五年级奥数带余除法(一)教师版

合集下载

小学五年级奥数题目及答案:带余除法

小学五年级奥数题目及答案:带余除法

小学五年级奥数题目及答案:带余除法教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.
带余除法
69、90和_5被某个正整数N除时,余数相同,试求N的值。

分析在解答此题之前,我们先来看下面的例子:_除以2余1,_除以2余1,即_和_被2除余数相同(余数都是1)。

但是_-_能被2整除.由此我们可以得到这样的结论:如果两个整数a和b,均被自然数m除,余数相同,那么这两个整数之差(大-小)一定能被m整除。

反之,如果两个整数之差恰被m整除,那么这两个整数被m除的余数一定相同。

解答:
∵三个整数被N除余数相同,
∴N|(90-69),即N|_,N|(_5-90),即N|35,
∴N是_和35的公约数。

∵要求N的值,
∴N是_和35的公约数。

∵_和35的公约数是7,
∴N是7。

小学五年级奥数题目及答案:带余除法.到电脑,方便收藏和打印:。

【寒假奥数专题】精编人教版小学数学5年级上册带余除法(试题)含答案与解析

【寒假奥数专题】精编人教版小学数学5年级上册带余除法(试题)含答案与解析

寒假奥数专题:带余除法(试题)一.选择题(共8小题)1.有四个自然数A、B、C、D,它们的和不超过400,并且A除以B商是5余5,A除以C 商是6余6,A除以D商是7余7。

那么,这四个自然数的和是()A.216B.108C.314D.3482.某S为自然数,被10除余数是9,被9除余数是8,被8除余数是7,已知100<S<1000,请问这样的数有几个?()A.5B.4C.3D.23.一个数被7除,余数是3,该数的3倍被7除,余数是()A.3B.6C.2D.14.某民兵连在操场上列队,只知道人数在90到110人之间,且这些人排成3列无余数,排成5列不足2人,排成7列不足4人,则共有民兵()人.A.108B.102C.107D.1095.有一堆苹果,2个2个地数少1个,3个3个地数余1个,4个4个地数余1个,5个5个地数却少4个,这堆苹果最少有()个.A.13B.19C.61D.1216.两个自然数同时除以13,所得的余数分别是6和9,它们之积除以13的余数为()A.9B.7C.6D.27.一个数被7除,余数是6,这个数的6倍被7除时余数是()A.1B.3C.5D.78.算式2020×2020+2021×2021除以31的余数是()A.15B.29C.23D.30二.填空题(共7小题)9.一本书如果每天读80页,那么4天读不完,5天又有余;如果每天读90页,那么3天读不完,4天又有余;如果每天读N页,恰好N(N是自然数)天读完,这本书是页.10.某小学四、五、六年级学生是星期六下午参加劳动,其中一个班学生留下来打扫环境卫生,一部分学生到建筑工地搬砖,其余的学生到校办工厂劳动,到建筑工地搬砖是到校办工厂劳动人数的2倍.各个班级参加劳动人数如下表.留下来打扫卫生的是班.班级四(1)四(2)四(3)四(4)五(1)五(2)五(3)五(4)六(1)六(2)六(3)人数5554575554515453515248 11.37249和278的积被7除,余数是.12.有一个自然数,用它分别去除25,38,43,所得三个余数的和是18,这个自然数是.13.1+2+3+……+3006的和除以7的余数是。

小学数学五年级《带余数的除法》奥数教材教案

小学数学五年级《带余数的除法》奥数教材教案

小学五年级奥数教材:带余数的除法前面我们讲到除法中被除数和除数的整除问题.除此之外,例如:16÷3=5…1,即16=5×3+1.此时,被除数除以除数出现了余数,我们称之为带余数的除法。

一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r<b,使得a=b×q+r。

当r=0时,我们称a能被b整除。

当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商).用带余除式又可以表示为a÷b=q…r,0≤r<b。

