交流电机绕组的基本理论

合集下载

交流绕组 练习题 1

交流绕组 练习题 1
(6)整数槽双层叠绕组最大并联支路数等于___,整数 槽单层绕组最大并联支路数等于_____。
(7)若采用短距方法来消除相电动势中v次谐波,线圈 的节距y1=_τ。
(8)三相绕组的基波合成磁动势幅值为每相基波脉振磁 动势的_倍。
(9)交流电机的同步转速指__其值为__。 (10)交流电机三相绕组基波合成旋转磁动势的旋转方
A漏磁通B.主磁通C.总磁通
(13)三相交流电机的定于合成磁动势为圆形旋转 磁动势,其幅值计算公式中的电流为
A每相电流的最大值 B.每相电流的有效值
C.线电流
D.三相电流的代数和
(1)在分析交流电机的绕组和磁场在空间分布等 问题时,电机的空间角度常用电角度表示,电角 度为p倍的机械角度。()
(2)根据交流线圈节距的长短,交流绕组可分为 整距绕组、短距绕组和长距绕组,长距绕组的端 接线较长,所以电机绕组多采用长距。()
各次谐波磁动势的幅值为
FC3 Fc1 / 3, Fc5 Fc1 / 5
2)单层整距线圈组的磁动势
fq Fq1 sin t sin x Fq3 sin t sin 3x Fq5 sint sin 5x
式中, Fqv是线圈组的基波和v次谐波磁动势幅值, Fqv= qFcvKqv=0.9q(NcKqv/v)I; qFcv是q个线圈磁动势的代 数和,v=1,3,5,7,…为磁动势的基波和谐波次数;Kqv 是绕组的分布系数,Kqv=sin[q(vα/2)]/[ qsin(vα/2],v=1, 3,5,7,…。
1)计算每极每相槽数q=Z/(2pm)(槽)和 槽距角a=PX360°/Z1(电角度)。
2)根据槽距角画出各相量,标出P对极(P个重 叠相量)下的槽号,再根据q值分极分相。
(5)绕组展开图 分析槽电动势星形图的目的是为了画出绕组

交流电机绕组的基本理论

交流电机绕组的基本理论

10
3. 三相绕组合成磁动势谐波
Z=18,p=1,y1=7三相双层绕组
A相绕组磁动势
三相合成磁动势

B相绕组磁动势
三相合成磁动势是阶梯波; 除基波外,有奇数次谐波。 C相绕组磁动势
Y.Q.Xiong 2010-06 第4章 交流电机绕组的基本理论
11
1) 3次谐波 各相的3次谐波磁动势表达式为
2I sin t 2I sin( t 120 ) 2I sin( t 240 )
A、B、C每相绕组产生的磁 动势均为脉振磁动势,其基 波的幅值位于各相绕组轴线 上。
Y.Q.Xiong 2010-06 第4章 交流电机绕组的基本理论
2
三相绕组轴线在空间相差120°电角度,各相绕组磁动势基波 空间相位差为120°电角度。将空间坐标原点取在A相绕组的 轴线上,于是三相绕组脉振磁动势基波的表达式分别为
k y1

sin(
y1

π) 2
sin(10 12

π) 2

0.9659
sin q1 sin 4 15
kq1
2
qsin 1

2 4sin 15
0.9577
2
2
kN1 k y1kq1 0.9577 0.9659 0.925
(1) 每相脉振磁动势基波的振幅
Fm1
Fm1sin( t 240 )cos( 240 )

3 2
Fm1
sin(
t

)
为行波表达式,即 三相合成磁动势基 波在空间旋转,波 幅不变。
Y.Q.Xiong 2010-06 第4章 交流电机绕组的基本理论

交流电机绕组的基本理论

交流电机绕组的基本理论

2006年3月20日星期一
武汉大学电气工程学院应黎明
τ τ τ
y1 =τ 整距线圈
y1
y1 <τ 短距线圈
y1
y1 >τ 长距线圈
y1
01
0203Leabharlann 2006年3月20日星期一
武汉大学电气工程学院应黎明
分类:按照线圈的形状和端部连接方法的不同,三相单层绕组主要可分为链式、同心式和交叉式等型式。
单层绕组: 三相交流绕组由于每槽中只包含一个线圈边,所以其线圈数为槽数的一半。三相单层绕组比较适合于10KW以下的小型交流异步电机中,很少在大、中型电机中采用。
极对
各相槽号
A
Z
B
X
C
Y
第一对极
1, 2, 3
4, 5, 6
7, 8, 9
10,11,12
13,14,15
16,17,18
第二对极
19,20,21
22,23,24
25,26,27
28,29,30
31,32,33
34,35,36
2006年3月20日星期一
武汉大学电气工程学院应黎明
线圈组的串并连接
2006年3月20日星期一
2006年3月20日星期一
交流电机
武汉大学电气工程学院应黎明
发电机定子
2006年3月20日星期一
武汉大学电气工程学院应黎明
汽轮发电机转子
2006年3月20日星期一
武汉大学电气工程学院应黎明
2006年3月20日星期一
武汉大学电气工程学院应黎明
2006年3月20日星期一
武汉大学电气工程学院应黎明
武汉大学电气工程学院应黎明
同步电机

