直径,∴90H ∠=︒,122MFG S MG FH ∆=⨯⋅=, ∵2MG =,∴2FH =,在HG 上取点L ,使HL FH =,延长FL 交O e 于点K ,连接KG , ∴45HFL HLF ∠=∠=︒,45KLG HLF ∠=∠=︒, ∵FG 为直径,∴90K ∠=︒,∴9045KGL KLG KLG ∠=︒-∠=︒=∠,∴LK KG =, 在Rt FHL ∆中,222FL FH HL =+,22FL = 设HM n =,2HL MG ==,∴GL LM MG HL LM HM n =+=+==, 在Rt LGK ∆中,222LG LK KG =+,22LK KG ==,2222FK FL LK n =+=, ∵GMP GMB ∠=∠,∵PMG HMF ∠=∠,∴HMF GMB ∠=∠, ∵1452AEF AED ∠=∠=︒, ∴45MGF EMG MEF ∠+∠=∠=︒,45MGF KFG HLF ∠+∠=∠=︒, ∴KFG EMG HMF ∠=∠=∠, ∴tan tan KFG HMF ∠=∠,∴KG HFFK HM=,∴2222222n nn =+,4n =, ∴6HG HM MG =+=,在Rt HFG ∆中,222FG FH HG =+,210FG =,10FO =. 即O e 的半径的长为10. 【点睛】考查了圆的综合题,本题是垂径定理、圆周角定理以及三角函数等的综合应用,适当的添加辅助线是解题的关键.6.如图,在矩形ABCD 中,AB =6cm ,AD =8cm ,连接BD ,将△ABD 绕B 点作顺时针方向旋转得到△A ′B ′D ′(B ′与B 重合),且点D ′刚好落在BC 的延长上,A ′D ′与CD 相交于点E . (1)求矩形ABCD 与△A ′B ′D ′重叠部分(如图1中阴影部分A ′B ′CE )的面积;(2)将△A ′B ′D ′以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与△A ′B ′D ′重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x 的函数关系式,并指出自变量x 的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x ,使得△AA ′B ′成为等腰三角形?若存在,请你直接写出对应的x 的值,若不存在,请你说明理由.【答案】(1)452;(2)详见解析;(3)使得△AA ′B ′成为等腰三角形的x 的值有:0秒、32 秒、695- . 【解析】 【分析】(1)根据旋转的性质可知B ′D ′=BD =10,CD ′=B ′D ′﹣BC =2,由tan ∠B ′D ′A ′='''''=A B CE A D CD 可求出CE ,即可计算△CED ′的面积,S ABCE =S ABD ′﹣S CED ′; (2)分类讨论,当0≤x ≤115时和当115<x ≤4时,分别列出函数表达式; (3)分类讨论,当AB ′=A ′B ′时;当AA ′=A ′B ′时;当AB ′=AA ′时,根据勾股定理列方程即可. 【详解】解:(1)∵AB =6cm ,AD =8cm , ∴BD =10cm ,根据旋转的性质可知B ′D ′=BD =10cm ,CD ′=B ′D ′﹣BC =2cm , ∵tan ∠B ′D ′A ′='''''=A B CEA D CD ∴682=CE ∴CE =32cm ,∴S ABCE =S ABD ′﹣S CED ′=8634522222⨯-⨯÷=(cm 2); (2)①当0≤x <115时,CD ′=2x +2,CE =32(x +1), ∴S △CD ′E =32x 2+3x +32, ∴y =12×6×8﹣32x 2﹣3x ﹣32=﹣32x 2﹣3x +452; ②当115≤x ≤4时,B ′C =8﹣2x ,CE =43(8﹣2x ) ∴()214y 8223x =⨯-=83x 2﹣643x +1283. (3)①如图1,当AB ′=A ′B ′时,x =0秒;②如图2,当AA ′=A ′B ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =245, ∵AN 2+A ′N 2=36, ∴(6﹣245)2+(2x +185)2=36,解得:x =95,x =95-(舍去); ③如图2,当AB ′=AA ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =245, ∵AB 2+BB ′2=AN 2+A ′N 2 ∴36+4x 2=(6﹣245)2+(2x +185)2 解得:x =32.综上所述,使得△AA ′B ′成为等腰三角形的x 的值有:0秒、32【点睛】本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.7.如图,在平面直角坐标系中,直线DE交x轴于点E(30,0),交y轴于点D(0,40),直线AB:y=13x+5交x轴于点A,交y轴于点B,交直线DE于点P,过点E作EF⊥x轴交直线AB于点F,以EF为一边向右作正方形EFGH.(1)求边EF的长;(2)将正方形EFGH沿射线FB的方向以每秒10个单位的速度匀速平移,得到正方形E1F1G1H1,在平移过程中边F1G1始终与y轴垂直,设平移的时间为t秒(t>0).①当点F1移动到点B时,求t的值;②当G1,H1两点中有一点移动到直线DE上时,请直接写出此时正方形E1F1G1H1与△APE 重叠部分的面积.【答案】(1)EF=15;(2)①10;②120;【解析】【分析】(1)根据已知点E(30,0),点D(0,40),求出直线DE的直线解析式y=-43x+40,可求出P点坐标,进而求出F点坐标即可;(2)①易求B(0,5),当点F1移动到点B时,t=1010÷10=10;②F点移动到F'的距离是10t,F垂直x轴方向移动的距离是t,当点H运动到直线DE上时,在Rt△F'NF中,NFNF'=13,EM=NG'=15-F'N=15-3t,在Rt△DMH'中,43MHEM'=,t=4,S=12×(12+454)×11=10238;当点G运动到直线DE上时,在Rt△F'PK中,PKF K'=13,PK=t-3,F'K=3t-9,在Rt△PKG'中,PKKG'=31539tt--+=43,t=7,S=15×(15-7)=120.【详解】(1)设直线DE的直线解析式y=kx+b,将点E(30,0),点D(0,40),∴30040k bb+=⎧⎨=⎩,∴4340kb⎧=-⎪⎨⎪=⎩,∴y=﹣43x+40,直线AB与直线DE的交点P(21,12),由题意知F(30,15),∴EF=15;(2)①易求B(0,5),∴BF=1010,∴当点F1移动到点B时,t=101010÷=10;②当点H运动到直线DE上时,F点移动到F'10,在Rt △F'NF 中,NF NF '=13, ∴FN =t ,F'N =3t , ∵MH'=FN =t ,EM =NG'=15﹣F'N =15﹣3t , 在Rt △DMH'中,43MH EM '=, ∴41533t t =-, ∴t =4,∴EM =3,MH'=4,∴S =1451023(12)11248⨯+⨯=; 当点G 运动到直线DE 上时,F 点移动到F'10, ∵PF =10 ∴PF'10t ﹣10, 在Rt △F'PK 中,13PK F K =', ∴PK =t ﹣3,F'K =3t ﹣9, 在Rt △PKG'中,PK KG '=31539t t --+=43, ∴t =7,∴S =15×(15﹣7)=120. 【点睛】本题考查一次函数图象及性质,正方形的性质;掌握待定系数法求函数解析式,利用三角形的正切值求边的关系,利用勾股定理在直角三角形中建立边之间的联系,准确确定阴影部分的面积是解题的关键.8.如图,AB 为O e 的直径,C 、D 为O e 上异于A 、B 的两点,连接CD ,过点C 作CE DB ⊥,交CD 的延长线于点E ,垂足为点E ,直径AB 与CE 的延长线相交于点F .(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒. (2)若2ABD BDC ∠=∠. ①求证:CF 是O e 的切线. ②当6BD =,3tan 4F =时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203CF =. 【解析】 【分析】(1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可证明CF 为⊙O 的切线;②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=BD AD =34,求出AD=43BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=OC CF =34,即可求出CF . 【详解】解:(1)AB 是O e 的直径,且D 为O e 上一点,90ADB ∴∠=︒, CE DB ⊥Q , 90DEC ∴∠=︒, //CF AD ∴,180DAC ACF ∴∠+∠=︒. (2)①如图,连接OC . OA OC =Q ,12∴∠=∠. 312∠=∠+∠Q , 321∴∠=∠.42BDC Q ∠=∠,1BDC ∠=∠, 421∴∠=∠,43∴∠=∠, //OC DB ∴. CE DB ⊥Q , OC CF ∴⊥.又OC Q 为O e 的半径, CF ∴为O e 的切线.②由(1)知//CF AD ,BAD F ∴∠=∠,3tan tan 4BAD F ∴∠==, 34BD AD ∴=. 6BD =Q483AD BD ∴==, 226810AB ∴=+=,5OB OC ==.OC CF Q ⊥, 90OCF ∴∠=︒,3tan 4OC F CF ∴==,解得203CF =. 【点睛】本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.9.如图,△ABC 中,AC =BC =10,cosC =35,点P 是AC 边上一动点(不与点A 、C 重合),以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.(1)当⊙P与边BC相切时,求⊙P的半径.(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409R=;(2)25880320xy x xx=-++;(3)50105-.【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,即可求解;(2)首先证明PD∥BE,则EB BFPD PF=,即:2024588x yxxxy-+--=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP ,则HP ⊥BC ,cosC =35,则sinC =45, sinC =HP CP =10R R -=45,解得:R =409; (2)在△ABC 中,AC =BC =10,cosC =35, 设AP =PD =x ,∠A =∠ABC =β,过点B 作BH ⊥AC ,则BH =ACsinC =8,同理可得:CH =6,HA =4,AB =45,则:tan ∠CAB =2, BP =228+(4)x -=2880x x -+,DA =25x ,则BD =45﹣25x , 如下图所示,PA =PD ,∴∠PAD =∠CAB =∠CBA =β,tanβ=2,则cosβ5,sinβ5, EB =BDcosβ=(525x )5=4﹣25x ,∴PD ∥BE ,∴EB BFPD PF=,即:2024588x y x xx y-+-=,整理得:y 25xx 8x 803x 20-++(3)以EP 为直径作圆Q 如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q是弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP∥BD,由(2)知,PD∥BC,∴四边形PDBE为平行四边形,∴AG=EP=BD,∴AB=DB+AD=AG+AD=5设圆的半径为r,在△ADG中,AD=2rcosβ5DG5AG=2r,5=52r51,则:DG550﹣5相交所得的公共弦的长为50﹣5【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.10.在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连结CD,点P在射线CB上(与B,C不重合)(1)如果∠A=30°,①如图1,∠DCB等于多少度;②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;(2)如图3,若点P在线段CB 的延长线上,且∠A=α(0°<α<90°),连结DP,将线段DP绕点逆时针旋转2α得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明)【答案】(1)①∠DCB=60°.②结论:CP=BF.理由见解析;(2)结论:BF﹣BP=2DE•tanα.理由见解析.【解析】【分析】(1)①根据直角三角形斜边中线的性质,结合∠A=30°,只要证明△CDB是等边三角形即可;②根据全等三角形的判定推出△DCP≌△DBF,根据全等的性质得出CP=BF,(2)求出DC=DB=AD,DE∥AC,求出∠FDB=∠CDP=2α+∠PDB,DP=DF,根据全等三角形的判定得出△DCP≌△DBF,求出CP=BF,推出BF﹣BP=BC,解直角三角形求出CE=DEtanα即可.【详解】(1)①∵∠A=30°,∠ACB=90°,∴∠B=60°,∵AD=DB,∴CD=AD=DB,∴△CDB是等边三角形,∴∠DCB=60°.②如图1,结论:CP=BF.理由如下:∵∠ACB=90°,D是AB的中点,DE⊥BC,∠DCB=60°,∴△CDB为等边三角形.∴∠CDB=60°∵线段DP绕点D逆时针旋转60°得到线段DF,∵∠PDF=60°,DP=DF,∴∠FDB=∠CDP,在△DCP和△DBF中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF.(2)结论:BF ﹣BP =2DEtanα.理由:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠A =α,∴DC =DB =AD ,DE ∥AC ,∴∠A =∠ACD =α,∠EDB =∠A =α,BC =2CE ,∴∠BDC =∠A+∠ACD =2α,∵∠PDF =2α,∴∠FDB =∠CDP =2α+∠PDB ,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP =DF ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF ,而 CP =BC+BP ,∴BF ﹣BP =BC ,在Rt △CDE 中,∠DEC =90°,∴tan ∠CDE =CE DE, ∴CE =DEtanα, ∴BC =2CE =2DEtanα,即BF ﹣BP =2DEtanα.【点睛】本题考查了三角形外角性质,等边三角形的判定和性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出△DCP ≌△DBF 是解此题的关键,综合性比较强,证明过程类似.11.如图,Rt △ABC ,CA ⊥BC ,AC =4,在AB 边上取一点D ,使AD =BC ,作AD 的垂直平分线,交AC 边于点F ,交以AB 为直径的⊙O 于G ,H ,设BC =x .(1)求证:四边形AGDH 为菱形;(2)若EF =y ,求y 关于x 的函数关系式;(3)连结OF ,CG .①若△AOF为等腰三角形,求⊙O的面积;②若BC=3,则30CG+9=______.(直接写出答案).【答案】(1)证明见解析;(2)y=18x2(x>0);(3)①163π或8π或(17+2)π;21.【解析】【分析】(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;(2)只要证明△AEF∽△ACB,可得AE EFAC BC=解决问题;(3)①分三种情形分别求解即可解决问题;②只要证明△CFG∽△HFA,可得GFAF=CGAH,求出相应的线段即可解决问题;【详解】(1)证明:∵GH垂直平分线段AD,∴HA=HD,GA=GD,∵AB是直径,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四边形AGDH是菱形.(2)解:∵AB是直径,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AE EFAC BC=,∴124x yx=,∴y =18x 2(x >0). (3)①解:如图1中,连接DF .∵GH 垂直平分线段AD ,∴FA =FD ,∴当点D 与O 重合时,△AOF 是等腰三角形,此时AB =2BC ,∠CAB =30°,∴AB =83, ∴⊙O 的面积为163π. 如图2中,当AF =AO 时,∵AB 22AC BC +216x +∴OA =2162x +, ∵AF 22EF AE +2221182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∴2162x +2221182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭ 解得x =4(负根已经舍弃),∴AB=42,∴⊙O的面积为8π.如图2﹣1中,当点C与点F重合时,设AE=x,则BC=AD=2x,AB=2164x+,∵△ACE∽△ABC,∴AC2=AE•AB,∴16=x•2164x+,解得x2=217﹣2(负根已经舍弃),∴AB2=16+4x2=817+8,∴⊙O的面积=π•14•AB2=(217+2)π综上所述,满足条件的⊙O的面积为163π或8π或(217+2)π;②如图3中,连接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=52,∴AE=32,∴OE=OA﹣AE=1,∴EG=EH=2512⎛⎫-⎪⎝⎭=212,∵EF=18x2=98,∴FG=212﹣98,AF =22AE EF+=158,AH=22AE EH+=302,∵∠CFG=∠AFH,∠FCG=∠AHF,∴△CFG∽△HFA,∴GF CGAF AH=,∴2192815308-=,∴CG=2705﹣33010,∴30CG+9=421.故答案为421.【点睛】本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.12.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,AE为⊙O的切线,过点B作BD⊥AE于D.(1)求证:∠DBA=∠ABC;(2)如果BD=1,tan∠BAD=,求⊙O的半径.【答案】(1)证明见解析;(2).【解析】试题分析:(1)如图,连接OA,由AE为⊙O的切线,BD⊥AE得到∠DAO=∠EDB=90°,于是得到DB∥AO,推出∠DBA=∠BAO,由于OA=OB,得到∠ABC=∠BAO,即可得到结论;(2)根据三角函数的知识可求出AD,从而根据勾股定理求出AB的长,根据三角函数的知识即可得出⊙O的半径.试题解析:(1)如图,连接OA,∵AE为⊙O的切线,BD⊥AE,∴∠DAO=∠EDB=90°,∴DB∥AO,∴∠DBA=∠BAO,又∵OA=OB,∴∠ABC=∠BAO,∴∠DBA=∠ABC;(2)∵BD=1,tan∠BAD=,∴AD=2,∴AB=,∴cos∠DBA=;∵∠DBA=∠CBA,∴BC=.∴⊙O的半径为2.5.考点:1.切线的性质;2.勾股定理;3.解直角三角形.。

2020-2021全国中考数学直角三角形的边角关系的综合中考真题分类汇总附答案

2020-2021全国中考数学直角三角形的边角关系的综合中考真题分类汇总附答案

2020-2021全国中考数学直角三角形的边角关系的综合中考真题分类汇总附答案一、直角三角形的边角关系1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40o ,从前脚落地点D 看上嘴尖A 的仰角刚好60o ,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ︒≈︒≈︒≈,,.2 1.41,3 1.73≈≈)【答案】AB 的长约为0.6m .【解析】【分析】作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可.【详解】解:作BF CE ⊥于F ,在Rt BFC ∆中, 3.20BF BC sin BCF ⋅∠≈=,3.85CF BC cos BCF ⋅∠≈=,在Rt ADE ∆E 中,3 1.73tan 3AB DE ADE ===≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣=由勾股定理得,22BH AH 0.6(m)AB =+≈,答:AB 的长约为0.6m .【点睛】考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.2.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,【答案】(1)∠BPQ=30°;(2)该电线杆PQ的高度约为9m.【解析】试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.试题解析:延长PQ交直线AB于点E,(1)∠BPQ=90°-60°=30°;(2)设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°∴∠BPE=30°在直角△BPE中,33米,∵AB=AE-BE=6米,则x-33x=6,解得:x=9+33. 则BE=(33+3)米.在直角△BEQ 中,QE=3BE=3(33+3)=(3+3)米. ∴PQ=PE-QE=9+33-(3+3)=6+23≈9(米).答:电线杆PQ 的高度约9米.考点:解直角三角形的应用-仰角俯角问题.3.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5AOC ∠=.设OP x =,CPF ∆的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域;(3)当OPE ∆是直角三角形时,求线段OP 的长.【答案】(1)证明见解析;(2)236030050(10)13x x y x x -+=<<;(3)8OP = 【解析】【分析】(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO ∠=∠即可;(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos 5AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去.【详解】(1)联结OD ,∵OC OD =,∴OCD ODC ∠=∠,∵//CD AB ,∴OCD COA ∠=∠,∴POA QDO ∠=∠.在AOP ∆和ODQ ∆中,{OP DQPOA QDO OA DO=∠=∠=,∴AOP ∆≌ODQ ∆,∴AP OQ =;(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=, ∴4455OH OP x ==,35PH x =, ∴132AOP S AO PH x ∆=⋅=. ∵//CD AB ,∴PFC ∆∽PAO ∆, ∴2210()()AOP yCP x S OP x∆-==, ∴2360300x x y x-+=,当F 与点D 重合时, ∵42cos 210165CD OC OCD =⋅∠=⨯⨯=, ∴101016x x =-,解得5013x =, ∴2360300x x y x-+=50(10)13x <<; (3)①当90OPE ∠=o 时,90OPA ∠=o , ∴4cos 1085OP OA AOC =⋅∠=⨯=; ②当90POE ∠=o 时,1010254cos cos 25OC CQ QCO AOC ====∠∠, ∴252OP DQ CD CQ CD ==-=-2571622=-=,∵501013OP <<, ∴72OP =(舍去); ③当90PEO ∠=o 时,∵//CD AB ,∴AOQ DQO ∠=∠, ∵AOP ∆≌ODQ ∆,∴DQO APO ∠=∠,∴AOQ APO ∠=∠,∴90AEO AOP ∠=∠=o ,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.4.如图,将一副直角三角形拼放在一起得到四边形ABCD ,其中∠BAC=45°,∠ACD=30°,点E 为CD 边上的中点,连接AE ,将△ADE 沿AE 所在直线翻折得到△AD′E ,D′E 交AC 于F 点.若AB=6cm .(1)AE 的长为 cm ;(2)试在线段AC 上确定一点P ,使得DP+EP 的值最小,并求出这个最小值;(3)求点D′到BC 的距离.【答案】(1);(2)12cm ;(3)cm .【解析】 试题分析:(1)首先利用勾股定理得出AC 的长,进而求出CD 的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案:∵∠BAC=45°,∠B=90°,∴AB=BC=6cm ,∴AC=12cm .∵∠ACD=30°,∠DAC=90°,AC=12cm ,∴(cm ).∵点E 为CD 边上的中点,∴AE=DC=cm . (2)首先得出△ADE 为等边三角形,进而求出点E ,D′关于直线AC 对称,连接DD′交AC 于点P ,根据轴对称的性质,此时DP+EP 值为最小,进而得出答案.(3)连接CD′,BD′,过点D′作D′G ⊥BC 于点G ,进而得出△ABD′≌△CBD′(SSS ),则∠D′BG=45°,D′G=GB ,进而利用勾股定理求出点D′到BC 边的距离.试题解析:解:(1).(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,∵E为CD边上的中点,∴DE=AE.∴△ADE为等边三角形.∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°.∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′.∴点E,D′关于直线AC对称.如答图1,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′.∵△ADE是等边三角形,AD=AE=,∴,即DP+EP最小值为12cm.(3)如答图2,连接CD′,BD′,过点D′作D′G⊥BC于点G,∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,∵AE=EC,∴AD′=CD′=.在△ABD′和△CBD′中,∵,∴△ABD′≌△CBD′(SSS).∴∠D′BG=∠D′BC=45°.∴D′G=GB.设D′G长为xcm,则CG长为cm,在Rt△GD′C中,由勾股定理得,解得:(不合题意舍去).∴点D′到BC边的距离为cm.考点:1.翻折和单动点问题;2.勾股定理;3.直角三角形斜边上的中线性质;4.等边三角形三角形的判定和性质;5.轴对称的应用(最短线路问题);6.全等三角形的判定和性质;7.方程思想的应用.5.我市在创建全国文明城市的过程中,某社区在甲楼的A 处与E 处之间悬挂了一副宣传条幅,在乙楼顶部C 点测得条幅顶端A 点的仰角为45°,条幅底端E 点的俯角为30°,若甲、乙两楼之间的水平距离BD 为12米,求条幅AE 的长度.(结果保留根号)【答案】AE 的长为(123)+【解析】【分析】在Rt ACF V 中求AF 的长, 在Rt CEF V 中求EF 的长,即可求解.【详解】过点C 作CF AB ⊥于点F由题知:四边形CDBF 为矩形12CF DB ∴==在Rt ACF V 中,45ACF ∠=︒tan 1AF ACF CF∴∠== 12AF ∴=在Rt CEF V 中,30ECF ∠=︒tan EF ECF CF∴∠= 312EF ∴= 43EF ∴=1243AE AF EF ∴=+=+∴求得AE 的长为(1243+【点睛】本题考查了三角函数的实际应用,中等难度,作辅助线构造直角三角形是解题关键.6.如图,某校数学兴趣小组为测量校园主教学楼AB 的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C ,用测角器测得主教学楼顶端A 的仰角为30°,再向主教学楼的方向前进24米,到达点E 处(C ,E ,B 三点在同一直线上),又测得主教学楼顶端A 的仰角为60°,已知测角器CD 的高度为1.6米,请计算主教学楼AB 的高度.(3≈1.73,结果精确到0.1米)【答案】22.4m【解析】【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造等量关系,进而求解.【详解】解:在Rt △AFG 中,tan ∠AFG =3,∴FG =tan 3AG AFG =∠, 在Rt △ACG 中,tan ∠ACG =AG CG , ∴CG =tan AG ACG∠=3AG . 又∵CG ﹣FG =24m ,即3AG ﹣3=24m , ∴AG =123m ,∴AB =123+1.6≈22.4m .7.在平面直角坐标系中,四边形OABC 是矩形,点()0,0O ,点()3,0A ,点()0,4C ,连接OB ,以点A 为中心,顺时针旋转矩形AOCB ,旋转角为()0360αα︒<<︒,得到矩形ADEF ,点,,O C B 的对应点分别为,,D E F .(Ⅰ)如图,当点D 落在对角线OB 上时,求点D 的坐标;(Ⅱ)在(Ⅰ)的情况下,AB 与DE 交于点H .①求证BDE DBA ∆≅∆;②求点H 的坐标.(Ⅲ)α为何值时,FB FA =.(直接写出结果即可).【答案】(Ⅰ)点D 的坐标为5472(,)2525;(Ⅱ)①证明见解析;②点H 的坐标为(3,258);(Ⅲ)60α=︒或300︒.【解析】【分析】 (Ⅰ) 过A D 、分别作,AM OB DN OA ⊥⊥,根据点A 、点C 的坐标可得出OA 、OC 的长,根据矩形的性质可得AB 、OB 的长,在Rt △OAM 中,利用∠BOA 的余弦求出OM 的长,由旋转的性质可得OA=AD ,利用等腰三角形的性质可得OD=2OM ,在Rt △ODN 中,利用∠BOA 的正弦和余弦可求出DN 和ON 的长,即可得答案;(Ⅱ)①由等腰三角形性质可得∠DOA=∠ODA ,根据锐角互余的关系可得ABD BDE ∠∠=,利用SAS 即可证明△DBA ≌△BDE ;②根据△DBA ≌△BDE 可得∠BEH=∠DAH ,BE=AD ,即可证明△BHE ≌△DHA ,可得DH=BH ,设AH=x ,在Rt △ADH 中,利用勾股定理求出x 的值即可得答案;(Ⅲ)如图,过F 作FO ⊥AB ,由性质性质可得∠BAF=α,分别讨论0<α≤180°时和180°<α<360°时两种情况,根据FB=FA 可得OA=OB ,利用勾股定理求出FO 的长,由余弦的定义即可求出∠BAF 的度数.【详解】(Ⅰ)∵点()30A ,,点()04C ,, ∴3,4OA OC ==.∵四边形OABC 是矩形,∴AB=OC=4,∵矩形DAFE 是由矩形AOBC 旋转得到的∴3AD AO ==.在Rt OAB ∆中,225OB OA AB +=,过A D 、分别作B,DN OA AM O ⊥⊥在Rt ΔOAM 中,OM OA 3cos BOA OA OB 5∠===, ∴9OM 5= ∵AD=OA ,AM ⊥OB ,∴18OD 2OM 5==. 在Rt ΔODN 中:DN 4sin BOA OD 5∠==,cos ∠BOA=ON OD =35, ∴72DN 25=,54ON 25=. ∴点D 的坐标为5472,2525⎛⎫⎪⎝⎭.(Ⅱ)①∵矩形DAFE 是由矩形AOBC 旋转得到的, ∴OA AD 3,ADE 90,DE AB 4∠===︒==.∴OD AD =.∴DOA ODA ∠∠=.又∵DOA OBA 90∠∠+=︒,BDH ADO 90∠∠+=︒ ∴ABD BDE ∠∠=. 又∵BD BD =, ∴ΔBDE ΔDBA ≅.②由ΔBDE ΔDBA ≅,得BEH DAH ∠∠=,BE AD 3==, 又∵BHE DHA ∠∠=,∴ΔBHE ΔDHA ≅.∴DH=BH ,设AH x =,则DH BH 4x ==-,在Rt ΔADH 中,222AH AD DH =+,即()222x 34x =+-,得25x 8=, ∴25AH 8=.∴点H 的坐标为253,8⎛⎫ ⎪⎝⎭. (Ⅲ)如图,过F 作FO ⊥AB ,当0<α≤180°时,∵点B 与点F 是对应点,A 为旋转中心,∴∠BAF 为旋转角,即∠BAF=α,AB=AF=4,∵FA=FB ,FO ⊥AB ,∴OA=12AB=2, ∴cos ∠BAF=OA AF =12, ∴∠BAF=60°,即α=60°,当180°<α<360°时, 同理解得:∠BAF′=60°,∴旋转角α=360°-60°=300°.综上所述:α60=︒或300︒.【点睛】本题考查矩形的性质、旋转变换、全等三角形的判定与性质、锐角三角函数的定义等知识,正确找出对应边与旋转角并熟记特殊角的三角函数值是解题关键.8.如图,在⊙O 的内接三角形ABC 中,∠ACB =90°,AC =2BC ,过C 作AB 的垂线l 交⊙O 于另一点D ,垂足为E .设P 是»AC 上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G .(1)求证:△PAC ∽△PDF ;(2)若AB =5,¼¼AP BP=,求PD 的长.【答案】(1)证明见解析;(2310 【解析】【分析】 (1)根据AB ⊥CD ,AB 是⊙O 的直径,得到¶¶ADAC =,∠ACD =∠B ,由∠FPC =∠B ,得到∠ACD =∠FPC ,可得结论;(2)连接OP ,由¶¶APBP =,得到OP ⊥AB ,∠OPG =∠PDC ,根据AB 是⊙O 的直径,得到∠ACB =90°,由于AC =2BC ,于是得到tan ∠CAB =tan ∠DCB =BC AC ,得到12CE BE AE CE ==,求得AE =4BE ,通过△OPG ∽△EDG ,得到OG OP GE ED=,然后根据勾股定理即可得到结果.【详解】(1)证明:连接AD ,∵AB ⊥CD ,AB 是⊙O 的直径,∴¶¶ADAC =, ∴∠ACD =∠B =∠ADC ,∵∠FPC =∠B ,∴∠ACD =∠FPC ,∴∠APC =∠ACF ,∵∠FAC =∠CAF ,∴△PAC ∽△CAF ;(2)连接OP ,则OA =OB =OP =1522AB =, ∵¶¶APBP =, ∴OP ⊥AB ,∠OPG =∠PDC ,∵AB 是⊙O 的直径,∴∠ACB =90°,∵AC =2BC ,∴tan ∠CAB =tan ∠DCB =BC AC,∴12 CE BEAE CE==,∴AE=4BE,∵AE+BE=AB=5,∴AE=4,BE=1,CE=2,∴OE=OB﹣BE=2.5﹣1=1.5,∵∠OPG=∠PDC,∠OGP=∠DGE,∴△OPG∽△EDG,∴OG OP GE ED=,∴2.52 OE GE OPGE CE-==,∴GE=23,OG=56,∴PG=225OP OG6+=,GD=222 3DE GE+=,∴PD=PG+GD=3102.【点睛】本题考查了相似三角形的判定和性质,垂径定理,勾股定理,圆周角定理,证得△OPG∽△EDG是解题的关键.9.如图,在▱ABCD中,AC与BD交于点O,AC⊥BC于点C,将△ABC沿AC翻折得到△AEC,连接DE.(1)求证:四边形ACED是矩形;(2)若AC=4,BC=3,求sin∠ABD的值.【答案】(1)证明见解析(2)613 【解析】【分析】 (1)根据▱ABCD 中,AC ⊥BC ,而△ABC ≌△AEC ,不难证明;(2)依据已知条件,在△ABD 或△AOC 作垂线AF 或OF ,求出相应边的长度,即可求出∠ABD 的正弦值.【详解】(1)证明:∵将△ABC 沿AC 翻折得到△AEC ,∴BC =CE ,AC ⊥CE ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴AD =CE ,AD ∥CE , ∴四边形ACED 是平行四边形,∵AC ⊥CE ,∴四边形ACED 是矩形.(2)解:方法一、如图1所示,过点A 作AF ⊥BD 于点F ,∵BE =2BC =2×3=6,DE =AC =4,∴在Rt △BDE 中,2222BD BE DE 64213=+=+=∵S △BDE =12×DE•AD =12AF•BD , ∴AF 61313213=, ∵Rt △ABC 中,AB 2234+5,∴Rt △ABF 中,sin ∠ABF =sin ∠ABD =6136135AF AB ==方法二、如图2所示,过点O 作OF ⊥AB 于点F ,同理可得,OB =1132BD = ∵S △AOB =11OF AB OA BC 22⋅=⋅,∴OF =23655⨯=, ∵在Rt △BOF 中, sin ∠FBO =0661365513F OB ==, ∴sin ∠ABD =61365.【点睛】本题考查直角三角形翻折变化后所得图形的性质,矩形的判定和性质,平行四边形的性质和解直角三角形求线段的长度,关键是正确添加辅助线和三角形面积的计算公式求出sin ∠ABD .10.已知:在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,BE :AB=3:5,若CE= 2 ,cos ∠ACD= 45,求tan ∠AEC 的值及CD 的长.【答案】tan ∠12125【解析】 解:在RT △ACD 与RT △ABC 中∵∠ABC+∠CAD=90°, ∠ACD+∠CAD=90°∴∠ABC=∠ACD, ∴cos ∠ABC=cos ∠ACD=45 在RT △ABC 中,45BC AB = 令BC=4k,AB=5k 则AC=3k 由35BE AB = ,BE=3k 则CE=k,且CE=2 则k=2,AC=32 ∴RT △ACE 中,tan ∠AEC=AC EC =3 ∵RT △ACD 中cos ∠ACD=45CD AC = ,,CD=12125. 11.如图,Rt △ABC ,CA ⊥BC ,AC =4,在AB 边上取一点D ,使AD =BC ,作AD 的垂直平分线,交AC 边于点F ,交以AB 为直径的⊙O 于G ,H ,设BC =x .(1)求证:四边形AGDH 为菱形;(2)若EF =y ,求y 关于x 的函数关系式;(3)连结OF ,CG .①若△AOF 为等腰三角形,求⊙O 的面积;②若BC =3,则30CG+9=______.(直接写出答案).【答案】(1)证明见解析;(2)y =18x 2(x >0);(3)①163π或8π或(17+2)π;21.【解析】【分析】 (1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH 即可;(2)只要证明△AEF ∽△ACB ,可得AE EF AC BC=解决问题; (3)①分三种情形分别求解即可解决问题; ②只要证明△CFG ∽△HFA ,可得GF AF =CG AH,求出相应的线段即可解决问题; 【详解】(1)证明:∵GH 垂直平分线段AD ,∴HA =HD ,GA =GD ,∵AB是直径,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四边形AGDH是菱形.(2)解:∵AB是直径,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AE EF AC BC=,∴124x yx=,∴y=18x2(x>0).(3)①解:如图1中,连接DF.∵GH垂直平分线段AD,∴FA=FD,∴当点D与O重合时,△AOF是等腰三角形,此时AB=2BC,∠CAB=30°,∴AB83,∴⊙O的面积为163π.如图2中,当AF=AO时,∵AB =22AC BC +=216x +,∴OA =216x +, ∵AF =22EF AE +=2221182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭, ∴216x +=2221182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭, 解得x =4(负根已经舍弃),∴AB =42,∴⊙O 的面积为8π.如图2﹣1中,当点C 与点F 重合时,设AE =x ,则BC =AD =2x ,AB =2164x +,∵△ACE ∽△ABC ,∴AC 2=AE•AB ,∴16=2164x +解得x 2=17﹣2(负根已经舍弃),∴AB 2=16+4x 2=17+8,∴⊙O 的面积=π•14•AB 2=(17+2)π综上所述,满足条件的⊙O的面积为163π或8π或(217+2)π;②如图3中,连接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=52,∴AE=32,∴OE=OA﹣AE=1,∴EG=EH2512⎛⎫-⎪⎝⎭212,∵EF=18x2=98,∴FG=212﹣98,AF22AE EF+158,AH22AE EH+302,∵∠CFG=∠AFH,∠FCG=∠AHF,∴△CFG∽△HFA,∴GF CGAF AH=,∴219281530 8-=∴CG=705﹣33010,∴30=21.故答案为21【点睛】本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.12.如图,在自动向西的公路l上有一检查站A,在观测点B的南偏西53°方向,检查站一工作人员家住在与观测点B的距离为7132km,位于点B南偏西76°方向的点C处,求工作人员家到检查站的距离AC.(参考数据:sin76°≈2425,cos76°≈625,tan 76°≈4,sin53°≈35,tan53°≈43)【答案】工作人员家到检查站的距离AC的长约为92 km.【解析】分析:过点B作BH⊥l交l于点H,解Rt△BCH,得出CH=BC•sin∠CBH=274,BH=BC•cos∠CBH=2716.再解Rt△BAH中,求出AH=BH•tan∠ABH=94,那么根据AC=CH-AH计算即可.详解:如图,过点B作BH⊥l交l于点H,∵在Rt△BCH中,∠BHC=90°,∠CBH=76°,BC=7132km,∴CH=BC•sin∠CBH≈225242732254⨯=,BH=BC•cos∠CBH≈225627 322516⨯=.∵在Rt△BAH中,∠BHA=90°,∠ABH=53°,BH=2716,∴AH=BH•tan∠ABH≈27491634⨯=,∴AC=CH﹣AH=2799442-=(km).答:工作人员家到检查站的距离AC的长约为92 km.点睛:本题考查的是解直角三角形的应用-方向角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.。