例1 一个两位数去除251,得到的余数是41.求这个两位数。

分析这是一道带余除法题,且要求的数是大于41的两位数.解题可从带余除式入手分析。

解:∵被除数÷除数=商…余数,即被除数=除数×商+余数,∴251=除数×商+41,251-41=除数×商,∴210=除数×商。

∵210=2×3×5×7,∴210的两位数的约数有10、14、15、21、30、35、42、70,其中42和70大于余数41.所以除数是42或70.即要求的两位数是42或70。

例2 用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?解:∵被除数=除数×商+余数,即被除数=除数×40+16。

由题意可知:被除数+除数=933-40-16=877,∴(除数×40+16)+除数=877,∴除数×41=877-16,除数=861÷41,除数=21,∴被除数=21×40+16=856。

答:被除数是856,除数是21。

例3 某年的十月里有5个星期六,4个星期日,问这年的10月1日是星期几?解:十月份共有31天,每周共有7天,∵31=7×4+3,∴根据题意可知:有5天的星期数必然是星期四、星期五和星期六。

五年级的奥数题带余数除法

五年级的奥数题带余数除法

五年级的奥数题:带余数除法五年级的奥数题:带余数除法1带余数除法问题:一个两位数去除251,得到的余数是41.求这个两位数。

带余数除法答案:分析:这是一道带余除法题,且要求的数是大于41的两位数。

解题可从带余除式入手分析。

解:∵被除数÷除数=商…余数,带余数除法答案:即被除数=除数×商+余数,∴251=除数×商+41,251-41=除数×商,∴210=除数×商。

∵210=2×3×5×7,∴210的两位数的约数有10、14、15、21、30、35、42、70,其中42和70大于余数41.所以除数是42或70.即要求的两位数是42或70.五年级的奥数题:带余数除法2例如:16÷3=5…1,即16=5×3+1.此时,被除数除以除数出现了余数,我们称之为带余数的除法。

一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q 和r,0≤r<b,使得a=b×q+r。

当r=0时,我们称a能被b整除。

当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b 的不完全商(亦简称为商).用带余除式又可以表示为a÷b=q…r,0≤r<b。

例1 一个两位数去除251,得到的余数是41.求这个两位数。

分析这是一道带余除法题,且要求的数是大于41的两位数.解题可从带余除式入手分析。

解:∵被除数÷除数=商…余数,即被除数=除数×商+余数,∴251=除数×商+41,251-41=除数×商,∴210=除数×商。

∵210=2×3×5×7,∴210的两位数的约数有10、14、15、21、30、35、42、70,其中42和70大于余数41.所以除数是42或70.即要求的两位数是42或70。

例2 用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?解:∵被除数=除数×商+余数,即被除数=除数×40+16。

2023五年级秋季奥数材料第十五讲带余除法课件通用版

2023五年级秋季奥数材料第十五讲带余除法课件通用版
1、713,1103,830,947 被某一自然数除,所得余数相同(不为零),求除数。
2、三个数 23、51、72 各除以大于 1 的同一个自然数,得到同一个余数,那么这 个除数是多少?
3、有三个自然数 a、b、c,已知 b 除以 a,商 3 余 3;c 除以 a,商 9 余 11。那 么 c 除以 b,得到的余数是多少?
5、某班同学排队,如果每队3人,就多出1人;每排5人,就多出3人;每排7人, 就多出2人。这个班至少有多少同学?
6、被 2,3,5 除都余 1,且不等于 1 的最小整数是多少?
7、已知一个两位数除 1477,余数是 49。那么满足这样条件的所有两位数有几个?
2、已知 2008 被一些自然数除,得到的余数都是 10,这些自然数共有多少个?
3、甲、乙两人做同一个数的带余除法,甲将其除以 8,乙将其除以 9,甲所得 的商与乙所得的余数之和为 13,求甲所得的余数。
例 5:如果某数除 492,2241,3195 都余 15,那么这个数是多少?
能力冲浪5
随堂练习
1、同学们做操,无论排成 6 人一行,8 人一行,10 人一行,最后一行都只站 3 人。 至少有多少人做操?
2、一个数除以 5 余 4,除以 9 余 7。这个数最小是多少?
3、一个整数,除以 8 缺 3,除以 12 余 5,除以 18 余 5。这个数最小是多少?
4、一个数,除以 3 余 2,除以 5 余 4,除以 7 余 3,这个数最小是多少?
3、一位妇女提一篮鸡蛋,三个三个地数余 1 个,五个五个地数余 2 个,七个七 个地数余 6 个,这篮鸡蛋至少有多少个?
例3:一个自然数,除以4余2,除以10余8,除以25余23。这个数最小是多少?
能力冲浪3