交流电机绕组的基本理论

交流电机绕组的基本理论

Y.Q.Xiong 2010-06 第4章 交流电机绕组的基本理论
15
相绕组磁动势及 其基波分量动画
基波表达式 f1(t, ) Fm1 sin t cos
基波振幅
Fm1

0.9
NkN1I p
串联匝数
N


2 pqNc a
pqN c a
(双层绕组) (单层绕组)
电机学 Electric Machinery
华中科技大学 电气与电子工程学院
熊永前
2010.06
Y.Q.Xiong 2010-06 第4章 交流电机绕组的基本理论
1
4.3 交流绕组磁动势
1. 单相绕组磁动势
(1) 单层集中相绕组的磁动势
Z=6,p=1,三相单层绕组。q=1,相当于集中绕组,每相只 有1个整距线圈。
磁动势空间矢量的长度代 表幅值的大小,矢量的位 置代表幅值所处的空间位 置。
将各线圈的基波磁动势矢
量相加得到分布相绕组磁
动势基波矢量。
Y.Q.Xiong 2010-06 第4章 交流电机绕组的基本理论
8
考虑到一般情况,对于q个线 圈,合成磁动势基波是q个依 次位移α1度的正弦波叠加而成 。
采用磁动势迭加原理,三个线圈分别产生矩形波磁动势。
将三个矩形波叠加起来,得到阶梯波脉振磁动势。
Y.Q.Xiong 2010-06 第4章 交流电机绕组的基本理论
7
用迭加原理求合成磁动势
三个线圈分别产生矩形波 磁动势。磁动势波形一样 ,依次位移槽距电角α1度 。
各线圈磁动势的基波分量 为空间分布正弦波,和时 间相量相似,可以用空间 矢量来表示。

f y (t, ) Fy cos 1,3,5,

第3章 交流电机的基本理论

第3章 交流电机的基本理论
电机学
第3章 交流电机的基本理论
河海大学 华侨大学 上海交通大学 南京理工大学
高等教育出版社、高等教育电子音像出版社
1
本章主要内容
3.1 交流电机的工作原理 3.2 交流电机的绕组和电动势 3.3 交流电机绕组的磁动势 本章小结

2
本章学习要求 基本要求:
1. 掌握旋转电机的基本作用原理。 2. 了解三相交流绕组的构成原则和连接方法,
7
3.1.2 异步电机的工作原理 定子绕组 (三相) 1. 三相异步机的结构 A
三相定子绕组:产生旋转 磁场。
Y
定子
Z
转子:在旋转磁场作用下, 产生感应电动势或 电流。
线绕式 鼠笼式 转子
Cபைடு நூலகம்
B
X
鼠笼转子
机 座
8
3.1.2 异步电机的工作原理
2. 电动机运行时的基本原理
定子接三相电源上,绕组中流过三相对称电流,气隙中 建立基波旋转磁动势,产生基波旋转磁场,转速为同步速 (后文将详细介绍):
32
3.2.3 正弦磁场下交流绕组的感应电动势
3. 一个线圈(Nc 匝)电动势
设线圈匝数为 N C ,其电动势 Ec 为一匝线圈电动 Et 势的 N C 倍,故:
Ec NC Et 4.44 fNC KPΦ
33
3.2.3 正弦磁场下交流绕组的感应电动势
(以三相双层绕组为重点)。
3. 掌握交流绕组电动势的分析和计算方法。
了解绕组系数的物理意义及其对改善波形的作用。 4. 理解绕组的谐波电动势,了解其削弱方法。
5. 掌握交流绕组磁动势的性质及其表示和分析方法。
分清脉振磁动势、圆形磁动势和椭圆性磁动势的区别及关系。

电机学(辜承林)第4章 交流电机绕组的基本理论

电机学(辜承林)第4章 交流电机绕组的基本理论

第四章交流电机绕组的基本理论 (169)4.1 交流绕组的基本要求 (169)4.2 三相单层绕组 (171)4.3 三相双层绕组 (173)4.4 在正弦分布磁场下的绕组电动势 (175)4.5 在非正弦分布磁场下电动势中高次谐波及其削弱方法 (179)4.5.1 感应电动势中的高次谐波 (179)4.5.2 削弱谐波电动势的方法 (180)4.6 单相绕组的磁动势 (181)4.6.1 p=1、q=1短距绕组磁动势 (182)4.6.2 p=1分布短距绕组的磁动势 (183)4.6.3 一般情况下的相绕组磁动势 (184)4.7 三相绕组的基波合成磁动势 (185)4.8 圆形和椭圆形旋转磁动势 (191)4.9 谐波磁动势 (192)4.10 交流电机的主磁通、漏磁通 (193)习题 (194)第四章 交流电机绕组的基本理论交流电机主要分为同步电机和异步电机两类。