2020-2021全国中考数学直角三角形的边角关系的综合中考模拟和真题汇总含详细答案

2020-2021全国中考数学直角三角形的边角关系的综合中考模拟和真题汇总含详细答案

2020-2021全国中考数学直角三角形的边角关系的综合中考模拟和真题汇总含详细答案一、直角三角形的边角关系1.如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A 与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.(1)求观察哨所A 与走私船所在的位置C 的距离;(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截.求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号)(参考数据:sin37°=cos53°≈,cos37 =sin53°≈去,tan37°≈2,tan76°≈)【答案】(1)观察哨所A 与走私船所在的位置C 的距离为15海里;(2)当缉私艇以每小时617D 处成功拦截.【解析】【分析】(1)先根据三角形内角和定理求出∠ACB =90°,再解Rt △ABC ,利用正弦函数定义得出AC 即可;(2)过点C 作CM ⊥AB 于点M ,易知,D 、C 、M 在一条直线上.解Rt △AMC ,求出CM 、AM .解Rt △AMD 中,求出DM 、AD ,得出CD .设缉私艇的速度为x 海里/小时,根据走私船行驶CD 所用的时间等于缉私艇行驶AD 所用的时间列出方程,解方程即可.【详解】(1)在ABC △中,180180375390ACB B BAC ︒︒︒︒︒∠=-∠-∠=--=.在Rt ABC V 中,sin AC B AB =,所以3sin 3725155AC AB ︒=⋅=⨯=(海里). 答:观察哨所A 与走私船所在的位置C 的距离为15海里.(2)过点C 作CM AB ⊥,垂足为M ,由题意易知,D C M 、、在一条直线上. 在Rt ACM V 中,4sin 15125CM AC CAM =⋅∠=⨯=,3cos 1595AM AC CAM =⋅∠=⨯=. 在Rt ADM △中,tan MD DAM AM∠=, 所以tan 7636MD AM ︒=⋅=.所以222293691724AD AM MD CD MD MC=+=+==-=,.设缉私艇的速度为v海里/小时,则有2491716v=,解得617v=.经检验,617v=是原方程的解.答:当缉私艇以每小时617海里的速度行驶时,恰好在D处成功拦截.【点睛】此题考查了解直角三角形的应用﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.2.已知:如图,在Rt△ABC中,∠ACB=90°,点M是斜边AB的中点,MD∥BC,且MD=CM,DE⊥AB于点E,连结AD、CD.(1)求证:△MED∽△BCA;(2)求证:△AMD≌△CMD;(3)设△MDE的面积为S1,四边形BCMD的面积为S2,当S2=175S1时,求cos∠ABC的值.【答案】(1)证明见解析;(2)证明见解析;(3)cos∠ABC=57.【解析】【分析】(1)易证∠DME=∠CBA,∠ACB=∠MED=90°,从而可证明△MED∽△BCA;(2)由∠ACB=90°,点M是斜边AB的中点,可知MB=MC=AM,从而可证明∠AMD=∠CMD,从而可利用全等三角形的判定证明△AMD≌△CMD;(3)易证MD=2AB,由(1)可知:△MED∽△BCA,所以2114ACBS MDS AB⎛⎫==⎪⎝⎭V,所以S △MCB =12S △ACB =2S 1,从而可求出S △EBD =S 2﹣S △MCB ﹣S 1=25S 1,由于1EBD S ME S EB =V ,从而可知52ME EB =,设ME=5x ,EB=2x ,从而可求出AB=14x ,BC=72,最后根据锐角三角函数的定义即可求出答案.【详解】(1)∵MD ∥BC ,∴∠DME=∠CBA ,∵∠ACB=∠MED=90°,∴△MED ∽△BCA ;(2)∵∠ACB=90°,点M 是斜边AB 的中点,∴MB=MC=AM ,∴∠MCB=∠MBC ,∵∠DMB=∠MBC ,∴∠MCB=∠DMB=∠MBC ,∵∠AMD=180°﹣∠DMB ,∠CMD=180°﹣∠MCB ﹣∠MBC+∠DMB=180°﹣∠MBC ,∴∠AMD=∠CMD ,在△AMD 与△CMD 中,MD MD AMD CMD AM CM =⎧⎪∠=∠⎨⎪=⎩,∴△AMD ≌△CMD (SAS );(3)∵MD=CM ,∴AM=MC=MD=MB ,∴MD=2AB ,由(1)可知:△MED ∽△BCA , ∴2114ACB S MD S AB ⎛⎫== ⎪⎝⎭V , ∴S △ACB =4S 1,∵CM 是△ACB 的中线,∴S △MCB =12S △ACB =2S 1, ∴S △EBD =S 2﹣S △MCB ﹣S 1=25S 1, ∵1EBD S ME S EB=V ,∴1125S ME EB S=, ∴52ME EB =, 设ME=5x ,EB=2x ,∴MB=7x , ∴AB=2MB=14x ,∵12MD ME AB BC ==, ∴BC=10x , ∴cos ∠ABC=105147BC x AB x ==. 【点睛】本题考查相似三角形的综合问题,涉及直角三角形斜边中线的性质,全等三角形的性质与判定,相似三角形的判定与性质,三角形面积的面积比,锐角三角函数的定义等知识,综合程度较高,熟练掌握和灵活运用相关的性质及定理进行解题是关键.3.下图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4 m,AB=6 m,中间平台宽度DE=1 m,EN ,DM ,CB 为三根垂直于AB 的支柱,垂足分别为N ,M ,B ,∠EAB=31°,DF ⊥BC 于点F ,∠CDF=45°,求DM 和BC 的水平距离BM 的长度.(结果精确到0.1 m .参考数据:sin 31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)【答案】2.5m.【解析】试题分析:设DF=x ,在Rt △DFC 中,可得CF=DF=x ,则BF=4-x ,根据线段的和差可得AN=5-x ,EN=DM=BF=4-,在Rt △ANE 中,∠EAB=,利用∠EAB 的正切值解得x 的值.试题解析:解:设DF=,在Rt △DFC 中,∠CDF=, ∴CF=tan·DF=, 又∵CB=4,∴BF=4-,∵AB=6,DE=1,BM= DF=,∴AN=5-,EN=DM=BF=4-,在Rt △ANE 中,∠EAB=,EN=4-,AN=5-,tan ==0.60, 解得=2.5,答:DM 和BC 的水平距离BM 为2.5米.考点:解直角三角形.4.如图,某公园内有一座古塔AB ,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD .中午12时太阳光线与地面的夹角为45°,此时塔尖A 在地面上的影子E 与墙角C 的距离为15米(B 、E 、C 在一条直线上),求塔AB 的高度.(结果精确到0.01米)参考数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249,2 1.4142≈.【答案】塔高AB 约为32.99米.【解析】【分析】过点D 作DH ⊥AB ,垂足为点H ,设AB =x ,则 AH =x ﹣3,解直角三角形即可得到结论.【详解】解:过点D 作DH ⊥AB ,垂足为点H .由题意,得 HB = CD = 3,EC = 15,HD = BC ,∠ABC =∠AHD = 90°,∠ADH = 32°.设AB = x ,则 AH = x – 3.在Rt △ABE 中,由 ∠AEB = 45°,得 tan tan451AB AEB EB ∠=︒==. ∴ EB = AB = x .∴ HD = BC = BE + EC = x + 15.在Rt △AHD 中,由 ∠AHD = 90°,得 tan AH ADH HD∠=.即得 3tan3215x x -︒=+. 解得 15tan32332.991tan32x ⋅︒+=≈-︒. ∴ 塔高AB 约为32.99米.【点睛】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.5.在平面直角坐标系中,四边形OABC 是矩形,点()0,0O ,点()3,0A ,点()0,4C ,连接OB ,以点A 为中心,顺时针旋转矩形AOCB ,旋转角为()0360αα︒<<︒,得到矩形ADEF ,点,,O C B 的对应点分别为,,D E F .(Ⅰ)如图,当点D 落在对角线OB 上时,求点D 的坐标;(Ⅱ)在(Ⅰ)的情况下,AB 与DE 交于点H .①求证BDE DBA ∆≅∆;②求点H 的坐标.(Ⅲ)α为何值时,FB FA =.(直接写出结果即可).【答案】(Ⅰ)点D 的坐标为5472(,)2525;(Ⅱ)①证明见解析;②点H 的坐标为(3,258);(Ⅲ)60α=︒或300︒.【解析】【分析】 (Ⅰ) 过A D 、分别作,AM OB DN OA ⊥⊥,根据点A 、点C 的坐标可得出OA 、OC 的长,根据矩形的性质可得AB 、OB 的长,在Rt △OAM 中,利用∠BOA 的余弦求出OM 的长,由旋转的性质可得OA=AD ,利用等腰三角形的性质可得OD=2OM ,在Rt △ODN 中,利用∠BOA 的正弦和余弦可求出DN 和ON 的长,即可得答案;(Ⅱ)①由等腰三角形性质可得∠DOA=∠ODA ,根据锐角互余的关系可得ABD BDE ∠∠=,利用SAS 即可证明△DBA ≌△BDE ;②根据△DBA ≌△BDE 可得∠BEH=∠DAH ,BE=AD ,即可证明△BHE ≌△DHA ,可得DH=BH ,设AH=x ,在Rt △ADH 中,利用勾股定理求出x 的值即可得答案;(Ⅲ)如图,过F 作FO ⊥AB ,由性质性质可得∠BAF=α,分别讨论0<α≤180°时和180°<α<360°时两种情况,根据FB=FA 可得OA=OB ,利用勾股定理求出FO 的长,由余弦的定义即可求出∠BAF 的度数.【详解】(Ⅰ)∵点()30A ,,点()04C ,, ∴3,4OA OC ==.∵四边形OABC 是矩形,∴AB=OC=4,∵矩形DAFE 是由矩形AOBC 旋转得到的∴3AD AO ==.在Rt OAB ∆中,225OB OA AB =+=, 过A D 、分别作B,DN OA AM O ⊥⊥在Rt ΔOAM 中,OM OA 3cos BOA OA OB 5∠===, ∴9OM 5= ∵AD=OA ,AM ⊥OB , ∴18OD 2OM 5==. 在Rt ΔODN 中:DN 4sin BOA OD 5∠==,cos ∠BOA=ON OD =35, ∴72DN 25=,54ON 25=. ∴点D 的坐标为5472,2525⎛⎫⎪⎝⎭.(Ⅱ)①∵矩形DAFE 是由矩形AOBC 旋转得到的,∴OA AD 3,ADE 90,DE AB 4∠===︒==.∴OD AD =.∴DOA ODA ∠∠=.又∵DOA OBA 90∠∠+=︒,BDH ADO 90∠∠+=︒∴ABD BDE ∠∠=.又∵BD BD =,∴ΔBDE ΔDBA ≅.②由ΔBDE ΔDBA ≅,得BEH DAH ∠∠=,BE AD 3==,又∵BHE DHA ∠∠=,∴ΔBHE ΔDHA ≅.∴DH=BH ,设AH x =,则DH BH 4x ==-,在Rt ΔADH 中,222AH AD DH =+,即()222x 34x =+-,得25x 8=, ∴25AH 8=. ∴点H 的坐标为253,8⎛⎫ ⎪⎝⎭. (Ⅲ)如图,过F 作FO ⊥AB ,当0<α≤180°时,∵点B 与点F 是对应点,A 为旋转中心,∴∠BAF 为旋转角,即∠BAF=α,AB=AF=4,∵FA=FB ,FO ⊥AB ,∴OA=12AB=2, ∴cos ∠BAF=OA AF =12, ∴∠BAF=60°,即α=60°,当180°<α<360°时, 同理解得:∠BAF′=60°,∴旋转角α=360°-60°=300°.综上所述:α60=︒或300︒.【点睛】本题考查矩形的性质、旋转变换、全等三角形的判定与性质、锐角三角函数的定义等知识,正确找出对应边与旋转角并熟记特殊角的三角函数值是解题关键.6.2018年12月10日,郑州市城乡规划局网站挂出《郑州都市区主城区停车场专项规划》,将停车纳入城市综合交通体系,计划到2030年,在主城区新建停车泊位33.04万个,2019年初,某小区拟修建地下停车库,如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度为1:3,DE =3米,点C在DE上,CD=0.5米,CD是限高标志屏的高度(标志牌上写有:限高米),如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据2≈1.41,3≈1.73)【答案】该停车库限高约为2.2米.【解析】【分析】据题意得出3tan3B=,即可得出tan A,在Rt△ADE中,根据勾股定理可求得DE,即可得出∠1的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF3的长.【详解】解:由题意得,3 tan B=∵MN∥AD,∴∠A=∠B,∴tan A3,∵DE⊥AD,∴在Rt△ADE中,tan A=DEAD,∵DE=3,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan ∠FCE =33. 在Rt △CEF 中,设EF =x ,CF =3x (x >0),CE =2.5,代入得(52)2=x 2+3x 2, 解得x =1.25, ∴CF =3x ≈2.2,∴该停车库限高约为2.2米.【点睛】本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.7.如图,直线y =12x +2与x 轴交于点A ,与y 轴交于点B ,抛物线y =﹣12x 2+bx +c 经过A 、B 两点,与x 轴的另一个交点为 C .(1)求抛物线的解析式; (2)根据图象,直接写出满足12x +2≥﹣12x 2+bx +c 的x 的取值范围; (3)设点D 为该抛物线上的一点、连结AD ,若∠DAC =∠CBO ,求点D 的坐标.【答案】(1)213222y x x =--+;(2)当x ≥0或x ≤﹣4;(3)D 点坐标为(0,2)或(2,﹣3).【解析】【分析】(1)由直线y =12x +2求得A 、B 的坐标,然后根据待定系数法即可求得抛物线的解析式; (2)观察图象,找出直线在抛物线上方的x 的取值范围;(3)如图,过D 点作x 轴的垂线,交x 轴于点E ,先求出CO =1,AO =4,再由∠DAC =∠CBO ,得出tan ∠DAC =tan ∠CBO ,从而有,DE CO AE BO =,最后分类讨论确定点D 的坐标. 【详解】解:(1)由y =12x +2可得: 当x =0时,y =2;当y =0时,x=﹣4,∴A (﹣4,0),B (0,2),把A 、B 的坐标代入y =﹣12x 2+bx +c 得: 322b c ⎧=-⎪⎨⎪=⎩,, ∴抛物线的解析式为:213222y x x =--+ (2)当x ≥0或x ≤﹣4时,12x +2≥﹣12x 2+bx +c (3)如图,过D 点作x 轴的垂线,交x 轴于点E ,由213222y x x =-+令y =0, 解得:x 1=1,x 2=﹣4,∴CO =1,AO =4,设点D 的坐标为(m ,213222m m --+), ∵∠DAC =∠CBO ,∴tan ∠DAC =tan ∠CBO ,∴在Rt △ADE 和Rt △BOC 中有DE CO AE BO =, 当D 在x 轴上方时,213212242--+=+m m m 解得:m 1=0,m 2=﹣4(不合题意,舍去),∴点D 的坐标为(0,2).当D 在x 轴下方时,213(2)12242---+=+m m m 解得:m 1=2,m 2=﹣4(不合题意,舍去),∴点D 的坐标为(2,﹣3),故满足条件的D 点坐标为(0,2)或(2,﹣3).【点睛】本题是二次函数综合题型,主要考查了一次函数图象上点的坐标特征,待定系数法求二次函数解析式.解题的关键是能够熟练掌握一次函数和二次函数的有关知识解决问题,分类讨论是第(3)题的难点.8.在△ABC中,∠B=45°,∠C=30°,点D是边BC上一点,连接AD,将线段AD绕点A 逆时针旋转90°,得到线段AE,连接DE.(1)如图①,当点E落在边BA的延长线上时,∠EDC=度(直接填空);(2)如图②,当点E落在边AC上时,求证:BD=12 EC;(3)当AB=22,且点E到AC的距离等于3﹣1时,直接写出tan∠CAE的值.【答案】(1)90;(2)详见解析;(3)633 tan11EAC-∠=【解析】【分析】(1)利用三角形的外角的性质即可解决问题;(2)如图2中,作PA⊥AB交BC于P,连接PE.只要证明△BAD≌△PAE(SAS),提出BD=PE,再证明EC=2PE即可;(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,可得EP3,EH=2PH=2x,由此FH=31,CF=33,由△BAD≌△PAE,得BD=EP3x,AE=AD,在Rt△ABG中, AG=GB=2,在Rt△AGC中,AC=2AG=4,故AE2=AD2=AF2+EF2,由勾股定理得AF=3tan∠EAF=23tan∠EAC=6-33【详解】(1)如图1中,∵∠EDC=∠B+∠BED,∠B=∠BED=45°,∴∠EDC=90°,故答案为90;(2)如图2中,作PA⊥AB交BC于P,连接PE.∵∠DAE=∠BAP=90°,∴∠BAD=∠PAE,∵∠B=45°,∴∠B=∠APB=45°,∴AB=AP,∵AD=AE,∴△BAD≌△PAE(SAS),∴BD=PE,∠APE=∠B=45°,∴∠EPD=∠EPC=90°,∵∠C=30°,∴EC=2PE=2BD;(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,∵∠EPH=90°,∠EHP=60°,∴EP=3x,EH=2PH=2x,∴FH=2x+3﹣1,CF=3FH=23x+3﹣3,∵△BAD≌△PAE,∴BD=EP=3x,AE=AD,在Rt△ABG中,∵AB=22,∴AG=GB=2,在Rt△AGC中,AC=2AG=4,∵AE2=AD2=AF2+EF2,∴22+(2﹣3x)2=(3﹣1)2+(4﹣23x﹣3+3)2,整理得:9x2﹣12x=0,解得x=43(舍弃)或0∴PH=0,此时E,P,H共点,∴AF=1+3,∴tan∠EAF=EFAF =3131-+=2﹣3.根据对称性可知当点E在AC的上方时,同法可得tan∠EAC=6-33 11.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.9.如图所示的是一个地球仪及它的平面图,在平面图中,点A、B分别为地球仪的南、北极点,直线AB与放置地球仪的平面交于点D,所夹的角度约为67°,半径OC所在的直线与放置它的平面垂直,垂足为点E,DE=15cm,AD=14cm.(1)求半径OA的长(结果精确到0.1cm,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)(2)求扇形BOC的面积(π取3.14,结果精确到1cm)【答案】(1)半径OA的长约为24.5cm;(2)扇形BOC的面积约为2822cm.【解析】【分析】(1)在Rt △ODE 中,DE=15,∠ODE=67°,根据∠ODE 的余弦值,即可求得OD 长,减去AD 即为OA .(2)用扇形面积公式即可求得.【详解】(1)在Rt △ODE 中,15cm DE =,67ODE ∠=︒. ∵cos DE ODE DO ∠=, ∴150.39OD ≈, ∴()384614245cm OA OD AD =-≈-≈.., 答:半径OA 的长约为24.5cm .(2)∵67ODE ∠=︒,∴157BOC ∠=︒, ∴2360BOC n r S π=扇形 2157 3.1424.52360⨯⨯≈ ()2822cm ≈.答:扇形BOC 的面积约为2822cm .【点睛】此题主要考查了解直角三角形的应用,本题把实际问题转化成数学问题,利用三角函数中余弦定义来解题是解题关键.10.如图①,在菱形ABCD 中,60B ︒∠= ,4AB =.点P 从点A 出发以每秒2个单位的速度沿边AD 向终点D 运动,过点P 作PQ AC ⊥交边AB 于点Q ,过点P 向上作//PN AC ,且PN PQ =,以PN 、PQ 为边作矩形PQMN .设点P 的运动时间为t (秒),矩形PQMN 与菱形ABCD 重叠部分图形的面积为S .(1)用含t 的代数式表示线段PQ 的长.(2)当点M 落在边BC 上时,求t 的值.(3)当0t 1<<时,求S 与t 之间的函数关系式,(4)如图②,若点O 是AC 的中点,作直线OM .当直线OM 将矩形PQMN 分成两部分图形的面积比为12:时,直接写出t 的值【答案】(1)23PQ t =;(2)45;(3)2193403163t t -+-;(4) 23t = 或87t = . 【解析】【分析】(1)由菱形性质得∠D=∠B=60°,AD=AB=CD=4,△ACD 是等边三角形,证出△APQ 是等腰三角形,得出PF=QF ,3,即可得出结果;(2)当点M 落在边BC 上时,由题意得:△PDN 是等边三角形,得出PD=PN ,由已知得3,得出PD=3t ,由题意得出方程,解方程即可; (3)当0<t≤45时,3t ,PN=32PQ=3t ,S=矩形PQMN 的面积=PQ×PN ,即可得出结果;当45<t <1时,△PDN 是等边三角形,得出PE=PD=AD-PA=4-2t ,∠FEN=∠PED=60°,得出NE=PN-PE=5t-4,33(5t-4),S=矩形PQMN 的面积-2△EFN 的面积,即可得出结果;(4)分两种情况:当0<t≤45时,△ACD 是等边三角形,AC=AD=4,得出OA=2,OG 是△MNH 的中位线,得出OG=4t-2,NH=2OG=8t-4,由面积关系得出方程,解方程即可; 当45<t≤2时,由平行线得出△OEF ∽△MEQ ,得出EF OF EQ MQ =233t t EF t -=+,解得EF=243232t t t -,得出2332234t t t t -+,由三角形面积关系得出方程,解方程即可.【详解】(1)∵在菱形ABCD 中,∠B=60°,∴∠D=∠B=60°,AD=AB=CD=4,△ACD 是等边三角形,∴∠CAD=60°,∵PQ ⊥AC ,∴△APQ 是等腰三角形,∴PF=QF,PF=PA•sin60°=2t×32=3t,∴PQ=23t;(2)当点M落在边BC上时,如图2所示:由题意得:△PDN是等边三角形,∴PD=PN,∵PN=32PQ=32×23t=3t,∴PD=3t,∵PA+PD=AD,即2t+3t=4,解得:t=45.(3)当0<t≤45时,如图1所示:PQ=23t,PN=32PQ=32×23t=3t,S=矩形PQMN的面积=PQ×PN=23t×3t=63t2;当45<t<1时,如图3所示:∵△PDN是等边三角形,∴PE=PD=AD-PA=4-2t,∠FEN=∠PED=60°,∴NE=PN-PE=3t-(4-2t)=5t-4,∴FN=3NE=3(5t-4),∴S=矩形PQMN的面积-2△EFN的面积=63t2-2×12×3(5t-4)2=-19t2+403t-163,即S=-19t2+403t-163;(4)分两种情况:当0<t≤45时,如图4所示:∵△ACD是等边三角形,∴AC=AD=4,∵O是AC的中点,∴OA=2,OG是△MNH的中位线,∴OG=3t-(2-t)=4t-2,NH=2OG=8t-4,∴△MNH的面积=12MN×NH=12×23t×(8t-4)=13×63t2,解得:t=23;当45<t≤2时,如图5所示:∵AC∥QM,∴△OEF∽△MEQ,∴EF OFEQ MQ=233ttEF t-=+,解得:2332t t-,∴EQ=2332234t t t t --+, ∴△MEQ 的面积=12×3t×(23323t t t -+)=13×63t 2, 解得:t=87; 综上所述,当直线OM 将矩形PQMN 分成两部分图形的面积比为1:2时,t 的值为23或87. 【点睛】本题是四边形综合题目,考查了菱形的性质、矩形的性质、等边三角形的判定与性质、勾股定理、相似三角形的判定与性质、三角形中位线定理等知识;本题综合性强,难度较大,熟练掌握菱形和矩形的性质,综合运用知识,进行分类讨论是解题的关键.11.小明坐于堤边垂钓,如图①,河堤AC 的坡角为30°,AC 长米,钓竿AO 的倾斜角是60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距离(如图②).【答案】1.5米.【解析】试题分析:延长OA 交BC 于点D .先由倾斜角定义及三角形内角和定理求出在Rt △ACD 中,米,CD =2AD =3米,再证明△BOD 是等边三角形,得到米,然后根据BC =BD −CD 即可求出浮漂B 与河堤下端C 之间的距离.试题解析:延长OA 交BC 于点D .∵AO 的倾斜角是,∴∵在Rt△ACD中, (米),∴CD=2AD=3米,又∴△BOD是等边三角形,∴(米),∴BC=BD−CD=4.5−3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.12.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,AE为⊙O的切线,过点B作BD⊥AE于D.(1)求证:∠DBA=∠ABC;(2)如果BD=1,tan∠BAD=,求⊙O的半径.【答案】(1)证明见解析;(2).【解析】试题分析:(1)如图,连接OA,由AE为⊙O的切线,BD⊥AE得到∠DAO=∠EDB=90°,于是得到DB∥AO,推出∠DBA=∠BAO,由于OA=OB,得到∠ABC=∠BAO,即可得到结论;(2)根据三角函数的知识可求出AD,从而根据勾股定理求出AB的长,根据三角函数的知识即可得出⊙O的半径.试题解析:(1)如图,连接OA,∵AE为⊙O的切线,BD⊥AE,∴∠DAO=∠EDB=90°,∴DB∥AO,∴∠DBA=∠BAO,又∵OA=OB,∴∠ABC=∠BAO,∴∠DBA=∠ABC;(2)∵BD=1,tan∠BAD=,∴AD=2,∴AB=,∴cos∠DBA=;∵∠DBA=∠CBA,∴BC=.∴⊙O的半径为2.5.考点:1.切线的性质;2.勾股定理;3.解直角三角形.。