(小学奥数)带余除法(一)

(小学奥数)带余除法(一)

1. 能夠根據除法性質調整餘數進行解題2. 能夠利用餘數性質進行相應估算3. 學會多位數的除法計算4. 根據簡單操作進行找規律計算帶餘除法的定義及性質 1、定義:一般地,如果a 是整數,b 是整數(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r ,0≤r <b ;我們稱上面的除法算式為一個帶餘除法算式。

這裏:(1)當0r =時:我們稱a 可以被b 整除,q 稱為a 除以b 的商或完全商(2)當0r ≠時:我們稱a 不可以被b 整除,q 稱為a 除以b 的商或不完全商 一個完美的帶餘除法講解模型:如圖這是一堆書,共有a 本,這個a 就可以理解為被除數,現在要求按照b 本一捆打包,那麼b 就是除數的角色,經過打包後共打包了c 捆,那麼這個c 就是商,最後還剩餘d 本,這個d 就是餘數。

這個圖能夠讓學生清晰的明白帶餘除法算式中4個量的關係。

並且可以看出知識點撥教學目標5-5-1.帶餘除法(一)2、餘數的性質⑴被除數=除數⨯商+餘數;除數=(被除數-餘數)÷商;商=(被除數-餘數)÷除數;⑵餘數小於除數.3、解題關鍵理解餘數性質時,要與整除性聯繫起來,從被除數中減掉餘數,那麼所得到的差就能夠被除數整除了.在一些題目中因為餘數的存在,不便於我們計算,去掉餘數,回到我們比較熟悉的整除性問題,那麼問題就會變得簡單了.例題精講除法公式的應用【例 1】某數被13除,商是9,餘數是8,則某數等於。

【例 2】一個三位數除以36,得餘數8,這樣的三位數中,最大的是__________。

【巩固】計算口÷△,結果是:商為10,餘數為▲。

如果▲的值是6,那麼△的最【例 3】除法算式□□=208中,被除數最小等於。

【例 4】71427和19的積被7除,餘數是幾?【例 5】1013除以一個兩位數,餘數是12.求出符合條件的所有的兩位數.【巩固】一個兩位數除310,餘數是37,求這樣的兩位數。

五年级奥数-带余除法

五年级奥数-带余除法

带余除法【基本形式:)⋅⋅⋅⋅⋅⋅<÷】a<=c0(,bbdd例1、被除数、除数、商与余数之和是1100,已知余数是9,商是18,求被除数和除数。

巩固1、用一个两位数除961,余数为36,求这个两位数。

巩固2、两个数相除,商为8,余数为16,被除数、除数与商的和是555,求除数。

例2、求444……4被6除的余数。

100个6巩固3、求111……11被41除所得的余数。

2002个1【余数的性质】1、a与b的和(或差)除以c的余数,等于a,b分别除以c的余数的和(或差);2、a与b的乘积除以c的余数,等于a,b分别除以c的余数之积。

如:82÷6=13…4,56÷6=9…2可得:(82+56)÷6=24…0,(4+2)÷6=1…0;(82-56)÷6=4…2,4-2=2;(82×56)÷6=765...2,(4×2)÷6=1 (2)例3、求437×309×1993被7除的余数。