这两类电机虽然在励磁方式和运行特性上有很大差别,但它们的定子绕组的结构型式是相同的,定子绕组的感应电动势、磁动势的性质、分析方法也相同。

本章统一起来进行研究。

4.1 交流绕组的基本要求交流绕组的基本要求是:(1) 绕组产生的电动势(磁动势)接近正弦波。

(2) 三相绕组的基波电动势(磁动势)必须对称。

(3) 在导体数一定时能获得较大的基波电动势(磁动势)。

下面以交流绕组的电动势为例进行说明。

图4.1表示一台交流电机定子槽内导体沿圆周分布情况,定子槽数Z=36,磁极个数2p =4,已励磁的磁极由原动机拖动以转速了n 1逆时针旋转。

这就是一台同步发电机。

试分析为了满足上述三项基本要求,应遵守哪些设计原则?1. 正弦分布的磁场在导体中感应正弦波电动势以图4.1中N 1的中心线为轴线,在N 1磁极下的气隙中磁感应强度分布曲线如图4.2所示。

只要合理设计磁极形状,就可以使得气隙中磁感应强度呈正弦分布,即, 旋转磁极在定子导体(例如13、14、15、16号导体)中的感应电动势为)(θb )(θb θB θb cos )(m =θcos )θ(m c lv B lv b e ==(4.1)式中,l 为导体有效长度,v 为磁极产生的磁场切割导体的线速度。

交流电机的绕组、电动势和磁动势

交流电机的绕组、电动势和磁动势

N极面
S极面
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
N
NS
S
N
S
A
X
单层绕组的特点: (1)最大并联支路数等于极对数; (2)不能利用短距绕组消除高次谐电势和磁势; (3)线圈数少,绕线和嵌线的工时少; (4)无层间绝缘,下线方便,槽利用率高;
YA Z B
C
X
例 3:Q=36,2P=4,绘制 a=1的三相单层交叉式 绕组展开图。
1、计算绕组参数; 2、画槽电动势星形图,划分相带; 3、连接A相绕组,画A相绕组展开图; 4、画B、C相绕组展开图。
例 4 :Q=24;2P=2;要求绘制三相单层同心式绕组。
18槽2极单层同心式绕组(a=1)
A
B
C
X
Y
Z
24 槽 4 极单层整距绕组
绕组结构参数? y=?τ=? q=? α=?
24槽4极单层整距绕组
三相4极24槽单层整距绕组
两个图的区别? 三相4极24槽单层链式绕组
判断:绕组的结构型式及绕组结构参数
τ
τ
τ
τ
1 2 3 4 5 6 7 8 9 101112131415161718192021222324
同步电机
异步电机
同步电机:多用作发电机,也用作电动机,可改 变电网功率因数。
异步电机:主要用作电动机,只有特殊场合才用 作发电机。
两种类型的交流电机涉及三个共同部分:
◆交流绕组的基本结构 ◆交流绕组中感应的电动势 ◆交流绕组产生的磁动势
5.1 交流电机的基本工作原理
一、同步发电机的基本工作原理
二、异步电动机的基本工作原理

电机绕组理论

电机绕组理论

第五节 交流绕组的感应电动势 一、正弦分布磁场下的绕组电动势
Bx Bm sin e1 Bxlv Bmlv sint 2E1 sint
t 时空转换
f pn 电频率与机械转速 60
E1
2 2
f
(2
Bml
)
2.22
f
1
(二)整距线圈感应电动势
Ec1 4.44 fNc1
(三)短距线圈的电动势
第五章 交流电机的绕组和电动势 第一节 交流电机的工作原理 一、工作原理 Key words:同步旋转,切割磁力线 ,失步,
感应,异步,旋转磁场
二、旋转磁场
A
Y Z
C
B
X
iA Im sin t
iB Im sin t 120 iC Im sin t 240
n1
60 f p
机械角度与电角度
一、三相单层集中整距绕组
每相只有一个集中整距线圈, 定子上每个槽里只放一个线 圈边
二、三相单层分布整距绕组
所有的线圈是同一节距又是整 距的。
A
Y Z
C
B
X
三、单层绕组的特点
(一)每个槽内只有一个线圈边,没有层间绝缘,槽 利用率较高。
(二)整个绕组的线圈个数等于总槽数的一半。节省 绕线和嵌线的工时,并且嵌线比较方便。
由超前相的绕组轴线移向滞后相的绕组轴线。
出现三相绕组或三相电流不对称的情况时,可以证明三 相基波合成磁动势将成为一个正弦分布、幅值变化、 非恒速推移的椭圆形旋转磁动势。
二、三相绕组的高次谐波合成磁动势 (一)3次谐波
f A3 fB3
F 3 F 3
cos 3 cost
cos 3 120 cos