2020-2021中考数学直角三角形的边角关系(大题培优 易错 难题)附详细答案

2020-2021中考数学直角三角形的边角关系(大题培优 易错 难题)附详细答案

2020-2021中考数学直角三角形的边角关系(大题培优易错难题)附详细答案一、直角三角形的边角关系1.下图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4 m,AB=6 m,中间平台宽度DE=1 m,EN,DM,CB为三根垂直于AB的支柱,垂足分别为N,M,B,∠EAB=31°,DF⊥BC于点F,∠CDF=45°,求DM和BC的水平距离BM的长度.(结果精确到0.1 m.参考数据:sin31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)【答案】2.5m.【解析】试题分析:设DF=x,在Rt△DFC中,可得CF=DF=x,则BF=4-x,根据线段的和差可得AN=5-x,EN=DM=BF=4-,在Rt△ANE中,∠EAB=,利用∠EAB的正切值解得x的值.试题解析:解:设DF=,在Rt△DFC中,∠CDF=,∴CF=tan·DF=,又∵CB=4,∴BF=4-,∵AB=6,DE=1,BM= DF=,∴AN=5-,EN=DM=BF=4-,在Rt△ANE中,∠EAB=,EN=4-,AN=5-,tan==0.60,解得=2.5,答:DM和BC的水平距离BM为2.5米.考点:解直角三角形.2.如图,某公园内有一座古塔AB,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD.中午12时太阳光线与地面的夹角为45°,此时塔尖A在地面上的影子E与墙角C的距离为15米(B、E、C在一条直线上),求塔AB的高度.(结果精确到0.01米)参考数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.62492 1.4142.【答案】塔高AB 约为32.99米. 【解析】 【分析】过点D 作DH ⊥AB ,垂足为点H ,设AB =x ,则 AH =x ﹣3,解直角三角形即可得到结论. 【详解】解:过点D 作DH ⊥AB ,垂足为点H .由题意,得 HB = CD = 3,EC = 15,HD = BC ,∠ABC =∠AHD = 90°, ∠ADH = 32°.设AB = x ,则 AH = x – 3.在Rt △ABE 中,由 ∠AEB = 45°,得 tan tan451ABAEB EB∠=︒==. ∴ EB = AB = x .∴ HD = BC = BE + EC = x + 15. 在Rt △AHD 中,由 ∠AHD = 90°,得 tan AHADH HD∠=. 即得 3tan3215x x -︒=+. 解得 15tan32332.991tan32x ⋅︒+=≈-︒.∴ 塔高AB 约为32.99米. 【点睛】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.3.如图,AB 是⊙O 的直径,E 是⊙O 上一点,C 在AB 的延长线上,AD ⊥CE 交CE 的延长线于点D ,且AE 平分∠DAC . (1)求证:CD 是⊙O 的切线;(2)若AB =6,∠ABE =60°,求AD 的长.【答案】(1)详见解析;(2)9 2【解析】【分析】(1)利用角平分线的性质得到∠OAE=∠DAE,再利用半径相等得∠AEO=∠OAE,等量代换即可推出OE∥AD,即可解题,(2)根据30°的三角函数值分别在Rt△ABE中,AE=AB·cos30°,在Rt△ADE中,AD=cos30°×AE即可解题.【详解】证明:如图,连接OE,∵AE平分∠DAC,∴∠OAE=∠DAE.∵OA=OE,∴∠AEO=∠OAE.∴∠AEO=∠DAE.∴OE∥AD.∵DC⊥AC,∴OE⊥DC.∴CD是⊙O的切线.(2)解:∵AB是直径,∴∠AEB=90°,∠ABE=60°.∴∠EAB=30°,在Rt△ABE中,AE=AB·cos30°333在Rt△ADE中,∠DAE=∠BAE=30°,∴AD=cos30°×AE=32×3392.【点睛】本题考查了特殊的三角函数值的应用,切线的证明,中等难度,利用特殊的三角函数表示出所求线段是解题关键.4.如图,直线y=12x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣12x2+bx+c经过A、B两点,与x轴的另一个交点为C.(1)求抛物线的解析式;(2)根据图象,直接写出满足12x+2≥﹣12x2+bx+c的x的取值范围;(3)设点D为该抛物线上的一点、连结AD,若∠DAC=∠CBO,求点D的坐标.【答案】(1)213222y x x=--+;(2)当x≥0或x≤﹣4;(3)D点坐标为(0,2)或(2,﹣3).【解析】【分析】(1)由直线y=12x+2求得A、B的坐标,然后根据待定系数法即可求得抛物线的解析式;(2)观察图象,找出直线在抛物线上方的x的取值范围;(3)如图,过D点作x轴的垂线,交x轴于点E,先求出CO=1,AO=4,再由∠DAC=∠CBO,得出tan∠DAC=tan∠CBO,从而有,DE COAE BO=,最后分类讨论确定点D的坐标.【详解】解:(1)由y=12x+2可得:当x=0时,y=2;当y=0时,x=﹣4,∴A(﹣4,0),B(0,2),把A、B的坐标代入y=﹣12x2+bx+c得:322bc⎧=-⎪⎨⎪=⎩,,∴抛物线的解析式为:213222y x x=--+(2)当x≥0或x≤﹣4时,1 2 x+2≥﹣12x2+bx+c(3)如图,过D点作x轴的垂线,交x轴于点E,由213222y x x=-+令y=0,解得:x1=1,x2=﹣4,∴CO=1,AO=4,设点D的坐标为(m,213222m m--+),∵∠DAC=∠CBO,∴tan∠DAC=tan∠CBO,∴在Rt△ADE和Rt△BOC中有DE COAE BO=,当D在x轴上方时,213212242--+=+m mm解得:m1=0,m2=﹣4(不合题意,舍去),∴点D的坐标为(0,2).当D在x轴下方时,213(2)12242---+=+m mm解得:m1=2,m2=﹣4(不合题意,舍去),∴点D的坐标为(2,﹣3),故满足条件的D点坐标为(0,2)或(2,﹣3).【点睛】本题是二次函数综合题型,主要考查了一次函数图象上点的坐标特征,待定系数法求二次函数解析式.解题的关键是能够熟练掌握一次函数和二次函数的有关知识解决问题,分类讨论是第(3)题的难点.5.如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且CF AE=,连接DE,DF,EF. FH平分EFB∠交BD于点H.(1)求证:DE DF⊥;(2)求证:DH DF=:(3)过点H 作HM EF ⊥于点M ,用等式表示线段AB ,HM 与EF 之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析. 【解析】 【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HNBH HN HM ===︒.由22cos 45DFEF DF DH ===︒,得22EF AB HM =-.【详解】(1)证明:∵四边形ABCD 是正方形, ∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒. ∴90EAD FCD ∠=∠=︒. ∵CF AE =。

2020-2021全国中考数学直角三角形的边角关系的综合中考模拟和真题汇总及答案

2020-2021全国中考数学直角三角形的边角关系的综合中考模拟和真题汇总及答案

2020-2021全国中考数学直角三角形的边角关系的综合中考模拟和真题汇总及答案一、直角三角形的边角关系1.已知在平面直角坐标系中,点()()()3,0,3,0,3,8A B C --,以线段BC 为直径作圆,圆心为E ,直线AC 交E e 于点D ,连接OD . (1)求证:直线OD 是E e 的切线;(2)点F 为x 轴上任意一动点,连接CF 交E e 于点G ,连接BG : ①当1an 7t ACF ∠=时,求所有F 点的坐标 (直接写出); ②求BGCF的最大值. 【答案】(1)见解析;(2)①143,031F ⎛⎫⎪⎝⎭,2(5,0)F ;② BG CF 的最大值为12.【解析】 【分析】(1)连接DE ,证明∠EDO=90°即可;(2)①分“F 位于AB 上”和“F 位于BA 的延长线上”结合相似三角形进行求解即可; ②作GM BC ⊥于点M ,证明1~ANF ABC ∆∆,得12BG CF ≤,从而得解. 【详解】(1)证明:连接DE ,则:∵BC 为直径 ∴90BDC ∠=︒ ∴90BDA ∠=︒ ∵OA OB = ∴OD OB OA == ∴OBD ODB ∠=∠ ∵EB ED =∴EBD EDB ∠=∠∴EBD OBD EDB ODB ∠+∠=∠+∠ 即:EBO EDO ∠=∠ ∵CB x ⊥轴 ∴90EBO ∠=︒ ∴90EDO ∠=︒ ∴直线OD 为E e 的切线.(2)①如图1,当F 位于AB 上时: ∵1~ANF ABC ∆∆∴11NF AF AN AB BC AC== ∴设3AN x =,则114,5NF x AF x ==∴103CN CA AN x =-=-∴141tan 1037F N x ACF CN x ∠===-,解得:1031x = ∴150531AF x ==1504333131OF =-=即143,031F ⎛⎫⎪⎝⎭如图2,当F 位于BA 的延长线上时: ∵2~AMF ABC ∆∆∴设3AM x =,则224,5MF x AF x == ∴103CM CA AM x =+=+ ∴241tan 1037F M x ACF CM x ∠===+解得:25x =∴252AF x ==2325OF =+=即2(5,0)F②如图,作GM BC ⊥于点M , ∵BC 是直径∴90CGB CBF ∠=∠=︒ ∴~CBF CGB ∆∆∴8BG MG MGCF BC == ∵MG ≤半径4=∴41882BG MG CF =≤= ∴BG CF的最大值为12.【点睛】本题考查了圆的综合题:熟练掌握切线的判定定理、解直角三角形;相似三角形的判定和性质和相似比计算线段的长;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.2.如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为1θ,且在水平线上的射影AF 为1.4m .现已测量出屋顶斜面与水平面夹角为2θ,并已知1tan 1.082θ=,2tan 0.412θ=.如果安装工人确定支架AB 高为25cm ,求支架CD 的高(结果精确到1cm )?【答案】【解析】过A 作AF CD ⊥于F ,根据锐角三角函数的定义用θ1、θ2表示出DF 、EF 的值,又可证四边形ABCE 为平行四边形,故有EC=AB=25cm ,再再根据DC=DE+EC 进行解答即可.3.如图,等腰△ABC 中,AB=AC ,∠BAC=36°,BC=1,点D 在边AC 上且BD 平分∠ABC ,设CD=x .(1)求证:△ABC ∽△BCD ; (2)求x 的值;(3)求cos36°-cos72°的值.【答案】(1)证明见解析;(215-+;(3758+【解析】试题分析:(1)由等腰三角形ABC 中,顶角的度数求出两底角度数,再由BD 为角平分线求出∠DBC 的度数,得到∠DBC=∠A ,再由∠C 为公共角,利用两对角相等的三角形相似得到三角形ABC 与三角形BCD 相似;(2)根据(1)结论得到AD=BD=BC ,根据AD+DC 表示出AC ,由(1)两三角形相似得比例求出x 的值即可;(3)过B 作BE 垂直于AC ,交AC 于点E ,在直角三角形ABE 和直角三角形BCE 中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果. 试题解析:(1)∵等腰△ABC 中,AB=AC ,∠BAC=36°, ∴∠ABC=∠C=72°, ∵BD 平分∠ABC , ∴∠ABD=∠CBD=36°, ∵∠CBD=∠A=36°,∠C=∠C , ∴△ABC ∽△BCD ; (2)∵∠A=∠ABD=36°, ∴AD=BD , ∵BD=BC , ∴AD=BD=CD=1,设CD=x ,则有AB=AC=x+1, ∵△ABC ∽△BCD ,∴AB BC BD CD =,即111x x +=, 整理得:x 2+x-1=0,解得:x 115-+,x 215--(负值,舍去),则15-+; (3)过B 作BE ⊥AC ,交AC 于点E ,∵BD=CD ,∴E 为CD 中点,即DE=CE=15-+, 在Rt △ABE 中,cosA=cos36°=151514151AE AB -+++==-++, 在Rt △BCE 中,cosC=cos72°=1515414EC BC -+-+==, 则cos36°-cos72°=51+=-154-+=12. 【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.4.如图13,矩形的对角线,相交于点,关于的对称图形为.(1)求证:四边形是菱形; (2)连接,若,.①求的值; ②若点为线段上一动点(不与点重合),连接,一动点从点出发,以的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点,到达点后停止运动.当点沿上述路线运动到点所需要的时间最短时,求的长和点走完全程所需的时间.【答案】(1)详见解析;(2)①②和走完全程所需时间为【解析】试题分析:(1)利用四边相等的四边形是菱形;(2)①构造直角三角形求;②先确定点沿上述路线运动到点所需要的时间最短时的位置,再计算运到的时间.试题解析:解:(1)证明:四边形是矩形.与交于点O,且关于对称四边形是菱形.(2)①连接,直线分别交于点,交于点关于的对称图形为在矩形中,为的中点,且O为AC的中点为的中位线同理可得:为的中点,②过点P作交于点由运动到所需的时间为3s由①可得,点O以的速度从P到A所需的时间等于以从M运动到A即:由O运动到P所需的时间就是OP+MA和最小.如下图,当P运动到,即时,所用时间最短.在中,设解得:和走完全程所需时间为考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置5.如图,AB是⊙O的直径,E是⊙O上一点,C在AB的延长线上,AD⊥CE交CE的延长线于点D,且AE平分∠DAC.(1)求证:CD是⊙O的切线;(2)若AB=6,∠ABE=60°,求AD的长.【答案】(1)详见解析;(2)9 2【解析】【分析】(1)利用角平分线的性质得到∠OAE=∠DAE,再利用半径相等得∠AEO=∠OAE,等量代换即可推出OE∥AD,即可解题,(2)根据30°的三角函数值分别在Rt△ABE中,AE=AB·cos30°,在Rt△ADE中,AD=cos30°×AE即可解题.【详解】证明:如图,连接OE,∵AE平分∠DAC,∴∠OAE=∠DAE.∵OA=OE,∴∠AEO=∠OAE.∴∠AEO=∠DAE.∴OE∥AD.∵DC⊥AC,∴OE⊥DC.∴CD是⊙O的切线.(2)解:∵AB是直径,∴∠AEB=90°,∠ABE=60°.∴∠EAB=30°,在Rt△ABE中,AE=AB·cos30°333在Rt△ADE中,∠DAE=∠BAE=30°,∴AD=cos30°3339 2 .【点睛】本题考查了特殊的三角函数值的应用,切线的证明,中等难度,利用特殊的三角函数表示出所求线段是解题关键.6.在△ABC中,∠B=45°,∠C=30°,点D是边BC上一点,连接AD,将线段AD绕点A 逆时针旋转90°,得到线段AE,连接DE.(1)如图①,当点E落在边BA的延长线上时,∠EDC=度(直接填空);(2)如图②,当点E落在边AC上时,求证:BD=12 EC;(3)当AB=2E到AC31时,直接写出tan∠CAE的值.【答案】(1)90;(2)详见解析;(3)633 tan11EAC-∠=【解析】【分析】(1)利用三角形的外角的性质即可解决问题;(2)如图2中,作PA⊥AB交BC于P,连接PE.只要证明△BAD≌△PAE(SAS),提出BD=PE,再证明EC=2PE即可;(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,可得EP=3x,EH=2PH=2x,由此FH=2x+3﹣1,CF=23x+3﹣3,由△BAD≌△PAE,得BD=EP=3x,AE=AD,在Rt△ABG中, AG=GB=2,在Rt△AGC中,AC=2AG=4,故AE2=AD2=AF2+EF2,由勾股定理得AF=1+3,由此tan∠EAF=2﹣3,根据对称性可得tan∠EAC=6-33.【详解】(1)如图1中,∵∠EDC=∠B+∠BED,∠B=∠BED=45°,∴∠EDC=90°,故答案为90;(2)如图2中,作PA⊥AB交BC于P,连接PE.∵∠DAE=∠BAP=90°,∴∠BAD=∠PAE,∵∠B=45°,∴∠B=∠APB=45°,∴AB=AP,∵AD=AE,∴△BAD≌△PAE(SAS),∴BD=PE,∠APE=∠B=45°,∴∠EPD=∠EPC=90°,∵∠C=30°,∴EC=2PE=2BD;(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,∵∠EPH=90°,∠EHP=60°,∴EP3,EH=2PH=2x,∴FH=31,CF3FH=33∵△BAD≌△PAE,∴BD=EP3,AE=AD,在Rt△ABG中,∵AB=2∴AG=GB=2,在Rt△AGC中,AC=2AG=4,∵AE2=AD2=AF2+EF2,∴22+(23)231)2+(4﹣3﹣32,整理得:9x2﹣12x=0,解得x=43(舍弃)或0∴PH =0,此时E ,P ,H 共点,∴AF =1+3, ∴tan ∠EAF =EF AF =3131-+=2﹣3. 根据对称性可知当点E 在AC 的上方时,同法可得tan ∠EAC =6-33. 【点睛】本题属于几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.7.如图,在正方形ABCD 中,E 是边AB 上的一动点,点F 在边BC 的延长线上,且CF AE =,连接DE ,DF ,EF . FH 平分EFB ∠交BD 于点H .(1)求证:DE DF ⊥;(2)求证:DH DF =:(3)过点H 作HM EF ⊥于点M ,用等式表示线段AB ,HM 与EF 之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析.【解析】【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠,所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HN BH HN HM ===︒. 由22cos 45DF EF DF DH ===︒,得22EF AB HM =-. 【详解】(1)证明:∵四边形ABCD 是正方形,∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒.∴90EAD FCD ∠=∠=︒.∵CF AE =。

2020-2021中考数学直角三角形的边角关系综合题含详细答案

2020-2021中考数学直角三角形的边角关系综合题含详细答案

2020-2021中考数学直角三角形的边角关系综合题含详细答案一、直角三角形的边角关系1.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【答案】(1)证明见解析(2)4(3)20【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.试题解析:(1)∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴∴AC=5,∴AB=AC=5,设AF=x,则CF=5﹣x,在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,∴x=3,∴BF2=25﹣32=16,∴BF=4,即点B到AC的距离为4.考点:切线的判定2.在等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,∠EMF=135°.将∠EMF绕点M旋转,使∠EMF的两边交直线AB于点E,交直线AC于点F,请解答下列问题:(1)当∠EMF绕点M旋转到如图①的位置时,求证:BE+CF=BM;(2)当∠EMF绕点M旋转到如图②,图③的位置时,请分别写出线段BE,CF,BM之间的数量关系,不需要证明;(3)在(1)和(2)的条件下,tan∠BEM=,AN=+1,则BM=,CF=.【答案】(1)证明见解析(2)见解析(3)1,1+或1﹣【解析】【分析】(1)由等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,可得BM=MN,∠BMN=135°,又∠EMF=135°,可证明的△BME≌△NMF,可得BE=NF,NC=NM=BM进而得出结论;(2)①如图②时,同(1)可证△BME≌△NMF,可得BE﹣CF=BM,②如图③时,同(1)可证△BME≌△NMF,可得CF﹣BE=BM;(3) 在Rt△ABM和Rt△ANM中,,可得Rt△ABM≌Rt△ANM,后分别求出AB、 AC、 CN 、BM、 BE的长,结合(1)(2)的结论对图①②③进行讨论可得CF的长.【详解】(1)证明:∵△ABC是等腰直角三角形,∴∠BAC=∠C=45°,∵AM是∠BAC的平分线,MN⊥AC,∴BM=MN,在四边形ABMN中,∠,BMN=360°﹣90°﹣90°﹣45°=135°,∵∠ENF=135°,,∴∠BME=∠NMF,∴△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵CN=CF+NF,∴BE+CF=BM;(2)针对图2,同(1)的方法得,△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵NC=NF﹣CF,∴BE﹣CF=BM;针对图3,同(1)的方法得,△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵NC=CF﹣NF,∴CF﹣BE=BM;(3)在Rt△ABM和Rt△ANM中,,∴Rt△ABM≌Rt△ANM(HL),∴AB=AN=+1,在Rt△ABC中,AC=AB=+1,∴AC=AB=2+,∴CN=AC﹣AN=2+﹣(+1)=1,在Rt△CMN中,CM=CN=,∴BM=BC﹣CM=+1﹣=1,在Rt△BME中,tan∠BEM===,∴BE=,∴①由(1)知,如图1,BE+CF=BM,∴CF=BM﹣BE=1﹣②由(2)知,如图2,由tan∠BEM=,∴此种情况不成立;③由(2)知,如图3,CF﹣BE=BM,∴CF=BM+BE=1+,故答案为1,1+或1﹣.【点睛】本题考查三角函数与旋转与三角形全等的综合,难度较大,需综合运用所学知识求解.3.问题探究:(一)新知学习:圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上).(二)问题解决:已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD 的垂线,垂足分别为N,M.(1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长;(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程汇总,证明MN的长为定值,并求其定值;(3)若直径AB与CD相交成120°角.①当点P运动到的中点P1时(如图二),求MN的长;②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.【答案】(1)证明见解析,直径OP=2;(2)证明见解析,MN的长为定值,该定值为2;(3)①MN=;②证明见解析;(4)MN取得最大值2.【解析】试题分析:(1)如图一,易证∠PMO+∠PNO=180°,从而可得四边形PMON内接于圆,直径OP=2;(2)如图一,易证四边形PMON是矩形,则有MN=OP=2,问题得以解决;(3)①如图二,根据等弧所对的圆心角相等可得∠COP1=∠BOP1=60°,根据圆内接四边形的对角互补可得∠MP1N=60°.根据角平分线的性质可得P1M=P1N,从而得到△P1MN是等边三角形,则有MN=P1M.然后在Rt△P1MO运用三角函数就可解决问题;②设四边形PMON的外接圆为⊙O′,连接NO′并延长,交⊙O′于点Q,连接QM,如图三,根据圆周角定理可得∠QMN=90°,∠MQN=∠MPN=60°,在Rt△QMN中运用三角函数可得:MN=QN•sin∠MQN,从而可得MN=OP•sin∠MQN,由此即可解决问题;(4)由(3)②中已得结论MN=OP•sin∠MQN可知,当∠MQN=90°时,MN最大,问题得以解决.试题解析:(1)如图一,∵PM⊥OC,PN⊥OB,∴∠PMO=∠PNO=90°,∴∠PMO+∠PNO=180°,∴四边形PMON内接于圆,直径OP=2;(2)如图一,∵AB⊥OC,即∠BOC=90°,∴∠BOC=∠PMO=∠PNO=90°,∴四边形PMON是矩形,∴MN=OP=2,∴MN的长为定值,该定值为2;(3)①如图二,∵P1是的中点,∠BOC=120°,∴∠COP1=∠BOP1=60°,∠MP1N=60°,∵P1M⊥OC,P1N⊥OB,∴P1M=P1N,∴△P1MN是等边三角形,∴MN=P1M.∵P1M=OP1•sin∠MOP1=2×sin60°=,∴MN=;②设四边形PMON的外接圆为⊙O′,连接NO′并延长,交⊙O′于点Q,连接QM,如图三,则有∠QMN=90°,∠MQN=∠MPN=60°,在Rt△QMN中,sin∠MQN=,∴MN=QN•sin∠MQN,∴MN=OP•sin∠MQN=2×sin60°=2×=,∴MN是定值.(4)由(3)②得MN=OP•sin∠MQN=2sin∠MQN.当直径AB与CD相交成90°角时,∠MQN=180°﹣90°=90°,MN取得最大值2.考点:圆的综合题.4.如图,某公园内有一座古塔AB ,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD .中午12时太阳光线与地面的夹角为45°,此时塔尖A 在地面上的影子E 与墙角C 的距离为15米(B 、E 、C 在一条直线上),求塔AB 的高度.(结果精确到0.01米)参考数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249,2 1.4142≈.【答案】塔高AB 约为32.99米.【解析】【分析】过点D 作DH ⊥AB ,垂足为点H ,设AB =x ,则 AH =x ﹣3,解直角三角形即可得到结论.【详解】解:过点D 作DH ⊥AB ,垂足为点H .由题意,得 HB = CD = 3,EC = 15,HD = BC ,∠ABC =∠AHD = 90°,∠ADH = 32°.设AB = x ,则 AH = x – 3.在Rt △ABE 中,由 ∠AEB = 45°,得 tan tan451AB AEB EB ∠=︒==. ∴ EB = AB = x .∴ HD = BC = BE + EC = x + 15.在Rt △AHD 中,由 ∠AHD = 90°,得 tan AH ADH HD ∠=. 即得 3tan3215x x -︒=+. 解得 15tan32332.991tan32x ⋅︒+=≈-︒. ∴ 塔高AB 约为32.99米.【点睛】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.5.许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A ,B 两点之间的距离他沿着与直线AB 平行的道路EF 行走,走到点C 处,测得∠ACF=45°,再向前走300米到点D 处,测得∠BDF=60°.若直线AB 与EF 之间的距离为200米,求A ,B 两点之间的距离(结果保留一位小数)【答案】215.6米.【解析】【分析】过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点,根据Rt △ACM 和三角函数tan BDF ∠求出CM 、DN ,然后根据MN MD DN AB =+=即可求出A 、B 两点间的距离.【详解】解:过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点在Rt △ACM 中,∵45ACF ∠=︒,∴AM=CM=200米,又∵CD=300米,所以100MD CD CM =-=米,在Rt △BDN 中,∠BDF=60°,BN=200米 ∴115.6tan 60BN DN =≈o米, ∴215.6MN MD DN AB =+=≈米即A ,B 两点之间的距离约为215.6米.【点睛】本题主要考查三角函数,正确做辅助线是解题的关键.6.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点A 、点B ,且ABO ∆的面积为8.(1)求k 的值;(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.【答案】(1)1k =;(2)4m t =+;(3)32BOCM S =Y .【解析】【分析】(1)先求出A 的坐标,然后利用待定系数法求出k 的值;(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证POD OCE ∆≅∆可得OE PD =,进一步得出m 与t 的函数关系式;(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出QTB PTO ∆≅∆;再证出KPB BPN ∠=∠;设KPB x ∠=︒,通过计算证出PO PM =;再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到OD BO PD MO =,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32.【详解】解:(1)把0x =代入4y kx =+,4y =,∴4BO =,又∵4ABO S ∆=, ∴142AO BO ⋅=,4AO =, ∴(4,0)A -,把4x =-,0y =代入4y kx =+,得044k =-+,解得1k =.故答案为1;(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,∴90PDO CEO ∠=∠=︒,∴90POD OPD ∠+∠=︒,∵线段OP 绕点O 顺时针旋转90°至线段OC ,∴90POC ∠=︒,OP OC =,∴90POD EOC ∠+∠=︒,∴OPD EOC ∠=∠,∴POD OCE ∆≅∆,∴OE PD =,4m t =+.故答案为4m t =+.(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,由(1)知,4AO BO ==,90BOA ∠=︒,∴ABO ∆为等腰直角三角形,∴45ABO BAO ∠=∠=︒,9045BOT ABO ABO ∠=︒-∠=︒=∠,∴BT TO =,∵90BTO ∠=︒,∴90TPO TOP ∠+∠=︒,∵PO BM ⊥,∴90BNO ∠=︒,∴BQT TPO ∠=∠,∴QTB PTO ∆≅∆,∴QT TP =,PO BQ =,∴PQT QPT ∠=∠,∵PO PK KB =+,∴QB PK KB =+,QK KP =,∴KQP KPQ ∠=∠,∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠,∴KPB BPN ∠=∠,设KPB x ∠=︒,∴BPN x ∠=︒,∵2PMB KPB ∠=∠,∴2PMB x ∠=︒,45POM PAO APO x ∠=∠+∠=︒+︒,9045NMO POM x ∠=︒-∠=︒-︒, ∴45PMO PMB NMO x POM ∠=∠+∠=︒+︒=∠,∴PO PM =,过点P 作PD x ⊥轴,垂足为点D ,∴22OM OD t ==,9045OPD POD x BMO ∠=︒-∠=︒-︒=∠,tan tan OPD BMO ∠=∠,OD BO PD MO =,442t t t=+, 14t =,22t =-(舍)∴8OM =,由(2)知,48m t OM =+==,∴CM y P 轴,∵90PNM POC ∠=∠=︒,∴BM OC P ,∴四边形BOCM 是平行四边形,∴4832BOCM S BO OM =⨯=⨯=Y .故答案为32.【点睛】本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.7.如图,在平面直角坐标系中,直线DE交x轴于点E(30,0),交y轴于点D(0,40),直线AB:y=13x+5交x轴于点A,交y轴于点B,交直线DE于点P,过点E作EF⊥x轴交直线AB于点F,以EF为一边向右作正方形EFGH.(1)求边EF的长;(2)将正方形EFGH沿射线FB的方向以每秒10个单位的速度匀速平移,得到正方形E1F1G1H1,在平移过程中边F1G1始终与y轴垂直,设平移的时间为t秒(t>0).①当点F1移动到点B时,求t的值;②当G1,H1两点中有一点移动到直线DE上时,请直接写出此时正方形E1F1G1H1与△APE 重叠部分的面积.【答案】(1)EF=15;(2)①10;②120;【解析】【分析】(1)根据已知点E(30,0),点D(0,40),求出直线DE的直线解析式y=-43x+40,可求出P点坐标,进而求出F点坐标即可;(2)①易求B(0,5),当点F1移动到点B时,1010=10;②F点移动到F'10t,F垂直x轴方向移动的距离是t,当点H运动到直线DE上时,在Rt△F'NF中,NFNF'=13,EM=NG'=15-F'N=15-3t,在Rt△DMH'中,43MHEM'=,t=4,S=12×(12+454)×11=10238;当点G运动到直线DE上时,在Rt△F'PK中,PKF K'=13,PK=t-3,F'K=3t-9,在Rt△PKG'中,PKKG'=31539tt--+=43,t=7,S=15×(15-7)=120.【详解】(1)设直线DE的直线解析式y=kx+b,将点E(30,0),点D(0,40),∴30040k bb+=⎧⎨=⎩,∴4340 kb⎧=-⎪⎨⎪=⎩,∴y=﹣43x+40,直线AB与直线DE的交点P(21,12),由题意知F(30,15),∴EF=15;(2)①易求B(0,5),∴BF=1010,∴当点F1移动到点B时,t=101010÷=10;②当点H运动到直线DE上时,F点移动到F'10,在Rt△F'NF中,NFNF'=13,∴FN=t,F'N=3t,∵MH'=FN=t,EM=NG'=15﹣F'N=15﹣3t,在Rt△DMH'中,43MHEM'=,∴41533tt=-,∴t=4,∴EM=3,MH'=4,∴S=1451023(12)11248⨯+⨯=;当点G运动到直线DE上时,F 点移动到F'的距离是10t , ∵PF =310,∴PF'=10t ﹣310,在Rt △F'PK 中,13PK F K =', ∴PK =t ﹣3,F'K =3t ﹣9,在Rt △PKG'中,PK KG '=31539t t --+=43, ∴t =7,∴S =15×(15﹣7)=120.【点睛】本题考查一次函数图象及性质,正方形的性质;掌握待定系数法求函数解析式,利用三角形的正切值求边的关系,利用勾股定理在直角三角形中建立边之间的联系,准确确定阴影部分的面积是解题的关键.8.如图1,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,动点P 在线段BC 上,点Q 在线段AB 上,且PQ =BQ ,延长QP 交射线AC 于点D .(1)求证:QA =QD ;(2)设∠BAP =α,当2tanα是正整数时,求PC 的长;(3)作点Q 关于AC 的对称点Q′,连结QQ′,AQ′,DQ′,延长BC 交线段DQ′于点E ,连结AE ,QQ′分别与AP ,AE 交于点M ,N (如图2所示).若存在常数k ,满足k•MN =PE•QQ′,求k 的值.【答案】(1)证明见解析(2)PC的长为37或32(3)8【解析】【分析】(1)由等腰三角形的性质得出∠B=∠BPQ=∠CPD,由直角三角形的性质得出∠BAC=∠D,即可得出结论;(2)过点P作PH⊥AB于H,设PH=3x,BH=4x,BP=5x,由题意知tanα=1或12,当tanα=1时,HA=PH=3x,与勾股定理得出3x+4x=5,解得x=57,即可求出PC长;当tanα=12时,HA=2PH﹣6x,得出6x+4x=5,解得x=12,即可求出PC长;(3)设QQ′与AD交于点O,由轴对称的性质得出AQ′=AQ=DQ=DQ′,得出四边形AQDQ′是菱形,由菱形的性质得出QQ′⊥AD,AO=12AD,证出四边形BEQ'Q是平行四边形,得出QQ′=BE,设CD=3m,则PC=4m,AD=3+3m,即QQ′﹣BE=4m+4,PE=8m,由三角函数得出MOAO=tan∠PAC=PCAC,即可得出结果.【详解】(1)证明:∵PQ=BQ,∴∠B=∠BPQ=∠CPD,∵∠ACB=∠PCD=90°,∴∠A+∠BAC=90°,∠D+∠CPD=90°,∴∠BAC=∠D,∴QA=QD;(2)解:过点P作PH⊥AB于H,如图1所示:设PH=3x,BH=4x,BP=5x,由题意得:tan∠BAC=43,∠BAP<∠BAC,∴2tanα是正整数时,tanα=1或12,当tanα=1时,HA=PH=3x,∴3x+4x5,∴x=57,即PC=4﹣5x=37;当tanα=12时,HA=2PH﹣6x,∴6x+4x =5,∴x =12, 即PC =4﹣5x=32; 综上所述,PC 的长为37或32; (3)解:设QQ′与AD 交于点O ,如图2所示:由轴对称的性质得:AQ′=AQ =DQ =DQ′,∴四边形AQDQ′是菱形,∴QQ′⊥AD ,AO =12AD , ∵BC ⊥AC ,∴QQ′∥BE ,∵BQ ∥EQ′,∴四边形BEQ'Q 是平行四边形,∴QQ′=BE ,设CD =3m ,则PC =4m ,AD =3+3m ,即QQ′﹣BE =4m+4,PE =8m ,∵MO AO =tan ∠PAC =PC AC, ∴332MO m +=43m , 即MN =2MO =4m (1+m ),∴k =PE QQ MNg ′=8(44)4(1)m m m m ++=8.【点睛】本题是三角形综合题目,考查了等腰三角形的性质与判定、三角函数、勾股定理、菱形的判定与性质、平行线的性质以及分类讨论等知识;本题综合性强,熟练掌握等腰三角形的判定与性质,灵活运用三角函数是解题关键.9.如图,△ABC中,AC=BC=10,cosC=35,点P是AC边上一动点(不与点A、C重合),以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.(1)当⊙P与边BC相切时,求⊙P的半径.(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409R=;(2)25880320xy x xx=-++(3)505-【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,即可求解;(2)首先证明PD∥BE,则EB BFPD PF=,即:2024588x yxxxy-+-=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=5【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8,同理可得:CH=6,HA=4,AB=45,则:tan∠CAB=2,BP=228+(4)x-=2880x x-+,DA=25x,则BD=45﹣25x,如下图所示,PA=PD,∴∠PAD=∠CAB=∠CBA=β,tanβ=2,则cosβ5,sinβ5,EB =BDcosβ=(45﹣25x )×5=4﹣25x , ∴PD ∥BE , ∴EB BF PD PF =,即:2024588x y x xx y -+--=, 整理得:y =25x x 8x 803x 20-++; (3)以EP 为直径作圆Q 如下图所示,两个圆交于点G ,则PG =PQ ,即两个圆的半径相等,则两圆另外一个交点为D , GD 为相交所得的公共弦,∵点Q 是弧GD 的中点, ∴DG ⊥EP ,∵AG 是圆P 的直径,∴∠GDA =90°,∴EP ∥BD ,由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形,∴AG =EP =BD ,∴AB =DB+AD =AG+AD =5设圆的半径为r ,在△ADG 中,AD =2rcosβ5DG 5AG =2r , 5=52r 51+, 则:DG 550﹣5 相交所得的公共弦的长为50﹣5【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.10.已知:如图,直线y=-x+12分别交x轴、y轴于A、B点,将△AOB折叠,使A点恰好落在OB的中点C处,折痕为DE.(1)求AE的长及sin∠BEC的值;(2)求△CDE的面积.【答案】(1)52,sin∠BEC=35;(2)754【解析】【分析】(1)如图,作CF⊥BE于F点,由函数解析式可得点B,点A坐标,继而可得∠A=∠B=45°,再根据中点的定义以及等腰直角三角形的性质可得OC=BC=6,CF=BF=32,设AE=CE=x,则EF=AB-BF-AE=122-32-x=92-x,在Rt△CEF中,利用勾股定理求出x 的值即可求得答案;(2)如图,过点E作EM⊥OA于点M,根据三角形面积公式则可得S△CDE=S△AED=24AD×AE,设AD=y,则CD=y,OD=12-y,在Rt△OCD中,利用勾股定理求出y,继而可求得答案.【详解】(1)如图,作CF⊥BE于F点,由函数解析式可得点B(0,12),点A(12,0),∠A=∠B=45°,又∵点C是OB中点,∴OC=BC=6,2设AE=CE=x,则222-x,在Rt△CEF中,CE2=CF2+EF2,即x2=(2)2+(2)2,解得:2故可得sin∠BEC=35CFCE,AE=52;(2)如图,过点E作EM⊥OA于点M,则S△CDE=S△AED=12AD•EM=12AD×AEsin∠EAM=12AD•AE×sin45°=2AD×AE,设AD=y,则CD=y,OD=12-y,在Rt△OCD中,OC2+OD2=CD2,即62+(12-y)2=y2,解得:y=152,即AD=152,故S△CDE=S△AED=2AD×AE=754.【点睛】本题考查了解直角三角形的应用,涉及了勾股定理、折叠的性质、三角形面积、一次函数的性质等知识,综合性较强,正确添加辅助线、熟练应用相关知识是解题的关键.11.如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.(1)求证:四边形AGDH为菱形;(2)若EF=y,求y关于x的函数关系式;(3)连结OF,CG.①若△AOF为等腰三角形,求⊙O的面积;②若BC=3,则30CG+9=______.(直接写出答案).【答案】(1)证明见解析;(2)y=18x2(x>0);(3)①163π或8π或(17+2)π;21.【解析】【分析】(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;(2)只要证明△AEF∽△ACB,可得AE EFAC BC=解决问题;(3)①分三种情形分别求解即可解决问题;②只要证明△CFG∽△HFA,可得GFAF=CGAH,求出相应的线段即可解决问题;【详解】(1)证明:∵GH垂直平分线段AD,∴HA=HD,GA=GD,∵AB是直径,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四边形AGDH是菱形.(2)解:∵AB是直径,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AE EFAC BC=,∴124x yx=,∴y=18x2(x>0).(3)①解:如图1中,连接DF.∵GH垂直平分线段AD,∴FA =FD ,∴当点D 与O 重合时,△AOF 是等腰三角形,此时AB =2BC ,∠CAB =30°,∴AB =833, ∴⊙O 的面积为163π. 如图2中,当AF =AO 时,∵AB =22AC BC +=216x +,∴OA =2162x +, ∵AF =22EF AE +=2221182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭, ∴2162x +=2221182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭, 解得x =4(负根已经舍弃),∴AB =42,∴⊙O 的面积为8π.如图2﹣1中,当点C 与点F 重合时,设AE =x ,则BC =AD =2x ,AB =2164x +,∵△ACE ∽△ABC ,∴AC 2=AE•AB ,∴16=x•2164x+,解得x2=217﹣2(负根已经舍弃),∴AB2=16+4x2=817+8,∴⊙O的面积=π•14•AB2=(217+2)π综上所述,满足条件的⊙O的面积为163π或8π或(217+2)π;②如图3中,连接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=52,∴AE=32,∴OE=OA﹣AE=1,∴EG=EH2512⎛⎫-⎪⎝⎭212,∵EF=18x2=98,∴FG=212﹣98,AF22AE EF+158,AH22AE EH+302,∵∠CFG=∠AFH,∠FCG=∠AHF,∴△CFG∽△HFA,∴GF CGAF AH=,∴219281530 82-=,∴CG=2705﹣33010,∴30CG+9=421.故答案为421.【点睛】本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.12.在平面直角坐标系中,O为坐标原点,点A(0,1),点C(1,0),正方形AOCD的两条对角线的交点为B,延长BD至点G,使DG=BD,延长BC至点E,使CE=BC,以BG,BE为邻边作正方形BEFG.(Ⅰ)如图①,求OD的长及ABBG的值;(Ⅱ)如图②,正方形AOCD固定,将正方形BEFG绕点B逆时针旋转,得正方形BE′F′G′,记旋转角为α(0°<α<360°),连接AG′.①在旋转过程中,当∠BAG′=90°时,求α的大小;②在旋转过程中,求AF′的长取最大值时,点F′的坐标及此时α的大小(直接写出结果即可).【答案】(Ⅰ)12(Ⅱ)①α=30°或150°时,∠BAG′=90°②当α=315°时,A、B、F′在一条直线上时,AF′2,此时α=315°,F′(122,122)【解析】【分析】(1)根据正方形的性质以及勾股定理即可解决问题,(2)①因为∠BAG′=90°,BG′=2AB,可知sin∠AG′B=12ABBG=,推出∠AG′B=30°,推出旋转角α=30°,据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,②当α=315°时,A、B、F′在一条直线上时,AF′的长最大.【详解】(Ⅰ)如图1中,∵A(0,1),∴OA=1,∵四边形OADC是正方形,∴∠OAD=90°,AD=OA=1,∴OD=AC==,∴AB=BC=BD=BO=,∵BD=DG,∴BG=,∴==.(Ⅱ)①如图2中,∵∠BAG′=90°,BG′=2AB,∴sin∠AG′B==,∴∠AG′B=30°,∴∠ABG′=60°,∴∠DBG′=30°,∴旋转角α=30°,根据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,综上所述,旋转角α=30°或150°时,∠BAG′=90°.②如图3中,连接OF,∵四边形BE′F′G′是正方形的边长为∴BF′=2,∴当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,此时α=315°,F′(+,﹣)【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,解决本题的关键是要熟练掌握正方形的四条边相等、四个角相等,旋转变换的性质以及特殊角的三角函数值的应用.。