巩固4、求16×941×1611被7除的余数。

【同余问题】一、定义:两个自然数a,b,同除以自然数m,所得的余数相同,称作a 与b 对于模m 同余,记作a ≡b(mod m)。

如:17÷5=3…2;32÷5=6…2,即17与32对于模5同余,记作17≡32(mod 5).二、性质:1、传递性:若a ≡b(mod m),b ≡c(mod m)⇒a ≡c(mod m);2、可乘性:若a ≡b(mod m)⇒ac ≡bc(mod m);若a ≡b(mod m),c ≡d(mod m)⇒ac ≡bd(mod m);3、乘方性:若a ≡b(mod m)⇒n n b a ≡(mod m)例4、判定47和68,47和37对于模7是否同余。

例5、求2080123378115++除以11的余数。

数学奥数通用版上册五年级带余除法课件完整版

数学奥数通用版上册五年级带余除法课件完整版
• 2、当题目中所给的条件与被除数,除数, 商及余数有关时,常常可以考虑利用关系 式被除数=除数×商+余数进行分析和解答
简单应用(2) 利用余数解决排序问题
• 例1、如上图,含有红蓝两种颜色的一串珠 子按规律穿在一条细丝线上,你能告诉大 家第2011个珠子的颜色吗?
• 分析:所穿珠子的规律 • 解:这串珠子的规律是每九个为一个循环,
• 被除数、除数、商、余数之间的关系
被除数=除数×商+余数
简单应用(1) 被除数=除数×商+余数的应用
• 例1、一个数除以26,商为15,余数是12,求这个数
• 解:∵被除数=除数×商+余数
∴被除数=26×15+12= 390+12=402
• 例2、127除以一个数,商和余数分别是6和7,求这个 数
补充作业
• 1、某年的十月份有5个星期二,4个星期三, 这年的十月一日是星期几?
• 解:十月份有31天,31÷7=4……3,由题 意知,这一月的31日是星期二,有五天的 是星期日、星期一,星期二,所以这一年 的十月一日是星期日。
• 2、某年的二月份有5个星期一,4个星期二, 二月一是星期几?
• 分析:如果是平年,二月份有28天,28÷7 =4。都是4天,由题意知,这一年是闰年, 有29天,29÷7=4……1,因此,二月一是 星期一。
15÷3=5 、 15÷5=3、 15=3×5 • 即 被除数÷除数=商 被除数÷商=除数 • 被除数=除数×商
带余除法的意义
• 做除法16÷3你发现它与15÷3有什么不同:
16÷3=5……1 即16=3×5+1 ,此时被除
数除以除数出现了余数,我们把这种除法
叫做
带。余除法

五年级奥数题及答案-带余除法

五年级奥数题及答案-带余除法

五年级奥数题及答案-带余除法
导语:带余除法这样的题是奥数中的重难点,同学们一定要认真对待哦!这是小编为同学们准备的奥数练习。

69、90和125被某个正整数N除时,余数相同,试求N的最大值。

答案与解析:在解答此题之前,我们先来看下面的例子:15除以2余1,19除以2余1,即15和19被2除余数相同(余数都是1)。

但是19-15能被2整除.由此我们可以得到这样的结论:如果两个整数a和b,均被自然数m除,余数相同,那么这两个整数之差(大-小)一定能被m整除。

反之,如果两个整数之差恰被m整除,那么这两个整数被m除的余数一定相同。

解答:∵三个整数被N除余数相同,
∴N|(90-69),即N|21,N|(125-90),即N|35,
∴N是21和35的公约数。

∵要求N的最大值,
∴N是21和35的最大公约数。

∵21和35的最大公约数是7,
∴N最大是7。

五年级奥数知识讲义-余数问题(一)

五年级奥数知识讲义-余数问题(一)

在整数的除法中,只有能整除与不能整除两种情况,当不能整除时,就产生余数,所以余数问题在小学数学中非常重要。

余数基本关系式:被除数÷除数=商……余数(0≤余数<除数)余数基本恒等式:被除数=除数×商+余数知识梳理1. 一般地,如果是整数,是整数(不为0),若有,也就是,,我们称上面的除法算式为一个带余除法算式。