第四章-交流绕组的基本问题

第四章-交流绕组的基本问题

第四章《交流电机绕组的基本理论》4.1 交流绕组的基本要求1.交流绕组的基本要求:(1)绕组产生的电动势(磁动势)接近正弦波;(2)三相绕组的基波电动势(磁动势)必须对称;(3)在导体数一定时能获得较大的基波电动势(磁动势)。

2.槽距角α:相邻两槽之间的机械角度槽距电角α1:相邻两槽间相距的电角度4.2三相交流绕组1.极距一个极在电机定子圆周上所跨的距离,一般以槽数计每极每相槽数整个电机定子中每相在每个极下所占有的槽数2.线圈组:每相绕组中相邻的线圈串联在一起称为一个线圈组,一个线圈组中的线圈个数为每极每相槽数q4.3交流绕组的电动势1.短距系数短距系数的物理意义:是短距线圈电动势与对应的整距线圈电动势之比分布系数分布系数的物理意义:分布线圈组合成感应电动势比集中线圈组合成电动势所打的折扣绕组系数2.导体电势,匝电势,线圈电势,线圈组电势和相电势的求法(重点)导体电势匝电势线圈电势线圈组电势相电势(附:4.高次谐波感应电动势的危害:(1)使发电机的电动势波形变坏(2)发电机本身损耗增加,温升增高(3)谐波电流串入电网,干扰通信5.削弱感应电动势谐波的方法:(1)使气隙中的磁场分布尽可能接近正弦波(2)采用对称的三相绕组(使线电动势不存在3次谐波及其倍数的奇次谐波)(3)采用短距绕组(4)采用分布绕组(5)采用磁性槽楔、斜槽或分布槽绕组6.采用短距绕组削弱谐波电动势(通常选y1=5/6τ以同时削弱5、7次谐波)7.对称三相绕组线电动势中不存在3及3的倍数次谐波的原因是:三相相电动势中的三次谐波在相位上彼此相差3*120°=360°,即它们是同相位、同大小的。

当三相绕组接成星形时,E AB3=E A3-E B3=0,所以对称三相绕组的线电动势中不存在3次谐波,同理也不存在3的倍数次谐波。

4.4交流绕组的磁动势1.脉振磁动势:空间位置固定不动,但波幅的大小和正负随时间变化的磁动势2.一个线圈所产生的磁动势的基波幅值:一个极相组所产成的磁动势基波幅值:一相绕组产生的磁动势每极基波幅值:第n次谐波磁动势(1)单相绕组磁动势是脉振磁动势,既是时间t的函数又是空间θ角的函数(2)单相绕组磁动势v次谐波的幅值与v成反比,与对应的绕组系数成正比(3)基波、谐波的波幅必在相绕组的轴线上(4)为了改善磁动势波形,可以采用短距和分布绕组来削弱高次谐波3.三相基波合成磁动势:三相基波合成磁动势的性质(重点):(1)三相合成磁动势的基波是一个波幅恒定不变的旋转波(2)当电流在时间上经过多少电角度,旋转磁动势在空间上转过同样数值的电角度(3)旋转磁动势基波旋转电角速度等于交流电流角频率;旋转磁动势的转速n1为同步转速(4)旋转磁动势由超前相电流所在的相绕组轴线转向滞后的相电流所在的相绕组轴线,因此,哪相电流达到最大值,旋转合成磁动势的幅值就在那相绕组的轴线上(5)合成磁动势的旋转方向取决于三相电流相序。

电机答案

电机答案

第四章 交流电机绕组的基本理论4.1 交流绕组与直流绕组的根本区别是什么? 交流绕组:一个线圈组彼此串联直流绕组:一个元件的两端分别与两个换向片相联4.2 何谓相带?在三相电机中为什么常用60°相带绕组而不用120°相带绕组?相带:每个极下属于一相的槽所分的区域叫相带,在三相电机中常用60相带而不用120相带是因为:60相带所分成的电动势大于120相带所分成的相电势。

4.3 双层绕组和单层绕组的最大并联支路数与极对数有什么关系? 双层绕组:max 2a P = 单层绕组:max a P =4.4 试比较单层绕组和双层绕组的优缺点及它们的应用范围?单层绕组:简单,下线方便,同心式端部交叉少,但不能做成短匝,串联匝数N 小(同样槽数),适用于10kW <异步机。

双层绕组:可以通过短距节省端部用铜(叠绕组)或减少线圈但之间的连线(波绕),更重要的是可同时采用分布和短距来改善电动势和磁动势的波形,因此现代交流电机大多采用双层绕组。