2020-2021中考数学 直角三角形的边角关系 综合题附答案

2020-2021中考数学 直角三角形的边角关系 综合题附答案

2020-2021中考数学直角三角形的边角关系综合题附答案一、直角三角形的边角关系1.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(3=1.7).【答案】32.4米.【解析】试题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.试题解析:如图,过点B作BE⊥CD于点E,根据题意,∠DBE=45°,∠CBE=30°.∵AB⊥AC,CD⊥AC,∴四边形ABEC为矩形,∴CE=AB=12m,在Rt△CBE中,cot∠CBE=BE CE,∴BE=CE•cot30°=12×3=123,在Rt△BDE中,由∠DBE=45°,得DE=BE=123.∴CD=CE+DE=12(3+1)≈32.4.答:楼房CD的高度约为32.4m.考点:解直角三角形的应用——仰角俯角问题.2.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,,求PD的长;(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)【答案】(1)证明见解析;(2);(3).【解析】试题分析:(1)应用圆周角定理证明∠APD=∠FPC,得到∠APC=∠FPD,又由∠PAC=∠PDC,即可证明结论.(2)由AC=2BC,设,应用勾股定理即可求得BC,AC的长,则由AC=2BC得,由△ACE∽△ABC可求得AE,CE的长,由可知△APB是等腰直角三角形,从而可求得PA的长,由△AEF是等腰直角三角形求得EF=AE=4,从而求得DF的长,由(1)△PAC∽△PDF得,即可求得PD的长.(3)连接BP,BD,AD,根据圆的对称性,可得,由角的转换可得,由△AGP∽△DGB可得,由△AGD∽△PGB可得,两式相乘可得结果.试题解析:(1)由APCB内接于圆O,得∠FPC=∠B,又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,∴∠APD=∠FPC.∴∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.又∵∠PAC=∠PDC,∴△PAC∽△PDF.(2)连接BP,设,∵∠ACB=90°,AB=5,∴.∴.∵△ACE∽△ABC,∴,即. ∴.∵AB⊥CD,∴.如图,连接BP,∵,∴△APB是等腰直角三角形. ∴∠PAB=45°,.∴△AEF是等腰直角三角形. ∴EF=AE=4. ∴DF=6.由(1)△PAC∽△PDF得,即.∴PD的长为.(3)如图,连接BP,BD,AD,∵AC=2BC,∴根据圆的对称性,得AD=2DB,即.∵AB⊥CD,BP⊥AE,∴∠ABP=∠AFD.∵,∴.∵△AGP∽△DGB,∴.∵△AGD∽△PGB,∴.∴,即.∵,∴.∴与之间的函数关系式为.考点:1.单动点问题;2.圆周角定理;3.相似三角形的判定和性质;4.勾股定理;5.等腰直角三角形的判定和性质;6.垂径定理;7.锐角三角函数定义;8.由实际问题列函数关系式.3.问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.【答案】解:(1)22.(2)如图,在斜边AC上截取AB′=AB,连接BB′.∵AD平分∠BAC,∴点B与点B′关于直线AD对称.过点B′作B′F⊥AB,垂足为F,交AD于E,连接BE.则线段B′F的长即为所求 (点到直线的距离最短) .在Rt△AFB/中,∵∠BAC=450, AB/="AB=" 10,∴.∴BE+EF的最小值为【解析】试题分析:(1)找点A或点B关于CD的对称点,再连接其中一点的对称点和另一点,和MN的交点P就是所求作的位置,根据题意先求出∠C′AE,再根据勾股定理求出AE,即可得出PA+PB的最小值:如图作点B关于CD的对称点E,连接AE交CD于点P,此时PA+PB最小,且等于A.作直径AC′,连接C′E,根据垂径定理得弧BD=弧DE.∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°.∴∠AOE=90°.∴∠C′AE=45°.又AC为圆的直径,∴∠AEC′=90°.∴∠C′=∠C′AE=45°.∴C′E=AE=AC′=22.∴AP+BP的最小值是22.(2)首先在斜边AC上截取AB′=AB,连接BB′,再过点B′作B′F⊥AB,垂足为F,交AD于E,连接BE,则线段B′F的长即为所求.4.如图,湿地景区岸边有三个观景台、、.已知米,米,点位于点的南偏西方向,点位于点的南偏东方向.(1)求的面积;(2)景区规划在线段的中点处修建一个湖心亭,并修建观景栈道.试求、间的距离.(结果精确到米)(参考数据:,,,,,,)【答案】(1)560000(2)565.6【解析】试题分析:(1)过点作交的延长线于点,,然后根据直角三角形的内角和求出∠CAE,再根据正弦的性质求出CE的长,从而得到△ABC的面积;(2)连接,过点作,垂足为点,则.然后根据中点的性质和余弦值求出BE、AE的长,再根据勾股定理求解即可.试题解析:(1)过点作交的延长线于点,在中,,所以米.所以(平方米).(2)连接,过点作,垂足为点,则.因为是中点,所以米,且为中点,米,所以米.所以米,由勾股定理得,米.答:、间的距离为米.考点:解直角三角形5.如图,某校数学兴趣小组为测量校园主教学楼AB 的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C ,用测角器测得主教学楼顶端A 的仰角为30°,再向主教学楼的方向前进24米,到达点E 处(C ,E ,B 三点在同一直线上),又测得主教学楼顶端A 的仰角为60°,已知测角器CD 的高度为1.6米,请计算主教学楼AB 的高度.(3≈1.73,结果精确到0.1米)【答案】22.4m 【解析】 【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造等量关系,进而求解. 【详解】解:在Rt △AFG 中,tan ∠AFG 3,∴FG =tan 3AG AFG =∠,在Rt △ACG 中,tan ∠ACG =AGCG, ∴CG =tan AGACG =3AG .又∵CG ﹣FG =24m ,即3AG ﹣3AG=24m , ∴AG =123m , ∴AB =123+1.6≈22.4m .6.某条道路上通行车辆限速60千米/时,道路的AB 段为监测区,监测点P 到AB 的距离PH 为50米(如图).已知点P 在点A 的北偏东45°方向上,且在点B 的北偏西60°方向上,点B 在点A 的北偏东75°方向上,那么车辆通过AB 段的时间在多少秒以内,可认定为超速?(参考数据:3≈1.7,2≈1.4).【答案】车辆通过AB 段的时间在8.1秒以内,可认定为超速 【解析】分析:根据点到直线的距离的性质,构造直角三角形,然后利用解直角三角形的应用,解直角三角形即可.详解:如图,由题意知∠CAB=75°,∠CAP=45°,∠PBD=60°,∴∠PAH=∠CAB–∠CAP=30°,∵∠PHA=∠PHB=90°,PH=50,∴AH=tan PH PAH∠=3=503,∵AC∥BD,∴∠ABD=180°–∠CAB=105°,∴∠PBH=∠ABD–∠PBD=45°,则PH=BH=50,∴AB=AH+BH=503+50,∵60千米/时=503米/秒,∴时间503503+=3+33≈8.1(秒),即车辆通过AB段的时间在8.1秒以内,可认定为超速.点睛:该题考查学生通过构建直角三角形,利用某个度数的三角函数值求出具体边长,即实际路程,并进行判断相关的量。

2020-2021全国中考数学直角三角形的边角关系的综合中考真题分类汇总及答案解析

2020-2021全国中考数学直角三角形的边角关系的综合中考真题分类汇总及答案解析

2020-2021全国中考数学直角三角形的边角关系的综合中考真题分类汇总及答案解析一、直角三角形的边角关系1.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O 于点E.(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)【答案】(1)AE=CE;(2)①;②.【解析】试题分析:(1)连接AE、DE,如图1,根据圆周角定理可得∠ADE=∠ABE=90°,由于AD=DC,根据垂直平分线的性质可得AE=CE;(2)连接AE、ED,如图2,由∠ABE=90°可得AE是⊙O的直径,根据切线的性质可得∠AEF=90°,从而可证到△ADE∽△AEF,然后运用相似三角形的性质可得=AD•AF.①当CF=CD时,可得,从而有EC=AE=CD,在Rt△DEC中运用三角函数可得sin∠CED=,根据圆周角定理可得∠CAB=∠DEC,即可求出sin∠CAB的值;②当CF=aCD(a>0)时,同①即可解决问题.试题解析:(1)AE=CE.理由:连接AE、DE,如图1,∵∠ABC=90°,∴∠ABE=90,∴∠ADE=∠ABE=90°,∵AD=DC,∴AE=CE;(2)连接AE、ED,如图2,∵∠ABE=90°,∴AE是⊙O的直径,∵EF是⊙OO的切线,∴∠AEF=90°,∴∠ADE=∠AEF=90°,又∵∠DAE=∠EAF,∴△ADE∽△AEF,∴,∴=AD•AF .①当CF=CD 时,AD=DC=CF ,AF=3DC ,∴=DC•3DC=,∴AE=DC ,∵EC=AE ,∴EC=DC ,∴sin ∠CAB=sin ∠CED===;②当CF=aCD (a >0)时,sin ∠CAB=.∵CF=aCD ,AD=DC ,∴AF=AD+DC+CF=(a+2)CD ,∴=DC•(a+2)DC=(a+2),∴AE=DC ,∵EC=AE ,∴EC=DC ,∴sin ∠CAB=sin ∠CED==.考点:1.圆的综合题;2.探究型;3.存在型.2.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5AOC ∠=.设OP x =,CPF ∆的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域;(3)当OPE ∆是直角三角形时,求线段OP 的长.【答案】(1)证明见解析;(2)236030050(10)13x x y x x -+=<<;(3)8OP =【解析】 【分析】(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO ∠=∠即可;(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos 5AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去. 【详解】(1)联结OD ,∵OC OD =, ∴OCD ODC ∠=∠, ∵//CD AB , ∴OCD COA ∠=∠, ∴POA QDO ∠=∠. 在AOP ∆和ODQ ∆中,{OP DQPOA QDO OA DO=∠=∠=, ∴AOP ∆≌ODQ ∆, ∴AP OQ =;(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=, ∴4455OH OP x ==,35PH x =, ∴132AOP S AO PH x ∆=⋅=. ∵//CD AB , ∴PFC ∆∽PAO ∆, ∴2210()()AOPy CP x S OP x∆-==, ∴2360300x x y x-+=,当F 与点D 重合时,∵42cos 210165CD OC OCD =⋅∠=⨯⨯=, ∴101016x x =-,解得5013x =, ∴2360300x x y x-+=50(10)13x <<; (3)①当90OPE ∠=o 时,90OPA ∠=o , ∴4cos 1085OP OA AOC =⋅∠=⨯=; ②当90POE ∠=o 时,1010254cos cos 25OC CQ QCO AOC ====∠∠,∴252OP DQ CD CQ CD ==-=-2571622=-=, ∵501013OP <<, ∴72OP =(舍去); ③当90PEO ∠=o 时,∵//CD AB , ∴AOQ DQO ∠=∠, ∵AOP ∆≌ODQ ∆, ∴DQO APO ∠=∠, ∴AOQ APO ∠=∠,∴90AEO AOP ∠=∠=o ,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.3.如图①,抛物线y =ax 2+bx+c 经过点A (﹣2,0)、B (4,0)、C (0,3)三点.(1)试求抛物线的解析式;(2)点P 是y 轴上的一个动点,连接PA ,试求5PA+4PC 的最小值;(3)如图②,若直线l 经过点T (﹣4,0),Q 为直线l 上的动点,当以A 、B 、Q 为顶点所作的直角三角形有且仅有三个时,试求直线l 的解析式.【答案】(1)233384y x x =-++;(2)5PA+4PC 的最小值为18;(3)直线l 的解析式为334y x =+或334y x =--.【解析】 【分析】(1)设出交点式,代入C 点计算即可 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ,易证△CDP ∽△COB ,得到比例式PC PD BC OB =,得到PD=45PC ,所以5PA+4PC =5(PA+45PC )=5(PA+PD ),当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小,利用等面积法求出AE=185,即最小值为18 (3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆, 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,所以只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90°,即∠AQB =90°时,只有一个满足条件的点Q ,∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个;此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ,利用cos ∠QFT 求出QG ,分出情况Q 在x 轴上方和x 轴下方时,分别代入直接l 得到解析式即可 【详解】解:(1)∵抛物线与x 轴交点为A (﹣2,0)、B (4,0) ∴y =a (x+2)(x ﹣4) 把点C (0,3)代入得:﹣8a =3 ∴a =﹣38∴抛物线解析式为y =﹣38(x+2)(x ﹣4)=﹣38x 2+34x+3 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ∴∠CDP =∠COB =90° ∵∠DCP =∠OCB ∴△CDP ∽△COB ∴PC PDBC OB= ∵B (4,0),C (0,3)∴OB =4,OC =3,BC ∴PD =45PC ∴5PA+4PC =5(PA+45PC )=5(PA+PD ) ∴当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小∵A (﹣2,0),OC ⊥AB ,AE ⊥BC ∴S △ABC =12AB•OC =12BC•AE ∴AE =631855AB OC BC ⨯==n ∴5AE =18∴5PA+4PC 的最小值为18.(3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,∴只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90° ∴∠AQB =90°时,只有一个满足条件的点Q∵当Q 在⊙F 上运动时(不与A 、B 重合),∠AQB =90° ∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个 此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ∴∠FQT =90°∵F 为A (﹣2,0)、B (4,0)的中点 ∴F (1,0),FQ =FA =3 ∵T (﹣4,0) ∴TF =5,cos ∠QFT =35FQ TF = ∵Rt △FGQ 中,cos ∠QFT =35FG FQ = ∴FG =35FQ =95∴x Q =1﹣9455=-,QG125== ①若点Q 在x 轴上方,则Q (41255-,) 设直线l 解析式为:y =kx+b∴4041255k b k b -+=⎧⎪⎨-+=⎪⎩ 解得:343k b ⎧=⎪⎨⎪=⎩ ∴直线l :334y x =+ ②若点Q 在x 轴下方,则Q (41255--,) ∴直线l :334y x =--综上所述,直线l的解析式为334y x=+或334y x=--【点睛】本题是二次函数与圆的综合题,同时涉及到三角函数、勾股定理等知识点,综合度比较高,需要很强的综合能力,第三问能够找到满足条件的Q点是关键,同时不要忘记需要分情况讨论4.如图,在平面直角坐标系中,直线DE交x轴于点E(30,0),交y轴于点D(0,40),直线AB:y=13x+5交x轴于点A,交y轴于点B,交直线DE于点P,过点E作EF⊥x轴交直线AB于点F,以EF为一边向右作正方形EFGH.(1)求边EF的长;(2)将正方形EFGH沿射线FB10个单位的速度匀速平移,得到正方形E1F1G1H1,在平移过程中边F1G1始终与y轴垂直,设平移的时间为t秒(t>0).①当点F1移动到点B时,求t的值;②当G1,H1两点中有一点移动到直线DE上时,请直接写出此时正方形E1F1G1H1与△APE 重叠部分的面积.【答案】(1)EF=15;(2)①10;②120;【解析】【分析】(1)根据已知点E(30,0),点D(0,40),求出直线DE的直线解析式y=-43x+40,可求出P点坐标,进而求出F点坐标即可;(2)①易求B(0,5),当点F1移动到点B时,1010=10;②F点移动到F'10t,F垂直x轴方向移动的距离是t,当点H运动到直线DE上时,在Rt△F'NF中,NFNF'=13,EM=NG'=15-F'N=15-3t,在Rt△DMH'中,43MHEM'=,t=4,S=12×(12+454)×11=10238;当点G运动到直线DE上时,在Rt△F'PK中,PKF K'=13,PK=t-3,F'K=3t-9,在Rt△PKG'中,PKKG'=31539tt--+=43,t=7,S=15×(15-7)=120.【详解】(1)设直线DE的直线解析式y=kx+b,将点E(30,0),点D(0,40),∴30040k bb+=⎧⎨=⎩,∴4340kb⎧=-⎪⎨⎪=⎩,∴y=﹣43x+40,直线AB与直线DE的交点P(21,12),由题意知F(30,15),∴EF=15;(2)①易求B(0,5),∴BF=10,∴当点F1移动到点B时,t=1010=10;②当点H 运动到直线DE 上时,F 点移动到F'的距离是10t , 在Rt △F'NF 中,NF NF '=13, ∴FN =t ,F'N =3t , ∵MH'=FN =t ,EM =NG'=15﹣F'N =15﹣3t , 在Rt △DMH'中,43MH EM '=, ∴41533t t =-, ∴t =4,∴EM =3,MH'=4,∴S =1451023(12)11248⨯+⨯=; 当点G 运动到直线DE 上时,F 点移动到F'10, ∵PF =10 ∴PF'10t ﹣10, 在Rt △F'PK 中,13PK F K =',∴PK =t ﹣3,F'K =3t ﹣9, 在Rt △PKG'中,PK KG '=31539t t --+=43, ∴t =7,∴S =15×(15﹣7)=120. 【点睛】本题考查一次函数图象及性质,正方形的性质;掌握待定系数法求函数解析式,利用三角形的正切值求边的关系,利用勾股定理在直角三角形中建立边之间的联系,准确确定阴影部分的面积是解题的关键.5.如图,在正方形ABCD 中,E 是边AB 上的一动点,点F 在边BC 的延长线上,且CF AE =,连接DE ,DF ,EF . FH 平分EFB ∠交BD 于点H .(1)求证:DE DF ⊥; (2)求证:DH DF =:(3)过点H 作HM EF ⊥于点M ,用等式表示线段AB ,HM 与EF 之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析. 【解析】 【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HNBH HN HM ===︒.由22cos 45DFEF DF DH ===︒,得22EF AB HM =-.【详解】(1)证明:∵四边形ABCD 是正方形, ∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒. ∴90EAD FCD ∠=∠=︒. ∵CF AE =。