2.与的和除以c的余数,等于a、b分别除以c的余数之和,当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。

3. a与b的乘积除以c的余数,等于a、b分别除以c的余数的积,当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。

例1一串数1、2、4、7、11、16、22、29、……这串数的组成规律为第2个数比第1个数多1;第3个数比第2个数多2;第4个数比第3个数多3;依此类推,那么这串数左起第1992个数除以5的余数是_____。

分析与解:设这串数为a1、a2、a3、…、a1992、…,依题意知a=11a=1+12a=1+1+23a=1+1+2+34a=1+1+2+3+45……a=1+1+2+3+…+1991=1+996×19911992因为996÷5=199……1,1991÷5=398……1,所以996×1991的积除以5余数为1,1+996×1991除以5的余数是2。

因此,这串数左起第1992个数除以5的余数是2。

例2除以13所得的余数是_____。

分析与解:因为222222=2×111111=2×111×1001=2×111×7×11×13 所以222222能被13整除。

又因为2000=6×333+2,=,22÷13=1……9,所以要求的余数是9。

例3有一个自然数,用它分别去除63、90、130都有余数,三个余数的和是25。

小学奥数余数问题完整版教案带解析和答案

小学奥数余数问题完整版教案带解析和答案

⼩学奥数余数问题完整版教案带解析和答案数论问题之余数问题教学⽬标余数问题是数论知识板块中另⼀个内容丰富,题⽬难度较⼤的知识体系,也是各⼤杯赛⼩升初考试必考的奥数知识点,所以学好本讲对于学⽣来说⾮常重要。

余数问题主要包括了带余除法的定义,三⼤余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应⽤。

三⼤余数定理:1、余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和⽐除数⼤时,所求的余数等于余数之和再除以c的余数。

例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数,即2.2、余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

当余数的和⽐除数⼤时,所求的余数等于余数之积再除以c的余数。

例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.3.同余定理若两个整数a、b被⾃然数m除有相同的余数,那么称a、b对于模m同余,⽤式⼦表⽰为:a ≡b ( mod m ),左边的式⼦叫做同余式。

同余式读作:a同余于b,模m。

由同余的性质,我们可以得到⼀个⾮常重要的推论:若两个数a,b除以同⼀个数m得到的余数相同,则a,b的差⼀定能被m整除⽤式⼦表⽰为:如果有a≡b ( mod m ),那么⼀定有a-b=mk,k是整数,即m|(a-b)三、弃九法原理⽽我们在求⼀个⾃然数除以9所得的余数时,常常不⽤去列除法竖式进⾏计算,只要计算这个⾃然数的各个位数字之和除以9的余数就可以了,在算的时候往往就是⼀个9⼀个9的找并且划去,所以这种⽅法被称作“弃九法”。

小学五年级奥数(上)第四讲带余除法共42页文档

小学五年级奥数(上)第四讲带余除法共42页文档
小学五年级奥数(上)第四讲带余除法
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
60、人民的幸福是至高无个的法。— —西塞 罗
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
Hale Waihona Puke xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子

五年级奥数余数性质(一)教师版

五年级奥数余数性质(一)教师版

1. 五年级奥数余数性质(一)教师版2. 理解弃9法,并运用其解题一、三大余数定理:1.余数的加法定理a 与b 的和除以c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。

例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a 与b 的差除以c 的余数,等于a ,b 分别除以c 的余数之差。

例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2.当余数的差不够减时时,补上除数再减。

例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a 与b 的乘积除以c 的余数,等于a ,b 分别除以c 的余数的积,或者这个积除以c 所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

当余数的和比除数大时,所求的余数等于余数之积再除以c 的余数。

例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.乘方:如果a 与b 除以m 的余数相同,那么n a 与n b 除以m 的余数也相同.二、弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234189818922678967178902889923++++=1234除以9的余数为1知识点拨 教学目标5-5-3.余数性质(三)1898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。