4.5 为什么采用短距和分布绕组能削弱谐波电动势?为了消除5次或7次谐波电动势,节距应选择多大?若要同时削弱5次和7次谐波电动势,节距应选择多大?绕组短距后,一个线圈的两个线圈边中的基波和谐波(奇次)电动势都不在相差180,因此,基波和谐波电动势都比整距时减小;对基波,同短距而减小的空间电角度较小,∴基波电动势减小得很少;但对V 次谐波,短距减小的则是一个较大的角度(是基波的V 倍),因此,总体而言,两个线圈中谐波电动势相量和的大小就比整距时的要小得多,因此谐波电动势减小的幅度大于基波电动势减小的幅度∴可改善电动势波形。

绕组分布后,一个线圈组中相邻两个线圈的基波和ν次谐波电动势的相位差分别是1α和1v α(1α槽距角),这时,线圈组的电动势为各串联线圈电动势的相量和,因此一相绕组的基波和谐波电动势都比集中绕组时的小,但由于谐波电动势的相位差较大,因此,总的来说,一相绕组的谐波电动势所减小的幅度要大于基波电动势减小的幅度,使电动势波形得到改善。

交流电机的绕组、磁通势和电动势

交流电机的绕组、磁通势和电动势
机。
绕组的连接方式
01
02
03
04
并联
将两个或多个绕组并联连接, 以增加电机输出电流。
串联
将两个或多个绕组串联连接, 以增加电机输出电压。
星形连接
将绕组的三个末端连接在一起 ,形成一个中性点,通常用于
三相电机。
三角形连接
将三相电机的三个绕组首尾相 接,形成一个闭合回路,通常
用于高压电机。
02 交流电机磁通势
作用。
转矩产生
02
反电动势与电源电动势的相互作用产生转矩,驱动电机旋转。
调速控制
03
通过改变电源电动势的相位和大小,可以调节电机的转速,实
现调速控制。
THANKS FOR WATCHING
感谢您的观看
基于磁路的分析
通过对电机磁路的建模和分析,可以计算出磁通 势的大小和分布。这种方法需要建立磁路的数学 模型,并进行求解。
实验测量
通过实验测量电机的磁场强度和分布,可以间接 得到磁通势的大小和分布。这种方法需要专业的 测量设备和实验条件。
03 交流电机电动势
电动势的概念
电动势是描述电源将 其他形式的能量转换 为电能的能力的物理 量。
电动势的方向规定为 电源内部电流的方向, 即从负极指向正极。
在电路中,电动势表 示为电压源或电压降 落。
电动势的计算方法
欧姆定律
E=IR,其中E为电动势,I为电流, R为电阻。
基尔霍夫定律
在电路中,电动势的代数和等于零 ,即∑E=0。
叠加原理
在多个电源共同作用的电路中,每 个电源产生的电动势单独作用,然 后求和。
电动势的分类与特性
直流电动势
方向和大小保持不变的电动势 ,如电池提供的电源。

电机学第四章交流电机绕组基本理论第四讲

电机学第四章交流电机绕组基本理论第四讲
F C1
F B1
F A1
F1
+B
F A 1 F B 1 F C 1
+C
θ=120°
θ=120°
t 120
F A1
+B θ=120°
+A θ=0°
F B1
F A 1 F B 1 F C 1
F C1
F1
+C
θ=120°
t 240
2 圆形和椭圆形旋转磁动势
圆形旋转磁动势:对称的三相绕组中流过对称的三相电流时,气隙中的合成磁动势是一个 幅值恒定、转速恒定的旋转磁动势,其波幅的轨迹是一个圆,故这种磁动势称为圆形旋 转磁动势,相应的磁场称为圆形旋转磁场。
2 3
)
fC1
Fm1
cos(t
4 3
)
cos(
4 3
)
t /3
fA1 ( ) 0.5Fm1cos
π/3
fB1( ) 0.5Fm1cos( 120 )
fC1( ) Fm1cos( 240 )
1.1.2 矢量图法求合成磁动势基波 ωt=2π/3时,三相的基波合成磁动势
t 2 / 3 fA1( ) 0.5Fm1cos fB1( ) Fm1cos( 120 ) fC1( ) 0.5Fm1cos( 240 )
C相绕 组轴 线
B相绕 组轴 线
1.2三相绕组的基波合成磁动势性质 如何改变旋转磁动势的转向? 改变电流的相序可以改变旋转磁动势的转向
1.2三相绕组的基波合成磁动势性质 三相绕组合成磁动势基波的特点: 性质:三相对称绕组通入三相对称电流产生的三相合成磁动势基波是一个波幅恒定不变的旋
转磁动势—圆形旋转磁动势
1.1.1 解析法求合成磁动势基波 三角公式积化和差:

交流电机绕组的基本理论1

交流电机绕组的基本理论1
2p
Z为定子槽数 p 为磁极对数
2.线圈节距 y1:线圈两个有效边之间所跨过的槽数。
y1 = τ 整距绕组(单层绕组采用) y1 < τ 短距绕组(双层绕组采用) y1 > τ 长距绕组(端部连线长,一般不采用)
14Leabharlann 3. 每极每相槽数q 每个极下每相占有的槽数。 已知总槽数Z、极对数p和相数m,则
26
在第一个N极下取1、 2、3三个槽作为A相 带,在第一个S极下 取10、11、12三个 槽作为X相带,第二 对极下19、20、21 作为A相带,28、29、 30作为X相带。
27
相带 第一对极
各个相带槽号分布
A
Z
B
X
C
Y
1,2,3
4,5,6
7,8,9 10,11,12 13,14,15 16,17,18
29
联相绕组
• 将属于同一相的2p个线圈组联成一相绕组,并标记首尾端 • 依照电势相加原则进行连接,最大并联支路数amax=2p
a=1
30
由于N极下的极相组A与S极下的极相组X的电动势 方向相反,电流方向也相反,因此应将极相组A和极相 组X 反向串联。
由于每相的极相组数等于极数,所以双层叠绕组的 最大并联支路数等于2p。
链式绕组
19
双层叠绕组
20
单层叠绕组的构成
例:已知一交流电机槽数Z=36,极数2p=4,并联支路 数a=1,绘制三相单层绕组展开图。
1. 绘制槽电动势星形图
q = Z = 36 = 3 2 pm 2× 2× 3
α1
=
p × 3600 Z
=
2 × 3600 36
= 20°
600相带

交流电机的电枢绕组

交流电机的电枢绕组
• 串联与并联:电势相 加原则。 •最大并联支路数a=p 。
交流绕组的形式
等元件式整距叠绕组 单层绕组 同心式绕组 链式绕组 交叉链式绕组 交流绕组 双层叠绕组 双层绕组 双层波绕组
等元件式整距单层叠绕组
同心式绕组
链式绕组
交叉链式绕组
双层叠绕组
单层叠绕组的构成
实例:Z=24(槽)、m=3(相)、2p=4(极)的单层叠绕组 基本步骤: 1. 分极分相: • 将总槽数按给定的极数均匀分开(N、S极相邻分布)并标 记假设的感应电势方向。 • 将每个极域的槽数按三相均匀分开。三相在空间错开120电 角度。 每极每相槽数
• 电机的机对数为p时,气隙 圆周的角度数为p ×360电角 度。
单层绕组和双层绕组
• 单层绕组一个槽中只放一个元件边; • 双层绕组一个槽中放两个元件边。
★槽距角,相数,每极每相槽数
• 一个槽所占的电角度数称为槽距角,用α表示;
• 每个极域内每相所占的槽数称为每极每相槽数,用q表示。
Z q 2 pm
对交流绕组的要求
(1)交流绕组通电后, 必须形成规定的磁场极数;
(2)多相绕组必须对称, 不仅要求m相绕组的匝数N、跨距y1、线 径及在圆周上的分布情况相同, 而且m相绕组的轴线在空间上互差 3600/m电角度。
(3)交流绕组通过电流所建立的磁场在空间的分布为正弦分布,且 旋转磁场在交流绕组中感应电动势必须随时间按正弦规律变化。 采 用分布绕组和短距绕组。 (4)在一定的导体数之下, 建立的磁场最强而且感应电动势最大。 因此线圈的跨距y1尽可能接近极距, 而且对于三相绕组尽可能采用 600相带。(每个极距内属于同一相的槽在圆周上连续所占有的电角 度区域称为相带)。 (5)用铜少;下线方便;强度好。

华中科技大学_电机学__第四章_交流电机绕组(完美解析)

华中科技大学_电机学__第四章_交流电机绕组(完美解析)
将属于同一相的p个线圈组串、并联成一相绕组,并标记首尾端
◎ 并联支路数a:一相绕组中并联支路的个数,即因各个线圈组 的感应电动势相等,可以采用串、并联方式将q个线圈组连接,形 成a条并联支路。 ◎ 单层绕组每相最大并联支路数 amax = p
a=1
A1 A
X1
A2
X2 X
a=2
26
④ 画出三相绕组:
每极磁通 1
2

Bm1l
1 f 2
导体感应电动势
Ec1 2.22 f1
44
2. 线圈电动势与短距系数
线圈电动势有效值
y1 π E y1 N c Ec1 2 sin( ) 2
将一对极下属于同一 相的某两个导体连接 ,构成一个线圈 将一对极下属于同一 相的q个线圈连接,构 成一个线圈组