2020-2021全国各地中考数学分类:直角三角形的边角关系综合题汇编含答案解析

2020-2021全国各地中考数学分类:直角三角形的边角关系综合题汇编含答案解析

2020-2021全国各地中考数学分类:直角三角形的边角关系综合题汇编含答案解析一、直角三角形的边角关系1.如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【答案】6.4米【解析】解:∵底部B点到山脚C点的距离BC为6 3 米,山坡的坡角为30°.∴DC=BC•cos30°=3==米,6392∵CF=1米,∴DC=9+1=10米,∴GE=10米,∵∠AEG=45°,∴AG=EG=10米,在直角三角形BGF中,BG=GF•tan20°=10×0.36=3.6米,∴AB=AG-BG=10-3.6=6.4米,答:树高约为6.4米首先在直角三角形BDC中求得DC的长,然后求得DF的长,进而求得GF的长,然后在直角三角形BGF中即可求得BG的长,从而求得树高2.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:(1)如图1,若k=1,则∠APE的度数为;(2)如图2,若31)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.(3)如图3,若3D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析.【解析】分析:(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE∽△ACD,再判断出∠EFB=90°,即可得出结论;(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△ACD∽△HEA,再判断出∠EFB=90°,即可得出结论;详解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,∴BD=AF,BF=AD.∵AC=BD,CD=AE,∴AF=AC.∵∠FAC=∠C=90°,∴△FAE≌△ACD,∴EF=AD=BF,∠FEA=∠ADC.∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EHD.∵AD∥BF,∴∠EFB=90°.∵EF=BF,∴∠FBE=45°,∴∠APE=45°.(2)(1)中结论不成立,理由如下:如图2,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形,∴BD=AF ,BF=AD .∵AC=3BD ,CD=3AE , ∴3AC CD BD AE==. ∵BD=AF , ∴3AC CD AF AE==. ∵∠FAC=∠C=90°,∴△FAE ∽△ACD , ∴3AC AD BF AF EF EF===,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EMD .∵AD ∥BF ,∴∠EFB=90°. 在Rt △EFB 中,tan ∠FBE=33EF BF =, ∴∠FBE=30°,∴∠APE=30°,(3)(2)中结论成立,如图3,作EH ∥CD ,DH ∥BE ,EH ,DH 相交于H ,连接AH ,∴∠APE=∠ADH ,∠HEC=∠C=90°,四边形EBDH 是平行四边形,∴BE=DH ,EH=BD .∵3BD ,3AE ,∴3AC CD BD AE ==. ∵∠HEA=∠C=90°,∴△ACD ∽△HEA , ∴3AD AC AH EH==,∠ADC=∠HAE . ∵∠CAD+∠ADC=90°,∴∠HAE+∠CAD=90°,∴∠HAD=90°. 在Rt △DAH 中,tan ∠ADH=3AH AD =, ∴∠ADH=30°,∴∠APE=30°.点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,构造全等三角形和相似三角形的判定和性质.3.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5AOC ∠=.设OP x =,CPF ∆的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域;(3)当OPE ∆是直角三角形时,求线段OP 的长.【答案】(1)证明见解析;(2)236030050(10)13x x y x x -+=<<;(3)8OP = 【解析】【分析】(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO ∠=∠即可;(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos 5AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去.【详解】(1)联结OD ,∵OC OD =,∴OCD ODC ∠=∠,∵//CD AB ,∴OCD COA ∠=∠,∴POA QDO ∠=∠.在AOP ∆和ODQ ∆中, {OP DQPOA QDO OA DO=∠=∠=,∴AOP ∆≌ODQ ∆,∴AP OQ =;(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=, ∴4455OH OP x ==,35PH x =, ∴132AOP S AO PH x ∆=⋅=. ∵//CD AB ,∴PFC ∆∽PAO ∆, ∴2210()()AOP yCP x S OP x∆-==, ∴2360300x x y x-+=,当F 与点D 重合时, ∵42cos 210165CD OC OCD =⋅∠=⨯⨯=, ∴101016x x =-,解得5013x =, ∴2360300x x y x-+=50(10)13x <<; (3)①当90OPE ∠=o 时,90OPA ∠=o , ∴4cos 1085OP OA AOC =⋅∠=⨯=;②当90POE∠=o时,1010254cos cos25OCCQQCO AOC====∠∠,∴252OP DQ CD CQ CD==-=-2571622=-=,∵501013OP<<,∴72OP=(舍去);③当90PEO∠=o时,∵//CD AB,∴AOQ DQO∠=∠,∵AOP∆≌ODQ∆,∴DQO APO∠=∠,∴AOQ APO∠=∠,∴90AEO AOP∠=∠=o,此时弦CD不存在,故这种情况不符合题意,舍去;综上,线段OP的长为8.4.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,BC=16cm,AD是斜边BC上的高,垂足为D,BE=1cm.点M从点B出发沿BC方向以1cm/s的速度运动,点N从点E出发,与点M 同时同方向以相同的速度运动,以MN为边在BC的上方作正方形MNGH.点M到达点D 时停止运动,点N到达点C时停止运动.设运动时间为t(s).(1)当t为何值时,点G刚好落在线段AD上?(2)设正方形MNGH与Rt△ABC重叠部分的图形的面积为S,当重叠部分的图形是正方形时,求出S关于t的函数关系式并写出自变量t的取值范围.(3)设正方形MNGH的边NG所在直线与线段AC交于点P,连接DP,当t为何值时,△CPD是等腰三角形?【答案】(1)3;(2);(3)t=9s或t=(15﹣6)s.【解析】试题分析:(1)求出ED的距离即可求出相对应的时间t.(2)先求出t的取值范围,分为H在AB上时,此时BM的距离,进而求出相应的时间.同样当G在AC上时,求出MN的长度,继而算出EN的长度即可求出时间,再通过正方形的面积公式求出正方形的面积.(3)分DP=PC和DC=PC两种情况,分别由EN的长度便可求出t的值.试题解析:∵∠BAC=90°,∠B=60°,BC=16cm∴AB=8cm,BD=4cm,AC=8cm,DC=12cm,AD=4cm.(1)∵当G刚好落在线段AD上时,ED=BD﹣BE=3cm∴t=s=3s.(2)∵当MH没有到达AD时,此时正方形MNGH是边长为1的正方形,令H点在AB 上,则∠HMB=90°,∠B=60°,MH=1∴BM=cm.∴t=s.当MH到达AD时,那么此时的正方形MNGH的边长随着N点的继续运动而增大,令G点在AC上,设MN=xcm,则GH=DH=x,AH=x,∵AD=AH+DH=x+x=x=4,∴x=3.当≤t≤4时,S MNGN=1cm2.当4<t≤6时,S MNGH=(t﹣3)2cm2∴S关于t的函数关系式为:.(3)分两种情况:①∵当DP=PC时,易知此时N点为DC的中点,∴MN=6cm∴EN=3cm+6cm=9cm.∴t=9s故当t=9s的时候,△CPD为等腰三角形;②当DC=PC时,DC=PC=12cm∴NC=6cm∴EN=16cm﹣1cm﹣6cm=(15﹣6)cm∴t=(15﹣6)s故当t=(15﹣6)s时,△CPD为等腰三角形.综上所述,当t=9s或t=(15﹣6)s时,△CPD为等腰三角形.考点:1.双动点问题;2.锐角三角函数定义;3.特殊角的三角函数值;4.正方形的性质;5.由实际问题列函数关系式;6.等腰三角形的性质;7.分类思想的应用.5.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点A 、点B ,且ABO ∆的面积为8.(1)求k 的值;(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.【答案】(1)1k =;(2)4m t =+;(3)32BOCM S =Y .【解析】【分析】(1)先求出A 的坐标,然后利用待定系数法求出k 的值;(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证POD OCE ∆≅∆可得OE PD =,进一步得出m 与t 的函数关系式;(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出QTB PTO ∆≅∆;再证出KPB BPN ∠=∠;设KPB x ∠=︒,通过计算证出PO PM =;再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到OD BO PD MO =,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32.【详解】解:(1)把0x =代入4y kx =+,4y =,∴4BO =,又∵4ABO S ∆=,∴142AO BO ⋅=,4AO =, ∴(4,0)A -, 把4x =-,0y =代入4y kx =+,得044k =-+,解得1k =.故答案为1;(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,∴90PDO CEO ∠=∠=︒,∴90POD OPD ∠+∠=︒,∵线段OP 绕点O 顺时针旋转90°至线段OC ,∴90POC ∠=︒,OP OC =,∴90POD EOC ∠+∠=︒,∴OPD EOC ∠=∠,∴POD OCE ∆≅∆,∴OE PD =,4m t =+.故答案为4m t =+.(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,由(1)知,4AO BO ==,90BOA ∠=︒, ∴ABO ∆为等腰直角三角形,∴45ABO BAO ∠=∠=︒,9045BOT ABO ABO ∠=︒-∠=︒=∠, ∴BT TO =,∵90BTO ∠=︒,∴90TPO TOP ∠+∠=︒,∵PO BM ⊥,∴90BNO ∠=︒,∴BQT TPO ∠=∠,∴QTB PTO ∆≅∆,∴QT TP =,PO BQ =,∴PQT QPT ∠=∠,∵PO PK KB =+,∴QB PK KB =+,QK KP =, ∴KQP KPQ ∠=∠,∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠, ∴KPB BPN ∠=∠,设KPB x ∠=︒,∴BPN x ∠=︒,∵2PMB KPB ∠=∠,∴2PMB x ∠=︒,45POM PAO APO x ∠=∠+∠=︒+︒,9045NMO POM x ∠=︒-∠=︒-︒, ∴45PMO PMB NMO x POM ∠=∠+∠=︒+︒=∠, ∴PO PM =,过点P 作PD x ⊥轴,垂足为点D , ∴22OM OD t ==,9045OPD POD x BMO ∠=︒-∠=︒-︒=∠, tan tan OPD BMO ∠=∠,OD BO PD MO =,442t t t=+, 14t =,22t =-(舍)∴8OM =,由(2)知,48m t OM =+==, ∴CM y P 轴,∵90PNM POC ∠=∠=︒,∴BM OC P ,∴四边形BOCM 是平行四边形,∴4832BOCM S BO OM =⨯=⨯=Y .故答案为32.【点睛】本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.6.已知:如图,AB为⊙O的直径,AC与⊙O相切于点A,连接BC交圆于点D,过点D作⊙O的切线交AC于E.(1)求证:AE=CE(2)如图,在弧BD上任取一点F连接AF,弦GF与AB交于H,与BC交于M,求证:∠FAB+∠FBM=∠EDC.(3)如图,在(2)的条件下,当GH=FH,HM=MF时,tan∠ABC=34,DE=394时,N为圆上一点,连接FN交AB于L,满足∠NFH+∠CAF=∠AHG,求LN的长.【答案】(1)详见解析;(2)详见解析;(3)401313 NL【解析】【分析】(1)由直径所对的圆周角是直角,得∠ADC=90°,由切线长定理得EA=ED,再由等角的余角相等,得到∠C=∠EDC,进而得证结论.(2)由同角的余角相等,得到∠BAD=∠C,再通过等量代换,角的加减进而得证结论.(3)先由条件得到AB=26,设HM=FM=a,GH=HF=2a,BH=43a,再由相交弦定理得到GH•HF=BH•AH,从而求出FH,BH,AH,再由角的关系得到△HFL∽△HAF,从而求出HL,AL,BL,FL,再由相交弦定理得到LN•LF=AL•BL,进而求出LN的长.【详解】解:(1)证明:如图1中,连接AD.∵AB是直径,∴∠ADB=∠ADC=90°,∵EA、ED是⊙O的切线,∴EA=ED,∴∠EAD=∠EDA,∵∠C+∠EAD=90°,∠EDC+∠EDA=90°,∴∠C=∠EDC,∴ED=EC,∴AE=EC.(2)证明:如图2中,连接AD.∵AC是切线,AB是直径,∴∠BAC=∠ADB=90°,∴∠BAD+∠CAD=90°,∠CAD+∠C=90°,∴∠BAD=∠C,∵∠EDC=∠C,∴∠BAD=∠EDC,∵∠DBF=∠DAF,∴∠FBM+∠FAB=∠FBM+∠DAF=∠BAD,∴∠FAB+∠FBM=∠EDC.(3)解:如图3中,由(1)可知,DE=AE=EC,∵DE=394,∴AC=392,∵tan∠ABC=34=ACAB,∴39 32 4AB =,∴AB=26,∵GH=FH,HM=FN,设HM=FM=a,GH=HF=2a,BH=43a,∵GH•HF=BH•AH,∴4a2=43a(26﹣43a),∴a=6,∴FH=12,BH=8,AH=18,∵GH=HF,∴AB⊥GF,∴∠AHG=90°,∵∠NFH+∠CAF=∠AHG,∴∠NFH+∠CAF=90°,∵∠NFH+∠HLF=90°,∴∠HLF=∠CAF,∵AC∥FG,∴∠CAF=∠AFH,∴∠HLF=∠AFH,∵∠FHL=∠AHF,∴△HFL∽△HAF,∴FH2=HL•HA,∴122=HL•18,∴HL=8,∴AL=10,BL=16,FL=∵LN•LF=AL•BL,∴LN=10•16,∴LN【点睛】本题考查了圆的综合问题,涉及到的知识有:切线的性质;切线长定理;圆周角定理;相交弦定理;相似三角形性质与判定等,熟练掌握圆的相关性质是解题关键.7.如图,在正方形ABCD 中,E 是边AB 上的一动点,点F 在边BC 的延长线上,且CF AE =,连接DE ,DF ,EF . FH 平分EFB ∠交BD 于点H .(1)求证:DE DF ⊥;(2)求证:DH DF =:(3)过点H 作HM EF ⊥于点M ,用等式表示线段AB ,HM 与EF 之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析.【解析】【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HN BH HN HM ===︒. 由22cos 45DF EF DF DH ===︒,得22EF AB HM =-. 【详解】(1)证明:∵四边形ABCD 是正方形,∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒.∴90EAD FCD ∠=∠=︒.∵CF AE =。

2020-2021中考数学直角三角形的边角关系综合经典题及详细答案

2020-2021中考数学直角三角形的边角关系综合经典题及详细答案

2020-2021中考数学直角三角形的边角关系综合经典题及详细答案一、直角三角形的边角关系1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40o ,从前脚落地点D 看上嘴尖A 的仰角刚好60o ,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ︒≈︒≈︒≈,,.2 1.41,3 1.73≈≈)【答案】AB 的长约为0.6m . 【解析】 【分析】作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可. 【详解】解:作BF CE ⊥于F ,在Rt BFC ∆中, 3.20BF BC sin BCF ⋅∠≈=,3.85CF BC cos BCF ⋅∠≈=,在Rt ADE ∆E 中,3 1.73tan 3AB DE ADE ===≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣=由勾股定理得,22BH AH 0.6(m)AB =+≈, 答:AB 的长约为0.6m .【点睛】考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.2.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:(1)如图1,若k=1,则∠APE的度数为;(2)如图2,若k=3,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.(3)如图3,若k=3,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析.【解析】分析:(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE∽△ACD,再判断出∠EFB=90°,即可得出结论;(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△ACD∽△HEA,再判断出∠EFB=90°,即可得出结论;详解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,∴BD=AF,BF=AD.∵AC=BD,CD=AE,∴AF=AC.∵∠FAC=∠C=90°, ∴△FAE ≌△ACD ,∴EF=AD=BF ,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°, ∴∠FEA+∠CAD=90°=∠EHD . ∵AD ∥BF , ∴∠EFB=90°. ∵EF=BF , ∴∠FBE=45°, ∴∠APE=45°.(2)(1)中结论不成立,理由如下:如图2,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形, ∴BD=AF ,BF=AD . ∵3BD ,3AE ,∴3AC CDBD AE ==. ∵BD=AF ,∴3AC CDAF AE==. ∵∠FAC=∠C=90°, ∴△FAE ∽△ACD ,∴3AC AD BFAF EF EF ===,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EMD . ∵AD ∥BF , ∴∠EFB=90°.在Rt △EFB 中,tan ∠FBE=33EF BF =, ∴∠FBE=30°, ∴∠APE=30°,(3)(2)中结论成立,如图3,作EH ∥CD ,DH ∥BE ,EH ,DH 相交于H ,连接AH ,∴∠APE=∠ADH ,∠HEC=∠C=90°,四边形EBDH 是平行四边形, ∴BE=DH ,EH=BD . ∵AC=3BD ,CD=3AE ,∴3AC CDBD AE==. ∵∠HEA=∠C=90°, ∴△ACD ∽△HEA ,∴3AD ACAH EH==,∠ADC=∠HAE . ∵∠CAD+∠ADC=90°, ∴∠HAE+∠CAD=90°, ∴∠HAD=90°.在Rt △DAH 中,tan ∠ADH=3AHAD=, ∴∠ADH=30°, ∴∠APE=30°.点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,构造全等三角形和相似三角形的判定和性质.3.如图,等腰△ABC 中,AB=AC ,∠BAC=36°,BC=1,点D 在边AC 上且BD 平分∠ABC ,设CD=x .(1)求证:△ABC ∽△BCD ; (2)求x 的值;(3)求cos36°-cos72°的值.【答案】(1)证明见解析;(2)152-+;(3)75816+.【解析】试题分析:(1)由等腰三角形ABC 中,顶角的度数求出两底角度数,再由BD 为角平分线求出∠DBC 的度数,得到∠DBC=∠A ,再由∠C 为公共角,利用两对角相等的三角形相似得到三角形ABC 与三角形BCD 相似;(2)根据(1)结论得到AD=BD=BC ,根据AD+DC 表示出AC ,由(1)两三角形相似得比例求出x 的值即可;(3)过B 作BE 垂直于AC ,交AC 于点E ,在直角三角形ABE 和直角三角形BCE 中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果. 试题解析:(1)∵等腰△ABC 中,AB=AC ,∠BAC=36°, ∴∠ABC=∠C=72°, ∵BD 平分∠ABC , ∴∠ABD=∠CBD=36°, ∵∠CBD=∠A=36°,∠C=∠C , ∴△ABC ∽△BCD ; (2)∵∠A=∠ABD=36°, ∴AD=BD , ∵BD=BC , ∴AD=BD=CD=1,设CD=x ,则有AB=AC=x+1, ∵△ABC ∽△BCD ,∴AB BC BD CD =,即111x x +=, 整理得:x 2+x-1=0,解得:x 1=15-+,x 2=15--(负值,舍去),则x=15-+; (3)过B 作BE ⊥AC ,交AC 于点E ,∵BD=CD ,∴E 为CD 中点,即DE=CE=154-+, 在Rt △ABE 中,cosA=cos36°=151514151AE AB -+++==-++, 在Rt △BCE 中,cosC=cos72°=151541EC BC -+-+==, 则cos36°-cos72°=51+=-15-+=12. 【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.4.如图,在⊙O 的内接三角形ABC 中,∠ACB =90°,AC =2BC ,过C 作AB 的垂线l 交⊙O 于另一点D ,垂足为E.设P 是上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G. (1)求证:△PAC ∽△PDF ; (2)若AB =5,,求PD 的长;(3)在点P 运动过程中,设=x ,tan ∠AFD =y ,求y 与x 之间的函数关系式.(不要求写出x 的取值范围)【答案】(1)证明见解析;(2);(3).【解析】试题分析:(1)应用圆周角定理证明∠APD =∠FPC ,得到∠APC =∠FPD ,又由∠PAC =∠PDC ,即可证明结论. (2)由AC=2BC ,设,应用勾股定理即可求得BC ,AC 的长,则由AC=2BC 得,由△ACE ∽△ABC 可求得AE ,CE 的长,由可知△APB 是等腰直角三角形,从而可求得PA 的长,由△AEF 是等腰直角三角形求得EF=AE=4,从而求得DF 的长,由(1)△PAC ∽△PDF 得,即可求得PD 的长.(3)连接BP,BD,AD,根据圆的对称性,可得,由角的转换可得,由△AGP∽△DGB可得,由△AGD∽△PGB可得,两式相乘可得结果.试题解析:(1)由APCB内接于圆O,得∠FPC=∠B,又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,∴∠APD=∠FPC.∴∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.又∵∠PAC=∠PDC,∴△PAC∽△PDF.(2)连接BP,设,∵∠ACB=90°,AB=5,∴.∴.∵△ACE∽△ABC,∴,即. ∴.∵AB⊥CD,∴.如图,连接BP,∵,∴△APB是等腰直角三角形. ∴∠PAB=45°,.∴△AEF是等腰直角三角形. ∴EF=AE=4. ∴DF=6.由(1)△PAC∽△PDF得,即.∴PD的长为.(3)如图,连接BP,BD,AD,∵AC=2BC,∴根据圆的对称性,得AD=2DB,即.∵AB⊥CD,BP⊥AE,∴∠ABP=∠AFD.∵,∴.∵△AGP∽△DGB,∴.∵△AGD∽△PGB,∴.∴,即.∵,∴.∴与之间的函数关系式为.考点:1.单动点问题;2.圆周角定理;3.相似三角形的判定和性质;4.勾股定理;5.等腰直角三角形的判定和性质;6.垂径定理;7.锐角三角函数定义;8.由实际问题列函数关系式.5.如图,PB为☉O的切线,B为切点,过B作OP的垂线BA,垂足为C,交☉O于点A,连接PA,AO.并延长AO交☉O于点E,与PB的延长线交于点D.(1)求证:PA是☉O的切线;(2)若=,且OC=4,求PA的长和tan D的值.【答案】(1)证明见解析;(2)PA =3,tan D=.【解析】试题分析: (1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线;(2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值.试题解析:(1)连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)∴∠PBO=∠PAO,PB=PA,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连接BE,∵,且OC=4,∴AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO=,∴AE=2OA=4,OB=OA=2,在Rt△APO中,∵AC⊥OP,∴AC2=OC PC,解得:PC=9,∴OP=PC+OC=13,在Rt△APO中,由勾股定理得:AP==3.易证,所以,解得,则,在中,.考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.解直角三角形.6.如图,湿地景区岸边有三个观景台、、.已知米,米,点位于点的南偏西方向,点位于点的南偏东方向.(1)求的面积;(2)景区规划在线段的中点处修建一个湖心亭,并修建观景栈道.试求、间的距离.(结果精确到米)(参考数据:,,,,,,)【答案】(1)560000(2)565.6 【解析】试题分析:(1)过点作交的延长线于点,,然后根据直角三角形的内角和求出∠CAE ,再根据正弦的性质求出CE 的长,从而得到△ABC 的面积;(2)连接,过点作,垂足为点,则.然后根据中点的性质和余弦值求出BE 、AE 的长,再根据勾股定理求解即可. 试题解析:(1)过点作交的延长线于点,在中,,所以米.所以(平方米). (2)连接,过点作,垂足为点,则.因为是中点,所以米,且为中点,米,所以米.所以米,由勾股定理得,米.答:、间的距离为米.考点:解直角三角形7.在平面直角坐标系中,四边形OABC 是矩形,点()0,0O ,点()3,0A ,点()0,4C,连接OB ,以点A 为中心,顺时针旋转矩形AOCB ,旋转角为()0360αα︒<<︒,得到矩形ADEF ,点,,O C B 的对应点分别为,,D E F .(Ⅰ)如图,当点D 落在对角线OB 上时,求点D 的坐标;(Ⅱ)在(Ⅰ)的情况下,AB 与DE 交于点H .①求证BDE DBA ∆≅∆;②求点H 的坐标.(Ⅲ)α为何值时,FB FA =.(直接写出结果即可).【答案】(Ⅰ)点D 的坐标为5472(,)2525;(Ⅱ)①证明见解析;②点H 的坐标为(3,258);(Ⅲ)60α=︒或300︒.【解析】【分析】 (Ⅰ) 过A D 、分别作,AM OB DN OA ⊥⊥,根据点A 、点C 的坐标可得出OA 、OC 的长,根据矩形的性质可得AB 、OB 的长,在Rt △OAM 中,利用∠BOA 的余弦求出OM 的长,由旋转的性质可得OA=AD ,利用等腰三角形的性质可得OD=2OM ,在Rt △ODN 中,利用∠BOA 的正弦和余弦可求出DN 和ON 的长,即可得答案;(Ⅱ)①由等腰三角形性质可得∠DOA=∠ODA ,根据锐角互余的关系可得ABD BDE ∠∠=,利用SAS 即可证明△DBA ≌△BDE ;②根据△DBA ≌△BDE 可得∠BEH=∠DAH ,BE=AD ,即可证明△BHE ≌△DHA ,可得DH=BH ,设AH=x ,在Rt △ADH 中,利用勾股定理求出x 的值即可得答案;(Ⅲ)如图,过F 作FO ⊥AB ,由性质性质可得∠BAF=α,分别讨论0<α≤180°时和180°<α<360°时两种情况,根据FB=FA 可得OA=OB ,利用勾股定理求出FO 的长,由余弦的定义即可求出∠BAF 的度数.【详解】(Ⅰ)∵点()30A ,,点()04C ,, ∴3,4OA OC ==.∵四边形OABC 是矩形,∴AB=OC=4,∵矩形DAFE 是由矩形AOBC 旋转得到的∴3AD AO ==.在Rt OAB ∆中,225OB OA AB +=,过A D 、分别作B,DN OA AM O ⊥⊥在Rt ΔOAM 中,OM OA 3cos BOA OA OB 5∠===, ∴9OM 5= ∵AD=OA ,AM ⊥OB ,∴18OD 2OM 5==. 在Rt ΔODN 中:DN 4sin BOA OD 5∠==,cos ∠BOA=ON OD =35, ∴72DN 25=,54ON 25=. ∴点D 的坐标为5472,2525⎛⎫⎪⎝⎭.(Ⅱ)①∵矩形DAFE 是由矩形AOBC 旋转得到的,∴OA AD 3,ADE 90,DE AB 4∠===︒==.∴OD AD =.∴DOA ODA ∠∠=.又∵DOA OBA 90∠∠+=︒,BDH ADO 90∠∠+=︒∴ABD BDE ∠∠=. 又∵BD BD =, ∴ΔBDE ΔDBA ≅.②由ΔBDE ΔDBA ≅,得BEH DAH ∠∠=,BE AD 3==,又∵BHE DHA ∠∠=,∴ΔBHE ΔDHA ≅.∴DH=BH ,设AH x =,则DH BH 4x ==-,在Rt ΔADH 中,222AH AD DH =+,即()222x 34x =+-,得25x 8=, ∴25AH 8=.∴点H 的坐标为253,8⎛⎫ ⎪⎝⎭. (Ⅲ)如图,过F 作FO ⊥AB ,当0<α≤180°时,∵点B 与点F 是对应点,A 为旋转中心,∴∠BAF 为旋转角,即∠BAF=α,AB=AF=4,∵FA=FB ,FO ⊥AB ,∴OA=12AB=2, ∴cos ∠BAF=OA AF =12, ∴∠BAF=60°,即α=60°,当180°<α<360°时, 同理解得:∠BAF′=60°,∴旋转角α=360°-60°=300°.综上所述:α60=︒或300︒.【点睛】本题考查矩形的性质、旋转变换、全等三角形的判定与性质、锐角三角函数的定义等知识,正确找出对应边与旋转角并熟记特殊角的三角函数值是解题关键.8.水库大坝截面的迎水坡坡比(DE 与AE 的长度之比)为1:0.6,背水坡坡比为1:2,大坝高DE=30米,坝顶宽CD=10米,求大坝的截面的周长和面积.【答案】故大坝的截面的周长是(345)米,面积是1470平方米.【解析】试题分析:先根据两个坡比求出AE 和BF 的长,然后利用勾股定理求出AD 和BC ,再由大坝的截面的周长=DC+AD+AE+EF+BF+BC ,梯形的面积公式可得出答案.试题解析:∵迎水坡坡比(DE 与AE 的长度之比)为1:0.6,DE=30m ,∴AE=18米,在RT △ADE 中,AD=22DE AE +=634米∵背水坡坡比为1:2, ∴BF=60米,在RT △BCF 中,BC=22CF BF +=305米,∴周长=DC+AD+AE+EF+BF+BC=634+10+305+88=(634+305+98)米,面积=(10+18+10+60)×30÷2=1470(平方米).故大坝的截面的周长是(634+305+98)米,面积是1470平方米.9.如图,在⊙O 的内接三角形ABC 中,∠ACB =90°,AC =2BC ,过C 作AB 的垂线l 交⊙O 于另一点D ,垂足为E .设P 是»AC 上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G .(1)求证:△PAC ∽△PDF ;(2)若AB =5,¼¼AP BP=,求PD 的长.【答案】(1)证明见解析;(2310 【解析】【分析】 (1)根据AB ⊥CD ,AB 是⊙O 的直径,得到¶¶ADAC =,∠ACD =∠B ,由∠FPC =∠B ,得到∠ACD =∠FPC ,可得结论;(2)连接OP ,由¶¶APBP =,得到OP ⊥AB ,∠OPG =∠PDC ,根据AB 是⊙O 的直径,得到∠ACB =90°,由于AC =2BC ,于是得到tan ∠CAB =tan ∠DCB =BC AC,得到12CE BE AE CE ==,求得AE =4BE ,通过△OPG ∽△EDG ,得到OG OP GE ED=,然后根据勾股定理即可得到结果.【详解】(1)证明:连接AD ,∵AB ⊥CD ,AB 是⊙O 的直径,∴¶¶AD AC=,∴∠ACD=∠B=∠ADC,∵∠FPC=∠B,∴∠ACD=∠FPC,∴∠APC=∠ACF,∵∠FAC=∠CAF,∴△PAC∽△CAF;(2)连接OP,则OA=OB=OP=15 22 AB=,∵¶¶AP BP=,∴OP⊥AB,∠OPG=∠PDC,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=2BC,∴tan∠CAB=tan∠DCB=BCAC,∴12 CE BEAE CE==,∴AE=4BE,∵AE+BE=AB=5,∴AE=4,BE=1,CE=2,∴OE=OB﹣BE=2.5﹣1=1.5,∵∠OPG=∠PDC,∠OGP=∠DGE,∴△OPG∽△EDG,∴OG OP GE ED=,∴2.52 OE GE OPGE CE-==,∴GE=23,OG=56,∴PG5 6 =,GD23 =,∴PD=PG+GD【点睛】本题考查了相似三角形的判定和性质,垂径定理,勾股定理,圆周角定理,证得△OPG ∽△EDG 是解题的关键.10.如图①,抛物线y =ax 2+bx+c 经过点A (﹣2,0)、B (4,0)、C (0,3)三点.(1)试求抛物线的解析式;(2)点P 是y 轴上的一个动点,连接PA ,试求5PA+4PC 的最小值;(3)如图②,若直线l 经过点T (﹣4,0),Q 为直线l 上的动点,当以A 、B 、Q 为顶点所作的直角三角形有且仅有三个时,试求直线l 的解析式.【答案】(1)233384y x x =-++;(2)5PA+4PC 的最小值为18;(3)直线l 的解析式为334y x =+或334y x =--. 【解析】【分析】(1)设出交点式,代入C 点计算即可 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ,易证△CDP ∽△COB ,得到比例式PC PD BC OB =,得到PD=45PC ,所以5PA+4PC =5(PA+45PC )=5(PA+PD ),当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小,利用等面积法求出AE=185,即最小值为18 (3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆, 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,所以只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90°,即∠AQB =90°时,只有一个满足条件的点Q ,∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个;此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ,利用cos ∠QFT 求出QG ,分出情况Q 在x 轴上方和x 轴下方时,分别代入直接l 得到解析式即可【详解】解:(1)∵抛物线与x 轴交点为A (﹣2,0)、B (4,0)∴y =a (x+2)(x ﹣4)把点C (0,3)代入得:﹣8a =3∴a =﹣38∴抛物线解析式为y =﹣38(x+2)(x ﹣4)=﹣38x 2+34x+3 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D∴∠CDP =∠COB =90°∵∠DCP =∠OCB∴△CDP ∽△COB ∴PC PD BC OB= ∵B (4,0),C (0,3)∴OB =4,OC =3,BC∴PD =45PC ∴5PA+4PC =5(PA+45PC )=5(PA+PD ) ∴当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小∵A (﹣2,0),OC ⊥AB ,AE ⊥BC∴S △ABC =12AB•OC =12BC•AE ∴AE =631855AB OC BC ⨯==n ∴5AE =18∴5PA+4PC 的最小值为18.(3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,∴只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90° ∴∠AQB =90°时,只有一个满足条件的点Q∵当Q 在⊙F 上运动时(不与A 、B 重合),∠AQB =90°∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个此时,连接FQ ,过点Q 作QG ⊥x 轴于点G∴∠FQT =90°∵F 为A (﹣2,0)、B (4,0)的中点∴F (1,0),FQ =FA =3∵T (﹣4,0)∴TF =5,cos ∠QFT =35FQ TF = ∵Rt △FGQ 中,cos ∠QFT =35FG FQ =∴FG =35FQ =95∴x Q =1﹣9455=-,QG =2222912FQ 355FG ⎛⎫-=-= ⎪⎝⎭①若点Q 在x 轴上方,则Q (41255-,)设直线l 解析式为:y =kx+b ∴4041255k b k b -+=⎧⎪⎨-+=⎪⎩ 解得:343k b ⎧=⎪⎨⎪=⎩ ∴直线l :334y x =+ ②若点Q 在x 轴下方,则Q (41255--,) ∴直线l :334y x =-- 综上所述,直线l 的解析式为334y x =+或334y x =--【点睛】本题是二次函数与圆的综合题,同时涉及到三角函数、勾股定理等知识点,综合度比较高,需要很强的综合能力,第三问能够找到满足条件的Q点是关键,同时不要忘记需要分情况讨论11.已知:如图,直线y=-x+12分别交x轴、y轴于A、B点,将△AOB折叠,使A点恰好落在OB的中点C处,折痕为DE.(1)求AE的长及sin∠BEC的值;(2)求△CDE的面积.【答案】(1)2,sin∠BEC=35;(2)754【解析】【分析】(1)如图,作CF⊥BE于F点,由函数解析式可得点B,点A坐标,继而可得∠A=∠B=45°,再根据中点的定义以及等腰直角三角形的性质可得OC=BC=6,2,设AE=CE=x,则222-x,在Rt△CEF中,利用勾股定理求出x 的值即可求得答案;(2)如图,过点E作EM⊥OA于点M,根据三角形面积公式则可得S△CDE=S△AED=24AD×AE,设AD=y,则CD=y,OD=12-y,在Rt△OCD中,利用勾股定理求出y,继而可求得答案.【详解】(1)如图,作CF⊥BE于F点,由函数解析式可得点B(0,12),点A(12,0),∠A=∠B=45°,又∵点C是OB中点,∴OC=BC=6,CF=BF=32,设AE=CE=x,则EF=AB-BF-AE=122-32-x=92-x,在Rt△CEF中,CE2=CF2+EF2,即x2=(92-x)2+(32)2,解得:x=52,故可得sin∠BEC=35CFCE,AE=52;(2)如图,过点E作EM⊥OA于点M,则S△CDE=S△AED=12AD•EM=12AD×AEsin∠EAM=12AD•AE×sin45°=24AD×AE,设AD=y,则CD=y,OD=12-y,在Rt△OCD中,OC2+OD2=CD2,即62+(12-y)2=y2,解得:y=152,即AD=152,故S△CDE=S△AED=24AD×AE=754.【点睛】本题考查了解直角三角形的应用,涉及了勾股定理、折叠的性质、三角形面积、一次函数的性质等知识,综合性较强,正确添加辅助线、熟练应用相关知识是解题的关键.12.如图,在自动向西的公路l上有一检查站A,在观测点B的南偏西53°方向,检查站一工作人员家住在与观测点B的距离为7132km,位于点B南偏西76°方向的点C处,求工作人员家到检查站的距离AC.(参考数据:sin76°≈2425,cos76°≈625,tan 76°≈4,sin53°≈35,tan53°≈43)【答案】工作人员家到检查站的距离AC的长约为92 km.【解析】分析:过点B作BH⊥l交l于点H,解Rt△BCH,得出CH=BC•sin∠CBH=274,BH=BC•cos∠CBH=2716.再解Rt△BAH中,求出AH=BH•tan∠ABH=94,那么根据AC=CH-AH计算即可.详解:如图,过点B作BH⊥l交l于点H,∵在Rt△BCH中,∠BHC=90°,∠CBH=76°,BC=7132km,∴CH=BC•sin∠CBH≈225242732254⨯=,BH=BC•cos∠CBH≈225627 322516⨯=.∵在Rt△BAH中,∠BHA=90°,∠ABH=53°,BH=2716,∴AH=BH•tan∠ABH≈27491634⨯=,∴AC=CH﹣AH=2799442-=(km).答:工作人员家到检查站的距离AC的长约为92 km.点睛:本题考查的是解直角三角形的应用-方向角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.。