带余除法 教师版

带余除法 教师版

带余除法例1 5122除以一个两位数得到的余数是66,求这个两位数。

分析与解:由性质(2)知,除数×商=被除数-余数。

5122-66=5056,5056应是除数的整数倍。

将5056分解质因数,得到5056=26×79。

由性质(1)知,除数应大于66,再由除数是两位数,得到除数在67~99之间,符合题意的5056的约数只有79,所以这个两位数是79。

例2被除数、除数、商与余数之和是2143,已知商是33,余数是52,求被除数和除数。

解:因为被除数=除数×商+余数=除数×33+52,被除数=2143-除数-商-余数=2143-除数-33-52=2058-除数,所以除数×33+52=2058-除数,所以除数=(2058-52)÷34=59,被除数=2058-59=1999。

例3甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数。

解:因为甲=乙×11+32,所以甲+乙=乙×11+32+乙=乙×12+32=1088,所以乙=(1088-32)÷12=88,甲=1088-乙=1000。

例4有一个整数,用它去除70,110,160得到的三个余数之和是50。

求这个数。

分析与解:先由题目条件,求出这个数的大致范围。

因为50÷3=16……2,所以三个余数中至少有一个大于16,推知除数大于16。

由三个余数之和是50知,除数不应大于70,所以除数在17~70之间。

由题意知(7+110+160)-50=290应能被这个数整除。

将290分解质因数,得到290=2×5×29,290在17~70之间的约数有29和58。

因为110÷58=1……52>50,所以58不合题意。

所求整数是29。

例5求478×296×351除以17的余数。

分析与解:先求出乘积再求余数,计算量较大。

小学奥数 带余除法(一) 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  带余除法(一) 精选练习例题 含答案解析(附知识点拨及考点)

1. 能够根据除法性质调整余数进行解题2. 能够利用余数性质进行相应估算3. 学会多位数的除法计算4. 根据简单操作进行找规律计算带余除法的定义及性质1、定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r ,0≤r <b ;我们称上面的除法算式为一个带余除法算式。

这里: (1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商 (2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商 一个完美的带余除法讲解模型:如图这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。

并且可以看出余数一定要比除数小。

2、余数的性质⑴ 被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数; ⑵ 余数小于除数. 3、解题关键知识点拨教学目标5-5-1.带余除法(一)理解余数性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.例题精讲除法公式的应用【例1】某数被13除,商是9,余数是8,则某数等于。

【考点】除法公式的应用【难度】1星【题型】填空【关键词】希望杯,四年级,复赛,第2题,5分【解析】125【答案】125【例2】一个三位数除以36,得余数8,这样的三位数中,最大的是__________。

【考点】除法公式的应用【难度】1星【题型】填空【关键词】希望杯,四年级,复赛,第3题【解析】因为最大的三位数为999,999362727÷=,所以满足题意的三位数最大为:36278980⨯+=【答案】980【巩固】计算口÷△,结果是:商为10,余数为▲。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.五年级奥数带余除法(一)教师版2.能够利用余数性质进行相应估算3.学会多位数的除法计算4.根据简单操作进行找规律计算带余除法的定义及性质1、定义:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。

这里:(1)当0r=时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。

并且可以看出余数一定要比除数小。

2、余数的性质⑴被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数;⑵余数小于除数.3、解题关键理解余数性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.除法公式的应用例题精讲知识点拨教学目标5-5-1.带余除法(一)【例1】某数被13除,商是9,余数是8,则某数等于。

【考点】除法公式的应用【难度】1星【题型】填空【关键词】希望杯,四年级,复赛,第2题,5分【解析】125【答案】125【例2】一个三位数除以36,得余数8,这样的三位数中,最大的是__________。

【考点】除法公式的应用【难度】1星【题型】填空【关键词】希望杯,四年级,复赛,第3题【解析】因为最大的三位数为999,999362727÷=,所以满足题意的三位数最大为:⨯+=36278980【答案】980【巩固】计算口÷△,结果是:商为10,余数为▲。