A1
X1
A2
X2
24
线圈组:每相绕组中, 相邻的线圈串联在一起,称为一个线 圈组。一个线圈组中的线圈个数为每极每相槽数q。 线圈组 线圈组
A1
X1
A2
X2
线圈
25
④ 构成一相绕组:
A相绕组整体右移120°得B相绕组,整体右移240 °得C相绕组
27
总结:单层叠绕组构造方法和步骤
画槽电动势星形图
分极分相:
将总槽数按极数均匀分开,N、S极相邻分布 将每个极的槽数按三相均匀分开,三相在空间错开120°电角度
构成线圈和线圈组:
将一对极下属于同一相的某两个圈边连接,构成一个线圈 将一对极下属于同一相的q个线圈连接,构成一个线圈组
构成一相绕组:
将属于同一相的2p个线圈组连成一相绕组,并标记首尾端 根据并联支路数将线圈组串联、并联或串并联,均符合电势相加原则

第四章交流电机绕组的基本理论

第四章交流电机绕组的基本理论
线圈组数 = 线圈个数/ q
《电机学》 第四章 交流电机绕组的基本理论
例:Z=24,2p=4
=Z/2p
q Z 2 pm
1
p 360 0 Z
《电机学》 第四章 交流电机绕组的基本理论
单层绕组和双层绕组: 单层绕组一个槽中只放一个元件边 双层绕组一个槽中放两个元件边。
《电机学》 第四章 交流电机绕组的基本理论
(称60º相带)。A、B、C
三相带中心线依此互差
120º ,X相带中心线与A相
带中心线互差180º ,将X
相带与A相带电动势反向
串联起来得A相电动势。
同理得到B、C相电动势。
A和X相带内的全部导体属于A相,B和Y 相带的全部导体为B相……
各相电动势大于120º相带 时的值。
《电机学》 第四章 交流电机绕组的基本理论
《电机学》 第四章 交流电机绕组的基本理论
2、用槽电动势星形图分相以保证三相感应电动势对称
电角度:
2p=2
一周360º(2π)----机械角度——空间角度 一对极一周360º----电角度 ——空间角度
转子铁心的横截面是一个圆,其几何角度为360º。 从电磁角度看,一对N,S极构成一个磁场周期,即1对极为360º 电角度。
《电机学》 第四章 交流电机绕组的基本理论
2p=4
机械角度=360º 电角度=p×360º=720º
电角度=p×机械角度
两对N,S极构成2个感应电势周期
《电机学》 第四章 交流电机绕组的基本理论
电枢上各槽内导体按正弦规律变化的电动势分别用相量表 示,这些相量构成一个辐射星形图,称槽电势星形图。
13(31)14(32)
15(33)C相 16(34)

第四章_交流电机绕组的基本理论

第四章_交流电机绕组的基本理论
一. 特点: Z ,一般为整距绕 1. 每个槽内只有一个线圈边,其极距 2p 组。 2. 线圈个数=Q1 /2 3. 线圈组个数= Q1 /2q 4. 每相线圈组的个数= p (60°相带时) 5. 每个线圈匝数NC = 每槽导体数 6. 每个线圈组的匝数q NC 7. 每相串联匝数N=每相总的串联匝数/பைடு நூலகம் = p q NC / a = 定子 总导体数/2ma(即每条支路的匝数) 8. 一般用于10KW以下的小型交流电机
三、单相绕组的磁动势 相电流为Iφ 、每相串联匝数N、绕组并联支路数a、则单相 磁动势为: Nk w1 Fm1 0.9 I p
Nkw1 f1 ( x, t ) Fm1 sin t cos x 0.9 I sin t cos x p
单相脉动磁动势的分解
f 1 ( x, t ) Fm1 sin t cos x 1 1
3 f c ( x, t ) Fcm1 sin t cos x Fcm3 sin t cos x Fcm sin t cos x
其中: x 用电角度表示的空间距离。 ④基波磁动势的幅值: 4 2 Fcm1 N c I 0.9 N c I 2 ⑤ν次谐波磁势的幅值: 1 Fcm 0.9 N c I
首 尾
X
N
1 23
S
101112
N
1920 21
S
282930
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
三相双层叠绕组的A相绕组的展开图 (Z = 36 , 2P = 4 , a = 1)
4.4 正弦磁场下交流绕组的感应电动势
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三篇交流电机绕组的基本理论
3.1 交流绕组与直流绕组的根本区别是什么?
3.2 何谓相带?在三相电机中为什么常用60°相带绕组而不用120°相带绕组?
3.3 双层绕组和单层绕组的最大并联支路数与极对数有什么关系?
3.4 试比较单层绕组和双层绕组的优缺点及它们的应用范围?
3.5 为什么采用短距和分布绕组能削弱谐波电动势?为了消除5次或7次谐波电动势,节距应选择多大?若要同时削弱5次和7次谐波电动势,节距应选择多大?
3.6 为什么对称三相绕组线电动势中不存在3及3的倍数次谐波?为什么同步发电机三相绕组多采用Y型接法而不采用Δ接法?
3.7 为什么说交流绕组产生的磁动势既是时间的函数,又是空间的函数,试以三相绕组合成磁动势的基波来说明。