2020-2021中考数学直角三角形的边角关系(大题培优 易错 难题)含答案

2020-2021中考数学直角三角形的边角关系(大题培优 易错 难题)含答案

2020-2021中考数学直角三角形的边角关系(大题培优易错难题)含答案一、直角三角形的边角关系1.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,【答案】(1)∠BPQ=30°;(2)该电线杆PQ的高度约为9m.【解析】试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.试题解析:延长PQ交直线AB于点E,(1)∠BPQ=90°-60°=30°;(2)设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°∴∠BPE=30°在直角△BPE中,33米,∵AB=AE-BE=6米,则3,解得:3则BE=(33+3)米.在直角△BEQ中,QE=33BE=33(33+3)=(3+3)米.∴PQ=PE-QE=9+33-(3+3)=6+23≈9(米).答:电线杆PQ的高度约9米.考点:解直角三角形的应用-仰角俯角问题.2.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.(1)求证:△ABC∽△BCD;(2)求x的值;(3)求cos36°-cos72°的值.【答案】(1)证明见解析;(2)152-+;(3)5816.【解析】试题分析:(1)由等腰三角形ABC中,顶角的度数求出两底角度数,再由BD为角平分线求出∠DBC的度数,得到∠DBC=∠A,再由∠C为公共角,利用两对角相等的三角形相似得到三角形ABC与三角形BCD相似;(2)根据(1)结论得到AD=BD=BC,根据AD+DC表示出AC,由(1)两三角形相似得比例求出x的值即可;(3)过B作BE垂直于AC,交AC于点E,在直角三角形ABE和直角三角形BCE中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果.试题解析:(1)∵等腰△ABC中,AB=AC,∠BAC=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=36°,∵∠CBD=∠A=36°,∠C=∠C,∴△ABC∽△BCD;(2)∵∠A=∠ABD=36°,∴AD=BD,∵BD=BC,∴AD=BD=CD=1, 设CD=x,则有AB=AC=x+1,∵△ABC ∽△BCD ,∴AB BC BD CD =,即111x x+=, 整理得:x 2+x-1=0, 解得:x 1=15-+,x 2=15--(负值,舍去), 则x=15-+; (3)过B 作BE ⊥AC ,交AC 于点E ,∵BD=CD ,∴E 为CD 中点,即DE=CE=154-+, 在Rt △ABE 中,cosA=cos36°=1515144151AE AB -++==-++, 在Rt △BCE 中,cosC=cos72°=151541EC BC -+-+==, 则cos36°-cos72°=51+=15-+=12. 【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.3.如图,AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于切点为G ,连接AG 交CD 于K .(1)求证:KE=GE ;(2)若KG 2=KD•GE ,试判断AC 与EF 的位置关系,并说明理由;(3)在(2)的条件下,若sinE=,AK=,求FG的长.【答案】(1)证明见解析;(2)AC∥EF,证明见解析;(3)FG= .【解析】试题分析:(1)如图1,连接OG.根据切线性质及CD⊥AB,可以推出∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE;(2)AC与EF平行,理由为:如图2所示,连接GD,由∠KGE=∠GKE,及KG2=KD•GE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF;(3)如图3所示,连接OG,OC,先求出KE=GE,再求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度.试题解析:(1)如图1,连接OG.∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.(2)AC∥EF,理由为连接GD,如图2所示.∵KG2=KD•GE,即,∴,又∵∠KGE=∠GKE,∴△GKD∽△EGK,∴∠E=∠AGD,又∵∠C=∠AGD,∴∠E=∠C,∴AC∥EF;(3)连接OG,OC,如图3所示,∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.∵sinE=sin∠ACH=,设AH=3t,则AC=5t,CH=4t,∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK-CH=t.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即(3t)2+t2=(2)2,解得t=.设⊙O半径为r,在Rt△OCH中,OC=r,OH=r-3t,CH=4t,由勾股定理得:OH2+CH2=OC2,即(r-3t)2+(4t)2=r2,解得r= t=.∵EF为切线,∴△OGF为直角三角形,在Rt△OGF中,OG=r=,tan∠OFG=tan∠CAH=,∴FG=【点睛】此题考查了切线的性质,相似三角形的判定与性质,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,以及等腰三角形的判定,熟练掌握定理及性质是解本题的关键.4.已知:△ABC内接于⊙O,D是弧BC上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB 于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=,BN=,tan∠ABC=,求BF的长.【答案】(1)证明见解析;(2)证明见解析;(3)24.【解析】试题分析:(1)易证OH为△ABC的中位线,可得AC=2OH;(2)∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,又∵∠PAC =∠BCD,可证∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,连接OB,易证∠GBN=∠ABC,所以BG=BQ.在Rt△BNQ中,根据tan∠ABC=,可求得NQ、BQ的长.利用圆周角定理可求得IC和AI的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长度,最后利用tan∠OED=即可求得RG的长度,最后由垂径定理可求得BF的长度.试题解析:(1)在⊙O中,∵OD⊥BC,∴BH=HC,∵点O是AB的中点,∴AC=2OH;(2)在⊙O中,∵OD⊥BC,∴弧BD=弧CD,∴∠PAC=∠BCD,∵∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,∴∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB 与OD相交于点M,连接OB,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴2∠AND=180°,∴∠AND=90°,∵tan∠ABC=,∴,∴,∴,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵∠ACI=90°,tan∠AIC=tan∠ABC=,∴,∴IC=,∴由勾股定理可求得:AI=25,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=,BH=BQ+QH=,∵OB2=BH2+OH2,∴,解得:,当QH=时,∴QD=,∴ND=,∴MN=,MD=15,∵,∴QH=不符合题意,舍去,当QH=时,∴QD=∴ND=NQ+QD=,ED=,∴GD=GN+ND=,∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴ BR=RG+BG=12,∴BF=2BR=24.考点:1圆;2相似三角形;3三角函数;4直角三角形.5.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.(1)AE的长为 cm;(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;(3)求点D′到BC的距离.【答案】(1);(2)12cm;(3)cm.【解析】试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案:∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.∵∠ACD=30°,∠DAC=90°,AC=12cm,∴(cm).∵点E为CD边上的中点,∴AE=DC=cm.(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC 于点P,根据轴对称的性质,此时DP+EP值为最小,进而得出答案.(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.试题解析:解:(1).(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,∵E为CD边上的中点,∴DE=AE.∴△ADE为等边三角形.∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°.∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′.∴点E,D′关于直线AC对称.如答图1,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′.∵△ADE是等边三角形,AD=AE=,∴,即DP+EP最小值为12cm.(3)如答图2,连接CD′,BD′,过点D′作D′G⊥BC于点G,∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,∵AE=EC,∴AD′=CD′=.在△ABD′和△CBD′中,∵,∴△ABD′≌△CBD′(SSS).∴∠D′BG=∠D′BC=45°.∴D′G=GB.设D′G长为xcm,则CG长为cm,在Rt△GD′C中,由勾股定理得,解得:(不合题意舍去).∴点D′到BC边的距离为cm.考点:1.翻折和单动点问题;2.勾股定理;3.直角三角形斜边上的中线性质;4.等边三角形三角形的判定和性质;5.轴对称的应用(最短线路问题);6.全等三角形的判定和性质;7.方程思想的应用.6.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,BC=16cm,AD是斜边BC上的高,垂足为D,BE=1cm.点M从点B出发沿BC方向以1cm/s的速度运动,点N从点E出发,与点M 同时同方向以相同的速度运动,以MN为边在BC的上方作正方形MNGH.点M到达点D 时停止运动,点N到达点C时停止运动.设运动时间为t(s).(1)当t为何值时,点G刚好落在线段AD上?(2)设正方形MNGH与Rt△ABC重叠部分的图形的面积为S,当重叠部分的图形是正方形时,求出S关于t的函数关系式并写出自变量t的取值范围.(3)设正方形MNGH的边NG所在直线与线段AC交于点P,连接DP,当t为何值时,△CPD是等腰三角形?【答案】(1)3;(2);(3)t=9s或t=(15﹣6)s.【解析】试题分析:(1)求出ED的距离即可求出相对应的时间t.(2)先求出t的取值范围,分为H在AB上时,此时BM的距离,进而求出相应的时间.同样当G在AC上时,求出MN的长度,继而算出EN的长度即可求出时间,再通过正方形的面积公式求出正方形的面积.(3)分DP=PC和DC=PC两种情况,分别由EN的长度便可求出t的值.试题解析:∵∠BAC=90°,∠B=60°,BC=16cm∴AB=8cm,BD=4cm,AC=8cm,DC=12cm,AD=4cm.(1)∵当G刚好落在线段AD上时,ED=BD﹣BE=3cm∴t=s=3s.(2)∵当MH没有到达AD时,此时正方形MNGH是边长为1的正方形,令H点在AB 上,则∠HMB=90°,∠B=60°,MH=1∴BM=cm.∴t=s.当MH到达AD时,那么此时的正方形MNGH的边长随着N点的继续运动而增大,令G点在AC上,设MN=xcm,则GH=DH=x,AH=x,∵AD=AH+DH=x+x=x=4,∴x=3.当≤t≤4时,S MNGN=1cm2.当4<t≤6时,S MNGH=(t﹣3)2cm2∴S 关于t 的函数关系式为:.(3)分两种情况: ①∵当DP=PC 时,易知此时N 点为DC 的中点,∴MN=6cm∴EN=3cm+6cm=9cm.∴t=9s故当t=9s 的时候,△CPD 为等腰三角形;②当DC=PC 时,DC=PC=12cm∴NC=6cm∴EN=16cm ﹣1cm ﹣6cm=(15﹣6)cm∴t=(15﹣6)s故当t=(15﹣6)s 时,△CPD 为等腰三角形.综上所述,当t=9s 或t=(15﹣6)s 时,△CPD 为等腰三角形. 考点:1.双动点问题;2.锐角三角函数定义;3.特殊角的三角函数值;4.正方形的性质;5.由实际问题列函数关系式;6.等腰三角形的性质;7.分类思想的应用.7.许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A ,B 两点之间的距离他沿着与直线AB 平行的道路EF 行走,走到点C 处,测得∠ACF=45°,再向前走300米到点D 处,测得∠BDF=60°.若直线AB 与EF 之间的距离为200米,求A ,B 两点之间的距离(结果保留一位小数)【答案】215.6米.【解析】【分析】过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点,根据Rt △ACM 和三角函数tan BDF ∠求出CM 、DN ,然后根据MN MD DN AB =+=即可求出A 、B 两点间的距离.【详解】解:过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点在Rt △ACM 中,∵45ACF ∠=︒,∴AM=CM=200米,又∵CD=300米,所以100MD CD CM =-=米,在Rt △BDN 中,∠BDF=60°,BN=200米∴115.6tan 60BN DN =≈o 米, ∴215.6MN MD DN AB =+=≈米即A ,B 两点之间的距离约为215.6米.【点睛】本题主要考查三角函数,正确做辅助线是解题的关键.8.在正方形ABCD 中,AC 是一条对角线,点E 是边BC 上的一点(不与点C 重合),连接AE ,将△ABE 沿BC 方向平移,使点B 与点C 重合,得到△DCF ,过点E 作EG ⊥AC 于点G ,连接DG ,FG .(1)如图,①依题意补全图;②判断线段FG 与DG 之间的数量关系与位置关系,并证明;(2)已知正方形的边长为6,当∠AGD =60°时,求BE 的长.【答案】(1)①见解析,②FG =DG ,FG ⊥DG ,见解析;(2)3BE =【解析】【分析】(1)①补全图形即可,②连接BG ,由SAS 证明△BEG ≌△GCF 得出BG =GF ,由正方形的对称性质得出BG =DG ,得出FG =DG ,在证出∠DGF =90°,得出FG ⊥DG 即可,(2)过点D 作DH ⊥AC ,交AC 于点H .由等腰直角三角形的性质得出DH =AH =2FG =DG =2GH =6,得出DF 2DG =3Rt △DCF 中,由勾股定理得出CF =3得出结果.【详解】解:(1)①补全图形如图1所示,②FG =DG ,FG ⊥DG ,理由如下,连接BG ,如图2所示,∵四边形ABCD 是正方形,∴∠ACB =45°,∵EG ⊥AC ,∴∠EGC =90°,∴△CEG 是等腰直角三角形,EG =GC ,∴∠GEC=∠GCE=45°,∴∠BEG=∠GCF=135°,由平移的性质得:BE=CF,在△BEG和△GCF中,BE CFBEG GCFEG CG=⎧⎪∠=∠⎨⎪=⎩,∴△BEG≌△GCF(SAS),∴BG=GF,∵G在正方形ABCD对角线上,∴BG=DG,∴FG=DG,∵∠CGF=∠BGE,∠BGE+∠AGB=90°,∴∠CGF+∠AGB=90°,∴∠AGD+∠CGF=90°,∴∠DGF=90°,∴FG⊥DG.(2)过点D作DH⊥AC,交AC于点H.如图3所示,在Rt△ADG中,∵∠DAC=45°,∴DH=AH=2在Rt△DHG中,∵∠AGD=60°,∴GH33236,∴DG=2GH=6,∴DF2DG=3在Rt△DCF中,CF()22436-3∴BE=CF=3.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.9.如图,AB是⊙O的直径,PA、PC与⊙O分别相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E.(1)求证:∠EPD=∠EDO;(2)若PC=3,tan∠PDA=34,求OE的长.【答案】(1)见解析;(25.【解析】【分析】(1)由切线的性质即可得证.(2)连接OC,利用tan∠PDA=34,可求出CD=2,进而求得OC=32,再证明△OED∽△DEP,根据相似三角形的性质和勾股定理即可求出OE的长.【详解】(1)证明:∵PA,PC与⊙O分别相切于点A,C,∴∠APO=∠CPO, PA⊥AO,∵DE⊥PO,∴∠PAO=∠E=90°,∵∠AOP=∠EOD,∴∠APO=∠EDO,∴∠EPD=∠EDO.(2)连接OC,∴PA=PC=3,∵tan∠PDA=34,∴在Rt△PAD中,AD=4,PD=22PA AD+=5,∴CD=PD-PC=5-3=2,∵tan∠PDA=34,∴在Rt△OCD中,OC=32,OD=22OC CD+=52,∵∠EPD=∠ODE,∠OCP=∠E=90°,∴△OED∽△DEP,∴PDDO =PEDE=DEOE=2,∴DE=2OE,在Rt△OED中,OE2+DE2=OD2,即5OE2=252⎛⎫⎪⎝⎭=254,∴OE=52.【点睛】本题考查了切线的性质;锐角三角函数;勾股定理和相似三角形的判定与性质,充分利用tan∠PDA=34,得线段的长是解题关键.10.如图所示的是一个地球仪及它的平面图,在平面图中,点A、B分别为地球仪的南、北极点,直线AB与放置地球仪的平面交于点D,所夹的角度约为67°,半径OC所在的直线与放置它的平面垂直,垂足为点E,DE=15cm,AD=14cm.(1)求半径OA 的长(结果精确到0.1cm ,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)(2)求扇形BOC 的面积(π取3.14,结果精确到1cm )【答案】(1)半径OA 的长约为24.5cm ;(2)扇形BOC 的面积约为2822cm .【解析】【分析】(1)在Rt △ODE 中,DE=15,∠ODE=67°,根据∠ODE 的余弦值,即可求得OD 长,减去AD 即为OA .(2)用扇形面积公式即可求得.【详解】(1)在Rt △ODE 中,15cm DE =,67ODE ∠=︒. ∵cos DE ODE DO ∠=, ∴150.39OD ≈, ∴()384614245cm OA OD AD =-≈-≈.., 答:半径OA 的长约为24.5cm .(2)∵67ODE ∠=︒,∴157BOC ∠=︒, ∴2360BOC n r S π=扇形 2157 3.1424.52360⨯⨯≈ ()2822cm ≈.答:扇形BOC 的面积约为2822cm .【点睛】此题主要考查了解直角三角形的应用,本题把实际问题转化成数学问题,利用三角函数中余弦定义来解题是解题关键.11.如图,正方形OABC 的顶点O 与原点重合,点A ,C 分别在x 轴与y 轴的正半轴上,点A 的坐标为(4,0),点D 在边AB 上,且tan ∠AOD =12,点E 是射线OB 上一动点,EF ⊥x 轴于点F ,交射线OD 于点G ,过点G 作GH ∥x 轴交AE 于点H .(1)求B ,D 两点的坐标;(2)当点E 在线段OB 上运动时,求∠HDA 的大小; (3)以点G 为圆心,GH 的长为半径画⊙G .是否存在点E 使⊙G 与正方形OABC 的对角线所在的直线相切?若不存在,请说明理由;若存在,请求出所有符合条件的点E 的坐标.【答案】(1)B (4,4),D (4,2);(2)45°;(3)存在,符合条件的点为(8﹣2,8﹣2)或(2,2)或42164216++⎝⎭或16421642,77⎛-- ⎝⎭,理由见解析 【解析】【分析】(1)由正方形性质知AB=OA=4,∠OAB=90°,据此得B (4,4),再由tan ∠AOD= 12得AD=12OA=2,据此可得点D 坐标; (2)由1tan 2GF GOF OF ∠==知GF=12OF ,再由∠AOB=∠ABO=45°知OF=EF ,即GF=12EF ,根据GH ∥x 轴知H 为AE 的中点,结合D 为AB 的中点知DH 是△ABE 的中位线,即HD ∥BE ,据此可得答案;(3)分⊙G 与对角线OB 和对角线AC 相切两种情况,设PG=x ,结合题意建立关于x 的方程求解可得.【详解】解:(1)∵A (4,0),∴OA =4,∵四边形OABC 为正方形,∴AB =OA =4,∠OAB =90°,∴B (4,4),在Rt △OAD 中,∠OAD =90°,∵tan ∠AOD =12, ∴AD =12OA =12×4=2, ∴D (4,2);(2)如图1,在Rt△OFG中,∠OFG=90°∴tan∠GOF=GFOF =12,即GF=12OF,∵四边形OABC为正方形,∴∠AOB=∠ABO=45°,∴OF=EF,∴GF=12EF,∴G为EF的中点,∵GH∥x轴交AE于H,∴H为AE的中点,∵B(4,4),D(4,2),∴D为AB的中点,∴DH是△ABE的中位线,∴HD∥BE,∴∠HDA=∠ABO=45°.(3)①若⊙G与对角线OB相切,如图2,当点E在线段OB上时,过点G作GP⊥OB于点P,设PG=x,可得PE=x,EG=FG2x,OF=EF=2x,∵OA=4,∴AF=4﹣2,∵G为EF的中点,H为AE的中点,∴GH为△AFE的中位线,∴GH=12AF=12×(4﹣22x)=2﹣2x,则x=2﹣2x,解得:x=22﹣2,∴E(8﹣42,8﹣42),如图3,当点E在线段OB的延长线上时,x=2x﹣2,解得:x=2+2,∴E(8+42,8+42);②若⊙G与对角线AC相切,如图4,当点E在线段BM上时,对角线AC,OB相交于点M,过点G作GP⊥OB于点P,设PG=x,可得PE=x,EG=FG2,OF=EF=2x,∵OA=4,∴AF=4﹣2,∵G为EF的中点,H为AE的中点,∴GH为△AFE的中位线,∴GH =12AF =12×(4﹣22x )=2﹣2x , 过点G 作GQ ⊥AC 于点Q ,则GQ =PM =3x ﹣22, ∴3x ﹣22=2﹣2x , ∴4227x +=, ∴42164216,77E ⎛⎫++ ⎪ ⎪⎝⎭; 如图5,当点E 在线段OM 上时,GQ =PM =22﹣3x ,则22﹣3x =2﹣2x , 解得4227x -=, ∴16421642,77E ⎛⎫-- ⎪ ⎪⎝⎭; 如图6,当点E 在线段OB 的延长线上时,3x ﹣22x ﹣2,解得:4227x =(舍去); 综上所述,符合条件的点为(8﹣2,8﹣2)或(2,2)或⎝⎭或⎝⎭.【点睛】本题是圆的综合问题,解题的关键是掌握正方形和直角三角形的性质、正切函数的定义、三角形中位线定理及分类讨论思想的运用.12.3米/秒 =65.88千米/小时>60千米/小时.∴此车超过限制速度.…4分。

2020-2021全国中考数学直角三角形的边角关系的综合中考真题汇总含答案解析

2020-2021全国中考数学直角三角形的边角关系的综合中考真题汇总含答案解析

2020-2021全国中考数学直角三角形的边角关系的综合中考真题汇总含答案解析一、直角三角形的边角关系1.在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=12∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;(2)通过观察、测量、猜想:BFPE=,并结合图2证明你的猜想;(3)把正方形ABCD改为菱形,其他条件不变(如图3),若∠ACB=α,求BF PE的值.(用含α的式子表示)【答案】(1)证明见解析(2)12BFPE=(3)1tan2BFPEα=【解析】解:(1)证明:∵四边形ABCD是正方形,P与C重合,∴OB="OP" ,∠BOC=∠BOG=90°.∵PF⊥BG ,∠PFB=90°,∴∠GBO=90°—∠BGO,∠EPO=90°—∠BGO.∴∠GBO=∠EPO .∴△BOG≌△POE(AAS).(2)BF1PE2=.证明如下:如图,过P作PM//AC交BG于M,交BO于N,∴∠PNE=∠BOC=900,∠BPN=∠OCB.∵∠OBC=∠OCB =450,∴∠NBP=∠NPB.∴NB=NP.∵∠MBN=900—∠BMN,∠NPE=900—∠BMN,∴∠MBN=∠NPE.∴△BMN ≌△PEN (ASA ).∴BM=PE .∵∠BPE=12∠ACB ,∠BPN=∠ACB ,∴∠BPF=∠MPF . ∵PF ⊥BM ,∴∠BFP=∠MFP=900.又∵PF=PF , ∴△BPF ≌△MPF (ASA ).∴BF="MF" ,即BF=12BM . ∴BF=12PE , 即BF 1PE 2=. (3)如图,过P 作PM//AC 交BG 于点M ,交BO 于点N ,∴∠BPN=∠ACB=α,∠PNE=∠BOC=900.由(2)同理可得BF=12BM , ∠MBN=∠EPN . ∵∠BNM=∠PNE=900,∴△BMN ∽△PEN .∴BM BNPE PN=. 在Rt △BNP 中,BN tan =PN α, ∴BM =tan PE α,即2BF=tan PEα. ∴BF 1=tan PE 2α. (1)由正方形的性质可由AAS 证得△BOG ≌△POE .(2)过P 作PM//AC 交BG 于M ,交BO 于N ,通过ASA 证明△BMN ≌△PEN 得到BM=PE ,通过ASA 证明△BPF ≌△MPF 得到BF=MF ,即可得出BF 1PE 2=的结论. (3)过P 作PM//AC 交BG 于点M ,交BO 于点N ,同(2)证得BF=12BM , ∠MBN=∠EPN ,从而可证得△BMN ∽△PEN ,由BM BN PE PN =和Rt △BNP 中BNtan =PNα即可求得BF 1=tan PE 2α.2.如图,湿地景区岸边有三个观景台、、.已知米,米,点位于点的南偏西方向,点位于点的南偏东方向.(1)求的面积;(2)景区规划在线段的中点处修建一个湖心亭,并修建观景栈道.试求、间的距离.(结果精确到米)(参考数据:,,,,,,)【答案】(1)560000(2)565.6【解析】试题分析:(1)过点作交的延长线于点,,然后根据直角三角形的内角和求出∠CAE,再根据正弦的性质求出CE的长,从而得到△ABC的面积;(2)连接,过点作,垂足为点,则.然后根据中点的性质和余弦值求出BE、AE的长,再根据勾股定理求解即可.试题解析:(1)过点作交的延长线于点,在中,,所以米.所以(平方米).(2)连接,过点作,垂足为点,则.因为是中点,所以米,且为中点,米,所以米.所以米,由勾股定理得,米.答:、间的距离为米.考点:解直角三角形3.如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且CF AE=,连接DE,DF,EF. FH平分EFB∠交BD于点H.(1)求证:DE DF ⊥; (2)求证:DH DF =:(3)过点H 作HM EF ⊥于点M ,用等式表示线段AB ,HM 与EF 之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析. 【解析】 【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HNBH HN HM ===︒.由22cos 45DFEF DF DH ===︒,得22EF AB HM =-.【详解】(1)证明:∵四边形ABCD 是正方形, ∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒. ∴90EAD FCD ∠=∠=︒. ∵CF AE =。