如果▲的值是6,那么△的最小值是_____。

【考点】除法公式的应用【难度】1星【题型】填空【关键词】希望杯,五年级,复赛,第4题,6分【解析】根据带余除法的性质,余数必须小于除数,则有△的最小值为7。

【答案】7【例3】除法算式÷□□=208中,被除数最小等于。

【考点】除法公式的应用【难度】1星【题型】填空【关键词】希望杯,4年级,初赛,4题【解析】本题的商和余数已经知道了,若想被除数最小,则需要除数最小即可,除数最小是+=,所以本题答案为:20×(8+1)+8=188.819【答案】188【例4】71427和19的积被7除,余数是几?【考点】除法公式的应用【难度】1星【题型】填空【关键词】华杯赛,初赛,第14题【解析】71427被7除,余数是6,19被7除,余数是5,所以71427×19被7除,余数就是6×5被7除所得的余数2。

【答案】2【例5】1013除以一个两位数,余数是12.求出符合条件的所有的两位数.【考点】除法公式的应用【难度】1星【题型】解答【解析】1013121001=⨯⨯,那么符合条件的所有的两位数有11,13,77,91,因-=,100171113为“余数小于除数”,所以舍去11,答案只有13,77,91。

【答案】13,77,91共三个【巩固】一个两位数除310,余数是37,求这样的两位数。

【考点】除法公式的应用【难度】1星【题型】解答【解析】本题为余数问题的基础题型,需要学生明白一个重要知识点,就是把余数问题---即“不整除问题”转化为整除问题。

方法为用被除数减去余数,即得到一个除数的倍数;或者是用被除数加上一个“除数与余数的差”,也可以得到一个除数的倍数。

本题中310-37=273,说明273是所求余数的倍数,而273=3×7×13,所求的两位数约数还要满足比37大,符合条件的有39,91.【答案】39或者97【巩固】在下面的空格中填上适当的数。

31247【考点】除法公式的应用 【难度】2星 【题型】填空【关键词】走美杯,3年级,决赛,第10题,12分【解析】本题的被除数、商和余数已经给出,根据除法的计算公式:被除数÷除数=商余数,逆推计算得到:除数=(20047—13)÷742=27。

【答案】27【例 1】 一个两位奇数除1477,余数是49,那么,这个两位奇数是多少?【考点】除法公式的应用 【难度】1星 【题型】解答【解析】 这个两位奇数能被1477-49=1428整除,且必须大于49,1428=2×2×3×7×17,所以这样的两位奇数只有51。

【答案】51【例 2】 大于35的所有数中,有多少个数除以7的余数和商相等?【考点】除法公式的应用 【难度】2星 【题型】解答【解析】 除以7的余数只能是0~6,所以商只能是0~6,满足大于7的数只有商和余数都为5、6,所以只能是40、48。

【答案】40、48【例 3】 已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?【考点】除法公式的应用 【难度】2星 【题型】解答【解析】 本题为一道余数与约数个数计算公式的小综合性题目。

由题意所求的自然数一定是2008-10即1998的约数,同时还要满足大于10这个条件。

这样题目就转化为1998有多少个大于10的约数,319982337=⨯⨯,共有(1+1)×(3+1)×(1+1)=16个约数,其中1,2,3,6,9是比10小的约数,所以符合题目条件的自然数共有11个。