3.8 脉振磁动势和旋转磁动势各有哪些基本特性?产生脉振磁动势、圆形旋转磁动势和椭圆形旋转磁动势的条件有什么不同?
3.9 把一台三相交流电机定子绕组的三个首端和三个末端分别连在一起,再通以交流电流,则合成磁动势基波是多少?如将三相绕组依次串联起来后通以交流电流,则合成磁动势基波又是多少?可能存在哪些谐波合成磁动势?
3.10 一台三角形联接的定子绕组,当绕组内有一相断线时,产生的磁动势是什么磁动势?
3.11 把三相感应电动机接到电源的三个接线头对调两根后,电动机的转向是否会改变?为什么?
3.12 试述三相绕组产生的高次谐波磁动势的极对数、转向、转速和幅值。

它们所建立的磁场在定子绕组内的感应电动势的频率是多少?
3.13 短距系数和分布系数的物理意义是什么?试说明绕组系数在电动势和磁动势方面的统一性。

3.14 定子绕组磁场的转速与电流频率和极对数有什么关系?一台50Hz的三相电机,通入60Hz的三相对称电流,如电流的有效值不变,相序不变,试问三相合成磁动势基波的幅值、转速和转向是否会改变?
3.15 有一双层三相绕组,Z=24,2p=4,a=2,试绘出:
(1)槽电动势星形图;
(2)叠绕组展开图。

3.16 已知Z=24,2p=4,a=1,试绘制三相单层同心式绕组展开图。

3.17 一台三相同步发电机,f=50Hz,n N=1500r/min,定子采用双层短距分布绕组,q=3,y1/τ=8/9,每相串联匝数N=108,Y联接,每极磁通量Ф1=1.015×10-2Wb,Ф3=0.66×10-2Wb,Ф5=0.24×10-2Wb,Ф7=0.09×10-2Wb,试求:
(1)电机的极数;
(2)定子槽数;
(3)绕组系数k N1、k N3、、k N5、k N7;
(4)相电动势E1、E3、E5、E7及合成相电动势Eφ和线电动势E l。

3.18 一台汽轮发电机,2极,50Hz,定子54槽每槽内两根导体,a=1,y1=22槽,Y 联接。

已知空载线电压U0=6300V,求每极基波磁通量Ф1。

3.19三相双层短距绕组,f=50Hz,2p=10,Z=180,y1=15,N c=3,a=1,每极基波磁通φ1=0.113Wb,磁通密度B=(sinθ+0.3sin3θ+0.2sin5θ)T,试求:
(1)导体电动势瞬时值表达式;
(2)线圈电动势瞬时值表达式;
(3)绕组的相电动势和线电动势的有效值。

3.20 一台三相同步发电机,定子为三相双层叠绕组,Y联接,2p=4,Z=36槽,y1=7τ/9,每槽导体数为6,a=1,基波磁通量Ф1=0.75Wb,基波电动势频率f1=50Hz,试求:(1)绕组的基波相电动势;
(2)若气隙中还存在三次谐波磁通,Ф3=0.1Wb,求合成相电动势和线电动势。

3.21 JO2-82-4三相感应电动机,P N=40kW,U N=38V,I N=75A,定子绕组采用三角形联接,双层叠绕组,4极,48槽,y1=10槽,每极导体数为22,a=2,试求:(1)计算脉振磁动势基波和3、5、7等次谐波的振幅,并写出各相基波脉振磁动势的表达式;
(2)当B相电流为最大值时,写出各相基波磁动势的表达式;
(3)计算三相合成磁动势基波及5、7、11次谐波的幅值,并说明各次谐波的转向、极对数和转速;
(4)写出三相合成磁动势的基波及5、7、11次谐波的表达式;
(5)分析基波和5、7、11次谐波的绕组系数值,说明采用短距和分布绕组对磁动势波形有什么影响。

3.22 一台50000 kW的2极汽轮发电机,50Hz,三相,U N=10.5 kV星形联接,cosфN=0.85,定子为双层叠绕组,Z=72槽,每个线圈一匝,y1=7τ/9,a=2,试求当定子电流为额定值时,三相合成磁动势的基波,3、5、7次谐波的幅值和转速,并说明转向。

3.24 在对称的两相绕组(空间差900电角度)内通以对称的两相电流(时间上差900),试分析所产生的合成磁动势基波,并由此论证“一旋转磁动势可以用两个脉振磁动势来代表”。

3.26 一台三相四极交流电机,定子三相对称绕组A、B、C分别通以三相对称电流i A=10sinωt A、i B=10sin(ωt-120)A、i C=10sin(ωt-240)A,求:
(1)当i A=10A时,写出各相基波磁动势的表达式以及三相合成磁动势基波的表达式,用磁动势矢量表示出基波合成磁动势的空间位置;
(2)当i A由10A降至5A时,基波合成磁动势矢量在空间上转过了多少个圆周?。

相关文档
最新文档