2020-2021全国中考数学直角三角形的边角关系的综合中考模拟和真题分类汇总附详细答案

2020-2021全国中考数学直角三角形的边角关系的综合中考模拟和真题分类汇总附详细答案

2020-2021全国中考数学直角三角形的边角关系的综合中考模拟和真题分类汇总附详细答案一、直角三角形的边角关系1.在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=12∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;(2)通过观察、测量、猜想:BFPE=,并结合图2证明你的猜想;(3)把正方形ABCD改为菱形,其他条件不变(如图3),若∠ACB=α,求BF PE的值.(用含α的式子表示)【答案】(1)证明见解析(2)12BFPE=(3)1tan2BFPEα=【解析】解:(1)证明:∵四边形ABCD是正方形,P与C重合,∴OB="OP" ,∠BOC=∠BOG=90°.∵PF⊥BG ,∠PFB=90°,∴∠GBO=90°—∠BGO,∠EPO=90°—∠BGO.∴∠GBO=∠EPO .∴△BOG≌△POE(AAS).(2)BF1PE2=.证明如下:如图,过P作PM//AC交BG于M,交BO于N,∴∠PNE=∠BOC=900,∠BPN=∠OCB.∵∠OBC=∠OCB =450,∴∠NBP=∠NPB.∴NB=NP.∵∠MBN=900—∠BMN , ∠NPE=900—∠BMN ,∴∠MBN=∠NPE .∴△BMN ≌△PEN (ASA ).∴BM=PE .∵∠BPE=12∠ACB ,∠BPN=∠ACB ,∴∠BPF=∠MPF . ∵PF ⊥BM ,∴∠BFP=∠MFP=900. 又∵PF=PF , ∴△BPF ≌△MPF (ASA ).∴BF="MF" ,即BF=12BM . ∴BF=12PE , 即BF 1PE 2=. (3)如图,过P 作PM//AC 交BG 于点M ,交BO 于点N ,∴∠BPN=∠ACB=α,∠PNE=∠BOC=900.由(2)同理可得BF=12BM , ∠MBN=∠EPN . ∵∠BNM=∠PNE=900,∴△BMN ∽△PEN . ∴BM BN PE PN=. 在Rt △BNP 中,BN tan =PN α, ∴BM =tan PE α,即2BF =tan PE α. ∴BF 1=tan PE 2α. (1)由正方形的性质可由AAS 证得△BOG ≌△POE .(2)过P 作PM//AC 交BG 于M ,交BO 于N ,通过ASA 证明△BMN ≌△PEN 得到BM=PE ,通过ASA 证明△BPF ≌△MPF 得到BF=MF ,即可得出BF 1PE 2=的结论. (3)过P 作PM//AC 交BG 于点M ,交BO 于点N ,同(2)证得BF=12BM , ∠MBN=∠EPN ,从而可证得△BMN ∽△PEN ,由BM BN PE PN =和Rt △BNP 中BN tan =PN α即可求得BF 1=tan PE 2α. 2.如图,在△ABC 中,AB=7.5,AC=9,S △ABC =814.动点P 从A 点出发,沿AB 方向以每秒5个单位长度的速度向B 点匀速运动,动点Q 从C 点同时出发,以相同的速度沿CA 方向向A 点匀速运动,当点P 运动到B 点时,P 、Q 两点同时停止运动,以PQ 为边作正△PQM (P 、Q 、M 按逆时针排序),以QC 为边在AC 上方作正△QCN ,设点P 运动时间为t 秒. (1)求cosA 的值;(2)当△PQM 与△QCN 的面积满足S △PQM =95S △QCN 时,求t 的值; (3)当t 为何值时,△PQM 的某个顶点(Q 点除外)落在△QCN 的边上.【答案】(1)coaA=45;(2)当t=35时,满足S △PQM =95S △QCN ;(3)当t=2733-s 或2733+s 时,△PQM 的某个顶点(Q 点除外)落在△QCN 的边上. 【解析】分析:(1)如图1中,作BE ⊥AC 于E .利用三角形的面积公式求出BE ,利用勾股定理求出AE 即可解决问题;(2)如图2中,作PH ⊥AC 于H .利用S △PQM =95S △QCN 构建方程即可解决问题; (3)分两种情形①如图3中,当点M 落在QN 上时,作PH ⊥AC 于H .②如图4中,当点M 在CQ 上时,作PH ⊥AC 于H .分别构建方程求解即可;详解:(1)如图1中,作BE ⊥AC 于E .∵S △ABC =12•AC•BE=814, ∴BE=92, 在Rt △ABE 中,22=6AB BE -, ∴coaA=647.55AE AB ==.(2)如图2中,作PH⊥AC于H.∵PA=5t,PH=3t,AH=4t,HQ=AC-AH-CQ=9-9t,∴PQ2=PH2+HQ2=9t2+(9-9t)2,∵S△PQM=95S△QCN,∴34•PQ2=9354⨯•CQ2,∴9t2+(9-9t)2=95×(5t)2,整理得:5t2-18t+9=0,解得t=3(舍弃)或35.∴当t=35时,满足S△PQM=95S△QCN.(3)①如图3中,当点M落在QN上时,作PH⊥AC于H.易知:PM∥AC,∴∠MPQ=∠PQH=60°,∴3,∴39-9t),∴2733-.②如图4中,当点M在CQ上时,作PH⊥AC于H.同法可得PH=3QH , ∴3t=3(9t-9),∴t=27+33, 综上所述,当t=2733 s 或27+3326s 时,△PQM 的某个顶点(Q 点除外)落在△QCN 的边上.点睛:本题考查三角形综合题、等边三角形的性质、勾股定理锐角三角函数、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.3.如图,平台AB 高为12m ,在B 处测得楼房CD 顶部点D 的仰角为45°,底部点C 的俯角为30°,求楼房CD 的高度(3=1.7).【答案】32.4米.【解析】试题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.试题解析:如图,过点B 作BE ⊥CD 于点E ,根据题意,∠DBE=45°,∠CBE=30°.∵AB ⊥AC ,CD ⊥AC ,∴四边形ABEC 为矩形,∴CE=AB=12m ,在Rt △CBE 中,cot ∠CBE=BE CE , ∴BE=CE•cot30°=12×3=123,在Rt △BDE 中,由∠DBE=45°,得DE=BE=123.∴CD=CE+DE=12(3+1)≈32.4.答:楼房CD 的高度约为32.4m .考点:解直角三角形的应用——仰角俯角问题.4.我市在创建全国文明城市的过程中,某社区在甲楼的A 处与E 处之间悬挂了一副宣传条幅,在乙楼顶部C 点测得条幅顶端A 点的仰角为45°,条幅底端E 点的俯角为30°,若甲、乙两楼之间的水平距离BD 为12米,求条幅AE 的长度.(结果保留根号)【答案】AE 的长为(123)+【解析】【分析】在Rt ACF V 中求AF 的长, 在Rt CEF V 中求EF 的长,即可求解.【详解】过点C 作CF AB ⊥于点F由题知:四边形CDBF 为矩形12CF DB ∴==在Rt ACF V 中,45ACF ∠=︒tan 1AF ACF CF ∴∠== 12AF ∴=在Rt CEF V 中,30ECF ∠=︒tan EF ECF CF∴∠=312EF ∴= 43EF ∴=1243AE AF EF ∴=+=+∴求得AE 的长为()1243+【点睛】本题考查了三角函数的实际应用,中等难度,作辅助线构造直角三角形是解题关键.5.如图,AB 是⊙O 的直径,PA 、PC 与⊙O 分别相切于点A ,C ,PC 交AB 的延长线于点D ,DE ⊥PO 交PO 的延长线于点E .(1)求证:∠EPD=∠EDO ;(2)若PC=3,tan ∠PDA=34,求OE 的长.【答案】(1)见解析;(25. 【解析】【分析】 (1)由切线的性质即可得证.(2)连接OC ,利用tan ∠PDA=34,可求出CD=2,进而求得OC=32,再证明△OED ∽△DEP ,根据相似三角形的性质和勾股定理即可求出OE 的长. 【详解】(1)证明:∵PA ,PC 与⊙O 分别相切于点A ,C ,∴∠APO=∠CPO, PA ⊥AO ,∵DE ⊥PO ,∴∠PAO=∠E=90°,∵∠AOP=∠EOD ,∴∠APO=∠EDO ,∴∠EPD=∠EDO.(2)连接OC ,∴PA=PC=3,∵tan ∠PDA=34, ∴在Rt △PAD 中, AD=4,PD=22PA AD +=5,∴CD=PD-PC=5-3=2,∵tan ∠PDA=34, ∴在Rt △OCD 中,OC=32, OD=22OC CD +=52, ∵∠EPD=∠ODE ,∠OCP=∠E=90°,∴△OED ∽△DEP ,∴PD DO =PE DE =DE OE=2, ∴DE=2OE, 在Rt △OED 中,OE 2+DE 2=OD 2,即5OE 2=252⎛⎫ ⎪⎝⎭=254, ∴OE=5.【点睛】本题考查了切线的性质;锐角三角函数;勾股定理和相似三角形的判定与性质,充分利用tan ∠PDA=34,得线段的长是解题关键.6.如图,已知二次函数212y x bx c =++的图象经过点A (-3,6),并与x 轴交于点B (-1,0)和点C ,顶点为点P .(1)求这个二次函数解析式;(2)设D 为x 轴上一点,满足∠DPC =∠BAC ,求点D 的坐标;(3)作直线AP,在抛物线的对称轴上是否存在一点M,在直线AP上是否存在点N,使AM+MN的值最小?若存在,求出M、N的坐标:若不存在,请说明理由.【答案】(1)点C坐标为(3,0),点P(1,-2);(2)点P(7,0);(3)点N(-7 5,145).【解析】【分析】(1)将点A、B坐标代入二次函数表达式,即可求解;(2)利用S△ABC= 12×AC×BH=12×BC×y A,求出sinα=222105BHAB==,则tanα=12,在△PMD中,tanα= MDPM=1222x=+,即可求解;(3)作点A关于对称轴的对称点A′(5,6),过点A′作A′N⊥AP分别交对称轴与点M、交AP于点N,此时AM+MN最小,即可求解.【详解】(1)将点A、B坐标代入二次函数表达式得:9633212bb c⎧=-+⎪⎪⎨⎪=--+⎪⎩,解得:132bc=-⎧⎪⎨=-⎪⎩,故:抛物线的表达式为:y=12x2-x-32,令y=0,则x=-1或3,令x=0,则y=-32,故点C坐标为(3,0),点P(1,-2);(2)过点B作BH⊥AC交于点H,过点P作PG⊥x轴交于点G,设:∠DPC=∠BAC=α,由题意得:AB=210,AC=62,BC=4,PC=22,S△ABC=12×AC×BH=12×BC×y A,解得:BH=22,sinα=BHAB=22210=5,则tanα=12,由题意得:GC=2=PG,故∠PCB=45°,延长PC,过点D作DM⊥PC交于点M,则MD=MC=x,在△PMD中,tanα=MDPM=22x+=12,解得:x=22,则CD=2x=4,故点P(7,0);(3)作点A关于对称轴的对称点A′(5,6),过点A′作A′N⊥AP分别交对称轴与点M、交AP于点N,此时AM+MN最小,直线AP表达式中的k值为:84-=-2,则直线A′N表达式中的k值为12,设直线A′N的表达式为:y=12x+b,将点A′坐标代入上式并求解得:b=72,故直线A′N的表达式为:y=12x+72…①,当x=1时,y=4,故点M(1,4),同理直线AP的表达式为:y=-2x…②,联立①②两个方程并求解得:x=-75,故点N(-75,145).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等知识,其中(3),利用对称点求解最小值,是此类题目的一般方法.7.如图,正方形OABC的顶点O与原点重合,点A,C分别在x轴与y轴的正半轴上,点A的坐标为(4,0),点D在边AB上,且tan∠AOD=12,点E是射线OB上一动点,EF⊥x轴于点F,交射线OD于点G,过点G作GH∥x轴交AE于点H.(1)求B,D两点的坐标;(2)当点E在线段OB上运动时,求∠HDA的大小;(3)以点G为圆心,GH的长为半径画⊙G.是否存在点E使⊙G与正方形OABC的对角线所在的直线相切?若不存在,请说明理由;若存在,请求出所有符合条件的点E的坐标.【答案】(1)B(4,4),D(4,2);(2)45°;(3)存在,符合条件的点为(8﹣2,8﹣2)或(2,2)或42164216,77⎛⎫⎪ ⎪⎝⎭或16421642--⎝⎭,理由见解析【解析】【分析】(1)由正方形性质知AB=OA=4,∠OAB=90°,据此得B(4,4),再由tan∠AOD= 12得AD=12OA=2,据此可得点D坐标;(2)由1tan2GFGOFOF∠==知GF=12OF,再由∠AOB=∠ABO=45°知OF=EF,即GF=12EF,根据GH∥x轴知H为AE的中点,结合D为AB的中点知DH是△ABE的中位线,即HD∥BE,据此可得答案;(3)分⊙G与对角线OB和对角线AC相切两种情况,设PG=x,结合题意建立关于x的方程求解可得.【详解】解:(1)∵A(4,0),∴OA=4,∵四边形OABC为正方形,∴AB=OA=4,∠OAB=90°,∴B(4,4),在Rt△OAD中,∠OAD=90°,∵tan∠AOD=12,∴AD=12OA=12×4=2,∴D(4,2);(2)如图1,在Rt△OFG中,∠OFG=90°∴tan∠GOF=GFOF =12,即GF=12OF,∵四边形OABC为正方形,∴∠AOB=∠ABO=45°,∴OF=EF,∴GF=12EF,∴G为EF的中点,∵GH∥x轴交AE于H,∴H为AE的中点,∵B(4,4),D(4,2),∴D为AB的中点,∴DH是△ABE的中位线,∴HD∥BE,∴∠HDA=∠ABO=45°.(3)①若⊙G与对角线OB相切,如图2,当点E在线段OB上时,过点G作GP⊥OB于点P,设PG=x,可得PE=x,EG=FG=2x,OF=EF=22x,∵OA=4,∴AF=4﹣22x,∵G为EF的中点,H为AE的中点,∴GH为△AFE的中位线,∴GH=12AF=12×(4﹣22x)=2﹣2x,则x=2﹣2x,解得:x=22﹣2,∴E(8﹣42,8﹣42),如图3,当点E在线段OB的延长线上时,x2x﹣2,解得:x=2∴E(2,2②若⊙G与对角线AC相切,如图4,当点E在线段BM上时,对角线AC,OB相交于点M,过点G 作GP ⊥OB 于点P ,设PG =x ,可得PE =x ,EG =FG =2x , OF =EF =22x ,∵OA =4, ∴AF =4﹣22x ,∵G 为EF 的中点,H 为AE 的中点,∴GH 为△AFE 的中位线,∴GH =12AF =12×(4﹣22x )=2﹣2x , 过点G 作GQ ⊥AC 于点Q ,则GQ =PM =3x ﹣22,∴3x ﹣22=2﹣2x ,∴4227x +=, ∴42164216,E ⎛⎫++ ⎪ ⎪⎝⎭; 如图5,当点E 在线段OM 上时,GQ =PM =23x ,则23x =22,解得4227x =,∴16421642,E ⎛⎫-- ⎪ ⎪⎝⎭; 如图6,当点E 在线段OB 的延长线上时,3x ﹣22x ﹣2, 解得:4227x =(舍去); 综上所述,符合条件的点为(8﹣2,8﹣2)或(2,2)或42164216,77⎛⎫ ⎪ ⎪⎝⎭或16421642,77⎛-- ⎝⎭. 【点睛】本题是圆的综合问题,解题的关键是掌握正方形和直角三角形的性质、正切函数的定义、三角形中位线定理及分类讨论思想的运用.8.如图,在平面直角坐标系中,菱形ABCD 的边AB 在x 轴上,点B 坐标(﹣6,0),点C 在y 轴正半轴上,且cos B =35,动点P 从点C 出发,以每秒一个单位长度的速度向D 点移动(P 点到达D 点时停止运动),移动时间为t 秒,过点P 作平行于y 轴的直线l 与菱形的其它边交于点Q .(1)求点D 坐标;(2)求△OPQ 的面积S 关于t 的函数关系式,并求出S 的最大值;(3)在直线l 移动过程中,是否存在t 值,使S =320ABCD S 菱形?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)点D 的坐标为(10,8).(2)S 关于t 的函数关系式为S =24(04)220(410)33t t t t t ⎧⎪⎨-+<⎪⎩剟…,S 的最大值为503.(3)3或7. 【解析】【分析】(1)在Rt △BOC 中,求BC,OC,根据菱形性质再求D 的坐标;(2)分两种情况分析:①当0≤t ≤4时和②当4<t ≤10时,根据面积公式列出解析式,再求函数的最值;(3)分两种情况分析:当0≤t ≤4时,4t =12,;当4<t ≤10时,22201233t t -+= 【详解】解:(1)在Rt △BOC 中,∠BOC =90°,OB =6,cos B =35, 10cos OB BC B∴== 228OC BC OB ∴=-=∵四边形ABCD 为菱形,CD ∥x 轴,∴点D 的坐标为(10,8).(2)∵AB =BC =10,点B 的坐标为(﹣6,0),∴点A 的坐标为(4,0).分两种情况考虑,如图1所示.①当0≤t ≤4时,PQ =OC =8,OQ =t ,∴S =12PQ •OQ =4t , ∵4>0,∴当t =4时,S 取得最大值,最大值为16;②当4<t ≤10时,设直线AD 的解析式为y =kx +b (k ≠0),将A (4,0),D (10,8)代入y =kx +b ,得:4k b 010k b 8+=⎧⎨+=⎩,解得:4k 316b 3⎧=⎪⎪⎨⎪=-⎪⎩,∴直线AD 的解析式为41633y x =-. 当x =t 时,41633y t =-, 41648(10)333PQ t t ⎛⎫∴=--=- ⎪⎝⎭ 21220233S PQ OP t t ∴=⋅=-+ 22202502(5),033333S t t t =-+=--+-<Q ∴当t =5时,S 取得最大值,最大值为503. 综上所述:S 关于t 的函数关系式为S =24(04)220(410)33t t t t t ⎧⎪⎨-+<⎪⎩剟…,S 的最大值为503. (3)S 菱形ABCD =AB •OC =80.当0≤t ≤4时,4t =12,解得:t =3;当4<t ≤10时,222033t t -+=12, 解得:t 1=5﹣7(舍去),t 2=5+ 7. 综上所述:在直线l 移动过程中,存在t 值,使S =320ABCD S 菱形,t 的值为3或5+7.【点睛】考核知识点:一次函数和二次函数的最值问题.数形结合,分类讨论是关键.9.现有一个“Z “型的工件(工件厚度忽略不计),如图所示,其中AB 为20cm ,BC 为60cm ,∠ABC =90,∠BCD =60°,求该工件如图摆放时的高度(即A 到CD 的距离).(结果精确到0.1m ,参考数据:≈1.73)【答案】工件如图摆放时的高度约为61.9cm.【解析】【分析】过点A作AP⊥CD于点P,交BC于点Q,由∠CQP=∠AQB、∠CPQ=∠B=90°知∠A=∠C =60°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.【详解】解:如图,过点A作AP⊥CD于点P,交BC于点Q,∵∠CQP=∠AQB,∠CPQ=∠B=90°,∴∠A=∠C=60°,在△ABQ中,∵AQ=(cm),BQ=AB tan A=20tan60°=20(cm),∴CQ=BC﹣BQ=60﹣20(cm),在△CPQ中,∵PQ=CQ sin C=(60﹣20)sin60°=30(﹣1)cm,∴AP=AQ+PQ=40+30(﹣1)≈61.9(cm),答:工件如图摆放时的高度约为61.9cm.【点睛】本题主要考查解直角三角形的应用,熟练掌握三角函数的定义求得相关线段的长度是解题的关键.10.在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连结CD,点P在射线CB上(与B,C不重合)(1)如果∠A=30°,①如图1,∠DCB等于多少度;②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;(2)如图3,若点P在线段CB 的延长线上,且∠A=α(0°<α<90°),连结DP,将线段DP绕点逆时针旋转2α得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明)【答案】(1)①∠DCB=60°.②结论:CP=BF.理由见解析;(2)结论:BF﹣BP=2DE•tanα.理由见解析.【解析】【分析】(1)①根据直角三角形斜边中线的性质,结合∠A=30°,只要证明△CDB是等边三角形即可;②根据全等三角形的判定推出△DCP≌△DBF,根据全等的性质得出CP=BF,(2)求出DC=DB=AD,DE∥AC,求出∠FDB=∠CDP=2α+∠PDB,DP=DF,根据全等三角形的判定得出△DCP≌△DBF,求出CP=BF,推出BF﹣BP=BC,解直角三角形求出CE=DEtanα即可.【详解】(1)①∵∠A=30°,∠ACB=90°,∴∠B=60°,∵AD=DB,∴CD=AD=DB,∴△CDB是等边三角形,∴∠DCB=60°.②如图1,结论:CP=BF.理由如下:∵∠ACB=90°,D是AB的中点,DE⊥BC,∠DCB=60°,∴△CDB为等边三角形.∴∠CDB=60°∵线段DP绕点D逆时针旋转60°得到线段DF,∵∠PDF =60°,DP =DF ,∴∠FDB =∠CDP ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF.(2)结论:BF ﹣BP =2DEtanα.理由:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠A =α,∴DC =DB =AD ,DE ∥AC ,∴∠A =∠ACD =α,∠EDB =∠A =α,BC =2CE ,∴∠BDC =∠A+∠ACD =2α,∵∠PDF =2α,∴∠FDB =∠CDP =2α+∠PDB ,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP =DF ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF ,而 CP =BC+BP ,∴BF ﹣BP =BC ,在Rt △CDE 中,∠DEC =90°,∴tan ∠CDE =CE DE, ∴CE =DEtanα, ∴BC =2CE =2DEtanα,即BF ﹣BP =2DEtanα.【点睛】本题考查了三角形外角性质,等边三角形的判定和性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出△DCP ≌△DBF 是解此题的关键,综合性比较强,证明过程类似.11.如图,某次中俄“海上联合”反潜演习中,我军舰A 测得潜艇C 的俯角为30°.位于军舰A 正上方1000米的反潜直升机B 侧得潜艇C 的俯角为68°.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,3≈1.7)【答案】潜艇C离开海平面的下潜深度约为308米【解析】试题分析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,用锐角三角函数分别在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,利用BD=AD+AB二者之间的关系列出方程求解.试题解析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,设AD=x,则BD=BA+AD=1000+x,在Rt△ACD中,CD=tan AD ACD=tan30x= 3x在Rt△BCD中,BD=CD•tan68°,∴325+x=3x•tan68°解得:x≈100米,∴潜艇C离开海平面的下潜深度为100米.点睛:本题考查了解直角三角形的应用,解题的关键是作出辅助线,从题目中找出直角三角形并选择合适的边角关系求解.视频12.如图,△ABC是边长为6cm的等边三角形,点D从B点出发沿B→A方向在线段BA上以a cm/s速度运动,与此同时,点E从线段BC的某个端点出发,以b cm/s速度在线段BC 上运动,当D到达A点后,D、E运动停止,运动时间为t(秒).(1)如图1,若a=b=1,点E从C出发沿C→B方向运动,连AE、CD,AE、CD交于F,连BF.当0<t<6时:①求∠AFC的度数;②求222AFFC BFAF FC+-⋅的值;(2)如图2,若a=1,b=2,点E从B点出发沿B→C方向运动,E点到达C点后再沿C→B 方向运动.当t≥3时,连DE,以DE为边作等边△DEM,使M、B在DE两侧,求M点所经历的路径长.【答案】(1)①120°;②1;(2)当3≤t≤6时,M点所经历的路径长为3.【解析】【分析】(1)①如图1,由题可得BD=CE=t,易证△BDC≌△CEA,则有∠BCD=∠CAE,根据三角形外角的性质可求得∠EFC=60°,即可得到∠AFC=120°;②延长FD到G,使得FG=FA,连接GA、GB,过点B作BH⊥FG于H,如图2,易证△FAG 是等边三角形,结合△ABC是等边三角形可证到△AGB≌△AFC,则有GB=FC,∠AGB=∠AFC=120°,从而可得∠BGF=60°.设AF=x,FC=y,则有FG=AF=x,BG=CF=y.在Rt△BHG中运用直角三角形的性质可得BH=32y,GH=12y,从而有FH=x﹣12y.在Rt△BHF中根据勾股定理可得BF2=x2﹣xy+y2,代入所求代数式就可解决问题;(2)过点E作EN⊥AB于N,连接MC,如图3,由题可得∠BEN=30°,BD=t,CE=2t﹣6,从而有BE=12﹣2t,BN=6﹣t,进而可得DN=EC.由△DEM是等边三角形可得DE=EM,∠DEM=60°,从而可得∠NDE=∠MEC,进而可证到△DNE≌△ECM,则有∠DNE=∠ECM=90°,故M点运动的路径为过点C垂直于BC的一条线段.然后只需确定点M的始点和终点位置,就可解决问题.【详解】(1)如图1,由题可得BD=CE=t.∵△ABC是等边三角形,∴BC=AC,∠B=∠ECA=60°.在△BDC和△CEA中,BD CEB ECABC AC=⎧⎪∠=∠⎨⎪=⎩,∴△BDC≌△CEA,∴∠BCD=∠CAE,∴∠EFC=∠CAE+∠ACF=∠BCD+∠ACF=∠ACB=60°,∴∠AFC=120°;②延长FD到G,使得FG=FA,连接GA、GB,过点B作BH⊥FG于H,如图2.∵∠AFG=180°﹣120°=60°,FG=FA,∴△FAG是等边三角形,∴AG=AF=FG,∠AGF=∠GAF=60°.∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∴∠GAF=∠BAC,∴∠GAB=∠FAC.在△AGB和△AFC中,AG AFGAB FACAB AC=⎧⎪∠=∠⎨⎪=⎩,∴△AGB≌△AFC,∴GB=FC,∠AGB=∠AFC=120°,∴∠BGF=60°,∴∠GBH=30°.设AF=x,FC=y,则有FG=AF=x,BG=CF=y.在Rt△BHG中,GH=12y,BH=32y,∴FH=FG﹣GH=x﹣12y.在Rt△BHF中,BF2=BH2+FH2=(3y)2+(x﹣12y)2=x2﹣xy+y2,∴222AF FC BFAF FC+-⋅=2222x y x xy yxy+--+()=1;(2)过点E作EN⊥AB于N,连接MC,如图3,由题可得:∠BEN=30°,BD=1×t=t,CE=2(t﹣3)=2t﹣6,∴BE=6﹣(2t﹣6)=12﹣2t,BN=12BE=6﹣t,∴DN=t﹣(6﹣t)=2t﹣6,∴DN=EC.∵△DEM是等边三角形,∴DE=EM,∠DEM=60°.∵∠NDE+∠NED=90°,∠NED+∠MEC=180°﹣30°﹣60°=90°,∴∠NDE=∠MEC.在△DNE和△ECM中,∵DN ECNDE CEMDE EM=⎧⎪∠=∠⎨⎪=⎩,∴△DNE≌△ECM,∴∠DNE=∠ECM=90°,∴M点运动的路径为过点C垂直于BC的一条线段.当t=3时,E在点B,D在AB的中点,此时CM=EN=CD=BC•sin B=6×3=33;当t=6时,E在点C,D在点A,此时点M在点C;∴当3≤t≤6时,M点所经历的路径长为33.【点睛】本题主要考查了等边三角形的判定与性质、全等三角形的判定与性质、锐角三角函数、特殊角的三角函数值、勾股定理、三角形外角的性质等知识,综合性比较强,有一定的难度;构造旋转型全等三角形(由共顶点的两个等边三角形组成)是解决第1(2)小题的关键,证到∠ECM=90°是解决第(2)小题的关键.。