【答案】11【巩固】 写出全部除109后余数为4的两位数.【考点】除法公式的应用 【难度】2星 【题型】解答【关键词】美国长岛,小学数学竞赛,第五届【解析】 1094105357-==⨯⨯.因此,这样的两位数是:15;35;21.【答案】两位数是:15;35;21【例 4】 甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数.【考点】除法公式的应用 【难度】2星 【题型】解答【关键词】清华附中,小升初分班考试【解析】 (法1)因为 甲=乙1132⨯+,所以 甲+乙=乙1132⨯++乙=乙12321088⨯+=;则乙(108832)1288 =-÷=,甲1088=-乙1000=.(法2)将余数先去掉变成整除性问题,利用倍数关系来做:从1088中减掉32以后,1056就应当是乙数的(111)+倍,所以得到乙数10561288=÷=,甲数1088881000=-=.【答案】乙数10561288=-==÷=,甲数1088881000【例 5】用某自然数a去除1992,得到商是46,余数是r,求a和r.【考点】除法公式的应用【难度】2星【题型】解答【关键词】第五届,小数报,决赛【解析】因为1992是a的46倍还多r,得到19924643 (14)=⨯+,所以÷=,得1992464314 a=,1443r=.【答案】43a=,14r=【例 6】当1991和1769除以某个自然数n,余数分别为2和1.那么,n最小是多少?【考点】除法公式的应用【难度】2星【题型】解答【解析】如果用1990和1769去除这个自然数n时,余数是1.而199017692211317-==⨯,我们不妨取13÷=,1769131361÷=,所以n最小n=,再验证一下:1991131532为13.【答案】13【例 7】有三个自然数a,b,c,已知b除以a,得商3余3;c除以a,得商9余11。

则c除以b,得到的余数是。

【考点】除法公式的应用【难度】2星【题型】填空【关键词】希望杯,5年级,初赛,第4题,6分【解析】33=+b a=+c a911=++=+(99)232c a b所以应该余2。

【答案】2【例 8】有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?【考点】除法公式的应用【难度】3星【题型】解答【关键词】小学数学奥林匹克【解析】被除数+除数+商+余数=被除数+除数+17+13=2113,所以被除数+除数=2083,由于被除数是除数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968.【答案】1968【巩固】两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.【考点】除法公式的应用【难度】3星【题型】填空【关键词】小学数学奥林匹克【解析】因为被除数减去8后是除数的4倍,所以根据和倍问题可知,除数为⨯+=。

()(),所以,被除数为79483244154884179---÷+=【答案】324【巩固】用一个自然数去除另一个自然数,商为40,余数是16.被除数、除数、商、余数的和是933,求这2个自然数各是多少?【考点】除法公式的应用【难度】3星【题型】解答【解析】本题为带余除法定义式的基本题型。

根据题意设两个自然数分别为x,y,可以得到40164016933x y x y =+⎧⎨+++=⎩,解方程组得85621x y =⎧⎨=⎩,即这两个自然数分别是856,21. 【答案】两个自然数分别是856,21【例 9】 有一个三位数,其中个位上的数是百位上的数的3倍。

且这个三位数除以5余4,除以11余3。

这个三位数是_【考点】除法公式的应用 【难度】3星 【题型】填空【解析】 首先个位数不是4就是9,又因为它是百位的3倍所以一定是9,那么百位就是3,又因为它被11除余3,因此十位是9,答案是399【答案】399【例 10】 一个自然数,除以11时所得到的商和余数是相等的,除以9时所得到的商是余数的3倍,这个自然数是_________.【考点】除法公式的应用 【难度】3星 【题型】填空【关键词】2004年,福州市,迎春杯【解析】 设这个自然数除以11余a (011)a ≤<,除以9余b (09)b ≤<,则有1193a a b b +=⨯+,即37a b =,只有7a =,3b =,所以这个自然数为12784⨯=。

【答案】84【例 11】 盒子里放有编号1到10的十个球,小红先后三次从盒子中共取出九个球,如果从第二次起,每次取出的球的编号的和都比上一次的两倍还多一,那么剩下的球的编号为____。

【考点】除法公式的应用 【难度】3星 【题型】填空【关键词】走美杯,四年级,初赛,第11题【解析】 令第1次取的编号为a,第二次取的编号为2a+1,第三次取的编号为:2(2a+1)+1=4a+3;还剩下的编号为:55-7a-4=51-7a,当a 为6时,余下的是9;当a 为7时,余下的是2.【答案】9或者2【例 12】 10个自然数,和为100,分别除以3。

相关文档
最新文档