2020-2021中考数学 直角三角形的边角关系 综合题含详细答案

2020-2021中考数学 直角三角形的边角关系 综合题含详细答案

2020-2021中考数学 直角三角形的边角关系 综合题含详细答案一、直角三角形的边角关系1.如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°.小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF=1米,从E 处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【答案】6.4米【解析】解:∵底部B 点到山脚C 点的距离BC 为6 3 米,山坡的坡角为30°.∴DC=BC•cos30°=3639=⨯=米, ∵CF=1米,∴DC=9+1=10米,∴GE=10米,∵∠AEG=45°,∴AG=EG=10米,在直角三角形BGF 中,BG=GF•tan20°=10×0.36=3.6米,∴AB=AG-BG=10-3.6=6.4米,答:树高约为6.4米首先在直角三角形BDC 中求得DC 的长,然后求得DF 的长,进而求得GF 的长,然后在直角三角形BGF 中即可求得BG 的长,从而求得树高2.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60︒︒,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处.(1)求之间的距离(2)求从无人机'A 上看目标的俯角的正切值.【答案】(1)120米;(2)235. 【解析】 【分析】 (1)解直角三角形即可得到结论; (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==, '30CE AA ==3,在Rt △ABC 中,求得DC=33AC=203,然后根据三角函数的定义即可得到结论.【详解】解:(1)由题意得:∠ABD=30°,∠ADC=60°,在Rt △ABC 中,AC=60m , ∴AB=sin 30AC ︒=6012=120(m ) (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,则'60A E AC ==, '30CE AA ==3,在Rt △ABC 中, AC=60m ,∠ADC=60°, ∴DC=3AC=203 ∴DE=503∴tan ∠A 'A D= tan ∠'A DC='A E DE =503=235答:从无人机'A 上看目标D 的俯角的正切值是235.【点睛】本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键.3.已知在平面直角坐标系中,点()()()3,0,3,0,3,8A B C --,以线段BC 为直径作圆,圆心为E ,直线AC 交E e 于点D ,连接OD .(1)求证:直线OD 是E e 的切线;(2)点F 为x 轴上任意一动点,连接CF 交E e 于点G ,连接BG :①当1an 7t ACF ∠=时,求所有F 点的坐标 (直接写出); ②求BG CF的最大值. 【答案】(1)见解析;(2)①143,031F ⎛⎫⎪⎝⎭,2(5,0)F ;② BG CF 的最大值为12. 【解析】【分析】(1)连接DE ,证明∠EDO=90°即可;(2)①分“F 位于AB 上”和“F 位于BA 的延长线上”结合相似三角形进行求解即可; ②作GM BC ⊥于点M ,证明1~ANF ABC ∆∆,得12BG CF ≤,从而得解. 【详解】(1)证明:连接DE ,则:∵BC 为直径∴90BDC ∠=︒∴90BDA ∠=︒∵OA OB =∴OD OB OA ==∴OBD ODB ∠=∠∵EB ED =∴EBD EDB ∠=∠ ∴EBD OBD EDB ODB ∠+∠=∠+∠即:EBO EDO ∠=∠∵CB x ⊥轴∴90EBO ∠=︒∴90EDO ∠=︒∴直线OD 为E e 的切线.(2)①如图1,当F 位于AB 上时:∵1~ANF ABC ∆∆ ∴11NF AF AN AB BC AC == ∴设3AN x =,则114,5NF x AF x == ∴103CN CA AN x =-=-∴141tan 1037F N x ACF CN x ∠===-,解得:1031x = ∴150531AF x == 1504333131OF =-= 即143,031F ⎛⎫ ⎪⎝⎭如图2,当F 位于BA 的延长线上时:∵2~AMF ABC ∆∆∴设3AM x =,则224,5MF x AF x ==∴103CM CA AM x =+=+∴241tan 1037F M x ACF CM x ∠===+ 解得:25x = ∴252AF x ==2325OF =+=即2(5,0)F②如图,作GM BC ⊥于点M ,∵BC 是直径∴90CGB CBF ∠=∠=︒∴~CBF CGB ∆∆ ∴8BG MG MG CF BC == ∵MG ≤半径4= ∴41882BG MG CF =≤= ∴BG CF 的最大值为12.【点睛】本题考查了圆的综合题:熟练掌握切线的判定定理、解直角三角形;相似三角形的判定和性质和相似比计算线段的长;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.4.如图,AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于切点为G ,连接AG 交CD 于K .(1)求证:KE=GE ;(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若sinE=,AK=,求FG的长.【答案】(1)证明见解析;(2)AC∥EF,证明见解析;(3)FG= .【解析】试题分析:(1)如图1,连接OG.根据切线性质及CD⊥AB,可以推出∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE;(2)AC与EF平行,理由为:如图2所示,连接GD,由∠KGE=∠GKE,及KG2=KD•GE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF;(3)如图3所示,连接OG,OC,先求出KE=GE,再求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度.试题解析:(1)如图1,连接OG.∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.(2)AC∥EF,理由为连接GD,如图2所示.∵KG2=KD•GE,即,∴,又∵∠KGE=∠GKE,∴△GKD∽△EGK,∴∠E=∠AGD,又∵∠C=∠AGD,∴∠E=∠C,∴AC∥EF;(3)连接OG,OC,如图3所示,∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.∵sinE=sin∠ACH=,设AH=3t,则AC=5t,CH=4t,∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK-CH=t.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即(3t)2+t2=(2)2,解得t=.设⊙O半径为r,在Rt△OCH中,OC=r,OH=r-3t,CH=4t,由勾股定理得:OH2+CH2=OC2,即(r-3t)2+(4t)2=r2,解得r= t=.∵EF为切线,∴△OGF为直角三角形,在Rt△OGF中,OG=r=,tan∠OFG=tan∠CAH=,∴FG=【点睛】此题考查了切线的性质,相似三角形的判定与性质,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,以及等腰三角形的判定,熟练掌握定理及性质是解本题的关键.5.2018年12月10日,郑州市城乡规划局网站挂出《郑州都市区主城区停车场专项规划》,将停车纳入城市综合交通体系,计划到2030年,在主城区新建停车泊位33.04万个,2019年初,某小区拟修建地下停车库,如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度为1:3,DE =3米,点C在DE上,CD=0.5米,CD是限高标志屏的高度(标志牌上写有:限高米),如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据2≈1.41,3≈1.73)【答案】该停车库限高约为2.2米.【解析】【分析】据题意得出3tan3B ,即可得出tan A,在Rt△ADE中,根据勾股定理可求得DE,即可得出∠1的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF3的长.【详解】解:由题意得,3 tan3B∵MN∥AD,∴∠A=∠B,∴tan A=3,∵DE⊥AD,∴在Rt△ADE中,tan A=DEAD,∵DE=3,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=33.在Rt△CEF中,设EF=x,CF=3x(x>0),CE=2.5,代入得(52)2=x2+3x2,解得x=1.25,∴CF=3x≈2.2,∴该停车库限高约为2.2米.【点睛】本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.6.在正方形ABCD中,AC是一条对角线,点E是边BC上的一点(不与点C重合),连接AE,将△ABE沿BC方向平移,使点B与点C重合,得到△DCF,过点E作EG⊥AC于点G,连接DG,FG.(1)如图,①依题意补全图;②判断线段FG与DG之间的数量关系与位置关系,并证明;(2)已知正方形的边长为6,当∠AGD=60°时,求BE的长.【答案】(1)①见解析,②FG=DG,FG⊥DG,见解析;(2)BE=【解析】【分析】(1)①补全图形即可,②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于点H.由等腰直角三角形的性质得出DH=AH=FG=DG=2GH=,得出DFDG=Rt△DCF中,由勾股定理得出CF=得出结果.【详解】解:(1)①补全图形如图1所示,②FG=DG,FG⊥DG,理由如下,连接BG,如图2所示,∵四边形ABCD是正方形,∴∠ACB=45°,∵EG⊥AC,∴∠EGC=90°,∴△CEG是等腰直角三角形,EG=GC,∴∠GEC=∠GCE=45°,∴∠BEG=∠GCF=135°,由平移的性质得:BE=CF,在△BEG和△GCF中,BE CFBEG GCF EG CG=⎧⎪∠=∠⎨⎪=⎩,∴△BEG≌△GCF(SAS),∴BG=GF,∵G在正方形ABCD对角线上,∴BG=DG,∴FG=DG,∵∠CGF=∠BGE,∠BGE+∠AGB=90°,∴∠CGF+∠AGB=90°,∴∠AGD+∠CGF=90°,∴∠DGF=90°,∴FG⊥DG.(2)过点D 作DH ⊥AC ,交AC 于点H .如图3所示,在Rt △ADG 中,∵∠DAC =45°,∴DH =AH =32, 在Rt △DHG 中,∵∠AGD =60°,∴GH =3=323=6,∴DG =2GH =26,∴DF =2DG =43,在Rt △DCF 中,CF =()22436-=23,∴BE =CF =23.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.7.如图,公路AB 为东西走向,在点A 北偏东36.5︒方向上,距离5千米处是村庄M ,在点A 北偏东53.5︒方向上,距离10千米处是村庄N ;要在公路AB 旁修建一个土特产收购站P (取点P 在AB 上),使得M ,N 两村庄到P 站的距离之和最短,请在图中作出P 的位置(不写作法)并计算:(1)M ,N 两村庄之间的距离;(2)P 到M 、N 距离之和的最小值.(参考数据:sin36.5°=0.6,cos36.5°=0.8,tan36.5°=0.75计算结果保留根号.)【答案】(1) M,N两村庄之间的距离为29千米;(2) 村庄M、N到P站的最短距离和是55千米.【解析】【分析】(1)作N关于AB的对称点N'与AB交于E,连结MN’与AB交于P,则P为土特产收购站的位置.求出DN,DM,利用勾股定理即可解决问题.(2)由题意可知,M、N到AB上点P的距离之和最短长度就是MN′的长.【详解】解:作N关于AB的对称点N'与AB交于E,连结MN’与AB交于P,则P为土特产收购站的位置.(1)在Rt△ANE中,AN=10,∠NAB=36.5°∴NE=AN•sin∠NAB=10•sin36.5°=6,AE=AN•cos∠NAB=10•cos36.5°=8,过M作MC⊥AB于点C,在Rt△MAC中,AM=5,∠MAB=53.5°∴AC=MA•sin∠AMB=MA•sin36.5°=3,MC=MA•cos∠AMC=MA•cos36.5°=4,过点M作MD⊥NE于点D,在Rt△MND中,MD=AE-AC=5,ND=NE-MC=2,∴MN222952即M,N29(2)由题意可知,M、N到AB上点P的距离之和最短长度就是MN′的长.DN ′=10,MD =5,在Rt △MDN ′中,由勾股定理,得MN ′=22510+=55(千米)∴村庄M 、N 到P 站的最短距离和是55千米.【点睛】本题考查解直角三角形,轴对称变换等知识,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造直角三角形解决问题.8.如图,AB 为O e 的直径,C 、D 为O e 上异于A 、B 的两点,连接CD ,过点C 作CE DB ⊥,交CD 的延长线于点E ,垂足为点E ,直径AB 与CE 的延长线相交于点F .(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒.(2)若2ABD BDC ∠=∠.①求证:CF 是O e 的切线.②当6BD =,3tan 4F =时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203CF =. 【解析】【分析】(1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可证明CF 为⊙O 的切线;②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=BD AD =34,求出AD=43BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=OC CF =34,即可求出CF . 【详解】解:(1)AB 是O e 的直径,且D 为O e 上一点, 90ADB ∴∠=︒,CE DB ⊥Q ,90DEC ∴∠=︒,//CF AD ∴,180DAC ACF ∴∠+∠=︒.(2)①如图,连接OC .OA OC =Q ,12∴∠=∠.312∠=∠+∠Q ,321∴∠=∠.42BDC Q ∠=∠,1BDC ∠=∠,421∴∠=∠,43∴∠=∠,//OC DB ∴.CE DB ⊥Q ,OC CF ∴⊥.又OC Q 为O e 的半径,CF ∴为O e 的切线.②由(1)知//CF AD ,BAD F ∴∠=∠,3tan tan 4BAD F ∴∠==, 34BD AD ∴=. 6BD =Q483AD BD ∴==, 226810AB ∴=+=,5OB OC ==.OC CF Q ⊥,90OCF ∴∠=︒,3tan 4OC F CF ∴==, 解得203CF =. 【点睛】本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.9.已知Rt△ABC,∠BAC=90°,点D是BC中点,AD=AC,BC=43,过A,D两点作⊙O,交AB于点E,(1)求弦AD的长;(2)如图1,当圆心O在AB上且点M是⊙O上一动点,连接DM交AB于点N,求当ON 等于多少时,三点D、E、M组成的三角形是等腰三角形?(3)如图2,当圆心O不在AB上且动圆⊙O与DB相交于点Q时,过D作DH⊥AB(垂足为H)并交⊙O于点P,问:当⊙O变动时DP﹣DQ的值变不变?若不变,请求出其值;若变化,请说明理由.【答案】(1)23(2)当ON等于13﹣1时,三点D、E、M组成的三角形是等腰三角形(3)不变,理由见解析【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半即可得到AD的长;(2)连DE、ME,易得当ED和EM为等腰三角形EDM的两腰,根据垂径定理得推论得OE⊥DM,易得到△ADC为等边三角形,得∠CAD=60°,则∠DAO=30°,∠DON=60°,然后根据含30°的直角三角形三边的关系得DN=1233;当MD=ME,DE为底边,作DH⊥AE,由于3∠DAE=30°,得到3,∠DEA=60°,DE=2,于是OE=DE=2,OH=1,又∠M=∠DAE=30°,MD=ME,得到∠MDE=75°,则∠ADM=90°-75°=15°,可得到∠DNO=45°,根据等腰直角三角形的性质得到33;(3)连AP、AQ,DP⊥AB,得AC∥DP,则∠PDB=∠C=60°,再根据圆周角定理得∠PAQ=∠PDB,∠AQC=∠P,则∠PAQ=60°,∠CAQ=∠PAD,易证得△AQC≌△APD,得到DP=CQ,则DP-DQ=CQ-DQ=CD,而△ADC为等边三角形,3DP-DQ的值.【详解】解:(1)∵∠BAC=90°,点D是BC中点,BC=3∴AD=12BC=3(2)连DE 、ME ,如图,∵DM >DE ,当ED 和EM 为等腰三角形EDM 的两腰,∴OE ⊥DM ,又∵AD =AC ,∴△ADC 为等边三角形,∴∠CAD =60°,∴∠DAO =30°,∴∠DON =60°,在Rt △ADN 中,DN =12AD ,在Rt △ODN 中,ON DN =1, ∴当ON 等于1时,三点D 、E 、M 组成的三角形是等腰三角形;当MD =ME ,DE 为底边,如图3,作DH ⊥AE ,∵AD=∠DAE =30°,∴DH ∠DEA =60°,DE =2,∴△ODE 为等边三角形,∴OE =DE =2,OH =1,∵∠M =∠DAE =30°,而MD =ME ,∴∠MDE =75°,∴∠ADM =90°﹣75°=15°,∴∠DNO =45°,∴△NDH 为等腰直角三角形,∴NH =DH∴ON ﹣1;综上所述,当ON 等于11时,三点D 、E 、M 组成的三角形是等腰三角形;(3)当⊙O 变动时DP ﹣DQ 的值不变,DP ﹣DQ =.理由如下:连AP 、AQ ,如图2,∵∠C =∠CAD =60°,而DP ⊥AB ,∴AC ∥DP ,∴∠PDB =∠C =60°,又∵∠PAQ =∠PDB ,∴∠PAQ =60°,∴∠CAQ =∠PAD ,∵AC =AD ,∠AQC =∠P ,∴△AQC ≌△APD ,∴DP=CQ,∴DP﹣DQ=CQ﹣DQ=CD=23.【点睛】本题考查了垂径定理和圆周角定理:平分弧的直径垂直弧所对的弦;在同圆和等圆中,相等的弧所对的圆周角相等.也考查了等腰三角形的性质以及含30°的直角三角形三边的关系.10.在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连结CD,点P在射线CB上(与B,C不重合)(1)如果∠A=30°,①如图1,∠DCB等于多少度;②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;(2)如图3,若点P在线段CB 的延长线上,且∠A=α(0°<α<90°),连结DP,将线段DP绕点逆时针旋转2α得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明)【答案】(1)①∠DCB=60°.②结论:CP=BF.理由见解析;(2)结论:BF﹣BP=2DE•tanα.理由见解析.【解析】【分析】(1)①根据直角三角形斜边中线的性质,结合∠A=30°,只要证明△CDB是等边三角形即可;②根据全等三角形的判定推出△DCP≌△DBF,根据全等的性质得出CP=BF,(2)求出DC=DB=AD,DE∥AC,求出∠FDB=∠CDP=2α+∠PDB,DP=DF,根据全等三角形的判定得出△DCP≌△DBF,求出CP=BF,推出BF﹣BP=BC,解直角三角形求出CE=DEtanα即可.【详解】(1)①∵∠A =30°,∠ACB =90°,∴∠B =60°,∵AD =DB ,∴CD =AD =DB ,∴△CDB 是等边三角形,∴∠DCB =60°.②如图1,结论:CP =BF .理由如下:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠DCB =60°,∴△CDB 为等边三角形.∴∠CDB =60°∵线段DP 绕点D 逆时针旋转60°得到线段DF ,∵∠PDF =60°,DP =DF ,∴∠FDB =∠CDP ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF.(2)结论:BF ﹣BP =2DEtanα.理由:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠A =α,∴DC =DB =AD ,DE ∥AC ,∴∠A =∠ACD =α,∠EDB =∠A =α,BC =2CE ,∴∠BDC =∠A+∠ACD =2α,∵∠PDF =2α,∴∠FDB =∠CDP =2α+∠PDB ,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP =DF ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP≌△DBF,∴CP=BF,而 CP=BC+BP,∴BF﹣BP=BC,在Rt△CDE中,∠DEC=90°,∴tan∠CDE=CE,DE∴CE=DEtanα,∴BC=2CE=2DEtanα,即BF﹣BP=2DEtanα.【点睛】本题考查了三角形外角性质,等边三角形的判定和性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出△DCP≌△DBF是解此题的关键,综合性比较强,证明过程类似.11.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,AE为⊙O的切线,过点B作BD⊥AE于D.(1)求证:∠DBA=∠ABC;(2)如果BD=1,tan∠BAD=,求⊙O的半径.【答案】(1)证明见解析;(2).【解析】试题分析:(1)如图,连接OA,由AE为⊙O的切线,BD⊥AE得到∠DAO=∠EDB=90°,于是得到DB∥AO,推出∠DBA=∠BAO,由于OA=OB,得到∠ABC=∠BAO,即可得到结论;(2)根据三角函数的知识可求出AD,从而根据勾股定理求出AB的长,根据三角函数的知识即可得出⊙O的半径.试题解析:(1)如图,连接OA,∵AE为⊙O的切线,BD⊥AE,∴∠DAO=∠EDB=90°,∴DB∥AO,∴∠DBA=∠BAO,又∵OA=OB,∴∠ABC=∠BAO,∴∠DBA=∠ABC;(2)∵BD=1,tan∠BAD=,∴AD=2,∴AB=,∴cos∠DBA=;∵∠DBA=∠CBA,∴BC=.∴⊙O的半径为2.5.考点:1.切线的性质;2.勾股定理;3.解直角三角形.12.如图,△ABC是边长为6cm的等边三角形,点D从B点出发沿B→A方向在线段BA上以a cm/s速度运动,与此同时,点E从线段BC的某个端点出发,以b cm/s速度在线段BC 上运动,当D到达A点后,D、E运动停止,运动时间为t(秒).(1)如图1,若a=b=1,点E从C出发沿C→B方向运动,连AE、CD,AE、CD交于F,连BF.当0<t<6时:①求∠AFC的度数;②求222AF FC BFAF FC+-⋅的值;(2)如图2,若a=1,b=2,点E从B点出发沿B→C方向运动,E点到达C点后再沿C→B 方向运动.当t≥3时,连DE,以DE为边作等边△DEM,使M、B在DE两侧,求M点所经历的路径长.【答案】(1)①120°;②1;(2)当3≤t≤6时,M点所经历的路径长为3.【解析】【分析】(1)①如图1,由题可得BD=CE=t,易证△BDC≌△CEA,则有∠BCD=∠CAE,根据三角形外角的性质可求得∠EFC=60°,即可得到∠AFC=120°;②延长FD到G,使得FG=FA,连接GA、GB,过点B作BH⊥FG于H,如图2,易证△FAG 是等边三角形,结合△ABC是等边三角形可证到△AGB≌△AFC,则有GB=FC,∠AGB=∠AFC=120°,从而可得∠BGF=60°.设AF=x,FC=y,则有FG=AF=x,BG=CF=y.在Rt△BHG中运用直角三角形的性质可得BH,GH=12y,从而有FH=x﹣12y.在Rt△BHF中根据勾股定理可得BF2=x2﹣xy+y2,代入所求代数式就可解决问题;(2)过点E作EN⊥AB于N,连接MC,如图3,由题可得∠BEN=30°,BD=t,CE=2t﹣6,从而有BE=12﹣2t,BN=6﹣t,进而可得DN=EC.由△DEM是等边三角形可得DE=EM,∠DEM=60°,从而可得∠NDE=∠MEC,进而可证到△DNE≌△ECM,则有∠DNE=∠ECM=90°,故M点运动的路径为过点C垂直于BC的一条线段.然后只需确定点M的始点和终点位置,就可解决问题.【详解】(1)如图1,由题可得BD=CE=t.∵△ABC是等边三角形,∴BC=AC,∠B=∠ECA=60°.在△BDC和△CEA中,BD CEB ECABC AC=⎧⎪∠=∠⎨⎪=⎩,∴△BDC≌△CEA,∴∠BCD=∠CAE,∴∠EFC=∠CAE+∠ACF=∠BCD+∠ACF=∠ACB=60°,∴∠AFC=120°;②延长FD到G,使得FG=FA,连接GA、GB,过点B作BH⊥FG于H,如图2.∵∠AFG=180°﹣120°=60°,FG=FA,∴△FAG是等边三角形,∴AG=AF=FG,∠AGF=∠GAF=60°.∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∴∠GAF=∠BAC,∴∠GAB=∠FAC.在△AGB和△AFC中,AG AFGAB FACAB AC=⎧⎪∠=∠⎨⎪=⎩,∴△AGB≌△AFC,∴GB=FC,∠AGB=∠AFC=120°,∴∠BGF=60°,∴∠GBH=30°.设AF=x,FC=y,则有FG=AF=x,BG=CF=y.在Rt△BHG中,GH=12y,BH=y,∴FH=FG﹣GH=x﹣12y.在Rt△BHF中,BF2=BH2+FH2=(2y)2+(x﹣12y)2=x2﹣xy+y2,∴222AF FC BFAF FC+-⋅=2222x y x xy yxy+--+()=1;(2)过点E作EN⊥AB于N,连接MC,如图3,由题可得:∠BEN=30°,BD=1×t=t,CE=2(t﹣3)=2t﹣6,∴BE=6﹣(2t﹣6)=12﹣2t,BN=12 BE=6﹣t,∴DN=t﹣(6﹣t)=2t﹣6,∴DN=EC.∵△DEM是等边三角形,∴DE=EM,∠DEM=60°.∵∠NDE+∠NED=90°,∠NED+∠MEC=180°﹣30°﹣60°=90°,∴∠NDE=∠MEC.在△DNE和△ECM中,∵DN ECNDE CEMDE EM=⎧⎪∠=∠⎨⎪=⎩,∴△DNE≌△ECM,∴∠DNE=∠ECM=90°,∴M点运动的路径为过点C垂直于BC的一条线段.当t=3时,E在点B,D在AB的中点,此时CM=EN=CD=BC•si n B=6×32=33;当t=6时,E在点C,D在点A,此时点M在点C;∴当3≤t≤6时,M点所经历的路径长为33.【点睛】本题主要考查了等边三角形的判定与性质、全等三角形的判定与性质、锐角三角函数、特殊角的三角函数值、勾股定理、三角形外角的性质等知识,综合性比较强,有一定的难度;构造旋转型全等三角形(由共顶点的两个等边三角形组成)是解决第1(2)小题的关键,证到∠ECM=90°是解决第(2)小题的关键.。

2020-2021全国各地中考数学分类:直角三角形的边角关系综合题汇编附答案

2020-2021全国各地中考数学分类:直角三角形的边角关系综合题汇编附答案

2020-2021全国各地中考数学分类:直角三角形的边角关系综合题汇编附答案一、直角三角形的边角关系1.如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【答案】6.4米【解析】解:∵底部B点到山脚C点的距离BC为6 3 米,山坡的坡角为30°.∴DC=BC•cos30°=3=⨯=米,639∵CF=1米,∴DC=9+1=10米,∴GE=10米,∵∠AEG=45°,∴AG=EG=10米,在直角三角形BGF中,BG=GF•tan20°=10×0.36=3.6米,∴AB=AG-BG=10-3.6=6.4米,答:树高约为6.4米首先在直角三角形BDC中求得DC的长,然后求得DF的长,进而求得GF的长,然后在直角三角形BGF中即可求得BG的长,从而求得树高2.如图,在平行四边形ABCD中,平分,交于点,平分,交于点,与交于点,连接,.(1)求证:四边形是菱形;(2)若,,,求的值.【答案】(1)证明见解析(2)【解析】试题分析:(1)根据AE平分∠BAD、BF平分∠ABC及平行四边形的性质可得AF=AB=BE,从而可知ABEF为平行四边形,又邻边相等,可知为菱形(2)由菱形的性质可知AP的长及∠PAF=60°,过点P作PH⊥AD于H,即可得到PH、DH 的长,从而可求tan∠ADP试题解析:(1)∵AE平分∠BAD BF平分∠ABC∴∠BAE=∠EAF ∠ABF=∠EBF∵AD//BC∴∠EAF=∠AEB ∠AFB=∠EBF∴∠BAE=∠AEB ∠AFB=∠ABF∴AB=BE AB=AF∴AF=AB=BE∵AD//BC∴ABEF为平行四边形又AB=BE∴ABEF为菱形(2)作PH⊥AD于H由∠ABC=60°而已(1)可知∠PAF=60°,PA=2,则有PH=,AH=1,∴DH=AD-AH=5∴tan∠ADP=考点:1、平行四边形;2、菱形;3、直角三角形;4、三角函数3.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.(1)求证:△ABC∽△BCD;(2)求x的值;(3)求cos36°-cos72°的值.【答案】(1)证明见解析;(215-+;(3758+【解析】试题分析:(1)由等腰三角形ABC 中,顶角的度数求出两底角度数,再由BD 为角平分线求出∠DBC 的度数,得到∠DBC=∠A ,再由∠C 为公共角,利用两对角相等的三角形相似得到三角形ABC 与三角形BCD 相似;(2)根据(1)结论得到AD=BD=BC ,根据AD+DC 表示出AC ,由(1)两三角形相似得比例求出x 的值即可;(3)过B 作BE 垂直于AC ,交AC 于点E ,在直角三角形ABE 和直角三角形BCE 中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果. 试题解析:(1)∵等腰△ABC 中,AB=AC ,∠BAC=36°, ∴∠ABC=∠C=72°, ∵BD 平分∠ABC , ∴∠ABD=∠CBD=36°, ∵∠CBD=∠A=36°,∠C=∠C , ∴△ABC ∽△BCD ; (2)∵∠A=∠ABD=36°, ∴AD=BD , ∵BD=BC , ∴AD=BD=CD=1,设CD=x ,则有AB=AC=x+1, ∵△ABC ∽△BCD ,∴AB BC BD CD =,即111x x +=, 整理得:x 2+x-1=0,解得:x 115-+,x 215--(负值,舍去),则15-+; (3)过B 作BE ⊥AC ,交AC 于点E ,∵BD=CD ,∴E 为CD 中点,即DE=CE=15-+, 在Rt △ABE 中,cosA=cos36°=151514151AE AB -+++==-++, 在Rt △BCE 中,cosC=cos72°=1515414EC BC -+-+==, 则cos36°-cos72°=51+=-154-+=12. 【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.4.如图,PB 为☉O 的切线,B 为切点,过B 作OP 的垂线BA ,垂足为C ,交☉O 于点A ,连接PA ,AO.并延长AO 交☉O 于点E ,与PB 的延长线交于点D .(1)求证:PA 是☉O 的切线; (2)若=,且OC=4,求PA 的长和tan D 的值.【答案】(1)证明见解析;(2)PA =3,tan D=.【解析】试题分析: (1)连接OB ,先由等腰三角形的三线合一的性质可得:OP 是线段AB 的垂直平分线,进而可得:PA=PB ,然后证明△PAO ≌△PBO ,进而可得∠PBO=∠PAO ,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA 是⊙O 的切线;(2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值.试题解析:(1)连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)∴∠PBO=∠PAO,PB=PA,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连接BE,∵,且OC=4,∴AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO=,∴AE=2OA=4,OB=OA=2,在Rt△APO中,∵AC⊥OP,∴AC2=OC PC,解得:PC=9,∴OP=PC+OC=13,在Rt△APO中,由勾股定理得:AP==3.易证,所以,解得,则,在中,.考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.解直角三角形.5.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若314cos,53BAD BE∠==,求OE的长.【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =356.【解析】试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线;(2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.试题解析:(1)DE为⊙O的切线,理由如下:连接OD,BD,∵AB为⊙O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE=BC,∴∠C=∠CDE,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,∴∠C+∠A=90°,∴∠ADO+∠CDE=90°,∴∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为⊙O的切线;(2)∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴,即BC2=AC•CD.∴BC2=2CD•OE;(3)解:∵cos∠BAD=,∴sin∠BAC=,又∵BE=,E是BC的中点,即BC=,∴AC=.又∵AC=2OE,∴OE=AC=.考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数6.如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A的仰角为30°,再向主教学楼的方向前进24米,到达点E处(C,E,B三点在同一直线上),又测得主教学楼顶端A的仰角为60°,已知测角器CD的高度为1.6米,请计算主教学楼AB的高度.(3≈1.73,结果精确到0.1米)【答案】22.4m【解析】 【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造等量关系,进而求解. 【详解】解:在Rt △AFG 中,tan ∠AFG =3,∴FG =tan 3AG AFG =∠,在Rt △ACG 中,tan ∠ACG =AGCG, ∴CG =tan AGACG ∠=3AG .又∵CG ﹣FG =24m ,即3AG ﹣3=24m , ∴AG =123m , ∴AB =123+1.6≈22.4m .7.如图,已知,在O e 中,弦AB 与弦CD 相交于点E ,且»»AC BD=. (1)求证:AB CD =;(2)如图,若直径FG 经过点E ,求证:EO 平分AED ∠;(3)如图,在(2)的条件下,点P 在»CG上,连接FP 交AB 于点M ,连接MG ,若AB CD ⊥,MG 平分PMB ∠,2MG =,FMG ∆的面积为2,求O e 的半径的长.【答案】(1)见解析;(2)见解析;(3)O e 10. 【解析】 【分析】(1) 利用相等的弧所对的弦相等进行证明;(2)连接AO 、DO ,过点O 作OJ AB ⊥于点J ,OQ CD ⊥于点Q ,证明AOJ DOQ ∆≅∆得出OJ OQ =,根据角平分线的判定定理可得结论;(3)如图,延长GM 交O e 于点H ,连接HF ,求出2FH =,在HG 上取点L ,使HL FH =,延长FL 交O e 于点K ,连接KG ,求出22FL =HM n =,则有22LK KG ==,2222FK FL LK n =+=,再证明KFG EMG HMF ∠=∠=∠,从而得到tan tan KFG HMF ∠=∠,KG HFFK HM=,再代入LK 和FK 的值可得n=4,再求得FG 10. 【详解】解:(1)证明:∵»»AC BD =,∴»»»»AC CBBD CB +=+, ∴»»AB CD =, ∴AB CD =.(2)证明:如图,连接AO 、DO ,过点O 作OJ AB ⊥于点J ,OQ CD ⊥于点Q ,∴90AJO DQO ∠=∠=︒,1122AJ AB CD DQ ===, 又∵AO DO =, ∴AOJ DOQ ∆≅∆, ∴OJ OQ =,又∵OJ AB ⊥,OQ CD ⊥, ∴EO 平分AED ∠.(3)解:∵CD AB ⊥,∴90AED ∠=︒,由(2)知,1452AEF AED ∠=∠=︒, 如图,延长GM 交O e 于点H ,连接HF ,∵FG 为直径,∴90H ∠=︒,122MFG S MG FH ∆=⨯⋅=, ∵2MG =,∴2FH =,在HG 上取点L ,使HL FH =,延长FL 交O e 于点K ,连接KG , ∴45HFL HLF ∠=∠=︒,45KLG HLF ∠=∠=︒, ∵FG 为直径,∴90K ∠=︒,∴9045KGL KLG KLG ∠=︒-∠=︒=∠,∴LK KG =, 在Rt FHL ∆中,222FL FH HL =+,22FL = 设HM n =,2HL MG ==,∴GL LM MG HL LM HM n =+=+==, 在Rt LGK ∆中,222LG LK KG =+,22LK KG n ==,2222FK FL LK n =+=+, ∵GMP GMB ∠=∠,∵PMG HMF ∠=∠,∴HMF GMB ∠=∠, ∵1452AEF AED ∠=∠=︒, ∴45MGF EMG MEF ∠+∠=∠=︒,45MGF KFG HLF ∠+∠=∠=︒, ∴KFG EMG HMF ∠=∠=∠, ∴tan tan KFG HMF ∠=∠,∴KG HFFK HM=,∴2222222n nn =+,4n =, ∴6HG HM MG =+=,在Rt HFG ∆中,222FG FH HG =+,210FG =,10FO =. 即O e 的半径的长为10. 【点睛】考查了圆的综合题,本题是垂径定理、圆周角定理以及三角函数等的综合应用,适当的添加辅助线是解题的关键.8.如图,在正方形ABCD 中,E 是边AB 上的一动点,点F 在边BC 的延长线上,且CF AE =,连接DE ,DF ,EF . FH 平分EFB ∠交BD 于点H .(1)求证:DE DF ⊥; (2)求证:DH DF =:(3)过点H 作HM EF ⊥于点M ,用等式表示线段AB ,HM 与EF 之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析. 【解析】 【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HNBH HN HM ===︒.由22cos 45DFEF DF DH ===︒,得22EF AB HM =-.【详解】(1)证明:∵四边形ABCD 是正方形, ∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒. ∴90EAD FCD ∠=∠=︒. ∵CF AE =。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020中考数学专题练习:三角形的边角关系
(含答案)
1.已知在△ABC中,∠A=70°-∠B,则∠C=()
A.35° B.70° C.110° D.140°
2.已知如图1中的两个三角形全等,则角α的度数是()
图1
A.72° B.60° C.58° D.50°
3.如图2,∠A,∠1,∠2的大小关系是()
A.∠A>∠1>∠2 B.∠2>∠1>∠A
C.∠A>∠2>∠1 D.∠2>∠A>∠1
图2
图3
4.王师傅用四根木条钉成一个四边形木架,如图3.要使这个木架不变形,他至少还要再钉上几根木条()
A.0根B.1根C.2根D.3根
5.下列命题中,真命题的是()
A.周长相等的锐角三角形都全等
B.周长相等的直角三角形都全等
C.周长相等的钝角三角形都全等
D.周长相等的等腰直角三角形都全等
6.小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是()
A B C D
7.不一定在三角形内部的线段是()
A.三角形的角平分线B.三角形的中线
C.三角形的高D.三角形的中位线
8.用直尺和圆规作一个角的平分线的示意图如图3所示,则能说明∠AOC =∠BOC的依据是()
A.SSS
B.ASA
C.AAS
D.角平分线上的点到角两边的距离相等
图3
图4
9.如图4,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,则AE=________cm.
10.如图5,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE.
图5
11.如图6,点A,B,D,E在同一直线上,AD=EB,BC∥DF,∠C=∠F.求证:AC=EF.
图6
12.如图7,在△AEC和△DFB中,∠E=∠F,点A,B,C,D在同一直线上,有如下三个关系式:①AE∥DF;②AB=CD;③CE=BF.
(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果⊗,⊗,那么⊗”);
(2)选择(1)中你写出的一个命题,说明它正确的理由.
图7
13.如图8所示,两根旗杆间相距12 m,某人从点B沿BA走向点A,一定时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM,已知旗杆AC的高为3 m,该人的运动速度为1 m/s,求这个人运动了多长时间?
图8
14.如图9所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B,D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为________(提示:∠EAD+∠F AB=90°).
图9
图10
图11
15.如图10,在四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=30°,则∠PFE的度数是() A.15° B.20° C.25° D.30°
16.如图11,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为________.
17.(1)如图12,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.
①当点D在AC上时,如图12(1),线段BD、CE有怎样的数量关系和位置关系?直接写出你猜想的结论;
②将图12(1)中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图12(2),线段BD,CE有怎样的数量关系和位置关系?请说明理由.
(2)当△ABC和△ADE满足下面甲、乙、丙中的哪个条件时,能使线段BD,CE在(1)中的位置关系仍然成立?不必说明理由.
甲:AB∶AC=AD∶AE=1,∠BAC=∠DAE≠90°;
乙:AB∶AC=AD∶AE≠1,∠BAC=∠DAE=90°;
丙:AB∶AC=AD∶AE≠1,∠BAC=∠DAE≠90°.
图12
18.如图13(1),l1,l2,l3,l4是一组平行线,相邻两条平行线间的距离都是1个单位长度,正方形ABCD的四个顶点A,B,C,D都在这些平行线上.过点A作AF⊥l3于点F,交l2于点H,过点C作CE⊥l2于点E,交l3于点G.
(1)求证:△ADF≌△CBE;
(2)求正方形ABCD的面积;
(3)如图13(2),如果四条平行线不等距,相邻的两条平行线间的距离依次为h1,h2,h3,试用h1,h2,h3表示正方形ABCD的面积S.
图13
参考答案
1.C 2.D 3.B 4.B 5.D 6.B 7.C 8.A 9.3 10.证明:∵BD ⊥AC ,CE ⊥AB , ∴∠ADB =∠AEC =90°. 在△ABD 和△ACE 中,
⎩⎨⎧
∠A =∠A ,
∠ADB =∠AEC ,AB =AC ,
∴△ABD ≌△ACE (AAS).∴BD =CE . 11.证明:∵AD =EB ,
∴AD -BD =EB -BD ,即AB =ED . 又∵BC ∥DF ,∴∠CBD =∠FDB . ∴∠ABC =∠EDF .
又∵∠C =∠F ,∴△ABC ≌△EDF .∴AC =EF .
12.解:(1)如果①②,那么③;如果①③,那么②; (2)若选择如果①②,那么③. 证明:∵AE ∥DF ,∴∠A =∠D .
∵AB =CD ,∴AB +BC =BC +CD ,即AC =DB . 在△ACE 和△DBF 中,
⎩⎨⎧ ∠E =∠F ,∠A =∠D ,AC =DB ,
∴△ACE ≌△DBF (AAS).∴CE =BF . 若选择如果①③,那么②.
证明:∵AE ∥DF ,∴∠A =∠D . 在△ACE 和△DBF 中,
⎩⎨⎧
∠E =∠F ,∠A =∠D ,EC =FB ,
∴△ACE ≌△DBF (AAS).
∴AC =DB .∴AC -BC =DB -BC ,即AB =CD .
13.解:∵∠CMD =90°,∴∠CMA +∠DMB =90°. 又∵∠CAM =90°,∴∠CMA +∠ACM =90°. ∴∠ACM =∠DMB . 又∵CM =MD ,
∴Rt △ACM ≌Rt △BMD ,∴AC =BM =3. ∴他到达点M 时,运动时间为3÷1=3(s). 答:这个人运动了3 s. 14.13 15.D
16.7 解析:因为△ABC 折叠,使点C 与点A 重合,折痕为DE ,所以EC =AE ,故△ABE 的周长为AB +BE +AE =AB +BE +EC =AB +BC =3+4=7.
17.解:(1)①结论:BD =CE ,BD ⊥CE . ②结论:BD =CE ,BD ⊥CE .
理由如下:∵∠BAC =∠DAE =90°,
∴∠BAD -∠DAC =∠DAE -∠DAC ,即∠BAD =∠CAE . 在△ABD 与△ACE 中,
∵⎩⎨⎧
AB =AC ,
∠BAD =∠CAE ,AD =AE ,
∴△ABD ≌△ACE .∴BD =CE .
延长BD 交AC 于点F ,交CE 于点H . 在△ABF 与△HCF 中,
∵∠ABF =∠HCF ,∠AFB =∠HFC , ∴∠CHF =∠BAF =90°.∴BD ⊥CE .
(2)结论:乙.AB ∶AC =AD ∶AE ,∠BAC =∠DAE =90°. 18.(1)证明:在Rt △AFD 和Rt △CEB 中, ∵AD =BC ,AF =CE ,∴Rt △AFD ≌Rt △CEB .
(2)解:∵∠ABH +∠CBE =90°,∠ABH +∠BAH =90°,∴∠CBE =∠BAH . 又∵AB =BC ,∠AHB =∠CEB =90°, ∴△ABH ≌△BCE .
同理,得△ABH ≌△BCE ≌△CDG ≌△DAF . ∴S 正方形ABCD =4S △ABH +S 正方形HEGF
=4×1
2×2×1+1×1 =5.
(3)解:由(1),知△AFD ≌△CEB ,故h 1=h 3, 由(2),知△ABH ≌△BCE ≌△CDG ≌△DAF , ∴S 正方形ABCD =4S △ABH +S 正方形HEGF
=4×1
2(h 1+h 2)·h 1+h 22
=2h 21+2h 1h 2+h 2
2.。

相关文档
最新文档